51
|
Yu X, Wang Y, Song Y, Gao X, Deng H. AP-1 is a regulatory transcription factor of inflammaging in the murine kidney and liver. Aging Cell 2023; 22:e13858. [PMID: 37154113 PMCID: PMC10352569 DOI: 10.1111/acel.13858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/07/2023] [Indexed: 05/10/2023] Open
Abstract
Aging is characterized by chronic low-grade inflammation in multiple tissues, also termed "inflammaging", which represents a significant risk factor for many aging-related chronic diseases. However, the mechanisms and regulatory networks underlying inflammaging across different tissues have not yet been fully elucidated. Here, we profiled the transcriptomes and epigenomes of the kidney and liver from young and aged mice and found that activation of the inflammatory response is a conserved signature in both tissues. Moreover, we revealed links between transcriptome changes and chromatin dynamics through integrative analysis and identified AP-1 and ETS family transcription factors (TFs) as potential regulators of inflammaging. Further in situ validation showed that c-JUN (a member of the AP-1 family) was mainly activated in aged renal and hepatic cells, while increased SPI1 (a member of the ETS family) was mostly induced by elevated infiltration of macrophages, indicating that these TFs have different mechanisms in inflammaging. Functional data demonstrated that genetic knockdown of Fos, a major member of the AP-1 family, significantly attenuated the inflammatory response in aged kidneys and livers. Taken together, our results revealed conserved signatures and regulatory TFs of inflammaging in the kidney and liver, providing novel targets for the development of anti-aging interventions.
Collapse
Affiliation(s)
- Xiaojie Yu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Yuting Wang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Yifan Song
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Xianda Gao
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingChina
| | - Hongkui Deng
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingChina
| |
Collapse
|
52
|
Iacono S, Schirò G, Davì C, Mastrilli S, Abbott M, Guajana F, Arnao V, Aridon P, Ragonese P, Gagliardo C, Colomba C, Scichilone N, D’Amelio M. COVID-19 and neurological disorders: what might connect Parkinson's disease to SARS-CoV-2 infection. Front Neurol 2023; 14:1172416. [PMID: 37273689 PMCID: PMC10232873 DOI: 10.3389/fneur.2023.1172416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/28/2023] [Indexed: 06/06/2023] Open
Abstract
SARS-CoV-2 infection leading to Coronavirus disease 19 (COVID-19) rapidly became a worldwide health emergency due to its elevated infecting capacity, morbidity, and mortality. Parkinson’s disease (PD) is the second most common neurodegenerative disorder and, nowadays the relationship between SARS-CoV-2 outbreak and PD reached a great interest. Apparently independent one from the other, both diseases share some pathogenetic and clinical features. The relationship between SARS-CoV-2 infection and PD is complex and it depends on the direction of the association that is which of the two diseases comes first. Some evidence suggests that SARS-CoV-2 infection might be a possible risk factor for PD wherein the exposure to SARS-CoV-2 increase the risk for PD. This perspective comes out from the increasing cases of parkinsonism following COVID-19 and also from the anatomical structures affected in both COVID-19 and early PD such as olfactory bulb and gastrointestinal tract resulting in the same symptoms such as hyposmia and constipation. Furthermore, there are many reported cases of patients who developed hypokinetic extrapyramidal syndrome following SARS-CoV-2 infection although these would resemble a post-encephalitic conditions and there are to date relevant data to support the hypothesis that SARS-CoV-2 infection is a risk factor for the development of PD. Future large, longitudinal and population-based studies are needed to better assess whether the risk of developing PD after COVID-19 exists given the short time span from the starting of pandemic. Indeed, this brief time-window does not allow the precise estimation of the incidence and prevalence of PD after pandemic when compared with pre-pandemic era. If the association between SARS-CoV-2 infection and PD pathogenesis is actually putative, on the other hand, vulnerable PD patients may have a greater risk to develop COVID-19 being also more prone to develop a more aggressive disease course. Furthermore, PD patients with PD showed a worsening of motor and non-motor symptoms during COVID-19 outbreak due to both infection and social restriction. As well, the worries related to the risk of being infected should not be neglected. Here we summarize the current knowledge emerging about the epidemiological, pathogenetic and clinical relationship between SARS-CoV-2 infection and PD.
Collapse
Affiliation(s)
- Salvatore Iacono
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giuseppe Schirò
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Chiara Davì
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Sergio Mastrilli
- Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone di Palermo, Palermo, Italy
| | - Michelle Abbott
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Fabrizio Guajana
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Valentina Arnao
- UO Neurologia e Stroke Unit, Azienda di Rilievo Nazionale ad Alta Specializzazione, Ospedali Civico Di Cristina Benfratelli, Palermo, Italy
| | - Paolo Aridon
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Paolo Ragonese
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Cesare Gagliardo
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Claudia Colomba
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Nicola Scichilone
- Division of Respiratory Diseases, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Marco D’Amelio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
53
|
Camps J, Iftimie S, Arenas M, Castañé H, Jiménez-Franco A, Castro A, Joven J. Paraoxonase-1: How a xenobiotic detoxifying enzyme has become an actor in the pathophysiology of infectious diseases and cancer. Chem Biol Interact 2023; 380:110553. [PMID: 37201624 DOI: 10.1016/j.cbi.2023.110553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Both infectious and non-infectious diseases can share common molecular mechanisms, including oxidative stress and inflammation. External factors, such as bacterial or viral infections, excessive calorie intake, inadequate nutrients, or environmental factors, can cause metabolic disorders, resulting in an imbalance between free radical production and natural antioxidant systems. These factors may lead to the production of free radicals that can oxidize lipids, proteins, and nucleic acids, causing metabolic alterations that influence the pathogenesis of the disease. The relationship between oxidation and inflammation is crucial, as they both contribute to the development of cellular pathology. Paraoxonase 1 (PON1) is a vital enzyme in regulating these processes. PON1 is an enzyme that is bound to high-density lipoproteins and protects the organism against oxidative stress and toxic substances. It breaks down lipid peroxides in lipoproteins and cells, enhances the protection of high-density lipoproteins against different infectious agents, and is a critical component of the innate immune system. Impaired PON1 function can affect cellular homeostasis pathways and cause metabolically driven chronic inflammatory states. Therefore, understanding these relationships can help to improve treatments and identify new therapeutic targets. This review also examines the advantages and disadvantages of measuring serum PON1 levels in clinical settings, providing insight into the potential clinical use of this enzyme.
Collapse
Affiliation(s)
| | | | - Meritxell Arenas
- Department of Radiation Oncology, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | | | | | | | | |
Collapse
|
54
|
Mulligan R, Suarez Durall P. Geriatric Phenotypes and Their Impact on Oral Health. Clin Geriatr Med 2023; 39:235-255. [PMID: 37045531 DOI: 10.1016/j.cger.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Older adults have multiple morbidities that can impact oral, systemic, and psychological health. Although each disorder requires consideration from the provider before treatment, by assessing the common phenotypic presentations of older adults, we can better understand, select, and coordinate treatment modifications that would need to be considered and implemented for dental care.
Collapse
Affiliation(s)
- Roseann Mulligan
- Herman Ostrow School of Dentistry of the University of Southern California, DEN 4338, Mail Code: 0641, Los Angeles, CA 90089, USA.
| | - Piedad Suarez Durall
- Herman Ostrow School of Dentistry of the University of Southern California, University Park Campus, DEN 4338, Mail Code: 0641, Los Angeles, CA 90089, USA
| |
Collapse
|
55
|
Xie R, Ning Z, Xiao M, Li L, Liu M, Zhang Y. Dietary inflammatory potential and biological aging among US adults: a population-based study. Aging Clin Exp Res 2023; 35:1273-1281. [PMID: 37186209 DOI: 10.1007/s40520-023-02410-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVES The rate of biological aging is influenced by various factors such as genetics, environment, and diet. The dietary inflammatory index (DII) is strongly associated with various chronic diseases. The aim of this study was to investigate the association between DII and biological aging in US adults using quantitative indicators. METHODS Based on data from the National Health and Nutrition Examination Survey (NHANES) 1999-2018, weighted multiple linear regression models, generalized weighted models, and smoothed fitted curves were used to investigate the linear and nonlinear relationships of DII with four biological markers of aging (biological age, phenotypic age, telomere length, and serum klotho concentration). RESULTS A total of 35,575 adult participants with complete data were included in the study. After adjusting for all confounders, significant positive correlations were found between DII with biological age [0.070 (0.045, 0.095)] and phenotypic age [0.421 (0.371, 0.471)], with an increase of 0.07 and 0.42 years in biological age and phenotypic age, respectively, for each increase in DII score. The negative correlations between DII with telomere length [ - 0.005 ( - 0.008, - 0.002)] and klotho [ - 3.874 ( - 7.409, - 0.338)] were significant only in partially adjusted models and differed across subgroups. CONCLUSIONS In the current study, higher DII scores (greater pro-inflammatory dietary potential) were associated with biological aging. These findings may contribute to the development of aging prevention strategies through dietary interventions.
Collapse
Affiliation(s)
- Ruijie Xie
- Department of Hand & Microsurgery, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, China
| | - Zhongxing Ning
- Department of Intensive Care Unit, The People's Hospital of Guangxi Zhuang Autonomous Region & Research Center of Intensive Care Unit, Nanning, 530021, China
| | - Mengde Xiao
- Department of Quality Evaluation Office, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, China
| | - Lihong Li
- Department of Gland Surgery, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, China
| | - Mingjiang Liu
- Department of Hand & Microsurgery, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, China.
| | - Ya Zhang
- Department of Gland Surgery, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, China.
| |
Collapse
|
56
|
Abstract
The inflammaging concept was introduced in 2000 by Prof. Franceschi. This was an evolutionary or rather a revolutionary conceptualization of the immune changes in response to a lifelong stress. This conceptualization permitted to consider the lifelong proinflammatory process as an adaptation which could eventually lead to either beneficial or detrimental consequences. This dichotomy is influenced by both the genetics and the environment. Depending on which way prevails in an individual, the outcome may be healthy longevity or pathological aging burdened with aging-related diseases. The concept of inflammaging has also revealed the complex, systemic nature of aging. Thus, this conceptualization opens the way to consider age-related processes in their complexity, meaning that not only the process but also all counter-processes should be considered. It has also opened the way to add new concepts to the original one, leading to better understanding of the nature of inflammaging and of aging itself. Finally, it showed the way towards potential multimodal interventions involving a holistic approach to optimize the aging process towards a healthy longevity.
Collapse
|
57
|
Motta F, Barone E, Sica A, Selmi C. Inflammaging and Osteoarthritis. Clin Rev Allergy Immunol 2023; 64:222-238. [PMID: 35716253 DOI: 10.1007/s12016-022-08941-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 12/15/2022]
Abstract
Osteoarthritis is a highly prevalent disease particularly in subjects over 65 years of age worldwide. While in the past it was considered a mere consequence of cartilage degradation leading to anatomical and functional joint impairment, in recent decades, there has been a more dynamic view with the synovium, the cartilage, and the subchondral bone producing inflammatory mediators which ultimately lead to cartilage damage. Inflammaging is defined as a chronic, sterile, low-grade inflammation state driven by endogenous signals in the absence of infections, occurring with aging. This chronic status is linked to the production of reactive oxygen species and molecules involved in the development of age-related disease such as cancer, diabetes, and cardiovascular and neurodegenerative diseases. Inflammaging contributes to osteoarthritis development where both the innate and the adaptive immune response are involved. Elevated systemic and local inflammatory cytokines and senescent molecules promote cartilage degradation, and antigens derived from damaged joints further trigger inflammation through inflammasome activation. B and T lymphocyte populations also change with inflammaging and OA, with reduced regulatory functions, thus implicating self-reactivity as an additional mechanism of joint damage. The discovery of the underlying pathogenic pathways may help to identify potential therapeutic targets for the management or the prevention of osteoarthritis. We will provide a comprehensive evaluation of the current literature on the role of inflammaging in osteoarthritis and discuss the emerging therapeutic strategies.
Collapse
Affiliation(s)
- Francesca Motta
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy
| | - Elisa Barone
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy
| | - Antonio Sica
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy.,Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani 2, 28100, Novara, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy. .,Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy.
| |
Collapse
|
58
|
Bleve A, Motta F, Durante B, Pandolfo C, Selmi C, Sica A. Immunosenescence, Inflammaging, and Frailty: Role of Myeloid Cells in Age-Related Diseases. Clin Rev Allergy Immunol 2023; 64:123-144. [PMID: 35031957 PMCID: PMC8760106 DOI: 10.1007/s12016-021-08909-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 12/20/2022]
Abstract
The immune system is the central regulator of tissue homeostasis, ensuring tissue regeneration and protection against both pathogens and the neoformation of cancer cells. Its proper functioning requires homeostatic properties, which are maintained by an adequate balance of myeloid and lymphoid responses. Aging progressively undermines this ability and compromises the correct activation of immune responses, as well as the resolution of the inflammatory response. A subclinical syndrome of "homeostatic frailty" appears as a distinctive trait of the elderly, which predisposes to immune debilitation and chronic low-grade inflammation (inflammaging), causing the uncontrolled development of chronic and degenerative diseases. The innate immune compartment, in particular, undergoes to a sequela of age-dependent functional alterations, encompassing steps of myeloid progenitor differentiation and altered responses to endogenous and exogenous threats. Here, we will review the age-dependent evolution of myeloid populations, as well as their impact on frailty and diseases of the elderly.
Collapse
Affiliation(s)
- Augusto Bleve
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani, via Bovio 6, 2 - 28100, Novara, Italy
| | - Francesca Motta
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center- IRCCS, via Manzoni 56, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
| | - Barbara Durante
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani, via Bovio 6, 2 - 28100, Novara, Italy
| | - Chiara Pandolfo
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani, via Bovio 6, 2 - 28100, Novara, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center- IRCCS, via Manzoni 56, Rozzano, Milan, Italy.
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy.
| | - Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani, via Bovio 6, 2 - 28100, Novara, Italy.
- Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
59
|
Martínez CF, Esposito S, Di Castelnuovo A, Costanzo S, Ruggiero E, De Curtis A, Persichillo M, Hébert JR, Cerletti C, Donati MB, de Gaetano G, Iacoviello L, Gialluisi A, Bonaccio M. Association between the Inflammatory Potential of the Diet and Biological Aging: A Cross-Sectional Analysis of 4510 Adults from the Moli-Sani Study Cohort. Nutrients 2023; 15:nu15061503. [PMID: 36986232 PMCID: PMC10056325 DOI: 10.3390/nu15061503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Chronological age (CA) may not accurately reflect the health status of an individual. Rather, biological age (BA) or hypothetical underlying "functional" age has been proposed as a relevant indicator of healthy aging. Observational studies have found that decelerated biological aging or Δage (BA-CA) is associated with a lower risk of disease and mortality. In general, CA is associated with low-grade inflammation, a condition linked to the risk of the incidence of disease and overall cause-specific mortality, and is modulated by diet. To address the hypothesis that diet-related inflammation is associated with Δage, a cross-sectional analysis of data from a sub-cohort from the Moli-sani Study (2005-2010, Italy) was performed. The inflammatory potential of the diet was measured using the Energy-adjusted Dietary Inflammatory Index (E-DIITM) and a novel literature-based dietary inflammation score (DIS). A deep neural network approach based on circulating biomarkers was used to compute BA, and the resulting Δage was fit as the dependent variable. In 4510 participants (men 52.0%), the mean of CA (SD) was 55.6 y (±11.6), BA 54.8 y (±8.6), and Δage -0.77 (±7.7). In a multivariable-adjusted analysis, an increase in E-DIITM and DIS scores led to an increase in Δage (β = 0.22; 95%CI 0.05, 0.38; β = 0.27; 95%CI 0.10, 0.44, respectively). We found interaction for DIS by sex and for E-DIITM by BMI. In conclusion, a pro-inflammatory diet is associated with accelerated biological aging, which likely leads to an increased long-term risk of inflammation-related diseases and mortality.
Collapse
Affiliation(s)
- Claudia F Martínez
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli, Italy
- Population Health Research Center, National Institute of Public Health, Cuernavaca 62100, Mexico
| | - Simona Esposito
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli, Italy
| | | | - Simona Costanzo
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli, Italy
| | - Emilia Ruggiero
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli, Italy
| | - Amalia De Curtis
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli, Italy
| | - Mariarosaria Persichillo
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli, Italy
| | - James R Hébert
- Cancer Prevention and Control Program and Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
- Department of Nutrition, Connecting Health Innovations LLC, Columbia, SC 29201, USA
| | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli, Italy
| | - Maria Benedetta Donati
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli, Italy
| | - Giovanni de Gaetano
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli, Italy
- Department of Medicine and Surgery, Research Center in Epidemiology and Preventive Medicine (EPIMED), University of Insubria, 21100 Varese-Como, Italy
| | - Alessandro Gialluisi
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli, Italy
| | - Marialaura Bonaccio
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli, Italy
| |
Collapse
|
60
|
Kesidou E, Theotokis P, Damianidou O, Boziki M, Konstantinidou N, Taloumtzis C, Sintila SA, Grigoriadis P, Evangelopoulos ME, Bakirtzis C, Simeonidou C. CNS Ageing in Health and Neurodegenerative Disorders. J Clin Med 2023; 12:2255. [PMID: 36983254 PMCID: PMC10054919 DOI: 10.3390/jcm12062255] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The process of ageing is characteristic of multicellular organisms associated with late stages of the lifecycle and is manifested through a plethora of phenotypes. Its underlying mechanisms are correlated with age-dependent diseases, especially neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and multiple sclerosis (MS) that are accompanied by social and financial difficulties for patients. Over time, people not only become more prone to neurodegeneration but they also lose the ability to trigger pivotal restorative mechanisms. In this review, we attempt to present the already known molecular and cellular hallmarks that characterize ageing in association with their impact on the central nervous system (CNS)'s structure and function intensifying possible preexisting pathogenetic conditions. A thorough and elucidative study of the underlying mechanisms of ageing will be able to contribute further to the development of new therapeutic interventions to effectively treat age-dependent manifestations of neurodegenerative diseases.
Collapse
Affiliation(s)
- Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
- Laboratory of Physiology, Faculty of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Olympia Damianidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Natalia Konstantinidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Charilaos Taloumtzis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Styliani-Aggeliki Sintila
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Panagiotis Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | | | - Christos Bakirtzis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Constantina Simeonidou
- Laboratory of Physiology, Faculty of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
61
|
COVID-19 and Frailty. Vaccines (Basel) 2023; 11:vaccines11030606. [PMID: 36992190 DOI: 10.3390/vaccines11030606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Older age is a major risk factor for adverse outcomes of COVID-19, potentially due to immunosenescence and chronic low-grade inflammation, both characteristics of older adults which synergistically contribute to their vulnerability. Furthermore, older age is also associated with decreased kidney function and is consequently associated with an increased risk of cardiovascular disease. All of this in the course of COVID-19 infection can worsen and promote the progression of chronic kidney damage and all its sequelae. Frailty is a condition characterized by the decline in function of several homeostatic systems, leading to increased vulnerability to stressors and risk of adverse health outcomes. Thus, it is very likely that frailty, together with comorbidities, may have contributed to the high vulnerability to severe clinical manifestations and deaths from COVID-19 among older people. The combination of viral infection and chronic inflammation in the elderly could cause multiple unforeseen harmful consequences, affecting overall disability and mortality rates. In post-COVID-19 patients, inflammation has been implicated in sarcopenia progression, functional activity decline, and dementia. After the pandemic, it is imperative to shine a spotlight on these sequelae so that we can be prepared for the future outcomes of the ongoing pandemic. Here, we discuss the potential long-term consequences of SARS-CoV-2 infection and its possibility of causing permanent damage to the precarious balance existing in the frail elderly with multiple pathologies.
Collapse
|
62
|
Rahman Z, Dandekar MP. Implication of Paraprobiotics in Age-Associated Gut Dysbiosis and Neurodegenerative Diseases. Neuromolecular Med 2023; 25:14-26. [PMID: 35879588 DOI: 10.1007/s12017-022-08722-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/13/2022] [Indexed: 10/16/2022]
Abstract
Neurodegenerative diseases, including Alzheimer's and Parkinson's disease, are major age-related concerns in elderly people. Since no drug fully addresses the progression of neurodegenerative diseases, advance treatment strategies are urgently needed. Several studies have noted the senescence of immune system and the perturbation of gut microbiota in the aged population. In recent years, the role of gut microbiota has been increasingly studied in the manifestation of age-related CNS disorders. In this context, prebiotics, probiotics, and paraprobiotics are reported to improve the behavioural and neurobiological abnormalities in elderly patients. As live microbiota, prescribed in the form of probiotics, shows some adverse effects like sepsis, translocation, and horizontal gene transfer, paraprobiotics could be a possible alternative strategy in designing microbiome-based therapeutics. This review describes the health-beneficial effects of paraprobiotics in age-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Manoj P Dandekar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
63
|
Gegunde S, Alfonso A, Alvariño R, Pérez-Fuentes N, Bayón-Lorenzo J, Alonso E, Ocaranza-Sánchez R, Abellás-Sequeiros RA, Santás-Álvarez M, Vieytes MR, Juanatey-González C, Botana LM. Association of cyclophilins and cardiovascular risk factors in coronary artery disease. Front Physiol 2023; 14:1127468. [PMID: 36935755 PMCID: PMC10014534 DOI: 10.3389/fphys.2023.1127468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
Cyclophilins are chaperone proteins that play important roles in signal transduction. Among them, cyclophilins A, B, C, and D were widely associated with inflammation and cardiovascular diseases. Cyclophilins A and C have been proposed as coronary artery disease biomarkers. However, less is known about their relationship with cardiovascular risk factors. Therefore, this study aimed to determine the association between cyclophilin A, B, C, and D and cardiovascular risk factors in coronary artery disease. Serum levels of cyclophilins were measured in 167 subjects (subdivided according to cardiovascular risk factors presence). This study reveals that cyclophilin A and C are elevated in patients regardless of the risk factors presence. Moreover, cyclophilin B is elevated in male patients with hypertension, type 2 diabetes, or high glucose levels. In addition, cyclophilins A, B, and C were significantly correlated with cardiovascular risk factors, but only cyclophilin B was associated with type 2 diabetes. The multivariate analysis strengthens the predictive value for coronary artery disease presence of cyclophilin A (>8.2 ng/mL) and cyclophilin C (>17.5 pg/mL) along with the cardiovascular risk factors tobacco, hypertension, dyslipidemia, and high glucose and cholesterol levels. Moreover, the risk of coronary artery disease is increased in presence of cyclophilin B levels above 63.26 pg/mL and with hypertension or dyslipidemia in male patients. Consequently, cyclophilins A and C serum levels are reinforced as useful coronary artery disease biomarkers, meanwhile, cyclophilin B is a valuable biomarker in the male population when patients are also suffering from hypertension or dyslipidemia.
Collapse
Affiliation(s)
- Sandra Gegunde
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
- Grupo Investigación Biodiscovery, IDIS, Lugo, Spain
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
- Grupo Investigación Biodiscovery, IDIS, Lugo, Spain
| | - Rebeca Alvariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
- Grupo Investigación Biodiscovery, IDIS, Lugo, Spain
| | - Nadia Pérez-Fuentes
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
- Grupo Investigación Biodiscovery, IDIS, Lugo, Spain
| | - Jeremías Bayón-Lorenzo
- Grupo Investigación Biodiscovery, IDIS, Lugo, Spain
- Servicio de Cardiología, Hospital Universitario Lucus Augusti, Lugo, Spain
| | - Eva Alonso
- Grupo Investigación Biodiscovery, IDIS, Lugo, Spain
- Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Lugo, Spain
| | - Raymundo Ocaranza-Sánchez
- Grupo Investigación Biodiscovery, IDIS, Lugo, Spain
- Servicio de Cardiología, Hospital Universitario Lucus Augusti, Lugo, Spain
| | - Rosa Alba Abellás-Sequeiros
- Grupo Investigación Biodiscovery, IDIS, Lugo, Spain
- Servicio de Cardiología, Hospital Universitario Lucus Augusti, Lugo, Spain
| | - Melisa Santás-Álvarez
- Grupo Investigación Biodiscovery, IDIS, Lugo, Spain
- Servicio de Cardiología, Hospital Universitario Lucus Augusti, Lugo, Spain
| | - Mercedes R. Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Carlos Juanatey-González
- Grupo Investigación Biodiscovery, IDIS, Lugo, Spain
- Servicio de Cardiología, Hospital Universitario Lucus Augusti, Lugo, Spain
| | - Luis M. Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
- Grupo Investigación Biodiscovery, IDIS, Lugo, Spain
| |
Collapse
|
64
|
Olivieri F, Marchegiani F, Matacchione G, Giuliani A, Ramini D, Fazioli F, Sabbatinelli J, Bonafè M. Sex/gender-related differences in inflammaging. Mech Ageing Dev 2023; 211:111792. [PMID: 36806605 DOI: 10.1016/j.mad.2023.111792] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Geroscience puts mechanisms of aging as a driver of the most common age-related diseases and dysfunctions. Under this perspective, addressing the basic mechanisms of aging will produce a better understanding than addressing each disease pathophysiology individually. Worldwide, despite greater functional impairment, life expectancy is higher in women than in men. Gender differences in the prevalence of multimorbidity lead mandatory to the understanding of the mechanisms underlying gender-related differences in multimorbidity patterns and disability-free life expectancy. Extensive literature suggested that inflammaging is at the crossroad of aging and age-related diseases. In this review, we highlight the main evidence on sex/gender differences in the mechanisms that foster inflammaging, i.e. the age-dependent triggering of innate immunity, modifications of adaptive immunity, and accrual of senescent cells, underpinning some biomarkers of inflammaging that show sex-related differences. In the framework of the "gender medicine perspective", we will also discuss how sex/gender differences in inflammaging can affect sex differences in COVID-19 severe outcomes.
Collapse
Affiliation(s)
- Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | | | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Deborah Ramini
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Francesca Fazioli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Laboratory Medicine Unit, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy.
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
65
|
Frankowska N, Bryl E, Fulop T, Witkowski JM. Longevity, Centenarians and Modified Cellular Proteodynamics. Int J Mol Sci 2023; 24:ijms24032888. [PMID: 36769212 PMCID: PMC9918038 DOI: 10.3390/ijms24032888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
We have shown before that at least one intracellular proteolytic system seems to be at least as abundant in the peripheral blood lymphocytes of centenarians as in the same cells of young individuals (with the cells of the elderly population showing a significant dip compared to both young and centenarian cohorts). Despite scarce published data, in this review, we tried to answer the question how do different types of cells of longevous people-nonagenarians to (semi)supercentenarians-maintain the quality and quantity of their structural and functional proteins? Specifically, we asked if more robust proteodynamics participate in longevity. We hypothesized that at least some factors controlling the maintenance of cellular proteomes in centenarians will remain at the "young" level (just performing better than in the average elderly). In our quest, we considered multiple aspects of cellular protein maintenance (proteodynamics), including the quality of transcribed DNA, its epigenetic changes, fidelity and quantitative features of transcription of both mRNA and noncoding RNAs, the process of translation, posttranslational modifications leading to maturation and functionalization of nascent proteins, and, finally, multiple facets of the process of elimination of misfolded, aggregated, and otherwise dysfunctional proteins (autophagy). We also included the status of mitochondria, especially production of ATP necessary for protein synthesis and maintenance. We found that with the exception of the latter and of chaperone function, practically all of the considered aspects did show better performance in centenarians than in the average elderly, and most of them approached the levels/activities seen in the cells of young individuals.
Collapse
Affiliation(s)
- Natalia Frankowska
- Department of Physiopathology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Ewa Bryl
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Jacek M. Witkowski
- Department of Physiopathology, Medical University of Gdansk, 80-211 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-349-1510
| |
Collapse
|
66
|
Olivieri F, Prattichizzo F, Lattanzio F, Bonfigli AR, Spazzafumo L. Antifragility and antiinflammaging: Can they play a role for a healthy longevity? Ageing Res Rev 2023; 84:101836. [PMID: 36574863 DOI: 10.1016/j.arr.2022.101836] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
One of the most exciting challenges of the research on aging is to explain how the environmental factors interact with the genetic background to modulate the chances to reach the extreme limit of human life in healthy conditions. The complex epigenetic mechanisms can explain both the interaction between DNA and environmental factors, and the long-distance persistence of lifestyle effects, due to the so called "epigenetic memory". One of the most extensively investigated theories on aging focuses on the inflammatory responses, suggesting that the age-related progression of low-grade and therefore for long time subclinical, chronic, systemic, inflammatory process, named "inflammaging", could be the most relevant risk factor for the development and progression of the most common age-related diseases and ultimately of death. The results of many studies on long-lived people, especially on centenarians, suggested that healthy old people can cope with inflammaging upregulating the antiinflammaging responses. Overall, a genetic make-up coding for a strong antiinflammaging response and an age-related ability to remodel key metabolic pathways to cope with a plethora of antigens and stressors seem to be the best ways for reach the extreme limit of human lifespan in health status. In this scenario, we wondered if the antifragility concept, recently developed in the framework of business and risk analysis, could add some information to disentangle the heterogeneous nature of the aging process in human. The antifragility is the property of the complex systems to increase their performances because of high stress. Based on this theory we were wondering if some subjects could be able to modulate faster than others their epigenome to cope with a plethora of stressors during life, probably modulating the inflammatory and anti-inflammatory responses. In this framework, antifragility could share some common mechanisms with anti-inflammaging, modulating the ability to restrain the inflammatory responses, so that antifragility and antiinflammaging could be viewed as different pieces of the same puzzle, both impinging upon the chances to travel along the healthy aging trajectory.
Collapse
Affiliation(s)
- Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica Delle Marche, Ancona, Italy; Clinica di Medicina di Laboratorio e di Precisione, IRCCS INRCA, Ancona, Italy.
| | | | | | | | | |
Collapse
|
67
|
Effect of glycemic control and duration of type 2 diabetes on circulatory miR-146a in middle-aged Indians. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
68
|
The Relationship between Reactive Oxygen Species and the cGAS/STING Signaling Pathway in the Inflammaging Process. Int J Mol Sci 2022; 23:ijms232315182. [PMID: 36499506 PMCID: PMC9735967 DOI: 10.3390/ijms232315182] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
During Inflammaging, a dysregulation of the immune cell functions is generated, and these cells acquire a senescent phenotype with an increase in pro-inflammatory cytokines and ROS. This increase in pro-inflammatory molecules contributes to the chronic inflammation and oxidative damage of biomolecules, classically observed in the Inflammaging process. One of the most critical oxidative damages is generated to the host DNA. Damaged DNA is located out of the natural compartments, such as the nucleus and mitochondria, and is present in the cell's cytoplasm. This DNA localization activates some DNA sensors, such as the cGAS/STING signaling pathway, that induce transcriptional factors involved in increasing inflammatory molecules. Some of the targets of this signaling pathway are the SASPs. SASPs are secreted pro-inflammatory molecules characteristic of the senescent cells and inducers of ROS production. It has been suggested that oxidative damage to nuclear and mitochondrial DNA generates activation of the cGAS/STING pathway, increasing ROS levels induced by SASPs. These additional ROS increase oxidative DNA damage, causing a loop during the Inflammaging. However, the relationship between the cGAS/STING pathway and the increase in ROS during Inflammaging has not been clarified. This review attempt to describe the potential connection between the cGAS/STING pathway and ROS during the Inflammaging process, based on the current literature, as a contribution to the knowledge of the molecular mechanisms that occur and contribute to the development of the considered adaptative Inflammaging process during aging.
Collapse
|
69
|
Kouroukli O, Symeonidis A, Foukas P, Maragkou MK, Kourea EP. Bone Marrow Immune Microenvironment in Myelodysplastic Syndromes. Cancers (Basel) 2022; 14:cancers14225656. [PMID: 36428749 PMCID: PMC9688609 DOI: 10.3390/cancers14225656] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The BM, the major hematopoietic organ in humans, consists of a pleiomorphic environment of cellular, extracellular, and bioactive compounds with continuous and complex interactions between them, leading to the formation of mature blood cells found in the peripheral circulation. Systemic and local inflammation in the BM elicit stress hematopoiesis and drive hematopoietic stem cells (HSCs) out of their quiescent state, as part of a protective pathophysiologic process. However, sustained chronic inflammation impairs HSC function, favors mutagenesis, and predisposes the development of hematologic malignancies, such as myelodysplastic syndromes (MDS). Apart from intrinsic cellular mechanisms, various extrinsic factors of the BM immune microenvironment (IME) emerge as potential determinants of disease initiation and evolution. In MDS, the IME is reprogrammed, initially to prevent the development, but ultimately to support and provide a survival advantage to the dysplastic clone. Specific cellular elements, such as myeloid-derived suppressor cells (MDSCs) are recruited to support and enhance clonal expansion. The immune-mediated inhibition of normal hematopoiesis contributes to peripheral cytopenias of MDS patients, while immunosuppression in late-stage MDS enables immune evasion and disease progression towards acute myeloid leukemia (AML). In this review, we aim to elucidate the role of the mediators of immune response in the initial pathogenesis of MDS and the evolution of the disease.
Collapse
Affiliation(s)
- Olga Kouroukli
- Department of Pathology, University Hospital of Patras, 26504 Patras, Greece
| | - Argiris Symeonidis
- Hematology Division, Department of Internal Medicine, School of Medicine, University of Patras, 26332 Patras, Greece
| | - Periklis Foukas
- 2nd Department of Pathology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Myrto-Kalliopi Maragkou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 54124 Thessaloniki, Greece
| | - Eleni P. Kourea
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence: ; Tel.: +30-2610-969191
| |
Collapse
|
70
|
Epigenetic Mechanisms Involved in Inflammaging-Associated Hypertension. Curr Hypertens Rep 2022; 24:547-562. [PMID: 35796869 DOI: 10.1007/s11906-022-01214-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW This review summarizes the involvement of inflammaging in vascular damage with focus on the epigenetic mechanisms by which inflammaging-induced hypertension is triggered. RECENT FINDINGS Inflammaging in hypertension is a complex condition associated with the production of inflammatory mediators by the immune cells, enhancement of oxidative stress, and tissue remodeling in vascular smooth muscle cells and endothelial cells. Cellular processes are numerous, including inflammasome assembly and cell senescence which may involve mitochondrial dysfunction, autophagy, DNA damage response, dysbiosis, and many others. More recently, a series of noncoding RNAs, mainly microRNAs, have been described as possessing epigenetic actions on the regulation of inflammasome-related hypertension, emerging as a promising therapeutic strategy. Although there are a variety of pharmacological agents that effectively regulate inflammaging-related hypertension, a deeper understanding of the epigenetic events behind the control of vessel deterioration is needed for the treatment or even to prevent the disease onset.
Collapse
|
71
|
Cooper EB, Watowich MM, Beeby N, Whalen C, Montague MJ, Brent LJN, Snyder-Mackler N, Higham JP. Concentrations of urinary neopterin, but not suPAR, positively correlate with age in rhesus macaques. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1007052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Identifying biomarkers of age-related changes in immune system functioning that can be measured non-invasively is a significant step in progressing research on immunosenescence and inflammaging in free-ranging and wild animal populations. In the present study, we aimed to investigate the suitability of two urinary compounds, neopterin and suPAR, as biomarkers of age-related changes in immune activation and inflammation in a free-ranging rhesus macaque (Macaca mulatta) population. We also investigated age-associated variation in gene transcription from blood samples to understand the underlying proximate mechanisms that drive age-related changes in urinary neopterin or suPAR. Neopterin was significantly positively correlated with age, and had a moderate within-individual repeatability, indicating it is applicable as a biomarker of age-related changes. The age-related changes in urinary neopterin are not apparently driven by an age-related increase in the primary signaler of neopterin, IFN-y, but may be driven instead by an age-related increase in both CD14+ and CD14− monocytes. suPAR was not correlated with age, and had low repeatability within-individuals, indicating that it is likely better suited to measure acute inflammation rather than chronic age-related increases in inflammation (i.e., “inflammaging”). Neopterin and suPAR had a correlation of 25%, indicating that they likely often signal different processes, which if disentangled could provide a nuanced picture of immune-system function and inflammation when measured in tandem.
Collapse
|
72
|
Pansarasa O, Mimmi MC, Davin A, Giannini M, Guaita A, Cereda C. Inflammation and cell-to-cell communication, two related aspects in frailty. Immun Ageing 2022; 19:49. [PMID: 36289502 PMCID: PMC9598012 DOI: 10.1186/s12979-022-00306-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 10/10/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Frailty is a complex, multi-dimensional age-related syndrome that increases the susceptibility to adverse health outcomes and poor quality of life. A growing consensus supports the contribution of chronic inflammation and immune system alterations to frailty, however a clear role of such alterations remains to be elucidated. Furthermore, pro- and anti-inflammatory cytokines together with other signaling molecules might spread from activated cells to the adjacent ones through extracellular vesicles (EVs), which have also a role in cellular aging. The aim of the present research was to investigate if EVs play a role in the immune function in frailty. RESULTS: In 219 older adults aged 76-78 years, selected from the InveCe.Ab study (Abbiategrasso, Italy), we investigated inflammation and EVs-mediated intercellular communication. C-reactive protein (CRP) and pro- (IL-1β, IL-2, IL-6, IL-8, IL-12 p70, TNFα and IFNγ) and anti- (IL-4, IL-10, IL-13) inflammatory cytokines were evaluated on plasma of Frail and non-Frail subjects. We reported a significant increase in CRP, interleukin-1β and -6 (IL-1β, IL-6) and tumor necrosis factor alpha (TNFα) plasma levels in frailty. In female Fr subjects, we also reported an increase in interferon-gamma (IFN-γ) and, surprisingly, in IL-13, an anti-inflammatory cytokine, whose increase seems to oppose the inflammaging theory. An inflammatory panel (toll-like receptors 2 and 4 (TLR2 and TLR4), tumor necrosis factor receptors TNFRec5/CD 40 and TNFRec1B/CD120B) and a panel including receptors involved in cellular senescence (insulin-like growth factor 1 receptor (CD221) and interleukin 6 receptor (IL-6R)) were indeed analysed in plasma isolated large EVs (lEVs) from Frail (n = 20) and non-Frail (n = 20) subjects. In lEVs isolated from plasma of Frail subjects we reported an increase in TLR2 and TLR4, TNFRec5/CD 40 and TNFRec1B/CD120B, suggesting a chronic state of inflammation. In addition, CD221 and IL-6R increases in lEVs of Frail individuals. CONCLUSIONS To conclude, the pro-inflammatory status, notably the increase in circulating cytokines is pivotal to understand the potential mechanisms underlying the frailty syndrome. Moreover, cytokines release from EVs, mainly the large ones, into the extracellular space suggest their contribution to the formation of a pro-inflammatory and pro-senescent microenvironment that, in turn, can contribute to frailty.
Collapse
Affiliation(s)
- Orietta Pansarasa
- grid.419416.f0000 0004 1760 3107IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Maria Chiara Mimmi
- grid.419416.f0000 0004 1760 3107IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Annalisa Davin
- grid.428690.10000 0004 7473 8040Golgi Cenci Foundation, 20081 Abbiategrasso, Milan Italy
| | - Marta Giannini
- grid.419416.f0000 0004 1760 3107IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Antonio Guaita
- grid.428690.10000 0004 7473 8040Golgi Cenci Foundation, 20081 Abbiategrasso, Milan Italy
| | - Cristina Cereda
- grid.419416.f0000 0004 1760 3107IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy ,grid.428690.10000 0004 7473 8040Golgi Cenci Foundation, 20081 Abbiategrasso, Milan Italy
| |
Collapse
|
73
|
Immunosenescence, Inflammaging, and Lung Senescence in Asthma in the Elderly. Biomolecules 2022; 12:biom12101456. [PMID: 36291665 PMCID: PMC9599177 DOI: 10.3390/biom12101456] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
Prevalence of asthma in older adults is growing along with increasing global life expectancy. Due to poor clinical consequences such as high mortality, advancement in understanding the pathophysiology of asthma in older patients has been sought to provide prompt treatment for them. Age-related alterations of functions in the immune system and lung parenchyma occur throughout life. Alterations with advancing age are promoted by various stimuli, including pathobionts, fungi, viruses, pollutants, and damage-associated molecular patterns derived from impaired cells, abandoned cell debris, and senescent cells. Age-related changes in the innate and adaptive immune response, termed immunosenescence, includes impairment of phagocytosis and antigen presentation, enhancement of proinflammatory mediator generation, and production of senescence-associated secretory phenotype. Immnunosenescence could promote inflammaging (chronic low-grade inflammation) and contribute to late-onset adult asthma and asthma in the elderly, along with age-related pulmonary disease, such as chronic obstructive pulmonary disease and pulmonary fibrosis, due to lung parenchyma senescence. Aged patients with asthma exhibit local and systemic type 2 and non-type 2 inflammation, associated with clinical manifestations. Here, we discuss immunosenescence’s contribution to the immune response and the combination of type 2 inflammation and inflammaging in asthma in the elderly and present an overview of age-related features in the immune system and lung structure.
Collapse
|
74
|
Lupatov AY, Yarygin KN. Telomeres and Telomerase in the Control of Stem Cells. Biomedicines 2022; 10:biomedicines10102335. [PMID: 36289597 PMCID: PMC9598777 DOI: 10.3390/biomedicines10102335] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Stem cells serve as a source of cellular material in embryogenesis and postnatal growth and regeneration. This requires significant proliferative potential ensured by sufficient telomere length. Telomere attrition in the stem cells and their niche cells can result in the exhaustion of the regenerative potential of high-turnover organs, causing or contributing to the onset of age-related diseases. In this review, stem cells are examined in the context of the current telomere-centric theory of cell aging, which assumes that telomere shortening depends not just on the number of cell doublings (mitotic clock) but also on the influence of various internal and external factors. The influence of the telomerase and telomere length on the functional activity of different stem cell types, as well as on their aging and prospects of use in cell therapy applications, is discussed.
Collapse
|
75
|
Chen YQ, Yue ZF, Chen SN, Tong F, Yang WH, Wei RL. Primary diffuse large B-cell lymphoma of orbit: A population-based analysis. Front Med (Lausanne) 2022; 9:990538. [PMID: 36186798 PMCID: PMC9520977 DOI: 10.3389/fmed.2022.990538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Objective Primary orbital lymphoma (POL) accounts for an essential part of adult orbital malignancies. Nevertheless, it remains a relatively rare lymphoid malignancy, accounting for <1% of all non-Hodgkin's lymphoma (NHL) cases. Orbital diffuse large B-cell lymphoma (DLBCL) is one of the most prevalent subtypes of POL that confers the worst outcomes. The prognostic determinants of orbital DLBCL remain unknown. Therefore, a retrospective analysis was conducted by investigating the Surveillance, Epidemiology, and End Results (SEER) database for independent predictive factors for the prognosis of orbital DLBCL. Materials and methods Using the SEER program, we acquired patient data including demographics, clinical characteristics, and treatment strategies. Our cohort included cases of primary orbital DLBCL diagnosed from 2000 to 2017. We conducted Kaplan-Meier analyses to visualize the overall survival (OS) and cause-specific survival (CSS). The Cox proportional hazard regression models were applied to assess the effects of these prognostic factors on OS and CSS. Results The present cohort included 332 patients with orbital DLBCL. Age was the most impacted variable by orbital DLBCL. Three independent prognostic variables of orbital DLBCL were identified on diagnosis: advanced age, no radiation treatment, and late-stage (Stage IV). Moreover, patients who underwent chemotherapy demonstrated a greater OS when compared with those who did not. In orbital DLBCL, being unmarried was also a poor prognostic factor. Conclusion The current study is the largest population-based case series of orbital DLBCL. The age at the time of diagnosis, marital status, absence of chemotherapy or radiotherapy, and tumor stage were all found to be correlated with worse prognosis.
Collapse
Affiliation(s)
- Yu-Qing Chen
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Shanghai, China
| | - Zi-Fan Yue
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Shanghai, China
| | - Sai-Nan Chen
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Shanghai, China
| | - Fei Tong
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Shanghai, China
| | - Wei-Hua Yang
- Shenzhen Eye Hospital, Jinan University, Shenzhen, China
- Eye Hospital, Nanjing Medical University, Nanjing, China
- Wei-Hua Yang
| | - Rui-Li Wei
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Shanghai, China
- *Correspondence: Rui-Li Wei
| |
Collapse
|
76
|
Meshchaninov VN, Tsyvian PB, Myakotnykh VS, Kovtun OP, Shcherbakov DL, Blagodareva MS. Ontogenetic Principles of Accelerated Aging and the Prospects for Its Prevention and Treatment. ADVANCES IN GERONTOLOGY 2022. [DOI: 10.1134/s2079057022030080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
77
|
Murdaca G, Paladin F, Casciaro M, Vicario CM, Gangemi S, Martino G. Neuro-Inflammaging and Psychopathological Distress. Biomedicines 2022; 10:2133. [PMID: 36140234 PMCID: PMC9495653 DOI: 10.3390/biomedicines10092133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammaging is a low degree of chronic and systemic tissue inflammation associated with aging, and is intimately linked to pro-inflammatory mediators. These substances are involved in the pathogenesis of chronic inflammatory diseases and related psychopathological symptoms. When inflammation and aging affect the brain, we use the term neuro-inflammaging. In this review, we focused on the neuro-inflammatory process typical of advanced ages and the related psychopathological symptoms, with particular attention to understanding the immune-pathogenetic mechanisms involved and the potential use of immunomodulatory drugs in the control of clinical psychological signs. Inflammation and CNS were demonstrated being intimately linked in the neuro-inflammatory loop. IL-1, IL-6, TNF-a, COX and PGE are only partially responsible. BBB permeability and the consequent oxidative stress resulting from tissue damage make the rest. Some authors elaborated the "theory of cytokine-induced depression". Inflammation has a crucial role in the onset symptoms of psychopathological diseases as it is capable of altering the metabolism of biogenic monoamines involved in their pathogenesis. In recent years, NSAIDs as an adjunct therapy in the treatment of relevant psychopathological disorders associated with chronic inflammatory conditions demonstrated their efficacy. Additionally, novel molecules have been studied, such as adalimumab, infliximab, and etanercept showing antidepressant and anxiolytic promising results. However, we are only at the beginning of a new era characterized by the use of biological drugs for the treatment of inflammatory and autoimmune diseases, and this paper aims to stimulate future studies in such a direction.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, 16132 Genoa, Italy
| | - Francesca Paladin
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, 16132 Genoa, Italy
| | - Marco Casciaro
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | | | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Gabriella Martino
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| |
Collapse
|
78
|
Liang Z, Zhang T, Liu H, Li Z, Peng L, Wang C, Wang T. Inflammaging: The ground for sarcopenia? Exp Gerontol 2022; 168:111931. [PMID: 35985553 DOI: 10.1016/j.exger.2022.111931] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 12/15/2022]
Abstract
Sarcopenia is a progressive skeletal muscle disease that occurs most commonly in the elderly population, contributing to increased costs and hospitalization. Exercise and nutritional therapy have been proven to be effective for sarcopenia, and some drugs can also alleviate declines in muscle mass and function due to sarcopenia. However, there is no specific pharmacological treatment for sarcopenia at present. This review will mainly discuss the relationship between inflammaging and sarcopenia. The increased secretion of proinflammatory cytokines with aging may be because of cellular senescence, immunosenescence, alterations in adipose tissue, damage-associated molecular patterns (DAMPs), and gut microbes due to aging. These sources of inflammaging can impact the sarcopenia process through direct or indirect pathways. Conversely, sarcopenia can also aggravate the process of inflammaging, creating a vicious cycle. Targeting sources of inflammaging can influence muscle function, which could be considered a therapeutic target for sarcopenia. Moreover, not only proinflammatory cytokines but also anti-inflammatory cytokines can influence muscle and inflammation and participate in the progression of sarcopenia. This review focuses on the effects of TNF-α, IL-6, and IL-10, which can be detected in plasma. Therefore, clearing chronic inflammation by targeting proinflammatory cytokines (TNF-α, IL-1, IL-6) and the inflammatory pathway (JAK/STAT, autophagy, NF-κB) may be effective in treating sarcopenia.
Collapse
Affiliation(s)
- Zejun Liang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tianxiao Zhang
- School of Healthcare Sciences, Cardiff University, Health Park, CF14 4XN Wales, UK
| | - Honghong Liu
- West China School of Nursing/West China Hospital, Sichuan University, NO.37 Alley, Chengdu 610041, Sichuan, PR China
| | - Zhenlin Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lihong Peng
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, PR China
| | - Changyi Wang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tiantian Wang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
79
|
Frankowska N, Lisowska K, Witkowski JM. Proteolysis dysfunction in the process of aging and age-related diseases. FRONTIERS IN AGING 2022; 3:927630. [PMID: 35958270 PMCID: PMC9361021 DOI: 10.3389/fragi.2022.927630] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/30/2022] [Indexed: 12/20/2022]
Abstract
In this review, we discuss in detail the most relevant proteolytic systems that together with chaperones contribute to creating the proteostasis network that is kept in dynamic balance to maintain overall functionality of cellular proteomes. Data accumulated over decades demonstrate that the effectiveness of elements of the proteostasis network declines with age. In this scenario, failure to degrade misfolded or faulty proteins increases the risk of protein aggregation, chronic inflammation, and the development of age-related diseases. This is especially important in the context of aging-related modification of functions of the immune system.
Collapse
Affiliation(s)
- Natalia Frankowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| | - Katarzyna Lisowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| | - Jacek M Witkowski
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
80
|
Calafat M, Mañosa M, Ricart E, Nos P, Iglesias-Flores E, Vera I, López-Sanromán A, Guardiola J, Taxonera C, Mínguez M, Martín-Arranz MD, de Castro L, de Francisco R, Rivero M, Garcia-Planella E, Calvet X, García-López S, Márquez L, Gomollón F, Barrio J, Esteve M, Muñoz F, Gisbert JP, Gutiérrez A, Hinojosa J, Argüelles-Arias F, Busquets D, Bujanda L, Pérez-Calle JL, Sicilia B, Merino O, Martínez P, Bermejo F, Lorente R, Barreiro-de Acosta M, Rodríguez C, Fe García-Sepulcre M, Monfort D, Cañete F, Domènech E. Risk of Immunomediated Adverse Events and Loss of Response to Infliximab in Elderly Patients with Inflammatory Bowel Disease: A Cohort Study of the ENEIDA Registry. J Crohns Colitis 2022; 16:946-953. [PMID: 34864947 DOI: 10.1093/ecco-jcc/jjab213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/19/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Immunomediated adverse events [IAEs] are the most frequently reported infliximab [IFX]-related adverse events. Combination therapy may reduce their incidence, although this strategy is not recommended in elderly patients. We aimed to compare the rates of IFX-related IAEs and loss of response [LOR] in elderly and younger patients. METHODS Adult patients in the ENEIDA registry who had received a first course of IFX therapy were identified and grouped into two cohorts regarding age at the beginning of treatment [over 60 years and between 18 and 50 years]. The rates of IAEs and LOR were compared. RESULTS In total, 939 patients [12%] who started IFX over 60 years of age and 6844 [88%] below 50 years of age were included. Elderly patients presented a higher proportion of AEs related to IFX [23.2% vs 19%; p = 0.002], infections [7.1% vs 4.3%; p < 0.001] and neoplasms [2.2% vs 0.5%; p < 0.001]. In contrast, the rates of IAEs [14.8% vs 14.8%; p = 0.999], infusion reactions [8.1% vs 8.1%; p = 0.989], late hypersensitivity [1.3% vs 1.2%; p = 0.895], paradoxical psoriasis [1% vs 1.5%; p = 0.187] and drug-induced lupus erythematosus [0.6% vs 0.7%; p = 0.947] were similar in elderly and younger patients. LOR rates were also similar between the two groups [20.5% vs 19.3%; p = 0.438]. In the logistic regression analysis, IFX monotherapy, extraintestinal manifestations and female gender were the only risk factors for IAEs, whereas IFX monotherapy, extraintestinal manifestations and Crohn's disease were risk factors for LOR. CONCLUSIONS Elderly patients with inflammatory bowel disease have a similar risk of developing IFX-related IAEs and LOR to that of younger patients.
Collapse
Affiliation(s)
- Margalida Calafat
- H.U. Germans Trias i Pujol, Badalona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Míriam Mañosa
- H.U. Germans Trias i Pujol, Badalona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Elena Ricart
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,H. Clínic Barcelona, Barcelona; IDIBAPS, Barcelona, Spain
| | - Pilar Nos
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,H. Universitari La Fe, València, Spain
| | | | - Isabel Vera
- H.U. Puerta de Hierro Majadahonda, Madrid, Spain
| | | | | | - Carlos Taxonera
- H.U. Clínico San Carlos, Madrid; Instituto de investigación del Hospital Clínico San Carlos, Madrid, Spain
| | - Miguel Mínguez
- H.U. Clínico de València, València; Universitat de València, València, Spain
| | | | | | - Ruth de Francisco
- H.U. Central de Asturias and Instituto de Investigación Biosanitaria del principado de Asturias (ISPA), Oviedo, Spain
| | | | | | - Xavier Calvet
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,H.U. Parc Taulí , Sabadell, Spain
| | | | - Lucía Márquez
- Servei de Digestiu, Hospital del Mar, Barcelona and IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Fernando Gomollón
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,H. Clínico Lozano Blesa, Zaragoza; Instituto de Investigaciones Sanitarias de Aragón
| | - Jesús Barrio
- Servicio de Gastroenterología. Hospital Universitario Río Hortega. Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Maria Esteve
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,H. Universitari Mútua Terrassa, Terrassa, Spain
| | | | - Javier P Gisbert
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,H. U. de la Princesa, Madrid; Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM)
| | - Ana Gutiérrez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,H.G.U.Alicante, Alicante; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL) , Spain
| | | | - Federico Argüelles-Arias
- Servicio de Digestivo, Hospital Universitario Virgen Macarena, Sevilla; Profesor Facultad Medicina de la Universidad de Sevilla, Sevilla, Spain
| | | | - Luís Bujanda
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Instituto Biodonostia, Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
| | | | | | | | | | - Fernando Bermejo
- Hospital Universitario de Fuenlabrada and Instituto de Investigación Sanitaria del Hospital La Paz (IdiPAZ), Madrid, Spain
| | | | | | | | | | | | - Fiorella Cañete
- H.U. Germans Trias i Pujol, Badalona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Eugeni Domènech
- H.U. Germans Trias i Pujol, Badalona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | | |
Collapse
|
81
|
Oxidative stress, aging, antioxidant supplementation and their impact on human health: An overview. Mech Ageing Dev 2022; 206:111707. [PMID: 35839856 DOI: 10.1016/j.mad.2022.111707] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 12/12/2022]
Abstract
Aging is characterized by a progressive loss of tissue and organ function due to genetic and environmental factors, nutrition, and lifestyle. Oxidative stress is one the most important mechanisms of cellular senescence and increased frailty, resulting in several age-linked, noncommunicable diseases. Contributing events include genomic instability, telomere shortening, epigenetic mechanisms, reduced proteome homeostasis, altered stem-cell function, defective intercellular communication, progressive deregulation of nutrient sensing, mitochondrial dysfunction, and metabolic unbalance. These complex events and their interplay can be modulated by dietary habits and the ageing process, acting as potential measures of primary and secondary prevention. Promising nutritional approaches include the Mediterranean diet, the intake of dietary antioxidants, and the restriction of caloric intake. A comprehensive understanding of the ageing processes should promote new biomarkers of risk or diagnosis, but also beneficial treatments oriented to increase lifespan.
Collapse
|
82
|
Inflammatory exposure drives long-lived impairment of hematopoietic stem cell self-renewal activity and accelerated aging. Cell Stem Cell 2022; 29:1273-1284.e8. [PMID: 35858618 PMCID: PMC9357150 DOI: 10.1016/j.stem.2022.06.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) mediate regeneration of the hematopoietic system following injury, such as following infection or inflammation. These challenges impair HSC function, but whether this functional impairment extends beyond the duration of inflammatory exposure is unknown. Unexpectedly, we observed an irreversible depletion of functional HSCs following challenge with inflammation or bacterial infection, with no evidence of any recovery up to 1 year afterward. HSCs from challenged mice demonstrated multiple cellular and molecular features of accelerated aging and developed clinically relevant blood and bone marrow phenotypes not normally observed in aged laboratory mice but commonly seen in elderly humans. In vivo HSC self-renewal divisions were absent or extremely rare during both challenge and recovery periods. The progressive, irreversible attrition of HSC function demonstrates that temporally discrete inflammatory events elicit a cumulative inhibitory effect on HSCs. This work positions early/mid-life inflammation as a mediator of lifelong defects in tissue maintenance and regeneration.
Collapse
|
83
|
Mochan E, Sego TJ, Ermentrout B. Age-Related Changes to the Immune System Exacerbate the Inflammatory Response to Pandemic H1N1 Infection. Bull Math Biol 2022; 84:88. [PMID: 35829841 PMCID: PMC9278316 DOI: 10.1007/s11538-022-01045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
Age-induced dysregulation of the immune response is a major contributor to the morbidity and mortality related to influenza a virus infections. Experimental data have shown substantial changes to the activation and maintenance of the immune response will occur with age, but it remains unclear which of these many interrelated changes are most critical to controlling the survival of the host during infection. To ascertain which mechanisms are predominantly responsible for the increased morbidity in elderly hosts, we developed an ordinary differential equation model to simulate the immune response to pandemic H1N1 infection. We fit this model to experimental data measured in young and old macaques. We determined that the severity of the infection in the elderly hosts is caused by a dysregulation in the innate immune response. We also simulated CD8+ T cell exhaustion, a common consequence of chronic and extensive infections. Our simulations indicate that while T cell exhaustion is possible in both age groups, its effects are more severe in the elderly population, as their dysregulated immune response cannot easily compensate for the exhausted T cells. Finally, we explore a therapeutic approach to reversing T cell exhaustion through an inflammatory stimulus. A controlled increase in inflammatory signals can lead to a higher chance of surviving the infection, but excess inflammation will likely lead to septic death. These results indicate that our model captures distinctions in the predominant mechanisms controlling the immune response in younger and older hosts and allows for simulations of clinically relevant therapeutic strategies post-infection.
Collapse
Affiliation(s)
- Ericka Mochan
- Department of Analytical, Physical, and Social Sciences, Carlow University, Pittsburgh, PA, 15213, USA.
| | - T J Sego
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47408, USA
| | - Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
84
|
Perpiñá M, Gómez-Bastero A, Trisán A, Martínez-Moragón E, Álvarez-Gutiérrez FJ, Urrutia I, Blanco-Aparicio M. Expert consensus recommendations for the management of asthma in older adults. Med Clin (Barc) 2022; 159:53.e1-53.e14. [PMID: 34226059 DOI: 10.1016/j.medcli.2021.04.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 10/20/2022]
Abstract
Asthma is a public health problem in patients of any age, although there is still a tendency to erroneously assume that it is almost always confined to children and young people. Epidemiological studies indicate that, from the sixth decade of life, the prevalence of this disease in countries such as Spain reaches 6-10%, with a higher prevalence among women aged 64 to 75 years. In addition, two-thirds of asthma deaths occur at this stage of life, resulting in a substantial number of hospital admissions, longer hospital stays and, from a finance point of view, significant direct economic costs. Asthma in older adults (65 years or older) is now a matter of great concern, the reality of which is underestimated and undertreated. It is therefore essential to establish appropriate recommendations for the diagnosis and treatment of asthma in the aging population. This consensus, which brings together the latest evidence available, was conceived with this objective. The proposed recommendations/conclusions are the result of a nominal consensus developed throughout 2019 and validated by panellists in successive rounds of voting.
Collapse
Affiliation(s)
- Miguel Perpiñá
- Servicio de Neumología, Hospital Universitario y Politécnico La Fe, Valencia, España
| | | | - Andrea Trisán
- Servicio de Neumología, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, España
| | | | | | - Isabel Urrutia
- Unidad de Asma y Enfermedades Ocupacionales-Medioambientales, Servicio de Neumología, Hospital Galdakao-Usansolo, Bizkaia, España
| | | |
Collapse
|
85
|
Liu F, Ye S, Jiang P, Zhang W, Wang Z, Li C. The proteome profiling of EVs originating from senescent cell model using quantitative proteomics and parallel reaction monitoring. J Proteomics 2022; 266:104669. [PMID: 35788408 DOI: 10.1016/j.jprot.2022.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/30/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022]
Abstract
Senescence is the inevitable biological processes and is also considered as the biggest risk factor for the development of age - related diseases (ARDs) and geriatric syndrome (GS). Senescence is also known as inflammaging because it is characterized by persistent, long-term, low-grade inflammation named senescence-associated secretory phenotype (SASP). However, the mechanism for the persistence of inflammaging remains largely unclear. To explore the role of extracellular vesicles (EVs) in senescence/inflammaging, we established the cellular senescence model and performed TMT-based comparative quantitative proteomics and parallel reaction monitoring (PRM) to reveal the changes of EVs between young cells and senescent cells. A total of 3966 proteins were quantifiable, of which 132 were up-regulated, 144 were down-regulated, compared with the young cells. Subsequently, we chose 19 proteins involved in inflammation or proliferation to carry out PRM validation analysis. The result indicated that proteins promoting NF-κB signal pathway were up-regulated, and proteins promoting cell proliferation were down-regulated. The study provided a comprehensive altered proteomics profiles of EVs from senescent cells, and the result showed that EVs could serve as information carrier for further research on the pathogenesis and progression of senescence/inflammaging. SIGNIFICANCE: The mechanism of inflammaging occurrence and development has yet been clear. Therefore, this study attempts to provide an improved understanding of inflammaging from the perspective of EVs. The proteomics analysis revealed that the most changed proteins were connected to inflammation signaling pathways, cell growth and cell death, and PRM analysis results showed that proteins involved in NF-κB signal pathway and cell proliferation were more changed. The research systematically analyzed the profiles of proteins in senescence cell model, and the result indicated that further research should focus on the relationship between EVs and senescence/inflammaging.
Collapse
Affiliation(s)
- Fengjuan Liu
- Institute of blood transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China.
| | - Shengliang Ye
- Institute of blood transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China.
| | - Peng Jiang
- Institute of blood transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China.
| | - Wei Zhang
- Institute of blood transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China
| | - Zongkui Wang
- Institute of blood transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China.
| | - Changqing Li
- Institute of blood transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China.
| |
Collapse
|
86
|
Koutsokera A, Sykes J, Theou O, Rockwood PK, Steinack C, Derkenne MF, Benden PC, Krueger PT, Chaparro C, Aubert PJD, Gasche PPS, von Garnier PC, Tullis PE, Stephenson AL, Singer PLG. FRAILTY PREDICTS OUTCOMES IN CYSTIC FIBROSIS PATIENTS LISTED FOR LUNG TRANSPLANTATION. J Heart Lung Transplant 2022; 41:1617-1627. [DOI: 10.1016/j.healun.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 06/12/2022] [Accepted: 07/19/2022] [Indexed: 10/31/2022] Open
|
87
|
Curcumin, Polydatin and Quercetin Synergistic Activity Protects from High-Glucose-Induced Inflammation and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11061037. [PMID: 35739934 PMCID: PMC9220232 DOI: 10.3390/antiox11061037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
Chronic hyperglycemia, the diagnostic biomarker of Type 2 Diabetes Mellitus (T2DM), is a condition that fosters oxidative stress and proinflammatory signals, both involved in the promotion of cellular senescence. Senescent cells acquire a proinflammatory secretory phenotype, called SASP, exacerbating and perpetuating the detrimental effects of hyperglycemia. Bioactive compounds can exert antioxidant and anti-inflammatory properties. However, the synergistic anti-inflammatory and antioxidant effects of the most extensively investigated natural compounds have not been confirmed yet in senescent cells and in hyperglycemic conditions. Here, we exposed young and replicative senescent HUVEC (yHUVEC and sHUVEC) to a high-glucose (HG) condition (45 mM) and treated them with Polydatin (POL), Curcumin (CUR) and Quercetin (QRC), alone or in combination (MIX), to mirror the anti-inflammatory component OxiDefTM contained in the novel nutraceutical GlicefenTM (Mivell, Italy). In both yHUVEC and sHUVEC, the MIX significantly decreased the expression levels of inflammatory markers, such as MCP-1, IL-1β and IL-8, and ROS production. Importantly, in sHUVEC, a synergistic effect of the MIX was observed, suggesting its senomorphic activity. Moreover, the MIX was able to reduce the expression level of RAGE, a receptor involved in the activation of proinflammatory signaling. Overall, our data suggest that the consumption of nutraceuticals containing different natural compounds could be an adjuvant supplement to counteract proinflammatory and pro-oxidative signals induced by both hyperglycemic and senescence conditions.
Collapse
|
88
|
Moyse E, Krantic S, Djellouli N, Roger S, Angoulvant D, Debacq C, Leroy V, Fougere B, Aidoud A. Neuroinflammation: A Possible Link Between Chronic Vascular Disorders and Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:827263. [PMID: 35663580 PMCID: PMC9161208 DOI: 10.3389/fnagi.2022.827263] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Various age-related diseases involve systemic inflammation, i.e. a stereotyped series of acute immune system responses, and aging itself is commonly associated with low-grade inflammation or inflamm’aging. Neuroinflammation is defined as inflammation-like processes inside the central nervous system, which this review discusses as a possible link between cardiovascular disease-related chronic inflammation and neurodegenerative diseases. To this aim, neuroinflammation mechanisms are first summarized, encompassing the cellular effectors and the molecular mediators. A comparative survey of the best-known physiological contexts of neuroinflammation (neurodegenerative diseases and transient ischemia) reveals some common features such as microglia activation. The recently published transcriptomic characterizations of microglia have pointed a marker core signature among neurodegenerative diseases, but also unraveled the discrepancies with neuroinflammations related with acute diseases of vascular origin. We next review the links between systemic inflammation and neuroinflammation, beginning with molecular features of respective pro-inflammatory cells, i.e. macrophages and microglia. Finally, we point out a gap of knowledge concerning the atherosclerosis-related neuroinflammation, which is for the most surprising given that atherosclerosis is established as a major risk factor for neurodegenerative diseases.
Collapse
Affiliation(s)
- Emmanuel Moyse
- University of Tours, EA4245, Transplantation, Immunologie, Inflammation, Tours, France
| | - Slavica Krantic
- Centre de Recherche Saint-Antoine (CRSA), Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Inserm U938, Sorbonne Université, Paris, France
| | - Nesrine Djellouli
- University of Tours, EA4245, Transplantation, Immunologie, Inflammation, Tours, France
| | - Sébastien Roger
- University of Tours, EA4245, Transplantation, Immunologie, Inflammation, Tours, France
| | - Denis Angoulvant
- University of Tours, EA4245, Transplantation, Immunologie, Inflammation, Tours, France
- Department of Cardiology, Tours University Hospital, Tours, France
| | - Camille Debacq
- Division of Geriatric Medicine, Tours University Hospital, Tours, France
| | - Victoire Leroy
- Division of Geriatric Medicine, Tours University Hospital, Tours, France
- University of Tours, EA7505, Education, Ethics, Health, Tours, France
| | - Bertrand Fougere
- Division of Geriatric Medicine, Tours University Hospital, Tours, France
- University of Tours, EA7505, Education, Ethics, Health, Tours, France
- *Correspondence: Bertrand Fougere,
| | - Amal Aidoud
- University of Tours, EA4245, Transplantation, Immunologie, Inflammation, Tours, France
- Division of Geriatric Medicine, Tours University Hospital, Tours, France
| |
Collapse
|
89
|
Wang T. Searching for the link between inflammaging and sarcopenia. Ageing Res Rev 2022; 77:101611. [PMID: 35307560 DOI: 10.1016/j.arr.2022.101611] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/14/2022] [Accepted: 03/15/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Tiantian Wang
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
90
|
Torres Rives B, Zúñiga Rosales Y, Mataran Valdés M, Roblejo Balbuena H, Martínez Téllez G, Rodríguez Pérez J, Caridad Marín Padrón L, Rodríguez Pelier C, Sotomayor Lugo F, Valdés Zayas A, Carmenate Portilla T, Sánchez Ramírez B, Carlos Silva Aycaguer L, Portal Miranda JA, Marcheco Teruel B. Assessment of changes in immune status linked to COVID-19 convalescent and its clinical severity in patients and uninfected exposed relatives. Immunobiology 2022; 227:152216. [PMID: 35436751 PMCID: PMC9004226 DOI: 10.1016/j.imbio.2022.152216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/23/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The immune response during and after SARS-CoV-2 infection can be complex and heterogeneous, and it can be affected by the severity of the disease. It can also contribute to an unfavorable evolution and bring about short and long term effects. The aim of this study was to characterize the lymphocyte composition according to the severity of COVID-19, as well as its degree of relationship to the specific humoral response to SARS-CoV-2 in convalescents up to 106 days after the infection and in their exposed relatives. METHODS An applied research was carried out with a cross-section analytical design, from March 11 to June 11, 2020 in Cuba. The sample consisted of 251 convalescents from COVID-19 over 18 years of age and 88 exposed controls who did not become ill. The B and T cell subpopulations, including memory T cells, as well as the relationship with the humoral immune response against SARS-CoV-2, were identified by flow cytometry and enzyme immunoassay. RESULTS Convalescent patients, who evolved with severe forms, showed a decrease in frequency and a greater proportion of individuals with values lower than the minimum normal range of B cells, CD3 + CD4 + cells and the CD4 + / CD8 + ratio, as well as a higher frequency and a greater proportion of individuals with values above the normal maximum range of CD3 + CD8 + and NK cells. Convalescent patients with severe forms of COVID-19 that exhibited IgG / RBD titers ≥ 1/200 had a lower frequency of TEMRA CD8 + cells (p = 0.0128) and TEMRA CD4 + (p = 0.0068). IgG / RBD titers were positively correlated with the relative frequency of CD4 + CM T memory cells (r = 0.4352, p = 0.0018). CONCLUSIONS The identified alterations of B and T lymphocytes suggest that convalescent patients with the severe disease could be vulnerable to infectious, autoimmune or autotinflammatory processes; therefore, these individuals need medical follow-up after recovering from the acute disease. Furthermore, the role of T cells CD4 + CM in the production of antibodies against SARS-CoV-2 is confirmed, and it is noted that the defect of memory T cells CD8 + TEMRA could contribute to the development of severe forms of COVID-19.
Collapse
|
91
|
Oxysterols are potential physiological regulators of ageing. Ageing Res Rev 2022; 77:101615. [PMID: 35351610 DOI: 10.1016/j.arr.2022.101615] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022]
Abstract
Delaying and even reversing ageing is a major public health challenge with a tremendous potential to postpone a plethora of diseases including cancer, metabolic syndromes and neurodegenerative disorders. A better understanding of ageing as well as the development of innovative anti-ageing strategies are therefore an increasingly important field of research. Several biological processes including inflammation, proteostasis, epigenetic, oxidative stress, stem cell exhaustion, senescence and stress adaptive response have been reported for their key role in ageing. In this review, we describe the relationships that have been established between cholesterol homeostasis, in particular at the level of oxysterols, and ageing. Initially considered as harmful pro-inflammatory and cytotoxic metabolites, oxysterols are currently emerging as an expanding family of fine regulators of various biological processes involved in ageing. Indeed, depending of their chemical structure and their concentration, oxysterols exhibit deleterious or beneficial effects on inflammation, oxidative stress and cell survival. In addition, stem cell differentiation, epigenetics, cellular senescence and proteostasis are also modulated by oxysterols. Altogether, these data support the fact that ageing is influenced by an oxysterol profile. Further studies are thus required to explore more deeply the impact of the "oxysterome" on ageing and therefore this cholesterol metabolic pathway constitutes a promising target for future anti-ageing interventions.
Collapse
|
92
|
Fulop T, Larbi A, Pawelec G, Cohen AA, Provost G, Khalil A, Lacombe G, Rodrigues S, Desroches M, Hirokawa K, Franceschi C, Witkowski JM. Immunosenescence and Altered Vaccine Efficiency in Older Subjects: A Myth Difficult to Change. Vaccines (Basel) 2022; 10:vaccines10040607. [PMID: 35455356 PMCID: PMC9030923 DOI: 10.3390/vaccines10040607] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022] Open
Abstract
Organismal ageing is associated with many physiological changes, including differences in the immune system of most animals. These differences are often considered to be a key cause of age-associated diseases as well as decreased vaccine responses in humans. The most often cited vaccine failure is seasonal influenza, but, while it is usually the case that the efficiency of this vaccine is lower in older than younger adults, this is not always true, and the reasons for the differential responses are manifold. Undoubtedly, changes in the innate and adaptive immune response with ageing are associated with failure to respond to the influenza vaccine, but the cause is unclear. Moreover, recent advances in vaccine formulations and adjuvants, as well as in our understanding of immune changes with ageing, have contributed to the development of vaccines, such as those against herpes zoster and SARS-CoV-2, that can protect against serious disease in older adults just as well as in younger people. In the present article, we discuss the reasons why it is a myth that vaccines inevitably protect less well in older individuals, and that vaccines represent one of the most powerful means to protect the health and ensure the quality of life of older adults.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.K.); (G.L.)
- Correspondence: (T.F.); (S.R.)
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore;
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, 72072 Tübingen, Germany;
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| | - Alan A. Cohen
- Groupe de Recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC J1H 5N4, Canada;
| | | | - Abedelouahed Khalil
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.K.); (G.L.)
| | - Guy Lacombe
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.K.); (G.L.)
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, 48009 Bilbao, Spain;
- BCAM—The Basque Center for Applied Mathematics, 48009 Bilbao, Spain
- Correspondence: (T.F.); (S.R.)
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, CEDEX, 06902 Sophia Antipolis, France;
- The Jean Alexandre Dieudonné Laboratory, Université Côte d’Azur, CEDEX 2, 06108 Nice, France
| | - Katsuiku Hirokawa
- Institute of Health and Life Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
| | - Claudio Franceschi
- IRCCS Institute of Neurological Sciences of Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
- Department of Applied Mathematics and Laboratory of Systems Biology of Healthy Aging, Lobachevsky State University, 603000 Nizhny Novgorod, Russia
| | - Jacek M. Witkowski
- Department of Pathophysiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| |
Collapse
|
93
|
Bell MR, Kutzler MA. An old problem with new solutions: Strategies to improve vaccine efficacy in the elderly. Adv Drug Deliv Rev 2022; 183:114175. [PMID: 35202770 DOI: 10.1016/j.addr.2022.114175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/01/2022]
Abstract
Vaccination is the most effective measure to protect against infections. However, with increasing age, there is a progressive decline in the ability of the immune system to both protect against infection and develop protective immunity from vaccination. This age-related decline of the immune system is due to age-related changes in both the innate and adaptive immune systems. With an aging world population and increased risk of pandemics, there is a need to continue to develop strategies to increase vaccine responses in the elderly. Here, the major age-related changes that occur in both the innate and adaptive immune responses that impair the response to vaccination in the elderly will be highlighted. Existing and future strategies to improve vaccine efficacy in the elderly will then be discussed, including adjuvants, delivery methods, and formulation. These strategies provide mechanisms to improve the efficacy of existing vaccines and develop novel vaccines for the elderly.
Collapse
|
94
|
Witkowski JM, Fulop T, Bryl E. Immunosenescence and COVID-19. Mech Ageing Dev 2022; 204:111672. [PMID: 35378106 PMCID: PMC8975602 DOI: 10.1016/j.mad.2022.111672] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
|
95
|
Effects of Resistance Training on C-Reactive Protein and Inflammatory Cytokines in Elderly Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063434. [PMID: 35329121 PMCID: PMC8950894 DOI: 10.3390/ijerph19063434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023]
Abstract
Chronic low-grade inflammation that accompanies aging is associated with adverse health outcomes and may exacerbate the severity of infectious disease such as COVID-19. Resistance training (RT) has the potential to improve chronic low-grade inflammation, but the evidence remains inconclusive. This study evaluated the effects of RT on chronic low-grade inflammation in elderly adults. MEDLINE, EMBASE, Cochrane Library, CINAHL, RISS, NDSL, and KoreaMed were searched. We included studies that assessed the effect of RT on C-reactive protein (CRP), interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-α in those aged ≥60 years. The effect size was estimated using fixed or random-effects models. Subgroup analysis was performed regarding age, health status, training method, number of exercises, intensity, weekly frequency, and duration. In the 18 randomized controlled trials (539 patients) included, RT was effective in alleviating CRP (effect size = −0.72, 95% confidence interval = −1.06 to −0.38, p < 0.001), IL-10 (−3.34, −6.16 to −0.53, p = 0.02), and TNF-α (−0.56, −1.08 to −0.03, p = 0.04) in elderly adults and tended to reduce IL-6 (−0.59, −1.18 to 0.00, p = 0.05). Subgroup analyses showed CRP reduction regardless of age, training method, number of exercises, intensity, weekly frequency, and duration. RT can be used to ameliorate chronic low-grade inflammation in elderly adults.
Collapse
|
96
|
Matacchione G, Perugini J, Di Mercurio E, Sabbatinelli J, Prattichizzo F, Senzacqua M, Storci G, Dani C, Lezoche G, Guerrieri M, Giordano A, Bonafè M, Olivieri F. Senescent macrophages in the human adipose tissue as a source of inflammaging. GeroScience 2022; 44:1941-1960. [PMID: 35247131 PMCID: PMC9616990 DOI: 10.1007/s11357-022-00536-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
Obesity is a major risk factor for type 2 diabetes and a trigger of chronic and systemic inflammation. Recent evidence suggests that an increased burden of senescent cells (SCs) in the adipose tissue of obese/diabetic animal models might underlie such pro-inflammatory phenotype. However, the role of macrophages as candidate SCs, their phenotype, the distribution of SCs among fat depots, and clinical relevance are debated. The senescence marker β-galactosidase and the macrophage marker CD68 were scored in visceral (vWAT) and subcutaneous (scWAT) adipose tissue from obese patients (n=17) undergoing bariatric surgery and control patients (n=4) subjected to cholecystectomy. A correlation was made between the number of SCs and BMI, serum insulin, and the insulin resistance (IR) index HOMA. The monocyte cell line (THP-1) was cultured in vitro in high glucose milieu (60 mM D-glucose) and subsequently co-cultured with human adipocytes (hMADS) to investigate the reciprocal inflammatory activation. In obese patients, a significantly higher number of SCs was observed in vWAT compared to scWAT; about 70% of these cells expressed the macrophage marker CD68; and the number of SCs in vWAT, but not in scWAT, positively correlated with BMI, HOMA-IR, and insulin. THP-1 cultured in vitro in high glucose milieu acquired a senescent-like phenotype (HgSMs), characterized by a polarization toward a mixed M1/M2-like secretory phenotype. Co-culturing HgSMs with hMADS elicited pro-inflammatory cytokine expression in both cell types, and defective insulin signaling in hMADS. In morbid obesity, expansion of visceral adipose depots involves an increased burden of macrophages with senescent-like phenotype that may promote a pro-inflammatory profile and impair insulin signaling in adipocytes, supporting a framework where senescent macrophages fuel obesity-induced systemic inflammation and possibly contribute to the development of IR.
Collapse
Affiliation(s)
- Giulia Matacchione
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.
| | - Jessica Perugini
- Department of Experimental and Clinical Medicine, Center of Obesity, Università Politecnica delle Marche, Ancona, Italy
| | - Eleonora Di Mercurio
- Department of Experimental and Clinical Medicine, Center of Obesity, Università Politecnica delle Marche, Ancona, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy
| | | | - Martina Senzacqua
- Department of Experimental and Clinical Medicine, Center of Obesity, Università Politecnica delle Marche, Ancona, Italy
| | - Gianluca Storci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Christian Dani
- Inserm, iBV, Faculté de Médecine, Université Côte d'Azur, CNRS, Nice Cedex, France
| | - Giovanni Lezoche
- Department of General Surgery, Università Politecnica delle Marche, Ancona, Italy
| | - Mario Guerrieri
- Department of General Surgery, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Center of Obesity, Università Politecnica delle Marche, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, Università di Bologna, Bologna, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
97
|
Affiliation(s)
- Jeffrey M Levine
- Jeffrey M. Levine, MD, AGSF, CMD, CWS-P, is a wound consultant for the New Jewish Home in Manhattan and Advantage Surgical and Wound Care based in El Segundo, California; and Associate Clinical Professor of Geriatrics and Palliative Care, Mount Sinai Beth Israel Medical Center, New York, New York. Barbara Delmore, PhD, RN, CWCN, MAPWCA, IIWCC-NYU, FAAN, is Senior Nurse Scientist, Center for Innovations in the Advancement of Care (CIAC) and Clinical Assistant Professor, Hansjörg Wyss, Department of Plastic Surgery, NYU Langone Health, New York, New York. Jill Cox, PhD, RN, APN-c, CWOCN, FAAN, is Clinical Associate Professor, School of Nursing, Rutgers University, Newark, New Jersey, and Wound/Ostomy/Continence Advanced Practice Nurse, Englewood Hospital and Medical Center, Englewood, New Jersey. Submitted July 9, 2021; accepted in revised form October 8, 2021; published online ahead of print November 1, 2021
| | | | | |
Collapse
|
98
|
Predictors of short- and long-term mortality among acutely admitted older patients: role of inflammation and frailty. Aging Clin Exp Res 2022; 34:409-418. [PMID: 34255297 PMCID: PMC8847174 DOI: 10.1007/s40520-021-01926-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Frailty, demographic and clinical variables linked to incident diseases (e.g., dehydration, inflammation) contribute to poor outcomes in older patients acutely hospitalized. Their predictivity on short-, intermediate- and long-term mortality in a comprehensive model has been scarcely investigated. AIMS To test the performance of a predictive tool considering frailty and inflammation as well as age, sex and impaired hydration status on 1-year mortality in acutely admitted older patients. METHODS Retrospective observational study including 529 medical patients (age 84.6 ± 7.3 years). At hospital admission, frailty was assessed by the Multidimensional Prognostic Index (MPI). The Glasgow Prognostic Score (GPS) was used to grade systemic inflammation. Serum osmolarity was calculated to assess hydration. RESULTS After adjusting for age, sex, GPS and osmolarity, the severe-risk MPI was a strong predictor for 1-year mortality (OR 4.133; 95% CI 2.273-7.516; p < 0.001). Age > 85 years, male sex, GPS-2 and serum osmolarity > 300 mOsm/L were independent predictors of mortality in the same multivariable model. The MPI alone showed a moderate discrimination power (AUC 0.678; 95% CI 0.628-0.729; p < 0.001) on 1-year mortality, which increased by 12.5% after the addition of the above predictors in the fully adjusted regression model (AUC 0.763; 95% CI 0.719-0.807; p < 0.001). The severe-risk MPI adjusted for the same factors was also an independent predictor of mortality after 60 and 180 days since hospital admission. DISCUSSION Inflammation and impaired hydration are potentially modifiable risk factors for severe outcomes in older acutely hospitalized patients. A model combining GPS, age, gender, and plasma osmolarity improved the accuracy of MPI at admission in predicting long-term mortality.
Collapse
|
99
|
Samson LD, Engelfriet P, Verschuren WMM, Picavet HSJ, Ferreira JA, de Zeeuw-Brouwer ML, Buisman AM, Boots AMH. Impaired JAK-STAT pathway signaling in leukocytes of the frail elderly. Immun Ageing 2022; 19:5. [PMID: 35039055 PMCID: PMC8762193 DOI: 10.1186/s12979-021-00261-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022]
Abstract
Background Elderly often show reduced immune functioning and can develop chronic low-grade inflammation. Why some elderly are more prone to become frail is unknown. We investigated whether frailty is associated with altered cytokine signaling through the JAK-STAT pathway in leukocytes of 34 individuals aged 65–74 years. In addition, we investigated how this relation is affected by chronic low-grade inflammation during the previous 20 years. Cytokine signaling was quantified by measuring intracellular STAT1, STAT3, and STAT5 phosphorylation in monocytes, B cells, CD4+ T cells and CD8+ T cells upon stimulation with IL-2, IL-6, IL-10, IFNα and IFNγ, using phospho-flow cytometry. Presence of chronic low-grade inflammation was investigated by evaluating 18 different plasma inflammatory markers that had been measured repeatedly in the same individuals over the previous 20 years. Frailty was assessed as a score on a frailty index. Results We found that lower cytokine-induced pSTAT responsiveness in the various cell subsets was seen with higher frailty scores in both men and women, indicative of dysfunctional pSTAT responses in frailer individuals. Associations differed between men and women, with frailer women showing lower pSTAT1 responses in monocytes and frailer men showing lower pSTAT5 responses in CD4+ and CD8+ T cells. Notably, lower IL-10-induced pSTAT3 responses in men were related to both higher frailty scores and higher CRP levels over the past 20 years. This might indicate poor resolution of low-grade inflammation due to defective regulatory pSTAT signaling in older men. Conclusions Our results emphasize the importance of preserved JAK-STAT pathway signaling in healthy aging and reveal cellular pSTAT levels as a candidate biomarker of frailty. Supplementary Information The online version contains supplementary material available at 10.1186/s12979-021-00261-w.
Collapse
Affiliation(s)
- Leonard Daniël Samson
- National Institute of Public Health and the Environment, Bilthoven, The Netherlands. .,Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Peter Engelfriet
- National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - W M Monique Verschuren
- National Institute of Public Health and the Environment, Bilthoven, The Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - H Susan J Picavet
- National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - José A Ferreira
- National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Anne-Marie Buisman
- National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - A Mieke H Boots
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
100
|
Zhao W, Morinaga J, Ukawa S, Endo M, Yamada H, Kawamura T, Wakai K, Tsushita K, Ando M, Suzuki K, Oike Y, Tamakoshi A. Plasma angiopoietin-like protein 2 levels and mortality risk among younger-old Japanese people: a population-based case-cohort study. J Gerontol A Biol Sci Med Sci 2022; 77:1150-1158. [PMID: 35037044 DOI: 10.1093/gerona/glac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Indexed: 11/14/2022] Open
Abstract
Aging is important medical and social problem. Excessive angiopoietin-like protein (ANGPTL)-2 signaling causes chronic tissue inflammation, promoting development and progression of aging-related diseases. Moreover, circulating ANGPTL2 levels reportedly predict risk of some aging-related diseases and subsequent death. However, there are as yet no reports of whether circulating ANGPTL2 levels predict vital prognosis in younger-old, community-dwelling populations. This study investigated associations between plasma ANGPTL2 levels and all-cause and specific-cause mortality in this population. The case-cohort study was abstracted from an on-going, age-specific prospective cohort study: the New Integrated Suburban Seniority Investigation Project. This project enrolled 3073 participants aged 64 years at the beginning of the investigation from 1996 through 2005. A sub-cohort of 714 randomly sampled participants plus 387 cases representing deceased participants followed through 2015 underwent survival analysis. Plasma ANGPTL2 concentrations were positively associated with >80% and 100% higher risk of all-cause mortality and cancer mortality, respectively, after adjustment for gender, smoking, alcohol consumption, walking time, sleep duration, caloric intake, medical status, disease history, BMI, and triglyceride, creatinine, uric acid, and high sensitivity C-reactive protein levels. More robust association between ANGPTL2 levels and all-cause and cancer mortality was seen in subjects with either frailties or with lifestyles of heavier drinking or current smoking. Elevated plasma ANGPTL2 levels are associated with high all-cause and cancer mortality in a community-dwelling sample of younger-old adults. These findings expand our knowledge of human aging and associated diseases.
Collapse
Affiliation(s)
- Wenjing Zhao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China.,Department of Public Health, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shigekazu Ukawa
- Research Unit of Advanced Interdisciplinary Care Science, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | - Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Aichi, Japan
| | | | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazuyo Tsushita
- Comprehensive Health Science Center, Aichi Health Promotion Public Interest Foundation, Chita, Aichi, Japan
| | - Masahiko Ando
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Aichi, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiko Tamakoshi
- Department of Public Health, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|