51
|
Checler F, Alves da Costa C. Parkin as a Molecular Bridge Linking Alzheimer’s and Parkinson’s Diseases? Biomolecules 2022; 12:biom12040559. [PMID: 35454148 PMCID: PMC9026546 DOI: 10.3390/biom12040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s (AD) and Parkinson’s (PD) diseases are two distinct age-related pathologies that are characterized by various common dysfunctions. They are referred to as proteinopathies characterized by ubiquitinated protein accumulation and aggregation. This accumulation is mainly due to altered lysosomal and proteasomal clearing processes and is generally accompanied by ER stress disturbance, autophagic and mitophagic defects, mitochondrial structure and function alterations and enhanced neuronal cell death. Genetic approaches aimed at identifying molecular triggers responsible for familial forms of AD or PD have helped to understand the etiology of their sporadic counterparts. It appears that several proteins thought to contribute to one of these pathologies are also likely to contribute to the other. One such protein is parkin (PK). Here, we will briefly describe anatomical lesions and genetic advances linked to AD and PD as well as the main cellular processes commonly affected in these pathologies. Further, we will focus on current studies suggesting that PK could well participate in AD and thereby act as a molecular bridge between these two pathologies. In particular, we will focus on the transcription factor function of PK and its newly described transcriptional targets that are directly related to AD- and PD-linked cellular defects.
Collapse
|
52
|
Gupta R, Sahu M, Tripathi R, Ambasta RK, Kumar P. Protein S-sulfhydration: Unraveling the prospective of hydrogen sulfide in the brain, vasculature and neurological manifestations. Ageing Res Rev 2022; 76:101579. [PMID: 35124235 DOI: 10.1016/j.arr.2022.101579] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) and hydrogen polysulfides (H2Sn) are essential regulatory signaling molecules generated by the entire body, including the central nervous system. Researchers have focused on the classical H2S signaling from the past several decades, whereas the last decade has shown the emergence of H2S-induced protein S-sulfhydration signaling as a potential therapeutic approach. Cysteine S-persulfidation is a critical paradigm of post-translational modification in the process of H2S signaling. Additionally, studies have shown the cross-relationship between S-sulfhydration and other cysteine-induced post-translational modifications, namely nitrosylation and carbonylation. In the central nervous system, S-sulfhydration is involved in the cytoprotection through various signaling pathways, viz. inflammatory response, oxidative stress, endoplasmic reticulum stress, atherosclerosis, thrombosis, and angiogenesis. Further, studies have demonstrated H2S-induced S-sulfhydration in regulating different biological processes, such as mitochondrial integrity, calcium homeostasis, blood-brain permeability, cerebral blood flow, and long-term potentiation. Thus, protein S-sulfhydration becomes a crucial regulatory molecule in cerebrovascular and neurodegenerative diseases. Herein, we first described the generation of intracellular H2S followed by the application of H2S in the regulation of cerebral blood flow and blood-brain permeability. Further, we described the involvement of S-sulfhydration in different biological and cellular functions, such as inflammatory response, mitochondrial integrity, calcium imbalance, and oxidative stress. Moreover, we highlighted the importance of S-sulfhydration in cerebrovascular and neurodegenerative diseases.
Collapse
|
53
|
Belingheri M, Chiu YHM, Renzetti S, Bhasin D, Wen C, Placidi D, Oppini M, Covolo L, Padovani A, Lucchini RG. Relationships of Nutritional Factors and Agrochemical Exposure with Parkinson's Disease in the Province of Brescia, Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3309. [PMID: 35328997 PMCID: PMC8954923 DOI: 10.3390/ijerph19063309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022]
Abstract
Environmental exposures to agrochemicals and nutritional factors may be associated with Parkinson's Disease (PD). None of the studies to date has examined the combined effects of diet and agricultural chemical exposure together. To address these research gaps, we aimed to assess the association of nutritional factors and agrochemical exposure with the risk of PD. A hospital-based case-control study was conducted. Multivariable logistic regressions were used to estimate the association of nutritional and agrochemical exposures with PD, adjusting for gender, age, socio-economic status, head injury, family history, smoking, metals exposure, and α-synuclein gene polymorphism. Weighted Quantile Sum (WQS) regression was applied to examine the effect of dietary components as a mixture. We recruited 347 cases and 389 controls. Parent history of PD (OR = 4.15, 95%CI: 2.10, 8.20), metals exposure (OR = 2.50, 95%CI: 1.61-3.89), SNCA rs356219 polymorphism (OR = 1.39, 95%CI: 1.04-1.87 for TC vs. TT; OR = 2.17, 95%CI: 1.43-3.28 for CC vs. TT), agrochemical exposures (OR = 2.11, 95%CI: 1.41-3.16), and being born in the Brescia province (OR = 1.83, 95%CI: 1.17-2.90) were significantly associated with PD. Conversely, fish intake and coffee consumption had a protective effect. The study confirmed the role of environmental exposures in the genesis of PD. Fish intake and coffee consumption are protective factors even when agricultural chemical exposures exist. Genetic factors and metals exposure were confirmed as risk factors for PD.
Collapse
Affiliation(s)
- Michael Belingheri
- School of Medicine and Surgery, University of Milano-Bicocca, 20090 Monza, Italy
| | - Yueh-Hsiu Mathilda Chiu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (Y.-H.M.C.); (C.W.)
| | - Stefano Renzetti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (S.R.); (D.P.); (M.O.); (L.C.); (R.G.L.)
| | - Deepika Bhasin
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Chi Wen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (Y.-H.M.C.); (C.W.)
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (S.R.); (D.P.); (M.O.); (L.C.); (R.G.L.)
| | - Manuela Oppini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (S.R.); (D.P.); (M.O.); (L.C.); (R.G.L.)
| | - Loredana Covolo
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (S.R.); (D.P.); (M.O.); (L.C.); (R.G.L.)
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
| | - Roberto G. Lucchini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (S.R.); (D.P.); (M.O.); (L.C.); (R.G.L.)
- Department of Environmental Health Sciences, School of Public Health and Social Work, Florida International University, Miami, FL 11200, USA
| |
Collapse
|
54
|
Chung I, Park HA, Kang J, Kim H, Hah SM, Lee J, Kim HS, Choi WS, Chung JH, Shin MJ. Neuroprotective effects of ATPase inhibitory factor 1 preventing mitochondrial dysfunction in Parkinson's disease. Sci Rep 2022; 12:3874. [PMID: 35264673 PMCID: PMC8907304 DOI: 10.1038/s41598-022-07851-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial dysfunction is a key element in the progression of Parkinson’s disease (PD). The inefficient operation of the electron transport chain (ETC) impairs energy production and enhances the generation of oxidative stress contributing to the loss of dopaminergic cells in the brain. ATPase inhibitory factor 1 (IF1) is a regulator of mitochondrial energy metabolism. IF1 binds directly to the F1Fo ATP synthase and prevents ATP wasting during compromised energy metabolism. In this study, we found treatment with IF1 protects mitochondria against PD-like insult in vitro. SH-SY5Y cells treated with IF1 were resistant to loss of ATP and mitochondrial inner membrane potential during challenge with rotenone, an inhibitor of complex I in the ETC. We further demonstrated that treatment with IF1 reversed rotenone-induced superoxide production in mitochondria and peroxide accumulation in whole cells. Ultimately, IF1 decreased protein levels of pro-apoptotic Bax, cleaved caspase-3, and cleaved PARP, rescuing SH-SY5Y cells from rotenone-mediated apoptotic death. Administration of IF1 significantly improved the results of pole and hanging tests performed by PD mice expressing human α-synuclein. This indicates that IF1 mitigates PD-associated motor deficit. Together, these findings suggest that IF1 exhibits a neuroprotective effect preventing mitochondrial dysfunction in PD pathology.
Collapse
Affiliation(s)
- InHyeok Chung
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea.,Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea.,Biotechnology Research Center, MediandGene Inc., Seoul, Republic of Korea
| | - Han-A Park
- Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, USA
| | - Jun Kang
- Department of Biotechnology, CHA University, Pocheon, Republic of Korea
| | - Heyyoung Kim
- School of Biological Sciences and Technology, College of Natural Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Su Min Hah
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea.,Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
| | - Juhee Lee
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea.,Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
| | - Hyeon Soo Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Won-Seok Choi
- School of Biological Sciences and Technology, College of Natural Sciences, Chonnam National University, Gwangju, Republic of Korea.
| | - Ji Hyung Chung
- Department of Biotechnology, CHA University, Pocheon, Republic of Korea
| | - Min-Jeong Shin
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea. .,Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea. .,School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
55
|
Sagehashi N, Obara Y, Maruyama O, Nakagawa T, Hosoi T, Ishii K. Insulin enhances gene expression of Midnolin, a novel genetic risk factor for Parkinson's disease, via ERK, PI3-kinase and multiple transcription factors in SH-SY5Y cells. J Pharmacol Exp Ther 2022; 381:68-78. [PMID: 35241633 DOI: 10.1124/jpet.121.001076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Although many monogenic variants have been identified that cause familial PD, most cases are sporadic and the mechanisms of sporadic PD onset remain unclear. We previously identified Midnolin (MIDN) as a novel genetic risk factor for PD in Japanese population. MIDN copy number loss was strongly associated with sporadic PD, which was replicated in British population. Furthermore, suppression of MIDN expression in rat PC12 cells inhibits neurite outgrowth and expression of Parkin ubiquitin ligase. However, the detailed molecular mechanisms of MIDN expression are unknown. We, therefore, investigated the molecular mechanism of MIDN expression in human neuroblastoma SH-SY5Y cells. We found that MIDN expression was promoted by insulin via extracellular-signal regulated kinase (ERK)1/2 and PI3-kinase-dependent pathways. In addition, MIDN promoter activity was enhanced by mutations at transcription factor AP-2 consensus sequences and reduced by mutations at cAMP response element-binding protein (CREB) and activator protein 1 (AP-1) consensus sequences. The dominant-negative CREB mutant did not block MIDN promoter activity, but both the pharmacological inhibitor and decoy oligodeoxynucleotide for AP-1 significantly blocked its activity. Additionally, DNA binding of c-FOS and c-JUN to the AP-1 consensus sequence in the MIDN promoter was enhanced by insulin as determined by chromatin immunoprecipitation, which suggested that AP-1 positively regulated MIDN expression. Taken together, this study reveals molecular mechanisms of MIDN gene expression induced by insulin in neuronal cells, and drugs which promote MIDN expression may have potential to be a novel medicine for PD. Significance Statement We demonstrated that insulin promotes MIDN expression via ERK1/2 and PI3-kinase pathways. Furthermore, we identified the important region of the MIDN promoter and showed that transcription factors, including AP-1, positively regulate MIDN expression, whereas TFAP2 negatively regulates basal and insulin-induced MIDN expression. We believe that our observations are important and that they contribute to the development of novel drugs to treat Parkinson's disease.
Collapse
|
56
|
Kwon EH, Tennagels S, Gold R, Gerwert K, Beyer L, Tönges L. Update on CSF Biomarkers in Parkinson's Disease. Biomolecules 2022; 12:biom12020329. [PMID: 35204829 PMCID: PMC8869235 DOI: 10.3390/biom12020329] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
Progress in developing disease-modifying therapies in Parkinson’s disease (PD) can only be achieved through reliable objective markers that help to identify subjects at risk. This includes an early and accurate diagnosis as well as continuous monitoring of disease progression and therapy response. Although PD diagnosis still relies mainly on clinical features, encouragingly, advances in biomarker discovery have been made. The cerebrospinal fluid (CSF) is a biofluid of particular interest to study biomarkers since it is closest to the brain structures and therefore could serve as an ideal source to reflect ongoing pathologic processes. According to the key pathophysiological mechanisms, the CSF status of α-synuclein species, markers of amyloid and tau pathology, neurofilament light chain, lysosomal enzymes and markers of neuroinflammation provide promising preliminary results as candidate biomarkers. Untargeted approaches in the field of metabolomics provide insights into novel and interconnected biological pathways. Markers based on genetic forms of PD can contribute to identifying subgroups suitable for gene-targeted treatment strategies that might also be transferable to sporadic PD. Further validation analyses in large PD cohort studies will identify the CSF biomarker or biomarker combinations with the best value for clinical and research purposes.
Collapse
Affiliation(s)
- Eun Hae Kwon
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany; (E.H.K.); (S.T.); (R.G.)
| | - Sabrina Tennagels
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany; (E.H.K.); (S.T.); (R.G.)
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany; (E.H.K.); (S.T.); (R.G.)
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany; (K.G.); (L.B.)
| | - Klaus Gerwert
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany; (K.G.); (L.B.)
- Faculty of Biology and Biotechnology, Department of Biophysics, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Léon Beyer
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany; (K.G.); (L.B.)
- Faculty of Biology and Biotechnology, Department of Biophysics, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Lars Tönges
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany; (E.H.K.); (S.T.); (R.G.)
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany; (K.G.); (L.B.)
- Correspondence: ; Tel.: +49-234-509-2420; Fax: +49-234-509-2439
| |
Collapse
|
57
|
Vodičková A, Koren SA, Wojtovich AP. Site-specific mitochondrial dysfunction in neurodegeneration. Mitochondrion 2022; 64:1-18. [PMID: 35182728 PMCID: PMC9035127 DOI: 10.1016/j.mito.2022.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
Mitochondria are essential for neuronal survival and mitochondrial dysfunction is a hallmark of neurodegeneration. The loss in mitochondrial energy production, oxidative stress, and changes in calcium handling are associated with neurodegenerative diseases; however, different sites and types of mitochondrial dysfunction are linked to distinct neuropathologies. Understanding the causal or correlative relationship between changes in mitochondria and neuropathology will lead to new therapeutic strategies. Here, we summarize the evidence of site-specific mitochondrial dysfunction and mitochondrial-related clinical trials for neurodegenerative diseases. We further discuss potential therapeutic approaches, such as mitochondrial transplantation, restoration of mitochondrial function, and pharmacological alleviation of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Anežka Vodičková
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Shon A Koren
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrew P Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
58
|
Youn J, Oyama G, Hattori N, Shimo Y, Kuusimäki T, Kaasinen V, Antonini A, Kim D, Lee JI, Cho KR, Cho JW. Subthalamic deep brain stimulation in Parkinson's disease with SNCA mutations: Based on the follow-up to 10 years. Brain Behav 2022; 12:e2503. [PMID: 35040589 PMCID: PMC8865141 DOI: 10.1002/brb3.2503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/23/2021] [Accepted: 01/02/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUNDS Although the short-term efficacy of bilateral subthalamic deep brain stimulation (DBS) has been reported in a limited number of Parkinson's disease (PD) patients with SNCA mutations, there are no data for long-term outcome. METHODS This multicenter retrospective study investigated previously reported PD patients with SNCA mutations, implanted with bilateral subthalamic DBS. We compared demographic and clinical data at baseline and last follow-up. Clinical data of motor and nonmotor symptoms and motor fluctuation were collected up to 10 years from DBS surgery. RESULTS Among four subjects, three had SNCA duplication and one had c.158C.A (p.A53E) mutation. The mean post-implantation follow-up duration was 5.4 ± 3.7 years. All patients with SNCA duplication showed favorable outcome, although one died from breast cancer 1.5 years after DBS. The patient with the missense mutation became wheelchair-bound due to progressed axial, cognitive and psychiatric symptoms after 3.5 years from DBS despite the benefit on motor fluctuation. CONCLUSION Based on findings in our small cohort, subthalamic DBS could be beneficial for motor fluctuation in PD patients with SNCA mutations, especially those with SNCA duplication, and cognitive and psychiatric symptoms are important for the long-term outcome of subthalamic DBS.
Collapse
Affiliation(s)
- Jinyoung Youn
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Genko Oyama
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yasushi Shimo
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomi Kuusimäki
- Neurocenter, Turku University Hospital, Turku, Finland.,Clinical Neurosciences, Faculty of Medicine, University of Turku, Turku, Finland
| | - Valtteri Kaasinen
- Neurocenter, Turku University Hospital, Turku, Finland.,Clinical Neurosciences, Faculty of Medicine, University of Turku, Turku, Finland
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Department of Neurosciences, University of Padua, Padua, Italy
| | - Dongyeop Kim
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Jung-Il Lee
- Departments of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyung Rae Cho
- Departments of Neurosurgery, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Jin Whan Cho
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
59
|
Huang Y, Wei J, Cooper A, Morris MJ. Parkinson's Disease: From Genetics to Molecular Dysfunction and Targeted Therapeutic Approaches. Genes Dis 2022. [DOI: 10.1016/j.gendis.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
60
|
Kolarikova K, Vodicka R, Vrtel R, Stellmachova J, Prochazka M, Mensikova K, Bartonikova T, Furst T, Kanovsky P, Geryk J. High-Throughput Sequencing Haplotype Analysis Indicates in LRRK2 Gene a Potential Risk Factor for Endemic Parkinsonism in Southeastern Moravia, Czech Republic. Life (Basel) 2022; 12:life12010121. [PMID: 35054514 PMCID: PMC8780375 DOI: 10.3390/life12010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 11/23/2022] Open
Abstract
Parkinson’s disease and parkinsonism are relatively common neurodegenerative disorders. This study aimed to assess potential genetic risk factors of haplotypes in genes associated with parkinsonism in a population in which endemic parkinsonism and atypical parkinsonism have recently been found. The genes ADH1C, EIF4G1, FBXO7, GBA, GIGYF2, HTRA2, LRRK2, MAPT, PARK2, PARK7, PINK1 PLA2G6, SNCA, UCHL1, and VPS35 were analyzed in 62 patients (P) and 69 age-matched controls from the researched area (C1). Variants were acquired by high-throughput sequencing using Ion Torrent workflow. As another set of controls, the whole genome sequencing data from 100 healthy non-related individuals from the Czech population were used (C2); the results were also compared with the Genome Project data (C3). We observed shared findings of four intron (rs11564187, rs36220738, rs200829235, and rs3789329) and one exon variant (rs33995883) in the LRRK2 gene in six patients. A comparison of the C1–C3 groups revealed significant differences in haplotype frequencies between ratio of 2.09 for C1, 1.65 for C2, and 6.3 for C3, and odds ratios of 13.15 for C1, 2.58 for C2, and 7.6 for C3 were estimated. The co-occurrence of five variants in the LRRK2 gene (very probably in haplotype) could be an important potential risk factor for the development of parkinsonism, even outside the recently described pedigrees in the researched area where endemic parkinsonism is present.
Collapse
Affiliation(s)
- Kristyna Kolarikova
- Department of Medical Genetics, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic; (K.K.); (R.V.); (J.S.); (M.P.)
- Department of Medical Genetics, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic; (K.M.); (T.B.); (P.K.)
- Department of Neurology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Radek Vodicka
- Department of Medical Genetics, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic; (K.K.); (R.V.); (J.S.); (M.P.)
- Department of Medical Genetics, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
- Correspondence:
| | - Radek Vrtel
- Department of Medical Genetics, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic; (K.K.); (R.V.); (J.S.); (M.P.)
- Department of Medical Genetics, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Julia Stellmachova
- Department of Medical Genetics, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic; (K.K.); (R.V.); (J.S.); (M.P.)
- Department of Medical Genetics, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Martin Prochazka
- Department of Medical Genetics, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic; (K.K.); (R.V.); (J.S.); (M.P.)
- Department of Medical Genetics, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Katerina Mensikova
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic; (K.M.); (T.B.); (P.K.)
- Department of Neurology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Tereza Bartonikova
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic; (K.M.); (T.B.); (P.K.)
- Department of Neurology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Tomas Furst
- Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacky University, 779 00 Olomouc, Czech Republic;
| | - Petr Kanovsky
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic; (K.M.); (T.B.); (P.K.)
- Department of Neurology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Jan Geryk
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic;
- Second Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, 150 06 Prague, Czech Republic
| |
Collapse
|
61
|
Siddique Y. Neurodegenerative Disorders and the Current State, Pathophysiology, and Management of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:574-595. [PMID: 34477534 DOI: 10.2174/1871527320666210903101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/14/2020] [Accepted: 02/13/2021] [Indexed: 06/13/2023]
Abstract
In the last few decades, major knowledge has been gained about pathophysiological aspects and molecular pathways behind Parkinson's Disease (PD). Based on neurotoxicological studies and postmortem investigations, there is a general concept of how environmental toxicants (neurotoxins, pesticides, insecticides) and genetic factors (genetic mutations in PD-associated proteins) cause depletion of dopamine from substantia nigra pars compacta region of the midbrain and modulate cellular processes leading to the pathogenesis of PD. α-Synuclein, a neuronal protein accumulation in oligomeric form, called protofibrils, is associated with cellular dysfunction and neuronal death, thus possibly contributing to PD propagation. With advances made in identifying loci that contribute to PD, molecular pathways involved in disease pathogenesis are now clear, and introducing therapeutic strategy at the right time may delay the progression. Biomarkers for PD have helped monitor PD progression; therefore, personalized therapeutic strategies can be facilitated. In order to further improve PD diagnostic and prognostic accuracy, independent validation of biomarkers is required.
Collapse
Affiliation(s)
- Yasir Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
62
|
Klonarakis M, De Vos M, Woo E, Ralph L, Thacker JS, Gil-Mohapel J. The three sisters of fate: Genetics, pathophysiology and outcomes of animal models of neurodegenerative diseases. Neurosci Biobehav Rev 2022; 135:104541. [DOI: 10.1016/j.neubiorev.2022.104541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/28/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
|
63
|
Marde VS, Tiwari PL, Wankhede NL, Taksande BG, Upaganlawar AB, Umekar MJ, Kale MB. Neurodegenerative disorders associated with genes of mitochondria. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00215-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Abstract
Background
Over the last decade, aggregating evidences suggested that there is a causative link between mutation in gene associated with mitochondrial dysfunction and development of several neurodegenerative disorders.
Main text
Recent structural and functional studies associated with mitochondrial genes have shown that mitochondrial abnormalities possibly lead to mitochondrial dysfunction. Several studies on animal models of neurodegenerative diseases and mitochondrial genes have provided compelling evidence that mitochondria is involved in the initiation as well as progression of diseases such as Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), and Friedreich ataxia (FA).
Conclusion
In this mini-review, we have discussed the different etiologic and pathogenesis connected with the mitochondrial dysfunction and relevant neurodegenerative diseases that underlie the dominant part of mitochondrial genes in the disease development and its progress.
Collapse
|
64
|
Vogiatzis S, Celestino M, Trevisan M, Magro G, Del Vecchio C, Erdengiz D, Palù G, Parolin C, Maguire-Zeiss K, Calistri A. Lentiviral Vectors Expressing Chimeric NEDD4 Ubiquitin Ligases: An Innovative Approach for Interfering with Alpha-Synuclein Accumulation. Cells 2021; 10:cells10113256. [PMID: 34831478 PMCID: PMC8624294 DOI: 10.3390/cells10113256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
One of the main pathological features of Parkinson’s disease (PD) is a diffuse accumulation of alpha-synuclein (aS) aggregates in neurons. The NEDD4 E3 Ub ligase promotes aS degradation by the endosomal–lysosomal route. Interestingly, NEDD4, as well as being a small molecule able to trigger its functions, is protective against human aS toxicity in evolutionary distant models. While pharmacological activation of E3 enzymes is not easy to achieve, their flexibility and the lack of “consensus” motifs for Ub-conjugation allow the development of engineered Ub-ligases, able to target proteins of interest. We developed lentiviral vectors, encoding well-characterized anti-human aS scFvs fused in frame to the NEDD4 catalytic domain (ubiquibodies), in order to target ubiquitinate aS. We demonstrate that, while all generated ubiquibodies bind to and ubiquitinate aS, the one directed against the non-amyloid component (NAC) of aS (Nac32HECT) affects aS’s intracellular levels. Furthermore, Nac32HECT expression partially rescues aS’s overexpression or mutation toxicity in neural stem cells. Overall, our data suggest that ubiquibodies, and Nac32HECT in particular, represent a valid platform for interfering with the effects of aS’s accumulation and aggregation in neurons.
Collapse
Affiliation(s)
- Stefania Vogiatzis
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (S.V.); (M.C.); (M.T.); (G.M.); (C.D.V.); (G.P.); (C.P.)
| | - Michele Celestino
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (S.V.); (M.C.); (M.T.); (G.M.); (C.D.V.); (G.P.); (C.P.)
| | - Marta Trevisan
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (S.V.); (M.C.); (M.T.); (G.M.); (C.D.V.); (G.P.); (C.P.)
| | - Gloria Magro
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (S.V.); (M.C.); (M.T.); (G.M.); (C.D.V.); (G.P.); (C.P.)
| | - Claudia Del Vecchio
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (S.V.); (M.C.); (M.T.); (G.M.); (C.D.V.); (G.P.); (C.P.)
| | - Deran Erdengiz
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, NRB, EP04, Washington, DC 20057, USA; (D.E.); (K.M.-Z.)
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (S.V.); (M.C.); (M.T.); (G.M.); (C.D.V.); (G.P.); (C.P.)
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (S.V.); (M.C.); (M.T.); (G.M.); (C.D.V.); (G.P.); (C.P.)
| | - Kathleen Maguire-Zeiss
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, NRB, EP04, Washington, DC 20057, USA; (D.E.); (K.M.-Z.)
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (S.V.); (M.C.); (M.T.); (G.M.); (C.D.V.); (G.P.); (C.P.)
- Correspondence: ; Tel.: +39-049-827-2341
| |
Collapse
|
65
|
Chen Z, Rasheed M, Deng Y. The epigenetic mechanisms involved in mitochondrial dysfunction: Implication for Parkinson's disease. Brain Pathol 2021; 32:e13012. [PMID: 34414627 PMCID: PMC9048811 DOI: 10.1111/bpa.13012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/21/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction is one of the crucial factors involved in PD’s pathogenicity, which emerges from a combination of genetic and environmental factors. These factors cause differential molecular expression in neurons, such as varied transcriptional regulation of genes, elevated oxidative stress, α‐synuclein aggregation and endogenous neurotoxins release, which induces epigenetic modifications and triggers energy crisis by damaging mitochondria of the dopaminergic neurons (DN). So far, these events establish a complicated relationship with underlying mechanisms of mitochondrial anomalies in PD, which has remained unclear for years and made PD diagnosis and treatment extremely difficult. Therefore, in this review, we endeavored to discuss the complex association of epigenetic modifications and other associated vital factors in mitochondrial dysfunction. We propose a hypothesis that describes a vicious cycle in which mitochondrial dysfunction and oxidative stress act as a hub for regulating DA neuron's fate in PD. Oxidative stress triggers the release of endogenous neurotoxins (CTIQs) that lead to mitochondrial dysfunction along with abnormal α‐synuclein aggregation and epigenetic modifications. These disturbances further intensify oxidative stress and mitochondrial damage, amplifying the synthesis of CTIQs and works vice versa. This vicious cycle may result in the degeneration of DN to hallmark Parkinsonism. Furthermore, we have also highlighted various endogenous compounds and epigenetic marks (neurotoxic and neuroprotective), which may help for devising future diagnostic biomarkers and target specific drugs using novel PD management strategies.
Collapse
Affiliation(s)
- Zixuan Chen
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Madiha Rasheed
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
66
|
Unveiling the cryo-EM structure of retromer. Biochem Soc Trans 2021; 48:2261-2272. [PMID: 33125482 DOI: 10.1042/bst20200552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/29/2022]
Abstract
Retromer (VPS26/VPS35/VPS29) is a highly conserved eukaryotic protein complex that localizes to endosomes to sort transmembrane protein cargoes into vesicles and elongated tubules. Retromer mediates retrieval pathways from endosomes to the trans-Golgi network in all eukaryotes and further facilitates recycling pathways to the plasma membrane in metazoans. In cells, retromer engages multiple partners to orchestrate the formation of tubulovesicular structures, including sorting nexin (SNX) proteins, cargo adaptors, GTPases, regulators, and actin remodeling proteins. Retromer-mediated pathways are especially important for sorting cargoes required for neuronal maintenance, which links retromer loss or mutations to multiple human brain diseases and disorders. Structural and biochemical studies have long contributed to the understanding of retromer biology, but recent advances in cryo-electron microscopy and cryo-electron tomography have further uncovered exciting new snapshots of reconstituted retromer structures. These new structures reveal retromer assembles into an arch-shaped scaffold and suggest the scaffold may be flexible and adaptable in cells. Interactions with cargo adaptors, particularly SNXs, likely orient the scaffold with respect to phosphatidylinositol-3-phosphate (PtdIns3P)-enriched membranes. Pharmacological small molecule chaperones have further been shown to stabilize retromer in cultured cell and mouse models, but mechanisms by which these molecules bind remain unknown. This review will emphasize recent structural and biophysical advances in understanding retromer structure as the field moves towards a molecular view of retromer assembly and regulation on membranes.
Collapse
|
67
|
Berenguer-Escuder C, Grossmann D, Antony P, Arena G, Wasner K, Massart F, Jarazo J, Walter J, Schwamborn JC, Grünewald A, Krüger R. Impaired mitochondrial-endoplasmic reticulum interaction and mitophagy in Miro1-mutant neurons in Parkinson's disease. Hum Mol Genet 2021; 29:1353-1364. [PMID: 32280985 PMCID: PMC7254851 DOI: 10.1093/hmg/ddaa066] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial Rho GTPase 1 (Miro1) protein is a well-known adaptor for mitochondrial transport and also regulates mitochondrial quality control and function. Furthermore, Miro1 was associated with mitochondrial-endoplasmic reticulum (ER) contact sites (MERCs), which are key regulators of cellular calcium homeostasis and the initiation of autophagy. Impairments of these mechanisms were linked to neurodegeneration in Parkinson’s disease (PD). We recently revealed that PD fibroblasts harboring Miro1 mutations displayed dysregulations in MERC organization and abundance, affecting mitochondrial homeostasis and clearance. We hypothesize that mutant Miro1 impairs the function of MERCs and mitochondrial dynamics, altering neuronal homeostasis and integrity in PD. PD skin fibroblasts harboring the Miro1-R272Q mutation were differentiated into patient-derived neurons. Live-cell imaging and immunocytochemistry were used to study mitophagy and the organization and function of MERCs. Markers of autophagy or mitochondrial function were assessed by western blotting. Quantification of organelle juxtapositions revealed an increased number of MERCs in patient-derived neurons. Live-cell imaging results showed alterations of mitochondrial dynamics and increased sensitivity to calcium stress, as well as reduced mitochondrial clearance. Finally, western blot analysis indicated a blockage of the autophagy flux in Miro1-mutant neurons. Miro1-mutant neurons display altered ER-mitochondrial tethering compared with control neurons. This alteration likely interferes with proper MERC function, contributing to a defective autophagic flux and cytosolic calcium handling capacity. Moreover, mutant Miro1 affects mitochondrial dynamics in neurons, which may result in disrupted mitochondrial turnover and altered mitochondrial movement.
Collapse
Affiliation(s)
| | - Dajana Grossmann
- Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg.,Section for Translational Neurodegeneration "Albrecht Kossel", Department of Neurology, Universitätsmedizin Rostock, Rostock, Germany
| | - Paul Antony
- Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg
| | - Giuseppe Arena
- Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg
| | - Kobi Wasner
- Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg
| | - François Massart
- Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg
| | - Javier Jarazo
- Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg
| | - Jonas Walter
- Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg.,Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL) , Luxembourg City, Luxembourg.,Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| |
Collapse
|
68
|
Singh F, Prescott AR, Rosewell P, Ball G, Reith AD, Ganley IG. Pharmacological rescue of impaired mitophagy in Parkinson's disease-related LRRK2 G2019S knock-in mice. eLife 2021; 10:e67604. [PMID: 34340748 PMCID: PMC8331189 DOI: 10.7554/elife.67604] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/30/2021] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease (PD) is a major and progressive neurodegenerative disorder, yet the biological mechanisms involved in its aetiology are poorly understood. Evidence links this disorder with mitochondrial dysfunction and/or impaired lysosomal degradation - key features of the autophagy of mitochondria, known as mitophagy. Here, we investigated the role of LRRK2, a protein kinase frequently mutated in PD, in this process in vivo. Using mitophagy and autophagy reporter mice, bearing either knockout of LRRK2 or expressing the pathogenic kinase-activating G2019S LRRK2 mutation, we found that basal mitophagy was specifically altered in clinically relevant cells and tissues. Our data show that basal mitophagy inversely correlates with LRRK2 kinase activity in vivo. In support of this, use of distinct LRRK2 kinase inhibitors in cells increased basal mitophagy, and a CNS penetrant LRRK2 kinase inhibitor, GSK3357679A, rescued the mitophagy defects observed in LRRK2 G2019S mice. This study provides the first in vivo evidence that pathogenic LRRK2 directly impairs basal mitophagy, a process with strong links to idiopathic Parkinson's disease, and demonstrates that pharmacological inhibition of LRRK2 is a rational mitophagy-rescue approach and potential PD therapy.
Collapse
Affiliation(s)
- Francois Singh
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
| | - Alan R Prescott
- Dundee Imaging Facility, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Philippa Rosewell
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
| | - Graeme Ball
- Dundee Imaging Facility, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Alastair D Reith
- Novel Human Genetics Research Unit, GlaxoSmithKline Pharmaceuticals R&DStevenageUnited Kingdom
| | - Ian G Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
69
|
Arora A, Behl T, Sehgal A, Singh S, Sharma N, Mathew B, Bungau S. Targeting cellular batteries for the therapy of neurological diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41517-41532. [PMID: 34080116 DOI: 10.1007/s11356-021-14665-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
The mitochondria, apart from being known as the cell's "powerhouse," are crucial in the viability of nerve cells. Any damage to these cellular organelles can result in their cellular level dysfunction which includes rapidly multiplying reactive oxygen species (ROS) from the mitochondrial membrane, impaired calcium ion homeostasis, and disturbed mitochondrial dynamics by the formation of permeability transition pore in mitochondria. All these impaired biochemical changes lead to various neurological disorders such as progressive supranuclear palsy (PSP), Parkinson's disease (PD), and Alzheimer's disease (AD). Moreover, impaired mitochondrial functions are particularly prone to damage owing to prolonged lifespan and stretched length of the neurons. At the same time, neurons are highly dependent on ATP, and thus, the mitochondria play a central role in the pathogenesis pertaining to neuronal disorders. Dysfunction in the mitochondria is an early pathological hallmark of neurological disorders, and its early detection with the help of suitable biomarkers can lead to promising treatment in this area. Thus, the drugs which are targeting mitochondrial dysfunctions are the emerging area of research in connection with neurological disorders. This can be evidenced by the great opportunities for mitigation, diagnosis, and treatment of numerous human disorders that entail mitochondrial dysfunction at the nexus of their pathogenesis. Here, we throw light at the mitochondrial pathologies and indications of dysfunctional mitochondria in PD, AD, and PSP. There is also an insight into the possible therapeutic strategies highlighting the need for mitochondria-based medicine and made an attempt for claiming the prerequisite for the therapy of neurological diseases.
Collapse
Affiliation(s)
- Arpita Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
70
|
Mahmood A, Shah AA, Umair M, Wu Y, Khan A. Recalling the pathology of Parkinson's disease; lacking exact figure of prevalence and genetic evidence in Asia with an alarming outcome: A time to step-up. Clin Genet 2021; 100:659-677. [PMID: 34195994 DOI: 10.1111/cge.14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) is the second most common and progressive neurodegenerative disease globally, with major symptoms like bradykinesia, impaired posture, and tremor. Several genetic and environmental factors have been identified but elucidating the main factors have been challenging due to the disease's complex nature. Diagnosis, prognosis, and management of such diseases are challenging and require effective targeted attention in developing countries. Recently, PD is growing rapidly in many crowded Asian countries as an alarming threat with inadequate knowledge of its prevalence, genetic architecture, and geographic distribution. This study gave an in-depth overview of the prevalence, incidence and genomic/genetics studies published so far in the Asian population. To the best of our knowledge, PD has increased significantly in several Asian countries, including China, South Korea, Japan, Thailand, and Israel over the past few years, requiring a greater level of care and attention. Genetic screening of families with PD at national levels and establishing an official database of PD cases are essential to get a comprehensive and conclusive view of the exact prevalence and genetic diversity of PD in the Asian population to properly manage and treat the disease.
Collapse
Affiliation(s)
- Arif Mahmood
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Abid Ali Shah
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdul-Aziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Yiming Wu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Amjad Khan
- Faculty of Science, Department of Biological Sciences, University of Lakki Marwat, Lakki Marwat, Pakistan
| |
Collapse
|
71
|
Wang X, Liu Z, Wang F. MicroRNA-93 Blocks Signal Transducers and Activator of Transcription 3 to Reduce Neuronal Damage in Parkinson's Disease. Neurochem Res 2021; 46:1859-1868. [PMID: 33900518 DOI: 10.1007/s11064-021-03333-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 11/27/2022]
Abstract
MicroRNA-93 (miR-93) is an oncogene that promotes tumor growth and angiogenesis. However, its role in Parkinson's disease (PD) remains unknown. This study aimed at investigating the role of miR-93 in PD and the molecular mechanisms involved. 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD mouse model and lipopolysaccharide (LPS)-exposed BV2 cells were constructed. Real-time quantitative PCR was used to detect the mRNA expression of miR-93, iNOS, IL-6, IL-10, TNF-α and TGF-β1. Bioinformatics analysis and luciferase reporter assay were used to predict and confirm the interaction between miR-93 and STAT3. Flow cytometry was used to detect cell apoptosis. Western blotting was used to detect the protein expression of STAT3. Immunohistochemistry was used to analyze the Iba1-positive and TH positive cells. It was found that the expression of miR-93 was down-regulated in LPS-exposed BV2 cells. Overexpression of miR-93 inhibited the expression of iNOS, IL-6 and TNF-α, while enhanced the expression of TGF-β1 and IL-10. The expression of transcriptional activator 3 (STAT3) was found to be up-regulated in LPS-exposed BV2 cells. Knockdown of STAT3 inhibited the expression of iNOS, IL-6 and TNF-α, while enhanced the expression of TGF-β1 and IL-10. Moreover, STAT3 was found to be a direct target of miR-93, and miR-93 overexpression inhibited the expression of STAT3. Furthermore, both miR-93 overexpression and STAT3 knockdown reduced LPS-induced BV2 cell apoptosis, whereas STAT3 overexpression eliminated the inhibitory effect of miR-93 on LPS-induced BV2 cell apoptosis. In addition, miR-93 overexpression inhibited MPTP-induced STAT3 expression, microglial activation and inflammatory reaction and reduced the loss of tyrosine hydroxylase in the substantia nigra of mice. In conclusion, we demonstrate that miR-93 may be involved in PD by regulating the expression of STAT3.
Collapse
Affiliation(s)
- Xiufeng Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhijun Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
72
|
Tandon A, Singh SJ, Chaturvedi RK. Nanomedicine against Alzheimer's and Parkinson's Disease. Curr Pharm Des 2021; 27:1507-1545. [PMID: 33087025 DOI: 10.2174/1381612826666201021140904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's and Parkinson's are the two most rampant neurodegenerative disorders worldwide. Existing treatments have a limited effect on the pathophysiology but are unable to fully arrest the progression of the disease. This is due to the inability of these therapeutic molecules to efficiently cross the blood-brain barrier. We discuss how nanotechnology has enabled researchers to develop novel and efficient nano-therapeutics against these diseases. The development of nanotized drug delivery systems has permitted an efficient, site-targeted, and controlled release of drugs in the brain, thereby presenting a revolutionary therapeutic approach. Nanoparticles are also being thoroughly studied and exploited for their role in the efficient and precise diagnosis of neurodegenerative conditions. We summarize the role of different nano-carriers and RNAi-conjugated nanoparticle-based therapeutics for their efficacy in pre-clinical studies. We also discuss the challenges underlying the use of nanomedicine with a focus on their route of administration, concentration, metabolism, and any toxic effects for successful therapeutics in these diseases.
Collapse
Affiliation(s)
- Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sangh J Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rajnish K Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
73
|
Wang HL, Yeh TH, Huang YZ, Weng YH, Chen RS, Lu CS, Wei KC, Liu YC, Chen YL, Chen CL, Chen YJ, Lin YW, Hsu CC, Chiu CH, Chiu CC. Functional variant rs17525453 within RAB35 gene promoter is possibly associated with increased risk of Parkinson's disease in Taiwanese population. Neurobiol Aging 2021; 107:189-196. [PMID: 34275689 DOI: 10.1016/j.neurobiolaging.2021.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/19/2021] [Accepted: 06/13/2021] [Indexed: 11/17/2022]
Abstract
Our previous study suggests that upregulated RAB35 is implicated in etiology of Parkinson's disease (PD). We hypothesized that upregulated RAB35 results from single nucleotide polymorphisms (SNPs) in RAB35 gene promoter. We identified SNPs within RAB35 gene promoter by analyzing DNA samples of discovery cohort and validation cohort. SNP rs17525453 within RAB35 gene promoter (T>C at position of -66) was significantly associated with idiopathic PD patients. Compared to normal controls, sporadic PD patients had higher C allele frequency. CC and CT genotype significantly increased risk of PD compared with TT genotype. SNP rs17525453 within RAB35 gene promoter leads to formation of transcription factor TFII-I binding site. Results of EMSA and supershift assay indicated that TFII-I binds to rs17525453 sequence of RAB35 gene promoter. Luciferase reporter assays showed that rs17525453 variant of RAB35 gene promoter possesses an augmented transcriptional activity. Our results suggest that functional variant rs17525453 within RAB35 gene promoter is likely to enhance transcriptional activity and upregulate RAB35 protein, which could lead to increased risk of PD in Taiwanese population.
Collapse
Affiliation(s)
- Hung-Li Wang
- Department of Physiology and Pharmacology, Chang Gung University College of Medicine, Taoyuan, Taiwan; Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taiwan
| | - Ying-Zu Huang
- Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsin Weng
- Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Rou-Shayn Chen
- Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chin-Song Lu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Chuan Liu
- Landseed Sports Medicine Center, Landseed International Hospital, Taoyuan, Taiwan
| | - Ying-Ling Chen
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chao-Lang Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Jie Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yan-Wei Lin
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chia-Chen Hsu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chi-Han Chiu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ching-Chi Chiu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
74
|
Cacabelos R, Carrera I, Martínez O, Alejo R, Fernández-Novoa L, Cacabelos P, Corzo L, Rodríguez S, Alcaraz M, Nebril L, Tellado I, Cacabelos N, Pego R, Naidoo V, Carril JC. Atremorine in Parkinson's disease: From dopaminergic neuroprotection to pharmacogenomics. Med Res Rev 2021; 41:2841-2886. [PMID: 34106485 DOI: 10.1002/med.21838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 02/11/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
Atremorine is a novel bioproduct obtained by nondenaturing biotechnological processes from a genetic species of Vicia faba. Atremorine is a potent dopamine (DA) enhancer with powerful effects on the neuronal dopaminergic system, acting as a neuroprotective agent in Parkinson's disease (PD). Over 97% of PD patients respond to a single dose of Atremorine (5 g, p.o.) 1 h after administration. This response is gender-, time-, dose-, and genotype-dependent, with optimal doses ranging from 5 to 20 g/day, depending upon disease severity and concomitant medication. Drug-free patients show an increase in DA levels from 12.14 ± 0.34 pg/ml to 6463.21 ± 1306.90 pg/ml; and patients chronically treated with anti-PD drugs show an increase in DA levels from 1321.53 ± 389.94 pg/ml to 16,028.54 ± 4783.98 pg/ml, indicating that Atremorine potentiates the dopaminergic effects of conventional anti-PD drugs. Atremorine also influences the levels of other neurotransmitters (adrenaline, noradrenaline) and hormones which are regulated by DA (e.g., prolactin, PRL), with no effect on serotonin or histamine. The variability in Atremorine-induced DA response is highly attributable to pharmacogenetic factors. Polymorphic variants in pathogenic (SNCA, NUCKS1, ITGA8, GPNMB, GCH1, BCKDK, APOE, LRRK2, ACMSD), mechanistic (DRD2), metabolic (CYP2D6, CYP2C9, CYP2C19, CYP3A4/5, NAT2), transporter (ABCB1, SLC6A2, SLC6A3, SLC6A4) and pleiotropic genes (APOE) influence the DA response to Atremorine and its psychomotor and brain effects. Atremorine enhances DNA methylation and displays epigenetic activity via modulation of the pharmacoepigenetic network. Atremorine is a novel neuroprotective agent for dopaminergic neurons with potential prophylactic and therapeutic activity in PD.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Iván Carrera
- Department of Health Biotechnology, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Olaia Martínez
- Department of Medical Epigenetics, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | | | | | - Pablo Cacabelos
- Department of Digital Diagnosis, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Lola Corzo
- Department of Medical Biochemistry, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Susana Rodríguez
- Department of Medical Biochemistry, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Margarita Alcaraz
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Laura Nebril
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Iván Tellado
- Department of Digital Diagnosis, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Natalia Cacabelos
- Department of Medical Documentation, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Rocío Pego
- Department of Neuropsychology, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Vinogran Naidoo
- Department of Neuroscience, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Juan C Carril
- Department of Genomics & Pharmacogenomics, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| |
Collapse
|
75
|
Interactome Mapping Provides a Network of Neurodegenerative Disease Proteins and Uncovers Widespread Protein Aggregation in Affected Brains. Cell Rep 2021; 32:108050. [PMID: 32814053 DOI: 10.1016/j.celrep.2020.108050] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 02/15/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Interactome maps are valuable resources to elucidate protein function and disease mechanisms. Here, we report on an interactome map that focuses on neurodegenerative disease (ND), connects ∼5,000 human proteins via ∼30,000 candidate interactions and is generated by systematic yeast two-hybrid interaction screening of ∼500 ND-related proteins and integration of literature interactions. This network reveals interconnectivity across diseases and links many known ND-causing proteins, such as α-synuclein, TDP-43, and ATXN1, to a host of proteins previously unrelated to NDs. It facilitates the identification of interacting proteins that significantly influence mutant TDP-43 and HTT toxicity in transgenic flies, as well as of ARF-GEP100 that controls misfolding and aggregation of multiple ND-causing proteins in experimental model systems. Furthermore, it enables the prediction of ND-specific subnetworks and the identification of proteins, such as ATXN1 and MKL1, that are abnormally aggregated in postmortem brains of Alzheimer's disease patients, suggesting widespread protein aggregation in NDs.
Collapse
|
76
|
Aguilar JI, Cheng MH, Font J, Schwartz AC, Ledwitch K, Duran A, Mabry SJ, Belovich AN, Zhu Y, Carter AM, Shi L, Kurian MA, Fenollar-Ferrer C, Meiler J, Ryan RM, Mchaourab HS, Bahar I, Matthies HJG, Galli A. Psychomotor impairments and therapeutic implications revealed by a mutation associated with infantile Parkinsonism-Dystonia. eLife 2021; 10:e68039. [PMID: 34002696 PMCID: PMC8131106 DOI: 10.7554/elife.68039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/02/2021] [Indexed: 12/30/2022] Open
Abstract
Parkinson disease (PD) is a progressive, neurodegenerative disorder affecting over 6.1 million people worldwide. Although the cause of PD remains unclear, studies of highly penetrant mutations identified in early-onset familial parkinsonism have contributed to our understanding of the molecular mechanisms underlying disease pathology. Dopamine (DA) transporter (DAT) deficiency syndrome (DTDS) is a distinct type of infantile parkinsonism-dystonia that shares key clinical features with PD, including motor deficits (progressive bradykinesia, tremor, hypomimia) and altered DA neurotransmission. Here, we define structural, functional, and behavioral consequences of a Cys substitution at R445 in human DAT (hDAT R445C), identified in a patient with DTDS. We found that this R445 substitution disrupts a phylogenetically conserved intracellular (IC) network of interactions that compromise the hDAT IC gate. This is demonstrated by both Rosetta molecular modeling and fine-grained simulations using hDAT R445C, as well as EPR analysis and X-ray crystallography of the bacterial homolog leucine transporter. Notably, the disruption of this IC network of interactions supported a channel-like intermediate of hDAT and compromised hDAT function. We demonstrate that Drosophila melanogaster expressing hDAT R445C show impaired hDAT activity, which is associated with DA dysfunction in isolated brains and with abnormal behaviors monitored at high-speed time resolution. We show that hDAT R445C Drosophila exhibit motor deficits, lack of motor coordination (i.e. flight coordination) and phenotypic heterogeneity in these behaviors that is typically associated with DTDS and PD. These behaviors are linked with altered dopaminergic signaling stemming from loss of DA neurons and decreased DA availability. We rescued flight coordination with chloroquine, a lysosomal inhibitor that enhanced DAT expression in a heterologous expression system. Together, these studies shed some light on how a DTDS-linked DAT mutation underlies DA dysfunction and, possibly, clinical phenotypes shared by DTDS and PD.
Collapse
Affiliation(s)
- Jenny I Aguilar
- Department of Pharmacology, Vanderbilt UniversityNashvilleUnited States
- Department of Surgery, University of Alabama at BirminghamBirminghamUnited States
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of PittsburghPittsburghUnited States
| | - Josep Font
- School of Medical Sciences, Faculty of Medicine and Health, University of SydneySydneyAustralia
| | - Alexandra C Schwartz
- Department of Molecular Physiology & Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Kaitlyn Ledwitch
- Center for Structural Biology, Vanderbilt UniversityNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Amanda Duran
- Center for Structural Biology, Vanderbilt UniversityNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Samuel J Mabry
- Department of Surgery, University of Alabama at BirminghamBirminghamUnited States
| | - Andrea N Belovich
- Department of Biomedical Sciences, Idaho College of Osteopathic MedicineMeridianUnited States
| | - Yanqi Zhu
- Department of Surgery, University of Alabama at BirminghamBirminghamUnited States
| | - Angela M Carter
- Department of Surgery, University of Alabama at BirminghamBirminghamUnited States
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, NIDA, NIHBaltimoreUnited States
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences, University College London (UCL)LondonUnited Kingdom
| | | | - Jens Meiler
- Center for Structural Biology, Vanderbilt UniversityNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
- Institute for Drug Discovery, Leipzig University Medical SchoolLeipzigGermany
| | - Renae Monique Ryan
- School of Medical Sciences, Faculty of Medicine and Health, University of SydneySydneyAustralia
| | - Hassane S Mchaourab
- Department of Molecular Physiology & Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of PittsburghPittsburghUnited States
| | - Heinrich JG Matthies
- Department of Surgery, University of Alabama at BirminghamBirminghamUnited States
| | - Aurelio Galli
- Department of Surgery, University of Alabama at BirminghamBirminghamUnited States
- Center for Inter-systemic Networks and Enteric Medical Advances, University of Alabama at BirminghamBirminghamUnited States
| |
Collapse
|
77
|
Vieira N, Rito T, Correia-Neves M, Sousa N. Sorting Out Sorting Nexins Functions in the Nervous System in Health and Disease. Mol Neurobiol 2021; 58:4070-4106. [PMID: 33931804 PMCID: PMC8280035 DOI: 10.1007/s12035-021-02388-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022]
Abstract
Endocytosis is a fundamental process that controls protein/lipid composition of the plasma membrane, thereby shaping cellular metabolism, sensing, adhesion, signaling, and nutrient uptake. Endocytosis is essential for the cell to adapt to its surrounding environment, and a tight regulation of the endocytic mechanisms is required to maintain cell function and survival. This is particularly significant in the central nervous system (CNS), where composition of neuronal cell surface is crucial for synaptic functioning. In fact, distinct pathologies of the CNS are tightly linked to abnormal endolysosomal function, and several genome wide association analysis (GWAS) and biochemical studies have identified intracellular trafficking regulators as genetic risk factors for such pathologies. The sorting nexins (SNXs) are a family of proteins involved in protein trafficking regulation and signaling. SNXs dysregulation occurs in patients with Alzheimer’s disease (AD), Down’s syndrome (DS), schizophrenia, ataxia and epilepsy, among others, establishing clear roles for this protein family in pathology. Interestingly, restoration of SNXs levels has been shown to trigger synaptic plasticity recovery in a DS mouse model. This review encompasses an historical and evolutionary overview of SNXs protein family, focusing on its organization, phyla conservation, and evolution throughout the development of the nervous system during speciation. We will also survey SNXs molecular interactions and highlight how defects on SNXs underlie distinct pathologies of the CNS. Ultimately, we discuss possible strategies of intervention, surveying how our knowledge about the fundamental processes regulated by SNXs can be applied to the identification of novel therapeutic avenues for SNXs-related disorders.
Collapse
Affiliation(s)
- Neide Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Teresa Rito
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
78
|
Coccia E, Ahfeldt T. Towards physiologically relevant human pluripotent stem cell (hPSC) models of Parkinson's disease. Stem Cell Res Ther 2021; 12:253. [PMID: 33926571 PMCID: PMC8082939 DOI: 10.1186/s13287-021-02326-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
The derivation of human embryonic stem cells followed by the discovery of induced pluripotent stem cells and leaps in genome editing approaches have continuously fueled enthusiasm for the development of new models of neurodegenerative diseases such as Parkinson's disease (PD). PD is characterized by the relative selective loss of dopaminergic neurons (DNs) in specific areas of substantia nigra pars compacta (SNpc). While degeneration in late stages can be widespread, there is stereotypic early degeneration of these uniquely vulnerable neurons. Various causes of selective vulnerability have been investigated but much remains unclear. Most studies have sought to identify cell autonomous properties of the most vulnerable neurons. However, recent findings from genetic studies and model systems have added to our understanding of non-cell autonomous contributions including regional-specific neuro-immune interactions with astrocytes, resident or damage-activated microglia, neuro-glia cell metabolic interactions, involvement of endothelial cells, and damage to the vascular system. All of these contribute to specific vulnerability and, along with aging and environmental factors, might be integrated in a complex stressor-threshold model of neurodegeneration. In this forward-looking review, we synthesize recent advances in the field of PD modeling using human pluripotent stem cells, with an emphasis on organoid and complex co-culture models of the nigrostriatal niche, with emerging CRISPR applications to edit or perturb expression of causal PD genes and associated risk factors, such as GBA, to understand the impact of these genes on relevant phenotypes.
Collapse
Affiliation(s)
- Elena Coccia
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US
| | - Tim Ahfeldt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US.
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US.
| |
Collapse
|
79
|
Solana-Manrique C, Muñoz-Soriano V, Sanz FJ, Paricio N. Oxidative modification impairs SERCA activity in Drosophila and human cell models of Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166152. [PMID: 33892078 DOI: 10.1016/j.bbadis.2021.166152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/10/2021] [Accepted: 04/13/2021] [Indexed: 01/25/2023]
Abstract
DJ-1 is a causative gene for familial Parkinson's disease (PD) with different functions, standing out its role against oxidative stress (OS). Accordingly, PD model flies harboring a mutation in the DJ-1β gene (the Drosophila ortholog of human DJ-1) show high levels of OS markers like protein carbonylation, a common post-translational modification that may alter protein function. To increase our understanding of PD pathogenesis as well as to discover potential therapeutic targets for pharmacological intervention, we performed a redox proteomic assay in DJ-1β mutant flies. Among the proteins that showed increased carbonylation levels in PD model flies, we found SERCA, an endoplasmic reticulum Ca2+ channel that plays an important role in Ca2+ homeostasis. Interestingly, several studies have supported the involvement of Ca2+ dyshomeostasis in PD. Thus, we decided to study the relation between SERCA activity and PD physiopathology. Our results showed that SERCA enzymatic activity is significantly reduced in DJ-1β mutant flies, probably as a consequence of OS-induced carbonylation, as well as in a human cell PD model based on DJ-1-deficiency. Indeed, higher carbonylation levels of SERCA were also observed in DJ-1-deficient cells compared to controls. In addition, the specific activator of SERCA, CDN1163, was also able to restore PD-related phenotypes in both familial PD models by increasing SERCA activity. Taken together, our results indicate that impaired SERCA activity due to oxidative modification may play a role in PD physiopathology. Furthermore, we demonstrate that therapeutic strategies addressing SERCA activation could be beneficial to treat this disease as shown for CDN1163.
Collapse
Affiliation(s)
- Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; Instituto Universitario de Biotecnologia y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Verónica Muñoz-Soriano
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; Instituto Universitario de Biotecnologia y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Francisco José Sanz
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; Instituto Universitario de Biotecnologia y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; Instituto Universitario de Biotecnologia y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.
| |
Collapse
|
80
|
Prasuhn J, Brüggemann N. Genotype-driven therapeutic developments in Parkinson's disease. Mol Med 2021; 27:42. [PMID: 33874883 PMCID: PMC8056568 DOI: 10.1186/s10020-021-00281-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Remarkable advances have been reached in the understanding of the genetic basis of Parkinson's disease (PD), with the identification of monogenic causes (mPD) and a plethora of gene loci leading to an increased risk for idiopathic PD. The expanding knowledge and subsequent identification of genetic contributions fosters the understanding of molecular mechanisms leading to disease development and progression. Distinct pathways involved in mitochondrial dysfunction, oxidative stress, and lysosomal function have been identified and open a unique window of opportunity for individualized treatment approaches. These genetic findings have led to an imminent progress towards pathophysiology-targeted clinical trials and potentially disease-modifying treatments in the future. MAIN BODY OF THE MANUSCRIPT In this review article we will summarize known genetic contributors to the pathophysiology of Parkinson's disease, the molecular mechanisms leading to disease development, and discuss challenges and opportunities in clinical trial designs. CONCLUSIONS The future success of clinical trials in PD is mainly dependent on reliable biomarker development and extensive genetic testing to identify genetic cases. Whether genotype-dependent stratification of study participants will extend the potential application of new drugs will be one major challenge in conceptualizing clinical trials. However, the latest developments in genotype-driven treatments will pave the road to individualized pathophysiology-based therapies in the future.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
81
|
Sebate B, Cuttler K, Cloete R, Britz M, Christoffels A, Williams M, Carr J, Bardien S. Prioritization of candidate genes for a South African family with Parkinson's disease using in-silico tools. PLoS One 2021; 16:e0249324. [PMID: 33770142 PMCID: PMC7997022 DOI: 10.1371/journal.pone.0249324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/15/2021] [Indexed: 11/19/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder exhibiting Mendelian inheritance in some families. Next-generation sequencing approaches, including whole exome sequencing (WES), have revolutionized the field of Mendelian disorders and have identified a number of PD genes. We recruited a South African family with autosomal dominant PD and used WES to identify a possible pathogenic mutation. After filtration and prioritization, we found five potential causative variants in CFAP65, RTF1, NRXN2, TEP1 and CCNF. The variant in NRXN2 was selected for further analysis based on consistent prediction of deleteriousness across computational tools, not being present in unaffected family members, ethnic-matched controls or public databases, and its expression in the substantia nigra. A protein model for NRNX2 was created which provided a three-dimensional (3D) structure that satisfied qualitative mean and global model quality assessment scores. Trajectory analysis showed destabilizing effects of the variant on protein structure, indicated by high flexibility of the LNS-6 domain adopting an extended conformation. We also found that the known substrate N-acetyl-D-glucosamine (NAG) contributed to restoration of the structural stability of mutant NRXN2. If NRXN2 is indeed found to be the causal gene, this could reveal a new mechanism for the pathobiology of PD.
Collapse
Affiliation(s)
- Boiketlo Sebate
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Katelyn Cuttler
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ruben Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Marcell Britz
- Greenacres Medical Centre, Port Elizabeth, South Africa
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Monique Williams
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, NRF/DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jonathan Carr
- Division of Neurology, Department of Medicine, Stellenbosch University, Cape Town, South Africa
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
82
|
PARKIN, PINK1, and DJ1 analysis in early-onset Parkinson's disease in Ireland. Ir J Med Sci 2021; 191:901-907. [PMID: 33751372 DOI: 10.1007/s11845-021-02563-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Variants in PARKIN, PINK1, and DJ1 are associated with early-onset Parkinson' disease (EOPD, age-at-onset < 45). We previously reported a single PINK1 and a single DJ1 heterozygous variant carrier. PURPOSE We aimed to expand upon our previous EOPD studies and investigate for any genotype-phenotype correlations in Irish PD. METHODS Three hundred fourteen PD patients were recruited from Dublin Neurological Institute, Ireland. Genetic analysis was performed at the Mayo Clinic, Jacksonville, USA. We screened 81 patients with young-onset PD (age-at-onset < 50), of which 58 had EOPD. RESULTS We identified 4 patients with homozygous/compound heterozygous variants and 3 heterozygote carriers (pathogenic PINK1/DJ1 variants were not found). Expansion of one of the pedigrees showed a novel variant in exon 9, in a symptomatic patient. We identified 6.89% PARKIN variant carriers associated with EOPD. CONCLUSION These findings suggest that PINK1 and DJ1 are rarely associated with Irish YOPD, while PARKIN variant frequency is similar to that reported worldwide.
Collapse
|
83
|
Park JH, Hayakawa K. Extracellular Mitochondria Signals in CNS Disorders. Front Cell Dev Biol 2021; 9:642853. [PMID: 33748135 PMCID: PMC7973090 DOI: 10.3389/fcell.2021.642853] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/26/2021] [Indexed: 01/01/2023] Open
Abstract
Mitochondria actively participate in the regulation of cell respiratory mechanisms, metabolic processes, and energy homeostasis in the central nervous system (CNS). Because of the requirement of high energy, neuronal functionality and viability are largely dependent on mitochondrial functionality. In the context of CNS disorders, disruptions of metabolic homeostasis caused by mitochondrial dysfunction lead to neuronal cell death and neuroinflammation. Therefore, restoring mitochondrial function becomes a primary therapeutic target. Recently, accumulating evidence suggests that active mitochondria are secreted into the extracellular fluid and potentially act as non-cell-autonomous signals in CNS pathophysiology. In this mini-review, we overview findings that implicate the presence of cell-free extracellular mitochondria and the critical role of intercellular mitochondrial transfer in various rodent models of CNS disorders. We also discuss isolated mitochondrial allograft as a novel therapeutic intervention for CNS disorders.
Collapse
Affiliation(s)
- Ji-Hyun Park
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
84
|
MacDougall G, Brown LY, Kantor B, Chiba-Falek O. The Path to Progress Preclinical Studies of Age-Related Neurodegenerative Diseases: A Perspective on Rodent and hiPSC-Derived Models. Mol Ther 2021; 29:949-972. [PMID: 33429080 PMCID: PMC7934639 DOI: 10.1016/j.ymthe.2021.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/03/2020] [Accepted: 01/01/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most prevalent age-related neurodegenerative diseases, and currently no effective clinical treatments exist for either, despite decades of clinical trials. The failure to translate preclinical findings into effective treatments is indicative of a problem in the current evaluation pipeline for potential therapeutics. At present, there are no useful animal models for AD and PD research that reflect the entire biology of the diseases, specifically, the more common non-Mendelian forms. Whereas the field continues to seek suitable rodent models for investigating potential therapeutics for these diseases, rodent models have still been used primarily for preclinical studies. Here, we advocate for a paradigm shift toward the application of human-induced pluripotent stem cell (hiPSC)-derived systems for PD and AD modeling and the development of improved human-based models in a dish for drug discovery and preclinical assessment of therapeutic targets.
Collapse
Affiliation(s)
- Gabriella MacDougall
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Logan Y Brown
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC 27710, USA; Viral Vector Core, Duke University Medical Center, Durham, NC 27710, USA
| | - Boris Kantor
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC 27710, USA; Viral Vector Core, Duke University Medical Center, Durham, NC 27710, USA.
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
85
|
Qian L, TCW J. Human iPSC-Based Modeling of Central Nerve System Disorders for Drug Discovery. Int J Mol Sci 2021; 22:1203. [PMID: 33530458 PMCID: PMC7865494 DOI: 10.3390/ijms22031203] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
A high-throughput drug screen identifies potentially promising therapeutics for clinical trials. However, limitations that persist in current disease modeling with limited physiological relevancy of human patients skew drug responses, hamper translation of clinical efficacy, and contribute to high clinical attritions. The emergence of induced pluripotent stem cell (iPSC) technology revolutionizes the paradigm of drug discovery. In particular, iPSC-based three-dimensional (3D) tissue engineering that appears as a promising vehicle of in vitro disease modeling provides more sophisticated tissue architectures and micro-environmental cues than a traditional two-dimensional (2D) culture. Here we discuss 3D based organoids/spheroids that construct the advanced modeling with evolved structural complexity, which propels drug discovery by exhibiting more human specific and diverse pathologies that are not perceived in 2D or animal models. We will then focus on various central nerve system (CNS) disease modeling using human iPSCs, leading to uncovering disease pathogenesis that guides the development of therapeutic strategies. Finally, we will address new opportunities of iPSC-assisted drug discovery with multi-disciplinary approaches from bioengineering to Omics technology. Despite technological challenges, iPSC-derived cytoarchitectures through interactions of diverse cell types mimic patients' CNS and serve as a platform for therapeutic development and personalized precision medicine.
Collapse
Affiliation(s)
- Lu Qian
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Ronald Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julia TCW
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Ronald Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
86
|
Pathomechanism Characterization and Potential Therapeutics Identification for Parkinson's Disease Targeting Neuroinflammation. Int J Mol Sci 2021; 22:ijms22031062. [PMID: 33494411 PMCID: PMC7865530 DOI: 10.3390/ijms22031062] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/18/2020] [Accepted: 01/15/2021] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic (DAergic) neurons and the presence of α-synuclein-containing Lewy bodies. The unstructured α-synuclein forms insoluble fibrils and aggregates that result in increased reactive oxygen species (ROS) and cellular toxicity in PD. Neuroinflammation engaged by microglia actively contributes to the pathogenesis of PD. In this study, we showed that VB-037 (a quinoline compound), glycyrrhetic acid (a pentacyclic triterpenoid), Glycyrrhiza inflata (G. inflata, a Chinese herbal medicine), and Shaoyao Gancao Tang (SG-Tang, a formulated Chinese medicine) suppressed the nitric oxide (NO) production and interleukin (IL)-1β maturation in α-synuclein-stimulated BV-2 cells. Mouse inflammation antibody array further revealed increased IL-1α, IL-1β, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) expression in α-synuclein-inflamed BV-2 cells and compound pretreatment effectively reduced the expression and release of these pro-inflammatory mediators. The test compounds and herbal medicines further reduced α-synuclein aggregation and associated oxidative stress, and protected cells against α-synuclein-induced neurotoxicity by downregulating NLR family pyrin domain containing 1 (NLRP1) and 3 (NLRP3), caspase 1, IL-1β, IL-6, and associated nuclear factor (NF)-κB inhibitor alpha (IκBα)/NF-κB P65 subunit (P65), c-Jun N-terminal kinase (JNK)/proto-oncogene c-Jun (JUN), mitogen-activated protein kinase 14 (P38)/signal transducer and activator of transcription 1 (STAT1) and Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathways in dopaminergic neurons derived from α-synuclein-expressing SH-SY5Y cells. Our findings indicate the potential of VB-037, glycyrrhetic acid, G. inflata, and SG-Tang through mitigating α-synuclein-stimulated neuroinflammation in PD, as new drug candidates for PD treatment.
Collapse
|
87
|
ADORA2A rs5760423 and CYP1A2 rs762551 Polymorphisms as Risk Factors for Parkinson's Disease. J Clin Med 2021; 10:jcm10030381. [PMID: 33498513 PMCID: PMC7864159 DOI: 10.3390/jcm10030381] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Parkinson’s disease (PD) is the second commonest neurodegenerative disease. The genetic basis of PD is indisputable. Both ADORA2A rs5760423 and CYP1A2 rs762551 have been linked to PD, to some extent, but the exact role of those polymorphisms in PD remains controversial. Objective: We assessed the role of ADORA2A rs5760423 and CYP1A2 rs762551 on PD risk. Methods: We genotyped 358 patients with PD and 358 healthy controls for ADORA2A rs5760423 and CYP1A2 rs762551. We also merged and meta-analyzed our data with data from previous studies, regarding these two polymorphisms and PD. Results: No significant association with PD was revealed (p > 0.05), for either ADORA2A rs5760423 or CYP1A2 rs762551, in any of the examined genetic model of inheritance. In addition, results from meta-analyses yield negative results. Conclusions: Based on our analyses, it appears rather unlikely that ADORA2A rs5760423 or CYP1A2 rs762551 is among the major risk factors for PD, at least in Greek patients with PD.
Collapse
|
88
|
Heckman MG, Labbé C, Kolicheski AL, Soto-Beasley AI, Walton RL, Valentino RR, Brennan ER, Johnson PW, Baheti S, Sarangi V, Ren Y, Uitti RJ, Wszolek ZK, Ross OA. Fine-mapping of the non-coding variation driving the Caucasian LRRK2 GWAS signal in Parkinson's disease. Parkinsonism Relat Disord 2021; 83:22-30. [PMID: 33454605 DOI: 10.1016/j.parkreldis.2020.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/10/2020] [Accepted: 12/20/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Genome-wide association studies (GWAS) have confirmed the leucine-rich repeat kinase 2 (LRRK2) gene as a susceptibility locus for idiopathic Parkinson's disease (PD) in Caucasians. Though the rs1491942 and rs76904798 variants have shown the strongest associations, the causal variant(s) remains unresolved. Therefore, the aim of this study was to identify variants that may be driving the LRRK2 GWAS signal by sequencing the entire LRRK2 gene in Caucasian PD patients and controls. METHODS A discovery series (287 PD patients, 294 controls) and replication series (362 PD patients, 168 controls) were included. The entire LRRK2 gene as well as 10 Kb upstream/downstream was sequenced. Candidate potential causal variants were considered to be those that (a) were in at least weak linkage disequilibrium with the two GWAS-nominated variants (rs1491942 and rs76904798), and (b) displayed an association odds ratio (OR) that is stronger than the two GWAS variants. RESULTS Thirty-four candidate variants (all intronic/intergenic) that may drive the LRRK2 PD GWAS signal were identified in the discovery series. However, examination of the replication series for these variants did not reveal any with a consistently stronger OR than both PD GWAS variants. Evaluation of public databases to determine which candidate variants are most likely to have a direct functional effect on LRRK2 expression was inconclusive. CONCLUSION Though our findings provide novel insights into the LRRK2 GWAS association, a clear causal variant was not identified. The identified candidate variants can form the basis for future experiments and functional studies that can more definitively assess causal LRRK2 variants.
Collapse
Affiliation(s)
- Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, USA.
| | - Catherine Labbé
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Ronald L Walton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Emily R Brennan
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | - Patrick W Johnson
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | - Saurabh Baheti
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Vivekananda Sarangi
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Yingxue Ren
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
89
|
Zhao F, Austria Q, Wang W, Zhu X. Mfn2 Overexpression Attenuates MPTP Neurotoxicity In Vivo. Int J Mol Sci 2021; 22:ijms22020601. [PMID: 33435331 PMCID: PMC7827738 DOI: 10.3390/ijms22020601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction represents a critical event in the pathogenesis of Parkinson’s disease (PD). Increasing evidence demonstrates that disturbed mitochondrial dynamics and quality control play an important role in mitochondrial dysfunction in PD. Our previous study demonstrated that MPP+ induces mitochondrial fragmentation in vitro. In this study, we aimed to assess whether blocking MPTP-induced mitochondrial fragmentation by overexpressing Mfn2 affords neuroprotection in vivo. We found that the significant loss of dopaminergic neurons in the substantia nigra (SN) induced by MPTP treatment, as seen in wild-type littermate control mice, was almost completely blocked in mice overexpressing Mfn2 (hMfn2 mice). The dramatic reduction in dopamine neuronal fibers and dopamine levels in the striatum caused by MPTP administration was also partially inhibited in hMfn2 mice. MPTP-induced oxidative stress and inflammatory response in the SN and striatum were significantly alleviated in hMfn2 mice. The impairment of motor function caused by MPTP was also blocked in hMfn2 mice. Overall, our work demonstrates that restoration of mitochondrial dynamics by Mfn2 overexpression protects against neuronal toxicity in an MPTP-based PD mouse model, which supports the modulation of mitochondrial dynamics as a potential therapeutic target for PD treatment.
Collapse
|
90
|
Neutral lipids as early biomarkers of cellular fate: the case of α-synuclein overexpression. Cell Death Dis 2021; 12:52. [PMID: 33414430 PMCID: PMC7791139 DOI: 10.1038/s41419-020-03254-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
α-synuclein (α-syn) accumulation and aggregation is a common pathological factor found in synucleinopathies, a group of neurodegenerative disorders that includes Parkinson´s disease (PD). It has been proposed that lipid dyshomeostasis is responsible for the occurrence of PD-related processes, however, the precise role of lipids in the onset and progression of neurodegenerative disorders remains unclear. Our aim was to investigate the effect of α-syn overexpression on neutral lipid metabolism and how this impacts on neuronal fate. We found lipid droplet (LD) accumulation in cells overexpressing α-syn to be associated with a rise in triacylglycerol (TAG) and cholesteryl ester (CE) levels. α-syn overexpression promoted diacylglycerol acyltransferase 2 upregulation and acyl-CoA synthetase activation, triggering TAG buildup, that was accompanied by an increase in diacylglycerol acylation. Moreover, the CE increment was associated with higher activity of acyl-CoA:cholesterol acyltransferase. Interestingly, α-syn overexpression increased cholesterol lysosomal accumulation. We observed that sterol regulatory element-binding protein (SREBP)-1 and SREBP-2 were differentially regulated by α-syn overexpression. The latter gave rise to a reduction in SREBP-1 nuclear translocation and consequently in fatty acid synthase expression, whereas it produced an increase in SREBP-2 nuclear localization. Surprisingly, and despite increased cholesterol levels, SREBP-2 downstream genes related to cholesterolgenesis were not upregulated as expected. Notably, phospholipid (PL) levels were diminished in cells overexpressing α-syn. This decrease was related to the activation of phospholipase A2 (PLA2) with a concomitant imbalance of the PL deacylation-acylation cycle. Fatty acids released from PLs by iPLA2 and cPLA2 action were esterified into TAGs, thus promoting a biological response to α-syn overexpression with uncompromised cell viability. When the described steady-state was disturbed under conditions favoring higher levels of α-syn, the response was an enhanced LD accumulation, this imbalance ultimately leading to neuronal death.
Collapse
|
91
|
Currim F, Singh J, Shinde A, Gohel D, Roy M, Singh K, Shukla S, Mane M, Vasiyani H, Singh R. Exosome Release Is Modulated by the Mitochondrial-Lysosomal Crosstalk in Parkinson's Disease Stress Conditions. Mol Neurobiol 2021; 58:1819-1833. [PMID: 33404982 DOI: 10.1007/s12035-020-02243-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN) pars compacta region of the brain. The main pathological hallmark involves cytoplasmic inclusions of α-synuclein and mitochondrial dysfunction, which is observed in other part of the central nervous system other than SN suggesting the spread of pathogenesis to bystander neurons. The inter-neuronal communication through exosomes may play an important role in the spread of the disease; however, the mechanisms are not well elucidated. Mitochondria and its role in inter-organellar crosstalk with multivesicular body (MVB) and lysosome and its role in modulation of exosome release in PD is not well understood. In the current study, we investigated the mitochondria-lysosome crosstalk modulating the exosome release in neuronal and glial cells. We observed that PD stress showed enhanced release of exosomes in dopaminergic neurons and glial cells. The PD stress condition in these cells showed fragmented network and mitochondrial dysfunction which further leads to functional deficit of lysosomes and hence inhibition of autophagy flux. Neuronal and glial cells treated with rapamycin showed enhanced autophagy and inhibited the exosomal release. The results here suggest that maintenance of mitochondrial function is important for the lysosomal function and hence exosomal release which is important for the pathogenesis of PD.
Collapse
Affiliation(s)
- Fatema Currim
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Jyoti Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Anjali Shinde
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Dhruv Gohel
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Milton Roy
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Kritarth Singh
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Shatakshi Shukla
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Minal Mane
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Hitesh Vasiyani
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
92
|
Kesh S, Kannan RR, Balakrishnan A. Naringenin alleviates 6-hydroxydopamine induced Parkinsonism in SHSY5Y cells and zebrafish model. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108893. [PMID: 32949818 DOI: 10.1016/j.cbpc.2020.108893] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 01/05/2023]
Abstract
6-Hydroxydopamine (6-OHDA) is a neurotoxin that inhibits the mitochondrial complex I causing mitochondrial impairment, aetiology of Parkinson's. Naringenin is a flavanone predominantly present in citrus fruits. Due to its high antioxidant and anti-inflammatory potential, it has been widely studied against various disorders. In this study, the neuroprotective effect of naringenin was determined against 6-OHDA induced toxicity with Levodopa (l-DOPA) as the standard. Naringenin reduced 6-OHDA induced oxidative stress biomarker levels such as CAT, GSH, SOD, and ROS. Naringenin rescued 6-OHDA induced reduction of the mitochondrial membrane potential. Treatment with naringenin improved the locomotion of the 6-OHDA treated zebrafish larvae which showed stagnant swimming patterns. Naringenin was also found to downregulate the expression of some Parkinsonian genes such as casp9, lrrk2, and polg and upregulate pink1. These studies attribute to naringenin as a viable molecule to study further for its neuroprotective effects against 6-OHDA induced neurotoxicity and neurodegeneration.
Collapse
Affiliation(s)
- Swathi Kesh
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai - 600119, Tamil Nadu, India
| | - Rajaretinam Rajesh Kannan
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai - 600119, Tamil Nadu, India..
| | - Anandan Balakrishnan
- Department of Genetics, University of Madras, Dr ALM PGIBMS Campus, Taramani, Chennai, Tamil Nadu, India
| |
Collapse
|
93
|
Vassileff N, Cheng L, Hill AF. Extracellular vesicles - propagators of neuropathology and sources of potential biomarkers and therapeutics for neurodegenerative diseases. J Cell Sci 2020; 133:133/23/jcs243139. [PMID: 33310868 DOI: 10.1242/jcs.243139] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases are characterised by the irreversible degeneration of neurons in the central or peripheral nervous systems. These include amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD) and prion diseases. Small extracellular vesicles (sEVs), a type of EV involved in cellular communication, have been well documented as propagating neurodegenerative diseases. These sEVs carry cargo, such as proteins and RNA, to recipient cells but are also capable of promoting protein misfolding, thus actively contributing to the progression of these diseases. sEV secretion is also a compensatory process for lysosomal dysfunction in the affected cells, despite inadvertently propagating disease to recipient cells. Despite this, sEV miRNAs have biomarker potential for the early diagnosis of these diseases, while stem cell-derived sEVs and those generated through exogenous assistance demonstrate the greatest therapeutic potential. This Review will highlight novel advancements in the involvement of sEVs as propagators of neuropathology, biomarkers and potential therapeutics in neurodegenerative diseases.
Collapse
Affiliation(s)
- Natasha Vassileff
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Lesley Cheng
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Andrew F Hill
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
94
|
Parkinson's Disease Master Regulators on Substantia Nigra and Frontal Cortex and Their Use for Drug Repositioning. Mol Neurobiol 2020; 58:1517-1534. [PMID: 33211252 DOI: 10.1007/s12035-020-02203-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is among the most prevalent neurodegenerative diseases. Available evidences support the view of PD as a complex disease, being the outcome of interactions between genetic and environmental factors. In face of diagnosis and therapy challenges, and the elusive PD etiology, the use of alternative methodological approaches for the elucidation of the disease pathophysiological mechanisms and proposal of novel potential therapeutic interventions has become increasingly necessary. In the present study, we first reconstructed the transcriptional regulatory networks (TN), centered on transcription factors (TF), of two brain regions affected in PD, the substantia nigra pars compacta (SNc) and the frontal cortex (FCtx). Then, we used case-control studies data from these regions to identify TFs working as master regulators (MR) of the disease, based on region-specific TNs. Twenty-nine regulatory units enriched with differentially expressed genes were identified for the SNc, and twenty for the FCtx, all of which were considered MR candidates for PD. Three consensus MR candidates were found for SNc and FCtx, namely ATF2, SLC30A9, and ZFP69B. In order to search for novel potential therapeutic interventions, we used these consensus MR candidate signatures as input to the Connectivity Map (CMap), a computational drug repositioning webtool. This analysis resulted in the identification of four drugs that reverse the expression pattern of all three MR consensus simultaneously, benperidol, harmaline, tubocurarine chloride, and vorinostat, thus suggested as novel potential PD therapeutic interventions.
Collapse
|
95
|
Kesh S, Kannan RR, Sivaji K, Balakrishnan A. Hesperidin downregulates kinases lrrk2 and gsk3β in a 6-OHDA induced Parkinson's disease model. Neurosci Lett 2020; 740:135426. [PMID: 33075420 DOI: 10.1016/j.neulet.2020.135426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022]
Abstract
The depletion of dopamine in the striatum region and Lewy bodies are the hallmark characteristics of Parkinson's disease. The pathology also includes the upregulation of various Parkinson's disease (PARK) genes and kinases. Two such kinases, LRRK2 and GSK-3β have been directly implicated in the formation of tau and alpha-synuclein proteins, causing PD. Hesperidin (HES) is a flavanone glycoside that has multiple therapeutic benefits including neuroprotective effects. In this study, we examined the neuroprotective effects of HES against 6-hydroxydopamine (6-OHDA) induced-neurotoxicity in the in-vitro and in-vivo model. Hesperidin significantly protected the SH-SY5Y cells' stress against 6-OHDA induced toxicity by downregulating biomarkers of oxidative stress. Furthermore, HES downregulated the kinases lrrk2 and gsk3β along with casp3, casp9, and polg in the zebrafish model. The treatment with HES also improved the locomotor pattern of zebrafish that was affected by 6-OHDA. This study suggests that hesperidin could be a drug of choice in targeting kinases against a 6-OHDA model of PD.
Collapse
Affiliation(s)
- Swathi Kesh
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India.
| | - Rajaretinam Rajesh Kannan
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India.
| | - Kalaiarasi Sivaji
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India.
| | - Anandan Balakrishnan
- Department of Genetics, Dr. ALM PGIBMS Campus, University of Madras, Taramani, Chennai, Tamil Nadu, India.
| |
Collapse
|
96
|
Rizig M, Ojo OO, Athanasiou-Fragkouli A, Agabi OP, Oshinaike OO, Houlden H, Okubadejo NU. Negative screening for 12 rare LRRK2 pathogenic variants in a cohort of Nigerians with Parkinson's disease. Neurobiol Aging 2020; 99:101.e15-101.e19. [PMID: 33158606 DOI: 10.1016/j.neurobiolaging.2020.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/04/2020] [Accepted: 09/28/2020] [Indexed: 01/27/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) gene mutations are the most common genetic cause of Parkinson's disease (PD). More than 300 rare LRRK2 variants have been described, with approximately 17 having confirmed or probable pathogenic role in PD. The distribution differs across ethnic groups, but no PD-related LRRK2 pathogenic variant has been described in persons of Black African ancestry within or outside Africa. We previously reported the absence of LRRK2 p.Gly2019Ser mutation in 126 PD and 55 controls from Nigeria. Using Kompetitive Allele Specific Polymerase Chain Reaction, we screened a new cohort of 92 Nigerians with PD and 210 ethnically matched controls for 12 rare LRRK2 variants shown to be pathogenic in other ethnic populations, including p.Gly2019Ser, p.Arg1441His, p.Gly2385Arg, p.Ala419Val, p.Arg1628Pro, p.Pro755Leu, p.Ile2020Thr, and Tyr1699Cys. All were absent in PD and controls, endorsing our previous findings and confirming that rare LRRK2 pathogenic variants reported in Caucasians, Asians, and persons of mixed ancestry are absent in West Africans. Future studies applying next generation sequencing are necessary to explore novel LRRK2 variants indigenous to Black Africans.
Collapse
Affiliation(s)
- Mie Rizig
- Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Oluwadamilola O Ojo
- Department of Medicine, College of Medicine of the University of Lagos, Lagos, Nigeria; Neurology Unit, Department of Medicine, Lagos University Teaching Hospital, Idi-Araba, Lagos State, Nigeria
| | - Alkyoni Athanasiou-Fragkouli
- Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Osigwe P Agabi
- Neurology Unit, Department of Medicine, Lagos University Teaching Hospital, Idi-Araba, Lagos State, Nigeria
| | - Olajumoke O Oshinaike
- Department of Medicine, Lagos State University College of Medicine and Lagos State University Teaching Hospital, Ikeja, Nigeria
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Njideka U Okubadejo
- Department of Medicine, College of Medicine of the University of Lagos, Lagos, Nigeria; Neurology Unit, Department of Medicine, Lagos University Teaching Hospital, Idi-Araba, Lagos State, Nigeria.
| |
Collapse
|
97
|
Kabra A, Baghel US, Hano C, Martins N, Khalid M, Sharma R. Neuroprotective potential of Myrica esulenta in Haloperidol induced Parkinson's disease. J Ayurveda Integr Med 2020; 11:448-454. [PMID: 32912644 PMCID: PMC7772500 DOI: 10.1016/j.jaim.2020.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/22/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Myrica esculenta is a notable therapeutic plant widely utilized in Indian system of medicine. Ayurvedic literature reported fruit and bark of this plant is used in gulma, jvara, arsa, grahani, pandu roga, hrillasa, mukha roga, kasa, svasa, agnimandhya, aruchi, meha, and kantharoga. OBJECTIVE The present study aimed to investigate the neuroprotective potential of "Himalayan Bayberry" (Myrica esculenta Buch.-Ham. ex D. Don) leaves methanol extract in Parkinson's disease induced by haloperidol. MATERIALS AND METHODS The present investigation was completed in wistar rats, in which Parkinson's disease (PD) was induced with haloperidol 1 mg/kg, intraperitoneally. The rats were randomly divided into six gatherings and the test animals received the methanolic extract of M. esculenta (MEME) at a dose of 50, 100 and 200 mg/kg, orally for one week. Various behavioural, biochemical and histopathological parameters were estimated in haloperidol exposed rats. RESULTS MEME demonstrated significant and dose-dependent increment in behavioural activity and improved muscle coordination. The significant diminution in malonaldehyde level while improved the level of antioxidant enzymes like catalase, superoxide dismutase and reduced glutathione in extract treated group were observed as compared to the control group. Histopathological changes revealed MEME significantly reduced haloperidol-induced damage in the substantia nigra and there was very little neuronal atrophy. CONCLUSION The outcomes showed the defensive role of M. esculenta against PD. The mechanism of protection may be due to an escalation of cellular antioxidants.
Collapse
Affiliation(s)
- Atul Kabra
- IKG Punjab Technical University, Kapurthala, Punjab, India; School of Pharmacy, Raffles University, Neemrana, 301705, Alwar, Rajasthan, India.
| | - Uttam Singh Baghel
- Department of Pharmacy, University of Kota, Kota, 325003, Rajasthan, India
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Orleans University, 45067 CEDEX 2, Orléans, France; Bioactifs et Cosmetiques, CNRS GDR 3711 Orleans, 45067 CEDEX 2, Orléans, France
| | - Natalia Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4200-319, Porto, Portugal; Institute for Research and Innovation in Heath (i3S), University of Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
98
|
Solana-Manrique C, Sanz FJ, Ripollés E, Bañó MC, Torres J, Muñoz-Soriano V, Paricio N. Enhanced activity of glycolytic enzymes in Drosophila and human cell models of Parkinson's disease based on DJ-1 deficiency. Free Radic Biol Med 2020; 158:137-148. [PMID: 32726690 DOI: 10.1016/j.freeradbiomed.2020.06.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/07/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative debilitating disorder characterized by progressive disturbances in motor, autonomic and psychiatric functions. One of the genes involved in familial forms of the disease is DJ-1, whose mutations cause early-onset PD. Besides, it has been shown that an over-oxidized and inactive form of the DJ-1 protein is found in brains of sporadic PD patients. Interestingly, the DJ-1 protein plays an important role in cellular defense against oxidative stress and also participates in mitochondrial homeostasis. Valuable insights into potential PD pathogenic mechanisms involving DJ-1 have been obtained from studies in cell and animal PD models based on DJ-1 deficiency such as Drosophila. Flies mutant for the DJ-1β gene, the Drosophila ortholog of human DJ-1, exhibited disease-related phenotypes such as motor defects, increased reactive oxygen species production and high levels of protein carbonylation. In the present study, we demonstrate that DJ-1β mutants also show a significant increase in the activity of several regulatory glycolytic enzymes. Similar results were obtained in DJ-1-deficient SH-SY5Y neuroblastoma cells, thus suggesting that loss of DJ-1 function leads to an increase in the glycolytic rate. In such a scenario, an enhancement of the glycolytic pathway could be a protective mechanism to decrease ROS production by restoring ATP levels, which are decreased due to mitochondrial dysfunction. Our results also show that meclizine and dimethyl fumarate, two FDA-approved compounds with different clinical applications, are able to attenuate PD-related phenotypes in both models. Moreover, we found that they may exert their beneficial effect by increasing glycolysis through the activation of key glycolytic enzymes. Taken together, these results are consistent with the idea that increasing glycolysis could be a potential disease-modifying strategy for PD, as recently suggested. Besides, they also support further evaluation and potential repurposing of meclizine and dimethyl fumarate as modulators of energy metabolism for neuroprotection in PD.
Collapse
Affiliation(s)
- Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Francisco José Sanz
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Edna Ripollés
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - M Carmen Bañó
- Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain; Departamento de Bioquímica y Biología Molecular, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain
| | - Josema Torres
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100, Burjassot, Spain
| | - Verónica Muñoz-Soriano
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain.
| |
Collapse
|
99
|
Pradhan P, Majhi O, Biswas A, Joshi VK, Sinha D. Enhanced accumulation of reduced glutathione by Scopoletin improves survivability of dopaminergic neurons in Parkinson's model. Cell Death Dis 2020; 11:739. [PMID: 32913179 PMCID: PMC7484898 DOI: 10.1038/s41419-020-02942-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
Parkinson’s disease (PD) is a neuromotor disorder, primarily manifested by motor anomalies due to progressive loss of dopaminergic neurons. Although alterations in genetic factors have been linked with its etiology, exponential accumulation of environmental entities such as reactive oxygen species (ROS) initiate a cyclic chain reaction resulting in accumulation of cellular inclusions, dysfunctional mitochondria, and overwhelming of antioxidant machinery, thus accelerating disease pathogenesis. Involvement of oxidative stress in PD is further substantiated through ROS induced Parkinsonian models and elevated oxidative markers in clinical PD samples; thereby, making modulation of neuronal oxidative load as one of the major approaches in management of PD. Here we have found a potent antioxidant moiety Scopoletin (Sp), a common derivative in most of the nootropic herbs, with robust neuroprotective ability. Sp increased cellular resistance to ROS through efficient recycling of GSH to prevent oxidative damage. The Sp treated cells showed higher loads of reduced glutathione making them resistant to perturbation of antioxidant machinery or neurotoxin MPP+. Sp could restore the redox balance, mitochondrial function, and prevented oxidative damage, leading to recovery of dopaminergic neural networks and motion abilities in Drosophila genetic model of PD. Our data also suggest that Sp, in combination increases the therapeutic potency of L-DOPA by mitigating its chronic toxicity. Together, we highlight the possible ability of Sp in preventing oxidative stress mediated loss of dopaminergic neurons and at the same time enhance the efficacy of dopamine recharging regimens.
Collapse
Affiliation(s)
- Priyadarshika Pradhan
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Olivia Majhi
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Abhijit Biswas
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod Kumar Joshi
- Department of Dravyaguna, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Devanjan Sinha
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
100
|
Cristina TP, Pablo M, Teresa PM, Lydia VD, Irene AR, Araceli AC, Inmaculada BB, Marta BT, Dolores BR, José CAM, Rocío GR, José GRP, Ismael HF, Silvia J, Labrador MAE, Lydia LM, Carlos MCJ, Posada IJ, Ana RS, Cristina RH, Javier DV, Gómez-Garre P. A genetic analysis of a Spanish population with early onset Parkinson's disease. PLoS One 2020; 15:e0238098. [PMID: 32870915 PMCID: PMC7462269 DOI: 10.1371/journal.pone.0238098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction Both recessive and dominant genetic forms of Parkinson’s disease have been described. The aim of this study was to assess the contribution of several genes to the pathophysiology of early onset Parkinson’s disease in a cohort from central Spain. Methods/patients We analyzed a cohort of 117 unrelated patients with early onset Parkinson’s disease using a pipeline, based on a combination of a next-generation sequencing panel of 17 genes previously related with Parkinson’s disease and other Parkinsonisms and CNV screening. Results Twenty-six patients (22.22%) carried likely pathogenic variants in PARK2, LRRK2, PINK1, or GBA. The gene most frequently mutated was PARK2, and p.Asn52Metfs*29 was the most common variation in this gene. Pathogenic variants were not observed in genes SNCA, FBXO7, PARK7, HTRA2, DNAJC6, PLA2G6, and UCHL1. Co-occurrence of pathogenic variants involving two genes was observed in ATP13A2 and PARK2 genes, as well as LRRK2 and GIGYF2 genes. Conclusions Our results contribute to the understanding of the genetic architecture associated with early onset Parkinson’s disease, showing both PARK2 and LRRK2 play an important role in Spanish Parkinson’s disease patients. Rare variants in ATP13A2 and GIGYF2 may contribute to PD risk. However, a large proportion of genetic components remains unknown. This study might contribute to genetic diagnosis and counseling for families with early onset Parkinson’s disease.
Collapse
Affiliation(s)
- Tejera-Parrado Cristina
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Mir Pablo
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- * E-mail: (PG-G); (MP)
| | - Periñán María Teresa
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Abreu-Rodríguez Irene
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | | | - Bernal-Bernal Inmaculada
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Bonilla-Toribio Marta
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Buiza-Rueda Dolores
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | | | | | - Huertas-Fernández Ismael
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Jesús Silvia
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Miguel A-Espinosa Labrador
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | | | - Ignacio J. Posada
- Servicio de Neurología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | - Del Val Javier
- Servicio de Neurología, Fundación Jiménez Díaz, Madrid, Spain
| | - Pilar Gómez-Garre
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- * E-mail: (PG-G); (MP)
| |
Collapse
|