51
|
Zaheer U, Munir F, Salum YM, He W. Function and regulation of plant ARGONAUTE proteins in response to environmental challenges: a review. PeerJ 2024; 12:e17115. [PMID: 38560454 PMCID: PMC10979746 DOI: 10.7717/peerj.17115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Environmental stresses diversely affect multiple processes related to the growth, development, and yield of many crops worldwide. In response, plants have developed numerous sophisticated defense mechanisms at the cellular and subcellular levels to react and adapt to biotic and abiotic stressors. RNA silencing, which is an innate immune mechanism, mediates sequence-specific gene expression regulation in higher eukaryotes. ARGONAUTE (AGO) proteins are essential components of the RNA-induced silencing complex (RISC). They bind to small noncoding RNAs (sRNAs) and target complementary RNAs, causing translational repression or triggering endonucleolytic cleavage pathways. In this review, we aim to illustrate the recently published molecular functions, regulatory mechanisms, and biological roles of AGO family proteins in model plants and cash crops, especially in the defense against diverse biotic and abiotic stresses, which could be helpful in crop improvement and stress tolerance in various plants.
Collapse
Affiliation(s)
- Uroosa Zaheer
- Plant Protection, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Faisal Munir
- Plant Protection, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yussuf Mohamed Salum
- Plant Protection, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Weiyi He
- Plant Protection, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
52
|
Hirakawa T, Tanno S, Ohara K. Exogenous treatment with N-acetylglutamic acid confers tolerance to heat stress in plants. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:71-76. [PMID: 39464869 PMCID: PMC11500599 DOI: 10.5511/plantbiotechnology.23.1211a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/11/2023] [Indexed: 10/29/2024]
Abstract
Heat stress, which occurs when temperatures exceed the optimal range for growth, challenges the maintenance of crop yield because it disrupts plant homeostasis at the cellular and developmental levels. Chemical priming, which can activate the response to environmental stress using chemical compounds, is a promising method of maintaining plant growth under stressful conditions. Recently, we found that the non-proteogenic amino acid N-acetylglutamic acid (NAG) confers tolerance to oxidative stress through the activation of genes related to scavenging reactive oxygen species in plants. However, it has been unknown whether NAG alleviates environmental stress except oxidative stress. Here, we revealed that the response to heat stress was enhanced by exogenous treatment with NAG in plants. NAG alleviated the reduction in chlorophyll content induced by heat stress in Arabidopsis thaliana. Gene expression analysis showed that NAG activates the transcription factor HSFA2, which is regarded as a master regulator of the transcriptional cascade in response to heat stress. NAG induces histone H4 acetylation, an active histone modification, at the HSFA2 locus, suggesting that NAG could activate the expression of HSFA2 based on epigenetic modifications such as histone acetylation. Additionally, we found that Oryza sativa treated with NAG showed tolerance to heat stress. These results suggest that NAG could be used for chemical priming in the maintenance of plant growth under heat-stress conditions.
Collapse
Affiliation(s)
- Takeshi Hirakawa
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa 251-8555, Japan
| | - Seia Tanno
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazuaki Ohara
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
53
|
Asiminicesei DM, Fertu DI, Gavrilescu M. Impact of Heavy Metal Pollution in the Environment on the Metabolic Profile of Medicinal Plants and Their Therapeutic Potential. PLANTS (BASEL, SWITZERLAND) 2024; 13:913. [PMID: 38592933 PMCID: PMC10976221 DOI: 10.3390/plants13060913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
The paper provides a comprehensive examination of heavy metal stress on medicinal plants, focusing on its impact on antioxidant capacity and biosynthetic pathways critical to their therapeutic potential. It explores the complex relationship between heavy metals and the physiological and biochemical responses of medicinal plants, highlighting how metal stress disrupts biosynthetic pathways, altering concentrations of secondary metabolites. This disruption may compromise the overall quality and efficacy of medicinal plants, requiring a holistic understanding of its cumulative impacts. Furthermore, the study discusses the potential of targeted genetic editing to enhance plant resilience against heavy metal stress by manipulating genes associated with antioxidant defenses. This approach represents a promising frontier in safeguarding medicinal plants in metal-contaminated environments. Additionally, the research investigates the role of phytohormone signaling in plant adaptive mechanisms to heavy metal stress, revealing its influence on biochemical and physiological responses, thereby adding complexity to plant adaptation. The study underscores the importance of innovative technologies and global cooperation in protecting medicinal plants' therapeutic potential and highlights the need for mitigation strategies to address heavy metal contamination effectively.
Collapse
Affiliation(s)
- Dana-Mihaela Asiminicesei
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania;
| | - Daniela Ionela Fertu
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 35 Al. I. Cuza Street, 800002 Galati, Romania
| | - Maria Gavrilescu
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania;
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
54
|
Guaschino M, Garello M, Nari L, Zhimo YV, Droby S, Spadaro D. Soil, rhizosphere, and root microbiome in kiwifruit vine decline, an emerging multifactorial disease. Front Microbiol 2024; 15:1330865. [PMID: 38577679 PMCID: PMC10991698 DOI: 10.3389/fmicb.2024.1330865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/14/2024] [Indexed: 04/06/2024] Open
Abstract
Kiwifruit vine decline syndrome (KVDS) is characterized by severe root system impairment, which leads to irreversible wilting of the canopy. Plants usually collapse rapidly from the appearance of the first aboveground symptoms, without recovery even in the following seasons. The syndrome has been negatively impacting kiwifruit yield in different areas of Italy, the main producing European country, since its first outbreak in 2012. To date, a unique, common causal factor has yet to be found, and the syndrome is referred to as multifactorial. In this article, we investigated the whole biotic community (fungi, bacteria, and oomycetes) associated with the development of KVDS in three different belowground matrices/compartments (soil, rhizosphere, and root). Sampling was performed at both healthy and affected sites located in the main kiwifruit-producing area of Northwestern Italy. To address the multifactorial nature of the syndrome and to investigate the potential roles of abiotic factors in shaping these communities, a physicochemical analysis of soils was also performed. This study investigates the associations among taxonomic groups composing the microbiome and also between biotic and abiotic factors. Dysbiosis was considered as a driving event in shaping KVDS microbial communities. The results obtained from this study highlight the role of the oomycete genus Phytopythium, which resulted predominantly in the oomycete community composition of diseased matrices, though it was also present in healthy ones. Both bacterial and fungal communities resulted in a high richness of genera and were highly correlated to the sampling site and matrix, underlining the importance of multiple location sampling both geographically and spatially. The rhizosphere community associated with KVDS was driven by a dysbiotic process. In addition, analysis of the association network in the diseased rhizosphere revealed the presence of potential cross-kingdom competition for plant-derived carbon between saprobes, oomycetes, and bacteria.
Collapse
Affiliation(s)
- Micol Guaschino
- Department of Agricultural, Forestry and Food Sciences (DiSAFA), University of Torino, Grugliasco, Italy
- Interdepartmental Centre for Innovation in Agro-environmental Sector – AGROINNOVA, University of Turin, Grugliasco, Italy
| | - Marco Garello
- Department of Agricultural, Forestry and Food Sciences (DiSAFA), University of Torino, Grugliasco, Italy
- Interdepartmental Centre for Innovation in Agro-environmental Sector – AGROINNOVA, University of Turin, Grugliasco, Italy
| | | | - Yeka V. Zhimo
- Department of Postharvest Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Samir Droby
- Department of Postharvest Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Davide Spadaro
- Department of Agricultural, Forestry and Food Sciences (DiSAFA), University of Torino, Grugliasco, Italy
- Interdepartmental Centre for Innovation in Agro-environmental Sector – AGROINNOVA, University of Turin, Grugliasco, Italy
| |
Collapse
|
55
|
Vodovotz Y, Arciero J, Verschure PF, Katz DL. A multiscale inflammatory map: linking individual stress to societal dysfunction. FRONTIERS IN SCIENCE 2024; 1:1239462. [PMID: 39398282 PMCID: PMC11469639 DOI: 10.3389/fsci.2023.1239462] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
As populations worldwide show increasing levels of stress, understanding emerging links among stress, inflammation, cognition, and behavior is vital to human and planetary health. We hypothesize that inflammation is a multiscale driver connecting stressors that affect individuals to large-scale societal dysfunction and, ultimately, to planetary-scale environmental impacts. We propose a 'central inflammation map' hypothesis to explain how the brain regulates inflammation and how inflammation impairs cognition, emotion, and action. According to our hypothesis, these interdependent inflammatory and neural processes, and the inter-individual transmission of environmental, infectious, and behavioral stressors - amplified via high-throughput digital global communications - can culminate in a multiscale, runaway, feed-forward process that could detrimentally affect human decision-making and behavior at scale, ultimately impairing the ability to address these same stressors. This perspective could provide non-intuitive explanations for behaviors and relationships among cells, organisms, and communities of organisms, potentially including population-level responses to stressors as diverse as global climate change, conflicts, and the COVID-19 pandemic. To illustrate our hypothesis and elucidate its mechanistic underpinnings, we present a mathematical model applicable to the individual and societal levels to test the links among stress, inflammation, control, and healing, including the implications of transmission, intervention (e.g., via lifestyle modification or medication), and resilience. Future research is needed to validate the model's assumptions, expand the factors/variables employed, and validate it against empirical benchmarks. Our model illustrates the need for multilayered, multiscale stress mitigation interventions, including lifestyle measures, precision therapeutics, and human ecosystem design. Our analysis shows the need for a coordinated, interdisciplinary, international research effort to understand the multiscale nature of stress. Doing so would inform the creation of interventions that improve individuals' lives and communities' resilience to stress and mitigate its adverse effects on the world.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Immunology, Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Julia Arciero
- Department of Mathematical Sciences, Indiana University - Purdue University Indianapolis, Indianapolis, IN, United States
| | - Paul Fmj Verschure
- Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems (SPECS), Donders Centre of Neuroscience, Donders Centre for Brain, Cognition and Behaviour, Faculty of Science and Engineering, Radboud University, Netherlands
| | - David L Katz
- Founder, True Health Initiative, The Health Sciences Academy, London, United Kingdom
- Tangelo Services, Auckland, United States
| |
Collapse
|
56
|
Huang YH, Yang YJ, Li JY, Lü H, Zhao HM, Xiang L, Li H, Mo CH, Li YW, Cai QY, Li QX. Root-associated bacteria strengthen their community stability against disturbance of antibiotics on structure and functions. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133317. [PMID: 38218031 DOI: 10.1016/j.jhazmat.2023.133317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/17/2023] [Indexed: 01/15/2024]
Abstract
Antibiotics affect bacterial community structure and functions in soil. However, the response and adaptation of root-associated bacterial communities to antibiotic stress remains poorly understood. Here, rhizobox experiments were conducted with maize (Zea mays L.) upon exposure to antibiotics ciprofloxacin or tetracycline. High-throughput sequencing analysis of bacterial community and quantitative PCR analysis of nitrogen cycling genes show that ciprofloxacin and tetracycline significantly shift bacterial community structure in bulk soil, whereas plant host may mitigate the disturbances of antibiotics on bacterial communities in root-associated niches (i.e., rhizosphere and rhizoplane) through the community stabilization. Deterministic assembly, microbial interaction, and keystone species (e.g., Rhizobium and Massilia) of root-associated bacterial communities benefit the community stability compared with those in bulk soil. Meanwhile, the rhizosphere increases antibiotic dissipation, potentially reducing the impacts of antibiotics on root-associated bacterial communities. Furthermore, rhizospheric effects deriving from root exudates alleviate the impacts of antibiotics on the nitrogen cycle (i.e., nitrification, organic nitrogen conversion and denitrification) as confirmed by functional gene quantification, which is largely attributed to the bacterial community stability in rhizosphere. The present study enhances the understanding on the response and adaptation of root-associated bacterial community to antibiotic pollution.
Collapse
Affiliation(s)
- Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Jie Yang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jie-Yu Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Qing X Li
- Department of Molecular Bioscience and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| |
Collapse
|
57
|
Raza A, Chen H, Zhang C, Zhuang Y, Sharif Y, Cai T, Yang Q, Soni P, Pandey MK, Varshney RK, Zhuang W. Designing future peanut: the power of genomics-assisted breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:66. [PMID: 38438591 DOI: 10.1007/s00122-024-04575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 02/03/2024] [Indexed: 03/06/2024]
Abstract
KEY MESSAGE Integrating GAB methods with high-throughput phenotyping, genome editing, and speed breeding hold great potential in designing future smart peanut cultivars to meet market and food supply demands. Cultivated peanut (Arachis hypogaea L.), a legume crop greatly valued for its nourishing food, cooking oil, and fodder, is extensively grown worldwide. Despite decades of classical breeding efforts, the actual on-farm yield of peanut remains below its potential productivity due to the complicated interplay of genotype, environment, and management factors, as well as their intricate interactions. Integrating modern genomics tools into crop breeding is necessary to fast-track breeding efficiency and rapid progress. When combined with speed breeding methods, this integration can substantially accelerate the breeding process, leading to faster access of improved varieties to farmers. Availability of high-quality reference genomes for wild diploid progenitors and cultivated peanuts has accelerated the process of gene/quantitative locus discovery, developing markers and genotyping assays as well as a few molecular breeding products with improved resistance and oil quality. The use of new breeding tools, e.g., genomic selection, haplotype-based breeding, speed breeding, high-throughput phenotyping, and genome editing, is probable to boost genetic gains in peanut. Moreover, renewed attention to efficient selection and exploitation of targeted genetic resources is also needed to design high-quality and high-yielding peanut cultivars with main adaptation attributes. In this context, the combination of genomics-assisted breeding (GAB), genome editing, and speed breeding hold great potential in designing future improved peanut cultivars to meet market and food supply demands.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Yuhui Zhuang
- College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Yasir Sharif
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Tiecheng Cai
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Qiang Yang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Pooja Soni
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324, India
| | - Manish K Pandey
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324, India
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China.
| |
Collapse
|
58
|
Zandalinas SI, Casal J, Rouached H, Mittler R. Stress combination: from genes to ecosystems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1639-1641. [PMID: 38488207 DOI: 10.1111/tpj.16681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/19/2024]
Affiliation(s)
- Sara I Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Castelló, Spain
| | - Jorge Casal
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1417DSE, Buenos Aires, Argentina
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Hatem Rouached
- The Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Ron Mittler
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| |
Collapse
|
59
|
Zhao G, Liu Y, Li L, Che R, Douglass M, Benza K, Angove M, Luo K, Hu Q, Chen X, Henry C, Li Z, Ning G, Luo H. Gene pyramiding for boosted plant growth and broad abiotic stress tolerance. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:678-697. [PMID: 37902192 PMCID: PMC10893947 DOI: 10.1111/pbi.14216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 09/24/2023] [Accepted: 10/16/2023] [Indexed: 10/31/2023]
Abstract
Abiotic stresses such as salinity, heat and drought seriously impair plant growth and development, causing a significant loss in crop yield and ornamental value. Biotechnology approaches manipulating specific genes prove to be effective strategies in crop trait modification. The Arabidopsis vacuolar pyrophosphatase gene AVP1, the rice SUMO E3 ligase gene OsSIZ1 and the cyanobacterium flavodoxin gene Fld have previously been implicated in regulating plant stress responses and conferring enhanced tolerance to different abiotic stresses when individually overexpressed in various plant species. We have explored the feasibility of combining multiple favourable traits brought by individual genes to acquire superior plant performance. To this end, we have simultaneously introduced AVP1, OsSIZ1 and Fld in creeping bentgrass. Transgenic (TG) plants overexpressing these three genes performed significantly better than wild type controls and the TGs expressing individual genes under both normal and various abiotic stress conditions, exhibited significantly enhanced plant growth and tolerance to drought, salinity and heat stresses as well as nitrogen and phosphate starvation, which were associated with altered physiological and biochemical characteristics and delicately fine-tuned expression of genes involved in plant stress responses. Our results suggest that AVP1, OsSIZ1 and Fld function synergistically to regulate plant development and plant stress response, leading to superior overall performance under both normal and adverse environments. The information obtained provides new insights into gene stacking as an effective approach for plant genetic engineering. A similar strategy can be extended for the use of other beneficial genes in various crop species for trait modifications, enhancing agricultural production.
Collapse
Affiliation(s)
- Guiqin Zhao
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
- College of Grassland ScienceGansu Agricultural UniversityLanzhouGansuChina
| | - Yu Liu
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
- College of Landscape ArchitectureNortheast Forestry UniversityHarbinHeilongjiangChina
| | - Lei Li
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
- College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Rui Che
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Megan Douglass
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Katherine Benza
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Mitchell Angove
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Kristopher Luo
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Qian Hu
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Xiaotong Chen
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Charles Henry
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Zhigang Li
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Guogui Ning
- Key laboratory of Horticultural Plant Biology, Ministry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Hong Luo
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| |
Collapse
|
60
|
Sato H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. Complex plant responses to drought and heat stress under climate change. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1873-1892. [PMID: 38168757 DOI: 10.1111/tpj.16612] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Global climate change is predicted to result in increased yield losses of agricultural crops caused by environmental conditions. In particular, heat and drought stress are major factors that negatively affect plant development and reproduction, and previous studies have revealed how these stresses induce plant responses at physiological and molecular levels. Here, we provide a comprehensive overview of current knowledge concerning how drought, heat, and combinations of these stress conditions affect the status of plants, including crops, by affecting factors such as stomatal conductance, photosynthetic activity, cellular oxidative conditions, metabolomic profiles, and molecular signaling mechanisms. We further discuss stress-responsive regulatory factors such as transcription factors and signaling factors, which play critical roles in adaptation to both drought and heat stress conditions and potentially function as 'hubs' in drought and/or heat stress responses. Additionally, we present recent findings based on forward genetic approaches that reveal natural variations in agricultural crops that play critical roles in agricultural traits under drought and/or heat conditions. Finally, we provide an overview of the application of decades of study results to actual agricultural fields as a strategy to increase drought and/or heat stress tolerance. This review summarizes our current understanding of plant responses to drought, heat, and combinations of these stress conditions.
Collapse
Affiliation(s)
- Hikaru Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Junya Mizoi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuraoka, Setagara-ku, Tokyo, 156-8502, Japan
| |
Collapse
|
61
|
Li Y, Jiang F, Niu L, Wang G, Yin J, Song X, Ottosen CO, Rosenqvist E, Mittler R, Wu Z, Zhou R. Synergistic regulation at physiological, transcriptional and metabolic levels in tomato plants subjected to a combination of salt and heat stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1656-1675. [PMID: 38055844 DOI: 10.1111/tpj.16580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
With global warming and climate change, abiotic stresses often simultaneously occur. Combined salt and heat stress was a common phenomenon that was severe, particularly in arid/semi-arid lands. We aimed to reveal the systematic responsive mechanisms of tomato genotypes with different salt/heat susceptibilities to combined salt and heat stress. Morphological and physiological responses of salt-tolerant/sensitive and heat-tolerant/sensitive tomatoes at control, heat, salt and combined stress were investigated. Based on leaf Fv /Fm and H2 O2 content, samples from tolerant genotype at the four treatments for 36 h were taken for transcriptomics and metabolomics. We found that plant height, dry weight and net photosynthetic rate decreased while leaf Na+ concentration increased in all four genotypes under salt and combined stress than control. Changes in physiological indicators such as photosynthetic parameters and defence enzyme activities in tomato under combined stress were regulated by the expression of relevant genes and the accumulation of key metabolites. We screened five key pathways in tomato responding to a combination of salt and heat stress, such as oxidative phosphorylation (map00190). Synergistic regulation at morphological, physiological, transcriptional and metabolic levels in tomato plants was induced by combined stress. Heat stress was considered as a dominant stressor for tomato plants under the current combined stress. The oxidative phosphorylation pathway played a key role in tomato in response to combined stress, where tapped key genes (e.g. alternative oxidase, Aox1a) need further functional analysis. Our study will provide a valuable resource important for studying stress combination and improving tomato tolerance.
Collapse
Affiliation(s)
- Yankai Li
- Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Fangling Jiang
- Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lifei Niu
- Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ge Wang
- Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jian Yin
- Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Carl-Otto Ottosen
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus, N 8200, Denmark
| | - Eva Rosenqvist
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, 2630, Denmark
| | - Ron Mittler
- Division of Plant Science and Technology, College of Agriculture, Food and Natural Resources, University of Missouri, Bond Life Sciences Center, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Zhen Wu
- Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Rong Zhou
- Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus, N 8200, Denmark
| |
Collapse
|
62
|
Rillig MC, Lehmann A, Orr JA, Rongstock R. Factors of global change affecting plants act at different levels of the ecological hierarchy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1781-1785. [PMID: 37873939 DOI: 10.1111/tpj.16509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Plants and ecosystems worldwide are exposed to a wide range of chemical, physical, and biological factors of global change, many of which act concurrently. As bringing order to the array of factors is required in order to generate an enhanced understanding of simultaneous impacts, classification schemes have been developed. One such classification scheme is dedicated to capturing the different targets of global change factors along the ecological hierarchy. We build on this pioneering work, and refine the conceptual framework in several ways, focusing on plants and terrestrial systems: (i) we more strictly define the target level of the hierarchy, such that every factor typically has just one target level, and not many; (ii) we include effects above the level of the community, that is, there are effects also at the ecosystem scale that cannot be reduced to any level below this; (iii) we introduce the level of the landscape to capture certain land use change effects while abandoning the level below the individual. We discuss how effects can propagate along the levels of the ecological hierarchy, upwards and downwards, presenting opportunities for explaining non-additivity of effects of multiple factors. We hope that this updated conceptual framework will help inform the next generation of plant-focused global change experiments, specifically aimed at non-additivity of effects at the confluence of many factors.
Collapse
Affiliation(s)
- Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - Anika Lehmann
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - James A Orr
- Department of Biology, University of Oxford, Oxford, UK
| | - Rebecca Rongstock
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| |
Collapse
|
63
|
Cagnola JI, D'Andrea KE, Rotili DH, Mercau JL, Ploschuk EL, Maddonni GA, Otegui ME, Casal JJ. Eco-physiology of maize crops under combined stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1856-1872. [PMID: 38113327 DOI: 10.1111/tpj.16595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
The yield of maize (Zea mays L.) crops depends on their ability to intercept sunlight throughout the growing cycle, transform this energy into biomass and allocate it to the kernels. Abiotic stresses affect these eco-physiological determinants, reducing crop grain yield below the potential of each environment. Here we analyse the impact of combined abiotic stresses, such as water restriction and nitrogen deficiency or water restriction and elevated temperatures. Crop yield depends on the product of kernel yield per plant and the number of plants per unit soil area, but increasing plant population density imposes a crowding stress that reduces yield per plant, even within the range that maximises crop yield per unit soil area. Therefore, we also analyse the impact of abiotic stresses under different plant densities. We show that the magnitude of the detrimental effects of two combined stresses on field-grown plants can be lower, similar or higher than the sum of the individual stresses. These patterns depend on the timing and intensity of each one of the combined stresses and on the effects of one of the stresses on the status of the resource whose limitation causes the other. The analysis of the eco-physiological determinants of crop yield is useful to guide and prioritise the rapidly progressing studies aimed at understanding the molecular mechanisms underlying plant responses to combined stresses.
Collapse
Affiliation(s)
- Juan I Cagnola
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cultivos Industriales, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Karina E D'Andrea
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cerealicultura, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Diego H Rotili
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cerealicultura, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jorge L Mercau
- INTA, Agencia de Extensión San Luis, San Luis, Argentina
| | - Edmundo L Ploschuk
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cultivos Industriales, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gustavo A Maddonni
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cerealicultura, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - María E Otegui
- CONICET at INTA, Centro Regional Buenos Aires Norte, Estación Experimental INTA Pergamino, Pergamino, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Producción Vegetal, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jorge J Casal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Fisiología Vegetal, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
64
|
Balfagón D, Pascual LS, Sengupta S, Halliday KJ, Gómez-Cadenas A, Peláez-Vico MÁ, Sinha R, Mittler R, Zandalinas SI. WRKY48 negatively regulates plant acclimation to a combination of high light and heat stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1642-1655. [PMID: 38315509 DOI: 10.1111/tpj.16658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
Plants growing under natural conditions experience high light (HL) intensities that are often accompanied by elevated temperatures. These conditions could affect photosynthesis, reduce yield, and negatively impact agricultural productivity. The combination of different abiotic challenges creates a new type of stress for plants by generating complex environmental conditions that often exceed the impact of their individual parts. Transcription factors (TFs) play a key role in integrating the different molecular signals generated by multiple stress conditions, orchestrating the acclimation response of plants to stress. In this study, we show that the TF WRKY48 negatively controls the acclimation of Arabidopsis thaliana plants to a combination of HL and heat stress (HL + HS), and its expression is attenuated by jasmonic acid under HL + HS conditions. Using comparative physiological and transcriptomic analyses between wild-type and wrky48 mutants, we further demonstrate that under control conditions, WRKY48 represses the expression of a set of transcripts that are specifically required for the acclimation of plants to HL + HS, hence its suppression during the HL + HS stress combination contributes to plant survival under these conditions. Accordingly, mutants that lack WRKY48 are more resistant to HL + HS, and transgenic plants that overexpress WRKY48 are more sensitive to it. Taken together, our findings reveal that WRKY48 is a negative regulator of the transcriptomic response of Arabidopsis to HL + HS and provide new insights into the complex regulatory networks of plant acclimation to stress combination.
Collapse
Affiliation(s)
- Damián Balfagón
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, 3H9 3BF, UK
| | - Lidia S Pascual
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain
| | - Soham Sengupta
- St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Karen J Halliday
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, 3H9 3BF, UK
| | - Aurelio Gómez-Cadenas
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain
| | - María Ángeles Peláez-Vico
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Ranjita Sinha
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Ron Mittler
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Sara I Zandalinas
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain
| |
Collapse
|
65
|
Hou D, Cui X, Liu M, Qie H, Tang Y, Xu R, Zhao P, Leng W, Luo N, Luo H, Lin A, Wei W, Yang W, Zheng T. The effects of iron-based nanomaterials (Fe NMs) on plants under stressful environments: Machine learning-assisted meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120406. [PMID: 38373376 DOI: 10.1016/j.jenvman.2024.120406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/28/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Mitigating the adverse effects of stressful environments on crops and promoting plant recovery in contaminated sites are critical to agricultural development and environmental remediation. Iron-based nanomaterials (Fe NMs) can be used as environmentally friendly nano-fertilizer and as a means of ecological remediation. A meta-analysis was conducted on 58 independent studies from around the world to evaluate the effects of Fe NMs on plant development and antioxidant defense systems in stressful environments. The application of Fe NMs significantly enhanced plant biomass (mean = 25%, CI = 20%-30%), while promoting antioxidant enzyme activity (mean = 14%, CI = 10%-18%) and increasing antioxidant metabolite content (mean = 10%, CI = 6%-14%), reducing plant oxidative stress (mean = -15%, CI = -20%∼-10%), and alleviating the toxic effects of stressful environments. The observed response was dependent on a number of factors, which were ranked in terms of a Random Forest Importance Analysis. Plant species was the most significant factor, followed by Fe NM particle size, duration of application, dose level, and Fe NM type. The meta-analysis has demonstrated the potential of Fe NMs in achieving sustainable agriculture and the future development of phytoremediation.
Collapse
Affiliation(s)
- Daibing Hou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xuedan Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Hantong Qie
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Yiming Tang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Ruiqing Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Pengjie Zhao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Wenpeng Leng
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China
| | - Nan Luo
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China
| | - Huilong Luo
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Wenxia Wei
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China.
| | - Wenjie Yang
- Chinese Academy of Environmental Planning, Beijing, 100012, PR China.
| | - Tianwen Zheng
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China.
| |
Collapse
|
66
|
Zandalinas SI, Peláez-Vico MÁ, Sinha R, Pascual LS, Mittler R. The impact of multifactorial stress combination on plants, crops, and ecosystems: how should we prepare for what comes next? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1800-1814. [PMID: 37996968 DOI: 10.1111/tpj.16557] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
The complexity of environmental conditions encountered by plants in the field, or in nature, is gradually increasing due to anthropogenic activities that promote global warming, climate change, and increased levels of pollutants. While in the past it seemed sufficient to study how plants acclimate to one or even two different stresses affecting them simultaneously, the complex conditions developing on our planet necessitate a new approach of studying stress in plants: Acclimation to multiple stress conditions occurring concurrently or consecutively (termed, multifactorial stress combination [MFSC]). In an initial study of the plant response to MFSC, conducted with Arabidopsis thaliana seedlings subjected to an MFSC of six different abiotic stresses, it was found that with the increase in the number and complexity of different stresses simultaneously impacting a plant, plant growth and survival declined, even if the effects of each stress involved in such MFSC on the plant was minimal or insignificant. In three recent studies, conducted with different crop plants, MFSC was found to have similar effects on a commercial rice cultivar, a maize hybrid, tomato, and soybean, causing significant reductions in growth, biomass, physiological parameters, and/or yield traits. As the environmental conditions on our planet are gradually worsening, as well as becoming more complex, addressing MFSC and its effects on agriculture and ecosystems worldwide becomes a high priority. In this review, we address the effects of MFSC on plants, crops, agriculture, and different ecosystems worldwide, and highlight potential avenues to enhance the resilience of crops to MFSC.
Collapse
Affiliation(s)
- Sara I Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - María Ángeles Peláez-Vico
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Ranjita Sinha
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Lidia S Pascual
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - Ron Mittler
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, Missouri, 65201, USA
| |
Collapse
|
67
|
Peláez-Vico MÁ, Sinha R, Induri SP, Lyu Z, Venigalla SD, Vasireddy D, Singh P, Immadi MS, Pascual LS, Shostak B, Mendoza-Cózatl D, Joshi T, Fritschi FB, Zandalinas SI, Mittler R. The impact of multifactorial stress combination on reproductive tissues and grain yield of a crop plant. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1728-1745. [PMID: 38050346 DOI: 10.1111/tpj.16570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Global warming, climate change, and industrial pollution are altering our environment subjecting plants, microbiomes, and ecosystems to an increasing number and complexity of abiotic stress conditions, concurrently or sequentially. These conditions, termed, "multifactorial stress combination" (MFSC), can cause a significant decline in plant growth and survival. However, the impacts of MFSC on reproductive tissues and yield of major crop plants are largely unknown. We subjected soybean (Glycine max) plants to a MFSC of up to five different stresses (water deficit, salinity, low phosphate, acidity, and cadmium), in an increasing level of complexity, and conducted integrative transcriptomic-phenotypic analysis of their reproductive and vegetative tissues. We reveal that MFSC has a negative cumulative effect on soybean yield, that each set of MFSC condition elicits a unique transcriptomic response (that is different between flowers and leaves), and that selected genes expressed in leaves or flowers of soybean are linked to the effects of MFSC on different vegetative, physiological, and/or reproductive parameters. Our study identified networks and pathways associated with reactive oxygen species, ascorbic acid and aldarate, and iron/copper signaling/metabolism as promising targets for future biotechnological efforts to augment the resilience of reproductive tissues of major crop plants to MFSC. In addition, we provide unique phenotypic and transcriptomic datasets for dissecting the mechanistic effects of MFSC on the vegetative, physiological, and reproductive processes of a crop plant.
Collapse
Affiliation(s)
- María Ángeles Peláez-Vico
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Ranjita Sinha
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Sai Preethi Induri
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65211, USA
| | - Zhen Lyu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65211, USA
| | - Sai Darahas Venigalla
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65211, USA
| | - Dinesh Vasireddy
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65211, USA
| | - Pallav Singh
- MU Institute for Data Science and Informatics and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Manish Sridhar Immadi
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65211, USA
| | - Lidia S Pascual
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat s/n, Castelló de la Plana, 12071, Spain
| | - Benjamin Shostak
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - David Mendoza-Cózatl
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Trupti Joshi
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65211, USA
- MU Institute for Data Science and Informatics and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
- Department of Health Management and Informatics, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Felix B Fritschi
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Sara I Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat s/n, Castelló de la Plana, 12071, Spain
| | - Ron Mittler
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
- Department of Surgery, School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65201, USA
| |
Collapse
|
68
|
Minoretti P, Gómez Serrano M, Liaño Riera M, Santiago Sáez A, García Martín Á. Occupational Health Challenges for Aviation Workers Amid the Changing Climate: A Narrative Review. Cureus 2024; 16:e55935. [PMID: 38601381 PMCID: PMC11004853 DOI: 10.7759/cureus.55935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/10/2024] [Indexed: 04/12/2024] Open
Abstract
Although there are many forecasts regarding the impact of climate change on the aviation sector, a critical but frequently neglected dimension is the occupational safety risks faced by aviation professionals. This narrative review explores the potential impacts of the changing climate on the health and safety of aviation personnel. Furthermore, we examine the significance of resilience in helping these workers adapt and effectively manage climate-related challenges in their professional lives. Climate change poses increasing threats to the well-being of flight personnel through elevated temperatures, heightened ultraviolet radiation exposure, increased mental workload from extreme weather events, and other psychological stressors. Building resilience through workforce training, planning, and adaptation can reduce vulnerability. In future research, the iterative process of selecting measurement components to gauge the impact of climate change should balance feasibility, relevance for stakeholders, and accurately capturing exposure effects. For instance, while salivary cortisol measures stress biologically, assessments of depression or burnout may provide more nuanced insights on pilot health for industry decision-makers managing climate impacts. In conclusion, a strategic emphasis on enhancing the physical and psychological well-being of the aviation workforce is imperative for facilitating a more efficient adaptation within the sector. This is of paramount importance, considering the critical function that aviation serves in fostering human connectivity. Consequently, it is essential for regulatory bodies and policymakers to prioritize the safeguarding of employee health in the face of climate change challenges.
Collapse
Affiliation(s)
| | - Manuel Gómez Serrano
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Miryam Liaño Riera
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Andrés Santiago Sáez
- Legal Medicine, Hospital Clinico San Carlos, Madrid, ESP
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Ángel García Martín
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| |
Collapse
|
69
|
Yao X, Li R, Liu Y, Song P, Wu Z, Yan M, Luo J, Fan F, Wang Y. Feedback regulation of the isoprenoid pathway by SsdTPS overexpression has the potential to enhance plant tolerance to drought stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14277. [PMID: 38566271 DOI: 10.1111/ppl.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
In order to maintain the dynamic physiological balance, plants are compelled to adjust their energy metabolism and signal transduction to cope with the abiotic stresses caused by complex and changeable environments. The diterpenoid natural compound and secondary metabolites, sclareol, derived from Salvia sclarea, has gained significant attention owing to its economic value as a spice material and diverse physiological activities. Here, we focused on the roles and regulatory mechanisms of the sclareol diterpene synthase gene SsdTPS in the resistance of S. sclarea to abiotic stresses. Our results suggested that abiotic stresses could induce the response and upregulation of SsdTPS expression and isoprenoid pathway in S. sclarea. Ectopic expression of SsdTPS conferred drought tolerance in transgenic Arabidopsis, compared with wild-type. Overexpression of SsdTPS enhanced the transcription of ABA signal transduction synthetic regulators and induced the positive feedback upregulating key regulatory genes in the MEP pathway, thereby promoting the increase of ABA content and improving drought tolerance in transgenic plants. In addition, SsdTPS-overexpressed transgenic Arabidopsis improved the responses of stomatal regulatory genes and ROS scavenging enzyme activities and gene expression to drought stress. This promoted the stomatal closure and ROS reduction, thus enhancing water retention capacity and reducing oxidative stress damage. These findings unveil the potentially positive role of SsdTPS in orchestrating multiple regulatory mechanisms and maintaining homeostasis for improved abiotic stress resistance in S. sclarea, providing a novel insight into strategies for promoting drought resistance and cultivating highly tolerant plants.
Collapse
Affiliation(s)
- Xiangyu Yao
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
| | - Rui Li
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
| | - Yanan Liu
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
| | - Peng Song
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
| | - Ziyi Wu
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
| | - Meilin Yan
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
| | - Jinmei Luo
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
| | - Fenggui Fan
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
- Shaanxi Institute for Food and Drug Control, Shaanxi Key Laboratory of Food and Drug Safety Monitoring, China
| | - Yingjuan Wang
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
| |
Collapse
|
70
|
Sun Y, Guo J, Alejandro Jose Mur L, Xu X, Chen H, Yang Y, Yuan H. Nitrogen starvation modulates the sensitivity of rhizobacterial community to drought stress in Stevia rebaudiana. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120486. [PMID: 38417363 DOI: 10.1016/j.jenvman.2024.120486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Alterations in water regimes or nitrogen (N) availability lead to shifts in the assemblage of rhizosphere microbial community; however, how the rhizosphere microbiome response to concurrent changes in water and N availability remains largely unclear. Herein, we investigated the taxonomic and functional characteristics of rhizobacteria associated with stevia (Stevia rebaudiana Bertoni) under varying combinations of water and N levels. Community diversity and predicted functions of rhizobacteria were predominantly altered by drought stress, with N-starvation modulating these effects. Moreover, N fertilization simplified the ecological interactions within rhizobacterial communities and heightened the relative role of stochastic processes on community assembly. In terms of rhizobacterial composition, we observed both common and distinctive changes in drought-responsive bacterial taxa under different N conditions. Generally, the relative abundance of Proteobacteria and Bacteroidetes phyla were depleted by drought stress but the Actinobacteria phylum showed increases. The rhizobacterial responses to drought stress were influenced by N availability, where the positive response of δ-proteobacteria and the negative response of α- and γ-proteobacteria, along with Bacteroidetes, were further heightened under N starvation. By contrast, under N fertilization conditions, an amplified negative or positive response to drought were demonstrated in Firmicutes and Actinobacteria phyla, respectively. Further, the drought-responsive rhizobacteria were mostly phylogenetically similar, but this pattern was modulated under N-rich conditions. Overall, our findings indicate an N-dependent specific restructuring of rhizosphere bacteria under drought stress. These changes in the rhizosphere microbiome could contribute to enhancing plant stress tolerance.
Collapse
Affiliation(s)
- Yuming Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Junjie Guo
- State Key Lab of Biocontrol, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Luis Alejandro Jose Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Xiaoyang Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Hao Chen
- State Key Lab of Biocontrol, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yongheng Yang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Haiyan Yuan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
| |
Collapse
|
71
|
Dietz KJ, Vogelsang L. A general concept of quantitative abiotic stress sensing. TRENDS IN PLANT SCIENCE 2024; 29:319-328. [PMID: 37591742 DOI: 10.1016/j.tplants.2023.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Plants often encounter stress in their environment. For appropriate responses to particular stressors, cells rely on sensory mechanisms that detect emerging stress. Considering sensor and signal amplification characteristics, a single sensor system hardly covers the entire stress range encountered by plants (e.g., salinity, drought, temperature stress). A dual system comprising stress-specific sensors and a general quantitative stress sensory system is proposed to enable the plant to optimize its response. The quantitative stress sensory system exploits the redox and reactive oxygen species (ROS) network by altering the oxidation and reduction rates of individual redox-active molecules under stress impact. The proposed mechanism of quantitative stress sensing also fits the requirement of dealing with multifactorial stress conditions.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Bielefeld University, Biochemistry and Physiology of Plants, W5-134, 33615 Bielefeld, Germany.
| | - Lara Vogelsang
- Bielefeld University, Biochemistry and Physiology of Plants, W5-134, 33615 Bielefeld, Germany
| |
Collapse
|
72
|
Mujtaba MA, Munir A, Imran S, Nasir MK, Muhayyuddin MG, Javed A, Mehmood A, Habila MA, Fayaz H, Qazi A. Evaluating sustainable municipal solid waste management scenarios: A multicriteria decision making approach. Heliyon 2024; 10:e25788. [PMID: 38404874 PMCID: PMC10884800 DOI: 10.1016/j.heliyon.2024.e25788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/27/2024] Open
Abstract
Due to increasing urbanization and population growth, municipal solid waste management (MSWM) is a significant environmental concern in developing countries. Inadequate waste management systems lead to environmental pollution, health hazards, and economic losses. While considering the challenges and limitations, policymakers and authorities need to opt for such waste management scenarios that are environmentally friendly and resolve energy issues. Ten MSWM scenarios were developed and evaluated using seven different criteria. Four multi-criteria decision-making (MCDM) techniques, namely fuzzy logic, AHP, TOPSIS, and PROMETHEE II, were employed to rank the scenarios and identify the most appropriate option for solid waste management in Lahore. This study highlights that the optimal waste management approach comprises a composition of 54% anaerobic digestion, 37% gasification, and 9% landfill technologies. These percentages collectively represent the most suitable and effective strategies for the city's waste management needs. All the MCDM techniques consistently produce similar results. These scenarios have broader applicability across cities in Central Asia and beyond. The study's findings are aligned to promote sustainable and environmentally friendly MSWM practices. These findings endorse implementing strategies and measures aimed at fostering environmental sustainability and the responsible handling of waste, serving as a valuable reference for various regions.
Collapse
Affiliation(s)
- M A Mujtaba
- Department of Mechanical Engineering, University of Engineering and Technology, Lahore (New Campus), Lahore, 54890, Pakistan
| | - Adeel Munir
- Department of Mechanical Engineering, University of Engineering and Technology, Lahore (New Campus), Lahore, 54890, Pakistan
| | - Shahid Imran
- Department of Mechanical Engineering, University of Engineering and Technology, Lahore (New Campus), Lahore, 54890, Pakistan
- Parks College of Engineering, Aviation and Technology, 3450 Lindell Blvd, St. Louis, MO, 63103, United States
| | | | - M Ghulam Muhayyuddin
- Department of Mechanical Engineering, University of Engineering and Technology, Lahore (New Campus), Lahore, 54890, Pakistan
| | - Abdullah Javed
- Department of Mechanical Engineering, University of Engineering and Technology, Lahore (New Campus), Lahore, 54890, Pakistan
| | - Amjad Mehmood
- Department of Mechanical Engineering, University of Engineering and Technology, Lahore (New Campus), Lahore, 54890, Pakistan
| | - Mohamed A Habila
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - H Fayaz
- Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Atika Qazi
- Centre for Lifelong Learning, Universiti Brunei Darussalam, Brunei Darussalam
| |
Collapse
|
73
|
Sinha R, Peláez-Vico MÁ, Shostak B, Nguyen TT, Pascual LS, Ogden AM, Lyu Z, Zandalinas SI, Joshi T, Fritschi FB, Mittler R. The effects of multifactorial stress combination on rice and maize. PLANT PHYSIOLOGY 2024; 194:1358-1369. [PMID: 37847095 DOI: 10.1093/plphys/kiad557] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
The complexity of environmental factors affecting crops in the field is gradually increasing due to climate change-associated weather events, such as droughts or floods combined with heat waves, coupled with the accumulation of different environmental and agricultural pollutants. The impact of multiple stress conditions on plants was recently termed "multifactorial stress combination" (MFSC) and defined as the occurrence of 3 or more stressors that impact plants simultaneously or sequentially. We recently reported that with the increased number and complexity of different MFSC stressors, the growth and survival of Arabidopsis (Arabidopsis thaliana) seedlings declines, even if the level of each individual stress is low enough to have no significant effect on plants. However, whether MFSC would impact commercial crop cultivars is largely unknown. Here, we reveal that a MFSC of 5 different low-level abiotic stresses (salinity, heat, the herbicide paraquat, phosphorus deficiency, and the heavy metal cadmium), applied in an increasing level of complexity, has a significant negative impact on the growth and biomass of a commercial rice (Oryza sativa) cultivar and a maize (Zea mays) hybrid. Proteomics, element content, and mixOmics analyses of MFSC in rice identified proteins that correlate with the impact of MFSC on rice seedlings, and analysis of 42 different rice genotypes subjected to MFSC revealed substantial genetic variability in responses to this unique state of stress combination. Taken together, our findings reveal that the impacts of MFSC on 2 different crop species are severe and that MFSC may substantially affect agricultural productivity.
Collapse
Affiliation(s)
- Ranjita Sinha
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - María Ángeles Peláez-Vico
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Benjamin Shostak
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Thao Thi Nguyen
- Gehrke Proteomics Center, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Lidia S Pascual
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana 12071, Spain
| | - Andrew M Ogden
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Zhen Lyu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Sara I Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana 12071, Spain
| | - Trupti Joshi
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
- Institute for Data Science and Informatics and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
- Department of Biomedical Informatics, Biostatistics and Medical Epidemiology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Felix B Fritschi
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Ron Mittler
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
74
|
Swentowsky KW. Multifactor agitation: Several minor stresses severely compromise crop growth when combined. PLANT PHYSIOLOGY 2024; 194:1248-1249. [PMID: 37962838 PMCID: PMC10904344 DOI: 10.1093/plphys/kiad608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Affiliation(s)
- Kyle W Swentowsky
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
75
|
Raza A, Salehi H, Bashir S, Tabassum J, Jamla M, Charagh S, Barmukh R, Mir RA, Bhat BA, Javed MA, Guan DX, Mir RR, Siddique KHM, Varshney RK. Transcriptomics, proteomics, and metabolomics interventions prompt crop improvement against metal(loid) toxicity. PLANT CELL REPORTS 2024; 43:80. [PMID: 38411713 PMCID: PMC10899315 DOI: 10.1007/s00299-024-03153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid) toxicity can jeopardize global food security due to contaminated food supplies and pose environmental risks, contributing to soil and water pollution and thus impacting the whole ecosystem. In this context, plants have evolved complex mechanisms to combat metal(loid) stress. Amid the array of innovative approaches, omics, notably transcriptomics, proteomics, and metabolomics, have emerged as transformative tools, shedding light on the genes, proteins, and key metabolites involved in metal(loid) stress responses and tolerance mechanisms. These identified candidates hold promise for developing high-yielding crops with desirable agronomic traits. Computational biology tools like bioinformatics, biological databases, and analytical pipelines support these omics approaches by harnessing diverse information and facilitating the mapping of genotype-to-phenotype relationships under stress conditions. This review explores: (1) the multifaceted strategies that plants use to adapt to metal(loid) toxicity in their environment; (2) the latest findings in metal(loid)-mediated transcriptomics, proteomics, and metabolomics studies across various plant species; (3) the integration of omics data with artificial intelligence and high-throughput phenotyping; (4) the latest bioinformatics databases, tools and pipelines for single and/or multi-omics data integration; (5) the latest insights into stress adaptations and tolerance mechanisms for future outlooks; and (6) the capacity of omics advances for creating sustainable and resilient crop plants that can thrive in metal(loid)-contaminated environments.
Collapse
Affiliation(s)
- Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Hajar Salehi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Shanza Bashir
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Javaria Tabassum
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Monica Jamla
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Rutwik Barmukh
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Basharat Ahmad Bhat
- Department of Bio-Resources, Amar Singh College Campus, Cluster University Srinagar, Srinagar, JK, India
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST), Srinagar, Kashmir, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia.
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
76
|
Jameel J, Anwar T, Majeed S, Qureshi H, Siddiqi EH, Sana S, Zaman W, Ali HM. Effect of salinity on growth and biochemical responses of brinjal varieties: implications for salt tolerance and antioxidant mechanisms. BMC PLANT BIOLOGY 2024; 24:128. [PMID: 38383291 PMCID: PMC10880304 DOI: 10.1186/s12870-024-04836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Salinity poses significant challenges to agricultural productivity, impacting crops' growth, morphology and biochemical parameters. A pot experiment of three months was conducted between February to April 2023 in the Department of Botany, The Islamia University of Bahawalpur. Four brinjal (eggplant) varieties: ICS-BR-1351, HBR-313-D, HBR-314-E, and HBR-334-D were selected and assessed for the effects of salinity on various growth and biochemical attributes. The experiment was completely randomized in design with three replicates each. This study revealed that increased salinity significantly reduced the shoot length, root length, and leaf number across all varieties, with maximum adverse effects observed at a 300mM NaCl concentration. Among the tested varieties, ICS-BR-1351 demonstrated superior performance in most growth parameters, suggesting potential salt tolerance. Biochemically, salinity decreased chlorophyll content across all varieties, with the sharpest decline observed at the highest salt concentration. V4 (HBR-334-D) showed a 57% decrease in chlorophyll followed by V3 (HBR-314-E) at 56%, V2 (HBR-313-D) at 54%, and V1 (ICS-BR-1351) at 33% decrease at maximum salt levels as compared to control. Conversely, carotenoid content increased up to -42.11% in V3 followed by V2 at -81.48%, V4 at -94.11%, and - 233% in V1 at 300mM NaCl stress as compared to respective controls. V3 (HBR-314-E) has the maximum value for carotenoids while V1 has the lowest value for carotenoids as compared to the other three brinjal varieties. In addition to pigments, the study indicated a salinity-induced decrease in total proteins and total soluble sugar, whereas total amino acids and flavonoids increased. Total proteins showed a decrease in V2 (49.46%) followed by V3 (36.44%), V4 (53.42%), and V1 (53.79%) at maximum salt concentration as compared to plants treated with tap water only. Whereas, total soluble sugars showed a decrease of 52.07% in V3, 41.53% in V2, 19.49% in V1, and 18.99% in V4 at the highest salt level. While discussing total amino acid, plants showed a -9.64% increase in V1 as compared to V4 (-31.10%), V2 (-36.62%), and V3 (-22.61%) with high salt levels in comparison with controls. Plant flavonoid content increased in V3 (-15.61%), V2 (-19.03%), V4 (-18.27%) and V1 (-27.85%) at 300mM salt concentration. Notably, salinity elevated the content of anthocyanin, lycopene, malondialdehyde (MDA), and hydrogen peroxide (H2O2) across all varieties. Antioxidant enzymes like peroxidase, catalase, and superoxide dismutase also increased under salt stress, suggesting an adaptive response to combat oxidative damage. However, V3 (HBR-314-E) has shown an increase in anthocyanin at -80.00%, lycopene at -24.81%, MDA at -168.04%, hydrogen peroxide at -24.22%, POD at -10.71%, CAT as-36.63 and SOD as -99.14% at 300mM NaCl stress as compared to control and other varieties. The enhanced accumulation of antioxidants and other protective compounds suggests an adaptive mechanism in brinjal to combat salt-induced oxidative stress. The salt tolerance of different brinjal varieties was assessed by principal component analysis (PCA), and the order of salt tolerance was V1 (ICS-BR-1351) > V4 (HBR-334-D), > V2 (HBR-313-D) > V3 (HBR-314-E). Among the varieties studied, ICS-BR-1351 demonstrated resilience against saline conditions, potentially offering a promising candidate for saline-prone agricultural areas.
Collapse
Affiliation(s)
- Jawaria Jameel
- Department of Botany, The Islamia University of Bahawalpur (Baghdad-ul-Jadeed Campus), Bahawalpur, 63100, Pakistan
| | - Tauseef Anwar
- Department of Botany, The Islamia University of Bahawalpur (Baghdad-ul-Jadeed Campus), Bahawalpur, 63100, Pakistan.
| | - Saadat Majeed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Huma Qureshi
- Department of Botany, University of Chakwal, Chakwal, 48800, Pakistan
| | | | - Sundas Sana
- Department of Botany, The Islamia University of Bahawalpur (Baghdad-ul-Jadeed Campus), Bahawalpur, 63100, Pakistan
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Hayssam M Ali
- Department Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
77
|
Kopeć P. Climate Change-The Rise of Climate-Resilient Crops. PLANTS (BASEL, SWITZERLAND) 2024; 13:490. [PMID: 38498432 PMCID: PMC10891513 DOI: 10.3390/plants13040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Abstract
Climate change disrupts food production in many regions of the world. The accompanying extreme weather events, such as droughts, floods, heat waves, and cold snaps, pose threats to crops. The concentration of carbon dioxide also increases in the atmosphere. The United Nations is implementing the climate-smart agriculture initiative to ensure food security. An element of this project involves the breeding of climate-resilient crops or plant cultivars with enhanced resistance to unfavorable environmental conditions. Modern agriculture, which is currently homogeneous, needs to diversify the species and cultivars of cultivated plants. Plant breeding programs should extensively incorporate new molecular technologies, supported by the development of field phenotyping techniques. Breeders should closely cooperate with scientists from various fields of science.
Collapse
Affiliation(s)
- Przemysław Kopeć
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| |
Collapse
|
78
|
Jing Z, Liu N, Zhang Z, Hou X. Research Progress on Plant Responses to Stress Combinations in the Context of Climate Change. PLANTS (BASEL, SWITZERLAND) 2024; 13:469. [PMID: 38498439 PMCID: PMC10893109 DOI: 10.3390/plants13040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
In the context of climate change, the frequency and intensity of extreme weather events are increasing, environmental pollution and global warming are exacerbated by anthropogenic activities, and plants will experience a more complex and variable environment of stress combinations. Research on plant responses to stress combinations is crucial for the development and utilization of climate-adaptive plants. Recently, the concept of stress combinations has been expanded from simple to multifactorial stress combinations (MFSCs). Researchers have realized the complexity and necessity of stress combination research and have extensively employed composite gradient methods, multi-omics techniques, and interdisciplinary approaches to integrate laboratory and field experiments. Researchers have studied the response mechanisms of plant reactive oxygen species (ROS), phytohormones, transcription factors (TFs), and other response mechanisms under stress combinations and reached some generalized conclusions. In this article, we focus on the research progress and methodological dynamics of plant responses to stress combinations and propose key scientific questions that are crucial to address, in the context of plant responses to stress assemblages, conserving biodiversity, and ensuring food security. We can enhance the search for universal pathways, identify targets for stress combinations, explore adaptive genetic responses, and leverage high-technology research. This is in pursuit of cultivating plants with greater tolerance to stress combinations and enabling their adaptation to and mitigation of the impacts of climate change.
Collapse
Affiliation(s)
- Zeyao Jing
- College of Grassland Science, Shanxi Agricultural University, Jinzhong 030801, China; (Z.J.); (N.L.); (Z.Z.)
- Key Laboratory of Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Jinzhong 030801, China
| | - Na Liu
- College of Grassland Science, Shanxi Agricultural University, Jinzhong 030801, China; (Z.J.); (N.L.); (Z.Z.)
- Key Laboratory of Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Jinzhong 030801, China
| | - Zongxian Zhang
- College of Grassland Science, Shanxi Agricultural University, Jinzhong 030801, China; (Z.J.); (N.L.); (Z.Z.)
- Key Laboratory of Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Jinzhong 030801, China
| | - Xiangyang Hou
- College of Grassland Science, Shanxi Agricultural University, Jinzhong 030801, China; (Z.J.); (N.L.); (Z.Z.)
- Key Laboratory of Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Jinzhong 030801, China
| |
Collapse
|
79
|
Saikia B, S R, Debbarma J, Maharana J, Sastry GN, Chikkaputtaiah C. CRISPR/Cas9-based genome editing and functional analysis of SlHyPRP1 and SlDEA1 genes of Solanum lycopersicum L. in imparting genetic tolerance to multiple stress factors. FRONTIERS IN PLANT SCIENCE 2024; 15:1304381. [PMID: 38371406 PMCID: PMC10869523 DOI: 10.3389/fpls.2024.1304381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Abstract
CRISPR/Cas is a breakthrough genome editing system because of its precision, target specificity, and efficiency. As a speed breeding system, it is more robust than the conventional breeding and biotechnological approaches for qualitative and quantitative trait improvement. Tomato (Solanum lycopersicum L.) is an economically important crop, but its yield and productivity have been severely impacted due to different abiotic and biotic stresses. The recently identified SlHyPRP1 and SlDEA1 are two potential negative regulatory genes in response to different abiotic (drought and salinity) and biotic stress (bacterial leaf spot and bacterial wilt) conditions in S. lycopersicum L. The present study aimed to evaluate the drought, salinity, bacterial leaf spot, and bacterial wilt tolerance response in S. lycopersicum L. crop through CRISPR/Cas9 genome editing of SlHyPRP1 and SlDEA1 and their functional analysis. The transient single- and dual-gene SlHyPRP1 and SlDEA1 CRISPR-edited plants were phenotypically better responsive to multiple stress factors taken under the study. The CRISPR-edited SlHyPRP1 and SlDEA1 plants showed a higher level of chlorophyll and proline content compared to wild-type (WT) plants under abiotic stress conditions. Reactive oxygen species accumulation and the cell death count per total area of leaves and roots under biotic stress were less in CRISPR-edited SlHyPRP1 and SlDEA1 plants compared to WT plants. The study reveals that the combined loss-of-function of SlHyPRP1 along with SlDEA1 is essential for imparting significant multi-stress tolerance (drought, salinity, bacterial leaf spot, and bacterial wilt) in S. lycopersicum L. The main feature of the study is the detailed genetic characterization of SlDEA1, a poorly studied 8CM family gene in multi-stress tolerance, through the CRISPR/Cas9 gene editing system. The study revealed the key negative regulatory role of SlDEA1 that function together as an anchor gene with SlHyPRP1 in imparting multi-stress tolerance in S. lycopersicum L. It was interesting that the present study also showed that transient CRISPR/Cas9 editing events of SlHyPRP1 and SlDEA1 genes were successfully replicated in stably generated parent-genome-edited line (GEd0) and genome-edited first-generation lines (GEd1) of S. lycopersicum L. With these upshots, the study's key findings demonstrate outstanding value in developing sustainable multi-stress tolerance in S. lycopersicum L. and other crops to cope with climate change.
Collapse
Affiliation(s)
- Banashree Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Remya S
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Johni Debbarma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Jitendra Maharana
- Distributed Information Centre (DIC), Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - G. Narahari Sastry
- Advanced Computational and Data Science Division, CSIR-NEIST, Jorhat, Assam, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
80
|
Opoku E, Sahu PP, Findurová H, Holub P, Urban O, Klem K. Differential physiological and production responses of C3 and C4 crops to climate factor interactions. FRONTIERS IN PLANT SCIENCE 2024; 15:1345462. [PMID: 38371407 PMCID: PMC10869619 DOI: 10.3389/fpls.2024.1345462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024]
Abstract
This study examined the effect of the interactions of key factors associated with predicted climate change (increased temperature, and drought) and elevated CO2 concentration on C3 and C4 crop representatives, barley and sorghum. The effect of two levels of atmospheric CO2 concentration (400 and 800 ppm), three levels of temperature regime (21/7, 26/12 and 33/19°C) and two regimes of water availability (simulation of drought by gradual reduction of irrigation and well-watered control) in all combinations was investigated in a pot experiment within growth chambers for barley variety Bojos and sorghum variety Ruby. Due to differences in photosynthetic metabolism in C3 barley and C4 sorghum, leading to different responses to elevated CO2 concentration, we hypothesized mitigation of the negative drought impact in barley under elevated CO2 concentration and, conversely, improved performance of sorghum at high temperatures. The results demonstrate the decoupling of photosynthetic CO2 assimilation and production parameters in sorghum. High temperatures and elevated CO2 concentration resulted in a significant increase in sorghum above- and below-ground biomass under sufficient water availability despite the enhanced sensitivity of photosynthesis to high temperatures. However, the negative effect of drought is amplified by the effect of high temperature, similarly for biomass and photosynthetic rates. Sorghum also showed a mitigating effect of elevated CO2 concentration on the negative drought impact, particularly in reducing the decrease of relative water content in leaves. In barley, no significant factor interactions were observed, indicating the absence of mitigating the negative drought effects by elevated CO2 concentration. These complex interactions imply that, unlike barley, sorghum can be predicted to have a much higher variability in response to climate change. However, under conditions combining elevated CO2 concentration, high temperature, and sufficient water availability, the outperforming of C4 crops can be expected. On the contrary, the C3 crops can be expected to perform even better under drought conditions when accompanied by lower temperatures.
Collapse
Affiliation(s)
- Emmanuel Opoku
- Laboratory of Ecological Plant Physiology, Global Change Research Institute Czech Academy of Sciences (CAS), Brno, Czechia
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Pranav Pankaj Sahu
- Laboratory of Ecological Plant Physiology, Global Change Research Institute Czech Academy of Sciences (CAS), Brno, Czechia
| | - Hana Findurová
- Laboratory of Ecological Plant Physiology, Global Change Research Institute Czech Academy of Sciences (CAS), Brno, Czechia
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Petr Holub
- Laboratory of Ecological Plant Physiology, Global Change Research Institute Czech Academy of Sciences (CAS), Brno, Czechia
| | - Otmar Urban
- Laboratory of Ecological Plant Physiology, Global Change Research Institute Czech Academy of Sciences (CAS), Brno, Czechia
| | - Karel Klem
- Laboratory of Ecological Plant Physiology, Global Change Research Institute Czech Academy of Sciences (CAS), Brno, Czechia
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
81
|
Saghir SA, Ansari RA. HLA gene variations and mycotoxin toxicity: Four case reports. Mycotoxin Res 2024; 40:159-173. [PMID: 38198040 DOI: 10.1007/s12550-023-00517-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
Mycotoxins are produced by certain molds that can cause many health effects. We present four human cases of prolonged consistent mycotoxins exposure linked to genetic variations in human leukocyte antigen (HLA) alleles. The HLA-DR/DQ isotype alleles are linked to mycotoxins susceptibility due to the lack of proper immune response; individuals with these alleles are poor eliminators of mycotoxins from their system. Four subjects with variations in their HLA-DR alleles were exposed to mycotoxins from living in mold-infested houses and experienced persistent mold-related symptoms long after moving out from the mold-infested houses and only exposed to the levels of molds found in the ambient air. From one of the subjects, two urine samples were collected ~ 18 months apart after the cessation of exposure. Urinary elimination rate was extremely slow for two of the mycotoxins (ochratoxin A [OTA] and mycophenolic acid [MPA]) detected in both samples. In 18 months, decline in OTA level was only ~ 3-fold (estimated t½ of ~ 311 days) and decline in MPA level was ~ 11-fold (estimated t½ of ~ 160 days), which was ~ 10- and ~ 213-fold slower than expected in individuals without HLA-DR alleles, respectively. We estimated that ~ 4.3 and ~ 2.2 years will be required for OTA and MPA to reach < LLQ in urine, respectively. Three other subjects with variations in HLA-DR alleles were members of a family who lived in a mold-infested house for 4 years. They kept experiencing mold-related issues >2 years after moving to a non-mold-infested house. Consistent exposure was confirmed by the presence of several mycotoxins in urine >2 years after the secession of higher than background (from outdoor ambient air) exposure. This was consistent with the extremely slow elimination of mycotoxins from their system. Variations in HLA-DR alleles can, consequently, make even short periods of exposure to chronic exposure scenarios with related adverse health effects. It is, therefore, important to determine genetic predisposition as a reason for prolonged/lingering mold-related symptoms long after the cessation of higher than background exposure. Increased human exposure to mycotoxins is expected from increased mold infestation that is anticipated due to rising CO2, temperature, and humidity from the climate change with possibly increased adverse health effects, especially in individuals with genetic susceptibility to mold toxicity.
Collapse
Affiliation(s)
- Shakil Ahmed Saghir
- ToxInternational Inc, Hilliard, OH, USA.
- Mold Law Group, Atlanta, GA, USA.
- Department of Biological & Biomedical Sciences, Aga Khan Univ, Karachi, Pakistan.
- Institute of Environmental Science and Meteorology, College of Science, University of the Philippines-Diliman, Quezon City, Philippines.
| | - Rais Ahmed Ansari
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Health Professions Division, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
82
|
Liu R, Hu B, Flemetakis E, Dannenmann M, Geilfus CM, Haensch R, Wang D, Rennenberg H. Antagonistic effect of mercury and excess nitrogen exposure reveals provenance-specific phytoremediation potential of black locust-rhizobia symbiosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123050. [PMID: 38042473 DOI: 10.1016/j.envpol.2023.123050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/18/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
Interaction of different environmental constrains pose severe threats to plants that cannot be predicted from individual stress exposure. In this context, mercury (Hg), as a typical toxic and hazardous heavy metal, has recently attracted particular attention. Nitrogen (N2)-fixing legumes can be used for phytoremediation of Hg accumulation, whereas N availability could greatly affect its N2-fixation efficiency. However, information on the physiological responses to combined Hg exposure and excess N supply of woody legume species is still lacking. Here, we investigated the interactive effects of rhizobia inoculation, Hg exposure (+Hg), and high N (+N) supply, individually and in combination (+N*Hg), on photosynthesis and biochemical traits in Robinia pseudoacacia L. seedlings of two provenances, one from Northeast (DB) and one from Northwest (GS) China. Our results showed antagonistic effects of combined + N*Hg exposure compared to the individual treatments that were provenance-specific. Compared to individual Hg exposure, combined + N*Hg stress significantly increased foliar photosynthesis (+50.6%) of inoculated DB seedlings and resulted in more negative (-137.4%) δ15N abundance in the roots. Furthermore, combined + N*Hg stress showed 47.7% increase in amino acid N content, 39.4% increase in NR activity, and 14.8% decrease in MDA content in roots of inoculated GS seedlings. Inoculation with rhizobia significantly promoted Hg uptake in both provenances, reduced MDA contents of leaves and roots, enhanced photosynthesis and maintained the nutrient balance of Robinia. Among the two Robinia provenances investigated, DB seedlings formed more nodules, had higher biomass and Hg accumulation than GS seedlings. For example, total Hg concentrations in leaves and roots and total biomass of inoculated DB seedlings were 1.3,1.9 and 3.4 times higher than in inoculated GS seedlings under combined + N*Hg stress, respectively. Therefore, the DB provenance is considered to possess a higher potential for phytoremediation of Hg contamination compared to the GS provenance in environments subjected to N deposition.
Collapse
Affiliation(s)
- Rui Liu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, PR China; College of Resources and Environment, Academy of Agriculture Sciences, Southwest University, Chongqing, 400715, PR China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, PR China.
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Michael Dannenmann
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, 82467, Garmisch-Partenkirchen, Germany
| | - Christoph-Martin Geilfus
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, 65366, Geisenheim, Germany
| | - Robert Haensch
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, PR China; Institute for Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, D-38106, Braunschweig, Germany
| | - Dingyong Wang
- College of Resources and Environment, Academy of Agriculture Sciences, Southwest University, Chongqing, 400715, PR China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, PR China
| |
Collapse
|
83
|
Li J. Impact of green finance on industrial structure upgrading: implications for environmental sustainability in Chinese regions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13063-13074. [PMID: 38240977 DOI: 10.1007/s11356-024-32001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024]
Abstract
Marking green finance to revolutionize industrial structure and achieve environmental sustainability is increasingly critical. We explore the impact of green finance (GF) on industrial structure advancement and industrial structure rationalization employing the panel data of 30 Chinese provinces from 2011 to 2020 in terms of technology inputs, environmental regulation, and green technology innovation. Results indicate that GF significantly stimulates China's industrial structure in both advanced and rationalization. The driving effect of GF on the industrial structure is mainly reflected in the advanced dimension of industrial structure in the eastern and economically developed area but mainly in the rationalization dimension of industrial structure in the economically less developed area. GF's role in facilitating industrial structure upgrading largely depends on technology inputs, environmental regulation, and green technology innovation.
Collapse
Affiliation(s)
- Jian Li
- School of Economics & Management, Northwest University, Xi'an, 710127, China.
- School of Economics & Management, Xi'an University, Xi'an, 710065, China.
| |
Collapse
|
84
|
Hsiao AS. Protein Disorder in Plant Stress Adaptation: From Late Embryogenesis Abundant to Other Intrinsically Disordered Proteins. Int J Mol Sci 2024; 25:1178. [PMID: 38256256 PMCID: PMC10816898 DOI: 10.3390/ijms25021178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Global climate change has caused severe abiotic and biotic stresses, affecting plant growth and food security. The mechanical understanding of plant stress responses is critical for achieving sustainable agriculture. Intrinsically disordered proteins (IDPs) are a group of proteins without unique three-dimensional structures. The environmental sensitivity and structural flexibility of IDPs contribute to the growth and developmental plasticity for sessile plants to deal with environmental challenges. This article discusses the roles of various disordered proteins in plant stress tolerance and resistance, describes the current mechanistic insights into unstructured proteins such as the disorder-to-order transition for adopting secondary structures to interact with specific partners (i.e., cellular membranes, membrane proteins, metal ions, and DNA), and elucidates the roles of liquid-liquid phase separation driven by protein disorder in stress responses. By comparing IDP studies in animal systems, this article provides conceptual principles of plant protein disorder in stress adaptation, reveals the current research gaps, and advises on the future research direction. The highlighting of relevant unanswered questions in plant protein disorder research aims to encourage more studies on these emerging topics to understand the mechanisms of action behind their stress resistance phenotypes.
Collapse
Affiliation(s)
- An-Shan Hsiao
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
85
|
Thomas MD, Roberts R, Heckathorn SA, Boldt JK. Species Survey of Leaf Hyponasty Responses to Warming Plus Elevated CO 2. PLANTS (BASEL, SWITZERLAND) 2024; 13:204. [PMID: 38256757 PMCID: PMC10819384 DOI: 10.3390/plants13020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Atmospheric carbon dioxide (CO2) concentrations are increasing and may exceed 800 ppm by 2100. This is increasing global mean temperatures and the frequency and severity of heatwaves. Recently, we showed for the first time that the combination of short-term warming and elevated carbon dioxide (eCO2) caused extreme upward bending (i.e., hyponasty) of leaflets and leaf stems (petioles) in tomato (Solanum lycopersicum), which reduced growth. Here, we examined additional species to test the hypotheses that warming + eCO2-induced hyponasty is restricted to compound-leaved species, and/or limited to the Solanaceae. A 2 × 2 factorial experiment with two temperatures, near-optimal and supra-optimal, and two CO2 concentrations, ambient and elevated (400, 800 ppm), was imposed on similarly aged plants for 7-10 days, after which final petiole angles were measured. Within Solanaceae, compound-leaf, but not simple-leaf, species displayed increased hyponasty with the combination of warming + eCO2 relative to warming or eCO2 alone. In non-solanaceous species, hyponasty, leaf-cupping, and changes in leaf pigmentation as a result of warming + eCO2 were variable across species.
Collapse
Affiliation(s)
- Michael D. Thomas
- Department of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA;
| | - Reagan Roberts
- Department of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA;
| | - Scott A. Heckathorn
- Department of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA;
| | - Jennifer K. Boldt
- Agricultural Research Service, United States Department of Agriculture (USDA), Toledo, OH 43606, USA;
| |
Collapse
|
86
|
Janni M, Maestri E, Gullì M, Marmiroli M, Marmiroli N. Plant responses to climate change, how global warming may impact on food security: a critical review. FRONTIERS IN PLANT SCIENCE 2024; 14:1297569. [PMID: 38250438 PMCID: PMC10796516 DOI: 10.3389/fpls.2023.1297569] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
Global agricultural production must double by 2050 to meet the demands of an increasing world human population but this challenge is further exacerbated by climate change. Environmental stress, heat, and drought are key drivers in food security and strongly impacts on crop productivity. Moreover, global warming is threatening the survival of many species including those which we rely on for food production, forcing migration of cultivation areas with further impoverishing of the environment and of the genetic variability of crop species with fall out effects on food security. This review considers the relationship of climatic changes and their bearing on sustainability of natural and agricultural ecosystems, as well as the role of omics-technologies, genomics, proteomics, metabolomics, phenomics and ionomics. The use of resource saving technologies such as precision agriculture and new fertilization technologies are discussed with a focus on their use in breeding plants with higher tolerance and adaptability and as mitigation tools for global warming and climate changes. Nevertheless, plants are exposed to multiple stresses. This study lays the basis for the proposition of a novel research paradigm which is referred to a holistic approach and that went beyond the exclusive concept of crop yield, but that included sustainability, socio-economic impacts of production, commercialization, and agroecosystem management.
Collapse
Affiliation(s)
- Michela Janni
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Bari, Italy
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parma, Italy
| | - Elena Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parma, Italy
| | - Mariolina Gullì
- Department of Chemistry, Life Sciences and Environmental Sustainability, Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parma, Italy
| | - Nelson Marmiroli
- Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA) Interuniversity Consortium for Environmental Sciences, Parma/Venice, Italy
| |
Collapse
|
87
|
Li Y, Tian C. Does active transport create a win-win situation for environmental and human health: the moderating effect of leisure and tourism activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4563-4581. [PMID: 38103138 DOI: 10.1007/s11356-023-31267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
The current environmental crisis is mostly due to global warming. Promoting walking and cycling requires both the availability of green public areas (such as parks, green paths, and greenways) and a mentality that values such active modes of transportation. Significant health advantages from increased physical activity (PA) are associated with transportation options like walking and cycling (sometimes known as "active transportation," AT): the health and environmental advantages of encouraging workers to use bicycles for transportation been widely acknowledged. The authors of this research set out to fill this information gap by investigating the theoretically theorized links between green public space awareness and attitudes toward active mobility, adapting to a changing environment, and improving one's mental and physical health, with leisure and tourist activities serving as a moderator. The data was collected quantitatively using purposive sampling and then analyzed using PLS-SEM. We surveyed Korean walkers (n = 282) and bikers (n = 315) online between May 25 and June 17, 2021, and used a partial least squares structural equation modeling (PLS-SEM) analysis to test our hypothesis. As stated in the findings, being conscious of green public space when using active transportation significantly affects how clean the air feels. Active transportation was shown to have a significant effect on health, and climate change mitigation efforts were found to have a significant effect on health. Those who used active transportation for tourism had a stronger connection between green public space awareness and air quality, in addition to environmental sustainability and ethical conduct mitigation, than those who used active transport for recreation. Therefore, the model may aid in locating transport and health scenarios that benefit both sectors.
Collapse
Affiliation(s)
- Yi Li
- School of Tourism, Nanchang University, Nanchang, 330031, China
| | - Chuan Tian
- International College, Krirk University, Bangkok, 10220, Thailand.
| |
Collapse
|
88
|
Feng YX, Tian P, Lin YJ, Cao DY, Li CZ, Ullah A. Gaseous signaling molecule H 2S as a multitasking signal molecule in ROS metabolism of Oryza sativa under thiocyanate (SCN -) pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122816. [PMID: 37898431 DOI: 10.1016/j.envpol.2023.122816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/04/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The induction of disruption in the electronic transport chain by thiocyanate (SCN-) leads to an excessive generation of reactive oxygen species (ROS) within rice (Oryza sativa). Hydrogen sulfide (H2S) assumes a crucial role as a gaseous signaling molecule, holding significant potential in alleviating SCN--related stress. Nevertheless, there remains a dearth of understanding regarding the intricate interplay between H2S and ROS in Oryza sativa amidst SCN- pollution. In this investigation, a hydroponics-based experiment was meticulously devised to explore how H2S-mediated modifications influence the genetic feedback network governing ROS metabolism within the subcellular organelles of Oryza sativa when exposed to varying effective concentrations (EC20: 24 mg SCN/L; EC50: 96 mg SCN/L; EC75: 300 mg SCN/L) of SCN-. The findings unveiled the enhanced capacity of Oryza sativa to uptake SCN- under H2S + SCN- treatments in comparison to SCN- treatments alone. Notably, the relative growth rate (RGR) of seedlings subjected to H2S + SCN- exhibited a superior performance when contrasted with seedlings exposed solely to SCN-. Furthermore, the application of exogenous H2S yielded a significant reduction in ROS levels within Oryza sativa tissues during SCN- exposure. To elucidate the intricacies of gene regulation governing ROS metabolism at the mRNA level, the 52 targeted genes were categorized into four distinct types, namely: initial regulatory ROS generation genes (ROS-I), direct ROS scavenging genes (ROS-II), indirect ROS scavenging genes (ROS-III), and lipid oxidation genes (ROS-IV). On the whole, exogenous H2S exhibited the capacity to activate the majority of ROS-I ∼ ROS-IV genes within both Oryza sativa tissues at the EC20 concentration of SCN-. However, genetic positive/negative feedback networks emphasized the pivotal role of ROS-II genes in governing ROS metabolism within Oryza sativa. Notably, these genes were predominantly activated within the cytoplasm, chloroplasts, mitochondria, peroxisomes, and the cell wall.
Collapse
Affiliation(s)
- Yu-Xi Feng
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China; Jiangmen Laboratory of Carbon Science and Technology, Hong Kong University of Science and Technology (Guangzhou), Jiangmen, Guangdong, 529199, China.
| | - Peng Tian
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
| | - Yu-Juan Lin
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
| | - Dan-Yang Cao
- Jiangmen Laboratory of Carbon Science and Technology, Hong Kong University of Science and Technology (Guangzhou), Jiangmen, Guangdong, 529199, China
| | - Cheng-Zhi Li
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
| | - Abid Ullah
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
| |
Collapse
|
89
|
Hou S, Rodrigues O, Liu Z, Shan L, He P. Small holes, big impact: Stomata in plant-pathogen-climate epic trifecta. MOLECULAR PLANT 2024; 17:26-49. [PMID: 38041402 PMCID: PMC10872522 DOI: 10.1016/j.molp.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
The regulation of stomatal aperture opening and closure represents an evolutionary battle between plants and pathogens, characterized by adaptive strategies that influence both plant resistance and pathogen virulence. The ongoing climate change introduces further complexity, affecting pathogen invasion and host immunity. This review delves into recent advances on our understanding of the mechanisms governing immunity-related stomatal movement and patterning with an emphasis on the regulation of stomatal opening and closure dynamics by pathogen patterns and host phytocytokines. In addition, the review explores how climate changes impact plant-pathogen interactions by modulating stomatal behavior. In light of the pressing challenges associated with food security and the unpredictable nature of climate changes, future research in this field, which includes the investigation of spatiotemporal regulation and engineering of stomatal immunity, emerges as a promising avenue for enhancing crop resilience and contributing to climate control strategies.
Collapse
Affiliation(s)
- Shuguo Hou
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China; School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong 250101, China.
| | - Olivier Rodrigues
- Unité de Recherche Physiologie, Pathologie et Génétique Végétales, Université de Toulouse Midi-Pyrénées, INP-PURPAN, 31076 Toulouse, France
| | - Zunyong Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
90
|
Xiao R, Hao H, Zhang H, Liu Y, Liu M. The development of ecological civilization in China based on the economic-social-natural complex system. AMBIO 2023; 52:1910-1927. [PMID: 37889463 PMCID: PMC10654307 DOI: 10.1007/s13280-023-01937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/22/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023]
Abstract
China is making great efforts to build an ecological civilization. To reveal the effectiveness and spatial characteristics of the ecological civilization development in China, we constructed an Ecological Civilization Evaluation Index (ECI) based on the economic-social-natural complex system. We evaluated the development level of the ecological civilization in China from 2004 to 2020 and discussed the coupling and coordination relationship between subsystems. We found that the ecological civilization of China has achieved remarkable results. The relationship among the three subsystems has been improved to some extent, but the high-quality development of the economic system still requires effort. The development level of the ecological civilization in China presents spatial heterogeneity. From east to west, 30 provinces can be classified into four different types of development. On the whole, the development of China's ecological civilization has provided experiences for the world.
Collapse
Affiliation(s)
- Rui Xiao
- Chinese Research Academy of Environmental Sciences, No. 8 Dayangfang, Anwai Beiyuan, Chaoyang District, Beijing, 100012, China
| | - Haiguang Hao
- Chinese Research Academy of Environmental Sciences, No. 8 Dayangfang, Anwai Beiyuan, Chaoyang District, Beijing, 100012, China
| | - Huiyuan Zhang
- Chinese Research Academy of Environmental Sciences, No. 8 Dayangfang, Anwai Beiyuan, Chaoyang District, Beijing, 100012, China.
| | - Yujie Liu
- Chinese Research Academy of Environmental Sciences, No. 8 Dayangfang, Anwai Beiyuan, Chaoyang District, Beijing, 100012, China
| | - Mengxiao Liu
- Chinese Research Academy of Environmental Sciences, No. 8 Dayangfang, Anwai Beiyuan, Chaoyang District, Beijing, 100012, China
| |
Collapse
|
91
|
Takagi K, Suzuki N, Hunge YM, Kuriyama H, Hayakawa T, Serizawa I, Terashima C. Synergistic effect of Ag decorated in-liquid plasma treated titanium dioxide catalyst for efficient electrocatalytic CO 2 reduction application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166018. [PMID: 37543324 DOI: 10.1016/j.scitotenv.2023.166018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/12/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Recently, the conversion of carbon dioxide (CO2) into a useful resource and its byproducts by electrocatalytic reduction has been studied. It is well known that CO2 can be selectively reduced by gold, lead, etc. supported on conductive carbon. However, the high pH in the vicinity of the electrode raises concerns about the catalyst and catalyst support degradation. Therefore, we considered that using chemically stable TiO2 (titanium dioxide) powder as an alternative to carbon. Surface treatment using in-liquid plasma was used to improve the electrochemical properties of TiO2. TiO2 maintained its particle shape and crystalline structure after in-liquid plasma treatment. Electrochemical properties were evaluated and the disappearance of Ti4+ and Ti3+ redox peaks derived from TiO2 and a decrease in hydrogen overvoltage were observed. The hydrogen overvoltage relationship suggested that tungsten coating or doping on a portion of the reduced TiO2 surface. Electrocatalytic CO2 reduction using the silver nanoparticle-supported in-liquid plasma treated TiO2 showed increased hydrogen production. In electrocatalytic CO2 reduction, the ratio of hydrogen to carbon monoxide gas is important. Therefore, in-liquid plasma treated TiO2 is useful for the electrocatalytic CO2 reduction application.
Collapse
Affiliation(s)
- Kai Takagi
- Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; ORC Manufacturing Co., Ltd., 4896 Tamagawa, Chino, Nagano 391-0011, Japan
| | - Norihiro Suzuki
- Research institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuvaraj M Hunge
- Research institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Haruo Kuriyama
- ORC Manufacturing Co., Ltd., 4896 Tamagawa, Chino, Nagano 391-0011, Japan
| | - Takenori Hayakawa
- ORC Manufacturing Co., Ltd., 4896 Tamagawa, Chino, Nagano 391-0011, Japan
| | - Izumi Serizawa
- ORC Manufacturing Co., Ltd., 4896 Tamagawa, Chino, Nagano 391-0011, Japan
| | - Chiaki Terashima
- Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Research institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
92
|
Jing H, Wilkinson EG, Sageman-Furnas K, Strader LC. Auxin and abiotic stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:7000-7014. [PMID: 37591508 PMCID: PMC10690732 DOI: 10.1093/jxb/erad325] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Plants are exposed to a variety of abiotic stresses; these stresses have profound effects on plant growth, survival, and productivity. Tolerance and adaptation to stress require sophisticated stress sensing, signaling, and various regulatory mechanisms. The plant hormone auxin is a key regulator of plant growth and development, playing pivotal roles in the integration of abiotic stress signals and control of downstream stress responses. In this review, we summarize and discuss recent advances in understanding the intersection of auxin and abiotic stress in plants, with a focus on temperature, salt, and drought stresses. We also explore the roles of auxin in stress tolerance and opportunities arising for agricultural applications.
Collapse
Affiliation(s)
- Hongwei Jing
- Department of Biology, Duke University, Durham, NC 27008, USA
| | | | | | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
93
|
Zhang T, Ni M, Jia J, Deng Y, Sun X, Wang X, Chen Y, Fang L, Zhao H, Xu S, Ma Y, Zhu J, Pan F. Research on the relationship between common metabolic syndrome and meteorological factors in Wuhu, a subtropical humid city of China. BMC Public Health 2023; 23:2363. [PMID: 38031031 PMCID: PMC10685562 DOI: 10.1186/s12889-023-17299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023] Open
Abstract
As climate conditions deteriorate, human health faces a broader range of threats. This study aimed to determine the risk of death from metabolic syndrome (MetS) due to meteorological factors. We collected daily data from 2014 to 2020 in Wuhu City, including meteorological factors, environmental pollutants and death data of common MetS (hypertension, hyperlipidemia and diabetes), as well as a total number of 15,272 MetS deaths. To examine the relationship between meteorological factors, air pollutants, and MetS mortality, we used a generalized additive model (GAM) combined with a distributed delay nonlinear model (DLNM) for time series analysis. The relationship between the above factors and death outcomes was preliminarily evaluated using Spearman analysis and structural equation modeling (SEM). As per out discovery, diurnal temperature range (DTR) and daily mean temperature (T mean) increased the MetS mortality risk notably. The ultra low DTR raised the MetS mortality risk upon the general people, with the highest RR value of 1.033 (95% CI: 1.002, 1.065) at lag day 14. In addition, T mean was also significantly associated with MetS death. The highest risk of ultra low and ultra high T mean occured on the same day (lag 14), RR values were 1.043 (95% CI: 1.010, 1.077) and 1.032 (95% CI: 1.003, 1.061) respectively. Stratified analysis's result showed lower DTR had a more pronounced effect on women and the elderly, and ultra low and high T mean was a risk factor for MetS mortality in women and men. The elderly need to take extra note of temperature changes, and different levels of T mean will increase the risk of death. In warm seasons, ultra high RH and T mean can increase the mortality rate of MetS patients.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Man Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Juan Jia
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Yujie Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
- Department of Hospital Management Research, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xiaoya Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
- Department of Hospital Management Research, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xinqi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
- Department of Hospital Management Research, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Lanlan Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Hui Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
- Department of Hospital Management Research, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Jiansheng Zhu
- Wuhu center for disease control and prevention, Wuhu, Anhui, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
- Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| |
Collapse
|
94
|
Jampoh EA, Sáfrán E, Babinyec-Czifra D, Kristóf Z, Krárné Péntek B, Fábián A, Barnabás B, Jäger K. Morpho-Anatomical, Physiological and Biochemical Adjustments in Response to Heat and Drought Co-Stress in Winter Barley. PLANTS (BASEL, SWITZERLAND) 2023; 12:3907. [PMID: 38005804 PMCID: PMC10674999 DOI: 10.3390/plants12223907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
This study aimed to investigate the combined effect of high temperatures 10 °C above the optimum and water withholding during microgametogenesis on vegetative processes and determine the response of winter barley genotypes with contrasting tolerance. For this purpose, two barley varieties were analyzed to compare the effect of heat and drought co-stress on their phenology, morpho-anatomy, physiological and biochemical responses and yield constituents. Genotypic variation was observed in response to heat and drought co-stress, which was attributed to differences in anatomy, ultrastructure and physiological and metabolic processes. The co-stress-induced reduction in relative water content, total soluble protein and carbohydrate contents, photosynthetic pigment contents and photosynthetic efficiency of the sensitive Spinner variety was significantly greater than the tolerant Lambada genotype. Based on these observations, it has been concluded that the heat-and-drought stress-tolerance of the Lambada variety is related to the lower initial chlorophyll content of the leaves, the relative resistance of photosynthetic pigments towards stress-triggered degradation, retained photosynthetic parameters and better-preserved leaf ultrastructure. Understanding the key factors underlying heat and drought co-stress tolerance in barley may enable breeders to create barley varieties with improved yield stability under a changing climate.
Collapse
Affiliation(s)
- Emmanuel Asante Jampoh
- Biological Resources Department, HUN-REN Centre for Agricultural Research, 2462 Martonvásár, Hungary; (E.A.J.); (E.S.); (D.B.-C.); (B.K.P.); (A.F.); (B.B.)
- Doctoral School of Horticultural Sciences, MATE Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Eszter Sáfrán
- Biological Resources Department, HUN-REN Centre for Agricultural Research, 2462 Martonvásár, Hungary; (E.A.J.); (E.S.); (D.B.-C.); (B.K.P.); (A.F.); (B.B.)
| | - Dorina Babinyec-Czifra
- Biological Resources Department, HUN-REN Centre for Agricultural Research, 2462 Martonvásár, Hungary; (E.A.J.); (E.S.); (D.B.-C.); (B.K.P.); (A.F.); (B.B.)
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1053 Budapest, Hungary
| | - Zoltán Kristóf
- Department of Plant Anatomy, ELTE Eötvös Loránd University, 1053 Budapest, Hungary;
| | - Barbara Krárné Péntek
- Biological Resources Department, HUN-REN Centre for Agricultural Research, 2462 Martonvásár, Hungary; (E.A.J.); (E.S.); (D.B.-C.); (B.K.P.); (A.F.); (B.B.)
| | - Attila Fábián
- Biological Resources Department, HUN-REN Centre for Agricultural Research, 2462 Martonvásár, Hungary; (E.A.J.); (E.S.); (D.B.-C.); (B.K.P.); (A.F.); (B.B.)
| | - Beáta Barnabás
- Biological Resources Department, HUN-REN Centre for Agricultural Research, 2462 Martonvásár, Hungary; (E.A.J.); (E.S.); (D.B.-C.); (B.K.P.); (A.F.); (B.B.)
| | - Katalin Jäger
- Biological Resources Department, HUN-REN Centre for Agricultural Research, 2462 Martonvásár, Hungary; (E.A.J.); (E.S.); (D.B.-C.); (B.K.P.); (A.F.); (B.B.)
| |
Collapse
|
95
|
Nawaz M, Sun J, Shabbir S, Khattak WA, Ren G, Nie X, Bo Y, Javed Q, Du D, Sonne C. A review of plants strategies to resist biotic and abiotic environmental stressors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165832. [PMID: 37524179 DOI: 10.1016/j.scitotenv.2023.165832] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Plants exposed to a variety of abiotic and biotic stressors including environmental pollution and global warming pose significant threats to biodiversity and ecosystem services. Despite substantial literature documenting how plants adapt to distinct stressors, there still is a lack of knowledge regarding responses to multiple stressors and how these affects growth and development. Exposure of plants to concurrent biotic and abiotic stressors such as cadmium and drought, leads to pronounced inhibition in above ground biomass, imbalance in oxidative homeostasis, nutrient assimilation and stunted root growth, elucidating the synergistic interactions of multiple stressors culminating in adverse physiological outcomes. Impact of elevated heavy metal and water deficit exposure extends beyond growth and development, influencing the biodiversity of the microenvironment including the rhizosphere nutrient profile and microbiome. These findings have significant implications for plant-stress interactions and ecosystem functioning that prompt immediate action in order to eliminate effect of pollution and address global environmental issues to promote sustainable tolerance for multiple stress combinations in plants. Here, we review plant tolerance against stress combinations, highlighting the need for interdisciplinary approaches and advanced technologies, such as omics and molecular tools, to achieve a comprehensive understanding of underlying stress tolerance mechanisms. To accelerate progress towards developing stress-tolerance in plants against multiple environmental stressors, future research in plant stress tolerance should adopt a collaborative approach, involving researchers from multiple disciplines with diverse expertise and resources.
Collapse
Affiliation(s)
- Mohsin Nawaz
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianfan Sun
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Samina Shabbir
- Department of Chemistry, The Women University Multan, Pakistan
| | - Wajid Ali Khattak
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guangqian Ren
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanwen Bo
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qaiser Javed
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daolin Du
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Christian Sonne
- Aarhus University, Faculty of Technological Sciences, Department of Ecoscience, Frederiksborgvej 399, 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
96
|
Mohan N, Jhandai S, Bhadu S, Sharma L, Kaur T, Saharan V, Pal A. Acclimation response and management strategies to combat heat stress in wheat for sustainable agriculture: A state-of-the-art review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111834. [PMID: 37597666 DOI: 10.1016/j.plantsci.2023.111834] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/06/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Unpredicted variability in climate change on the planet is associated with frequent extreme high-temperature events impacting crop yield globally. Wheat is an economically and nutritionally important crop that fulfils global food requirements and each degree rise in temperature results in ∼6% of its yield reduction. Thus, understanding the impact of climate change, especially the terminal heat stress on global wheat production, becomes critically important for policymakers, crop breeders, researchers and scientists to ensure global food security. This review describes how wheat perceives heat stress and induces stress adaptation events by its morpho-physiological, phenological, molecular, and biochemical makeup. Temperature above a threshold level in crop vicinity leads to irreversible injuries, viz. destruction of cellular membranes and enzymes, generation of active oxygen species, redox imbalance, etc. To cope with these changes, wheat activates its heat tolerance mechanisms characterized by hoarding up soluble carbohydrates, signalling molecules, and heat tolerance gene expressions. Being vulnerable to heat stress, increasing wheat production without delay seeks strategies to mitigate the detrimental effects and provoke the methods for its sustainable development. Thus, to ensure the crop's resilience to stress and increasing food demand, this article circumscribes the integrated management approaches to enhance wheat's performance and adaptive capacity besides its alleviating risks of increasing temperature anticipated with climate change. Implementing these integrated strategies in the face of risks from rising temperatures will assist us in producing sustainable wheat with improved yield.
Collapse
Affiliation(s)
- Narender Mohan
- Department of Biochemistry, College of Basic Sciences and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004, India.
| | - Sonia Jhandai
- Department of Biochemistry, College of Basic Sciences and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004, India
| | - Surina Bhadu
- Department of Biochemistry, College of Basic Sciences and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004, India
| | - Lochan Sharma
- Department of Nematology, College of Agriculture, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004, India
| | - Taranjeet Kaur
- Department of Biochemistry, College of Basic Sciences and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004, India
| | - Vinod Saharan
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan 313001, India
| | - Ajay Pal
- Department of Biochemistry, College of Basic Sciences and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004, India
| |
Collapse
|
97
|
Priya P, Patil M, Pandey P, Singh A, Babu VS, Senthil-Kumar M. Stress combinations and their interactions in plants database: a one-stop resource on combined stress responses in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1097-1117. [PMID: 37824297 DOI: 10.1111/tpj.16497] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/23/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
We have developed a compendium and interactive platform, named Stress Combinations and their Interactions in Plants Database (SCIPDb; http://www.nipgr.ac.in/scipdb.php), which offers information on morpho-physio-biochemical (phenome) and molecular (transcriptome and metabolome) responses of plants to different stress combinations. SCIPDb is a plant stress informatics hub for data mining on phenome, transcriptome, trait-gene ontology, and data-driven research for advancing mechanistic understanding of combined stress biology. We analyzed global phenome data from 939 studies to delineate the effects of various stress combinations on yield in major crops and found that yield was substantially affected under abiotic-abiotic stresses. Transcriptome datasets from 36 studies hosted in SCIPDb identified novel genes, whose roles have not been earlier established in combined stress. Integretome analysis under combined drought-heat stress pinpointed carbohydrate, amino acid, and energy metabolism pathways as the crucial metabolic, proteomic, and transcriptional components in plant tolerance to combined stress. These examples illustrate the application of SCIPDb in identifying novel genes and pathways involved in combined stress tolerance. Further, we showed the application of this database in identifying novel candidate genes and pathways for combined drought and pathogen stress tolerance. To our knowledge, SCIPDb is the only publicly available platform offering combined stress-specific omics big data visualization tools, such as an interactive scrollbar, stress matrix, radial tree, global distribution map, meta-phenome analysis, search, BLAST, transcript expression pattern table, Manhattan plot, and co-expression network. These tools facilitate a better understanding of the mechanisms underlying plant responses to combined stresses.
Collapse
Affiliation(s)
- Piyush Priya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Mahesh Patil
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Prachi Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Anupriya Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Vishnu Sudha Babu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Muthappa Senthil-Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| |
Collapse
|
98
|
Yonny ME, Toscano Adamo ML, Rodríguez Torresi A, Reversat G, Zhou B, Oger C, Galano JM, Durand T, Vigor C, Nazareno MA. Oxidative stress mitigation in horticultural crops using foliar applications of Ilex paraguariensis extract: a dose-dependent study. PHYSIOLOGIA PLANTARUM 2023; 175:e14066. [PMID: 38148241 DOI: 10.1111/ppl.14066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/10/2023] [Indexed: 12/28/2023]
Abstract
Abiotic stress has been shown to induce the formation of reactive oxygen species (ROS) in plant cells. When the level of ROS surpasses the capacity of the endogenous defence mechanism, oxidative stress status is reached, leading to plant damage and a drop in crop productivity. Under oxidative stress conditions, ROS can react with polyunsaturated fatty acids to form oxidized derivatives called phytoprostanes (PhytoPs) and phytofurans (PhytoFs), which are recognized as biomarkers of oxidative damage advance. Modern agriculture proposes the use of biostimulants as a sustainable strategy to alleviate the negative effects of oxidative stress on plants. This work evaluates the dose effect of natural antioxidant extract to mitigate the oxidative-stress deleterious effects in melon and sweet pepper exposed to thermal stress. The plants were sprayed with Ilex paraguariensis (IP) aqueous extract in three different concentrations before exposure to abiotic stress. PhytoP and PhytoF levels were determined in the leaves of melon and pepper plants. IP1 and IP2 were effective against oxidative stress in both plants, with IP1 being the most protective one. IP1 decreased the levels of PhytoPs and PhytoFs by roughly 44% in both melon plants and pepper plants. The yield, with IP1, increased by 57 and 39% in stressed melon and pepper plants, respectively. IP3 foliar application in melon plants induced a pro-oxidant effect rather than the expected mitigating action. However, in sweet pepper plants, IP3 decreased the oxidative stress progress and increased the fruit yield.
Collapse
Affiliation(s)
- Melisa E Yonny
- Instituto de Ciencias Químicas- Facultad de Agronomía y Agroindustrias -Universidad Nacional de Santiago del Estero. CONICET. Santiago del Estero, Argentina
| | - María L Toscano Adamo
- Instituto de Ciencias Químicas- Facultad de Agronomía y Agroindustrias -Universidad Nacional de Santiago del Estero. CONICET. Santiago del Estero, Argentina
| | | | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Binqging Zhou
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Mónica A Nazareno
- Instituto de Ciencias Químicas- Facultad de Agronomía y Agroindustrias -Universidad Nacional de Santiago del Estero. CONICET. Santiago del Estero, Argentina
| |
Collapse
|
99
|
Tran KN, Pantha P, Wang G, Kumar N, Wijesinghege C, Oh DH, Wimalagunasekara S, Duppen N, Li H, Hong H, Johnson JC, Kelt R, Matherne MG, Nguyen TT, Garcia JR, Clement A, Tran D, Crain C, Adhikari P, Zhang Y, Foroozani M, Sessa G, Larkin JC, Smith AP, Longstreth D, Finnegan P, Testerink C, Barak S, Dassanayake M. Balancing growth amidst salt stress - lifestyle perspectives from the extremophyte model Schrenkiella parvula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:921-941. [PMID: 37609706 DOI: 10.1111/tpj.16396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/08/2023] [Indexed: 08/24/2023]
Abstract
Schrenkiella parvula, a leading extremophyte model in Brassicaceae, can grow and complete its lifecycle under multiple environmental stresses, including high salinity. Yet, the key physiological and structural traits underlying its stress-adapted lifestyle are unknown along with trade-offs when surviving salt stress at the expense of growth and reproduction. We aimed to identify the influential adaptive trait responses that lead to stress-resilient and uncompromised growth across developmental stages when treated with salt at levels known to inhibit growth in Arabidopsis and most crops. Its resilient growth was promoted by traits that synergistically allowed primary root growth in seedlings, the expansion of xylem vessels across the root-shoot continuum, and a high capacity to maintain tissue water levels by developing thicker succulent leaves while enabling photosynthesis during salt stress. A successful transition from vegetative to reproductive phase was initiated by salt-induced early flowering, resulting in viable seeds. Self-fertilization in salt-induced early flowering was dependent upon filament elongation in flowers otherwise aborted in the absence of salt during comparable plant ages. The maintenance of leaf water status promoting growth, and early flowering to ensure reproductive success in a changing environment, were among the most influential traits that contributed to the extremophytic lifestyle of S. parvula.
Collapse
Affiliation(s)
- Kieu-Nga Tran
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Pramod Pantha
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Guannan Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Narender Kumar
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Chathura Wijesinghege
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Samadhi Wimalagunasekara
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Nick Duppen
- Albert Katz International School for Desert Studies, Ben-Gurion University of the Negev, Sde Boqer Campus, Beersheba, 8499000, Israel
| | - Hongfei Li
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| | - Hyewon Hong
- Department of Plant Biology, University of Illinois, Urbana-Champaign, Illinois, 61801, USA
| | - John C Johnson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Ross Kelt
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Megan G Matherne
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Thu T Nguyen
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Jason R Garcia
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Ashley Clement
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - David Tran
- Department of Biochemistry & Department of Psychology, University of Miami, Coral Gables, Florida, 33146, USA
| | - Colt Crain
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
- Louisiana School for Math, Science and the Arts, Natchitoches, Louisiana, 71457, USA
| | - Prava Adhikari
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| | - Maryam Foroozani
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Guido Sessa
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - John C Larkin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Aaron P Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - David Longstreth
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Patrick Finnegan
- School of Biological Sciences, University of Western Australia, Perth, 6009, Australia
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| | - Simon Barak
- French Associates' Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boqer Campus, Beersheba, 8499000, Israel
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| |
Collapse
|
100
|
Sinha R, Induri SP, Peláez-Vico MÁ, Tukuli A, Shostak B, Zandalinas SI, Joshi T, Fritschi FB, Mittler R. The transcriptome of soybean reproductive tissues subjected to water deficit, heat stress, and a combination of water deficit and heat stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1064-1080. [PMID: 37006191 DOI: 10.1111/tpj.16222] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Global warming and climate change are driving an alarming increase in the frequency and intensity of extreme climate events, such as droughts, heat waves, and their combination, inflicting heavy losses to agricultural production. Recent studies revealed that the transcriptomic responses of different crops to water deficit (WD) or heat stress (HS) are very different from that to a combination of WD + HS. In addition, it was found that the effects of WD, HS, and WD + HS are significantly more devastating when these stresses occur during the reproductive growth phase of crops, compared to vegetative growth. As the molecular responses of different reproductive and vegetative tissues of plants to WD, HS, or WD + HS could be different from each other and these differences could impact many current and future attempts to enhance the resilience of crops to climate change through breeding and/or engineering, we conducted a transcriptomic analysis of different soybean (Glycine max) tissues to WD, HS, and WD + HS. Here we present a reference transcriptomic dataset that includes the response of soybean leaf, pod, anther, stigma, ovary, and sepal to WD, HS, and WD + HS conditions. Mining this dataset for the expression pattern of different stress response transcripts revealed that each tissue had a unique transcriptomic response to each of the different stress conditions. This finding is important as it suggests that enhancing the overall resilience of crops to climate change could require a coordinated approach that simultaneously alters the expression of different groups of transcripts in different tissues in a stress-specific manner.
Collapse
Affiliation(s)
- Ranjita Sinha
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Sai Preethi Induri
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - María Ángeles Peláez-Vico
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Adama Tukuli
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Benjamin Shostak
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Sara I Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - Trupti Joshi
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
- Institute for Data Science and Informatics and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
- Department of Health Management and Informatics, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Felix B Fritschi
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Ron Mittler
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65201, USA
| |
Collapse
|