51
|
Kang WH, Hwang I, Jung DH, Kim D, Kim J, Kim JH, Park KS, Son JE. Time Change in Spatial Distributions of Light Interception and Photosynthetic Rate of Paprika Estimated by Ray-tracing Simulation. ACTA ACUST UNITED AC 2019. [DOI: 10.12791/ksbec.2019.28.4.279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Woo Hyun Kang
- Department of Plant Science and Research Inst. of Agricultural and Life Sci., Seoul National University, Seoul 08826, Korea
| | - Inha Hwang
- Department of Plant Science and Research Inst. of Agricultural and Life Sci., Seoul National University, Seoul 08826, Korea
| | - Dae Ho Jung
- Department of Plant Science and Research Inst. of Agricultural and Life Sci., Seoul National University, Seoul 08826, Korea
| | - Dongpil Kim
- Department of Plant Science and Research Inst. of Agricultural and Life Sci., Seoul National University, Seoul 08826, Korea
| | - Jaewoo Kim
- Department of Plant Science and Research Inst. of Agricultural and Life Sci., Seoul National University, Seoul 08826, Korea
| | - Jin Hyun Kim
- Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science, Haman 52054, Korea
| | - Kyoung Sub Park
- Department of Horticultural Science, Mokpo National University, Muan 58554, Korea
| | | |
Collapse
|
52
|
Dieleman JA, De Visser PHB, Meinen E, Grit JG, Dueck TA. Integrating Morphological and Physiological Responses of Tomato Plants to Light Quality to the Crop Level by 3D Modeling. FRONTIERS IN PLANT SCIENCE 2019; 10:839. [PMID: 31354751 PMCID: PMC6637845 DOI: 10.3389/fpls.2019.00839] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/12/2019] [Indexed: 05/13/2023]
Abstract
Next to its intensity, the spectral composition of light is one of the most important factors affecting plant growth and morphology. The introduction of light emitting diodes (LEDs) offers perspectives to design optimal light spectra for plant production systems. However, knowledge on the effects of light quality on physiological plant processes is still limited. The aim of this study is to determine the effects of six light qualities on growth and plant architecture of young tomato plants, and to upscale these effects to the crop level using a multispectral, functional-structural plant model. Young tomato plants were grown under 210 μmol m-2 s-1 blue, green, amber, red, white or red/blue (92%/8%) LED light with a low intensity of sunlight as background. Plants grown under blue light were shorter and developed smaller leaves which were obliquely oriented upward. Leaves grown under blue light contained the highest levels of light harvesting pigments, but when exposed to blue light only, they had the lowest rate of leaf photosynthesis. However, when exposed to white light these leaves had the highest rate of photosynthesis. Under green light, tomato plants were taller and leaves were nearly horizontally oriented, with a high specific leaf area. The open plant structure combined with a high light transmission and reflection at the leaf level allowed green light to penetrate deeper into the canopy. Plants grown under red, amber and white light were comparable with respect to height, leaf area and biomass production. The 3D model simulations indicated that the observed changes in plant architecture had a significant impact on light absorbance at the leaf and crop level. The combination of plant architecture and spectrum dependent photosynthesis was found to result in the highest rate of crop photosynthesis under red light in plants initially grown under green light. These results suggest that dynamic light spectra may offer perspectives to increase growth and production in high value production systems such as greenhouse horticulture and vertical farming.
Collapse
Affiliation(s)
- J. Anja Dieleman
- Business Unit Greenhouse Horticulture, Wageningen University & Research, Wageningen, Netherlands
| | | | | | | | | |
Collapse
|
53
|
Evers JB, van der Werf W, Stomph TJ, Bastiaans L, Anten NPR. Understanding and optimizing species mixtures using functional-structural plant modelling. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2381-2388. [PMID: 30165416 DOI: 10.1093/jxb/ery288] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/13/2018] [Indexed: 05/27/2023]
Abstract
Plant species mixtures improve productivity over monocultures by exploiting species complementarities for resource capture in time and space. Complementarity results in part from competition avoidance responses that maximize resource capture and growth of individual plants. Individual organs accommodate to local resource levels, e.g. with regard to nitrogen content and photosynthetic capacity or by size (e.g. shade avoidance). As a result, the resource acquisition in time and space is improved and performance of the community as a whole is increased. Modelling is needed to unravel the primary drivers and subsequent dynamics of complementary growth responses in mixtures. Here, we advocate using functional-structural plant (FSP) modelling to analyse the functioning of plant mixtures. In FSP modelling, crop performance is a result of the behaviour of the individual plants interacting through competitive and complementary resource acquisition. FSP models can integrate the interactions between structural and physiological plant responses to the local resource availability and strength of competition, which drive resource capture and growth of individuals in species mixtures. FSP models have the potential to accelerate mixed-species plant research, and thus support the development of knowledge that is needed to promote the use of mixtures towards sustainably increasing crop yields at acceptable input levels.
Collapse
Affiliation(s)
- Jochem B Evers
- Centre for Crop Systems Analysis, Wageningen University, Wageningen, the Netherlands
| | - Wopke van der Werf
- Centre for Crop Systems Analysis, Wageningen University, Wageningen, the Netherlands
| | - Tjeerd J Stomph
- Centre for Crop Systems Analysis, Wageningen University, Wageningen, the Netherlands
| | - Lammert Bastiaans
- Centre for Crop Systems Analysis, Wageningen University, Wageningen, the Netherlands
| | - Niels P R Anten
- Centre for Crop Systems Analysis, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
54
|
Jáquez-Gutiérrez M, Atarés A, Pineda B, Angarita P, Ribelles C, García-Sogo B, Sánchez-López J, Capel C, Yuste-Lisbona FJ, Lozano R, Moreno V. Phenotypic and genetic characterization of tomato mutants provides new insights into leaf development and its relationship to agronomic traits. BMC PLANT BIOLOGY 2019; 19:141. [PMID: 30987599 PMCID: PMC6466659 DOI: 10.1186/s12870-019-1735-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 03/20/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Tomato mutants altered in leaf morphology are usually identified in the greenhouse, which demands considerable time and space and can only be performed in adequate periods. For a faster but equally reliable scrutiny method we addressed the screening in vitro of 971 T-DNA lines. Leaf development was evaluated in vitro in seedlings and shoot-derived axenic plants. New mutants were characterized in the greenhouse to establish the relationship between in vitro and in vivo leaf morphology, and to shed light on possible links between leaf development and agronomic traits, a promising field in which much remains to be discovered. RESULTS Following the screening in vitro of tomato T-DNA lines, putative mutants altered in leaf morphology were evaluated in the greenhouse. The comparison of results in both conditions indicated a general phenotypic correspondence, showing that in vitro culture is a reliable system for finding mutants altered in leaf development. Apart from providing homogeneous conditions, the main advantage of screening in vitro lies in the enormous time and space saving. Studies on the association between phenotype and nptII gene expression showed co-segregation in two lines (P > 99%). The use of an enhancer trap also allowed identifying gain-of-function mutants through reporter expression analysis. These studies suggested that genes altered in three other mutants were T-DNA tagged. New mutants putatively altered in brassinosteroid synthesis or perception, mutations determining multiple pleiotropic effects, lines affected in organ curvature, and the first tomato mutant with helical growth were discovered. Results also revealed new possible links between leaf development and agronomic traits, such as axillary branching, flower abscission, fruit development and fruit cracking. Furthermore, we found that the gene tagged in mutant 2635-MM encodes a Sterol 3-beta-glucosyltransferase. Expression analysis suggested that abnormal leaf development might be due to the lack-off-function of this gene. CONCLUSION In vitro culture is a quick, efficient and reliable tool for identifying tomato mutants altered in leaf morphology. The characterization of new mutants in vivo revealed new links between leaf development and some agronomic traits. Moreover, the possible implication of a gene encoding a Sterol 3-beta-glucosyltransferase in tomato leaf development is reported.
Collapse
Affiliation(s)
- Marybel Jáquez-Gutiérrez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Alejandro Atarés
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Pilar Angarita
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
- Facultad Ciencias de la Salud, Universidad Cooperativa de Colombia, Carrera 35#36-99, Barrio Barzal, Villavicencio, Colombia
| | - Carlos Ribelles
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Begoña García-Sogo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Jorge Sánchez-López
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
- Facultad de Agronomía, Universidad Autónoma de Sinaloa, Km 17.5 Carretera Culiacán-El Dorado, C.P 80000 Culiacán, Sinaloa Mexico
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120 Almería, Spain
| | - Fernando J. Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120 Almería, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120 Almería, Spain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| |
Collapse
|
55
|
Kalaitzoglou P, van Ieperen W, Harbinson J, van der Meer M, Martinakos S, Weerheim K, Nicole CCS, Marcelis LFM. Effects of Continuous or End-of-Day Far-Red Light on Tomato Plant Growth, Morphology, Light Absorption, and Fruit Production. FRONTIERS IN PLANT SCIENCE 2019; 10:322. [PMID: 30984211 PMCID: PMC6448094 DOI: 10.3389/fpls.2019.00322] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 02/28/2019] [Indexed: 05/23/2023]
Abstract
Shading by sunlit leaves causes a low red (R) to far-red (FR) ratio that results in a low phytochrome stationary state (PSS). A low PSS induces an array of shade avoidance responses that influence plant architecture and development. It has often been suggested that this architectural response is advantageous for plant growth due to its positive effect on light interception. In contrast to sunlight, artificial light sources such as LEDs often lack FR, resulting in a PSS value higher than solar light (∼0.70). The aim of this study was to investigate how PSS values higher than solar radiation influence the growth and development of tomato plants. Additionally, we investigated whether a short period of FR at the end of the day (EOD-FR) could counteract any potentially negative effects caused by a lack of FR during the day. Tomato plants were grown at four PSS levels (0.70, 0.73, 0.80, and 0.88), or with a 15-min end-of-day far-red (EOD-FR) application (PSS 0.10). Photosynthetic Active Radiation (PAR; 150 μmol m-2 s-1) was supplied using red and blue (95/5%) LEDs. In an additional experiment, the same treatments were applied to plants receiving supplementary low-intensity solar light. Increasing PSS above solar PSS resulted in increased plant height. Leaf area and plant dry mass were lower in the treatments completely lacking FR than treatments with FR. EOD-FR-treated plants responded almost similarly to plants grown without FR, except for plant height, which was increased. Simulations with a 3D-model for light absorption revealed that the increase in dry mass was mainly related to an increase in light absorption due to a higher total leaf area. Increased petiole angle and internode length had a negative influence on total light absorption. Additionally, the treatments without FR and the EOD-FR showed strongly reduced fruit production due to reduced fruit growth associated with reduced source strength and delayed flowering. We conclude that growing tomato plants under artificial light without FR during the light period causes a range of inverse shade avoidance responses, which result in reduced plant source strength and reduced fruit production, which cannot be compensated by a simple EOD-FR treatment.
Collapse
Affiliation(s)
- Pavlos Kalaitzoglou
- Horticulture and Product Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Wim van Ieperen
- Horticulture and Product Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Jeremy Harbinson
- Horticulture and Product Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Maarten van der Meer
- Horticulture and Product Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Stavros Martinakos
- Horticulture and Product Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Kees Weerheim
- Horticulture and Product Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - Leo F. M. Marcelis
- Horticulture and Product Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
56
|
Lauri PÉ. Corner's rules as a framework for plant morphology, architecture and functioning - issues and steps forward. THE NEW PHYTOLOGIST 2019; 221:1679-1684. [PMID: 30276821 DOI: 10.1111/nph.15503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Pierre-Éric Lauri
- SYSTEM, Univ Montpellier, INRA, Cirad, Montpellier SupAgro, CIHEAM-IAMM, 2 Place Pierre Viala, Montpellier, 34060, France
| |
Collapse
|
57
|
Kaiser E, Ouzounis T, Giday H, Schipper R, Heuvelink E, Marcelis LFM. Adding Blue to Red Supplemental Light Increases Biomass and Yield of Greenhouse-Grown Tomatoes, but Only to an Optimum. FRONTIERS IN PLANT SCIENCE 2019; 9:2002. [PMID: 30693012 PMCID: PMC6339924 DOI: 10.3389/fpls.2018.02002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/27/2018] [Indexed: 05/05/2023]
Abstract
Greenhouse crop production in northern countries often relies heavily on supplemental lighting for year-round yield and product quality. Among the different spectra used in supplemental lighting, red is often considered the most efficient, but plants do not develop normally when grown solely under monochromatic red light ("red light syndrome"). Addition of blue light has been shown to aid normal development, and typical lighting spectra in greenhouse production include a mixture of red and blue light. However, it is unclear whether sunlight, as part of the light available to plants in the greenhouse, may be sufficient as a source of blue light. In a greenhouse high-wire tomato (Solanum lycopersicum), we varied the percentage of blue supplemental light (in a red background) as 0, 6, 12, and 24%, while keeping total photosynthetically active radiation constant. Light was supplied as a mixture of overhead (99 μmol m-2 s-1) and intracanopy (48 μmol m-2 s-1) LEDs, together with sunlight. Averaged over the whole experiment (111 days), sunlight comprised 58% of total light incident onto the crop. Total biomass, yield and number of fruits increased with the addition of blue light to an optimum, suggesting that both low (0%) and high (24%) blue light intensities were suboptimal for growth. Stem and internode lengths, as well as leaf area, decreased with increases in blue light percentage. While photosynthetic capacity increased linearly with increases in blue light percentage, photosynthesis in the low blue light treatment (0%) was not low enough to suggest the occurrence of the red light syndrome. Decreased biomass at low (0%) blue light was likely caused by decreased photosynthetic light use efficiency. Conversely, decreased biomass at high (24%) blue light was likely caused by reductions in canopy light interception. We conclude that while it is not strictly necessary to add blue light to greenhouse supplemental red light to obtain a functional crop, adding some (6-12%) blue light is advantageous for growth and yield while adding 24% blue light is suboptimal for growth.
Collapse
Affiliation(s)
| | | | | | | | | | - Leo F. M. Marcelis
- Horticulture and Product Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
58
|
Moriwaki T, Falcioni R, Tanaka FAO, Cardoso KAK, Souza LA, Benedito E, Nanni MR, Bonato CM, Antunes WC. Nitrogen-improved photosynthesis quantum yield is driven by increased thylakoid density, enhancing green light absorption. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 278:1-11. [PMID: 30471722 DOI: 10.1016/j.plantsci.2018.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 05/22/2023]
Abstract
A nitrogen supply is necessary for all plants. The multifaceted reasons why this nutrient stimulates plant dry weight accumulation are assessed herein. We compared tomato plants grown in full sunlight and in low light environments under four N doses and evaluated plant growth, photosynthetic and calorimetric parameters, leaf anatomy, chloroplast transmission electron microscopy (TEM) and a high resolution profile of optical leaf properties. Increases in N supplies allow tomato plants to grow faster in low light environments (91.5% shading), displaying a robust light harvesting machinery and, consequently, improved light harvesting efficiency. Ultrastructurally, high N doses were associated to a high number of grana per chloroplast and greater thylakoid stacking, as well as high electrodensity by TEM. Robust photosynthetic machinery improves green light absorption, but not blue or red. In addition, low construction and dark respiration costs were related to improved total dry weight accumulation in shade conditions. By applying multivariate analyses, we conclude that improved green light absorbance, improved quantum yield and greater palisade parenchyma cell area are the primary components that drive increased plant growth under natural light-limited photosynthesis.
Collapse
Affiliation(s)
- Thaise Moriwaki
- Laboratório de Ecofisiologia Vegetal, Brazil; Universidade Estadual de Maringá (UEM), Brazil
| | - Renan Falcioni
- Laboratório de Ecofisiologia Vegetal, Brazil; Universidade Estadual de Maringá (UEM), Brazil
| | - Francisco André Ossamu Tanaka
- Departamento de Fitopatologia e Nematologia (LFN), Escola Superior de Agricultura, Luiz de Queiroz, Universidade de São Paulo (ESALQ - USP), Brazil
| | | | - L A Souza
- Universidade Estadual de Maringá (UEM), Brazil; Laboratório de Histotécnica Vegetal, Brazil
| | - Evanilde Benedito
- Universidade Estadual de Maringá (UEM), Brazil; Laboratório de Ecologia Energética, Brazil
| | - Marcos Rafael Nanni
- Universidade Estadual de Maringá (UEM), Brazil; Grupo Aplicado ao Levantamento e Espacialização dos Solos, Brazil
| | - Carlos Moacir Bonato
- Laboratório de Ecofisiologia Vegetal, Brazil; Universidade Estadual de Maringá (UEM), Brazil
| | - Werner Camargos Antunes
- Laboratório de Ecofisiologia Vegetal, Brazil; Universidade Estadual de Maringá (UEM), Brazil.
| |
Collapse
|
59
|
Rakocevic M, Müller M, Matsunaga FT, Neumaier N, Farias JRB, Nepomuceno AL, Fuganti-Pagliarini R. Daily heliotropic movements assist gas exchange and productive responses in DREB1A soybean plants under drought stress in the greenhouse. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:801-814. [PMID: 30118573 DOI: 10.1111/tpj.14069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/18/2018] [Accepted: 08/13/2018] [Indexed: 05/21/2023]
Abstract
Drought stress is one of the most severe environmental constraints on plant production. Under environmental pressures, complex daily heliotropic adjustments of leaflet angles in soybean can help to reduce transpiration losses by diminishing light interception (paraheliotropism), increase diurnal carbon gain in sparse canopies and reduce carbon gain in dense canopies by solar tracking (diaheliotropism). The plant materials studied were cultivar BR 16 and its genetically engineered isoline P58, ectopically overexpressing AtDREB1A, which is involved in abiotic stress responses. We aimed to follow the movements of central and lateral leaflets in vegetative stages V7-V10 and reproductive stages R4-R5, integrating the reversible morphogenetic changes into an estimate of daily plant photosynthesis using three-dimensional modeling, and to analyze the production parameters of BR 16 and P58. The patterns of daily movements of central leaflets of BR 16 in V7-V10 and R4-R5 were similar, expressing fewer diaheliotropic movements under drought stress than under non-limiting water conditions. Daily heliotropic patterns of lateral leaflets in V7-V10 and R4-R5 showed more diaheliotropic movements in drought-stressed P58 plants than in those grown under non-limiting water conditions. Leaf area in R4-R5 was generally higher in P58 than in BR 16. Drought significantly affected gas exchange and vegetative and reproductive architectural features. DREB1A could be involved in various responses to drought stress. Compared with the parental BR 16, P58 copes with drought through better compensation between diaheliotropic and paraheliotropic movements, finer tuning of water-use efficiency, a lower transpiration rate, higher leaf area and higher pod abortion to accomplish the maximum possible grain production under continued drought conditions.
Collapse
Affiliation(s)
- Miroslava Rakocevic
- Embrapa Agricultural Informatics, Av. André Tosello 209, PO Box 6041, 13083-886, Campinas, São Paulo, Brazil
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, R. Monteiro Lobato, 255, Cidade Universitária, 13083-862, Campinas, São Paulo, Brazil
| | - Mariele Müller
- University of Passo Fundo, BR 285 Km 292, 99052-900, Passo Fundo, Rio Grande do Sul, Brazil
| | - Fabio Takeshi Matsunaga
- Federal University of Technology of Paraná - UTFPR, Av. Alberto Carazzai, 1640, 86300-000, Cornélio Procópio, Paraná, Brazil
| | - Norman Neumaier
- Embrapa Soybean, Rodovia Carlos João Strass, Distrito de Warta, 86001-970, Londrina, Paraná, Brazil
| | | | | | | |
Collapse
|
60
|
Salesse-Smith CE, Sharwood RE, Busch FA, Kromdijk J, Bardal V, Stern DB. Overexpression of Rubisco subunits with RAF1 increases Rubisco content in maize. NATURE PLANTS 2018; 4:802-810. [PMID: 30287949 DOI: 10.1038/s41477-018-0252-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/15/2018] [Indexed: 05/21/2023]
Abstract
Rubisco catalyses a rate-limiting step in photosynthesis and has long been a target for improvement due to its slow turnover rate. An alternative to modifying catalytic properties of Rubisco is to increase its abundance within C4 plant chloroplasts, which might increase activity and confer a higher carbon assimilation rate. Here, we overexpress the Rubisco large (LS) and small (SS) subunits with the Rubisco assembly chaperone RUBISCO ASSEMBLY FACTOR 1 (RAF1). While overexpression of LS and/or SS had no discernable impact on Rubisco content, addition of RAF1 overexpression resulted in a >30% increase in Rubisco content. Gas exchange showed a 15% increase in CO2 assimilation (ASAT) in UBI-LSSS-RAF1 transgenic plants, which correlated with increased fresh weight and in vitro Vcmax calculations. The divergence of Rubisco content and assimilation could be accounted for by the Rubisco activation state, which decreased up to 23%, suggesting that Rubisco activase may be limiting Vcmax, and impinging on the realization of photosynthetic potential from increased Rubisco content.
Collapse
Affiliation(s)
| | - Robert E Sharwood
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Florian A Busch
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Johannes Kromdijk
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | | | | |
Collapse
|
61
|
Abstract
Fluctuating asymmetry in plant leaves is a widely used measure in geometric morphometrics for assessing random deviations from perfect symmetry. In this study, we considered the concept of fluctuating asymmetry to improve the prototype leaf shape of the functional-structural plant model L-Cucumber. The overall objective was to provide a realistic geometric representation of the leaves for the light sensitive plant reactions in the virtual plant model. Based on three-dimensional data from several hundred in situ digitized cucumber leaves comparisons of model leaves and measurements were conducted. Robust Bayesian comparison of groups was used to assess statistical differences between leaf halves while respecting fluctuating asymmetries. Results indicated almost no directional asymmetry in leaves comparing different distances from the prototype while detecting systematic deviations shared by both halves. This information was successfully included in an improved leaf prototype and implemented in the virtual plant model L-Cucumber. Comparative virtual plant simulations revealed a slight improvement in plant internode development against experimental data using the novel leaf shape. Further studies can now focus on analyses of stress on the 3D-deformation of the leaf and the development of a dynamic leaf shape model.
Collapse
|
62
|
Yoshinaka K, Nagashima H, Yanagita Y, Hikosaka K. The role of biomass allocation between lamina and petioles in a game of light competition in a dense stand of an annual plant. ANNALS OF BOTANY 2018; 121:1055-1064. [PMID: 29365041 PMCID: PMC5906924 DOI: 10.1093/aob/mcy001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/02/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Models of plant three-dimensional (3-D) architecture have been used to find optimal morphological characteristics for light capture or carbon assimilation of a solitary plant. However, optimality theory is not necessarily useful to predict the advantageous strategy of an individual in dense stands, where light capture of an individual is influenced not only by its architecture but also by the architecture of its neighbours. Here, we analysed optimal and evolutionarily stable biomass allocation between the lamina and petiole (evolutionarily stable strategy; ESS) under various neighbour conditions using a 3-D simulation model based on the game theory. METHODS We obtained 3-D information of every leaf of actual Xanthium canadense plants grown in a dense stand using a ruler and a protractor. We calculated light capture and carbon assimilation of an individual plant when it stands alone and when it is surrounded by neighbours in the stand. We considered three trade-offs in petiole length and lamina area: biomass allocation, biomechanical constraints and photosynthesis. Optimal and evolutionarily stable biomass allocation between petiole and lamina were calculated under various neighbour conditions. KEY RESULTS Optimal petiole length varied depending on the presence of neighbours and on the architecture of neighbours. The evolutionarily stable petiole length of plants in the stand tended to be longer than the optimal length of solitary plants. The mean of evolutionarily stable petiole length in the stand was similar to the real one. Trade-offs of biomechanical constraint and photosynthesis had minor effects on optimal and evolutionarily stable petiole length. CONCLUSION Actual plants realize evolutionarily stable architecture in dense stands. Interestingly, there were multiple evolutionarily stable petiole lengths even in one stand, suggesting that plants with different architectures can coexist across plant communities.
Collapse
Affiliation(s)
- Kenta Yoshinaka
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, Japan
| | - Hisae Nagashima
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, Japan
| | | | - Kouki Hikosaka
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, Japan
- CREST, JST, Tokyo, Japan
- For correspondence. E-mail
| |
Collapse
|
63
|
Whitehead S, Cambridge ML, Renton M. A functional-structural model of ephemeral seagrass growth influenced by environment. ANNALS OF BOTANY 2018; 121:897-908. [PMID: 29370337 PMCID: PMC5906912 DOI: 10.1093/aob/mcx156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/23/2017] [Indexed: 05/12/2023]
Abstract
Background and Aims Ephemeral seagrasses that respond rapidly to environmental changes are important marine habitats. However, they are under threat due to human activity and are logistically difficult and expensive to study. This study aimed to develop a new functional-structural environmentally dependent model of ephemeral seagrass, able to integrate our understanding of ephemeral seagrass growth dynamics and assess options for potential management interventions, such as seagrass transplantation. Methods A functional-structural plant model was developed in which growth and senescence rates are mechanistically linked to environmental variables. The model was parameterized and validated for a population of Halophila stipulacea in the Persian Gulf. Key Results There was a good match between empirical and simulated results for the number of apices, net rhizome length or net number of internodes using a 330 d simulation. Simulated data were more variable than empirical data. Simulated structural patterns of seagrass rhizome growth qualitatively matched empirical observations. Conclusions This new model successfully simulates the environmentally dependent growth and senescence rates of our case-study ephemeral seagrass species. It produces numerical and visual outputs that help synthesize our understanding of how the influence of environmental variables on plant functional processes affects overall growth patterns. The model can also be used to assess the potential outcomes of management interventions like seagrass transplantation, thus providing a useful management tool. It is freely available and easily adapted for new species and locations, although validation with more species and environments is required.
Collapse
Affiliation(s)
- S Whitehead
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - M L Cambridge
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- The UWA Oceans Institute, The University of Western Australia, Crawley, WA, Australia
| | - M Renton
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
64
|
Perez RPA, Dauzat J, Pallas B, Lamour J, Verley P, Caliman JP, Costes E, Faivre R. Designing oil palm architectural ideotypes for optimal light interception and carbon assimilation through a sensitivity analysis of leaf traits. ANNALS OF BOTANY 2018; 121:909-926. [PMID: 29293866 PMCID: PMC5906926 DOI: 10.1093/aob/mcx161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/24/2017] [Indexed: 05/12/2023]
Abstract
Background and Aims Enhancement of light harvesting in annual crops has successfully led to yield increases since the green revolution. Such an improvement has mainly been achieved by selecting plants with optimal canopy architecture for specific agronomic practices. For perennials such as oil palm, breeding programmes were focused more on fruit yield, but now aim at exploring more complex traits. The aim of the present study is to investigate potential improvements in light interception and carbon assimilation in the study case of oil palm, by manipulating leaf traits and proposing architectural ideotypes. Methods Sensitivity analyses (Morris method and metamodel) were performed on a functional-structural plant model recently developed for oil palm which takes into account genetic variability, in order to virtually assess the impact of plant architecture on light interception efficiency and potential carbon acquisition. Key Results The most sensitive parameters found over plant development were those related to leaf area (rachis length, number of leaflets, leaflet morphology), although fine attributes related to leaf geometry showed increasing influence when the canopy became closed. In adult stands, optimized carbon assimilation was estimated on plants with a leaf area index between 3.2 and 5.5 m2 m-2 (corresponding to usual agronomic conditions), with erect leaves, short rachis and petiole, and high number of leaflets on the rachis. Four architectural ideotypes for carbon assimilation are proposed based on specific combinations of organ dimensions and arrangement that limit mutual shading and optimize light distribution within the plant crown. Conclusions A rapid set-up of leaf area is critical at young age to optimize light interception and subsequently carbon acquisition. At the adult stage, optimization of carbon assimilation could be achieved through specific combinations of architectural traits. The proposition of multiple morphotypes with comparable level of carbon assimilation opens the way to further investigate ideotypes carrying an optimal trade-off between carbon assimilation, plant transpiration and biomass partitioning.
Collapse
Affiliation(s)
- Raphaël P A Perez
- CIRAD, UMR AMAP, Montpellier, France
- AMAP, Univ Montpellier, CIRAD, INRA, IRD, CNRS, Montpellier, France
| | - Jean Dauzat
- CIRAD, UMR AMAP, Montpellier, France
- AMAP, Univ Montpellier, CIRAD, INRA, IRD, CNRS, Montpellier, France
| | - Benoît Pallas
- AGAP, Univ. Montpellier, CIRAD, INRA, SupAgro, Monpellier, France
| | | | - Philippe Verley
- IRD, UMR AMAP, F-34398, Montpellier, France
- AMAP, Univ Montpellier, CIRAD, INRA, IRD, CNRS, Montpellier, France
| | | | - Evelyne Costes
- AGAP, Univ. Montpellier, CIRAD, INRA, SupAgro, Monpellier, France
| | - Robert Faivre
- Université Fédérale de Toulouse, INRA, UR875 MIAT, Castanet-Tolosan, France
| |
Collapse
|
65
|
Wang M, White N, Grimm V, Hofman H, Doley D, Thorp G, Cribb B, Wherritt E, Han L, Wilkie J, Hanan J. Pattern-oriented modelling as a novel way to verify and validate functional-structural plant models: a demonstration with the annual growth module of avocado. ANNALS OF BOTANY 2018; 121:941-959. [PMID: 29425285 PMCID: PMC5906917 DOI: 10.1093/aob/mcx187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 11/24/2017] [Indexed: 05/12/2023]
Abstract
Background and Aims Functional-structural plant (FSP) models have been widely used to understand the complex interactions between plant architecture and underlying developmental mechanisms. However, to obtain evidence that a model captures these mechanisms correctly, a clear distinction must be made between model outputs used for calibration and thus verification, and outputs used for validation. In pattern-oriented modelling (POM), multiple verification patterns are used as filters for rejecting unrealistic model structures and parameter combinations, while a second, independent set of patterns is used for validation. Methods To test the potential of POM for FSP modelling, a model of avocado (Persea americana 'Hass') was developed. The model of shoot growth is based on a conceptual model, the annual growth module (AGM), and simulates photosynthesis and adaptive carbon allocation at the organ level. The model was first calibrated using a set of observed patterns from a published article. Then, for validation, model predictions were compared with a different set of empirical patterns from various field studies that were not used for calibration. Key Results After calibration, our model simultaneously reproduced multiple observed architectural patterns. The model then successfully predicted, without further calibration, the validation patterns. The model supports the hypothesis that carbon allocation can be modelled as being dependent on current organ biomass and sink strength of each organ type, and also predicted the observed developmental timing of the leaf sink-source transition stage. Conclusions These findings suggest that POM can help to improve the 'structural realism' of FSP models, i.e. the likelihood that a model reproduces observed patterns for the right reasons. Structural realism increases predictive power so that the response of an AGM to changing environmental conditions can be predicted. Accordingly, our FSP model provides a better but still parsimonious understanding of the mechanisms underlying known patterns of AGM growth.
Collapse
Affiliation(s)
- Ming Wang
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Brisbane, QLD, Australia
| | - Neil White
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Brisbane, QLD, Australia
- Department of Agriculture and Fisheries, Toowoomba, QLD, Australia
| | - Volker Grimm
- Helmholtz Centre for Environmental Research-UFZ, Department of Ecological Modelling, Leipzig, Germany
- University of Potsdam, Institute for Biochemistry and Biology, Potsdam, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Helen Hofman
- Department of Agriculture and Fisheries, Bundaberg Research Facility, Kalkie, QLD, Australia
| | - David Doley
- The University of Queensland, Sustainable Minerals Institute, Brisbane, QLD, Australia
| | - Grant Thorp
- Plant & Food Research Australia Pty Ltd, Melbourne, VIC, Australia
| | - Bronwen Cribb
- The University of Queensland, Centre for Microscopy and Microanalysis, Brisbane, QLD, Australia
- The University of Queensland, School of Biological Sciences, Brisbane, QLD, Australia
| | - Ella Wherritt
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Brisbane, QLD, Australia
| | - Liqi Han
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Brisbane, QLD, Australia
| | - John Wilkie
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Jim Hanan
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Brisbane, QLD, Australia
| |
Collapse
|
66
|
Estimation of Whole Plant Photosynthetic Rate of Irwin Mango under Artificial and Natural Lights Using a Three-Dimensional Plant Model and Ray-Tracing. Int J Mol Sci 2018; 19:ijms19010152. [PMID: 29300365 PMCID: PMC5796101 DOI: 10.3390/ijms19010152] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 11/17/2022] Open
Abstract
Photosynthesis is an important physiological response for determination of CO₂ fertilization in greenhouses and estimation of crop growth. In order to estimate the whole plant photosynthetic rate, it is necessary to investigate how light interception by crops changes with environmental and morphological factors. The objectives of this study were to analyze plant light interception using a three-dimensional (3D) plant model and ray-tracing, determine the spatial distribution of the photosynthetic rate, and estimate the whole plant photosynthetic rate of Irwin mango (Mangifera indica L. cv. Irwin) grown in greenhouses. In the case of mangoes, it is difficult to measure actual light interception at the canopy level due to their vase shape. A two-year-old Irwin mango tree was used to measure the whole plant photosynthetic rate. Light interception and whole plant photosynthetic rate were measured under artificial and natural light conditions using a closed chamber (1 × 1 × 2 m). A 3D plant model was constructed and ray-tracing simulation was conducted for calculating the photosynthetic rate with a two-variable leaf photosynthetic rate model of the plant. Under artificial light, the estimated photosynthetic rate increased from 2.0 to 2.9 μmolCO₂·m-2·s-1 with increasing CO₂ concentration. On the other hand, under natural light, the photosynthetic rate increased from 0.2 μmolCO₂·m-2·s-1 at 06:00 to a maximum of 7.3 μmolCO₂·m-2·s-1 at 09:00, then gradually decreased to -1.0 μmolCO₂·m-2·s-1 at 18:00. In validation, simulation results showed good agreement with measured results with R² = 0.79 and RMSE = 0.263. The results suggest that this method could accurately estimate the whole plant photosynthetic rate and be useful for pruning and adequate CO₂ fertilization.
Collapse
|
67
|
Lv J, Liu N, Guo J, Xu Z, Li X, Li Z, Luo H, Ren X, Huang L, Zhou X, Chen Y, Chen W, Lei Y, Tu J, Jiang H, Liao B. Stable QTLs for Plant Height on Chromosome A09 Identified From Two Mapping Populations in Peanut ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2018; 9:684. [PMID: 29887872 PMCID: PMC5982159 DOI: 10.3389/fpls.2018.00684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/04/2018] [Indexed: 05/20/2023]
Abstract
The peanut (Arachis hypogaea L.) is an important grain legume extensively cultivated worldwide, supplying edible oil and protein for human consumption. As in many other crops, plant height is a crucial factor in determining peanut architecture traits and has a unique effect on resistance to lodging and efficiency of mechanized harvesting as well as yield. Currently, the genetic basis underlying plant height remains unclear in peanut, which have hampered marker-assisted selection in breeding. In this study, we conducted a quantitative trait locus (QTL) analysis for peanut plant height by using two recombinant inbred line (RIL) populations including "Yuanza 9102 × Xuzhou 68-4 (YX)" and "Xuhua 13 × Zhonghua 6 (XZ)". In the YX population, 38 QTLs including 10 major QTLs from 9 chromosomes were detected in 4 environments, and 8 consensus QTLs integrated by meta-analysis expressed stably across multiple environments. In the XZ population, 3 major QTLs and seven minor QTLs from 6 chromosomes were detected across 3 environments. Generally, most major QTLs from the two populations were located on pseudomolecule chromosome 9 of Arachis duranesis (A09), indicating there would be key genes on A09 controlling plant height. Further analysis revealed that qPHA09.1a from the XZ population and one consensus QTL, cqPHA09.d from the YX population were co-localized in a reliable 3.4 Mb physical interval on A09, which harbored 161 genes including transcription factors and enzymes related to signaling transduction and cell wall formation. The major and stable QTLs identified in this study may be useful for further gene cloning and identification of molecular markers applicable for breeding.
Collapse
Affiliation(s)
- Jianwei Lv
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
- Guizhou Oil Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Nian Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jianbin Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zhijun Xu
- Guizhou Oil Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Xinping Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zhendong Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Huaiyong Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaoping Ren
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Li Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaojing Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yuning Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Weigang Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- *Correspondence: Boshou Liao
| |
Collapse
|
68
|
Falcioni R, Moriwaki T, de Oliveira DM, Andreotti GC, de Souza LA, dos Santos WD, Bonato CM, Antunes WC. Increased Gibberellins and Light Levels Promotes Cell Wall Thickness and Enhance Lignin Deposition in Xylem Fibers. FRONTIERS IN PLANT SCIENCE 2018; 9:1391. [PMID: 30294339 PMCID: PMC6158321 DOI: 10.3389/fpls.2018.01391] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/03/2018] [Indexed: 05/06/2023]
Abstract
Light intensity and hormones (gibberellins; GAs) alter plant growth and development. A fine regulation triggered by light and GAs induces changes in stem cell walls (CW). Cross-talk between light-stimulated and GAs-induced processes as well as the phenolic compounds metabolism leads to modifications in lignin formation and deposition on cell walls. How these factors (light and GAs) promote changes in lignin content and composition. In addition, structural changes were evaluated in the stem anatomy of tobacco plants. GA3 was sprayed onto the leaves and paclobutrazol (PAC), a GA biosynthesis inhibitor, via soil, at different irradiance levels. Fluorescence microscopy techniques were applied to detect lignin, and electron microscopy (SEM and TEM) was used to obtain details on cell wall structure. Furthermore, determination of total lignin and monomer contents were analyzed. Both light and GAs induces increased lignin content and CW thickening as well as greater number of fiber-like cells but not tracheary elements. The assays demonstrate that light exerts a role in lignification under GA3 supplementation. In addition, the existence of an exclusive response mechanism to light was detected, that GAs are not able to replace.
Collapse
Affiliation(s)
- Renan Falcioni
- Laboratório de Ecofisiologia Vegetal, Departamento de Biologia, Universidade Estadual de Maringá, Maringá, Brazil
- Laboratório de Bioquímica de Plantas, Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá, Brazil
- *Correspondence: Renan Falcioni, Werner Camargos Antunes, ;
| | - Thaise Moriwaki
- Laboratório de Ecofisiologia Vegetal, Departamento de Biologia, Universidade Estadual de Maringá, Maringá, Brazil
| | - Dyoni Matias de Oliveira
- Laboratório de Bioquímica de Plantas, Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá, Brazil
| | - Giovana Castelani Andreotti
- Laboratório de Ecofisiologia Vegetal, Departamento de Biologia, Universidade Estadual de Maringá, Maringá, Brazil
| | - Luiz Antônio de Souza
- Laboratório de Histotécnica e Anatomia Vegetal, Universidade Estadual de Maringá, Maringá, Brazil
| | - Wanderley Dantas dos Santos
- Laboratório de Bioquímica de Plantas, Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá, Brazil
| | - Carlos Moacir Bonato
- Laboratório de Ecofisiologia Vegetal, Departamento de Biologia, Universidade Estadual de Maringá, Maringá, Brazil
| | - Werner Camargos Antunes
- Laboratório de Ecofisiologia Vegetal, Departamento de Biologia, Universidade Estadual de Maringá, Maringá, Brazil
- Laboratório de Bioquímica de Plantas, Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá, Brazil
- *Correspondence: Renan Falcioni, Werner Camargos Antunes, ;
| |
Collapse
|
69
|
Zsögön A, Cermak T, Voytas D, Peres LEP. Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: Case study in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:120-130. [PMID: 28167025 DOI: 10.1016/j.plantsci.2016.12.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 05/02/2023]
Abstract
The ideotype is a theoretical model of an archetypal cultivated plant. Recent progress in genome editing is aiding the pursuit of this ideal in crop breeding. Breeding is relatively straightforward when the traits in question are monogenic in nature and show Mendelian inheritance. Conversely, traits with a diffuse, polygenic basis such as abiotic stress resistance are more difficult to harness. In recent years, many genes have been identified that are important for plant domestication and act by increasing yield, grain or fruit size or altering plant architecture. Here, we propose that (a) key monogenic traits whose physiology has been unveiled can be molecularly tailored to achieve the ideotype; and (b) wild relatives of crops harboring polygenic stress resistance genes or other traits of interest could be de novo domesticated by manipulating monogenic yield-related traits through state-of-the-art gene editing techniques. An overview of the genomic and physiological challenges in the world's main staple crops is provided. We focus on tomato and its wild Solanum (section Lycopersicon) relatives as a suitable model for molecular design in the pursuit of the ideotype for elite cultivars and to test de novo domestication of wild relatives.
Collapse
Affiliation(s)
- Agustin Zsögön
- Laboratory of Molecular Plant Physiology, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Tomas Cermak
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dan Voytas
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lázaro Eustáquio Pereira Peres
- Laboratory of Hormonal Control of Plant Development, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09 13418-900 Piracicaba, SP, Brazil.
| |
Collapse
|
70
|
Development and deployment of a high-density linkage map identified quantitative trait loci for plant height in peanut (Arachis hypogaea L.). Sci Rep 2016; 6:39478. [PMID: 27995991 PMCID: PMC5171768 DOI: 10.1038/srep39478] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/23/2016] [Indexed: 11/10/2022] Open
Abstract
Plant height is one of the most important architecture traits in crop plants. In peanut, the genetic basis of plant height remains ambiguous. In this context, we genotyped a recombinant inbred line (RIL) population with 140 individuals developed from a cross between two peanut varieties varying in plant height, Zhonghua 10 and ICG 12625. Genotyping data was generated for 1,175 SSR and 42 transposon polymorphic markers and a high-density genetic linkage map was constructed with 1,219 mapped loci covering total map length of 2,038.75 cM i.e., accounted for nearly 80% of the peanut genome. Quantitative trait locus (QTL) analysis using genotyping and phenotyping data for three environments identified 8 negative-effect QTLs and 10 positive-effect QTLs for plant height. Among these QTLs, 8 QTLs had a large contribution to plant height that explained ≥10% phenotypic variation. Two major-effect consensus QTLs namely cqPHA4a and cqPHA4b were identified with stable performance across three environments. Further, the allelic recombination of detected QTLs proved the existence of the phenomenon of transgressive segregation for plant height in the RIL population. Therefore, this study not only successfully reported a high-density genetic linkage map of peanut and identified genomic region controlling plant height but also opens opportunities for further gene discovery and molecular breeding for plant height in peanut.
Collapse
|
71
|
Ding W, Xu L, Wei Y, Wu F, Zhu D, Zhang Y, Max N. Genetic algorithm based approach to optimize phenotypical traits of virtual rice. J Theor Biol 2016; 403:59-67. [DOI: 10.1016/j.jtbi.2016.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 11/28/2022]
|
72
|
Perez RPA, Pallas B, Le Moguédec G, Rey H, Griffon S, Caliman JP, Costes E, Dauzat J. Integrating mixed-effect models into an architectural plant model to simulate inter- and intra-progeny variability: a case study on oil palm (Elaeis guineensis Jacq.). JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4507-21. [PMID: 27302128 DOI: 10.1093/jxb/erw203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Three-dimensional (3D) reconstruction of plants is time-consuming and involves considerable levels of data acquisition. This is possibly one reason why the integration of genetic variability into 3D architectural models has so far been largely overlooked. In this study, an allometry-based approach was developed to account for architectural variability in 3D architectural models of oil palm (Elaeis guineensis Jacq.) as a case study. Allometric relationships were used to model architectural traits from individual leaflets to the entire crown while accounting for ontogenetic and morphogenetic gradients. Inter- and intra-progeny variabilities were evaluated for each trait and mixed-effect models were used to estimate the mean and variance parameters required for complete 3D virtual plants. Significant differences in leaf geometry (petiole length, density of leaflets, and rachis curvature) and leaflet morphology (gradients of leaflet length and width) were detected between and within progenies and were modelled in order to generate populations of plants that were consistent with the observed populations. The application of mixed-effect models on allometric relationships highlighted an interesting trade-off between model accuracy and ease of defining parameters for the 3D reconstruction of plants while at the same time integrating their observed variability. Future research will be dedicated to sensitivity analyses coupling the structural model presented here with a radiative balance model in order to identify the key architectural traits involved in light interception efficiency.
Collapse
Affiliation(s)
| | - Benoît Pallas
- INRA, UMR 1334 AGAP, 34398 Montpellier Cedex 5, France
| | | | - Hervé Rey
- CIRAD, UMR AMAP, Montpellier, F-34000 France
| | | | | | | | - Jean Dauzat
- CIRAD, UMR AMAP, Montpellier, F-34000 France
| |
Collapse
|
73
|
Zhu XG, Lynch JP, LeBauer DS, Millar AJ, Stitt M, Long SP. Plants in silico: why, why now and what?--an integrative platform for plant systems biology research. PLANT, CELL & ENVIRONMENT 2016; 39:1049-57. [PMID: 26523481 DOI: 10.1111/pce.12673] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 10/17/2015] [Indexed: 05/21/2023]
Abstract
A paradigm shift is needed and timely in moving plant modelling from largely isolated efforts to a connected community endeavour that can take full advantage of advances in computer science and in mechanistic understanding of plant processes. Plants in silico (Psi) envisions a digital representation of layered dynamic modules, linking from gene networks and metabolic pathways through to cellular organization, tissue, organ and whole plant development, together with resource capture and use efficiency in dynamic competitive environments, ultimately allowing a mechanistically rich simulation of the plant or of a community of plants in silico. The concept is to integrate models or modules from different layers of organization spanning from genome to phenome to ecosystem in a modular framework allowing the use of modules of varying mechanistic detail representing the same biological process. Developments in high-performance computing, functional knowledge of plants, the internet and open-source version controlled software make achieving the concept realistic. Open source will enhance collaboration and move towards testing and consensus on quantitative theoretical frameworks. Importantly, Psi provides a quantitative knowledge framework where the implications of a discovery at one level, for example, single gene function or developmental response, can be examined at the whole plant or even crop and natural ecosystem levels.
Collapse
Affiliation(s)
- Xin-Guang Zhu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jonathan P Lynch
- Department of Plant Science, Penn State University, University Park, PA, 16802, USA
| | - David S LeBauer
- Institute for Genomic Biology and National Center for Supercomputer Applications, University of Illinois, 1206 W Gregory Drive, Urbana, IL, 61801, USA
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Midlothian, Scotland, UK
| | - Mark Stitt
- Max Planck Institute for Molecular Plant Physiology, D-14476, Potsdam Gölm, Germany
| | - Stephen P Long
- Departments of Crop Sciences and Plant Biology, Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA
| |
Collapse
|
74
|
Evers JB, Bastiaans L. Quantifying the effect of crop spatial arrangement on weed suppression using functional-structural plant modelling. JOURNAL OF PLANT RESEARCH 2016; 129:339-51. [PMID: 27000875 PMCID: PMC4850179 DOI: 10.1007/s10265-016-0807-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/18/2016] [Indexed: 05/06/2023]
Abstract
Suppression of weed growth in a crop canopy can be enhanced by improving crop competitiveness. One way to achieve this is by modifying the crop planting pattern. In this study, we addressed the question to what extent a uniform planting pattern increases the ability of a crop to compete with weed plants for light compared to a random and a row planting pattern, and how this ability relates to crop and weed plant density as well as the relative time of emergence of the weed. To this end, we adopted the functional-structural plant modelling approach which allowed us to explicitly include the 3D spatial configuration of the crop-weed canopy and to simulate intra- and interspecific competition between individual plants for light. Based on results of simulated leaf area development, canopy photosynthesis and biomass growth of the crop, we conclude that differences between planting pattern were small, particularly if compared to the effects of relative time of emergence of the weed, weed density and crop density. Nevertheless, analysis of simulated weed biomass demonstrated that a uniform planting of the crop improved the weed-suppression ability of the crop canopy. Differences in weed suppressiveness between planting patterns were largest with weed emergence before crop emergence, when the suppressive effect of the crop was only marginal. With simultaneous emergence a uniform planting pattern was 8 and 15 % more competitive than a row and a random planting pattern, respectively. When weed emergence occurred after crop emergence, differences between crop planting patterns further decreased as crop canopy closure was reached early on regardless of planting pattern. We furthermore conclude that our modelling approach provides promising avenues to further explore crop-weed interactions and aid in the design of crop management strategies that aim at improving crop competitiveness with weeds.
Collapse
Affiliation(s)
- Jochem B Evers
- Centre for Crop Systems Analysis, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands.
| | - Lammert Bastiaans
- Centre for Crop Systems Analysis, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| |
Collapse
|
75
|
Nunes-Nesi A, Nascimento VDL, de Oliveira Silva FM, Zsögön A, Araújo WL, Sulpice R. Natural genetic variation for morphological and molecular determinants of plant growth and yield. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2989-3001. [PMID: 27012286 DOI: 10.1093/jxb/erw124] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The rates of increase in yield of the main commercial crops have been steadily falling in many areas worldwide. This generates concerns because there is a growing demand for plant biomass due to the increasing population. Plant yield should thus be improved in the context of climate change and decreasing natural resources. It is a major challenge which could be tackled by improving and/or altering light-use efficiency, CO2 uptake and fixation, primary metabolism, plant architecture and leaf morphology, and developmental plant processes. In this review, we discuss some of the traits which could lead to yield increase, with a focus on how natural genetic variation could be harnessed. Moreover, we provide insights for advancing our understanding of the molecular aspects governing plant growth and yield, and propose future avenues for improvement of crop yield. We also suggest that knowledge accumulated over the last decade in the field of molecular physiology should be integrated into new ideotypes.
Collapse
Affiliation(s)
- Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Vitor de Laia Nascimento
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Franklin Magnum de Oliveira Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ronan Sulpice
- National University of Ireland, Galway, Plant Systems Biology Lab, Plant and AgriBiosciences Research Centre, School of Natural Sciences, Galway, Ireland
| |
Collapse
|
76
|
Escribano-Rocafort AG, Ventre-Lespiaucq AB, Granado-Yela C, Rubio de Casas R, Delgado JA, Balaguer L. The expression of light-related leaf functional traits depends on the location of individual leaves within the crown of isolated Olea europaea trees. ANNALS OF BOTANY 2016; 117:643-51. [PMID: 26944783 PMCID: PMC4817431 DOI: 10.1093/aob/mcw004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/07/2015] [Accepted: 11/27/2015] [Indexed: 05/31/2023]
Abstract
BACKGROUND The spatial arrangement and expression of foliar syndromes within tree crowns can reflect the coupling between crown form and function in a given environment. Isolated trees subjected to high irradiance and concomitant stress may adjust leaf phenotypes to cope with environmental gradients that are heterogeneous in space and time within the tree crown. The distinct expression of leaf phenotypes among crown positions could lead to complementary patterns in light interception at the crown scale. METHODS We quantified eight light-related leaf traits across 12 crown positions of ten isolated Olea europaea trees in the field. Specifically, we investigated whether the phenotypic expression of foliar traits differed among crown sectors and layers and five periods of the day from sunrise to sunset. We investigated the consequences in terms of the exposed area of the leaves at the tree scale during a single day. KEY RESULTS All traits differed among crown positions except the length-to-width ratio of the leaves. We found a strong complementarity in the patterns of the potential exposed area of the leaves among day periods as a result of a non-random distribution of leaf angles across the crown. Leaf exposure at the outer layer was below 60 % of the displayed surface, reaching maximum interception during morning periods. Daily interception increased towards the inner layer, achieving consecutive maximization from east to west positions within the crown, matching the sun's trajectory. CONCLUSIONS The expression of leaf traits within isolated trees of O. europaea varies continuously through the crown in a gradient of leaf morphotypes and leaf angles depending on the exposure and location of individual leaves. The distribution of light-related traits within the crown and the complementarity in the potential exposure patterns of the leaves during the day challenges the assumption of low trait variability within individuals.
Collapse
Affiliation(s)
- Adrián G Escribano-Rocafort
- Department of Ecology, Faculty of Biology, Complutense University of Madrid, Jose Antonio Novais St., 28040 Madrid, Spain,
| | - Agustina B Ventre-Lespiaucq
- Department of Ecology, Faculty of Biology, Complutense University of Madrid, Jose Antonio Novais St., 28040 Madrid, Spain
| | - Carlos Granado-Yela
- Department of Plant Biology I, Faculty of Biology, Complutense University of Madrid, Jose Antonio Novais St., 28040 Madrid, Spain
| | - Rafael Rubio de Casas
- Department of Ecology, Facultad de Ciencias, Universidad de Granada, Avda. de la Fuentenueva s/n, 18071 Granada, Spain, Estación Experimental de Zonas Áridas, EEZA-CSIC, Carretera de Sacramento s/n, Almería, Spain and UMR 5175 CEFE - Centre d'Ecologie Fonctionnelle et Evolutive (CNRS), 1919 Route de Mende, F-34293 Montpellier cedex 05, France
| | - Juan A Delgado
- Department of Ecology, Faculty of Biology, Complutense University of Madrid, Jose Antonio Novais St., 28040 Madrid, Spain
| | - Luis Balaguer
- Department of Plant Biology I, Faculty of Biology, Complutense University of Madrid, Jose Antonio Novais St., 28040 Madrid, Spain
| |
Collapse
|
77
|
Kim JH, Lee JW, Ahn TI, Shin JH, Park KS, Son JE. Sweet Pepper (Capsicum annuum L.) Canopy Photosynthesis Modeling Using 3D Plant Architecture and Light Ray-Tracing. FRONTIERS IN PLANT SCIENCE 2016; 7:1321. [PMID: 27667994 PMCID: PMC5016622 DOI: 10.3389/fpls.2016.01321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/18/2016] [Indexed: 05/08/2023]
Abstract
Canopy photosynthesis has typically been estimated using mathematical models that have the following assumptions: the light interception inside the canopy exponentially declines with the canopy depth, and the photosynthetic capacity is affected by light interception as a result of acclimation. However, in actual situations, light interception in the canopy is quite heterogenous depending on environmental factors such as the location, microclimate, leaf area index, and canopy architecture. It is important to apply these factors in an analysis. The objective of the current study is to estimate the canopy photosynthesis of paprika (Capsicum annuum L.) with an analysis of by simulating the intercepted irradiation of the canopy using a 3D ray-tracing and photosynthetic capacity in each layer. By inputting the structural data of an actual plant, the 3D architecture of paprika was reconstructed using graphic software (Houdini FX, FX, Canada). The light curves and A/C i curve of each layer were measured to parameterize the Farquhar, von Caemmerer, and Berry (FvCB) model. The difference in photosynthetic capacity within the canopy was observed. With the intercepted irradiation data and photosynthetic parameters of each layer, the values of an entire plant's photosynthesis rate were estimated by integrating the calculated photosynthesis rate at each layer. The estimated photosynthesis rate of an entire plant showed good agreement with the measured plant using a closed chamber for validation. From the results, this method was considered as a reliable tool to predict canopy photosynthesis using light interception, and can be extended to analyze the canopy photosynthesis in actual greenhouse conditions.
Collapse
Affiliation(s)
- Jee Hoon Kim
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Joon Woo Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Tae In Ahn
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Jong Hwa Shin
- Department of Horticulture and Breeding, Andong National UniversityAndong, South Korea
| | - Kyung Sub Park
- Protected Horticulture Research Institute, National Institute of Horticultural and Herbal ScienceHaman, South Korea
| | - Jung Eek Son
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
- *Correspondence: Jung Eek Son
| |
Collapse
|
78
|
Li F, Chen B, Xu K, Gao G, Yan G, Qiao J, Li J, Li H, Li L, Xiao X, Zhang T, Nishio T, Wu X. A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:169-177. [PMID: 26566834 DOI: 10.1016/j.plantsci.2015.05.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/14/2015] [Accepted: 05/17/2015] [Indexed: 05/18/2023]
Abstract
Crop plant architecture plays a highly important role in its agronomic performance. Plant height (PH) and primary branch number (PB) are two major factors that affect the plant architecture of rapeseed (Brassica napus). Previous studies have shown that these two traits are controlled by multiple quantitative trait loci (QTL); however, QTLs have not been delimited to regions less than 10cM. Genome-wide association study (GWAS) is a highly efficient approach for identifying genetic loci controlling traits at relatively high resolution. In this study, variations in PH and PB of a panel of 472 rapeseed accessions that had previously been analyzed by a 60k SNP array were investigated for three consecutive years and studied by GWAS. Eight QTLs on chromosome A03, A05, A07 and C07 were identified for PH, and five QTLs on A01, A03, A07 and C07 were identified for PB. Although most QTLs have been detected in previous studies based on linkage analyses, the two QTLs of PH on A05 and the QTL of PB on C07 were novel. In the genomic regions close to the GWAS peaks, orthologs of the genes involved in flower development, phytohormone biosynthesis, metabolism and signaling in Arabidopsis were identified.
Collapse
Affiliation(s)
- Feng Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori Amamiyamachi, Aoba-ku, Sendai, Miyagi 981-8555, Japan
| | - Biyun Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Kun Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Guizhen Gao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Guixin Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jiangwei Qiao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jun Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Hao Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Lixia Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xin Xiao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Tianyao Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Takeshi Nishio
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori Amamiyamachi, Aoba-ku, Sendai, Miyagi 981-8555, Japan
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| |
Collapse
|
79
|
Chen TW, Nguyen TMN, Kahlen K, Stützel H. High temperature and vapor pressure deficit aggravate architectural effects but ameliorate non-architectural effects of salinity on dry mass production of tomato. FRONTIERS IN PLANT SCIENCE 2015; 6:887. [PMID: 26539203 PMCID: PMC4612157 DOI: 10.3389/fpls.2015.00887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/06/2015] [Indexed: 05/23/2023]
Abstract
Tomato (Solanum lycopersicum L.) is an important vegetable crop and often cultivated in regions exposed to salinity and high temperatures (HT) which change plant architecture, decrease canopy light interception and disturb physiological functions. However, the long-term effects of salinity and HT combination (S+HT) on plant growth are still unclear. A dynamic functional-structural plant model (FSPM) of tomato was parameterized and evaluated for different levels of S+HT combinations. The evaluated model was used to quantify the contributions of morphological changes (architectural effects) and physiological disturbances (non-architectural effects) on the reduction of shoot dry mass under S+HT. The model predicted architectural variables with high accuracy (>85%), which ensured the reliability of the model analyses. HT enhanced architectural effects but reduced non-architectural effects of salinity on dry mass production. The stronger architectural effects of salinity under HT could not be counterbalanced by the smaller non-architectural effects. Therefore, long-term influences of HT on shoot dry mass under salinity were negative at the whole plant level. Our model analysis highlights the importance of plant architecture at canopy level in studying the plant responses to the environments and shows the merits of dynamic FSPMs as heuristic tools.
Collapse
Affiliation(s)
- Tsu-Wei Chen
- Department of Vegetable Systems Modelling, Institute of Horticultural Production Systems, Leibniz Universität HannoverHannover, Germany
| | - Thi M. N. Nguyen
- Department of Vegetable Systems Modelling, Institute of Horticultural Production Systems, Leibniz Universität HannoverHannover, Germany
| | - Katrin Kahlen
- Department of Vegetable Crops, Hochschule Geisenheim UniversityGeisenheimw, Germany
| | - Hartmut Stützel
- Department of Vegetable Systems Modelling, Institute of Horticultural Production Systems, Leibniz Universität HannoverHannover, Germany
| |
Collapse
|
80
|
Li T, Yang Q. Advantages of diffuse light for horticultural production and perspectives for further research. FRONTIERS IN PLANT SCIENCE 2015; 6:704. [PMID: 26388890 PMCID: PMC4559655 DOI: 10.3389/fpls.2015.00704] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/24/2015] [Indexed: 05/05/2023]
Abstract
Plants use diffuse light more efficiently than direct light, which is well established due to diffuse light penetrates deeper into the canopy and photosynthetic rate of a single leaf shows a non-linear response to the light flux density. Diffuse light also results in a more even horizontal and temporal light distribution in the canopy, which plays substantial role for crop photosynthesis enhancement as well as production improvement. Here we show some of the recent findings about the effect of diffuse light on light distribution over the canopy and its direct and indirect effects on crop photosynthesis and plant growth, and suggest some perspectives for further research which could strengthen the scientific understanding of diffuse light modulate plant processes and its application in horticultural production.
Collapse
Affiliation(s)
- Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture SciencesBeijing, China
- Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of AgricultureBeijing, China
| | - Qichang Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture SciencesBeijing, China
- Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of AgricultureBeijing, China
| |
Collapse
|
81
|
Rincon DF, Hoy CW, Cañas LA. Generating Within-Plant Spatial Distributions of an Insect Herbivore Based on Aggregation Patterns and Per-Node Infestation Probabilities. ENVIRONMENTAL ENTOMOLOGY 2015; 44:194-209. [PMID: 26313173 DOI: 10.1093/ee/nvu022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
Most predator-prey models extrapolate functional responses from small-scale experiments assuming spatially uniform within-plant predator-prey interactions. However, some predators focus their search in certain plant regions, and herbivores tend to select leaves to balance their nutrient uptake and exposure to plant defenses. Individual-based models that account for heterogeneous within-plant predator-prey interactions can be used to scale-up functional responses, but they would require the generation of explicit prey spatial distributions within-plant architecture models. The silverleaf whitefly, Bemisia tabaci biotype B (Gennadius) (Hemiptera: Aleyrodidae), is a significant pest of tomato crops worldwide that exhibits highly aggregated populations at several spatial scales, including within the plant. As part of an analytical framework to understand predator-silverleaf whitefly interactions, the objective of this research was to develop an algorithm to generate explicit spatial counts of silverleaf whitefly nymphs within tomato plants. The algorithm requires the plant size and the number of silverleaf whitefly individuals to distribute as inputs, and includes models that describe infestation probabilities per leaf nodal position and the aggregation pattern of the silverleaf whitefly within tomato plants and leaves. The output is a simulated number of silverleaf whitefly individuals for each leaf and leaflet on one or more plants. Parameter estimation was performed using nymph counts per leaflet censused from 30 artificially infested tomato plants. Validation revealed a substantial agreement between algorithm outputs and independent data that included the distribution of counts of both eggs and nymphs. This algorithm can be used in simulation models that explore the effect of local heterogeneity on whitefly-predator dynamics.
Collapse
Affiliation(s)
- Diego F Rincon
- Department of Entomology. The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), 1680 Madison Ave., Wooster, OH 44691. Permanent address: Grupo de Manejo Fitosanitario, Corporación Colombiana de Investigación Agropecuaria (Corpoica). Centro de Investigación Tibaitatá, Km 14 vía Mosquera, Cundinamarca, Colombia
| | - Casey W Hoy
- Department of Entomology. The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), 1680 Madison Ave., Wooster, OH 44691. Agroecosystems Management Program, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), 1680 Madison Ave., Wooster, OH 44691.
| | - Luis A Cañas
- Department of Entomology. The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), 1680 Madison Ave., Wooster, OH 44691
| |
Collapse
|
82
|
Chen TW, Nguyen TMN, Kahlen K, Stützel H. Quantification of the effects of architectural traits on dry mass production and light interception of tomato canopy under different temperature regimes using a dynamic functional-structural plant model. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6399-410. [PMID: 25183746 PMCID: PMC4246178 DOI: 10.1093/jxb/eru356] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
There is increasing interest in evaluating the environmental effects on crop architectural traits and yield improvement. However, crop models describing the dynamic changes in canopy structure with environmental conditions and the complex interactions between canopy structure, light interception, and dry mass production are only gradually emerging. Using tomato (Solanum lycopersicum L.) as a model crop, a dynamic functional-structural plant model (FSPM) was constructed, parameterized, and evaluated to analyse the effects of temperature on architectural traits, which strongly influence canopy light interception and shoot dry mass. The FSPM predicted the organ growth, organ size, and shoot dry mass over time with high accuracy (>85%). Analyses of this FSPM showed that, in comparison with the reference canopy, shoot dry mass may be affected by leaf angle by as much as 20%, leaf curvature by up to 7%, the leaf length:width ratio by up to 5%, internode length by up to 9%, and curvature ratios and leaf arrangement by up to 6%. Tomato canopies at low temperature had higher canopy density and were more clumped due to higher leaf area and shorter internodes. Interestingly, dry mass production and light interception of the clumped canopy were more sensitive to changes in architectural traits. The complex interactions between architectural traits, canopy light interception, dry mass production, and environmental conditions can be studied by the dynamic FSPM, which may serve as a tool for designing a canopy structure which is 'ideal' in a given environment.
Collapse
Affiliation(s)
- Tsu-Wei Chen
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser Strałe 2, D-30419 Hannover, Germany
| | - Thi My Nguyet Nguyen
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser Strałe 2, D-30419 Hannover, Germany
| | - Katrin Kahlen
- Department of Vegetable Crops, Geisenheim University, Von-Lade-Straße 1, D-65366 Geisenheim, Germany
| | - Hartmut Stützel
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser Strałe 2, D-30419 Hannover, Germany
| |
Collapse
|
83
|
Zhi X, Han Y, Mao S, Wang G, Feng L, Yang B, Fan Z, Du W, Lu J, Li Y. Light spatial distribution in the canopy and crop development in cotton. PLoS One 2014; 9:e113409. [PMID: 25409026 PMCID: PMC4237451 DOI: 10.1371/journal.pone.0113409] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/06/2014] [Indexed: 11/25/2022] Open
Abstract
The partitioning of light is very difficult to assess, especially in discontinuous or irregular canopies. The aim of the present study was to analyze the spatial distribution of photosynthetically active radiation (PAR) in a heterogeneous cotton canopy based on a geo-statistical sampling method. Field experiments were conducted in 2011 and 2012 in Anyang, Henan, China. Field plots were arranged in a randomized block design with the main plot factor representing the plant density. There were 3 replications and 6 densities used in every replicate. The six plant density treatments were 15,000, 33,000, 51,000, 69,000, 87,000 and 105,000 plants ha(-1). The following results were observed: 1) transmission within the canopy decreased with increasing density and significantly decreased from the top to the bottom of the canopy, but the greatest decreases were observed in the middle layers of the canopy on the vertical axis and closing to the rows along the horizontal axis; 2) the transmitted PAR (TPAR) of 6 different cotton populations decreased slowly and then increased slightly as the leaves matured, the TPAR values were approximately 52.6-84.9% (2011) and 42.7-78.8% (2012) during the early cotton developmental stage, and were 33.9-60.0% (2011) and 34.5-61.8% (2012) during the flowering stage; 3) the Leaf area index (LAI) was highly significant exponentially correlated (R(2) = 0.90 in 2011, R(2) = 0.91 in 2012) with the intercepted PAR (IPAR) within the canopy; 4) and a highly significant linear correlation (R(2) = 0.92 in 2011, R(2) = 0.96 in 2012) was observed between the accumulated IPAR and the biomass. Our findings will aid researchers to improve radiation-use efficiency by optimizing the ideotype for cotton canopy architecture based on light spatial distribution characteristics.
Collapse
Affiliation(s)
- Xiaoyu Zhi
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Yingchun Han
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Shuchun Mao
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Guoping Wang
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Lu Feng
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Beifang Yang
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Zhengyi Fan
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Wenli Du
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Jianhua Lu
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Yabing Li
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| |
Collapse
|
84
|
Li J, Sun Q, Yu N, Zhu J, Zou X, Qi Z, Ghani MA, Chen L. The role of small RNAs on phenotypes in reciprocal hybrids between Solanum lycopersicum and S. pimpinellifolium. BMC PLANT BIOLOGY 2014; 14:296. [PMID: 25367629 PMCID: PMC4232637 DOI: 10.1186/s12870-014-0296-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 10/20/2014] [Indexed: 05/30/2023]
Abstract
BACKGROUND Reciprocal hybrids showing different phenotypes have been well documented in previous studies, and many factors accounting for different phenotypes have been extensively investigated. However, less is known about whether the profiles of small RNAs differ between reciprocal hybrids and how these small RNAs affect gene expression and phenotypes. To better understand this mechanism, the role of small RNAs on phenotypes in reciprocal hybrids was analysed. RESULTS Reciprocal hybrids between Solanum lycopersicum cv. Micro-Tom and S. pimpinellifolium line WVa700 were generated. Significantly different phenotypes between the reciprocal hybrids were observed, including fruit shape index, single fruit weight and plant height. Then, through the high-throughput sequencing of small RNAs, we found that the expression levels of 76 known miRNAs were highly variable between the reciprocal hybrids. Subsequently, a total of 410 target genes were predicted to correspond with these differentially expressed miRNAs. Furthermore, gene ontology (GO) annotation indicated that those target genes are primarily involved in metabolic processes. Finally, differentially expressed miRNAs, such as miR156f and 171a, and their target genes were analysed by qRT-PCR, and their expression levels were well correlated with the different phenotypes. CONCLUSIONS This study showed that the profiles of small RNAs differed between the reciprocal hybrids, and differentially expressed genes were also observed based on the different phenotypes. The qRT-PCR results of target genes showed that differentially expressed miRNAs negatively regulated their target genes. Moreover, the expression of target genes was well correlated with the observations of different phenotypes. These findings may aid in elucidating small RNAs contribute significantly to different phenotypes through epigenetic modification during reciprocal crossing.
Collapse
Affiliation(s)
- Junxing Li
- />Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province P.R. China
- />Key Laboratory of Horticultural Plants Growth, Development and Biotechnology, Agricultural Ministry of China, Hangzhou, 310058 P.R. China
| | - Qian Sun
- />Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province P.R. China
- />Key Laboratory of Horticultural Plants Growth, Development and Biotechnology, Agricultural Ministry of China, Hangzhou, 310058 P.R. China
| | - Ningning Yu
- />Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province P.R. China
- />Key Laboratory of Horticultural Plants Growth, Development and Biotechnology, Agricultural Ministry of China, Hangzhou, 310058 P.R. China
| | - Jiajin Zhu
- />Fuli Institute for Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058 P.R. China
| | - Xiaoxia Zou
- />Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province P.R. China
- />Key Laboratory of Horticultural Plants Growth, Development and Biotechnology, Agricultural Ministry of China, Hangzhou, 310058 P.R. China
| | - Zhenyu Qi
- />Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province P.R. China
- />Key Laboratory of Horticultural Plants Growth, Development and Biotechnology, Agricultural Ministry of China, Hangzhou, 310058 P.R. China
| | - Muhammad Awais Ghani
- />Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province P.R. China
- />Key Laboratory of Horticultural Plants Growth, Development and Biotechnology, Agricultural Ministry of China, Hangzhou, 310058 P.R. China
| | - Liping Chen
- />Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province P.R. China
- />Key Laboratory of Horticultural Plants Growth, Development and Biotechnology, Agricultural Ministry of China, Hangzhou, 310058 P.R. China
| |
Collapse
|
85
|
Da Silva D, Han L, Faivre R, Costes E. Influence of the variation of geometrical and topological traits on light interception efficiency of apple trees: sensitivity analysis and metamodelling for ideotype definition. ANNALS OF BOTANY 2014; 114:739-52. [PMID: 24723446 PMCID: PMC4156120 DOI: 10.1093/aob/mcu034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/03/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS The impact of a fruit tree's architecture on its performance is still under debate, especially with regard to the definition of varietal ideotypes and the selection of architectural traits in breeding programmes. This study aimed at providing proof that a modelling approach can contribute to this debate, by using in silico exploration of different combinations of traits and their consequences on light interception, here considered as one of the key parameters to optimize fruit tree production. METHODS The variability of organ geometrical traits, previously described in a bi-parental population, was used to simulate 1- to 5-year-old apple trees (Malus × domestica). Branching sequences along trunks observed during the first year of growth of the same hybrid trees were used to initiate the simulations, and hidden semi-Markov chains previously parameterized were used in subsequent years. Tree total leaf area (TLA) and silhouette to total area ratio (STAR) values were estimated, and a sensitivity analysis was performed, based on a metamodelling approach and a generalized additive model (GAM), to analyse the relative impact of organ geometry and lateral shoot types on STAR. KEY RESULTS A larger increase over years in TLA mean and variance was generated by varying branching along trunks than by varying organ geometry, whereas the inverse was observed for STAR, where mean values stabilized from year 3 to year 5. The internode length and leaf area had the highest impact on STAR, whereas long sylleptic shoots had a more significant effect than proleptic shoots. Although the GAM did not account for interactions, the additive effects of the geometrical factors explained >90% of STAR variation, but much less in the case of branching factors. CONCLUSIONS This study demonstrates that the proposed modelling approach could contribute to screening architectural traits and their relative impact on tree performance, here viewed through light interception. Even though trait combinations and antagonism will need further investigation, the approach opens up new perspectives for breeding and genetic selection to be assisted by varietal ideotype definition.
Collapse
Affiliation(s)
- David Da Silva
- INRA, UMR 1334 Plant Genetic Improvement and Adaption (AGAP), Montpellier, France
| | - Liqi Han
- School of Computer Engineering, Weifang University, Weifang, China
| | - Robert Faivre
- INRA, UR 875 Applied Mathematics and Informatics (MIA), Castanet-Tolosan, France
| | - Evelyne Costes
- INRA, UMR 1334 Plant Genetic Improvement and Adaption (AGAP), Montpellier, France
| |
Collapse
|
86
|
Li T, Heuvelink E, Dueck TA, Janse J, Gort G, Marcelis LFM. Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors. ANNALS OF BOTANY 2014; 114:145-56. [PMID: 24782436 PMCID: PMC4071095 DOI: 10.1093/aob/mcu071] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 03/12/2014] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Plants use diffuse light more efficiently than direct light. However, experimental comparisons between diffuse and direct light have been obscured by co-occurring differences in environmental conditions (e.g. light intensity). This study aims to analyse the factors that contribute to an increase in crop photosynthesis in diffuse light and to quantify their relative contribution under different levels of diffuseness at similar light intensities. The hypothesis is that the enhancement of crop photosynthesis in diffuse light results not only from the direct effects of more uniform vertical and horizontal light distribution in the crop canopy, but also from crop physiological and morphological acclimation. METHODS Tomato (Solanum lycopersicum) crops were grown in three greenhouse compartments that were covered by glass with different degrees of light diffuseness (0, 45 and 71 % of the direct light being converted into diffuse light) while maintaining similar light transmission. Measurements of horizontal and vertical photosynthetic photon flux density (PPFD) distribution in the crop, leaf photosynthesis light response curves and leaf area index (LAI) were used to quantify each factor's contribution to an increase in crop photosynthesis in diffuse light. In addition, leaf temperature, photoinhibition, and leaf biochemical and anatomical properties were studied. KEY RESULTS The highest degree of light diffuseness (71 %) increased the calculated crop photosynthesis by 7·2 %. This effect was mainly attributed to a more uniform horizontal (33 % of the total effect) and vertical PPFD distribution (21 %) in the crop. In addition, plants acclimated to the high level of diffuseness by gaining a higher photosynthetic capacity of leaves in the middle of the crop and a higher LAI, which contributed 23 and 13 %, respectively, to the total increase in crop photosynthesis in diffuse light. Moreover, diffuse light resulted in lower leaf temperatures and less photoinhibition at the top of the canopy when global irradiance was high. CONCLUSIONS Diffuse light enhanced crop photosynthesis. A more uniform horizontal PPFD distribution played the most important role in this enhancement, and a more uniform vertical PPFD distribution and higher leaf photosynthetic capacity contributed more to the enhancement of crop photosynthesis than did higher values of LAI.
Collapse
Affiliation(s)
- T Li
- Horticultural Supply Chains, Wageningen University, PO Box 630, 6700AP Wageningen, The Netherlands Wageningen UR Greenhouse Horticulture, PO Box 644, 6700AP Wageningen, The Netherlands
| | - E Heuvelink
- Horticultural Supply Chains, Wageningen University, PO Box 630, 6700AP Wageningen, The Netherlands
| | - T A Dueck
- Wageningen UR Greenhouse Horticulture, PO Box 644, 6700AP Wageningen, The Netherlands
| | - J Janse
- Wageningen UR Greenhouse Horticulture, PO Box 644, 6700AP Wageningen, The Netherlands
| | - G Gort
- Biometris, Wageningen University and Research Centre, 6700AC Wageningen, The Netherlands
| | - L F M Marcelis
- Horticultural Supply Chains, Wageningen University, PO Box 630, 6700AP Wageningen, The Netherlands Wageningen UR Greenhouse Horticulture, PO Box 644, 6700AP Wageningen, The Netherlands
| |
Collapse
|
87
|
de Visser PHB, Buck-Sorlin GH, van der Heijden GWAM. Optimizing illumination in the greenhouse using a 3D model of tomato and a ray tracer. FRONTIERS IN PLANT SCIENCE 2014; 5:48. [PMID: 24600461 PMCID: PMC3927125 DOI: 10.3389/fpls.2014.00048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 01/31/2014] [Indexed: 05/10/2023]
Abstract
Reduction of energy use for assimilation lighting is one of the most urgent goals of current greenhouse horticulture in the Netherlands. In recent years numerous lighting systems have been tested in greenhouses, yet their efficiency has been very difficult to measure in practice. This simulation study evaluated a number of lighting strategies using a 3D light model for natural and artificial light in combination with a 3D model of tomato. The modeling platform GroIMP was used for the simulation study. The crop was represented by 3D virtual plants of tomato with fixed architecture. Detailed data on greenhouse architecture and lamp emission patterns of different light sources were incorporated in the model. A number of illumination strategies were modeled with the calibrated model. Results were compared to the standard configuration. Moreover, adaptation of leaf angles was incorporated for testing their effect on light use efficiency (LUE). A Farquhar photosynthesis model was used to translate the absorbed light for each leaf into a produced amount of carbohydrates. The carbohydrates produced by the crop per unit emitted light from sun or high pressure sodium lamps was the highest for horizontal leaf angles or slightly downward pointing leaves, and was less for more upward leaf orientations. The simulated leaf angles did not affect light absorption from inter-lighting LED modules, but the scenario with LEDs shining slightly upward (20(°)) increased light absorption and LUE relative to default horizontal beaming LEDs. Furthermore, the model showed that leaf orientation more perpendicular to the string of LEDs increased LED light interception. The combination of a ray tracer and a 3D crop model could compute optimal lighting of leaves by quantification of light fluxes and illustration by rendered lighting patterns. Results indicate that illumination efficiency increases when the lamp light is directed at most to leaves that have a high photosynthetic potential.
Collapse
Affiliation(s)
- Pieter H. B. de Visser
- Department of Greenhouse Horticulture, Wageningen University and Research CentreWageningen, Netherlands
| | | | | |
Collapse
|
88
|
|
89
|
Mäenpää M, Ossipov V, Kontunen-Soppela S, Keinänen M, Rousi M, Oksanen E. Biochemical and growth acclimation of birch to night temperatures: genotypic similarities and differences. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15 Suppl 1:36-43. [PMID: 22612878 DOI: 10.1111/j.1438-8677.2012.00609.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The responses of plants to environmental factors are connected to the time of day. In this study, silver birch (Betula pendula) was grown in growth chambers at five different night temperatures (6-22 °C), using gradual changes during the evening and morning hours. Despite the increased night respiration and unaffected daytime net photosynthesis (per square metre), the carbon uptake (biomass) of birch did not decrease, probably due to enhanced biochemical processes on warmer nights and the advantage of higher temperatures during the evening and morning hours. The plant stem height, internode length, stem dry weight (DW), stem mass fraction and specific leaf area increased with warmer night temperatures. Changes in growth and metabolite concentrations were partly nonlinear along the temperature gradient. Thus, the temperature effect depends on the temperature window considered. Genotypes had both common and genotype-specific biochemical responses to night temperatures. The common responses among genotypes were related to growth responses, whereas the unique responses may indicate genotype-specific differences in acclimation. The differences in genotypic growth and metabolite levels are valuable for assessing genotype qualities and understanding the connections between the metabolome and growth.
Collapse
Affiliation(s)
- M Mäenpää
- Department of Biology, University of Eastern Finland, Joensuu, Finland.
| | | | | | | | | | | |
Collapse
|
90
|
Barillot R, Combes D, Chevalier V, Fournier C, Escobar-Gutiérrez AJ. How does pea architecture influence light sharing in virtual wheat-pea mixtures? A simulation study based on pea genotypes with contrasting architectures. AOB PLANTS 2012; 2012:pls038. [PMID: 23240074 PMCID: PMC3521318 DOI: 10.1093/aobpla/pls038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/11/2012] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Light interception is a key factor driving the functioning of wheat-pea intercrops. The sharing of light is related to the canopy structure, which results from the architectural parameters of the mixed species. In the present study, we characterized six contrasting pea genotypes and identified architectural parameters whose range of variability leads to various levels of light sharing within virtual wheat-pea mixtures. METHODOLOGY Virtual plants were derived from magnetic digitizations performed during the growing cycle in a greenhouse experiment. Plant mock-ups were used as inputs of a radiative transfer model in order to estimate light interception in virtual wheat-pea mixtures. The turbid medium approach, extended to well-mixed canopies, was used as a framework for assessing the effects of leaf area index (LAI) and mean leaf inclination on light sharing. PRINCIPAL RESULTS THREE GROUPS OF PEA GENOTYPES WERE DISTINGUISHED: (i) early and leafy cultivars, (ii) late semi-leafless cultivars and (iii) low-development semi-leafless cultivars. Within open canopies, light sharing was well described by the turbid medium approach and was therefore determined by the architectural parameters that composed LAI and foliage inclination. When canopy closure started, the turbid medium approach was unable to properly infer light partitioning because of the vertical structure of the canopy. This was related to the architectural parameters that determine the height of pea genotypes. Light capture was therefore affected by the development of leaflets, number of branches and phytomers, as well as internode length. CONCLUSIONS This study provides information on pea architecture and identifies parameters whose variability can be used to drive light sharing within wheat-pea mixtures. These results could be used to build up the architecture of pea ideotypes adapted to multi-specific stands towards light competition.
Collapse
Affiliation(s)
- Romain Barillot
- LUNAM Université,
Groupe Ecole Supérieure d'Agriculture,
UPSP Laboratoire d'Ecophysiologie Végétale &
Agroécologie, 55 rue Rabelais, BP 30748, F-49007 Angers
cedex 01, France
| | - Didier Combes
- INRA, UR4 P3F, Equipe Ecophysiologie des plantes
fourragères, Le Chêne - RD 150, BP 6, F-86600 Lusignan,
France
| | - Valérie Chevalier
- LUNAM Université,
Groupe Ecole Supérieure d'Agriculture,
UPSP Laboratoire d'Ecophysiologie Végétale &
Agroécologie, 55 rue Rabelais, BP 30748, F-49007 Angers
cedex 01, France
| | - Christian Fournier
- INRA, UMR 759 LEPSE, F-34060 Montpellier,
France
- SupAgro, UMR 759 LEPSE, F-34060
Montpellier, France
| | | |
Collapse
|
91
|
Increasing Food Production in Africa by Boosting the Productivity of Understudied Crops. AGRONOMY-BASEL 2012. [DOI: 10.3390/agronomy2040240] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
92
|
Zhu XG, Song Q, Ort DR. Elements of a dynamic systems model of canopy photosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:237-44. [PMID: 22325454 DOI: 10.1016/j.pbi.2012.01.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/07/2012] [Accepted: 01/09/2012] [Indexed: 05/19/2023]
Abstract
Improving photosynthesis throughout the full canopy rather than photosynthesis of only the top leaves of the canopy is central to improving crop yields. Many canopy photosynthesis models have been developed from physiological and ecological perspectives, however most do not consider heterogeneities of microclimatic factors inside a canopy, canopy dynamics and associated energetics, or competition among different plants, and most models lack a direct linkage to molecular processes. Here we described the rationale, elements, and approaches necessary to build a dynamic systems model of canopy photosynthesis. A systems model should integrate metabolic processes including photosynthesis, respiration, nitrogen metabolism, resource re-mobilization and photosynthate partitioning with canopy level light, CO(2), water vapor distributions and heat exchange processes. In so doing a systems-based canopy photosynthesis model will enable studies of molecular ecology and dramatically improve our insight into engineering crops for improved canopy photosynthetic CO(2) uptake, resource use efficiencies and yields.
Collapse
Affiliation(s)
- Xin-Guang Zhu
- State Key Laboratory of Hybrid Rice Research, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, China.
| | | | | |
Collapse
|
93
|
DeJong TM, Da Silva D, Vos J, Escobar-Gutiérrez AJ. Using functional–structural plant models to study, understand and integrate plant development and ecophysiology. ANNALS OF BOTANY 2011; 108:987-9. [PMID: 22084818 PMCID: PMC3189848 DOI: 10.1093/aob/mcr257] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Functional–structural plant models (FSPMs) explore and integrate relationships between a plant’s structure and processes that underlie its growth and development. In recent years, the range of topics being addressed by scientists interested in functional–structural plant modelling has expanded greatly. FSPM techniques are now being used to dynamically simulate growth and development occurring at the microscopic scale involving cell division in plant meristems to the macroscopic scales of whole plants and plant communities. The plant types studied also cover a broad spectrum from algae to trees. FSPM is highly interdisciplinary and involves scientists with backgrounds in plant physiology, plant anatomy, plant morphology, mathematics, computer science, cellular biology, ecology and agronomy. This special issue of Annals of Botany features selected papers that provide examples of comprehensive functional–structural models, models of key processes such as partitioning of resources, software for modelling plants and plant environments, data acquisition and processing techniques and applications of functional–structural plant models for agronomic purposes.
Collapse
Affiliation(s)
- Theodore M DeJong
- Plant Sciences Department, University of California, Davis, CA, USA.
| | | | | | | |
Collapse
|