51
|
Al-Hatamleh MAI, Hatmal MM, Alshaer W, Rahman ENSEA, Mohd-Zahid MH, Alhaj-Qasem DM, Yean CY, Alias IZ, Jaafar J, Ferji K, Six JL, Uskoković V, Yabu H, Mohamud R. COVID-19 infection and nanomedicine applications for development of vaccines and therapeutics: An overview and future perspectives based on polymersomes. Eur J Pharmacol 2021; 896:173930. [PMID: 33545157 PMCID: PMC7857087 DOI: 10.1016/j.ejphar.2021.173930] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which emerged in December 2019 and caused the coronavirus disease 2019 (COVID-19) pandemic, took the world by surprise with an unprecedented public health emergency. Since this pandemic began, extraordinary efforts have been made by scientists to understand the pathogenesis of COVID-19, and to fight the infection by providing various preventive, diagnostic and treatment opportunities based on either novel hypotheses or past experiences. Despite all the achievements, COVID-19 continues to be an accelerating health threat with no specifically approved vaccine or therapy. This review highlights the recent advances in COVID-19 infection, with a particular emphasis on nanomedicine applications that can help in the development of effective vaccines or therapeutics against COVID-19. A novel future perspective has been proposed in this review based on utilizing polymersome nano-objects for effectively suppressing the cytokine storm, which may reduce the severity of COVID-19 infection.
Collapse
Affiliation(s)
- Mohammad A I Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Ma'mon M Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman, 11942, Jordan
| | - Engku Nur Syafirah E A Rahman
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Manali Haniti Mohd-Zahid
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | | | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Iskandar Z Alias
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor, Malaysia
| | - Khalid Ferji
- Université de Lorraine, CNRS, LCPM, F-5400, Nancy, France
| | - Jean-Luc Six
- Université de Lorraine, CNRS, LCPM, F-5400, Nancy, France
| | | | - Hiroshi Yabu
- WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia.
| |
Collapse
|
52
|
Pouyan P, Nie C, Bhatia S, Wedepohl S, Achazi K, Osterrieder N, Haag R. Inhibition of Herpes Simplex Virus Type 1 Attachment and Infection by Sulfated Polyglycerols with Different Architectures. Biomacromolecules 2021; 22:1545-1554. [PMID: 33706509 DOI: 10.1021/acs.biomac.0c01789] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inhibition of herpes simplex virus type 1 (HSV-1) binding to the host cell surface by highly sulfated architectures is among the promising strategies to prevent virus entry and infection. However, the structural flexibility of multivalent inhibitors plays a major role in effective blockage and inhibition of virus receptors. In this study, we demonstrate the inhibitory effect of a polymer scaffold on the HSV-1 infection by using highly sulfated polyglycerols with different architectures (linear, dendronized, and hyperbranched). IC50 values for all synthesized sulfated polyglycerols and the natural sulfated polymer heparin were determined using plaque reduction infection assays. Interestingly, an increase in the IC50 value from 0.03 to 374 nM from highly flexible linear polyglycerol sulfate (LPGS) to less flexible scaffolds, namely, dendronized polyglycerol sulfate and hyperbranched polyglycerol sulfate was observed. The most potent LPGS inhibits HSV-1 infection 295 times more efficiently than heparin, and we show that LPGS has a much reduced anticoagulant capacity when compared to heparin as evidenced by measuring the activated partial thromboplastin time. Furthermore, prevention of infection by LPGS and the commercially available drug acyclovir were compared. All tested sulfated polymers do not show any cytotoxicity at concentrations of up to 1 mg/mL in different cell lines. We conclude from our results that more flexible polyglycerol sulfates are superior to less flexible sulfated polymers with respect to inhibition of HSV-1 infection and may constitute an alternative to the current antiviral treatments of this ubiquitous pathogen.
Collapse
Affiliation(s)
- Paria Pouyan
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| | - Chuanxiong Nie
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany.,Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Street 7-13, Berlin 14163, Germany
| | - Sumati Bhatia
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| | - Stefanie Wedepohl
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee. 22, Berlin 14195, Germany
| | - Katharina Achazi
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee. 22, Berlin 14195, Germany
| | - Nikolaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Street 7-13, Berlin 14163, Germany.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong TYB-1B-507, Hong Kong
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| |
Collapse
|
53
|
Rosa V, Ho D, Sabino-Silva R, Siqueira WL, Silikas N. Fighting viruses with materials science: Prospects for antivirus surfaces, drug delivery systems and artificial intelligence. Dent Mater 2021; 37:496-507. [PMID: 33441249 PMCID: PMC7834288 DOI: 10.1016/j.dental.2020.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Viruses on environmental surfaces, in saliva and other body fluids represent risk of contamination for general population and healthcare professionals. The development of vaccines and medicines is costly and time consuming. Thus, the development of novel materials and technologies to decrease viral availability, viability, infectivity, and to improve therapeutic outcomes can positively impact the prevention and treatment of viral diseases. METHODS Herein, we discuss (a) interaction mechanisms between viruses and materials, (b) novel strategies to develop materials with antiviral properties and oral antiviral delivery systems, and (c) the potential of artificial intelligence to design and optimize preventive measures and therapeutic regimen. RESULTS The mechanisms of viral adsorption on surfaces are well characterized but no major breakthrough has become clinically available. Materials with fine-tuned physical and chemical properties have the potential to compromise viral availability and stability. Emerging strategies using oral antiviral delivery systems and artificial intelligence can decrease infectivity and improve antiviral therapies. SIGNIFICANCE Emerging viral infections are concerning due to risk of mortality, as well as psychological and economic impacts. Materials science emerges for the development of novel materials and technologies to diminish viral availability, infectivity, and to enable enhanced preventive and therapeutic strategies, for the safety and well-being of humankind.
Collapse
Affiliation(s)
- Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore; Craniofacial Research and Innovation Center, National University of Singapore, Singapore.
| | - Dean Ho
- The N.1 Institute for Health (N.1), Institute for Digital Medicine (WisDM), Department of Biomedical Engineering, and Department of Pharmacology, National University of Singapore, Singapore.
| | - Robinson Sabino-Silva
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Brazil.
| | | | - Nikolaos Silikas
- Division of Dentistry, School of Medical Sciences, University of Manchester, United Kingdom.
| |
Collapse
|
54
|
Donskyi IS, Nie C, Ludwig K, Trimpert J, Ahmed R, Quaas E, Achazi K, Radnik J, Adeli M, Haag R, Osterrieder K. Graphene Sheets with Defined Dual Functionalities for the Strong SARS-CoV-2 Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007091. [PMID: 33533178 PMCID: PMC7995151 DOI: 10.1002/smll.202007091] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/05/2021] [Indexed: 05/11/2023]
Abstract
Search of new strategies for the inhibition of respiratory viruses is one of the urgent health challenges worldwide, as most of the current therapeutic agents and treatments are inefficient. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic and has taken lives of approximately two million people to date. Even though various vaccines are currently under development, virus, and especially its spike glycoprotein can mutate, which highlights a need for a broad-spectrum inhibitor. In this work, inhibition of SARS-CoV-2 by graphene platforms with precise dual sulfate/alkyl functionalities is investigated. A series of graphene derivatives with different lengths of aliphatic chains is synthesized and is investigated for their ability to inhibit SARS-CoV-2 and feline coronavirus. Graphene derivatives with long alkyl chains (>C9) inhibit coronavirus replication by virtue of disrupting viral envelope. The ability of these graphene platforms to rupture viruses is visualized by atomic force microscopy and cryogenic electron microscopy. A large concentration window (10 to 100-fold) where graphene platforms display strongly antiviral activity against native SARS-CoV-2 without significant toxicity against human cells is found. In this concentration range, the synthesized graphene platforms inhibit the infection of enveloped viruses efficiently, opening new therapeutic and metaphylactic avenues against SARS-CoV-2.
Collapse
Affiliation(s)
- Ievgen S. Donskyi
- Institut für Chemie und BiochemieFreie Universität BerlinTakustr. 314195BerlinGermany
- BAM – Federal Institute for Material Science and TestingDivision of Surface Analysis, and Interfacial ChemistryUnter den Eichen 44‐4612205BerlinGermany
| | - Chuanxiong Nie
- Institut für Chemie und BiochemieFreie Universität BerlinTakustr. 314195BerlinGermany
- Institut für VirologieRobert von Ostertag‐HausZentrum für InfektionsmedizinFreie Universität BerlinRobert‐von‐Ostertag‐Str. 7‐1314163BerlinGermany
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie and Core Facility BioSupraMolInstitut für Chemie und BiochemieFreie Universität BerlinFabeckstr. 36a14195BerlinGermany
| | - Jakob Trimpert
- Institut für VirologieRobert von Ostertag‐HausZentrum für InfektionsmedizinFreie Universität BerlinRobert‐von‐Ostertag‐Str. 7‐1314163BerlinGermany
| | - Rameez Ahmed
- Institut für Chemie und BiochemieFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Elisa Quaas
- Institut für Chemie und BiochemieFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Katharina Achazi
- Institut für Chemie und BiochemieFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Jörg Radnik
- BAM – Federal Institute for Material Science and TestingDivision of Surface Analysis, and Interfacial ChemistryUnter den Eichen 44‐4612205BerlinGermany
| | - Mohsen Adeli
- Department of ChemistryFaculty of ScienceLorestan UniversityKhorramabadIran
| | - Rainer Haag
- Institut für Chemie und BiochemieFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Klaus Osterrieder
- Institut für VirologieRobert von Ostertag‐HausZentrum für InfektionsmedizinFreie Universität BerlinRobert‐von‐Ostertag‐Str. 7‐1314163BerlinGermany
- Department of Infectious Diseases and Public HealthJockey Club College of Veterinary Medicine and Life SciencesCity University of Hong KongKowloon TongHong Kong
| |
Collapse
|
55
|
Reina G, Iglesias D, Samorì P, Bianco A. Graphene: A Disruptive Opportunity for COVID-19 and Future Pandemics? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007847. [PMID: 33538037 PMCID: PMC7995107 DOI: 10.1002/adma.202007847] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Indexed: 05/19/2023]
Abstract
The graphene revolution, which has taken place during the last 15 years, has represented a paradigm shift for science. The extraordinary properties possessed by this unique material have paved the road to a number of applications in materials science, optoelectronics, energy, and sensing. Graphene-related materials (GRMs) are now produced in large scale and have found niche applications also in the biomedical technologies, defining new standards for drug delivery and biosensing. Such advances position GRMs as novel tools to fight against the current COVID-19 and future pandemics. In this regard, GRMs can play a major role in sensing, as an active component in antiviral surfaces or in virucidal formulations. Herein, the most promising strategies reported in the literature on the use of GRM-based materials against the COVID-19 pandemic and other types of viruses are showcased, with a strong focus on the impact of functionalization, deposition techniques, and integration into devices and surface coatings.
Collapse
Affiliation(s)
- Giacomo Reina
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572University of Strasbourg, ISISStrasbourg67000France
| | | | - Paolo Samorì
- University of Strasbourg, CNRS, ISISStrasbourg67000France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572University of Strasbourg, ISISStrasbourg67000France
- University of Strasbourg, CNRS, ISISStrasbourg67000France
| |
Collapse
|
56
|
Zhou J, Krishnan N, Jiang Y, Fang RH, Zhang L. Nanotechnology for virus treatment. NANO TODAY 2021; 36:101031. [PMID: 33519948 PMCID: PMC7836394 DOI: 10.1016/j.nantod.2020.101031] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 04/14/2023]
Abstract
The continued emergence of novel viruses poses a significant threat to global health. Uncontrolled outbreaks can result in pandemics that have the potential to overburden our healthcare and economic systems. While vaccination is a conventional modality that can be employed to promote herd immunity, antiviral vaccines can only be applied prophylactically and do little to help patients who have already contracted viral infections. During the early stages of a disease outbreak when vaccines are unavailable, therapeutic antiviral drugs can be used as a stopgap solution. However, these treatments do not always work against emerging viral strains and can be accompanied by adverse effects that sometimes outweigh the benefits. Nanotechnology has the potential to overcome many of the challenges facing current antiviral therapies. For example, nanodelivery vehicles can be employed to drastically improve the pharmacokinetic profile of antiviral drugs while reducing their systemic toxicity. Other unique nanomaterials can be leveraged for their virucidal or virus-neutralizing properties. In this review, we discuss recent developments in antiviral nanotherapeutics and provide a perspective on the application of nanotechnology to the SARS-CoV-2 outbreak and future virus pandemics.
Collapse
Affiliation(s)
- Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yao Jiang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
57
|
Pandey A, Nikam AN, Mutalik SP, Fernandes G, Shreya AB, Padya BS, Raychaudhuri R, Kulkarni S, Prassl R, Subramanian S, Korde A, Mutalik S. Architectured Therapeutic and Diagnostic Nanoplatforms for Combating SARS-CoV-2: Role of Inorganic, Organic, and Radioactive Materials. ACS Biomater Sci Eng 2021; 7:31-54. [PMID: 33371667 PMCID: PMC7783900 DOI: 10.1021/acsbiomaterials.0c01243] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022]
Abstract
Although extensive research is being done to combat SARS-CoV-2, we are yet far away from a robust conclusion or strategy. With an increased amount of vaccine research, nanotechnology has found its way into vaccine technology. Researchers have explored the use of various nanostructures for delivering the vaccines for enhanced efficacy. Apart from acting as delivery platforms, multiple studies have shown the application of inorganic nanoparticles in suppressing the growth as well as transmission of the virus. The present review gives a detailed description of various inorganic nanomaterials which are being explored for combating SARS-CoV-2 along with their role in suppressing the transmission of the virus either through air or by contact with inanimate surfaces. The review further discusses the use of nanoparticles for development of an antiviral coating that may decrease adhesion of SARS-CoV-2. A separate section has been included describing the role of nanostructures in biosensing and diagnosis of SARS-CoV-2. The role of nanotechnology in providing an alternative therapeutic platform along with the role of radionuclides in SARS-CoV-2 has been described briefly. Based on ongoing research and commercialization of this nanoplatform for a viral disease, the nanomaterials show the potential in therapy, biosensing, and diagnosis of SARS-CoV-2.
Collapse
Affiliation(s)
- Abhijeet Pandey
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Ajinkya N. Nikam
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Sadhana P. Mutalik
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Gasper Fernandes
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Ajjappla Basavaraj Shreya
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Bharath Singh Padya
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Ruchira Raychaudhuri
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Sanjay Kulkarni
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Ruth Prassl
- Gottfried
Schatz Research Centre for Cell Signalling, Metabolism and Aging, Medical University of Graz, 8036 Graz, Austria
| | - Suresh Subramanian
- Radiopharmaceuticals
Division, Bhabha Atomic Research Centre, Mumbai-400094, Maharashtra, India
| | - Aruna Korde
- Radioisotope
Products and Radiation Technology Section, International Atomic Energy Agency, 1400 Vienna, Austria
| | - Srinivas Mutalik
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| |
Collapse
|
58
|
Li R, Cui L, Chen M, Huang Y. Nanomaterials for Airborne Virus Inactivation: A Short Review. AEROSOL SCIENCE AND ENGINEERING 2021; 5:1-11. [PMCID: PMC7596633 DOI: 10.1007/s41810-020-00080-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 05/18/2023]
Abstract
The coronavirus disease 2019 (COVID-19) that broke out at the end of 2019 spread rapidly around the world, causing a large number of deaths and serious economic losses. Previous studies showed that aerosol transmission is one of the main pathways for the spread of COVID-19, Therefore, effective control measures are urgently needed to contain the epidemic. Nanomaterials have broad-spectrum antiviral capabilities, and their inactivation for viruses in the air has been extensively studied. This review discusses antiviral nanomaterials such as metal nanomaterials, metal oxide-based nano-photocatalysts, and nonmetallic nanomaterials; summarizes their structure and chemical properties, the efficiency of inactivating viruses, the mechanism of inactivating viruses, and the application of virus purification in the air. This review provides insights on the development and application of antiviral nanomaterials, which can help control the aerosol transmission of viruses.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061 People’s Republic of China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, 710061 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Long Cui
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061 People’s Republic of China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, 710061 People’s Republic of China
| | - Meijuan Chen
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Yu Huang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061 People’s Republic of China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, 710061 People’s Republic of China
| |
Collapse
|
59
|
Tharayil A, Rajakumari R, Kumar A, Choudhary MD, Palit P, Thomas S. New insights into application of nanoparticles in the diagnosis and screening of novel coronavirus (SARS-CoV-2). EMERGENT MATERIALS 2021; 4:101-117. [PMID: 33817553 PMCID: PMC8010296 DOI: 10.1007/s42247-021-00182-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/03/2021] [Indexed: 05/15/2023]
Abstract
Novel coronavirus disease 2019 (COVID-19) is by far the worst pandemic disease in the current millennium. The first human-to-human transmission was observed in December 2019 in China and is caused by the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has infected millions of people within months across the globe. SARS-CoV-2 is a spike protein enveloped virus with particle-like characteristics and a diameter of 60-140 nm. Real-time PCR, reverse transcriptase PCR, isothermal PCR, immunological-based detection technique and nano-based diagnostic system have been explained for the identification and differentiation of different types of virus including SARS-COV-2. Synthetic nanoparticles can closely mimic the virus and interact strongly with its virulent proteins due to their morphological similarities. Some of the antiviral nanomaterials are also discussed, for example zinc oxide nanoparticle is an antiviral agent with a tetrapod morphology that mimics the cell surface by interacting with the viral capsid. It suppressed the viral proteins upon UV radiation due to reaction caused by photocatalysis. Hence, nanoparticle-based strategies for tackling viruses have immense potential. The second part of the review points to the latest in vitro and in vivo procedures for screening viral particles and the usage of nanoparticles in diagnostic and therapeutics. This would be beneficial for early detection and assists for the safe and effective therapeutic management of COVID-19.
Collapse
Affiliation(s)
- Abhimanyu Tharayil
- School of Energy Materials, Mahatma Gandhi University, Kerala, 686560 India
| | - R. Rajakumari
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kerala, 686560 India
| | - Amresh Kumar
- Department of Life Sciences and Bioinformatics, Assam University, Silchar, India
| | | | - Parth Palit
- Department of Pharmaceutical Sciences, Assam University, Silchar, India
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kerala, 686560 India
- School of Chemical Sciences, Mahatma Gandhi University, Kerala, 686560 India
| |
Collapse
|
60
|
Sengupta J, Hussain CM. Carbon nanomaterials to combat virus: A perspective in view of COVID-19. CARBON TRENDS 2021; 2:100019. [PMID: 38620887 PMCID: PMC7834913 DOI: 10.1016/j.cartre.2020.100019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 05/12/2023]
Abstract
The rapid outbreaks of lethal viruses necessitate the development of novel antiviral substance. Besides the conventional antiviral substances, biocompatible nanomaterials also have significant potential in combating the virus at various stages of infection. Carbon nanomaterials have an impressive record against viruses and can deal with many crucial healthcare issues. In accordance with the published literature, biocompatible carbon nanomaterials have a promising prospect as an antiviral substance. Subsequently, the antiviral properties of different carbon nanomaterials namely fullerene, carbon nanotube, carbon dot and graphene oxide have been reviewed.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science Jogesh Chandra Chaudhuri College (Affiliated to University of Calcutta), Kolkata 700033, West Bengal, India
| | | |
Collapse
|
61
|
Jazie AA, Albaaji AJ, Abed SA. A review on recent trends of antiviral nanoparticles and airborne filters: special insight on COVID-19 virus. AIR QUALITY, ATMOSPHERE, & HEALTH 2021; 14:1811-1824. [PMID: 34178182 PMCID: PMC8211456 DOI: 10.1007/s11869-021-01055-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 06/01/2021] [Indexed: 05/10/2023]
Abstract
Novel corona virus (COVID-19) pandemic in the last 4 months stimulates the international scientific community to search for vaccine of antiviral agents suitable for in activating the virus inside and outside the human body. More than 4 million people globally are infected by the virus and about 300,000 dead cases until this moment. The ventilation and airborne filters are also investigated aiming to develop an efficient antiviral filtration technology. Human secretion of the infected person as nasal or saliva droplets goes as airborne and distributes the virus everywhere around the person. N95 and N98 filters are the must use filters for capturing particles of sizes around 300 nm. The average size of the novel corona virus (COVID-19) is 100 nm and there is no standard or special filter suitable for this virus. The nanoparticle-coated airborne filter is a suitable technique in this regard. While the efficiency of this type of filters still needs to be enhanced, new developed nanofiber filters are proposed. Most recently, the charged nanofiber filters of sizes below 100 nm are developed and provide an efficient viral filtration and inactivation. The efficiency of filter must be kept at accepted level without increasing the pressure drop. The present review outlines the most efficient antiviral nanoparticles including the recent functional nanoparticles. The filtration theory, filtration modeling, filter testing, and different types of filter with special concentration on the charged nanofiber filter were discussed. The charged nanofiber filter able to capture novel corona virus (COVID-19) with 94% efficiency and a pressure drop less than 20 MPa.
Collapse
Affiliation(s)
- Ali A. Jazie
- Chemical Engineering Department, Engineering College, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Amar J. Albaaji
- Materials Engineering Department, Engineering College, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Suhad A. Abed
- Department of Biology, College of Education, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| |
Collapse
|
62
|
Ménard-Moyon C, Bianco A, Kalantar-Zadeh K. Two-Dimensional Material-Based Biosensors for Virus Detection. ACS Sens 2020; 5:3739-3769. [PMID: 33226779 DOI: 10.1021/acssensors.0c01961] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Viral infections are one of the major causes of mortality and economic losses worldwide. Consequently, efficient virus detection methods are crucial to determine the infection prevalence. However, most detection methods face challenges related to false-negative or false-positive results, long response times, high costs, and/or the need for specialized equipment and staff. Such issues can be overcome by access to low-cost and fast response point-of-care detection systems, and two-dimensional materials (2DMs) can play a critical role in this regard. Indeed, the unique and tunable physicochemical properties of 2DMs provide many advantages for developing biosensors for viral infections with high sensitivity and selectivity. Fast, accurate, and reliable detection, even at early infection stages by the virus, can be potentially enabled by highly accessible surface interactions between the 2DMs and the analytes. High selectivity can be obtained by functionalization of the 2DMs with antibodies, nucleic acids, proteins, peptides, or aptamers, allowing for specific binding to a particular virus, viral fingerprints, or proteins released by the host organism. Multiplexed detection and discrimination between different virus strains are also feasible. In this Review, we present a comprehensive overview of the major advances of 2DM-based biosensors for the detection of viruses. We describe the main factors governing the efficient interactions between viruses and 2DMs, making them ideal candidates for the detection of viral infections. We also critically detail their advantages and drawbacks, providing insights for the development of future biosensors for virus detection. Lastly, we provide suggestions to stimulate research in the fast expanding field of 2DMs that could help in designing advanced systems for preventing virus-related pandemics.
Collapse
Affiliation(s)
- Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg 67000, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg 67000, France
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales, Kensington, New South Wales 2052, Australia
| |
Collapse
|
63
|
Seifi T, Kamali AR. Anti-pathogenic activity of graphene nanomaterials: A review. Colloids Surf B Biointerfaces 2020; 199:111509. [PMID: 33340933 DOI: 10.1016/j.colsurfb.2020.111509] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
Graphene and its derivatives are promising candidates for a variety of biological applications, among which, their anti-pathogenic properties are highly attractive due to the outstanding physicochemical characteristics of these novel nanomaterials. The antibacterial, antiviral and antifungal performances of graphene are increasingly becoming more important due to the pathogen's resistance to existing drugs. Despite this, the factors influencing the antibacterial activity of graphene nanomaterials, and consequently, the mechanisms involved are still controversial. This review aims to systematically summarize the literature, discussing various factors that affect the antibacterial performance of graphene materials, including the shape, size, functional group and the electrical conductivity of graphene flakes, as well as the concentration, contact time and the pH value of the graphene suspensions used in related microbial tests. We discuss the possible surface and edge interactions between bacterial cells and graphene nanomaterials, which cause antibacterial effects such as membrane/oxidative/photothermal stresses, charge transfer, entrapment and self-killing phenomena. This article reviews the anti-pathogenic activity of graphene nanomaterials, comprising their antibacterial, antiviral, antifungal and biofilm-forming performance, with an emphasis on the antibacterial mechanisms involved.
Collapse
Affiliation(s)
- Tahereh Seifi
- Energy and Environmental Materials Research Centre (E(2)MC), School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Ali Reza Kamali
- Energy and Environmental Materials Research Centre (E(2)MC), School of Metallurgy, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
64
|
Chen Y, Ma J, Xu M, Liu S. Antiviral nanoagents: More attention and effort needed? NANO TODAY 2020; 35:100976. [PMID: 32963581 PMCID: PMC7498411 DOI: 10.1016/j.nantod.2020.100976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 05/03/2023]
Abstract
The recent COVID-19 outbreak has increasingly engaged researchers in the search for effective antiviral drugs as well as therapeutic treatment options. The shortcomings of existing antiviral agents such as narrow spectrum and low bioavailability, can be overcome through the use of engineered nanomaterials, which, therefore, are considered as a significant next-generation therapeutic option. Thus, the development of novel antiviral nanoagents will certainly help address several future challenges and knowledge gaps.
Collapse
Affiliation(s)
- Yongjiu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
65
|
Srivastava AK, Dwivedi N, Dhand C, Khan R, Sathish N, Gupta MK, Kumar R, Kumar S. Potential of graphene-based materials to combat COVID-19: properties, perspectives, and prospects. MATERIALS TODAY. CHEMISTRY 2020; 18:100385. [PMID: 33106780 PMCID: PMC7577689 DOI: 10.1016/j.mtchem.2020.100385] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/18/2020] [Accepted: 10/16/2020] [Indexed: 05/19/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a new virus in the coronavirus family that causes coronavirus disease (COVID-19), emerges as a big threat to the human race. To date, there is no medicine and vaccine available for COVID-19 treatment. While the development of medicines and vaccines are essentially and urgently required, what is also extremely important is the repurposing of smart materials to design effective systems for combating COVID-19. Graphene and graphene-related materials (GRMs) exhibit extraordinary physicochemical, electrical, optical, antiviral, antimicrobial, and other fascinating properties that warrant them as potential candidates for designing and development of high-performance components and devices required for COVID-19 pandemic and other futuristic calamities. In this article, we discuss the potential of graphene and GRMs for healthcare applications and how they may contribute to fighting against COVID-19.
Collapse
Affiliation(s)
- A K Srivastava
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, 462026, India
| | - N Dwivedi
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, 462026, India
| | - C Dhand
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, 462026, India
| | - R Khan
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, 462026, India
| | - N Sathish
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, 462026, India
| | - M K Gupta
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, 462026, India
| | - R Kumar
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, 462026, India
| | - S Kumar
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, 462026, India
| |
Collapse
|
66
|
Jamalipour Soufi G, Iravani S. Nanomaterials against pathogenic viruses: greener and sustainable approaches. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1852252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
67
|
Zhao J, Huang S, Ravisankar P, Zhu H. Two-Dimensional Nanomaterials for Photoinduced Antibacterial Applications. ACS APPLIED BIO MATERIALS 2020; 3:8188-8210. [DOI: 10.1021/acsabm.0c00950] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jun Zhao
- Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Shuyi Huang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Priyaharshini Ravisankar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Houjuan Zhu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming Guangdong, 525000, P. R. China
| |
Collapse
|
68
|
Jennings MR, Parks RJ. Curcumin as an Antiviral Agent. Viruses 2020; 12:v12111242. [PMID: 33142686 PMCID: PMC7693600 DOI: 10.3390/v12111242] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022] Open
Abstract
Curcumin, the primary curcuminoid compound found in turmeric spice, has shown broad activity as an antimicrobial agent, limiting the replication of many different fungi, bacteria and viruses. In this review, we summarize recent studies supporting the development of curcumin and its derivatives as broad-spectrum antiviral agents.
Collapse
Affiliation(s)
- Morgan R. Jennings
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
- Correspondence: ; Tel.: +1-613-737-8123
| |
Collapse
|
69
|
Abstract
In the recent past, epidemics and pandemics caused by viral infections have had extraordinary effects on human life, leading to severe social and financial challenges. One such event related to the outbreak of the SARS-CoV-2 virus has already taken more than 917,417 lives globally (as of September 13, 2020). The nosocomial route of viral transmission has also been playing a significant role in the community spreading of viruses. Unfortunately, none of the existing strategies are apt for preventing the spread of viral infections. In order to contain the viral transmission, the principal target would be to stop the virus from reaching the otherwise healthy individuals. Nanomaterials, due to its unique physical and chemical properties, have been used to develop novel antiviral agents. In this review, we have discussed several nanotechnological strategies that can be used as an antiviral coating to inhibit viral transmission by preventing viral entry into the host cells.
Collapse
|
70
|
Singh M, Zannella C, Folliero V, Di Girolamo R, Bajardi F, Chianese A, Altucci L, Damasco A, Del Sorbo MR, Imperatore C, Rossi M, Valadan M, Varra M, Vergara A, Franci G, Galdiero M, Altucci C. Combating Actions of Green 2D-Materials on Gram Positive and Negative Bacteria and Enveloped Viruses. Front Bioeng Biotechnol 2020; 8:569967. [PMID: 33117781 PMCID: PMC7549698 DOI: 10.3389/fbioe.2020.569967] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/17/2020] [Indexed: 01/05/2023] Open
Abstract
Interactions of novel bi-dimensional nanomaterials and live matter such as bacteria and viruses represent an extremely hot topic due to the unique properties of the innovative nanomaterials, capable in some cases to exhibit bactericide and antiviral actions. The interactions between bacteria and viruses and two dimensional nanosheets are here investigated. We extensively studied the interaction between a gram-negative bacterium, Escherichia coli, and a gram-positive bacterium, Staphylococcus aureus, with two different types of 2D nanoflakes such as MoS2, belonging to the Transition Metal Dichalcogenides family, and Graphene Oxide. The same two types of nanomaterials were employed to study their antiviral action toward the Herpes simplex virus type-1, (HSV-1). The experimental results showed different bactericide impacts as well as different antiviral power between the two nanomaterials. The experimental findings were interpreted in bacteria on the base of the Derjaguin–Landau–Verwey–Overbeek theory. A simple kinetic model of bacterial growth in the presence of the interacting nanosheets is also elaborated, to explain the observed results. The experimental results in viruses are really novel and somewhat surprising, evidencing a stronger antiviral action of Graphene Oxide as compared to MoS2. Results in viruses are complicated to quantitatively interpret due to the complexity of the system under study, constituted by virus/host cell and nanoflake, and due to the lack of a well assessed theoretical context to refer to. Thus, these results are interpreted in terms of qualitative arguments based on the chemical properties of the interactors in the given solvent medium.
Collapse
Affiliation(s)
- Manjot Singh
- Laboratory of Bio-Nano-Photonics, Department of Physics "Ettore Pancini", University of Naples "Federico II", Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Veronica Folliero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Francesco Bajardi
- Laboratory of Bio-Nano-Photonics, Department of Physics "Ettore Pancini", University of Naples "Federico II", Naples, Italy.,Istituto Nazionale di Fisica Nucleare, Naples, Italy
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Achille Damasco
- Laboratory of Bio-Nano-Photonics, Department of Physics "Ettore Pancini", University of Naples "Federico II", Naples, Italy
| | | | | | - Manuela Rossi
- Department of Earth Science, Environment and Resources, University of Naples "Federico II", Naples, Italy
| | - Mohammadhassan Valadan
- Laboratory of Bio-Nano-Photonics, Department of Physics "Ettore Pancini", University of Naples "Federico II", Naples, Italy
| | - Michela Varra
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Alessandro Vergara
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Guanluigi Franci
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carlo Altucci
- Laboratory of Bio-Nano-Photonics, Department of Physics "Ettore Pancini", University of Naples "Federico II", Naples, Italy.,Istituto Nazionale di Fisica Nucleare, Naples, Italy
| |
Collapse
|
71
|
Reina G, Peng S, Jacquemin L, Andrade AF, Bianco A. Hard Nanomaterials in Time of Viral Pandemics. ACS NANO 2020; 14:9364-9388. [PMID: 32667191 PMCID: PMC7376974 DOI: 10.1021/acsnano.0c04117] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/15/2020] [Indexed: 05/05/2023]
Abstract
The SARS-Cov-2 pandemic has spread worldwide during 2020, setting up an uncertain start of this decade. The measures to contain infection taken by many governments have been extremely severe by imposing home lockdown and industrial production shutdown, making this the biggest crisis since the second world war. Additionally, the continuous colonization of wild natural lands may touch unknown virus reservoirs, causing the spread of epidemics. Apart from SARS-Cov-2, the recent history has seen the spread of several viral pandemics such as H2N2 and H3N3 flu, HIV, and SARS, while MERS and Ebola viruses are considered still in a prepandemic phase. Hard nanomaterials (HNMs) have been recently used as antimicrobial agents, potentially being next-generation drugs to fight viral infections. HNMs can block infection at early (disinfection, entrance inhibition) and middle (inside the host cells) stages and are also able to mitigate the immune response. This review is focused on the application of HNMs as antiviral agents. In particular, mechanisms of actions, biological outputs, and limitations for each HNM will be systematically presented and analyzed from a material chemistry point-of-view. The antiviral activity will be discussed in the context of the different pandemic viruses. We acknowledge that HNM antiviral research is still at its early stage, however, we believe that this field will rapidly blossom in the next period.
Collapse
Affiliation(s)
- Giacomo Reina
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572,
University of Strasbourg ISIS, 67000 Strasbourg,
France
| | - Shiyuan Peng
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572,
University of Strasbourg ISIS, 67000 Strasbourg,
France
| | - Lucas Jacquemin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572,
University of Strasbourg ISIS, 67000 Strasbourg,
France
| | - Andrés Felipe Andrade
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572,
University of Strasbourg ISIS, 67000 Strasbourg,
France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572,
University of Strasbourg ISIS, 67000 Strasbourg,
France
| |
Collapse
|
72
|
Gurunathan S, Qasim M, Choi Y, Do JT, Park C, Hong K, Kim JH, Song H. Antiviral Potential of Nanoparticles-Can Nanoparticles Fight Against Coronaviruses? NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1645. [PMID: 32825737 PMCID: PMC7557932 DOI: 10.3390/nano10091645] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/08/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Infectious diseases account for more than 20% of global mortality and viruses are responsible for about one-third of these deaths. Highly infectious viral diseases such as severe acute respiratory (SARS), Middle East respiratory syndrome (MERS) and coronavirus disease (COVID-19) are emerging more frequently and their worldwide spread poses a serious threat to human health and the global economy. The current COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of 27 July 2020, SARS-CoV-2 has infected over 16 million people and led to the death of more than 652,434 individuals as on 27 July 2020 while also causing significant economic losses. To date, there are no vaccines or specific antiviral drugs to prevent or treat COVID-19. Hence, it is necessary to accelerate the development of antiviral drugs and vaccines to help mitigate this pandemic. Non-Conventional antiviral agents must also be considered and exploited. In this regard, nanoparticles can be used as antiviral agents for the treatment of various viral infections. The use of nanoparticles provides an interesting opportunity for the development of novel antiviral therapies with a low probability of developing drug resistance compared to conventional chemical-based antiviral therapies. In this review, we first discuss viral mechanisms of entry into host cells and then we detail the major and important types of nanomaterials that could be used as antiviral agents. These nanomaterials include silver, gold, quantum dots, organic nanoparticles, liposomes, dendrimers and polymers. Further, we consider antiviral mechanisms, the effects of nanoparticles on coronaviruses and therapeutic approaches of nanoparticles. Finally, we provide our perspective on the future of nanoparticles in the fight against viral infections.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Muhammad Qasim
- Center of Bioengineering and Nanomedicine, Department of Food Science, University of Otago, Dunedin 9054, New Zealand;
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| |
Collapse
|
73
|
Liang L, Ahamed A, Ge L, Fu X, Lisak G. Advances in Antiviral Material Development. Chempluschem 2020; 85:2105-2128. [PMID: 32881384 PMCID: PMC7461489 DOI: 10.1002/cplu.202000460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
The rise in human pandemics demands prudent approaches in antiviral material development for disease prevention and treatment via effective protective equipment and therapeutic strategy. However, the current state of the antiviral materials research is predominantly aligned towards drug development and its related areas, catering to the field of pharmaceutical technology. This review distinguishes the research advances in terms of innovative materials exhibiting antiviral activities that take advantage of fast-developing nanotechnology and biopolymer technology. Essential concepts of antiviral principles and underlying mechanisms are illustrated, followed with detailed descriptions of novel antiviral materials including inorganic nanomaterials, organic nanomaterials and biopolymers. The biomedical applications of the antiviral materials are also elaborated based on the specific categorization. Challenges and future prospects are discussed to facilitate the research and development of protective solutions and curative treatments.
Collapse
Affiliation(s)
- Lili Liang
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Interdisciplinary Graduate ProgramNanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Ashiq Ahamed
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
- Laboratory of Molecular Science and EngineeringJohan Gadolin Process Chemistry Centre Åbo Akademi UniversityFI-20500Turku/ÅboFinland
| | - Liya Ge
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Xiaoxu Fu
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Grzegorz Lisak
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| |
Collapse
|
74
|
Zhou Y, Tong T, Jiang X, Fang L, Wu Y, Liang J, Xiao S. GSH-ZnS Nanoparticles Exhibit High-Efficiency and Broad-Spectrum Antiviral Activities via Multistep Inhibition Mechanisms. ACS APPLIED BIO MATERIALS 2020; 3:4809-4819. [PMID: 35021727 DOI: 10.1021/acsabm.0c00332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite the good biocompatibility and antibacterial activity of zinc sulfide nanoparticles (ZnS NPs), whether they possess antiviral activity is still unclear. Here, GSH-modified ZnS NPs (GSH-ZnS NPs) were synthesized and their significant antiviral activity was demonstrated using the Arteriviridae family RNA virus, porcine reproductive and respiratory syndrome virus (PRRSV), as a model. Mechanistically, GSH-ZnS NPs were shown to reduce PRRSV-induced ROS production to prevent PRRSV multiplication, with no activating effect on the interferon (IFN) signal pathway, the first defense line against virus infection. Furthermore, isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomic analysis of GSH-ZnS NP-treated cells revealed the involvement of numerous crucial proteins in virus proliferation, with vitronectin (VTN) being confirmed as an efficient PRRSV antagonist here. Furthermore, GSH-ZnS NPs were found to have potent antiviral effects on the Herpesviridae family DNA virus, pseudorabies virus (PRV), the Coronaviridae family positive-sense RNA virus, porcine epidemic diarrhea virus (PEDV), and the Rhabdoviridae family negative-stranded RNA virus, vesicular stomatitis virus (VSV), indicating their broad-spectrum antiviral activity against viruses from different families with various genome types. Overall, GSH-ZnS NP is a prospective candidate for the development of antiviral nanomaterials and may serve as a model for investigation of potential host restriction factors in combination with proteomics.
Collapse
Affiliation(s)
- Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Ting Tong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
- College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xiaohan Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
- College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yuan Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
- College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Jiangong Liang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
- College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
75
|
Palmieri V, Papi M. Can graphene take part in the fight against COVID-19? NANO TODAY 2020; 33:100883. [PMID: 32382315 PMCID: PMC7203038 DOI: 10.1016/j.nantod.2020.100883] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 04/14/2023]
Abstract
The pneumonia outbreak of coronavirus disease 2019 (COVID-19) represents a global issue. The bidimensional material graphene has captured much attention due to promising antimicrobial applications and has also demonstrated antiviral efficacy. In response to this global outbreak, we summarized the current state of knowledge of graphene and virus interaction as well as possible successful applications to fight COVID-19. Antibody-conjugated graphene sheets can rapidly detect targeted virus proteins and can be useful for large population screening, but also for the development of environmental sensors and filters, given the low cost of graphene materials. Functionalized graphene has demonstrated a good viral capture capacity that, combined with heat or light-mediated inactivation, could be used as a disinfectant. Graphene sensors arrays can be implemented on standard utility textiles and drug efficacy screening. Thanks to its high versatility, we foresee that graphene may have a leading role in the fight against COVID-19.
Collapse
Affiliation(s)
- V. Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Roma, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Roma, Italy
- Institute for Complex Systems (ISC), National Research Council (CNR), Rome, Italy
| | - M. Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Roma, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Roma, Italy
| |
Collapse
|
76
|
Matharu RK, Porwal H, Chen B, Ciric L, Edirisinghe M. Viral filtration using carbon-based materials. MEDICAL DEVICES & SENSORS 2020; 3:e10107. [PMID: 32838209 PMCID: PMC7323107 DOI: 10.1002/mds3.10107] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/06/2020] [Accepted: 11/06/2020] [Indexed: 12/25/2022]
Abstract
Viral infections alone are a significant cause of morbidity and mortality worldwide and have a detrimental impact on global healthcare and socio-economic development. The discovery of novel antiviral treatments has gained tremendous attention and support with the rising number of viral outbreaks. In this work, carbonaceous materials, including graphene nanoplatelets and graphene oxide nanosheets, were investigated for antiviral properties. The materials were characterized using scanning electron microscopy and transmission electron microscopy. Analysis showed the materials to be two-dimensional with lateral dimensions ranging between 1 and 4 µm for graphene oxide and 110 ± 0.11 nm for graphene nanoplatelets. Antiviral properties were assessed against a DNA virus model microorganism at concentrations of 0.5, 1.0 and 2.0 wt/v%. Both carbonaceous nanomaterials exhibited potent antiviral properties and gave rise to a viral reduction of 100% across all concentrations tested. Graphene oxide nanosheets were then incorporated into polymeric fibres, and their antiviral behaviour was examined after 3 and 24 hr. A viral reduction of 39% was observed after 24 hr of exposure. The research presented here showcases, for the first time, the antiviral potential of several carbonaceous nanomaterials, also included in a carrier polymer. These outcomes can be translated and implemented in many fields and devices to prevent viral spread and infection.
Collapse
Affiliation(s)
- Rupy Kaur Matharu
- Department of Mechanical EngineeringUniversity College LondonLondonUK
- Department of CivilEnvironmental and Geomatic EngineeringUniversity College LondonLondonUK
| | - Harshit Porwal
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonUK
| | - Biqiong Chen
- School of Mechanical and Aerospace EngineeringQueen's University BelfastBelfastUK
| | - Lena Ciric
- Department of CivilEnvironmental and Geomatic EngineeringUniversity College LondonLondonUK
| | - Mohan Edirisinghe
- Department of Mechanical EngineeringUniversity College LondonLondonUK
| |
Collapse
|
77
|
Innocenzi P, Stagi L. Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective. Chem Sci 2020; 11:6606-6622. [PMID: 33033592 PMCID: PMC7499860 DOI: 10.1039/d0sc02658a] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/13/2020] [Indexed: 12/19/2022] Open
Abstract
The appearance of new and lethal viruses and their potential threat urgently requires innovative antiviral systems. In addition to the most common and proven pharmacological methods, nanomaterials can represent alternative resources to fight viruses at different stages of infection, by selective action or in a broad spectrum. A fundamental requirement is non-toxicity. However, biocompatible nanomaterials have very often little or no antiviral activity, preventing their practical use. Carbon-based nanomaterials have displayed encouraging results and can present the required mix of biocompatibility and antiviral properties. In the present review, the main candidates for future carbon nanometric antiviral systems, namely graphene, carbon dots and fullerenes, have been critically analysed. In general, different carbon nanostructures allow several strategies to be applied. Some of the materials have peculiar antiviral properties, such as singlet oxygen emission, or the capacity to interfere with virus enzymes. In other cases, nanomaterials have been used as a platform for functional molecules able to capture and inhibit viral activity. The use of carbon-based biocompatible nanomaterials as antivirals is still an almost unexplored field, while the published results show promising prospects.
Collapse
Affiliation(s)
- Plinio Innocenzi
- Department of Chemistry and Pharmacy , Laboratory of Materials Science and Nanotechnology , CR-INSTM , University of Sassari , via Vienna 2 , Sassari , 07100 , Italy . ;
| | - Luigi Stagi
- Department of Chemistry and Pharmacy , Laboratory of Materials Science and Nanotechnology , CR-INSTM , University of Sassari , via Vienna 2 , Sassari , 07100 , Italy . ;
| |
Collapse
|
78
|
Chen L, Liang J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110924. [PMID: 32409074 PMCID: PMC7195146 DOI: 10.1016/j.msec.2020.110924] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 01/04/2023]
Abstract
Research on highly effective antiviral drugs is essential for preventing the spread of infections and reducing losses. Recently, many functional nanoparticles have been shown to possess remarkable antiviral ability, such as quantum dots, gold and silver nanoparticles, nanoclusters, carbon dots, graphene oxide, silicon materials, polymers and dendrimers. Despite their difference in antiviral mechanism and inhibition efficacy, these functional nanoparticles-based structures have unique features as potential antiviral candidates. In this topical review, we highlight the antiviral efficacy and mechanism of these nanoparticles. Specifically, we introduce various methods for analyzing the viricidal activity of functional nanoparticles and the latest advances in antiviral functional nanoparticles. Furthermore, we systematically describe the advantages and disadvantages of these functional nanoparticles in viricidal applications. Finally, we discuss the challenges and prospects of antiviral nanostructures. This topic review covers 132 papers and will enrich our knowledge about the antiviral efficacy and mechanism of various functional nanoparticles.
Collapse
Affiliation(s)
- Lu Chen
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiangong Liang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
79
|
Zhou J, Hu Z, Zabihi F, Chen Z, Zhu M. Progress and Perspective of Antiviral Protective Material. ADVANCED FIBER MATERIALS 2020; 2:123-139. [PMID: 38624352 PMCID: PMC7309218 DOI: 10.1007/s42765-020-00047-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/01/2020] [Indexed: 05/17/2023]
Abstract
Public health events caused by viruses pose a significant risk to humans worldwide. From December 2019 till now, the rampant novel 2019 coronavirus (SAR-CoV-2) has hugely impacted China and over world. Regarding a commendable means of protection, mask technology is relatively mature, though most of the masks cannot effectively resist the viral infections. The key material of the mask is a non-woven material, which makes the barrier of virus through filtration. Due to the lack of the ability to kill the viruses, masks are prone to cross-infection and become an additional source of infection after being discarded. If the filteration and antiviral effects can be simultaneously integrated into the mask, it will be more effcient, work for a longer time and create less difficulty in post-treatment. This mini-review presents the advances in antiviral materials, different mechanisms of their activity, and their potential applications in personal protective fabrics. Furthermore, the article addresses the future challenges and directions of mask technology.
Collapse
Affiliation(s)
- Jialiang Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Zexu Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Fatemeh Zabihi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| |
Collapse
|
80
|
Weiss C, Carriere M, Fusco L, Capua I, Regla-Nava JA, Pasquali M, Scott JA, Vitale F, Unal MA, Mattevi C, Bedognetti D, Merkoçi A, Tasciotti E, Yilmazer A, Gogotsi Y, Stellacci F, Delogu LG. Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic. ACS NANO 2020; 14:6383-6406. [PMID: 32519842 PMCID: PMC7299399 DOI: 10.1021/acsnano.0c03697] [Citation(s) in RCA: 355] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The COVID-19 outbreak has fueled a global demand for effective diagnosis and treatment as well as mitigation of the spread of infection, all through large-scale approaches such as specific alternative antiviral methods and classical disinfection protocols. Based on an abundance of engineered materials identifiable by their useful physicochemical properties through versatile chemical functionalization, nanotechnology offers a number of approaches to cope with this emergency. Here, through a multidisciplinary Perspective encompassing diverse fields such as virology, biology, medicine, engineering, chemistry, materials science, and computational science, we outline how nanotechnology-based strategies can support the fight against COVID-19, as well as infectious diseases in general, including future pandemics. Considering what we know so far about the life cycle of the virus, we envision key steps where nanotechnology could counter the disease. First, nanoparticles (NPs) can offer alternative methods to classical disinfection protocols used in healthcare settings, thanks to their intrinsic antipathogenic properties and/or their ability to inactivate viruses, bacteria, fungi, or yeasts either photothermally or via photocatalysis-induced reactive oxygen species (ROS) generation. Nanotechnology tools to inactivate SARS-CoV-2 in patients could also be explored. In this case, nanomaterials could be used to deliver drugs to the pulmonary system to inhibit interaction between angiotensin-converting enzyme 2 (ACE2) receptors and viral S protein. Moreover, the concept of "nanoimmunity by design" can help us to design materials for immune modulation, either stimulating or suppressing the immune response, which would find applications in the context of vaccine development for SARS-CoV-2 or in counteracting the cytokine storm, respectively. In addition to disease prevention and therapeutic potential, nanotechnology has important roles in diagnostics, with potential to support the development of simple, fast, and cost-effective nanotechnology-based assays to monitor the presence of SARS-CoV-2 and related biomarkers. In summary, nanotechnology is critical in counteracting COVID-19 and will be vital when preparing for future pandemics.
Collapse
Affiliation(s)
- Carsten Weiss
- Institute of Biological and Chemical
Systems, Biological Information Processing, Karlsruhe
Institute of Technology, Campus North,
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen,
Germany
| | - Marie Carriere
- Univ. Grenoble
Alpes, CEA, CNRS, IRIG, SyMMES-CIBEST, F-38000
Grenoble, France
| | - Laura Fusco
- Department of Chemical and
Pharmaceutical Sciences, University of
Trieste, 34127 Trieste,
Italy
- Cancer Research Department,
Sidra Medicine, Doha,
Qatar
| | - Ilaria Capua
- One Health Center of Excellence,
University of Florida, Gainesville,
Florida 32611, United States
| | - Jose Angel Regla-Nava
- Division of Inflammation Biology,
La Jolla Institute for Allergy and
Immunology, La Jolla, California 92037,
United States
| | - Matteo Pasquali
- Department of Chemical &
Biomolecular Engineering, Rice University,
Houston, Texas 77251, United States
- Department of Chemistry,
Rice University, Houston, Texas
77251, United States
- Department of Materials Science and
Nanoengineering, Rice University, Houston,
Texas 77251, United States
| | - James A. Scott
- Dalla Lana School of Public Health,
University of Toronto, 223 College
Street, M5T 1R4 Toronto, Ontario, Canada
| | - Flavia Vitale
- Department of Neurology,
Bioengineering, Physical Medicine & Rehabilitation, Center for
Neuroengineering and Therapeutics, University of
Pennsylvania, Philadelphia, Pennsylvania 19104,
United States
- Center for Neurotrauma,
Neurodegeneration, and Restoration, Corporal Michael J.
Crescenz Veterans Affairs Medical Center,
Philadelphia, Pennsylvania 19104, United
States
| | | | - Cecilia Mattevi
- Department of Materials,
Imperial College London, London SW7
2AZ, United Kingdom
| | | | - Arben Merkoçi
- Nanobioelectronics & Biosensors
Group, Catalan Institute of Nanoscience and
Nanotechnology (ICN2), CSIC and BIST, Campus UAB,
08193 Bellaterra, Spain
- ICREA -
Institució Catalana de Recerca i Estudis
Avançats, ES-08010 Barcelona,
Spain
| | - Ennio Tasciotti
- Orthopedics and Sports Medicine,
Houston Methodist Hospital, Houston,
Texas 77030, United States
- Department of Plastic Surgery,
MD Anderson, Houston, Texas 77230,
United States
| | - Açelya Yilmazer
- Stem Cell Institute,
Ankara University, Ankara, 06100
Turkey
- Department of Biomedical Engineering,
Faculty of Engineering, Ankara University,
Ankara, 06100 Turkey
| | - Yury Gogotsi
- A.J. Drexel Nanomaterials Institute,
and Materials Science and Engineering Department, Drexel
University, Philadelphia, Pennsylvania 19104,
United States
| | - Francesco Stellacci
- Institute of Materials,
Ecole Polytechnique Federale de Lausanne
(EPFL), 1015 Lausanne,
Switzerland
- Interfaculty Bioengineering Institute,
Ecole Polytechnique Fédérale de
Lausanne (EPFL), 1015 Lausanne,
Switzerland
| | - Lucia Gemma Delogu
- Department of Biomedical Sciences,
University of Padua, 35122 Padova,
Italy
| |
Collapse
|
81
|
Ting D, Dong N, Fang L, Lu J, Bi J, Xiao S, Han H. Correction to Multisite Inhibitors for Enteric Coronavirus: Antiviral Cationic Carbon Dots Based on Curcumin. ACS APPLIED NANO MATERIALS 2020; 3:4913. [PMID: 35286056 DOI: 10.1021/acsanm.8b00779] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
[This corrects the article DOI: 10.1021/acsanm.8b00779.].
Collapse
|
82
|
Rechenchoski DZ, Agostinho KF, Faccin-Galhardi LC, Lonni AASG, da Silva JVH, de Andrade FG, Cunha AP, Ricardo NMPS, Nozawa C, Linhares REC. Mangiferin: A promising natural xanthone from Mangifera indica for the control of acyclovir - resistant herpes simplex virus 1 infection. Bioorg Med Chem 2020; 28:115304. [PMID: 31956052 DOI: 10.1016/j.bmc.2020.115304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/20/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023]
Abstract
Mangiferin is found in many plant species as the mango tree (Mangifera indica) with ethnopharmacological applications and scientific evidence. The emergence of resistant herpes simplex virus (HSV) strains to Acyclovir (ACV) has encouraged the search for new drugs. We investigated the in vitro and in vivo activity of mangiferin obtained from M. indica against ACV-resistant HSV-1 (AR-29) and sensitive (KOS) strains. The in vitro activity was performed under varying treatment protocols. The substance showed a CC50 > 500 μg/mL and IC50 of 2.9 μg/mL and 3.5 μg/mL, respectively, for the AR-29 and KOS strains. The in vivo activity was performed in Balb/c mice treated with 0.7% topical mangiferin formulation. This formulation inhibited most effectively the AR-29 strain, attenuated the lesions, postponed their appearance or enhanced healing, in comparison to control group. We demonstrated the potentiality of mangiferin from M. indica to control HSV replication with emphasis to ACV-resistant infection.
Collapse
Affiliation(s)
- Daniele Zendrini Rechenchoski
- Departamento de Microbiologia, Universidade Estadual de Londrina, Londrina, Paraná, Brazil; Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | | | | | | | | | - Arcelina Pacheco Cunha
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | | | - Carlos Nozawa
- Departamento de Microbiologia, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | |
Collapse
|
83
|
Lin CJ, Chang L, Chu HW, Lin HJ, Chang PC, Wang RYL, Unnikrishnan B, Mao JY, Chen SY, Huang CC. High Amplification of the Antiviral Activity of Curcumin through Transformation into Carbon Quantum Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902641. [PMID: 31468672 DOI: 10.1002/smll.201902641] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/03/2019] [Indexed: 05/19/2023]
Abstract
It is demonstrated that carbon quantum dots derived from curcumin (Cur-CQDs) through one-step dry heating are effective antiviral agents against enterovirus 71 (EV71). The surface properties of Cur-CQDs, as well as their antiviral activity, are highly dependent on the heating temperature during synthesis. The one-step heating of curcumin at 180 °C preserves many of the moieties of polymeric curcumin on the surfaces of the as-synthesized Cur-CQDs, resulting in superior antiviral characteristics. It is proposed that curcumin undergoes a series of structural changes through dehydration, polymerization, and carbonization to form core-shell CQDs whose surfaces remain a pyrolytic curcumin-like polymer, boosting the antiviral activity. The results reveal that curcumin possesses insignificant inhibitory activity against EV71 infection in RD cells [half-maximal effective concentration (EC50 ) >200 µg mL-1 ] but exhibits high cytotoxicity toward RD cells (half-maximal cytotoxic concentration (CC50 ) <13 µg mL-1 ). The EC50 (0.2 µg mL-1 ) and CC50 (452.2 µg mL-1 ) of Cur-CQDs are >1000-fold lower and >34-fold higher, respectively, than those of curcumin, demonstrating their far superior antiviral capabilities and high biocompatibility. In vivo, intraperitoneal administration of Cur-CQDs significantly decreases mortality and provides protection against virus-induced hind-limb paralysis in new-born mice challenged with a lethal dose of EV71.
Collapse
Affiliation(s)
- Chin-Jung Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Lung Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221, Taiwan
- Department of Pediatrics, Mackay Memorial Hospital and Mackay Junior College of Medicine, Nursing and Management, Taipei, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan
| | - Han-Wei Chu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Pei-Ching Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Robert Y L Wang
- Department of Biomedical Sciences and Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Division of Pediatric Infectious Disease, Department of Pediatrics, Chang Gung Memorial Hospital, Linkuo, Taoyuan, 33305, Taiwan
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Ju-Yi Mao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Shiow-Yi Chen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| |
Collapse
|
84
|
Donskyi IS, Azab W, Cuellar-Camacho JL, Guday G, Lippitz A, Unger WES, Osterrieder K, Adeli M, Haag R. Functionalized nanographene sheets with high antiviral activity through synergistic electrostatic and hydrophobic interactions. NANOSCALE 2019; 11:15804-15809. [PMID: 31433428 DOI: 10.1039/c9nr05273a] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
As resistance to traditional drugs emerges for treatment of virus infections, the need for new methods for virus inhibition increases. Graphene derivatives with large surface areas have shown strong activity against different viruses. However, the inability of current synthetic protocols to accurately manipulate the structure of graphene sheets in order to control their antiviral activity remains a major challenge. In this work, a series of graphene derivatives with defined polyglycerol sulfate and fatty amine functionalities have been synthesized and their interactions with herpes simplex virus type 1 (HSV-1) are investigated. While electrostatic interactions between polyglycerol sulfate and virus particles trigger the binding of graphene to virus, alkyl chains induce a high antiviral activity by secondary hydrophobic interactions. Among graphene sheets with a broad range of alkyl chains, (C3-C18), the C12-functionalized sheets showed the highest antiviral activity, indicating the optimum synergistic effect between electrostatic and hydrophobic interactions, but this derivative was toxic against the Vero cell line. In contrast, sheets functionalized with C6- and C9-alkyl chains showed low toxicity against Vero cells and a synergistic inhibition of HSV-1. This study shows that antiviral agents against HSV-1 can be obtained by controlled and stepwise functionalization of graphene sheets and may be developed into antiviral agents for future biomedical applications.
Collapse
Affiliation(s)
- Ievgen S Donskyi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Pachota M, Kłysik-Trzciańska K, Synowiec A, Yukioka S, Yusa SI, Zając M, Zawilinska B, Dzieciątkowski T, Szczubialka K, Pyrc K, Nowakowska M. Highly Effective and Safe Polymeric Inhibitors of Herpes Simplex Virus in Vitro and in Vivo. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26745-26752. [PMID: 31287654 DOI: 10.1021/acsami.9b10302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A series of poly(ethylene glycol)-block-poly(3-(methacryloylamino)propyl trimethylammonium chloride) (PEG-b-PMAPTAC) water-soluble block copolymers consisting of PEG and PMPTAC were obtained by reversible addition-fragmentation chain-transfer (RAFT) polymerization and demonstrated to function as highly effective herpes simplex virus type 1 (HSV-1) inhibitors as shown by in vitro tests (Vero E6 cells) and in vivo experiments (mouse model). Half-maximal inhibitory concentration (IC50) values were determined by quantitative polymerase chain reaction to be 0.36 ± 0.08 μg/mL for the most effective polymer PEG45-b-PMAPTAC52 and 0.84 ± 1.24 μg/mL for the less effective one, PEG45-b-PMAPTAC74. The study performed on the mouse model showed that the polymers protect mice from lethal infection. The polymers are not toxic to the primary human skin fibroblast cells up to the concentration of 100 μg/mL and to the Vero E6 cells up to 500 μg/mL. No systemic or topical toxicity was observed in vivo, even with mice treated with concentrated formulation (100 mg/mL). The mechanistic studies indicated that polymers interacted with the cell and blocked the formation of the entry/fusion complex. Physicochemical and biological properties of PEGx-b-PMAPTACy make them promising drug candidates.
Collapse
Affiliation(s)
| | | | | | - Shotaro Yukioka
- Department of Applied Chemistry, Graduate School of Engineering , University of Hyogo , Himeji 671-2280 , Hyogo Japan
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering , University of Hyogo , Himeji 671-2280 , Hyogo Japan
| | | | - Barbara Zawilinska
- Department of Virology, Chair of Microbiology, Faculty of Medicine , Jagiellonian University Medical College , Krakow 31-121 , Poland
| | - Tomasz Dzieciątkowski
- Chair and Department of Medical Microbiology , Warsaw Medical University , Warsaw 02-004 , Poland
| | | | | | | |
Collapse
|
86
|
Anand A, Unnikrishnan B, Wei SC, Chou CP, Zhang LZ, Huang CC. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents - a minireview. NANOSCALE HORIZONS 2019; 4:117-137. [PMID: 32254148 DOI: 10.1039/c8nh00174j] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Due to the increasing global population, growing contamination of water and air, and wide spread of infectious diseases, antibiotics are extensively used as a major antibacterial drug. However, many microbes have developed resistance to antibiotics through mutation over time. As an alternative to antibiotics, antimicrobial nanomaterials have attracted great attention due to their advantageous properties and unique mechanisms of action toward microbes. They inhibit bacterial growth and destroy cells through complex mechanisms, making it difficult for bacteria to develop drug resistance, though some health concerns related to biocompatibility remain for practical applications. Among various antibacterial nanomaterials, carbon-based materials, especially graphene oxide (GO) and carbon dots (C-Dots), are promising candidates due to the ease of production and functionalization, high dispersibility in aqueous media, and promising biocompatibility. The antibacterial properties of these nanomaterials can be easily adjusted by surface modification. They are promising materials for future applications against multidrug-resistant bacteria based on their strong capacity in disruption of microbial membranes. Though many studies have reported excellent antibacterial activity of carbon nanomaterials, their impact on the environment and living organisms is of concern due to the accumulatory and cytotoxic effects. In this review, we discuss antimicrobial applications of the functional carbon nanomaterials (GO and C-Dots), their antibacterial mechanisms, factors affecting antibacterial activity, and concerns regarding cytotoxicity.
Collapse
Affiliation(s)
- Anisha Anand
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | | | | | | | | | | |
Collapse
|
87
|
Du T, Lu J, Liu L, Dong N, Fang L, Xiao S, Han H. Antiviral Activity of Graphene Oxide–Silver Nanocomposites by Preventing Viral Entry and Activation of the Antiviral Innate Immune Response. ACS APPLIED BIO MATERIALS 2018; 1:1286-1293. [DOI: 10.1021/acsabm.8b00154] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ting Du
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Jian Lu
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Lingzhi Liu
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Nan Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| |
Collapse
|
88
|
Lu N, Wang L, Lv M, Tang Z, Fan C. Graphene-based nanomaterials in biosystems. NANO RESEARCH 2018; 12:247-264. [PMID: 32218914 PMCID: PMC7090610 DOI: 10.1007/s12274-018-2209-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 05/23/2023]
Abstract
Graphene-based nanomaterials have emerged as a novel type of materials with exceptional physicochemical properties and numerous applications in various areas. In this review, we summarize recent advances in studying interactions between graphene and biosystems. We first provide a brief introduction on graphene and its derivatives, and then discuss on the toxicology and biocompatibility of graphene, including the extracellular interactions between graphene and biomacromolecules, cellular studies of graphene, and in vivo toxicological effects. Next, we focus on various graphene-based practical applications in antibacterial materials, wound addressing, drug delivery, and water purification. We finally present perspectives on challenges and future developments in these exciting fields.
Collapse
Affiliation(s)
- Na Lu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620 China
| | - Liqian Wang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Min Lv
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Zisheng Tang
- Department of Endodontics, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
- National Clinical Research Center of Oral Diseases, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011 China
| | - Chunhai Fan
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
89
|
Feng C, Fang P, Zhou Y, Liu L, Fang L, Xiao S, Liang J. Different Effects of His-Au NCs and MES-Au NCs on the Propagation of Pseudorabies Virus. GLOBAL CHALLENGES (HOBOKEN, NJ) 2018; 2:1800030. [PMID: 31565343 PMCID: PMC6607262 DOI: 10.1002/gch2.201800030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/10/2018] [Indexed: 06/10/2023]
Abstract
In a previous work, gold nanoclusters (Au NCs) are found to inactivate RNA virus, but the effect of surface modification of Au NCs on its proliferation is still largely unknown. Here, the effect of surface modification of Au NCs on the proliferation of pseudorabies virus (PRV) by synthesizing two types of gold clusters with different surface modification, histidine stabilized Au NCs (His-Au NCs) and mercaptoethane sulfonate and histidine stabilized Au NCs (MES-Au NCs), is investigated. His-Au NCs rather than MES-Au NCs could strongly inhibit the proliferation of PRV, as indicated by the results of plaque assay, confocal microscopic analysis, Western blot assay, and quantitative real-time polymerase chain reaction (PCR) assay. Further study reveals that His-Au NCs perform the function via blockage of the viral replication process rather than the processes of attachment, penetration, or release. Additionally, His-Au NCs are found to be mainly localized to nucleus, while MES-Au NCs are strictly distributed in cytoplasm, which may explain why His-Au NCs can suppress the proliferation of PRV, but not MES-Au NCs. These results demonstrate that surface modification plays a key role in the antiviral effects of Au NCs and a potential antiviral agent can be developed by changing the Au NC surface modification.
Collapse
Affiliation(s)
- Chenchen Feng
- College of ScienceState Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Puxian Fang
- College of Veterinary MedicineState Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Yanrong Zhou
- College of Veterinary MedicineState Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Lingzhi Liu
- College of ScienceState Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Liurong Fang
- College of Veterinary MedicineState Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Shaobo Xiao
- College of Veterinary MedicineState Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Jiangong Liang
- College of ScienceState Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070P. R. China
| |
Collapse
|
90
|
Dey P, Bergmann T, Cuellar-Camacho JL, Ehrmann S, Chowdhury MS, Zhang M, Dahmani I, Haag R, Azab W. Multivalent Flexible Nanogels Exhibit Broad-Spectrum Antiviral Activity by Blocking Virus Entry. ACS NANO 2018; 12:6429-6442. [PMID: 29894156 DOI: 10.1021/acsnano.8b01616] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The entry process of viruses into host cells is complex and involves stable but transient multivalent interactions with different cell surface receptors. The initial contact of several viruses begins with attachment to heparan sulfate (HS) proteoglycans on the cell surface, which results in a cascade of events that end up with virus entry. The development of antiviral agents based on multivalent interactions to shield virus particles and block initial interactions with cellular receptors has attracted attention in antiviral research. Here, we designed nanogels with different degrees of flexibility based on dendritic polyglycerol sulfate to mimic cellular HS. The designed nanogels are nontoxic and broad-spectrum, can multivalently interact with viral glycoproteins, shield virus surfaces, and efficiently block infection. We also visualized virus-nanogel interactions as well as the uptake of nanogels by the cells through clathrin-mediated endocytosis using confocal microscopy. As many human viruses attach to the cells through HS moieties, we introduce our flexible nanogels as robust inhibitors for these viruses.
Collapse
Affiliation(s)
- Pradip Dey
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
- Polymer Science Unit , Indian Association for the Cultivation of Science , 2A and 2B Raja S.C. Mullick Road , Kolkata 700032 , India
| | - Tobias Bergmann
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin , Freie Universität Berlin , Robert-von-Ostertag-Str. 7-13 , 14163 Berlin , Germany
| | - Jose Luis Cuellar-Camacho
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - Svenja Ehrmann
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - Mohammad Suman Chowdhury
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - Minze Zhang
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin , Freie Universität Berlin , Robert-von-Ostertag-Str. 7-13 , 14163 Berlin , Germany
| | - Ismail Dahmani
- Institute of Biochemistry and Biology , University of Potsdam , Karl-Liebknecht-Str. 24-25 , 14476 Potsdam , Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin , Freie Universität Berlin , Robert-von-Ostertag-Str. 7-13 , 14163 Berlin , Germany
| |
Collapse
|
91
|
Tu Z, Guday G, Adeli M, Haag R. Multivalent Interactions between 2D Nanomaterials and Biointerfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706709. [PMID: 29900600 DOI: 10.1002/adma.201706709] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/15/2018] [Indexed: 05/20/2023]
Abstract
2D nanomaterials, particularly graphene, offer many fascinating physicochemical properties that have generated exciting visions of future biological applications. In order to capitalize on the potential of 2D nanomaterials in this field, a full understanding of their interactions with biointerfaces is crucial. The uptake pathways, toxicity, long-term fate of 2D nanomaterials in biological systems, and their interactions with the living systems are fundamental questions that must be understood. Here, the latest progress is summarized, with a focus on pathogen, mammalian cell, and tissue interactions. The cellular uptake pathways of graphene derivatives will be discussed, along with health risks, and interactions with membranes-including bacteria and viruses-and the role of chemical structure and modifications. Other novel 2D nanomaterials with potential biomedical applications, such as transition-metal dichalcogenides, transition-metal oxide, and black phosphorus will be discussed at the end of this review.
Collapse
Affiliation(s)
- Zhaoxu Tu
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Guy Guday
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Mohsen Adeli
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
- Department of Chemistry, Faculty of Science, Lorestan University, 68151-44316, Khoramabad, Iran
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| |
Collapse
|
92
|
Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2018.01.004] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
93
|
Donskyi I, Drüke M, Silberreis K, Lauster D, Ludwig K, Kühne C, Unger W, Böttcher C, Herrmann A, Dernedde J, Adeli M, Haag R. Interactions of Fullerene-Polyglycerol Sulfates at Viral and Cellular Interfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800189. [PMID: 29575636 DOI: 10.1002/smll.201800189] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Understanding the mechanism of interactions of nanomaterials at biointerfaces is a crucial issue to develop new antimicrobial vectors. In this work, a series of water-soluble fullerene-polyglycerol sulfates (FPS) with different fullerene/polymer weight ratios and varying numbers of polyglycerol sulfate branches are synthesized, characterized, and their interactions with two distinct surfaces displaying proteins involved in target cell recognition are investigated. The combination of polyanionic branches with a solvent exposed variable hydrophobic core in FPS proves to be superior to analogs possessing only one of these features in preventing interaction of vesicular stomatitis virus coat glycoprotein (VSV-G) with baby hamster kidney cells serving as a model of host cell. Interference with L-selectin-ligand binding is dominated by the negative charge, which is studied by two assays: a competitive surface plasmon resonance (SPR)-based inhibition assay and the leukocyte cell (NALM-6) rolling on ligands under flow conditions. Due to possible intrinsic hydrophobic and electrostatic effects of synthesized compounds, pico- to nanomolar half maximal inhibitory concentrations (IC50 ) are achieved. With their highly antiviral and anti-inflammatory properties, together with good biocompatibility, FPS are promising candidates for the future development towards biomedical applications.
Collapse
Affiliation(s)
- Ievgen Donskyi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
- Division of Surface Analysis and Interfacial Chemistry, BAM - Federal Institute for Material Science and Testing, Unter den Eichen 44-46, 12205, Berlin, Germany
| | - Moritz Drüke
- Department of Biology & IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115, Berlin, Germany
| | - Kim Silberreis
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, CVK, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Daniel Lauster
- Department of Biology & IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115, Berlin, Germany
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie and Core Facility BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 36a, 14195, Berlin, Germany
| | - Christian Kühne
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, CVK, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Wolfgang Unger
- Division of Surface Analysis and Interfacial Chemistry, BAM - Federal Institute for Material Science and Testing, Unter den Eichen 44-46, 12205, Berlin, Germany
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie and Core Facility BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 36a, 14195, Berlin, Germany
| | - Andreas Herrmann
- Department of Biology & IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115, Berlin, Germany
| | - Jens Dernedde
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, CVK, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Mohsen Adeli
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
- Department of Chemistry, Faculty of Science, Lorestan University, 44316-68151, Khorram Abad, Iran
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| |
Collapse
|
94
|
Du T, Liang J, Dong N, Lu J, Fu Y, Fang L, Xiao S, Han H. Glutathione-Capped Ag 2S Nanoclusters Inhibit Coronavirus Proliferation through Blockage of Viral RNA Synthesis and Budding. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4369-4378. [PMID: 29337529 DOI: 10.1021/acsami.7b13811] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Development of novel antiviral reagents is of great importance for the control of virus spread. Here, Ag2S nanoclusters (NCs) were proved for the first time to possess highly efficient antiviral activity by using porcine epidemic diarrhea virus (PEDV) as a model of coronavirus. Analyses of virus titers showed that Ag2S NCs significantly suppressed the infection of PEDV by about 3 orders of magnitude at the noncytotoxic concentration at 12 h postinfection, which was further confirmed by the expression of viral proteins. Mechanism investigations indicated that Ag2S NCs treatment inhibits the synthesis of viral negative-strand RNA and viral budding. Ag2S NCs treatment was also found to positively regulate the generation of IFN-stimulating genes (ISGs) and the expression of proinflammation cytokines, which might prevent PEDV infection. This study suggest the novel underlying of Ag2S NCs as a promising therapeutic drug for coronavirus.
Collapse
Affiliation(s)
- Ting Du
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, and ‡State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P. R. China
| | - Jiangong Liang
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, and ‡State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P. R. China
| | - Nan Dong
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, and ‡State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P. R. China
| | - Jian Lu
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, and ‡State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P. R. China
| | - Yiying Fu
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, and ‡State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P. R. China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, and ‡State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P. R. China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, and ‡State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P. R. China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, and ‡State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P. R. China
| |
Collapse
|
95
|
Yang XX, Li CM, Li YF, Wang J, Huang CZ. Synergistic antiviral effect of curcumin functionalized graphene oxide against respiratory syncytial virus infection. NANOSCALE 2017; 9:16086-16092. [PMID: 29034936 DOI: 10.1039/c7nr06520e] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The diseases attributable to viruses remain a global burden. The respiratory syncytial virus (RSV), which is considered as the major viral pathogen of the lower respiratory tract of infants, has been implicated in severe lung disease. In this contribution, we developed a β-cyclodextrin (CD) functionalized graphene oxide (GO) composite, which displayed excellent antiviral activity and could load curcumin efficiently. RSV, a negative-sense single-stranded enveloped RNA virus, was employed as a model virus to investigate the antiviral activity of multifunctional GO. Proved by the tissue culture infectious dose assay and immunofluorescence assay, the curcumin loaded functional GO was confirmed with highly efficient inhibition for RSV infection and great biocompatibility to the host cells. The results showed that the composite could prevent RSV from infecting the host cells by directly inactivating the virus and inhibiting the viral attachment, and possessed prophylactic and therapeutic effects towards the virus. Our data indicate that the composite may provide new insights into antiviral therapy for RSV infection.
Collapse
Affiliation(s)
- Xiao Xi Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Science, Southwest University, Chongqing 400715, China.
| | | | | | | | | |
Collapse
|
96
|
Ziem B, Azab W, Gholami MF, Rabe JP, Osterrieder N, Haag R. Size-dependent inhibition of herpesvirus cellular entry by polyvalent nanoarchitectures. NANOSCALE 2017; 9:3774-3783. [PMID: 28266670 DOI: 10.1039/c7nr00611j] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Carbon-based architectures, especially graphene and its derivatives, have recently attracted much attention in the field of biomedicine and biotechnology for their use as pathogen inhibitors or biosensors. One of the major problems in the development of novel virus inhibitor systems is the adaption of the inhibitor to the size of virus particles. We here report the synthesis and biological testing of carbon-based inhibitors differing in size for evaluating the potential size effect on the inhibition of virus entry and replication. In this context, different sized nanomaterials were functionalized with polygylcerol through a "grafting from" polymerization to form new polyvalent nanoarchitectures which can operate as viral inhibitor systems after post-modification. For this purpose a polysulfation was carried out to mimic the heparan sulfates present on cell surfaces that we reasoned would compete with the binding sites of herpes simplex virus type 1 (HSV-1) and equine herpesvirus type 1 (EHV-1), which both cause major global health issues. Our results clearly demonstrate that the inhibitory efficiency is regulated by the size of the polymeric nanomaterials and the degree of sulfation. The best inhibiting graphene sheets were ∼300 nm in size and had a degree of sulfation of ∼10%. Furthermore, it turned out that the derivatives inhibited virus infection at an early stage during entry but did not affect cell-to-cell spread. Overall, tunable polyvalent nanomaterials are promising and efficient virus entry inhibitors, which can likely be used for a broad spectrum of enveloped viruses.
Collapse
Affiliation(s)
- B Ziem
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.
| | - W Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany.
| | - M F Gholami
- Department of Physics & IRIS Adlershof, Humboldt-Universität Berlin, D-12489 Berlin, Germany
| | - J P Rabe
- Department of Physics & IRIS Adlershof, Humboldt-Universität Berlin, D-12489 Berlin, Germany
| | - N Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany.
| | - R Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
97
|
Deokar AR, Nagvenkar AP, Kalt I, Shani L, Yeshurun Y, Gedanken A, Sarid R. Graphene-Based "Hot Plate" for the Capture and Destruction of the Herpes Simplex Virus Type 1. Bioconjug Chem 2017; 28:1115-1122. [PMID: 28177606 DOI: 10.1021/acs.bioconjchem.7b00030] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The study of graphene-based antivirals is still at a nascent stage and the photothermal antiviral properties of graphene have yet to be studied. Here, we design and synthesize sulfonated magnetic nanoparticles functionalized with reduced graphene oxide (SMRGO) to capture and photothermally destroy herpes simplex virus type 1 (HSV-1). Graphene sheets were uniformly anchored with spherical magnetic nanoparticles (MNPs) of varying size between ∼5 and 25 nm. Fourier-transform infrared spectroscopy (FT-IR) confirmed the sulfonation and anchoring of MNPs on the graphene sheets. Upon irradiation of the composite with near-infrared light (NIR, 808 nm, 7 min), SMRGO (100 ppm) demonstrated superior (∼99.99%) photothermal antiviral activity. This was probably due to the capture efficiency, unique sheet-like structure, high surface area, and excellent photothermal properties of graphene. In addition, electrostatic interactions of MNPs with viral particles appear to play a vital role in the inhibition of viral infection. These results suggest that graphene composites may help to combat viral infections including, but not only, HSV-1.
Collapse
Affiliation(s)
- Archana R Deokar
- Department of Chemistry, Bar-Ilan University , Ramat Gan 5290002, Israel.,Department of Materials Science and Engineering, National Cheng Kung University , Tainan 70101, Taiwan
| | - Anjani P Nagvenkar
- Department of Chemistry, Bar-Ilan University , Ramat Gan 5290002, Israel.,Department of Materials Science and Engineering, National Cheng Kung University , Tainan 70101, Taiwan
| | - Inna Kalt
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat Gan 5290002, Israel
| | - Lior Shani
- Department of Physics and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University , Ramat Gan 5290002, Israel
| | - Yosef Yeshurun
- Department of Physics and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University , Ramat Gan 5290002, Israel
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan University , Ramat Gan 5290002, Israel.,Department of Materials Science and Engineering, National Cheng Kung University , Tainan 70101, Taiwan
| | - Ronit Sarid
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat Gan 5290002, Israel
| |
Collapse
|
98
|
Cheng C, Li S, Thomas A, Kotov NA, Haag R. Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chem Rev 2017; 117:1826-1914. [PMID: 28075573 DOI: 10.1021/acs.chemrev.6b00520] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Functional graphene nanomaterials (FGNs) are fast emerging materials with extremely unique physical and chemical properties and physiological ability to interfere and/or interact with bioorganisms; as a result, FGNs present manifold possibilities for diverse biological applications. Beyond their use in drug/gene delivery, phototherapy, and bioimaging, recent studies have revealed that FGNs can significantly promote interfacial biointeractions, in particular, with proteins, mammalian cells/stem cells, and microbials. FGNs can adsorb and concentrate nutrition factors including proteins from physiological media. This accelerates the formation of extracellular matrix, which eventually promotes cell colonization by providing a more beneficial microenvironment for cell adhesion and growth. Furthermore, FGNs can also interact with cocultured cells by physical or chemical stimulation, which significantly mediate their cellular signaling and biological performance. In this review, we elucidate FGNs-bioorganism interactions and summarize recent advancements on designing FGN-based two-dimensional and three-dimensional architectures as multifunctional biological platforms. We have also discussed the representative biological applications regarding these FGN-based bioactive architectures. Furthermore, the future perspectives and emerging challenges will also be highlighted. Due to the lack of comprehensive reviews in this emerging field, this review may catch great interest and inspire many new opportunities across a broad range of disciplines.
Collapse
Affiliation(s)
- Chong Cheng
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Shuang Li
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Arne Thomas
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
99
|
Paul T, Bera SC, Agnihotri N, Mishra PP. Single-Molecule FRET Studies of the Hybridization Mechanism during Noncovalent Adsorption and Desorption of DNA on Graphene Oxide. J Phys Chem B 2016; 120:11628-11636. [DOI: 10.1021/acs.jpcb.6b06017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tapas Paul
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF
Bidhannagar, Kolkata 700064, India
| | - Subhas Chandra Bera
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF
Bidhannagar, Kolkata 700064, India
| | - Nidhi Agnihotri
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF
Bidhannagar, Kolkata 700064, India
| | - Padmaja P. Mishra
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF
Bidhannagar, Kolkata 700064, India
| |
Collapse
|
100
|
Chen YN, Hsueh YH, Hsieh CT, Tzou DY, Chang PL. Antiviral Activity of Graphene-Silver Nanocomposites against Non-Enveloped and Enveloped Viruses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:430. [PMID: 27104546 PMCID: PMC4847092 DOI: 10.3390/ijerph13040430] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 01/24/2023]
Abstract
The discovery of novel antiviral materials is important because many infectious diseases are caused by viruses. Silver nanoparticles have demonstrated strong antiviral activity, and graphene is a potential antimicrobial material due to its large surface area, high carrier mobility, and biocompatibility. No studies on the antiviral activity of nanomaterials on non-enveloped viruses have been reported. To investigate the antiviral activity of graphene oxide (GO) sheets and GO sheets with silver particles (GO-Ag) against enveloped and non-enveloped viruses, feline coronavirus (FCoV) with an envelope and infectious bursal disease virus (IBDV) without an envelope were chosen. The morphology and sizes of GO and GO-Ag were characterized by transmission, scanning electron microscopy, and X-ray diffraction. A virus inhibition assay was used to identify the antiviral activity of GO and GO-Ag. Go-Ag inhibited 25% of infection by FCoV and 23% by IBDV, whereas GO only inhibited 16% of infection by FCoV but showed no antiviral activity against the infection by IBDV. Further application of GO and GO-Ag can be considered for personal protection equipment to decrease the transmission of viruses.
Collapse
Affiliation(s)
- Yi-Ning Chen
- Department of Bioscience Technology, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan City 32023, Taiwan.
| | - Yi-Huang Hsueh
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Chung Li District, Taoyuan City 32003, Taiwan.
| | - Chien-Te Hsieh
- Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung Li District, Taoyuan City 32003, Taiwan.
| | - Dong-Ying Tzou
- Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung Li District, Taoyuan City 32003, Taiwan.
| | - Pai-Ling Chang
- Division of General Pathology, Taoyuan General Hospital, Ministry of Health and Welfare, 1492 Zhongshan Road, Taoyuan City 33004, Taiwan.
| |
Collapse
|