51
|
Kosik KS. Search Strategies for Alzheimer Protector Genes. Ann Neurol 2023; 94:613-617. [PMID: 37574772 DOI: 10.1002/ana.26764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
Large families with autosomal dominant mutations leading to Alzheimer's disease and related conditions can show putative protective gene variants; however, no systematic search strategy exists to find these genes. Described here are the unique demographic circumstances and genetic setting in which the discovery of protective variants is likely. The identification of these genes may reveal pathways with therapeutic implications. ANN NEUROL 2023;94:613-617.
Collapse
Affiliation(s)
- Kenneth S Kosik
- The Neuroscience Research Institute and The Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
52
|
Campos AI, Namba S, Lin SC, Nam K, Sidorenko J, Wang H, Kamatani Y, Wang LH, Lee S, Lin YF, Feng YCA, Okada Y, Visscher PM, Yengo L. Boosting the power of genome-wide association studies within and across ancestries by using polygenic scores. Nat Genet 2023; 55:1769-1776. [PMID: 37723263 DOI: 10.1038/s41588-023-01500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/14/2023] [Indexed: 09/20/2023]
Abstract
Genome-wide association studies (GWASs) have been mostly conducted in populations of European ancestry, which currently limits the transferability of their findings to other populations. Here, we show, through theory, simulations and applications to real data, that adjustment of GWAS analyses for polygenic scores (PGSs) increases the statistical power for discovery across all ancestries. We applied this method to analyze seven traits available in three large biobanks with participants of East Asian ancestry (n = 340,000 in total) and report 139 additional associations across traits. We also present a two-stage meta-analysis strategy whereby, in contributing cohorts, a PGS-adjusted GWAS is rerun using PGSs derived from a first round of a standard meta-analysis. On average, across traits, this approach yields a 1.26-fold increase in the number of detected associations (range 1.07- to 1.76-fold increase). Altogether, our study demonstrates the value of using PGSs to increase the power of GWASs in underrepresented populations and promotes such an analytical strategy for future GWAS meta-analyses.
Collapse
Affiliation(s)
- Adrian I Campos
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | - Shinichi Namba
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shu-Chin Lin
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Kisung Nam
- Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea
| | - Julia Sidorenko
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Huanwei Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Ling-Hua Wang
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Seunggeun Lee
- Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea
| | - Yen-Feng Lin
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yen-Chen Anne Feng
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan
- Division of Biostatistics and Data Science, Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Loic Yengo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
53
|
Haider MM, Kamal N, Khan S, Rahman MM, Dewan MN, Sarkar SS, Shafiq SS, Alam N. Trends in women's height and the effect of early childbearing on height retardation: An analysis of the height of Bangladeshi women born between 1974 and 1998. J Glob Health 2023; 13:07006. [PMID: 37766652 PMCID: PMC10534193 DOI: 10.7189/jogh.13.07006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
Background Depending on race, ethnicity, and region, genetic variants determine human height by 65% to 80%, while the remaining variance of 20% to 35% is influenced by nutrition and other individual or environmental exposures in the early years of life. An improvement in nutrition and health in the early years in a population underprivileged in health and nutrition will likely increase the group's average height. Due to outstanding improvements in these areas in recent decades, we hypothesised that the average height of Bangladeshi women has increased. Moreover, because pregnancy at an early age affects women's health and nutrition, we hypothesised that women who began childbearing early would experience growth retardation compared to women who had pregnancies at a later age. Methods We used data from five national surveys conducted between 2004 and 2018 that collected height data from ever-married women aged 15-49 years. We analysed the height of women aged 20-29 years (born between 1974 and 1998) and examined the mean height by birth years, age at first birth (AFB), economic status, religion and region. We conducted multiple linear regression models, controlling for the differential effects of the socio-demographic characteristics on women's height over time and by AFB. Results The average height of women born between 1974 and 1998 significantly increased by 0.03 cm annually, with fluctuations between 150.3 and 151.6 cm. We also found an association between age at childbearing and height in adulthood - women who began childbearing before age 17 were approximately one centimetre shorter in adulthood than those who began childbearing at a later age. Conclusions We found evidence of an increasing trend in women's height in Bangladesh and an inhibiting effect of early teenage childbearing on attaining the potential growth of women. The findings call for further studies to investigate early childbearing and its consequences on women's and their children's growth in diverse settings, considering socio-cultural customs influencing early marriage and childbearing.
Collapse
Affiliation(s)
| | | | - Shusmita Khan
- Data for Impact, University of North Carolina at Chapel Hill, USA
| | | | | | | | - Sabit Saad Shafiq
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Nurul Alam
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| |
Collapse
|
54
|
Holling T, Brylka L, Scholz T, Bierhals T, Herget T, Meinecke P, Schinke T, Oheim R, Kutsche K. TMCO3, a Putative K + :Proton Antiporter at the Golgi Apparatus, Is Important for Longitudinal Growth in Mice and Humans. J Bone Miner Res 2023; 38:1334-1349. [PMID: 37554015 DOI: 10.1002/jbmr.4827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 08/10/2023]
Abstract
Isolated short stature, defined as short stature without any other abnormalities, is a common heterogeneous condition in children. Exome sequencing identified the homozygous nonsense variant c.1832G>A/p.(Trp611*) in TMCO3 in two sisters with isolated short stature. Radiological studies, biochemical measurements, assessment of the skeletal status, and three-dimensional bone microarchitecture revealed no relevant skeletal and bone abnormalities in both sisters. The homozygous TMCO3 variant segregated with short stature in the family. TMCO3 transcript levels were reduced by ~50% in leukocyte-derived RNA of both sisters compared with controls, likely due to nonsense-mediated mRNA decay. In primary urinary cells of heterozygous family members, we detected significantly reduced TMCO3 protein levels. TMCO3 is functionally uncharacterized. We ectopically expressed wild-type TMCO3 in HeLa and ATDC5 chondrogenic cells and detected TMCO3 predominantly at the Golgi apparatus, whereas the TMCO3W611* mutant did not reach the Golgi. Coordinated co-expression of TMCO3W611* -HA and EGFP in HeLa cells confirmed intrinsic instability and/or degradation of the mutant. Tmco3 is expressed in all relevant mouse skeletal cell types. Highest abundance of Tmco3 was found in chondrocytes of the prehypertrophic zone in mouse and minipig growth plates where it co-localizes with a Golgi marker. Knockdown of Tmco3 in differentiated ATDC5 cells caused reduced and increased expression of Pthlh and Ihh, respectively. Measurement of long bones in Tmco3tm1b(KOMP)Wtsi knockout mice revealed significant shortening of forelimbs and hindlimbs. TMCO3 is a potential member of the monovalent cation:proton antiporter 2 (CPA2) family. By in silico tools and homology modeling, TMCO3 is predicted to have an N-terminal secretory signal peptide, forms a dimer localized to the membrane, and is organized in a dimerization and a core domain. The core domain contains the CPA2 motif essential for K+ binding and selectivity. Collectively, our data demonstrate that loss of TMCO3 causes growth defects in both humans and mice. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Tess Holling
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tasja Scholz
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Theresia Herget
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Meinecke
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
55
|
Wientjes YCJ, Bijma P, van den Heuvel J, Zwaan BJ, Vitezica ZG, Calus MPL. The long-term effects of genomic selection: 2. Changes in allele frequencies of causal loci and new mutations. Genetics 2023; 225:iyad141. [PMID: 37506255 PMCID: PMC10471209 DOI: 10.1093/genetics/iyad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Genetic selection has been applied for many generations in animal, plant, and experimental populations. Selection changes the allelic architecture of traits to create genetic gain. It remains unknown whether the changes in allelic architecture are different for the recently introduced technique of genomic selection compared to traditional selection methods and whether they depend on the genetic architectures of traits. Here, we investigate the allele frequency changes of old and new causal loci under 50 generations of phenotypic, pedigree, and genomic selection, for a trait controlled by either additive, additive and dominance, or additive, dominance, and epistatic effects. Genomic selection resulted in slightly larger and faster changes in allele frequencies of causal loci than pedigree selection. For each locus, allele frequency change per generation was not only influenced by its statistical additive effect but also to a large extent by the linkage phase with other loci and its allele frequency. Selection fixed a large number of loci, and 5 times more unfavorable alleles became fixed with genomic and pedigree selection than with phenotypic selection. For pedigree selection, this was mainly a result of increased genetic drift, while genetic hitchhiking had a larger effect on genomic selection. When epistasis was present, the average allele frequency change was smaller (∼15% lower), and a lower number of loci became fixed for all selection methods. We conclude that for long-term genetic improvement using genomic selection, it is important to consider hitchhiking and to limit the loss of favorable alleles.
Collapse
Affiliation(s)
- Yvonne C J Wientjes
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands
| | - Piter Bijma
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands
| | - Joost van den Heuvel
- Laboratory of Genetics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands
| | | | - Mario P L Calus
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands
| |
Collapse
|
56
|
Choi J, Kim S, Kim J, Son HY, Yoo SK, Kim CU, Park YJ, Moon S, Cha B, Jeon MC, Park K, Yun JM, Cho B, Kim N, Kim C, Kwon NJ, Park YJ, Matsuda F, Momozawa Y, Kubo M, Biobank Japan Project, Kim HJ, Park JH, Seo JS, Kim JI, Im SW. A whole-genome reference panel of 14,393 individuals for East Asian populations accelerates discovery of rare functional variants. SCIENCE ADVANCES 2023; 9:eadg6319. [PMID: 37556544 PMCID: PMC10411914 DOI: 10.1126/sciadv.adg6319] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/06/2023] [Indexed: 08/11/2023]
Abstract
Underrepresentation of non-European (EUR) populations hinders growth of global precision medicine. Resources such as imputation reference panels that match the study population are necessary to find low-frequency variants with substantial effects. We created a reference panel consisting of 14,393 whole-genome sequences including more than 11,000 Asian individuals. Genome-wide association studies were conducted using the reference panel and a population-specific genotype array of 72,298 subjects for eight phenotypes. This panel yields improved imputation accuracy of rare and low-frequency variants within East Asian populations compared with the largest reference panel. Thirty-nine previously unidentified associations were found, and more than half of the variants were East Asian specific. We discovered genes with rare protein-altering variants, including LTBP1 for height and GPR75 for body mass index, as well as putative regulatory mechanisms for rare noncoding variants with cell type-specific effects. We suggest that this dataset will add to the potential value of Asian precision medicine.
Collapse
Affiliation(s)
- Jaeyong Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | - Juhyun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ho-Young Son
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Seong-Keun Yoo
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Young Jun Park
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sungji Moon
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Bukyoung Cha
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Min Chul Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyunghyuk Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jae Moon Yun
- Department of Family Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Belong Cho
- Department of Family Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Family Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | - Young Joo Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Hyun-Jin Kim
- National Cancer Control Institute, National Cancer Center, Goyang, Republic of Korea
| | - Jin-Ho Park
- Department of Family Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Family Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Sun Seo
- Macrogen Inc., Seoul, Republic of Korea
- Asian Genome Center, Seoul National University Bundang Hospital, Gyeonggi, Republic of Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sun-Wha Im
- Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, Gangwon, Republic of Korea
| |
Collapse
|
57
|
Lionikas A, Hernandez Cordero AI, Kilikevicius A, Carroll AM, Bewick GS, Bunger L, Ratkevicius A, Heisler LK, Harboe M, Oxvig C. Stanniocalcin-2 inhibits skeletal muscle growth and is upregulated in functional overload-induced hypertrophy. Physiol Rep 2023; 11:e15793. [PMID: 37568262 PMCID: PMC10510475 DOI: 10.14814/phy2.15793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
AIMS Stanniocalcin-2 (STC2) has recently been implicated in human muscle mass variability by genetic analysis. Biochemically, STC2 inhibits the proteolytic activity of the metalloproteinase PAPP-A, which promotes muscle growth by upregulating the insulin-like growth factor (IGF) axis. The aim was to examine if STC2 affects skeletal muscle mass and to assess how the IGF axis mediates muscle hypertrophy induced by functional overload. METHODS We compared muscle mass and muscle fiber morphology between Stc2-/- (n = 21) and wild-type (n = 15) mice. We then quantified IGF1, IGF2, IGF binding proteins -4 and -5 (IGFBP-4, IGFBP-5), PAPP-A and STC2 in plantaris muscles of wild-type mice subjected to 4-week unilateral overload (n = 14). RESULTS Stc2-/- mice showed up to 10% larger muscle mass compared with wild-type mice. This increase was mediated by greater cross-sectional area of muscle fibers. Overload increased plantaris mass and components of the IGF axis, including quantities of IGF1 (by 2.41-fold, p = 0.0117), IGF2 (1.70-fold, p = 0.0461), IGFBP-4 (1.48-fold, p = 0.0268), PAPP-A (1.30-fold, p = 0.0154) and STC2 (1.28-fold, p = 0.019). CONCLUSION Here we provide evidence that STC2 is an inhibitor of muscle growth upregulated, along with other components of the IGF axis, during overload-induced muscle hypertrophy.
Collapse
Affiliation(s)
- Arimantas Lionikas
- School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenUK
| | - Ana I. Hernandez Cordero
- Centre for Heart Lung InnovationUniversity of British Columbia, St. Paul's HospitalVancouverCanada
| | - Audrius Kilikevicius
- Department of Health Promotion and RehabilitationLithuanian Sports UniversityKaunasLithuania
| | - Andrew M. Carroll
- The New Zealand Institute for Plant & Food Research LimitedPalmerston NorthNew Zealand
| | - Guy S. Bewick
- School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenUK
| | - Lutz Bunger
- Animal Genetics Company (AnGeCo)EdinburghScotland
| | - Aivaras Ratkevicius
- Department of Health Promotion and RehabilitationLithuanian Sports UniversityKaunasLithuania
| | - Lora K. Heisler
- School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenUK
| | - Mette Harboe
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Claus Oxvig
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| |
Collapse
|
58
|
Ao X, Parisien M, Zidan M, Grant AV, Martinsen AE, Winsvold BS, Diatchenko L. Rare variant analyses in large-scale cohorts identified SLC13A1 associated with chronic pain. Pain 2023; 164:1841-1851. [PMID: 36943258 PMCID: PMC10348629 DOI: 10.1097/j.pain.0000000000002882] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/14/2022] [Accepted: 12/16/2022] [Indexed: 03/23/2023]
Abstract
ABSTRACT Chronic pain is a prevalent disease with increasing clinical challenges. Genome-wide association studies in chronic pain patients have identified hundreds of common pathogenic variants, yet they only explained a portion of individual variance of chronic pain. With the advances in next-generation sequencing technologies, it is now feasible to conduct rarer variants studies in large-scale databases. Here, we performed gene-based rare variant analyses in 200,000 human subjects in the UK biobank whole-exome sequencing database for investigating 9 different chronic pain states and validated our findings in 3 other large-scale databases. Our analyses identified the SLC13A1 gene coding for sodium/sulfate symporter associated with chronic back pain and multisite pain at the genome-wide level and with chronic headache, knee, and neck and shoulder pain at the nominal level. Seven loss-of-function rare variants were identified within the gene locus potentially contributing to the development of chronic pain, with 2 of them individually associated with back pain and multisite pain. These 2 rare variants were then tested for replication in 3 other biobanks, and the strongest evidence was found for rs28364172 as an individual contributor. Transcriptional analyses of Slc13a1 in rodents showed substantial regulation of its expression in the dorsal root ganglia and the sciatic nerve in neuropathic pain assays. Our results stress the importance of the SLC13A1 gene in sulfate homeostasis in the nervous system and its critical role in preventing pain states, thus suggesting new therapeutic approaches for treating chronic pain in a personalized manner, especially in people with mutations in the SLC13A1 gene.
Collapse
Affiliation(s)
- Xiang Ao
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Marc Parisien
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Maha Zidan
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Audrey V. Grant
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Amy E. Martinsen
- Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bendik S. Winsvold
- Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Neurology and Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway
| | - Luda Diatchenko
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
59
|
Tsouris A, Brach G, Friedrich A, Hou J, Schacherer J. Diallel panel reveals a significant impact of low-frequency genetic variants on gene expression variation in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550015. [PMID: 37503053 PMCID: PMC10370210 DOI: 10.1101/2023.07.21.550015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Unraveling the genetic sources of gene expression variation is essential to better understand the origins of phenotypic diversity in natural populations. Genome-wide association studies identified thousands of variants involved in gene expression variation, however, variants detected only explain part of the heritability. In fact, variants such as low-frequency and structural variants (SVs) are poorly captured in association studies. To assess the impact of these variants on gene expression variation, we explored a half-diallel panel composed of 323 hybrids originated from pairwise crosses of 26 natural Saccharomyces cerevisiae isolates. Using short- and long-read sequencing strategies, we established an exhaustive catalog of single nucleotide polymorphisms (SNPs) and SVs for this panel. Combining this dataset with the transcriptomes of all hybrids, we comprehensively mapped SNPs and SVs associated with gene expression variation. While SVs impact gene expression variation, SNPs exhibit a higher effect size with an overrepresentation of low-frequency variants compared to common ones. These results reinforce the importance of dissecting the heritability of complex traits with a comprehensive catalog of genetic variants at the population level.
Collapse
Affiliation(s)
- Andreas Tsouris
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Gauthier Brach
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Jing Hou
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
60
|
Klarin D, Devineni P, Sendamarai AK, Angueira AR, Graham SE, Shen YH, Levin MG, Pirruccello JP, Surakka I, Karnam PR, Roychowdhury T, Li Y, Wang M, Aragam KG, Paruchuri K, Zuber V, Shakt GE, Tsao NL, Judy RL, Vy HMT, Verma SS, Rader DJ, Do R, Bavaria JE, Nadkarni GN, Ritchie MD, Burgess S, Guo DC, Ellinor PT, LeMaire SA, Milewicz DM, Willer CJ, Natarajan P, Tsao PS, Pyarajan S, Damrauer SM. Genome-wide association study of thoracic aortic aneurysm and dissection in the Million Veteran Program. Nat Genet 2023; 55:1106-1115. [PMID: 37308786 PMCID: PMC10335930 DOI: 10.1038/s41588-023-01420-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/05/2023] [Indexed: 06/14/2023]
Abstract
The current understanding of the genetic determinants of thoracic aortic aneurysms and dissections (TAAD) has largely been informed through studies of rare, Mendelian forms of disease. Here, we conducted a genome-wide association study (GWAS) of TAAD, testing ~25 million DNA sequence variants in 8,626 participants with and 453,043 participants without TAAD in the Million Veteran Program, with replication in an independent sample of 4,459 individuals with and 512,463 without TAAD from six cohorts. We identified 21 TAAD risk loci, 17 of which have not been previously reported. We leverage multiple downstream analytic methods to identify causal TAAD risk genes and cell types and provide human genetic evidence that TAAD is a non-atherosclerotic aortic disorder distinct from other forms of vascular disease. Our results demonstrate that the genetic architecture of TAAD mirrors that of other complex traits and that it is not solely inherited through protein-altering variants of large effect size.
Collapse
Affiliation(s)
- Derek Klarin
- Veterans Affairs (VA) Palo Alto Healthcare System, Palo Alto, CA, USA.
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Poornima Devineni
- Center for Data and Computational Sciences, VA Boston Healthcare System, Boston, MA, USA
| | - Anoop K Sendamarai
- Center for Data and Computational Sciences, VA Boston Healthcare System, Boston, MA, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Anthony R Angueira
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E Graham
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX, USA
| | - Michael G Levin
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Medicine, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - James P Pirruccello
- Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Ida Surakka
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Purushotham R Karnam
- Center for Data and Computational Sciences, VA Boston Healthcare System, Boston, MA, USA
| | - Tanmoy Roychowdhury
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Minxian Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Krishna G Aragam
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kaavya Paruchuri
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Verena Zuber
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College, Imperial College London, London, UK
| | - Gabrielle E Shakt
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Noah L Tsao
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Renae L Judy
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ha My T Vy
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shefali S Verma
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ron Do
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph E Bavaria
- Division of Cardiovascular Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Stephen Burgess
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Dong-Chuan Guo
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Patrick T Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Dianna M Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Pradeep Natarajan
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Philip S Tsao
- Veterans Affairs (VA) Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Saiju Pyarajan
- Center for Data and Computational Sciences, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Scott M Damrauer
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
61
|
Khadzhieva MB, Gracheva AS, Belopolskaya OB, Kolobkov DS, Kashatnikova DA, Redkin IV, Kuzovlev AN, Grechko AV, Salnikova LE. COVID-19 severity: does the genetic landscape of rare variants matter? Front Genet 2023; 14:1152768. [PMID: 37456666 PMCID: PMC10339319 DOI: 10.3389/fgene.2023.1152768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Rare variants affecting host defense against pathogens may be involved in COVID-19 severity, but most rare variants are not expected to have a major impact on the course of COVID-19. We hypothesized that the accumulation of weak effects of many rare functional variants throughout the exome may contribute to the overall risk in patients with severe disease. This assumption is consistent with the omnigenic model of the relationship between genetic and phenotypic variation in complex traits, according to which association signals tend to spread across most of the genome through gene regulatory networks from genes outside the major pathways to disease-related genes. We performed whole-exome sequencing and compared the burden of rare variants in 57 patients with severe and 29 patients with mild/moderate COVID-19. At the whole-exome level, we observed an excess of rare, predominantly high-impact (HI) variants in the group with severe COVID-19. Restriction to genes intolerant to HI or damaging missense variants increased enrichment for these classes of variants. Among various sets of genes, an increased signal of rare HI variants was demonstrated predominantly for primary immunodeficiency genes and the entire set of genes associated with immune diseases, as well as for genes associated with respiratory diseases. We advocate taking the ideas of the omnigenic model into account in COVID-19 studies.
Collapse
Affiliation(s)
- Maryam B. Khadzhieva
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- The Laboratory of Molecular Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Alesya S. Gracheva
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
- The Department of Population Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Olesya B. Belopolskaya
- The Resource Center “Bio-bank Center”, Research Park of St. Petersburg State University, St. Petersburg, Russia
- The Laboratory of Genogeography, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry S. Kolobkov
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Darya A. Kashatnikova
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ivan V. Redkin
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Artem N. Kuzovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Lyubov E. Salnikova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- The Laboratory of Molecular Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
62
|
Oxvig C, Conover CA. The Stanniocalcin-PAPP-A-IGFBP-IGF Axis. J Clin Endocrinol Metab 2023; 108:1624-1633. [PMID: 36718521 DOI: 10.1210/clinem/dgad053] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
The pappalysin metalloproteinases, PAPP-A and PAPP-A2, have emerged as highly specific proteolytic enzymes involved in the regulation of insulin-like growth factor (IGF) signaling. The only known pappalysin substrates are a subset of the IGF binding proteins (IGFBPs), which bind IGF-I or IGF-II with high affinity to antagonize receptor binding. Thus, by cleaving IGFBPs, the pappalysins have the potential to increase IGF bioactivity and hence promote IGF signaling. This is relevant both in systemic and local IGF regulation, in normal and several pathophysiological conditions. Stanniocalcin-1 and -2 were recently found to be potent pappalysin inhibitors, thus comprising the missing components of a complete proteolytic system, the stanniocalcin-PAPP-A-IGFBP-IGF axis. Here, we provide the biological context necessary for understanding the properties of this molecular network, and we review biochemical data, animal experiments, clinical data, and genetic data supporting the physiological operation of this branch as an important part of the IGF system. However, although in vivo data clearly illustrate its power, it is a challenge to understand its subtle operation, for example, multiple equilibria and inhibitory kinetics may determine how, where, and when the IGF receptor is stimulated. In addition, literally all of the regulatory proteins have suspected or known activities that are not directly related to IGF signaling. How such activities may integrate with IGF signaling is also important to address in the future.
Collapse
Affiliation(s)
- Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 C, Aarhus, Denmark
| | - Cheryl A Conover
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
63
|
Obry L, Dalmasso C. Weighted multiple testing procedures in genome-wide association studies. PeerJ 2023; 11:e15369. [PMID: 37337586 PMCID: PMC10276986 DOI: 10.7717/peerj.15369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/17/2023] [Indexed: 06/21/2023] Open
Abstract
Multiple testing procedures controlling the false discovery rate (FDR) are increasingly used in the context of genome wide association studies (GWAS), and weighted multiple testing procedures that incorporate covariate information are efficient to improve the power to detect associations. In this work, we evaluate some recent weighted multiple testing procedures in the specific context of GWAS through a simulation study. We also present a new efficient procedure called wBHa that prioritizes the detection of genetic variants with low minor allele frequencies while maximizing the overall detection power. The results indicate good performance of our procedure compared to other weighted multiple testing procedures. In particular, in all simulated settings, wBHa tends to outperform other procedures in detecting rare variants while maintaining good overall power. The use of the different procedures is illustrated with a real dataset.
Collapse
Affiliation(s)
- Ludivine Obry
- Université Paris-Saclay, CNRS, Univ Evry, Laboratoire de Mathématiques et Modélisation d’Evry, Evry-Courcouronnes, France
| | - Cyril Dalmasso
- Université Paris-Saclay, CNRS, Univ Evry, Laboratoire de Mathématiques et Modélisation d’Evry, Evry-Courcouronnes, France
| |
Collapse
|
64
|
Hujoel ML, Handsaker RE, Sherman MA, Kamitaki N, Barton AR, Mukamel RE, Terao C, McCarroll SA, Loh PR. Hidden protein-altering variants influence diverse human phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544066. [PMID: 37333244 PMCID: PMC10274781 DOI: 10.1101/2023.06.07.544066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Structural variants (SVs) comprise the largest genetic variants, altering from 50 base pairs to megabases of DNA. However, SVs have not been effectively ascertained in most genetic association studies, leaving a key gap in our understanding of human complex trait genetics. We ascertained protein-altering SVs from UK Biobank whole-exome sequencing data (n=468,570) using haplotype-informed methods capable of detecting sub-exonic SVs and variation within segmental duplications. Incorporating SVs into analyses of rare variants predicted to cause gene loss-of-function (pLoF) identified 100 associations of pLoF variants with 41 quantitative traits. A low-frequency partial deletion of RGL3 exon 6 appeared to confer one of the strongest protective effects of gene LoF on hypertension risk (OR = 0.86 [0.82-0.90]). Protein-coding variation in rapidly-evolving gene families within segmental duplications-previously invisible to most analysis methods-appeared to generate some of the human genome's largest contributions to variation in type 2 diabetes risk, chronotype, and blood cell traits. These results illustrate the potential for new genetic insights from genomic variation that has escaped large-scale analysis to date.
Collapse
Affiliation(s)
- Margaux L.A. Hujoel
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robert E. Handsaker
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Maxwell A. Sherman
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nolan Kamitaki
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Alison R. Barton
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Ronen E. Mukamel
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Steven A. McCarroll
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
65
|
Hjortebjerg R, Pedersen DA, Mengel-From J, Jørgensen LH, Christensen K, Frystyk J. Heritability and circulating concentrations of pregnancy-associated plasma protein-A and stanniocalcin-2 in elderly monozygotic and dizygotic twins. Front Endocrinol (Lausanne) 2023; 14:1193742. [PMID: 37334305 PMCID: PMC10272750 DOI: 10.3389/fendo.2023.1193742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Pregnancy-associated plasma protein-A (PAPP-A) is an IGF-activating enzyme suggested to influence aging-related diseases. However, knowledge on serum PAPP-A concentration and regulation in elderly subjects is limited. Therefore, we measured serum PAPP-A in elderly same-sex monozygotic (MZ) and dizygotic (DZ) twins, as this allowed us to describe the age-relationship of PAPP-A, and to test the hypothesis that serum PAPP-A concentrations are genetically determined. As PAPP-A is functionally related to stanniocalcin-2 (STC2), an endogenous PAPP-A inhibitor, we included measurements on STC2 as well as IGF-I and IGF-II. Methods The twin cohort contained 596 subjects (250 MZ twins, 346 DZ twins), whereof 33% were males. The age ranged from 73.2 to 94.3 (mean 78.8) years. Serum was analyzed for PAPP-A, STC2, IGF-I, and IGF-II by commercial immunoassays. Results In the twin cohort, PAPP-A increased with age (r=0.19; P<0.05), whereas IGF-I decreased (r=-0.12; P<0.05). Neither STC2 nor IGF-II showed any age relationship. When analyzed according to sex, PAPP-A correlated positively with age in males (r=0.18; P<0.05) and females (r=0.25; P<0.01), whereas IGF-I correlated inversely in females only (r=-0.15; P<0.01). Males had higher levels of PAPP-A (29%), STC2 (18%) and IGF-I (19%), whereas serum IGF-II was 28% higher in females (all P<0.001). For all four proteins, within-pair correlations were significantly higher for MZ twins than for DZ twins, and they demonstrated substantial and significant heritability, which after adjustment for age and sex averaged 59% for PAPP-A, 66% for STC2, 58% for IGF-I, and 52% for IGF-II. Discussion This twin study confirms our hypothesis that the heritability of PAPP-A serum concentrations is substantial, and the same is true for STC2. As regards the age relationship, PAPP-A increases with age, whereas STC2 remains unchanged, thereby supporting the idea that the ability of STC2 to inhibit PAPP-A enzymatic activity decreases with increasing age.
Collapse
Affiliation(s)
- Rikke Hjortebjerg
- Endocrine Research Unit, Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Dorthe Almind Pedersen
- The Danish Twin Registry and Danish Aging Research Center, University of Southern Denmark, Odense, Denmark
| | - Jonas Mengel-From
- The Danish Twin Registry and Danish Aging Research Center, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | - Kaare Christensen
- The Danish Twin Registry and Danish Aging Research Center, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Jan Frystyk
- Endocrine Research Unit, Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
66
|
Kachuri L, Hoffmann TJ, Jiang Y, Berndt SI, Shelley JP, Schaffer KR, Machiela MJ, Freedman ND, Huang WY, Li SA, Easterlin R, Goodman PJ, Till C, Thompson I, Lilja H, Van Den Eeden SK, Chanock SJ, Haiman CA, Conti DV, Klein RJ, Mosley JD, Graff RE, Witte JS. Genetically adjusted PSA levels for prostate cancer screening. Nat Med 2023; 29:1412-1423. [PMID: 37264206 PMCID: PMC10287565 DOI: 10.1038/s41591-023-02277-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 02/27/2023] [Indexed: 06/03/2023]
Abstract
Prostate-specific antigen (PSA) screening for prostate cancer remains controversial because it increases overdiagnosis and overtreatment of clinically insignificant tumors. Accounting for genetic determinants of constitutive, non-cancer-related PSA variation has potential to improve screening utility. In this study, we discovered 128 genome-wide significant associations (P < 5 × 10-8) in a multi-ancestry meta-analysis of 95,768 men and developed a PSA polygenic score (PGSPSA) that explains 9.61% of constitutive PSA variation. We found that, in men of European ancestry, using PGS-adjusted PSA would avoid up to 31% of negative prostate biopsies but also result in 12% fewer biopsies in patients with prostate cancer, mostly with Gleason score <7 tumors. Genetically adjusted PSA was more predictive of aggressive prostate cancer (odds ratio (OR) = 3.44, P = 6.2 × 10-14, area under the curve (AUC) = 0.755) than unadjusted PSA (OR = 3.31, P = 1.1 × 10-12, AUC = 0.738) in 106 cases and 23,667 controls. Compared to a prostate cancer PGS alone (AUC = 0.712), including genetically adjusted PSA improved detection of aggressive disease (AUC = 0.786, P = 7.2 × 10-4). Our findings highlight the potential utility of incorporating PGS for personalized biomarkers in prostate cancer screening.
Collapse
Affiliation(s)
- Linda Kachuri
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas J Hoffmann
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Institute of Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Yu Jiang
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - John P Shelley
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Shengchao A Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Ryder Easterlin
- Biological and Medical Informatics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Cathee Till
- SWOG Statistics and Data Management Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ian Thompson
- CHRISTUS Santa Rosa Medical Center Hospital, San Antonio, TX, USA
| | - Hans Lilja
- Departments of Laboratory Medicine, Surgery and Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Population and Preventive Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David V Conti
- Center for Genetic Epidemiology, Department of Population and Preventive Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert J Klein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan D Mosley
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca E Graff
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA.
| | - John S Witte
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Departments of Biomedical Data Science and Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
67
|
Chundru VK, Marioni RE, Prendergast JGD, Lin T, Beveridge AJ, Martin NG, Montgomery GW, Hume DA, Deary IJ, Visscher PM, Wray NR, McRae AF. Rare genetic variants underlie outlying levels of DNA methylation and gene-expression. Hum Mol Genet 2023; 32:1912-1921. [PMID: 36790133 PMCID: PMC10196672 DOI: 10.1093/hmg/ddad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Testing the effect of rare variants on phenotypic variation is difficult due to the need for extremely large cohorts to identify associated variants given expected effect sizes. An alternative approach is to investigate the effect of rare genetic variants on DNA methylation (DNAm) as effect sizes are expected to be larger for molecular traits compared with complex traits. Here, we investigate DNAm in healthy ageing populations-the Lothian Birth Cohorts of 1921 and 1936-and identify both transient and stable outlying DNAm levels across the genome. We find an enrichment of rare genetic single nucleotide polymorphisms (SNPs) within 1 kb of DNAm sites in individuals with stable outlying DNAm, implying genetic control of this extreme variation. Using a family-based cohort, the Brisbane Systems Genetics Study, we observed increased sharing of DNAm outliers among more closely related individuals, consistent with these outliers being driven by rare genetic variation. We demonstrated that outlying DNAm levels have a functional consequence on gene expression levels, with extreme levels of DNAm being associated with gene expression levels toward the tails of the population distribution. This study demonstrates the role of rare SNPs in the phenotypic variation of DNAm and the effect of extreme levels of DNAm on gene expression.
Collapse
Affiliation(s)
- V Kartik Chundru
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Wellcome Sanger Institute, Hinxton CB10 1RQ, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | | | - Tian Lin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Allan J Beveridge
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, The University of Glasgow, Glasgow G61 1QH, UK
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David A Hume
- Mater Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Ian J Deary
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Allan F McRae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
68
|
Hui D, Sanford E, Lorenz K, Damrauer SM, Assimes TL, Thom CS, Voight BF. Mendelian randomization analyses clarify the effects of height on cardiovascular diseases. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2021.12.16.21267869. [PMID: 37205563 PMCID: PMC10187353 DOI: 10.1101/2021.12.16.21267869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An inverse correlation between stature and risk of coronary artery disease (CAD) has been observed in several epidemiologic studies, and recent Mendelian randomization (MR) experiments have suggested causal association. However, the extent to which the effect estimated by MR can be explained by established cardiovascular risk factors is unclear, with a recent report suggesting that lung function traits could fully explain the height-CAD effect. To clarify this relationship, we utilized a well-powered set of genetic instruments for human stature, comprising >1,800 genetic variants for height and CAD. In univariable analysis, we confirmed that a one standard deviation decrease in height (~6.5 cm) was associated with a 12.0% increase in the risk of CAD, consistent with previous reports. In multivariable analysis accounting for effects from up to 12 established risk factors, we observed a >3-fold attenuation in the causal effect of height on CAD susceptibility (3.7%, p = 0.02). However, multivariable analyses demonstrated independent effects of height on other cardiovascular traits beyond CAD, consistent with epidemiologic associations and univariable MR experiments. In contrast with published reports, we observed minimal effects of lung function traits on CAD risk in our analyses, indicating that these traits are unlikely to explain the residual association between height and CAD risk. In sum, these results suggest the impact of height on CAD risk beyond previously established cardiovascular risk factors is minimal and not explained by lung function measures.
Collapse
Affiliation(s)
- Daniel Hui
- Graduate Program in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric Sanford
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly Lorenz
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Scott M. Damrauer
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Themistocles L. Assimes
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher S. Thom
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin F. Voight
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| |
Collapse
|
69
|
Toni L, Plachy L, Dusatkova P, Amaratunga SA, Elblova L, Sumnik Z, Kolouskova S, Snajderova M, Obermannova B, Pruhova S, Lebl J. The Genetic Landscape of Children Born Small for Gestational Age with Persistent Short Stature. Horm Res Paediatr 2023; 97:40-52. [PMID: 37019085 DOI: 10.1159/000530521] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
INTRODUCTION Among children born small for gestational age, 10-15% fail to catch up and remain short (SGA-SS). The underlying mechanisms are mostly unknown. We aimed to decipher genetic aetiologies of SGA-SS within a large single-centre cohort. METHODS Out of 820 patients treated with growth hormone (GH), 256 were classified as SGA-SS (birth length and/or birth weight <-2 SD for gestational age and life-minimum height <-2.5 SD). Those with the DNA triplet available (child and both parents) were included in the study (176/256). Targeted testing (karyotype/FISH/MLPA/specific Sanger sequencing) was performed if a specific genetic disorder was clinically suggestive. All remaining patients underwent MS-MLPA to identify Silver-Russell syndrome, and those with unknown genetic aetiology were subsequently examined using whole-exome sequencing or targeted panel of 398 growth-related genes. Genetic variants were classified using ACMG guidelines. RESULTS The genetic aetiology was elucidated in 74/176 (42%) children. Of these, 12/74 (16%) had pathogenic or likely pathogenic (P/LP) gene variants affecting pituitary development (LHX4, OTX2, PROKR2, PTCH1, POU1F1), the GH-IGF-1 or IGF-2 axis (GHSR, IGFALS, IGF1R, STAT3, HMGA2), 2/74 (3%) the thyroid axis (TRHR, THRA), 17/74 (23%) the cartilaginous matrix (ACAN, various collagens, FLNB, MATN3), and 7/74 (9%) the paracrine chondrocyte regulation (FGFR3, FGFR2, NPR2). In 12/74 (16%), we revealed P/LP affecting fundamental intracellular/intranuclear processes (CDC42, KMT2D, LMNA, NSD1, PTPN11, SRCAP, SON, SOS1, SOX9, TLK2). SHOX deficiency was found in 7/74 (9%), Silver-Russell syndrome in 12/74 (16%) (11p15, UPD7), and miscellaneous chromosomal aberrations in 5/74 (7%) children. CONCLUSIONS The high diagnostic yield sheds a new light on the genetic landscape of SGA-SS, with a central role for the growth plate with substantial contributions from the GH-IGF-1 and thyroid axes and intracellular regulation and signalling.
Collapse
Affiliation(s)
- Ledjona Toni
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Lukas Plachy
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Petra Dusatkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Shenali Anne Amaratunga
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Lenka Elblova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Zdenek Sumnik
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Stanislava Kolouskova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Marta Snajderova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Barbora Obermannova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Stepanka Pruhova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Jan Lebl
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| |
Collapse
|
70
|
Dugand RJ, Blows MW, McGuigan K. Using inbreeding to test the contribution of non-additive genetic effects to additive genetic variance: a case study in Drosophila serrata. Proc Biol Sci 2023; 290:20222111. [PMID: 36919433 PMCID: PMC10015326 DOI: 10.1098/rspb.2022.2111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Additive genetic variance, VA, is the key parameter for predicting adaptive and neutral phenotypic evolution. Changes in demography (e.g. increased close-relative inbreeding) can alter VA, but how they do so depends on the (typically unknown) gene action and allele frequencies across many loci. For example, VA increases proportionally with the inbreeding coefficient when allelic effects are additive, but smaller (or larger) increases can occur when allele frequencies are unequal at causal loci with dominance effects. Here, we describe an experimental approach to assess the potential for dominance effects to deflate VA under inbreeding. Applying a powerful paired pedigree design in Drosophila serrata, we measured 11 wing traits on half-sibling families bred via either random or sibling mating, differing only in homozygosity (not allele frequency). Despite close inbreeding and substantial power to detect small VA, we detected no deviation from the expected additive effect of inbreeding on genetic (co)variances. Our results suggest the average dominance coefficient is very small relative to the additive effect, or that allele frequencies are relatively equal at loci affecting wing traits. We outline the further opportunities for this paired pedigree approach to reveal the characteristics of VA, providing insight into historical selection and future evolutionary potential.
Collapse
Affiliation(s)
- Robert J Dugand
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072. Australia.,School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009 Australia
| | - Mark W Blows
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072. Australia
| | - Katrina McGuigan
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072. Australia
| |
Collapse
|
71
|
Loosen SH, Krieg S, Krieg A, Luedde T, Kostev K, Roderburg C. Adult Body Height Is Associated with the Risk of Type 2 but Not Type 1 Diabetes Mellitus: A Retrospective Cohort Study of 783,029 Individuals in Germany. J Clin Med 2023; 12:jcm12062199. [PMID: 36983200 PMCID: PMC10053566 DOI: 10.3390/jcm12062199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Background: Diabetes mellitus is a major global health burden associated with high morbidity and mortality. Although a short adult body height has been associated with increased risk of type 2 diabetes (T2D), there are large inconsistencies between the studies. Therefore, we aimed to investigate the association between body height and T2D in a large cohort of adult outpatients in Germany. Methods: A total of 783,029 adult outpatients with available body height data from the Disease Analyzer (IQVIA) database were included in Germany between 2010 and 2020. The incidence of diabetes mellitus (type 1 and type 2) was evaluated as a function of the patients’ body height stratified by age, sex, and body-mass-index (BMI). Results: In both women and men in all age groups, incidence of T2D decreased with the increasing body height (<50, 51–60, 61–70, and >70 years). There was no association between the body height and the individual HbA1c value. In multivariable Cox regression analyses adjusted for patient age and BMI, hazard ratios for the development of T2D were 1.15 (95% CI: 1.13–1.17) for each 10 cm decrease in body height in women and 1.10 (95% CI: 1.09–1.12) in men. No significant association was found between body height and the development of T1D. Conclusions: We present the first data from a large cohort of outpatients in Germany, providing strong evidence for an association between adult body height and T2D. These data add to the current literature and might help in implementing body height into existing diabetes risk stratification tools to further reduce morbidity and mortality worldwide.
Collapse
Affiliation(s)
- Sven H. Loosen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty of Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany (C.R.)
- Correspondence: (S.H.L.); (S.K.); Tel.: +49-211-81-16630 (S.H.L. & S.K.); Fax: +49-211-81-04489 (S.H.L. & S.K.)
| | - Sarah Krieg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty of Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany (C.R.)
- Correspondence: (S.H.L.); (S.K.); Tel.: +49-211-81-16630 (S.H.L. & S.K.); Fax: +49-211-81-04489 (S.H.L. & S.K.)
| | | | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty of Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany (C.R.)
| | - Karel Kostev
- Department of Surgery (A), University Hospital Duesseldorf, Medical Faculty of Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty of Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany (C.R.)
| |
Collapse
|
72
|
Hindi J, Pilon MO, Meloche M, Leclair G, Oussaïd E, St-Jean I, Jutras M, Gaulin MJ, Mongrain I, Busseuil D, Rouleau JL, Tardif JC, Dubé MP, de Denus S. Females present higher dose-adjusted drug concentrations of metoprolol and allopurinol/oxypurinol than males. Clin Transl Sci 2023; 16:872-885. [PMID: 36864560 PMCID: PMC10175982 DOI: 10.1111/cts.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 03/04/2023] Open
Abstract
Females present a higher risk of adverse drug reactions. Sex-related differences in drug concentrations may contribute to these observations but they remain understudied given the underrepresentation of females in clinical trials. The aim of this study was to investigate whether anthropometric and socioeconomic factors and comorbidities could explain sex-related differences in concentrations and dosing for metoprolol and oxypurinol, the active metabolite of allopurinol. We conducted an analysis of two cross-sectional studies. Participants were self-described "White" adults taking metoprolol or allopurinol selected from the Montreal Heart Institute Hospital Cohort. A total of 1007 participants were included in the metoprolol subpopulation and 459 participants in the allopurinol subpopulation; 73% and 86% of the participants from the metoprolol and allopurinol subpopulations were males, respectively. Females presented higher age- and dose-adjusted concentrations of both metoprolol and oxypurinol (both p < 0.03). Accordingly, females presented higher unadjusted and age-adjusted concentration:dose ratio of both metoprolol and allopurinol/oxypurinol compared to males (all p < 3.0 × 10-4 ). Sex remained an independent predictor of metoprolol concentrations (p < 0.01), but not of oxypurinol concentrations, after adjusting for other predictors. In addition to sex, age, daily dose, use of moderate to strong CYP2D6 inhibitors, weight, and CYP2D6 genotype-inferred phenotype were associated with concentrations of metoprolol (all p < 0.01). Daily dose, weight, estimated glomerular filtration rate (eGFR), and employment status were associated with oxypurinol concentrations (all p < 0.01). Females present higher dose-adjusted concentrations of metoprolol and oxypurinol than males. This suggests the need for sex-specific dosing requirements for these drugs, although this hypothesis should be validated in prospective studies.
Collapse
Affiliation(s)
- Jessica Hindi
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada.,Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, Quebec, Canada
| | - Marc-Olivier Pilon
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada.,Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, Quebec, Canada
| | - Maxime Meloche
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada.,Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, Quebec, Canada
| | - Grégoire Leclair
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Essaïd Oussaïd
- Montreal Heart Institute, Montreal, Quebec, Canada.,Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, Quebec, Canada
| | - Isabelle St-Jean
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Martin Jutras
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Marie-Josée Gaulin
- Montreal Heart Institute, Montreal, Quebec, Canada.,Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, Quebec, Canada
| | - Ian Mongrain
- Montreal Heart Institute, Montreal, Quebec, Canada.,Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, Quebec, Canada
| | - David Busseuil
- Montreal Heart Institute, Montreal, Quebec, Canada.,Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, Quebec, Canada
| | - Jean Lucien Rouleau
- Montreal Heart Institute, Montreal, Quebec, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute, Montreal, Quebec, Canada.,Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, Quebec, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Marie-Pierre Dubé
- Montreal Heart Institute, Montreal, Quebec, Canada.,Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, Quebec, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Simon de Denus
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada.,Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, Quebec, Canada
| |
Collapse
|
73
|
Melton HJ, Zhang Z, Wu C. SUMMIT-FA: A new resource for improved transcriptome imputation using functional annotations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.02.23285208. [PMID: 36798253 PMCID: PMC9934719 DOI: 10.1101/2023.02.02.23285208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transcriptome-wide association studies (TWAS) integrate gene expression prediction models and genome-wide association studies (GWAS) to identify gene-trait associations. The power of TWAS is determined by the sample size of GWAS and the accuracy of the expression prediction model. Here, we present a new method, the Summary-level Unified Method for Modeling Integrated Transcriptome using Functional Annotations (SUMMIT-FA), that improves the accuracy of gene expression prediction by leveraging functional annotation resources and a large expression quantitative trait loci (eQTL) summary-level dataset. We build gene expression prediction models using SUMMIT-FA with a comprehensive functional database MACIE and the eQTL summary-level data from the eQTLGen consortium. By applying the resulting models to GWASs for 24 complex traits and exploring it through a simulation study, we show that SUMMIT-FA improves the accuracy of gene expression prediction models in whole blood, identifies significantly more gene-trait associations, and improves predictive power for identifying "silver standard" genes compared to several benchmark methods.
Collapse
Affiliation(s)
- Hunter J. Melton
- Department of Statistics, Florida State University, Tallahassee, FL, USA
| | - Zichen Zhang
- Department of Statistics, Florida State University, Tallahassee, FL, USA
| | - Chong Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
74
|
Akiyama M, Sakaue S, Takahashi A, Ishigaki K, Hirata M, Matsuda K, Momozawa Y, Okada Y, Ninomiya T, The Biobank Japan project KoidoMasaru13MorisakiTakayuki11NagaiAkiko14SagiyaYoji15, Terao C, Murakami Y, Kubo M, Kamatani Y. Genome-wide association study reveals BET1L associated with survival time in the 137,693 Japanese individuals. Commun Biol 2023; 6:143. [PMID: 36737517 PMCID: PMC9898503 DOI: 10.1038/s42003-023-04491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Human lifespan is reported to be heritable. Although previous genome-wide association studies (GWASs) have identified several loci, a limited number of studies have assessed the genetic associations with the real survival information on the participants. We conducted a GWAS to identify loci associated with survival time in the Japanese individuals participated in the BioBank Japan Project by carrying out sex-stratified GWASs involving 78,029 males and 59,664 females. Of them, 31,324 (22.7%) died during the mean follow-up period of 7.44 years. We found a novel locus associated with survival (BET1L; P = 5.89 × 10-9). By integrating with eQTL data, we detected a significant overlap with eQTL of BET1L in skeletal muscle. A gene-set enrichment analysis showed that genes related to the BCAR1 protein-protein interaction subnetwork influence survival time (P = 1.54 × 10-7). These findings offer the candidate genes and biological mechanisms associated with human lifespan.
Collapse
Affiliation(s)
- Masato Akiyama
- grid.509459.40000 0004 0472 0267Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan ,grid.509459.40000 0004 0472 0267Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan ,grid.177174.30000 0001 2242 4849Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Saori Sakaue
- grid.509459.40000 0004 0472 0267Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan ,grid.509459.40000 0004 0472 0267Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan ,grid.136593.b0000 0004 0373 3971Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871 Japan
| | - Atsushi Takahashi
- grid.509459.40000 0004 0472 0267Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan ,grid.509459.40000 0004 0472 0267Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan ,grid.410796.d0000 0004 0378 8307Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Osaka, 564-8565 Japan
| | - Kazuyoshi Ishigaki
- grid.509459.40000 0004 0472 0267Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan ,grid.509459.40000 0004 0472 0267Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
| | - Makoto Hirata
- grid.26999.3d0000 0001 2151 536XLaboratory of Genome Technology, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Koichi Matsuda
- grid.26999.3d0000 0001 2151 536XLaboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate school of Frontier Sciences, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Yukihide Momozawa
- grid.509459.40000 0004 0472 0267Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
| | - Yukinori Okada
- grid.509459.40000 0004 0472 0267Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan ,grid.509459.40000 0004 0472 0267Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan ,grid.136593.b0000 0004 0373 3971Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871 Japan ,grid.509459.40000 0004 0472 0267Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
| | - Toshiharu Ninomiya
- grid.177174.30000 0001 2242 4849Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Fukuoka, 812-8582 Japan
| | | | - Chikashi Terao
- grid.509459.40000 0004 0472 0267Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan ,grid.509459.40000 0004 0472 0267Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
| | - Yoshinori Murakami
- grid.26999.3d0000 0001 2151 536XDivision of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Michiaki Kubo
- grid.509459.40000 0004 0472 0267RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan. .,Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan. .,Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
75
|
Conery M, Grant SFA. Human height: a model common complex trait. Ann Hum Biol 2023; 50:258-266. [PMID: 37343163 PMCID: PMC10368389 DOI: 10.1080/03014460.2023.2215546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023]
Abstract
CONTEXT Like other complex phenotypes, human height reflects a combination of environmental and genetic factors, but is notable for being exceptionally easy to measure. Height has therefore been commonly used to make observations later generalised to other phenotypes though the appropriateness of such generalisations is not always considered. OBJECTIVES We aimed to assess height's suitability as a model for other complex phenotypes and review recent advances in height genetics with regard to their implications for complex phenotypes more broadly. METHODS We conducted a comprehensive literature search in PubMed and Google Scholar for articles relevant to the genetics of height and its comparatibility to other phenotypes. RESULTS Height is broadly similar to other phenotypes apart from its high heritability and ease of measurment. Recent genome-wide association studies (GWAS) have identified over 12,000 independent signals associated with height and saturated height's common single nucleotide polymorphism based heritability of height within a subset of the genome in individuals similar to European reference populations. CONCLUSIONS Given the similarity of height to other complex traits, the saturation of GWAS's ability to discover additional height-associated variants signals potential limitations to the omnigenic model of complex-phenotype inheritance, indicating the likely future power of polygenic scores and risk scores, and highlights the increasing need for large-scale variant-to-gene mapping efforts.
Collapse
Affiliation(s)
- Mitchell Conery
- Division of Human Genetics, Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of PA, Philadelphia, PA, USA
- Department of Pharmacology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Struan F A Grant
- Division of Human Genetics, Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of PA, Philadelphia, PA, USA
- Division of Diabetes and Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
76
|
Young KL, Fisher V, Deng X, Brody JA, Graff M, Lim E, Lin BM, Xu H, Amin N, An P, Aslibekyan S, Fohner AE, Hidalgo B, Lenzini P, Kraaij R, Medina-Gomez C, Prokić I, Rivadeneira F, Sitlani C, Tao R, van Rooij J, Zhang D, Broome JG, Buth EJ, Heavner BD, Jain D, Smith AV, Barnes K, Boorgula MP, Chavan S, Darbar D, De Andrade M, Guo X, Haessler J, Irvin MR, Kalyani RR, Kardia SLR, Kooperberg C, Kim W, Mathias RA, McDonald ML, Mitchell BD, Peyser PA, Regan EA, Redline S, Reiner AP, Rich SS, Rotter JI, Smith JA, Weiss S, Wiggins KL, Yanek LR, Arnett D, Heard-Costa NL, Leal S, Lin D, McKnight B, Province M, van Duijn CM, North KE, Cupples LA, Liu CT. Whole-exome sequence analysis of anthropometric traits illustrates challenges in identifying effects of rare genetic variants. HGG ADVANCES 2023; 4:100163. [PMID: 36568030 PMCID: PMC9772568 DOI: 10.1016/j.xhgg.2022.100163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Anthropometric traits, measuring body size and shape, are highly heritable and significant clinical risk factors for cardiometabolic disorders. These traits have been extensively studied in genome-wide association studies (GWASs), with hundreds of genome-wide significant loci identified. We performed a whole-exome sequence analysis of the genetics of height, body mass index (BMI) and waist/hip ratio (WHR). We meta-analyzed single-variant and gene-based associations of whole-exome sequence variation with height, BMI, and WHR in up to 22,004 individuals, and we assessed replication of our findings in up to 16,418 individuals from 10 independent cohorts from Trans-Omics for Precision Medicine (TOPMed). We identified four trait associations with single-nucleotide variants (SNVs; two for height and two for BMI) and replicated the LECT2 gene association with height. Our expression quantitative trait locus (eQTL) analysis within previously reported GWAS loci implicated CEP63 and RFT1 as potential functional genes for known height loci. We further assessed enrichment of SNVs, which were monogenic or syndromic variants within loci associated with our three traits. This led to the significant enrichment results for height, whereas we observed no Bonferroni-corrected significance for all SNVs. With a sample size of ∼20,000 whole-exome sequences in our discovery dataset, our findings demonstrate the importance of genomic sequencing in genetic association studies, yet they also illustrate the challenges in identifying effects of rare genetic variants.
Collapse
Affiliation(s)
- Kristin L Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Virginia Fisher
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Xuan Deng
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Misa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Elise Lim
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Bridget M Lin
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Hanfei Xu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam 3015CN, the Netherlands
| | - Ping An
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alison E Fohner
- Department of Epidemiology, University of Washington, Seattle, WA 98101, USA.,Institute for Public Health Genetics, University of Washington, Seattle, WA 98101, USA
| | - Bertha Hidalgo
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Petra Lenzini
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam 3015CN, the Netherlands
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam 3015CN, the Netherlands
| | - Ivana Prokić
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam 3015CN, the Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam 3015CN, the Netherlands
| | - Colleen Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeroen van Rooij
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam 3015CN, the Netherlands
| | - Di Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jai G Broome
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA.,Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98105, USA
| | - Erin J Buth
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Benjamin D Heavner
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Kathleen Barnes
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Tempus Labs, Chicago, IL 60654, USA
| | - Meher Preethi Boorgula
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sameer Chavan
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mariza De Andrade
- Health Quantitative Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rita R Kalyani
- Division of Endocrinology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Wonji Kim
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Rasika A Mathias
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Merry-Lynn McDonald
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Patricia A Peyser
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Susan Redline
- Department of Medicine, Brigham & Women's Hospital, Boston, MA, USA
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA 98101, USA.,Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Scott Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kerri L Wiggins
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lisa R Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donna Arnett
- College of Public Health, University of Kentucky, Lexington, KY, USA
| | | | - Suzanne Leal
- Department of Neurology, Columbia University, New York City, NY, USA
| | - Danyu Lin
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Barbara McKnight
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Michael Province
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - L Adrienne Cupples
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Ching-Ti Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
| |
Collapse
|
77
|
Idiopathic Short Stature: What to Expect from Genomic Investigations. ENDOCRINES 2023. [DOI: 10.3390/endocrines4010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Short stature is a common concern for physicians caring for children. In traditional investigations, about 70% of children are healthy, without producing clinical and laboratory findings that justify their growth disorder, being classified as having constitutional short stature or idiopathic short stature (ISS). In such scenarios, the genetic approach has emerged as a great potential method to understand ISS. Over the last 30 years, several genes have been identified as being responsible for isolated short stature, with almost all of them being inherited in an autosomal-dominant pattern. Most of these defects are in genes related to the growth plate, followed by genes related to the growth hormone (GH)–insulin-like growth factor 1 (IGF1) axis and RAS-MAPK pathway. These patients usually do not have a specific phenotype, which hinders the use of a candidate gene approach. Through multigene sequencing analyses, it has been possible to provide an answer for short stature in 10–30% of these cases, with great impacts on treatment and follow-up, allowing the application of the concept of precision medicine in patients with ISS. This review highlights the historic aspects and provides an update on the monogenic causes of idiopathic short stature and suggests what to expect from genomic investigations in this field.
Collapse
|
78
|
Srivastava R. Applications of artificial intelligence multiomics in precision oncology. J Cancer Res Clin Oncol 2023; 149:503-510. [PMID: 35796775 DOI: 10.1007/s00432-022-04161-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023]
Abstract
Cancer is the second leading worldwide disease that depends on oncogenic mutations and non-mutated genes for survival. Recent advancements in next-generation sequencing (NGS) have transformed the health care sector with big data and machine learning (ML) approaches. NGS data are able to detect the abnormalities and mutations in the oncogenes. These multi-omics analyses are used for risk prediction, early diagnosis, accurate prognosis, and identification of biomarkers in cancer patients. The availability of these cancer data and their analysis may provide insights into the biology of the disease, which can be used for the personalized treatment of cancer patients. Bioinformatics tools are delivering this promise by managing, integrating, and analyzing these complex datasets. The clinical outcomes of cancer patients are improved by the use of various innovative methods implicated particularly for diagnosis and therapeutics. ML-based artificial intelligence (AI) applications are solving these issues to a great extent. AI techniques are used to update the patients on a personalized basis about their treatment procedures, progress, recovery, therapies used, dietary changes in lifestyles patterns along with the survival summary of previously recovered cancer patients. In this way, the patients are becoming more aware of their diseases and the entire clinical treatment procedures. Though the technology has its own advantages and disadvantages, we hope that the day is not so far when AI techniques will provide personalized treatment to cancer patients tailored to their needs in much quicker ways.
Collapse
Affiliation(s)
- Ruby Srivastava
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.
| |
Collapse
|
79
|
Swinford N, Gallagher B, Sheehama J, Lin M, Prall S, Scelza B, Henn BM. Examination of runs of homozygosity in relation to height in an endogamous Namibian population. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 180:207-215. [PMID: 36790690 PMCID: PMC9937629 DOI: 10.1002/ajpa.24660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Height is a complex, highly heritable polygenic trait subject to both genetic composition and environmental influences. Recent studies suggest that a large proportion of height heritability is determined by the cumulative effect of many low allele frequency variants across the genome. Previous research has also identified an inverse relationship between height and runs of homozygosity (ROH); however, this has yet to be examined within African populations. We aim to identify this association within the Himba, an endogamous Namibian population who are recently bottlenecked, resulting in elevated haplotype sharing and increased homozygosity. MATERIALS AND METHODS Here, we calculate the fraction of the genome composed of long runs of homozygosity (FROH) in a sample of 245 adults and use mixed effects models to assess its effect on height. RESULTS We find that Himba adults exhibit increased homozygosity. However, in contrast to previous studies in other populations, we do not find a significant effect of FROH on height within the Himba. We further estimated heritability of height, noting both an enrichment of distant relatives and greater developmental homogeneity across households; we find thath g 2 = 0.59 (SE ± 0.146), comparable to estimates reported in Europeans. DISCUSSION Our results may be due to other environmental variables we were not able to include, measurement error, or low statistical power, but may also imply that phenotypic expression resulting from increased homozygosity may vary from population to population.
Collapse
Affiliation(s)
- Natalie Swinford
- Department of AnthropologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Brenna Gallagher
- Department of AnthropologyUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Meng Lin
- Anschutz Medical CampusUniversity of ColoradoAuroraColoradoUSA
| | - Sean Prall
- Department of AntrhopologyUniversity of MissouriColumbiaMissouriUSA
| | - Brooke Scelza
- Department of AnthropologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Brenna M. Henn
- Department of AnthropologyUniversity of CaliforniaDavisCaliforniaUSA
- UC Davis Genome CenterUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
80
|
Zhong Q, Chu H, Wang G, Zhang C, Li R, Guo F, Meng X, Lei X, Zhou Y, Ren R, Tao L, Li N, Gao N, Wei Y, Qiao J, Hang J. Structural insights into the covalent regulation of PAPP-A activity by proMBP and STC2. Cell Discov 2022; 8:137. [PMID: 36550107 PMCID: PMC9780223 DOI: 10.1038/s41421-022-00502-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Originally discovered in the circulation of pregnant women as a protein secreted by placental trophoblasts, the metalloprotease pregnancy-associated plasma protein A (PAPP-A) is also widely expressed by many other tissues. It cleaves insulin-like growth factor-binding proteins (IGFBPs) to increase the bioavailability of IGFs and plays essential roles in multiple growth-promoting processes. While the vast majority of the circulatory PAPP-A in pregnancy is proteolytically inactive due to covalent inhibition by proform of eosinophil major basic protein (proMBP), the activity of PAPP-A can also be covalently inhibited by another less characterized modulator, stanniocalcin-2 (STC2). However, the structural basis of PAPP-A proteolysis and the mechanistic differences between these two modulators are poorly understood. Here we present two cryo-EM structures of endogenous purified PAPP-A in complex with either proMBP or STC2. Both modulators form 2:2 heterotetramer with PAPP-A and establish extensive interactions with multiple domains of PAPP-A that are distal to the catalytic cleft. This exosite-binding property results in a steric hindrance to prevent the binding and cleavage of IGFBPs, while the IGFBP linker region-derived peptides harboring the cleavage sites are no longer sensitive to the modulator treatment. Functional investigation into proMBP-mediated PAPP-A regulation in selective intrauterine growth restriction (sIUGR) pregnancy elucidates that PAPP-A and proMBP collaboratively regulate extravillous trophoblast invasion and the consequent fetal growth. Collectively, our work reveals a novel covalent exosite-competitive inhibition mechanism of PAPP-A and its regulatory effect on placental function.
Collapse
Affiliation(s)
- Qihang Zhong
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China ,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
| | - Honglei Chu
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China ,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
| | - Guopeng Wang
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Cheng Zhang
- grid.412474.00000 0001 0027 0586Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Rong Li
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China ,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
| | - Fusheng Guo
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University, Beijing, China ,grid.11135.370000 0001 2256 9319Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xinlu Meng
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Xiaoguang Lei
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University, Beijing, China ,grid.11135.370000 0001 2256 9319Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China ,grid.510951.90000 0004 7775 6738Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong China
| | - Youli Zhou
- grid.10784.3a0000 0004 1937 0482School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong China
| | - Ruobing Ren
- grid.10784.3a0000 0004 1937 0482School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong China ,grid.8547.e0000 0001 0125 2443Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Lin Tao
- grid.412636.40000 0004 1757 9485Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning China
| | - Ningning Li
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Ning Gao
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China ,grid.11135.370000 0001 2256 9319Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yuan Wei
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China ,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
| | - Jie Qiao
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China ,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology, Beijing, China ,grid.11135.370000 0001 2256 9319Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jing Hang
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China ,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
| |
Collapse
|
81
|
Kanai M, Elzur R, Zhou W, Daly MJ, Finucane HK. Meta-analysis fine-mapping is often miscalibrated at single-variant resolution. CELL GENOMICS 2022; 2:100210. [PMID: 36643910 PMCID: PMC9839193 DOI: 10.1016/j.xgen.2022.100210] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/19/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Meta-analysis is pervasively used to combine multiple genome-wide association studies (GWASs). Fine-mapping of meta-analysis studies is typically performed as in a single-cohort study. Here, we first demonstrate that heterogeneity (e.g., of sample size, phenotyping, imputation) hurts calibration of meta-analysis fine-mapping. We propose a summary statistics-based quality-control (QC) method, suspicious loci analysis of meta-analysis summary statistics (SLALOM), that identifies suspicious loci for meta-analysis fine-mapping by detecting outliers in association statistics. We validate SLALOM in simulations and the GWAS Catalog. Applying SLALOM to 14 meta-analyses from the Global Biobank Meta-analysis Initiative (GBMI), we find that 67% of loci show suspicious patterns that call into question fine-mapping accuracy. These predicted suspicious loci are significantly depleted for having nonsynonymous variants as lead variant (2.7×; Fisher's exact p = 7.3 × 10-4). We find limited evidence of fine-mapping improvement in the GBMI meta-analyses compared with individual biobanks. We urge extreme caution when interpreting fine-mapping results from meta-analysis of heterogeneous cohorts.
Collapse
Affiliation(s)
- Masahiro Kanai
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02142, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Roy Elzur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02142, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02142, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mark J. Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02142, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Hilary K. Finucane
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02142, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
82
|
Region-related patterns of the main physical development indicators observed in northerners in the ontogenetic aspect. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.5-2.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Indicators of physical development appear to be environmentally sensitive and thus we can consider them the main characteristics of the population health.The aim. To assess the line of physical development main variables in the ontogenetic aspect (data from the North born male subjects aged from 8 to 77).Material and methods. Three thousand seven hundred and ninety-four male Caucasians from 17 age groups were examined to analyse their physical development.Results. The study showed longer body length variables as the region-related somatometric picture which is characteristic of male Caucasian northerners in comparison with those from other regions of the Russian Federation, as well as from other countries. Besides, they exhibited significantly lower body mass index and reported to have had lower body weight since the age of 17. We can see the modern northerners’ somatotype being influenced by regional extremes. That also includes the end of the body growth processes by the start of ontogenesis in the youth. The line pattern of annual growth observed in the body length and weight variables indicates a combined pronounced dynamics in the 11 to 16 age period. By the age of 60–77 years subjects tend to decrease in the body length with a significant increase in the body weight and body mass index by the age of 31–36.Conclusion. The study suggests that identifying risks for the development of noninfectious and cardiovascular diseases caused by accelerated BMI in older populations requires monitoring of the North inhabitants’ main physical development indicators as well as the body annual growth variables.
Collapse
|
83
|
Turkyilmaz A, Donmez AS, Cayir A. A Genetic Approach in the Evaluation of Short Stature. Eurasian J Med 2022; 54:179-186. [PMID: 36655465 PMCID: PMC11163345 DOI: 10.5152/eurasianjmed.2022.22171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/28/2022] [Indexed: 01/19/2023] Open
Abstract
Short stature is considered a condition in which the height is 2 standard deviations below the mean height of a given age, sex, and population group. Human height is a polygenic and heterogeneous characteristic, and its heritability is reported to be approximately 80%. More than 600 variants associated with human growth were detected in the genome-wide association studies. Rare and common variants concurrently affect human height. The rare variations that play a role in human height determination and have a strong impact on protein functions lead to monogenic short stature phenotypes, which are a highly heterogeneous group. With rapidly developing technologies in the last decade, molecular genetic tests have begun to be used widely in clinical genetics, and thus, the genetic etiology of several rare diseases has been elucidated. Identifying the genetic etiology underlying idiopathic short stature which represents phenotypically heterogeneous group of diseases ranging from isolated short stature to severe and syndromic short stature has promoted the understanding of the genetic regulation of growth plate and longitudinal bone growth. In cases of short stature, definite molecular diagnosis based on genetic evaluation enables the patient and family to receive genetic counseling on the natural course of the disease, prognosis, genetic basis, and recurrence risk. The determination of the genetic etiology in growth disorders is essential for the development of novel targeted therapies and crucial in the development of mutation-specific treatments in the future.
Collapse
Affiliation(s)
- Ayberk Turkyilmaz
- Department of Medical Genetics, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Ayse Sena Donmez
- Department of Pediatrics, Regional Training and Research Hospital, Erzurum, Turkey
| | - Atilla Cayir
- Department of Pediatric Endocrinology, Regional Training and Research Hospital, Erzurum, Turkey
| |
Collapse
|
84
|
Andrade NLM, Funari MFDA, Malaquias AC, Collett-Solberg PF, Gomes NLRA, Scalco R, Dantas NCB, Rezende RC, Tiburcio AMFP, Souza MAR, Freire BL, Krepischi ACV, Longui CA, Lerario AM, Arnhold IJP, Jorge AAL, Vasques GA. Diagnostic yield of a multigene sequencing approach in children classified as idiopathic short stature. Endocr Connect 2022; 11:e220214. [PMID: 36373817 PMCID: PMC9716379 DOI: 10.1530/ec-22-0214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022]
Abstract
Objective Most children with short stature remain without an etiologic diagnosis after extensive clinical and laboratory evaluation and are classified as idiopathic short stature (ISS). This study aimed to determine the diagnostic yield of a multigene analysis in children classified as ISS. Design and methods We selected 102 children with ISS and performed the genetic analysis as part of the initial investigation. We developed customized targeted panel sequencing, including all genes already implicated in the isolated short-stature phenotype. Rare and deleterious single nucleotide or copy number variants were assessed by bioinformatic tools. Results We identified 20 heterozygous pathogenic (P) or likely pathogenic (LP) genetic variants in 17 of 102 patients (diagnostic yield = 16.7%). Three patients had more than one P/LP genetic alteration. Most of the findings were in genes associated with the growth plate differentiation: IHH (n = 4), SHOX (n = 3), FGFR3 (n = 2), NPR2 (n = 2), ACAN (n = 2), and COL2A1 (n = 1) or involved in the RAS/MAPK pathway: NF1 (n = 2), PTPN11 (n = 1), CBL (n = 1), and BRAF (n = 1). None of these patients had clinical findings to guide a candidate gene approach. The diagnostic yield was higher among children with severe short stature (35% vs 12.2% for height SDS ≤ or > -3; P = 0.034). The genetic diagnosis had an impact on clinical management for four children. Conclusion A multigene sequencing approach can determine the genetic etiology of short stature in up to one in six children with ISS, removing the term idiopathic from their clinical classification.
Collapse
Affiliation(s)
| | - Mariana Ferreira de Assis Funari
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil
| | | | - Paulo Ferrez Collett-Solberg
- Disciplina de Endocrinologia, Departamento de Medicina Interna, Faculdade de Ciências Medicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Nathalia L R A Gomes
- Serviço de Endocrinologia, Unidade de Crescimento, Santa Casa de Belo Horizonte, Belo Horizonte, Minas Gerais, Brasil
| | - Renata Scalco
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil
- Departamento de Medicina, Faculdade de Ciencias Medicas da Santa Casa de Sao Paulo, Sao Paulo, Brasil
| | - Naiara Castelo Branco Dantas
- Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), Sao Paulo, Brasil
| | - Raissa C Rezende
- Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), Sao Paulo, Brasil
| | - Angelica M F P Tiburcio
- Serviço de Endocrinologia, Unidade de Crescimento, Santa Casa de Belo Horizonte, Belo Horizonte, Minas Gerais, Brasil
| | - Micheline A R Souza
- Serviço de Endocrinologia do Instituto de Puericultura e Pediatria Martagao Gesteira/Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Bruna L Freire
- Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), Sao Paulo, Brasil
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil
| | - Ana C V Krepischi
- Centro de Pesquisa em Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de Sao Paulo, São Paulo, Brasil
| | - Carlos Alberto Longui
- Departamento de Pediatria, Faculdade de Ciencias Medicas da Santa Casa de Sao Paulo, Sao Paulo, Brasil
| | - Antonio Marcondes Lerario
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ivo J P Arnhold
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), Sao Paulo, Brasil
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil
| | - Gabriela Andrade Vasques
- Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), Sao Paulo, Brasil
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil
| |
Collapse
|
85
|
Dapas M, Dunaif A. Deconstructing a Syndrome: Genomic Insights Into PCOS Causal Mechanisms and Classification. Endocr Rev 2022; 43:927-965. [PMID: 35026001 PMCID: PMC9695127 DOI: 10.1210/endrev/bnac001] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 01/16/2023]
Abstract
Polycystic ovary syndrome (PCOS) is among the most common disorders in women of reproductive age, affecting up to 15% worldwide, depending on the diagnostic criteria. PCOS is characterized by a constellation of interrelated reproductive abnormalities, including disordered gonadotropin secretion, increased androgen production, chronic anovulation, and polycystic ovarian morphology. It is frequently associated with insulin resistance and obesity. These reproductive and metabolic derangements cause major morbidities across the lifespan, including anovulatory infertility and type 2 diabetes (T2D). Despite decades of investigative effort, the etiology of PCOS remains unknown. Familial clustering of PCOS cases has indicated a genetic contribution to PCOS. There are rare Mendelian forms of PCOS associated with extreme phenotypes, but PCOS typically follows a non-Mendelian pattern of inheritance consistent with a complex genetic architecture, analogous to T2D and obesity, that reflects the interaction of susceptibility genes and environmental factors. Genomic studies of PCOS have provided important insights into disease pathways and have indicated that current diagnostic criteria do not capture underlying differences in biology associated with different forms of PCOS. We provide a state-of-the-science review of genetic analyses of PCOS, including an overview of genomic methodologies aimed at a general audience of non-geneticists and clinicians. Applications in PCOS will be discussed, including strengths and limitations of each study. The contributions of environmental factors, including developmental origins, will be reviewed. Insights into the pathogenesis and genetic architecture of PCOS will be summarized. Future directions for PCOS genetic studies will be outlined.
Collapse
Affiliation(s)
- Matthew Dapas
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Andrea Dunaif
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
86
|
Adult Height, 22q11.2 Deletion Extent, and Short Stature in 22q11.2 Deletion Syndrome. Genes (Basel) 2022; 13:genes13112038. [DOI: 10.3390/genes13112038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
The 22q11.2 deletion syndrome (22q11.2DS) manifests as a wide range of medical conditions across a number of systems. Pediatric growth deficiency with some catch-up growth is reported, but there are few studies of final adult height. We aimed to investigate how final adult height in 22q11.2DS compared with general population norms, and to examine predictors of short stature in in a cohort of 397 adults with 22q11.2DS (aged 17.6–76.3 years) with confirmed typical 22q11.2 microdeletion (overlapping the LCR22A to LCR22B region). We defined short stature as <3rd percentile using population norms. For the subset (n = 314, 79.1%) with 22q11.2 deletion extent, we used a binomial logistic regression model to predict short stature in 22q11.2DS, accounting for effects of sex, age, ancestry, major congenital heart disease (CHD), moderate-to-severe intellectual disability (ID), and 22q11.2 deletion extent. Adult height in 22q11.2DS showed a normal distribution but with a shift to the left, compared with population norms. Those with short stature represented 22.7% of the 22q11.2DS sample, 7.6-fold greater than population expectations (p < 0.0001). In the regression model, moderate-to-severe ID, major CHD, and the common LCR22A-LCR22D (A-D) deletion were significant independent risk factors for short stature while accounting for other factors (model p = 0.0004). The results suggest that the 22q11.2 microdeletion has a significant effect on final adult height distribution, and on short stature with effects appearing to arise from reduced gene dosage involving both the proximal and distal sub-regions of the A-D region. Future studies involving larger sample sizes with proximal nested 22q11.2 deletions, longitudinal lifetime data, parental heights, and genotype data will be valuable.
Collapse
|
87
|
Zhu J, Meng R, Zhao H, Cai L, Wen X, Zeng W, Luo Y, Qi H. Identification of Diagnostic Variants in FGFR2 and NPR2 Genes in a Chinese Family Affected by Crouzon Syndrome and Acromesomelic Dysplasia, Type Maroteaux. DNA Cell Biol 2022; 41:996-1006. [DOI: 10.1089/dna.2022.0453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- JianJiang Zhu
- Prenatal Diagnosis Center, Haidian District Maternal and Child Health Care Hospital, Beijing, P.R. China
| | - Ran Meng
- Prenatal Diagnosis Center, Haidian District Maternal and Child Health Care Hospital, Beijing, P.R. China
| | - HuaWei Zhao
- Prenatal Diagnosis Center, Haidian District Maternal and Child Health Care Hospital, Beijing, P.R. China
| | - LiRong Cai
- Prenatal Diagnosis Center, Haidian District Maternal and Child Health Care Hospital, Beijing, P.R. China
| | - XiaoHui Wen
- Prenatal Diagnosis Center, Haidian District Maternal and Child Health Care Hospital, Beijing, P.R. China
| | - Wen Zeng
- Prenatal Diagnosis Center, Haidian District Maternal and Child Health Care Hospital, Beijing, P.R. China
| | - Yao Luo
- Prenatal Diagnosis Center, Haidian District Maternal and Child Health Care Hospital, Beijing, P.R. China
| | - Hong Qi
- Prenatal Diagnosis Center, Haidian District Maternal and Child Health Care Hospital, Beijing, P.R. China
| |
Collapse
|
88
|
Hujoel MLA, Sherman MA, Barton AR, Mukamel RE, Sankaran VG, Terao C, Loh PR. Influences of rare copy-number variation on human complex traits. Cell 2022; 185:4233-4248.e27. [PMID: 36306736 PMCID: PMC9800003 DOI: 10.1016/j.cell.2022.09.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/22/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
The human genome contains hundreds of thousands of regions harboring copy-number variants (CNV). However, the phenotypic effects of most such polymorphisms are unknown because only larger CNVs have been ascertainable from SNP-array data generated by large biobanks. We developed a computational approach leveraging haplotype sharing in biobank cohorts to more sensitively detect CNVs. Applied to UK Biobank, this approach accounted for approximately half of all rare gene inactivation events produced by genomic structural variation. This CNV call set enabled a detailed analysis of associations between CNVs and 56 quantitative traits, identifying 269 independent associations (p < 5 × 10-8) likely to be causally driven by CNVs. Putative target genes were identifiable for nearly half of the loci, enabling insights into dosage sensitivity of these genes and uncovering several gene-trait relationships. These results demonstrate the ability of haplotype-informed analysis to provide insights into the genetic basis of human complex traits.
Collapse
Affiliation(s)
- Margaux L A Hujoel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Maxwell A Sherman
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alison R Barton
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Bioinformatics and Integrative Genomics Program, Harvard Medical School, Boston, MA, USA
| | - Ronen E Mukamel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vijay G Sankaran
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan; Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
89
|
Zhang Z, Bae YE, Bradley JR, Wu L, Wu C. SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification. Nat Commun 2022; 13:6336. [PMID: 36284135 PMCID: PMC9593997 DOI: 10.1038/s41467-022-34016-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 10/11/2022] [Indexed: 12/25/2022] Open
Abstract
Genes with moderate to low expression heritability may explain a large proportion of complex trait etiology, but such genes cannot be sufficiently captured in conventional transcriptome-wide association studies (TWASs), partly due to the relatively small available reference datasets for developing expression genetic prediction models to capture the moderate to low genetically regulated components of gene expression. Here, we introduce a method, the Summary-level Unified Method for Modeling Integrated Transcriptome (SUMMIT), to improve the expression prediction model accuracy and the power of TWAS by using a large expression quantitative trait loci (eQTL) summary-level dataset. We apply SUMMIT to the eQTL summary-level data provided by the eQTLGen consortium. Through simulation studies and analyses of genome-wide association study summary statistics for 24 complex traits, we show that SUMMIT improves the accuracy of expression prediction in blood, successfully builds expression prediction models for genes with low expression heritability, and achieves higher statistical power than several benchmark methods. Finally, we conduct a case study of COVID-19 severity with SUMMIT and identify 11 likely causal genes associated with COVID-19 severity.
Collapse
Affiliation(s)
- Zichen Zhang
- Department of Statistics, Florida State University, Tallahassee, FL, USA
| | - Ye Eun Bae
- Department of Statistics, Florida State University, Tallahassee, FL, USA
| | - Jonathan R Bradley
- Department of Statistics, Florida State University, Tallahassee, FL, USA
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Chong Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
90
|
Structure of the proteolytic enzyme PAPP-A with the endogenous inhibitor stanniocalcin-2 reveals its inhibitory mechanism. Nat Commun 2022; 13:6084. [PMID: 36257932 PMCID: PMC9579167 DOI: 10.1038/s41467-022-33698-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022] Open
Abstract
The metzincin metalloproteinase PAPP-A plays a key role in the regulation of insulin-like growth factor (IGF) signaling by specific cleavage of inhibitory IGF binding proteins (IGFBPs). Using single-particle cryo-electron microscopy (cryo-EM), we here report the structure of PAPP-A in complex with its endogenous inhibitor, stanniocalcin-2 (STC2), neither of which have been reported before. The highest resolution (3.1 Å) was obtained for the STC2 subunit and the N-terminal approximately 1000 residues of the PAPP-A subunit. The 500 kDa 2:2 PAPP-A·STC2 complex is a flexible multidomain ensemble with numerous interdomain contacts. In particular, a specific disulfide bond between the subunits of STC2 and PAPP-A prevents dissociation, and interactions between STC2 and a module located in the very C-terminal end of the PAPP-A subunit prevent binding of its main substrate, IGFBP-4. While devoid of activity towards IGFBP-4, the active site cleft of the catalytic domain is accessible in the inhibited PAPP-A·STC2 complex, as shown by its ability to hydrolyze a synthetic peptide derived from IGFBP-4. Relevant to multiple human pathologies, this unusual mechanism of proteolytic inhibition may support the development of specific pharmaceutical agents, by which IGF signaling can be indirectly modulated.
Collapse
|
91
|
Yengo L, Vedantam S, Marouli E, Sidorenko J, Bartell E, Sakaue S, Graff M, Eliasen AU, Jiang Y, Raghavan S, Miao J, Arias JD, Graham SE, Mukamel RE, Spracklen CN, Yin X, Chen SH, Ferreira T, Highland HH, Ji Y, Karaderi T, Lin K, Lüll K, Malden DE, Medina-Gomez C, Machado M, Moore A, Rüeger S, Sim X, Vrieze S, Ahluwalia TS, Akiyama M, Allison MA, Alvarez M, Andersen MK, Ani A, Appadurai V, Arbeeva L, Bhaskar S, Bielak LF, Bollepalli S, Bonnycastle LL, Bork-Jensen J, Bradfield JP, Bradford Y, Braund PS, Brody JA, Burgdorf KS, Cade BE, Cai H, Cai Q, Campbell A, Cañadas-Garre M, Catamo E, Chai JF, Chai X, Chang LC, Chang YC, Chen CH, Chesi A, Choi SH, Chung RH, Cocca M, Concas MP, Couture C, Cuellar-Partida G, Danning R, Daw EW, Degenhard F, Delgado GE, Delitala A, Demirkan A, Deng X, Devineni P, Dietl A, Dimitriou M, Dimitrov L, Dorajoo R, Ekici AB, Engmann JE, Fairhurst-Hunter Z, Farmaki AE, Faul JD, Fernandez-Lopez JC, Forer L, Francescatto M, Freitag-Wolf S, Fuchsberger C, Galesloot TE, Gao Y, Gao Z, Geller F, Giannakopoulou O, Giulianini F, Gjesing AP, Goel A, Gordon SD, Gorski M, Grove J, Guo X, et alYengo L, Vedantam S, Marouli E, Sidorenko J, Bartell E, Sakaue S, Graff M, Eliasen AU, Jiang Y, Raghavan S, Miao J, Arias JD, Graham SE, Mukamel RE, Spracklen CN, Yin X, Chen SH, Ferreira T, Highland HH, Ji Y, Karaderi T, Lin K, Lüll K, Malden DE, Medina-Gomez C, Machado M, Moore A, Rüeger S, Sim X, Vrieze S, Ahluwalia TS, Akiyama M, Allison MA, Alvarez M, Andersen MK, Ani A, Appadurai V, Arbeeva L, Bhaskar S, Bielak LF, Bollepalli S, Bonnycastle LL, Bork-Jensen J, Bradfield JP, Bradford Y, Braund PS, Brody JA, Burgdorf KS, Cade BE, Cai H, Cai Q, Campbell A, Cañadas-Garre M, Catamo E, Chai JF, Chai X, Chang LC, Chang YC, Chen CH, Chesi A, Choi SH, Chung RH, Cocca M, Concas MP, Couture C, Cuellar-Partida G, Danning R, Daw EW, Degenhard F, Delgado GE, Delitala A, Demirkan A, Deng X, Devineni P, Dietl A, Dimitriou M, Dimitrov L, Dorajoo R, Ekici AB, Engmann JE, Fairhurst-Hunter Z, Farmaki AE, Faul JD, Fernandez-Lopez JC, Forer L, Francescatto M, Freitag-Wolf S, Fuchsberger C, Galesloot TE, Gao Y, Gao Z, Geller F, Giannakopoulou O, Giulianini F, Gjesing AP, Goel A, Gordon SD, Gorski M, Grove J, Guo X, Gustafsson S, Haessler J, Hansen TF, Havulinna AS, Haworth SJ, He J, Heard-Costa N, Hebbar P, Hindy G, Ho YLA, Hofer E, Holliday E, Horn K, Hornsby WE, Hottenga JJ, Huang H, Huang J, Huerta-Chagoya A, Huffman JE, Hung YJ, Huo S, Hwang MY, Iha H, Ikeda DD, Isono M, Jackson AU, Jäger S, Jansen IE, Johansson I, Jonas JB, Jonsson A, Jørgensen T, Kalafati IP, Kanai M, Kanoni S, Kårhus LL, Kasturiratne A, Katsuya T, Kawaguchi T, Kember RL, Kentistou KA, Kim HN, Kim YJ, Kleber ME, Knol MJ, Kurbasic A, Lauzon M, Le P, Lea R, Lee JY, Leonard HL, Li SA, Li X, Li X, Liang J, Lin H, Lin SY, Liu J, Liu X, Lo KS, Long J, Lores-Motta L, Luan J, Lyssenko V, Lyytikäinen LP, Mahajan A, Mamakou V, Mangino M, Manichaikul A, Marten J, Mattheisen M, Mavarani L, McDaid AF, Meidtner K, Melendez TL, Mercader JM, Milaneschi Y, Miller JE, Millwood IY, Mishra PP, Mitchell RE, Møllehave LT, Morgan A, Mucha S, Munz M, Nakatochi M, Nelson CP, Nethander M, Nho CW, Nielsen AA, Nolte IM, Nongmaithem SS, Noordam R, Ntalla I, Nutile T, Pandit A, Christofidou P, Pärna K, Pauper M, Petersen ERB, Petersen LV, Pitkänen N, Polašek O, Poveda A, Preuss MH, Pyarajan S, Raffield LM, Rakugi H, Ramirez J, Rasheed A, Raven D, Rayner NW, Riveros C, Rohde R, Ruggiero D, Ruotsalainen SE, Ryan KA, Sabater-Lleal M, Saxena R, Scholz M, Sendamarai A, Shen B, Shi J, Shin JH, Sidore C, Sitlani CM, Slieker RC, Smit RAJ, Smith AV, Smith JA, Smyth LJ, Southam L, Steinthorsdottir V, Sun L, Takeuchi F, Tallapragada DSP, Taylor KD, Tayo BO, Tcheandjieu C, Terzikhan N, Tesolin P, Teumer A, Theusch E, Thompson DJ, Thorleifsson G, Timmers PRHJ, Trompet S, Turman C, Vaccargiu S, van der Laan SW, van der Most PJ, van Klinken JB, van Setten J, Verma SS, Verweij N, Veturi Y, Wang CA, Wang C, Wang L, Wang Z, Warren HR, Bin Wei W, Wickremasinghe AR, Wielscher M, Wiggins KL, Winsvold BS, Wong A, Wu Y, Wuttke M, Xia R, Xie T, Yamamoto K, Yang J, Yao J, Young H, Yousri NA, Yu L, Zeng L, Zhang W, Zhang X, Zhao JH, Zhao W, Zhou W, Zimmermann ME, Zoledziewska M, Adair LS, Adams HHH, Aguilar-Salinas CA, Al-Mulla F, Arnett DK, Asselbergs FW, Åsvold BO, Attia J, Banas B, Bandinelli S, Bennett DA, Bergler T, Bharadwaj D, Biino G, Bisgaard H, Boerwinkle E, Böger CA, Bønnelykke K, Boomsma DI, Børglum AD, Borja JB, Bouchard C, Bowden DW, Brandslund I, Brumpton B, Buring JE, Caulfield MJ, Chambers JC, Chandak GR, Chanock SJ, Chaturvedi N, Chen YDI, Chen Z, Cheng CY, Christophersen IE, Ciullo M, Cole JW, Collins FS, Cooper RS, Cruz M, Cucca F, Cupples LA, Cutler MJ, Damrauer SM, Dantoft TM, de Borst GJ, de Groot LCPGM, De Jager PL, de Kleijn DPV, Janaka de Silva H, Dedoussis GV, den Hollander AI, Du S, Easton DF, Elders PJM, Eliassen AH, Ellinor PT, Elmståhl S, Erdmann J, Evans MK, Fatkin D, Feenstra B, Feitosa MF, Ferrucci L, Ford I, Fornage M, Franke A, Franks PW, Freedman BI, Gasparini P, Gieger C, Girotto G, Goddard ME, Golightly YM, Gonzalez-Villalpando C, Gordon-Larsen P, Grallert H, Grant SFA, Grarup N, Griffiths L, Gudnason V, Haiman C, Hakonarson H, Hansen T, Hartman CA, Hattersley AT, Hayward C, Heckbert SR, Heng CK, Hengstenberg C, Hewitt AW, Hishigaki H, Hoyng CB, Huang PL, Huang W, Hunt SC, Hveem K, Hyppönen E, Iacono WG, Ichihara S, Ikram MA, Isasi CR, Jackson RD, Jarvelin MR, Jin ZB, Jöckel KH, Joshi PK, Jousilahti P, Jukema JW, Kähönen M, Kamatani Y, Kang KD, Kaprio J, Kardia SLR, Karpe F, Kato N, Kee F, Kessler T, Khera AV, Khor CC, Kiemeney LALM, Kim BJ, Kim EK, Kim HL, Kirchhof P, Kivimaki M, Koh WP, Koistinen HA, Kolovou GD, Kooner JS, Kooperberg C, Köttgen A, Kovacs P, Kraaijeveld A, Kraft P, Krauss RM, Kumari M, Kutalik Z, Laakso M, Lange LA, Langenberg C, Launer LJ, Le Marchand L, Lee H, Lee NR, Lehtimäki T, Li H, Li L, Lieb W, Lin X, Lind L, Linneberg A, Liu CT, Liu J, Loeffler M, London B, Lubitz SA, Lye SJ, Mackey DA, Mägi R, Magnusson PKE, Marcus GM, Vidal PM, Martin NG, März W, Matsuda F, McGarrah RW, McGue M, McKnight AJ, Medland SE, Mellström D, Metspalu A, Mitchell BD, Mitchell P, Mook-Kanamori DO, Morris AD, Mucci LA, Munroe PB, Nalls MA, Nazarian S, Nelson AE, Neville MJ, Newton-Cheh C, Nielsen CS, Nöthen MM, Ohlsson C, Oldehinkel AJ, Orozco L, Pahkala K, Pajukanta P, Palmer CNA, Parra EJ, Pattaro C, Pedersen O, Pennell CE, Penninx BWJH, Perusse L, Peters A, Peyser PA, Porteous DJ, Posthuma D, Power C, Pramstaller PP, Province MA, Qi Q, Qu J, Rader DJ, Raitakari OT, Ralhan S, Rallidis LS, Rao DC, Redline S, Reilly DF, Reiner AP, Rhee SY, Ridker PM, Rienstra M, Ripatti S, Ritchie MD, Roden DM, Rosendaal FR, Rotter JI, Rudan I, Rutters F, Sabanayagam C, Saleheen D, Salomaa V, Samani NJ, Sanghera DK, Sattar N, Schmidt B, Schmidt H, Schmidt R, Schulze MB, Schunkert H, Scott LJ, Scott RJ, Sever P, Shiroma EJ, Shoemaker MB, Shu XO, Simonsick EM, Sims M, Singh JR, Singleton AB, Sinner MF, Smith JG, Snieder H, Spector TD, Stampfer MJ, Stark KJ, Strachan DP, 't Hart LM, Tabara Y, Tang H, Tardif JC, Thanaraj TA, Timpson NJ, Tönjes A, Tremblay A, Tuomi T, Tuomilehto J, Tusié-Luna MT, Uitterlinden AG, van Dam RM, van der Harst P, Van der Velde N, van Duijn CM, van Schoor NM, Vitart V, Völker U, Vollenweider P, Völzke H, Wacher-Rodarte NH, Walker M, Wang YX, Wareham NJ, Watanabe RM, Watkins H, Weir DR, Werge TM, Widen E, Wilkens LR, Willemsen G, Willett WC, Wilson JF, Wong TY, Woo JT, Wright AF, Wu JY, Xu H, Yajnik CS, Yokota M, Yuan JM, Zeggini E, Zemel BS, Zheng W, Zhu X, Zmuda JM, Zonderman AB, Zwart JA, Chasman DI, Cho YS, Heid IM, McCarthy MI, Ng MCY, O'Donnell CJ, Rivadeneira F, Thorsteinsdottir U, Sun YV, Tai ES, Boehnke M, Deloukas P, Justice AE, Lindgren CM, Loos RJF, Mohlke KL, North KE, Stefansson K, Walters RG, Winkler TW, Young KL, Loh PR, Yang J, Esko T, Assimes TL, Auton A, Abecasis GR, Willer CJ, Locke AE, Berndt SI, Lettre G, Frayling TM, Okada Y, Wood AR, Visscher PM, Hirschhorn JN. A saturated map of common genetic variants associated with human height. Nature 2022; 610:704-712. [PMID: 36224396 PMCID: PMC9605867 DOI: 10.1038/s41586-022-05275-y] [Show More Authors] [Citation(s) in RCA: 355] [Impact Index Per Article: 118.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 08/24/2022] [Indexed: 02/08/2023]
Abstract
Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.
Collapse
Affiliation(s)
- Loïc Yengo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | - Sailaja Vedantam
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eirini Marouli
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Julia Sidorenko
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Eric Bartell
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Saori Sakaue
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Divisions of Genetics and Rheumatology, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Marielisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anders U Eliasen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | | | - Sridharan Raghavan
- Department of Veterans Affairs, Eastern Colorado Healthcare System, Aurora, CO, USA
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jenkai Miao
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joshua D Arias
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Sarah E Graham
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Ronen E Mukamel
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Cassandra N Spracklen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Xianyong Yin
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Shyh-Huei Chen
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Teresa Ferreira
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Heather H Highland
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yingjie Ji
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Tugce Karaderi
- Center for Health Data Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Kreete Lüll
- Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia
| | - Deborah E Malden
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Moara Machado
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Amy Moore
- Division of Biostatistics and Epidemiology, RTI International, Durham, NC, USA
| | - Sina Rüeger
- Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Scott Vrieze
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Tarunveer S Ahluwalia
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Biology, The Bioinformatics Center, University of Copenhagen, Copenhagen, Denmark
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Matthew A Allison
- Department of Family Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Marcus Alvarez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Mette K Andersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alireza Ani
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vivek Appadurai
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
| | - Liubov Arbeeva
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Seema Bhaskar
- Genomic Research on Complex diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Lawrence F Bielak
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Sailalitha Bollepalli
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Lori L Bonnycastle
- Molecular Genetics Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan P Bradfield
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Quantinuum Research, Wayne, PA, USA
| | - Yuki Bradford
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter S Braund
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kristoffer S Burgdorf
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- NovoNordic Center for Protein Research, Copenhagen University, Copenhagen, Denmark
| | - Brian E Cade
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - Eulalia Catamo
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| | - Jin-Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Xiaoran Chai
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore and National University Health System, Singapore, Singapore
| | - Li-Ching Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Cheng Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, Medical College, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Alessandra Chesi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Seung Hoan Choi
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ren-Hua Chung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Massimiliano Cocca
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| | - Christian Couture
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec City, Quebec, Canada
| | - Gabriel Cuellar-Partida
- 23andMe, Sunnyvale, CA, USA
- Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Rebecca Danning
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - E Warwick Daw
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Frauke Degenhard
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Graciela E Delgado
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alessandro Delitala
- Dipartimento di Scienze Mediche Chirurgiche e Sperimentali, Università degli Studi di Sassari, Sassari, Italy
| | - Ayse Demirkan
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Section of Statistical Multi-omics, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK
| | - Xuan Deng
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Poornima Devineni
- Center for Data and Computational Sciences, VA Boston Healthcare System, Boston, MA, USA
| | - Alexander Dietl
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Maria Dimitriou
- Department of Nutrition and Dietetics, School of Health and Education, Harokopio University of Athens, Athens, Greece
| | - Latchezar Dimitrov
- Center for Precision Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Arif B Ekici
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jorgen E Engmann
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
| | | | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health and Education, Harokopio University of Athens, Athens, Greece
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | | | - Lukas Forer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Christian Fuchsberger
- Eurac Research, Institute for Biomedicine, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Tessel E Galesloot
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department for Health Evidence, Nijmegen, The Netherlands
| | - Yan Gao
- Jackson Heart Study, Department of Medicine, University of Mississippi, Jackson, MS, USA
| | - Zishan Gao
- Nanjing University of Chinese Medicine, Nanjing, China
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Olga Giannakopoulou
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Anette P Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anuj Goel
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Scott D Gordon
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mathias Gorski
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Jakob Grove
- Department of Biomedicine (Human Genetics) and iSEQ Center, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- BiRC-Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Thomas F Hansen
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- NovoNordic Center for Protein Research, Copenhagen University, Copenhagen, Denmark
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Rigshospitalet, Copenhagen, Denmark
| | - Aki S Havulinna
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Simon J Haworth
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Jing He
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy Heard-Costa
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Prashantha Hebbar
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - George Hindy
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Yuk-Lam A Ho
- Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Elizabeth Holliday
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Katrin Horn
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Medical Faculty, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Whitney E Hornsby
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hongyan Huang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jie Huang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
- Institute for Global Health and Development, Peking University, Beijing, China
| | - Alicia Huerta-Chagoya
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México Ciudad Universitaria, Mexico City, Mexico
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición, Mexico City, Mexico
| | | | - Yi-Jen Hung
- Division of Endocrine and Metabolism, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan
| | - Shaofeng Huo
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mi Yeong Hwang
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju, Republic of Korea
| | - Hiroyuki Iha
- Biomedical Technology Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Daisuke D Ikeda
- Biomedical Technology Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Masato Isono
- Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Susanne Jäger
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Iris E Jansen
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Pediatric Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Ingegerd Johansson
- Department of Biobank Research, Umeå University, Umeå, Sweden
- Department of Odontology, Umeå University, Umeå, Sweden
| | - Jost B Jonas
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Privatpraxis Prof Jonas und Dr Panda-Jonas, Heidelberg, Germany
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Anna Jonsson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Jørgensen
- Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ioanna-Panagiota Kalafati
- Department of Nutrition and Dietetics, School of Health and Education, Harokopio University of Athens, Athens, Greece
| | - Masahiro Kanai
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Line L Kårhus
- Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | | | - Tomohiro Katsuya
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Rachel L Kember
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine A Kentistou
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Han-Na Kim
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Clinical Research Design and Evaluation (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Young Jin Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju, Republic of Korea
| | - Marcus E Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
| | - Maria J Knol
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Azra Kurbasic
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
| | - Marie Lauzon
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Phuong Le
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | - Rodney Lea
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Jong-Young Lee
- Oneomics, Soonchunhyang Mirai Medical Center, Bucheon-si, Republic of Korea
| | - Hampton L Leonard
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Glen Echo, MD, USA
| | - Shengchao A Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Rockville, MD, USA
| | - Xiaohui Li
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiaoyin Li
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Mathematics and Statistics, St Cloud State University, St Cloud, MN, USA
| | - Jingjing Liang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jun Liu
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Xueping Liu
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ken Sin Lo
- Montreal Heart Institute, Montreal, Quebec, Canada
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laura Lores-Motta
- Departments of Ophthalmology and Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Valeriya Lyssenko
- Department of Clinical Science, Center for Diabetes Research, University of Bergen, Bergen, Norway
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Cardiology, Heart Center, Tampere University Hospital, Tampere, Finland
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Vasiliki Mamakou
- National and Kapodistrian University of Athens, Dromokaiteio Psychiatric Hospital, Athens, Greece
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, UK
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jonathan Marten
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Manuel Mattheisen
- Department of Biomedicine (Human Genetics) and iSEQ Center, Aarhus University, Aarhus, Denmark
- Department of Psychiatry and Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Laven Mavarani
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany
| | - Aaron F McDaid
- Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Karina Meidtner
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Tori L Melendez
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Josep M Mercader
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC and Vrije Universiteit, Amsterdam, The Netherlands
| | - Jason E Miller
- Biomedical and Translational Informatics Institute, Geisinger, Danville, PA, USA
- Department of Genetics, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Iona Y Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ruth E Mitchell
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Line T Møllehave
- Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Anna Morgan
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| | - Soeren Mucha
- Institute for Cardiogenetics, University of Lübeck, DZHK (German Research Centre for Cardiovascular Research) partner site Hamburg/Lübeck/Kiel and University Heart Center Lübeck, Lübeck, Germany
| | - Matthias Munz
- Institute for Cardiogenetics, University of Lübeck, DZHK (German Research Centre for Cardiovascular Research) partner site Hamburg/Lübeck/Kiel and University Heart Center Lübeck, Lübeck, Germany
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Maria Nethander
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chu Won Nho
- Korea Institute of Science and Technology, Gangneung Institute of Natural Products, Gangneung, Republic of Korea
| | - Aneta A Nielsen
- Department of Clinical Biochemistry, Lillebaelt Hospital, Kolding, Denmark
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Suraj S Nongmaithem
- Genomic Research on Complex diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Teresa Nutile
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Anita Pandit
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | | | - Katri Pärna
- Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marc Pauper
- Departments of Ophthalmology and Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Eva R B Petersen
- Department of Clinical Biochemistry and Immunology, Hospital of Southern Jutland, Aabenraa, Denmark
| | - Liselotte V Petersen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- The National Centre for Register-based Research, University of Aarhus, Aarhus, Denmark
| | - Niina Pitkänen
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Ozren Polašek
- Medical School, University of Split, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Alaitz Poveda
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saiju Pyarajan
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Data and Computational Sciences, VA Boston Healthcare System, Boston, MA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Julia Ramirez
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Asif Rasheed
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Dennis Raven
- Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nigel W Rayner
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - Carlos Riveros
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Rebecca Rohde
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Sanni E Ruotsalainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kathleen A Ryan
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria Sabater-Lleal
- Unit of Genomics of Complex Diseases, Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Richa Saxena
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Medical Faculty, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Anoop Sendamarai
- Center for Data and Computational Sciences, VA Boston Healthcare System, Boston, MA, USA
| | - Botong Shen
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | - Jae Hun Shin
- Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| | - Carlo Sidore
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Roderick C Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Epidemiology and Data Science, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Roelof A J Smit
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert V Smith
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Icelandic Heart Association, Kópavogur, Iceland
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Laura J Smyth
- Centre for Public Health, Queen's University of Belfast, Belfast, UK
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Wellcome Sanger Institute, Hinxton, UK
| | | | - Liang Sun
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fumihiko Takeuchi
- Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Divya Sri Priyanka Tallapragada
- Genomic Research on Complex diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Bamidele O Tayo
- Department of Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA
| | - Catherine Tcheandjieu
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Natalie Terzikhan
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Paola Tesolin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Elizabeth Theusch
- Cardiology Division, Department of Pediatrics, University of California, San Francisco, Oakland, CA, USA
| | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Paul R H J Timmers
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Stella Trompet
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Simona Vaccargiu
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan B van Klinken
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jessica van Setten
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Shefali S Verma
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yogasudha Veturi
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Carol A Wang
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Chaolong Wang
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lihua Wang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Helen R Warren
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Wen Bin Wei
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | | | - Matthias Wielscher
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Kerri L Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Bendik S Winsvold
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, Institute of Cardiovascular Science, University College London, London, UK
| | - Yang Wu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Medicine IV - Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Rui Xia
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tian Xie
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Japan
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Hannah Young
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Noha A Yousri
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- Department of Computer and Systems Engineering, Alexandria University, Alexandria, Egypt
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Lingyao Zeng
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
| | - Weihua Zhang
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, London, UK
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Xinyuan Zhang
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jing-Hua Zhao
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Wei Zhao
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Wei Zhou
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martina E Zimmermann
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Magdalena Zoledziewska
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Linda S Adair
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hieab H H Adams
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Carlos A Aguilar-Salinas
- Unidad de Investigacion de Enfermedades Metabolicas and Direction of Nutrition, Instituto Nacional de Ciencias Medicas y Nutricion, Mexico City, Mexico
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Donna K Arnett
- Department of Epidemiology and Dean's Office, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | - Bjørn Olav Åsvold
- KG Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
- Department of Endocrinology, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - John Attia
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Bernhard Banas
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | | | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Tobias Bergler
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Dwaipayan Bharadwaj
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University (JNU), New Delhi, India
| | - Ginevra Biino
- Institute of Molecular Genetics, National Research Council of Italy, Pavia, Italy
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Eric Boerwinkle
- Human Genetics Center and Department of Epidemiology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Carsten A Böger
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
- Department of Nephrology and Rheumatology, Kliniken Südostbayern, Regensburg, Germany
- KfH Kidney Center Traunstein, Traunstein, Germany
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Dorret I Boomsma
- Department of Biological Psychology, Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anders D Børglum
- Department of Biomedicine (Human Genetics) and iSEQ Center, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine (CGPM), Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Judith B Borja
- USC-Office of Population Studies Foundation, University of San Carlos, Cebu City, Philippines
- Department of Nutrition and Dietetics, University of San Carlos, Cebu City, Philippines
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Donald W Bowden
- Center for Precision Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Ben Brumpton
- KG Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
- Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Julie E Buring
- Harvard Medical School, Boston, MA, USA
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - John C Chambers
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, London, UK
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
| | - Giriraj R Chandak
- Genomic Research on Complex diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- Adjunct Faculty, JSS University Academy of Higher Education and Research (JSSAHER), JSS (Deemed to be) University, Mysuru, India
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Nish Chaturvedi
- MRC Unit for Lifelong Health and Ageing at UCL, Institute of Cardiovascular Science, University College London, London, UK
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ching-Yu Cheng
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Ingrid E Christophersen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
| | - Marina Ciullo
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - John W Cole
- Department of Neurology, Division of Vascular Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
- Baltimore Veterans Affairs Medical Center, Department of Neurology, Baltimore, MD, USA
| | - Francis S Collins
- Molecular Genetics Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Richard S Cooper
- Department of Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA
| | - Miguel Cruz
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Michael J Cutler
- Intermountain Heart Institute, Intermountain Medical Center, Murray, UT, USA
| | - Scott M Damrauer
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Thomas M Dantoft
- Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Gert J de Borst
- Department of Vascular Surgery, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | | | - Philip L De Jager
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Dominique P V de Kleijn
- Department of Vascular Surgery, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | | | - George V Dedoussis
- Department of Nutrition and Dietetics, School of Health and Education, Harokopio University of Athens, Athens, Greece
| | - Anneke I den Hollander
- Departments of Ophthalmology and Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Shufa Du
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Petra J M Elders
- Department of General Practice, Amsterdam Public Health Institute, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - A Heather Eliassen
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Sölve Elmståhl
- Department of Clinical Sciences in Malmö, Division of Geriatric Medicine, Lund University, Malmö, Sweden
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, DZHK (German Research Centre for Cardiovascular Research) partner site Hamburg/Lübeck/Kiel and University Heart Center Lübeck, Lübeck, Germany
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Diane Fatkin
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- Cardiology Department, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
- Faculty of Medicine, UNSW Sydney, Kensington, New South Wales, Australia
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ian Ford
- Robertson Center for Biostatistics, University of Glasgow, Glasgow, UK
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Barry I Freedman
- Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Paolo Gasparini
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Giorgia Girotto
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Michael E Goddard
- Faculty of Veterinary and Agricultural Science, University of Melbourne, Parkville, Victoria, Australia
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Bundoora, Victoria, Australia
| | - Yvonne M Golightly
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Injury Prevention Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clicerio Gonzalez-Villalpando
- Centro de Investigacion en Salud Poblacional Instituto Nacional de Salud Publica and Centro de Estudios en Diabetes, Cuernavaca, Mexico
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Struan F A Grant
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Departments of Pediatrics and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lyn Griffiths
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kópavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Christopher Haiman
- Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Catharina A Hartman
- Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Susan R Heckbert
- Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Christian Hengstenberg
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Alex W Hewitt
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Lions Eye Institute, Centre for Ophthalmology and Vision Science, University of Western Australia, Perth, Western Australia, Australia
| | - Haretsugu Hishigaki
- Biomedical Technology Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Carel B Hoyng
- Departments of Ophthalmology and Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Paul L Huang
- Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Wei Huang
- Department of Genetics, Shanghai-MOST Key Laboratory of Heath and Disease Genomics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute, Shanghai, China
| | - Steven C Hunt
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Kristian Hveem
- KG Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
| | - Elina Hyppönen
- Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rebecca D Jackson
- Division of Endocrinology, Diabetes and Metabolism, School of Medicine, Ohio State University, Columbus, OH, USA
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany
| | - Peter K Joshi
- Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
- Department of Clinical Physiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kui Dong Kang
- Department of Ophthalmology, The Catholic University of Korea Incheon St. Mary's Hospital, Incheon, Republic of Korea
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Norihiro Kato
- Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Frank Kee
- Centre for Public Health, Queen's University of Belfast, Belfast, UK
| | - Thorsten Kessler
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Amit V Khera
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Lambertus A L M Kiemeney
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department for Health Evidence, Nijmegen, The Netherlands
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Urology, Nijmegen, The Netherlands
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju, Republic of Korea
| | - Eung Kweon Kim
- Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Saevit Eye Hospital, Goyang, Republic of Korea
| | - Hyung-Lae Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Paulus Kirchhof
- Department of Cardiology, University Heart and Vascular Center UKE Hamburg, Hamburg, Germany
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- German Center for Cardiovascular Research, partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Atrial Fibrillation NETwork, Münster, Germany
| | - Mika Kivimaki
- Department of Epidemiology and Public Health, UCL Institute of Epidemiology and Health Care, University College London, London, UK
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Heikki A Koistinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- University of Helsinki and Department of Medicine, Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Genovefa D Kolovou
- Department of Preventive Cardiology, Lipoprotein Apheresis Unit and Lipid Disorders Clinic, Metropolitan Hospital, Athens, Greece
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, London, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Adriaan Kraaijeveld
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ronald M Krauss
- Cardiology Division, Department of Pediatrics, University of California, San Francisco, Oakland, CA, USA
| | - Meena Kumari
- Institute for Social and Economic Research, University of Essex, Colchester, UK
| | - Zoltan Kutalik
- Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Leslie A Lange
- Department of Medicine, University of Colorado at Denver, Aurora, CO, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Hyejin Lee
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Nanette R Lee
- USC-Office of Population Studies Foundation, University of San Carlos, Cebu City, Philippines
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Huaixing Li
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank Popgen, Kiel University, Kiel, Germany
| | - Xu Lin
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Medical Faculty, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Barry London
- Division of Cardiovascular Medicine and Abboud Cardiovascular Research Center, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Steven A Lubitz
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Stephen J Lye
- Alliance for Human Development, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - David A Mackey
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
- Lions Eye Institute, Centre for Ophthalmology and Vision Science, University of Western Australia, Perth, Western Australia, Australia
| | - Reedik Mägi
- Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Gregory M Marcus
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Pedro Marques Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- SYNLAB Academy, SYNLAB Holding Deutschland, Mannheim, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Robert W McGarrah
- Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Matt McGue
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | | | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Dan Mellström
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Geriatric Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andres Metspalu
- Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia
| | - Braxton D Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Paul Mitchell
- Centre for Vision Research and Department of Ophthalmology, Westmead Millennium Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew D Morris
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Glen Echo, MD, USA
| | - Saman Nazarian
- Electrophysiology Section, Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda E Nelson
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Christopher Newton-Cheh
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher S Nielsen
- Department of Chronic Diseases, Norwegian Institute of Public Health, Oslo, Norway
- Department of Pain Management and Research, Oslo University Hospital, Oslo, Norway
| | - Markus M Nöthen
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Department of Drug Treatment, Gothenburg, Sweden
| | - Albertine J Oldehinkel
- Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lorena Orozco
- Laboratorio de Inmunogenómica y Enfermedades Metabólicas, Instituto Nacional de Medicina Genómica, CDMX, Mexico City, Mexico
| | - Katja Pahkala
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Paavo Nurmi Centre, Sports and Exercise Medicine Unit, Department of Physical Activity and Health, University of Turku, Turku, Finland
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Colin N A Palmer
- Pat MacPherson Centre for Pharmacogenetics and Pharmacogenomics, Division of Population Health and Genomics, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Esteban J Parra
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | - Cristian Pattaro
- Eurac Research, Institute for Biomedicine, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Craig E Pennell
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC and Vrije Universiteit, Amsterdam, The Netherlands
| | - Louis Perusse
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec City, Quebec, Canada
- Centre Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods, Université Laval, Québec City, Quebec, Canada
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- IBE-Chair of Epidemiology, LMU Munich, Neuherberg, Germany
| | - Patricia A Peyser
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Chris Power
- Population, Policy and Practice, UCL Great Ormond Street Hospital Institute of Child Health, London, UK
| | - Peter P Pramstaller
- Eurac Research, Institute for Biomedicine, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jia Qu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Daniel J Rader
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Sarju Ralhan
- Hero DMC Heart Institute, Dyanand Medical College, Ludhiana, India
| | - Loukianos S Rallidis
- Second Department of Cardiology, Medical School, National and Kapodistrian University of Athens, University General Hospital Attikon, Athens, Greece
| | - Dabeeru C Rao
- Division of Biostatistics, Washington University School of Medicine, St Louis, MO, USA
| | - Susan Redline
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Sang Youl Rhee
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Paul M Ridker
- Harvard Medical School, Boston, MA, USA
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michiel Rienstra
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Samuli Ripatti
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Dan M Roden
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Igor Rudan
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Femke Rutters
- Department of Epidemiology and Data Science, Amsterdam Public Health Institute, Amsterdam Cardiovascular Sciences Institute, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Charumathi Sabanayagam
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Danish Saleheen
- Center for Non-Communicable Diseases, Karachi, Pakistan
- Department of Cardiology and Department of Medicine, Columbia University, New York, NY, USA
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Dharambir K Sanghera
- Department of Pediatrics, Section of Genetics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Börge Schmidt
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany
| | - Helena Schmidt
- Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Medical University of Graz, Graz, Austria
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Cardiology, Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK) - Munich Heart Alliance, and Technische Universität München, München, Germany
| | - Laura J Scott
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Rodney J Scott
- School of Biomedical Science and Pharmacy, University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Peter Sever
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Eric J Shiroma
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - M Benjamin Shoemaker
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eleanor M Simonsick
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Mario Sims
- Jackson Heart Study, Department of Medicine, University of Mississippi, Jackson, MS, USA
| | | | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Moritz F Sinner
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - J Gustav Smith
- Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and the Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund University, Lund, Sweden
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Meir J Stampfer
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Klaus J Stark
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - David P Strachan
- Population Health Research Institute, St George's, University of London, London, UK
| | - Leen M 't Hart
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Epidemiology and Data Science, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Molecular Epidemiology Section, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jean-Claude Tardif
- Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Thangavel A Thanaraj
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Anke Tönjes
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Angelo Tremblay
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec City, Quebec, Canada
- Centre Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods, Université Laval, Québec City, Quebec, Canada
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
- Helsinki University Central Hospital, Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Jaakko Tuomilehto
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maria-Teresa Tusié-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Pim van der Harst
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nathalie Van der Velde
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department Geriatric Medicine, Amsterdam Public Health, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelia M van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Natasja M van Schoor
- Department of Epidemiology and Data Science, Amsterdam UMC, Amsterdam, The Netherlands
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Uwe Völker
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Niels H Wacher-Rodarte
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Mark Walker
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Richard M Watanabe
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine of USC, Los Angeles, CA, USA
- USC Diabetes and Obesity Research Institute, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Hugh Watkins
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Thomas M Werge
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Lynne R Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Gonneke Willemsen
- Department of Biological Psychology, Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Walter C Willett
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - James F Wilson
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Tien-Yin Wong
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Jeong-Taek Woo
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Alan F Wright
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Huichun Xu
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Wellcome Sanger Institute, Hinxton, UK
- TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| | - Babette S Zemel
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Joseph M Zmuda
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - John-Anker Zwart
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Daniel I Chasman
- Harvard Medical School, Boston, MA, USA
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Maggie C Y Ng
- Center for Precision Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher J O'Donnell
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Panos Deloukas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anne E Justice
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Population Health Sciences, Geisinger, Danville, PA, USA
| | - Cecilia M Lindgren
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ruth J F Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kari Stefansson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Kristin L Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Po-Ru Loh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jian Yang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Tõnu Esko
- Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia
| | - Themistocles L Assimes
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Goncalo R Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Adam E Locke
- McDonnell Genome Institute and Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Guillaume Lettre
- Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Timothy M Frayling
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Yukinori Okada
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan.
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Andrew R Wood
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK.
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | - Joel N Hirschhorn
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA.
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
92
|
Martín-Rivada Á, Guerra-Cantera S, Campillo-Calatayud A, Andrés-Esteban EM, Sánchez Holgado M, Martos-Moreno GÁ, Pozo J, Güemes M, Soriano-Guillén L, Pellicer A, Oxvig C, Frystyk J, Chowen JA, Barrios V, Argente J. Pappalysins and Stanniocalcins and Their Relationship With the Peripheral IGF Axis in Newborns and During Development. J Clin Endocrinol Metab 2022; 107:2912-2924. [PMID: 35902207 DOI: 10.1210/clinem/dgac453] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Pappalysins (PAPP-A, PAPP-A2) modulate body growth by increasing insulin-like growth factor I (IGF-I) bioavailability through cleavage of insulin-like growth factor binding proteins (IGFBPs) and are inhibited by stanniocalcins (STC1, STC2). Normative data on these novel factors, as well as on free IGF-I and uncleaved fractions of IGFBPs, are not well established. OBJECTIVE This work aimed to determine serum concentrations of PAPP-A, PAPP-A2, STC1, and STC2 in relationship with other growth hormone (GH)-IGF axis parameters during development. METHODS Full-term newborns (150; gestational age: 39.30 ± 1.10 weeks), 40 preterm newborns (30.87 ± 3.35 weeks), and 1071 healthy individuals (aged 1-30 years) were included in the study and divided according to their Tanner stages (males and females): I:163 males, 154 females; II:100 males, 75 females; III:83 males, 96 females; IV: 77 males, 86 females; and V:109 males,128 females. RESULTS Serum concentrations of PAPP-A, PAPP-A2, STC1, STC2, IGFBP-2, total IGFBP-4, and total IGFBP-5 were elevated at birth and declined throughout childhood. In postnatal life, PAPP-A2 concentrations decreased progressively in concomitance with the free/total IGF-I ratio; however, stanniocalcin concentrations remained stable. PAPP-A2 concentrations positively correlated with the free/total IGF-I ratio (r = +0.28; P < .001) and negatively with the intact/total IGFBP-3 ratio (r = -0.23; P < .001). PAPP-A concentrations inversely correlated with intact/total IGFBP-4 ratio (r = -0.21; P < .001), with PAPP-A concentrations being lower in females at all ages. Association studies indicate the importance of stanniocalcins and pappalysins in the control of this axis in an age-specific manner. CONCLUSION This study provides reference values of pappalysins and stanniocalcins, which modulate IGF-I activity by changing the concentrations of cleaved and uncleaved IGFBPs.
Collapse
Affiliation(s)
- Álvaro Martín-Rivada
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
| | - Santiago Guerra-Cantera
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain
| | - Ana Campillo-Calatayud
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
| | | | | | - Gabriel Á Martos-Moreno
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain
| | - Jesús Pozo
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain
| | - María Güemes
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
| | - Leandro Soriano-Guillén
- Hospital Universitario Fundación Jiménez Díaz, Instituto de Investigación Fundación Jiménez Díaz, E-28040, Madrid, Spain
| | - Adelina Pellicer
- Department of Neonatology, Hospital Universitario La Paz, E-28046, Madrid, Spain
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Aarhus, Denmark
| | - Jan Frystyk
- Department of Endocrinology, Odense University Hospital & Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Julie A Chowen
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain
- IMDEA, Food Institute, CEIUAM+CSI, Cantoblanco, E-28049, Madrid, Spain
| | - Vicente Barrios
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain
| | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain
- IMDEA, Food Institute, CEIUAM+CSI, Cantoblanco, E-28049, Madrid, Spain
| |
Collapse
|
93
|
Karczewski KJ, Solomonson M, Chao KR, Goodrich JK, Tiao G, Lu W, Riley-Gillis BM, Tsai EA, Kim HI, Zheng X, Rahimov F, Esmaeeli S, Grundstad AJ, Reppell M, Waring J, Jacob H, Sexton D, Bronson PG, Chen X, Hu X, Goldstein JI, King D, Vittal C, Poterba T, Palmer DS, Churchhouse C, Howrigan DP, Zhou W, Watts NA, Nguyen K, Nguyen H, Mason C, Farnham C, Tolonen C, Gauthier LD, Gupta N, MacArthur DG, Rehm HL, Seed C, Philippakis AA, Daly MJ, Davis JW, Runz H, Miller MR, Neale BM. Systematic single-variant and gene-based association testing of thousands of phenotypes in 394,841 UK Biobank exomes. CELL GENOMICS 2022; 2:100168. [PMID: 36778668 PMCID: PMC9903662 DOI: 10.1016/j.xgen.2022.100168] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/20/2022] [Accepted: 07/16/2022] [Indexed: 01/20/2023]
Abstract
Genome-wide association studies have successfully discovered thousands of common variants associated with human diseases and traits, but the landscape of rare variations in human disease has not been explored at scale. Exome-sequencing studies of population biobanks provide an opportunity to systematically evaluate the impact of rare coding variations across a wide range of phenotypes to discover genes and allelic series relevant to human health and disease. Here, we present results from systematic association analyses of 4,529 phenotypes using single-variant and gene tests of 394,841 individuals in the UK Biobank with exome-sequence data. We find that the discovery of genetic associations is tightly linked to frequency and is correlated with metrics of deleteriousness and natural selection. We highlight biological findings elucidated by these data and release the dataset as a public resource alongside the Genebass browser for rapidly exploring rare-variant association results.
Collapse
Affiliation(s)
- Konrad J. Karczewski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew Solomonson
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Katherine R. Chao
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julia K. Goodrich
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Grace Tiao
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Wenhan Lu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - Hye In Kim
- Worldwide Research Development and Medical, Pfizer, Inc., Cambridge, MA 02139, USA
| | - Xiuwen Zheng
- Genomics Research Center, AbbVie, North Chicago, IL 60064, USA
| | - Fedik Rahimov
- Genomics Research Center, AbbVie, North Chicago, IL 60064, USA
| | - Sahar Esmaeeli
- Genomics Research Center, AbbVie, North Chicago, IL 60064, USA
| | | | - Mark Reppell
- Genomics Research Center, AbbVie, North Chicago, IL 60064, USA
| | - Jeff Waring
- Genomics Research Center, AbbVie, North Chicago, IL 60064, USA
| | - Howard Jacob
- Genomics Research Center, AbbVie, North Chicago, IL 60064, USA
| | | | | | - Xing Chen
- Worldwide Research Development and Medical, Pfizer, Inc., Cambridge, MA 02139, USA
| | - Xinli Hu
- Worldwide Research Development and Medical, Pfizer, Inc., Cambridge, MA 02139, USA
| | - Jacqueline I. Goldstein
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel King
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christopher Vittal
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Timothy Poterba
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Duncan S. Palmer
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Claire Churchhouse
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel P. Howrigan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Wei Zhou
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nicholas A. Watts
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kevin Nguyen
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Huy Nguyen
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Cara Mason
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christopher Farnham
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Charlotte Tolonen
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Laura D. Gauthier
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Namrata Gupta
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel G. MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Heidi L. Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Cotton Seed
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Mark J. Daly
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Molecular Medicine Finland, Helsinki, Finland
| | - J. Wade Davis
- Genomics Research Center, AbbVie, North Chicago, IL 60064, USA
| | | | - Melissa R. Miller
- Worldwide Research Development and Medical, Pfizer, Inc., Cambridge, MA 02139, USA
| | - Benjamin M. Neale
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
94
|
Lye Z, Choi JY, Purugganan MD. Deleterious mutations and the rare allele burden on rice gene expression. Mol Biol Evol 2022; 39:6693943. [PMID: 36073358 PMCID: PMC9512150 DOI: 10.1093/molbev/msac193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Deleterious genetic variation is maintained in populations at low frequencies. Under a model of stabilizing selection, rare (and presumably deleterious) genetic variants are associated with increase or decrease in gene expression from some intermediate optimum. We investigate this phenomenon in a population of largely Oryza sativa ssp. indica rice landraces under normal unstressed wet and stressful drought field conditions. We include single nucleotide polymorphisms, insertion/deletion mutations, and structural variants in our analysis and find a stronger association between rare variants and gene expression outliers under the stress condition. We also show an association of the strength of this rare variant effect with linkage, gene expression levels, network connectivity, local recombination rate, and fitness consequence scores, consistent with the stabilizing selection model of gene expression.
Collapse
Affiliation(s)
- Zoe Lye
- Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Jae Young Choi
- Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Michael D Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY 10003.,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
95
|
Sandholm N, Cole JB, Nair V, Sheng X, Liu H, Ahlqvist E, van Zuydam N, Dahlström EH, Fermin D, Smyth LJ, Salem RM, Forsblom C, Valo E, Harjutsalo V, Brennan EP, McKay GJ, Andrews D, Doyle R, Looker HC, Nelson RG, Palmer C, McKnight AJ, Godson C, Maxwell AP, Groop L, McCarthy MI, Kretzler M, Susztak K, Hirschhorn JN, Florez JC, Groop PH. Genome-wide meta-analysis and omics integration identifies novel genes associated with diabetic kidney disease. Diabetologia 2022; 65:1495-1509. [PMID: 35763030 PMCID: PMC9345823 DOI: 10.1007/s00125-022-05735-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS Diabetic kidney disease (DKD) is the leading cause of kidney failure and has a substantial genetic component. Our aim was to identify novel genetic factors and genes contributing to DKD by performing meta-analysis of previous genome-wide association studies (GWAS) on DKD and by integrating the results with renal transcriptomics datasets. METHODS We performed GWAS meta-analyses using ten phenotypic definitions of DKD, including nearly 27,000 individuals with diabetes. Meta-analysis results were integrated with estimated quantitative trait locus data from human glomerular (N=119) and tubular (N=121) samples to perform transcriptome-wide association study. We also performed gene aggregate tests to jointly test all available common genetic markers within a gene, and combined the results with various kidney omics datasets. RESULTS The meta-analysis identified a novel intronic variant (rs72831309) in the TENM2 gene associated with a lower risk of the combined chronic kidney disease (eGFR<60 ml/min per 1.73 m2) and DKD (microalbuminuria or worse) phenotype (p=9.8×10-9; although not withstanding correction for multiple testing, p>9.3×10-9). Gene-level analysis identified ten genes associated with DKD (COL20A1, DCLK1, EIF4E, PTPRN-RESP18, GPR158, INIP-SNX30, LSM14A and MFF; p<2.7×10-6). Integration of GWAS with human glomerular and tubular expression data demonstrated higher tubular AKIRIN2 gene expression in individuals with vs without DKD (p=1.1×10-6). The lead SNPs within six loci significantly altered DNA methylation of a nearby CpG site in kidneys (p<1.5×10-11). Expression of lead genes in kidney tubules or glomeruli correlated with relevant pathological phenotypes (e.g. TENM2 expression correlated positively with eGFR [p=1.6×10-8] and negatively with tubulointerstitial fibrosis [p=2.0×10-9], tubular DCLK1 expression correlated positively with fibrosis [p=7.4×10-16], and SNX30 expression correlated positively with eGFR [p=5.8×10-14] and negatively with fibrosis [p<2.0×10-16]). CONCLUSIONS/INTERPRETATION Altogether, the results point to novel genes contributing to the pathogenesis of DKD. DATA AVAILABILITY The GWAS meta-analysis results can be accessed via the type 1 and type 2 diabetes (T1D and T2D, respectively) and Common Metabolic Diseases (CMD) Knowledge Portals, and downloaded on their respective download pages ( https://t1d.hugeamp.org/downloads.html ; https://t2d.hugeamp.org/downloads.html ; https://hugeamp.org/downloads.html ).
Collapse
Affiliation(s)
- Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Joanne B Cole
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Viji Nair
- Michigan Medicine, Ann Arbor, MI, USA
| | - Xin Sheng
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Hongbo Liu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Emma Ahlqvist
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University and Skåne University Hospital, Malmö, Sweden
| | - Natalie van Zuydam
- Pat Macpherson Centre for Pharmacogenetics & Pharmacogenomics, Cardiovascular & Diabetes Medicine, School of Medicine, University of Dundee, Dundee, UK
- Oxford Centre for Diabetes, Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Emma H Dahlström
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Laura J Smyth
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Rany M Salem
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Erkka Valo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Valma Harjutsalo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Eoin P Brennan
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Gareth J McKay
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Darrell Andrews
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ross Doyle
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Helen C Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Colin Palmer
- Pat Macpherson Centre for Pharmacogenetics & Pharmacogenomics, Cardiovascular & Diabetes Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Amy Jayne McKnight
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Alexander P Maxwell
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
- Regional Nephrology Unit, Belfast City Hospital, Belfast, Northern Ireland, UK
| | - Leif Groop
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University and Skåne University Hospital, Malmö, Sweden
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Joel N Hirschhorn
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA.
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, MA, USA.
| | - Jose C Florez
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
96
|
Ju D, Hui D, Hammond DA, Wonkam A, Tishkoff SA. Importance of Including Non-European Populations in Large Human Genetic Studies to Enhance Precision Medicine. Annu Rev Biomed Data Sci 2022; 5:321-339. [PMID: 35576557 PMCID: PMC9904154 DOI: 10.1146/annurev-biodatasci-122220-112550] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
One goal of genomic medicine is to uncover an individual's genetic risk for disease, which generally requires data connecting genotype to phenotype, as done in genome-wide association studies (GWAS). While there may be clinical promise to employing prediction tools such as polygenic risk scores (PRS), it currently stands that individuals of non-European ancestry may not reap the benefits of genomic medicine because of underrepresentation in large-scale genetics studies. Here, we discuss why this inequity poses a problem for genomic medicine and the reasons for the low transferability of PRS across populations. We also survey the ancestry representation of published GWAS and investigate how estimates of ancestry diversity in GWASparticipants might be biased. We highlight the importance of expanding genetic research in Africa, one of the most underrepresented regions in human genomics research, and discuss issues of ethics, resources, and technology for equitable advancement of genomic medicine.
Collapse
Affiliation(s)
- Dan Ju
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Daniel Hui
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
- Graduate Program in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dorothy A Hammond
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
- Penn Center for Global Genomics & Health Equity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA;
| | - Sarah A Tishkoff
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
97
|
Halldorsson BV, Eggertsson HP, Moore KHS, Hauswedell H, Eiriksson O, Ulfarsson MO, Palsson G, Hardarson MT, Oddsson A, Jensson BO, Kristmundsdottir S, Sigurpalsdottir BD, Stefansson OA, Beyter D, Holley G, Tragante V, Gylfason A, Olason PI, Zink F, Asgeirsdottir M, Sverrisson ST, Sigurdsson B, Gudjonsson SA, Sigurdsson GT, Halldorsson GH, Sveinbjornsson G, Norland K, Styrkarsdottir U, Magnusdottir DN, Snorradottir S, Kristinsson K, Sobech E, Jonsson H, Geirsson AJ, Olafsson I, Jonsson P, Pedersen OB, Erikstrup C, Brunak S, Ostrowski SR, Thorleifsson G, Jonsson F, Melsted P, Jonsdottir I, Rafnar T, Holm H, Stefansson H, Saemundsdottir J, Gudbjartsson DF, Magnusson OT, Masson G, Thorsteinsdottir U, Helgason A, Jonsson H, Sulem P, Stefansson K. The sequences of 150,119 genomes in the UK Biobank. Nature 2022; 607:732-740. [PMID: 35859178 PMCID: PMC9329122 DOI: 10.1038/s41586-022-04965-x] [Citation(s) in RCA: 243] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/10/2022] [Indexed: 12/25/2022]
Abstract
Detailed knowledge of how diversity in the sequence of the human genome affects phenotypic diversity depends on a comprehensive and reliable characterization of both sequences and phenotypic variation. Over the past decade, insights into this relationship have been obtained from whole-exome sequencing or whole-genome sequencing of large cohorts with rich phenotypic data1,2. Here we describe the analysis of whole-genome sequencing of 150,119 individuals from the UK Biobank3. This constitutes a set of high-quality variants, including 585,040,410 single-nucleotide polymorphisms, representing 7.0% of all possible human single-nucleotide polymorphisms, and 58,707,036 indels. This large set of variants allows us to characterize selection based on sequence variation within a population through a depletion rank score of windows along the genome. Depletion rank analysis shows that coding exons represent a small fraction of regions in the genome subject to strong sequence conservation. We define three cohorts within the UK Biobank: a large British Irish cohort, a smaller African cohort and a South Asian cohort. A haplotype reference panel is provided that allows reliable imputation of most variants carried by three or more sequenced individuals. We identified 895,055 structural variants and 2,536,688 microsatellites, groups of variants typically excluded from large-scale whole-genome sequencing studies. Using this formidable new resource, we provide several examples of trait associations for rare variants with large effects not found previously through studies based on whole-exome sequencing and/or imputation.
Collapse
Affiliation(s)
- Bjarni V Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland. .,School of Technology, Reykjavik University, Reykjavik, Iceland.
| | | | | | | | | | - Magnus O Ulfarsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Marteinn T Hardarson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,School of Technology, Reykjavik University, Reykjavik, Iceland
| | | | | | - Snaedis Kristmundsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,School of Technology, Reykjavik University, Reykjavik, Iceland
| | - Brynja D Sigurpalsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,School of Technology, Reykjavik University, Reykjavik, Iceland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Helgi Jonsson
- Landspitali-University Hospital, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Palmi Jonsson
- Landspitali-University Hospital, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Ole Birger Pedersen
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Christian Erikstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Clinical Sciences, Copenhagen University, Copenhagen, Denmark
| | | | | | | | - Pall Melsted
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | | | | | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Agnar Helgason
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | | | | | | |
Collapse
|
98
|
Jepsen MR, Østergaard JA, Conover CA, Wogensen L, Birn H, Krag SP, Fenton RA, Oxvig C. Increased activity of the metalloproteinase PAPP-A promotes diabetes-induced glomerular hypertrophy. Metabolism 2022; 132:155218. [PMID: 35588861 DOI: 10.1016/j.metabol.2022.155218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/19/2022] [Accepted: 05/12/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a serious complication of diabetes and a common cause of end stage renal failure. Insulin-like growth factor (IGF)-signaling has been implicated in DN, but is mechanistically poorly understood. Here, we assessed the activity of the metalloproteinase PAPP-A, an activator of IGF activity, and its possible interaction with the endogenous PAPP-A inhibitors stanniocalcin (STC)-1 and -2 in the mammalian kidney under normal and hyperglycemic conditions. METHODS AND RESULTS Immunohistochemistry demonstrated that PAPP-A, its proteolytic substrate IGF binding protein-4, STC1 and STC2 are present in the human kidney. Endogenous inhibited complexes of PAPP-A (PAPP-A:STC1 and PAPP-A:STC2) were demonstrated in media conditioned by human mesangial cells (HMCs), suggesting that PAPP-A activity is regulated by the STCs in kidney tissue. A method for the selective detection of active PAPP-A in tissue was developed and a significant increase in glomerular active PAPP-A in human diabetic kidney relative to normal was observed. In DN patients, the estimated glomerular filtration rate correlated with PAPP-A activity. In diabetic mice, glomerular growth was reduced when PAPP-A activity was antagonized by adeno-associated virus-mediated overexpression of STC2. CONCLUSION We propose that PAPP-A activity in renal tissue is precisely balanced by STC1 and STC2. An imbalance in this equilibrium causing increased PAPP-A enzymatic activity potentially contributes to the development of DN, and thus, therapeutic targeting of PAPP-A activity may represent a novel strategy for its treatment.
Collapse
Affiliation(s)
- Malene R Jepsen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jakob A Østergaard
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus N, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | | | - Lise Wogensen
- Dean's Office, Faculty of Health, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Henrik Birn
- Department of Renal Medicine, Aarhus University Hospital, DK-8200 Aarhus N, Denmark; Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Søren P Krag
- Department of Histopathology, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
99
|
Pilon MO, Leclair G, Oussaïd E, St-Jean I, Jutras M, Gaulin MJ, Mongrain I, Busseuil D, Rouleau JL, Tardif JC, Dubé MP, de Denus S. An association study of ABCG2 rs2231142 on the concentrations of allopurinol and its metabolites. Clin Transl Sci 2022; 15:2024-2034. [PMID: 35689378 PMCID: PMC9372422 DOI: 10.1111/cts.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
ABCG2 is a gene that codes for the human breast cancer resistance protein (BCRP). It is established that rs2231142 G>T, a single nucleotide polymorphism of the ABCG2 gene, is associated with gout and poor response to allopurinol, a uric acid‐lowering agent used to treat this condition. It has also been suggested that oxypurinol, the primary active metabolite of allopurinol, is a substrate of the BCRP. We thus hypothesized that carrying the rs2231142 variant would be associated with decreased oxypurinol concentrations, which would explain the lower reduction in uric acid. We performed a cross‐sectional study to investigate the association between the ABCG2 rs2231142 variant and oxypurinol, allopurinol, and allopurinol riboside concentrations in 459 participants from the Montreal Heart Institute Hospital Cohort. Age, sex, weight, use of diuretics, and estimated glomerular filtration rate were all significantly associated with oxypurinol plasma concentration. No association was found between rs2231142 and oxypurinol, allopurinol and allopurinol riboside plasma concentrations. Rs2231142 was not significantly associated with daily allopurinol dose in the overall population, but an association was observed in men, with T carriers receiving higher doses. Our results do not support a major role of ABCG2 in the pharmacokinetics of allopurinol or its metabolites. The underlying mechanism of the association between rs2231142 and allopurinol efficacy requires further investigation.
Collapse
Affiliation(s)
- Marc-Olivier Pilon
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada.,Université de Montreal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Quebec, Canada
| | - Grégoire Leclair
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Essaïd Oussaïd
- Montreal Heart Institute, Montreal, Quebec, Canada.,Université de Montreal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Quebec, Canada
| | - Isabelle St-Jean
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Martin Jutras
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Marie-Josée Gaulin
- Montreal Heart Institute, Montreal, Quebec, Canada.,Université de Montreal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Quebec, Canada
| | - Ian Mongrain
- Montreal Heart Institute, Montreal, Quebec, Canada.,Université de Montreal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Quebec, Canada
| | - David Busseuil
- Montreal Heart Institute, Montreal, Quebec, Canada.,Université de Montreal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Quebec, Canada
| | - Jean Lucien Rouleau
- Montreal Heart Institute, Montreal, Quebec, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute, Montreal, Quebec, Canada.,Université de Montreal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Quebec, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Marie-Pierre Dubé
- Montreal Heart Institute, Montreal, Quebec, Canada.,Université de Montreal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Quebec, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Simon de Denus
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada.,Université de Montreal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Quebec, Canada
| |
Collapse
|
100
|
Raghavan S, Huang J, Tcheandjieu C, Huffman JE, Litkowski E, Liu C, Ho YLA, Hunter-Zinck H, Zhao H, Marouli E, North KE, the VA Million Veteran Program, Lange E, Lange LA, Voight BF, Gaziano JM, Pyarajan S, Hauser ER, Tsao PS, Wilson PWF, Chang KM, Cho K, O’Donnell CJ, Sun YV, Assimes TL. A multi-population phenome-wide association study of genetically-predicted height in the Million Veteran Program. PLoS Genet 2022; 18:e1010193. [PMID: 35653334 PMCID: PMC9162317 DOI: 10.1371/journal.pgen.1010193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/05/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Height has been associated with many clinical traits but whether such associations are causal versus secondary to confounding remains unclear in many cases. To systematically examine this question, we performed a Mendelian Randomization-Phenome-wide association study (MR-PheWAS) using clinical and genetic data from a national healthcare system biobank. METHODS AND FINDINGS Analyses were performed using data from the US Veterans Affairs (VA) Million Veteran Program in non-Hispanic White (EA, n = 222,300) and non-Hispanic Black (AA, n = 58,151) adults in the US. We estimated height genetic risk based on 3290 height-associated variants from a recent European-ancestry genome-wide meta-analysis. We compared associations of measured and genetically-predicted height with phenome-wide traits derived from the VA electronic health record, adjusting for age, sex, and genetic principal components. We found 345 clinical traits associated with measured height in EA and an additional 17 in AA. Of these, 127 were associated with genetically-predicted height at phenome-wide significance in EA and 2 in AA. These associations were largely independent from body mass index. We confirmed several previously described MR associations between height and cardiovascular disease traits such as hypertension, hyperlipidemia, coronary heart disease (CHD), and atrial fibrillation, and further uncovered MR associations with venous circulatory disorders and peripheral neuropathy in the presence and absence of diabetes. As a number of traits associated with genetically-predicted height frequently co-occur with CHD, we evaluated effect modification by CHD status of genetically-predicted height associations with risk factors for and complications of CHD. We found modification of effects of MR associations by CHD status for atrial fibrillation/flutter but not for hypertension, hyperlipidemia, or venous circulatory disorders. CONCLUSIONS We conclude that height may be an unrecognized but biologically plausible risk factor for several common conditions in adults. However, more studies are needed to reliably exclude horizontal pleiotropy as a driving force behind at least some of the MR associations observed in this study.
Collapse
Affiliation(s)
- Sridharan Raghavan
- Medicine Service, Veterans Affairs Eastern Colorado Health Care System, Aurora, Colorado, United States of America
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jie Huang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Catherine Tcheandjieu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jennifer E. Huffman
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts, United States of America
| | - Elizabeth Litkowski
- Medicine Service, Veterans Affairs Eastern Colorado Health Care System, Aurora, Colorado, United States of America
| | - Chang Liu
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, United States of America
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia, United States of America
| | - Yuk-Lam A. Ho
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts, United States of America
| | - Haley Hunter-Zinck
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts, United States of America
| | - Hongyu Zhao
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States of America
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, United States of America
| | - Eirini Marouli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Kari E. North
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | | | - Ethan Lange
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Leslie A. Lange
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Benjamin F. Voight
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Institute of Translational Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - J. Michael Gaziano
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Saiju Pyarajan
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizabeth R. Hauser
- Cooperative Studies Program Epidemiology Center- Durham, Durham Veterans Affairs Health Care System, Durham, North Carolina, United States of America
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Philip S. Tsao
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Peter W. F. Wilson
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, United States of America
- Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Kelly Cho
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christopher J. O’Donnell
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yan V. Sun
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, United States of America
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia, United States of America
| | - Themistocles L. Assimes
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|