51
|
Wu Z, Jiang Q, Yan T, Xu S, Shi H, Peng L, Du R, Zhao X, Hu C, Wang X, Wang F. Antimony symplastic and apoplastic absorption, compartmentation, and xylem translocation in Brassica parachinensis L. under antimonate and antimonite. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110621. [PMID: 32304924 DOI: 10.1016/j.ecoenv.2020.110621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/10/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Antimony (Sb) excess accumulation in edible parts of crops causes potential risks to human health. However, knowledge about the mechanisms of its accumulation within vegetable plants is still not well known. Here, we investigated the physiological processes of Sb involved in symplastic and apoplastic absorption, compartmentation by roots, and translocation in xylem in Brassica parachinensis L. exposed to antimonate (SbV) and antimonite (SbIII) forms. The results showed that plants treated with SbIII emerged to be more toxic than SbV as proved by the lower biomass and the higher concentrations of malonaldehyde (MDA) and hydrogen peroxide (H2O2) in plant tissues, especially at high dosages. The Sb concentration showed more in shoots but less in roots treated with SbV than with SbIII. The total Sb accumulation was higher under the SbV treatment than the SbIII treatment, mainly due to the higher accumulation in shoots. Additionally, the Sb concentration in symplastic flow of roots was higher exposed to SbV than SbIII, while no differences were found for the Sb concentration in apoplastic flow between them. Moreover, the Sb concentration in cell walls of roots was higher exposed to SbIII than SbV, especially at high levels. Furthermore, the Sb concentration in xylem was higher exposed to SbV than SbIII, and a greatly positive correlation was observed between the Sb concentrations in xylem and shoots. Overall, these findings revealed that vegetable plants accumulated more SbV than SbIII in edible parts mainly due to xylem translocation rather than root absorption.
Collapse
Affiliation(s)
- Zhichao Wu
- Public Monitoring Center for Agro-Product of Guangdong Academy of Agricultural Sciences, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, China; Microelement Research Center for Huazhong Agricultural University, China
| | - Qi Jiang
- Public Monitoring Center for Agro-Product of Guangdong Academy of Agricultural Sciences, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China; Microelement Research Center for Huazhong Agricultural University, China
| | - Tao Yan
- Public Monitoring Center for Agro-Product of Guangdong Academy of Agricultural Sciences, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China; Microelement Research Center for Huazhong Agricultural University, China
| | - Shoujun Xu
- Public Monitoring Center for Agro-Product of Guangdong Academy of Agricultural Sciences, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, China; Microelement Research Center for Huazhong Agricultural University, China
| | - Hanzhi Shi
- Public Monitoring Center for Agro-Product of Guangdong Academy of Agricultural Sciences, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China; Microelement Research Center for Huazhong Agricultural University, China
| | - Lijun Peng
- Public Monitoring Center for Agro-Product of Guangdong Academy of Agricultural Sciences, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China
| | - Ruiying Du
- Public Monitoring Center for Agro-Product of Guangdong Academy of Agricultural Sciences, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China
| | - Xiaohu Zhao
- Hubei Provincial Engineering Laboratory for New-Type Fertilizer, China; Microelement Research Center for Huazhong Agricultural University, China
| | - Chengxiao Hu
- Hubei Provincial Engineering Laboratory for New-Type Fertilizer, China; Microelement Research Center for Huazhong Agricultural University, China
| | - Xu Wang
- Public Monitoring Center for Agro-Product of Guangdong Academy of Agricultural Sciences, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China; Microelement Research Center for Huazhong Agricultural University, China.
| | - Fuhua Wang
- Public Monitoring Center for Agro-Product of Guangdong Academy of Agricultural Sciences, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, China; Microelement Research Center for Huazhong Agricultural University, China.
| |
Collapse
|
52
|
Bari MA, Prity SA, Das U, Akther MS, Sajib SA, Reza MA, Kabir AH. Silicon induces phytochelatin and ROS scavengers facilitating cadmium detoxification in rice. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:472-479. [PMID: 31990448 DOI: 10.1111/plb.13090] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 01/14/2020] [Indexed: 05/28/2023]
Abstract
Cadmium (Cd) is detrimental to crops and the environment. This work examines the natural mechanisms underlying silicon- (Si-)directed Cd detoxification in rice plants. The addition of Si to plants under Cd stress caused significant improvements in morphological parameters, chlorophyll score, Fv /Fm and total soluble protein concentration compared to controls, confirming that Si is able to ameliorate Cd-induced damage in rice plants. This morpho-physiological evidence was correlated with decreased cell death and electrolyte leakage after Si application. The results showed no critical changes in root Cd concentration, while shoot Cd decreased significantly after Si supplementation in comparison with Cd-stressed rice. Additionally, expression of Cd transporters (OsNRAMP5 and OsHMA2) was significantly down-regulated while the concentration of phytochelatin, cysteine and glutathione, together with expression of OsPCS1 (phytochelatin synthase) in roots of Cd-stressed rice was significantly induced when subjected to Si treatment. This confirms that the alleviation of Cd stress is not only limited to the down-regulation of Cd transporters but also closely related to the phytochelatin-driven vacuolar storage of Cd in rice roots. The enzymatic analysis further revealed the role of SOD and GR enzymes in protecting rice plants from Cd-induced oxidative harm. These findings suggest a mechanistic basis in rice plants for Si-mediated mitigation of Cd stress.
Collapse
Affiliation(s)
- M A Bari
- Institute of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, Bangladesh
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - S A Prity
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, Bangladesh
| | - U Das
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, Bangladesh
| | - M S Akther
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, Bangladesh
| | - S A Sajib
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - M A Reza
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - A H Kabir
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
53
|
Khan MA, Asaf S, Khan AL, Jan R, Kang SM, Kim KM, Lee IJ. Extending thermotolerance to tomato seedlings by inoculation with SA1 isolate of Bacillus cereus and comparison with exogenous humic acid application. PLoS One 2020; 15:e0232228. [PMID: 32353077 PMCID: PMC7192560 DOI: 10.1371/journal.pone.0232228] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Heat stress is one of the major abiotic stresses that impair plant growth and crop productivity. Plant growth-promoting endophytic bacteria (PGPEB) and humic acid (HA) are used as bio-stimulants and ecofriendly approaches to improve agriculture crop production and counteract the negative effects of heat stress. Current study aimed to analyze the effect of thermotolerant SA1 an isolate of Bacillus cereus and HA on tomato seedlings. The results showed that combine application of SA1+HA significantly improved the biomass and chlorophyll fluorescence of tomato plants under normal and heat stress conditions. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA) content; however, combined application of SA1+HA markedly reduced ABA and increased SA. Antioxidant enzymes activities revealed that SA1 and HA treated plants exhibited increased levels of ascorbate peroxidase (APX), superoxide dismutase (SOD), and reduced glutathione (GSH). In addition, heat stress markedly reduced the amino acid contents; however, the amino acids were increased with co-application of SA1+HA. Similarly, inductively-coupled plasma mass-spectrometry results showed that plants treated with SA1+HA exhibited significantly higher iron (Fe+), phosphorus (P), and potassium (K+) uptake during heat stress. Heat stress increased the relative expression of SlWRKY33b and autophagy-related (SlATG5) genes, whereas co-application of SA1+HA augmented the heat stress response and reduced SlWRKY33b and SlATG5 expression. The heat stress-responsive transcription factor (SlHsfA1a) and high-affinity potassium transporter (SlHKT1) were upregulated in SA1+HA-treated plants. In conclusion, current findings suggest that co-application with SA1+HA can be used for the mitigation of heat stress damage in tomato plants and can be commercialized as a biofertilizer.
Collapse
Affiliation(s)
- Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sajjad Asaf
- Natural and Medical Plants Research Center, University of Nizwa, Nizwa, Oman
| | - Abdul Latif Khan
- Natural and Medical Plants Research Center, University of Nizwa, Nizwa, Oman
| | - Rahmatullah Jan
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Min Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
54
|
Quigley KM, Griffith DM, Donati GL, Anderson TM. Soil nutrients and precipitation are major drivers of global patterns of grass leaf silicification. Ecology 2020; 101:e03006. [PMID: 32020594 PMCID: PMC7317429 DOI: 10.1002/ecy.3006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 11/26/2019] [Accepted: 12/20/2019] [Indexed: 11/23/2022]
Abstract
Grasses accumulate high concentrations of silicon (Si) in their tissues, with potential benefits including herbivore defense, improved water balance, and reduced leaf construction costs. Although Si is one of the most widely varying leaf constituents among individuals, species, and ecosystems, the environmental forces driving this variation remain elusive and understudied. To understand relationships between environmental factors and grass Si accumulation better, we analyzed foliar chemistry of grasses from 17 globally distributed sites where nutrient inputs and grazing were manipulated. These sites span natural gradients in temperature, precipitation, and underlying soil properties, which allowed us to assess the relative importance of soil moisture and nutrients across variation in climate. Foliar Si concentration did not respond to large mammalian grazer exclusion, but significant variation in herbivore abundance among sites may have precluded the observation of defoliation effects at these sites. However, nutrient addition consistently reduced leaf Si, especially at sites with low soil nitrogen prior to nutrient addition. Additionally, a leaf‐level trade‐off between Si and carbon (C) existed that was stronger at arid sites than mesic sites. Our results suggest soil nutrient limitation favors investment in Si over C‐based leaf construction, and that fixing C is especially costly relative to assimilating Si when water is limiting. Our results demonstrate the importance of soil nutrients and precipitation as key drivers of global grass silicification patterns.
Collapse
Affiliation(s)
- Kathleen M Quigley
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, 27109, USA
| | - Daniel M Griffith
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, 27109, USA
| | - George L Donati
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, 27109, USA
| | - T Michael Anderson
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, 27109, USA
| |
Collapse
|
55
|
De-Jesús-García R, Rosas U, Dubrovsky JG. The barrier function of plant roots: biological bases for selective uptake and avoidance of soil compounds. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:383-397. [PMID: 32213271 DOI: 10.1071/fp19144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
The root is the main organ through which water and mineral nutrients enter the plant organism. In addition, root fulfils several other functions. Here, we propose that the root also performs the barrier function, which is essential not only for plant survival but for plant acclimation and adaptation to a constantly changing and heterogeneous soil environment. This function is related to selective uptake and avoidance of some soil compounds at the whole plant level. We review the toolkit of morpho-anatomical, structural, and other components that support this view. The components of the root structure involved in selectivity, permeability or barrier at a cellular, tissue, and organ level and their properties are discussed. In consideration of the arguments supporting barrier function of plant roots, evolutionary aspects of this function are also reviewed. Additionally, natural variation in selective root permeability is discussed which suggests that the barrier function is constantly evolving and is subject of natural selection.
Collapse
Affiliation(s)
- Ramces De-Jesús-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenuenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Ulises Rosas
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, 04510, CDMX, Mexico
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenuenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico; and Corresponding author.
| |
Collapse
|
56
|
Lux A, Lukačová Z, Vaculík M, Švubová R, Kohanová J, Soukup M, Martinka M, Bokor B. Silicification of Root Tissues. PLANTS (BASEL, SWITZERLAND) 2020; 9:E111. [PMID: 31952260 PMCID: PMC7020167 DOI: 10.3390/plants9010111] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/05/2023]
Abstract
Silicon (Si) is not considered an essential element, however, its tissue concentration can exceed that of many essential elements in several evolutionary distant plant species. Roots take up Si using Si transporters and then translocate it to aboveground organs. In some plant species, root tissues are also places where a high accumulation of Si can be found. Three basic modes of Si deposition in roots have been identified so far: (1) impregnation of endodermal cell walls (e.g., in cereals, such as Triticum (wheat)); (2) formation of Si-aggregates associated with endodermal cell walls (in the Andropogoneae family, which includes Sorghum and Saccharum (sugarcane)); (3) formation of Si aggregates in "stegmata" cells, which form a sheath around sclerenchyma fibers e.g., in some palm species (Phoenix (date palm)). In addition to these three major and most studied modes of Si deposition in roots, there are also less-known locations, such as deposits in xylem cells and intercellular deposits. In our research, the ontogenesis of individual root cells that accumulate Si is discussed. The documented and expected roles of Si deposition in the root is outlined mostly as a reaction of plants to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (A.L.); (Z.L.); (M.V.); (R.Š.); (J.K.); (M.S.); (M.M.)
- Institute of Chemistry, Slovak Academy of Sciences, 845 36 Bratislava, Slovakia
| | - Zuzana Lukačová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (A.L.); (Z.L.); (M.V.); (R.Š.); (J.K.); (M.S.); (M.M.)
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (A.L.); (Z.L.); (M.V.); (R.Š.); (J.K.); (M.S.); (M.M.)
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 845 23 Bratislava, Slovakia
| | - Renáta Švubová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (A.L.); (Z.L.); (M.V.); (R.Š.); (J.K.); (M.S.); (M.M.)
| | - Jana Kohanová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (A.L.); (Z.L.); (M.V.); (R.Š.); (J.K.); (M.S.); (M.M.)
| | - Milan Soukup
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (A.L.); (Z.L.); (M.V.); (R.Š.); (J.K.); (M.S.); (M.M.)
- Institute of Chemistry, Slovak Academy of Sciences, 845 36 Bratislava, Slovakia
| | - Michal Martinka
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (A.L.); (Z.L.); (M.V.); (R.Š.); (J.K.); (M.S.); (M.M.)
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (A.L.); (Z.L.); (M.V.); (R.Š.); (J.K.); (M.S.); (M.M.)
- Comenius University Science Park, 841 04 Bratislava, Slovakia
| |
Collapse
|
57
|
Interaction of Carbohydrate Coated Cerium-Oxide Nanoparticles with Wheat and Pea: Stress Induction Potential and Effect on Development. PLANTS 2019; 8:plants8110478. [PMID: 31698836 PMCID: PMC6918407 DOI: 10.3390/plants8110478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 11/16/2022]
Abstract
: Reports about the influence of cerium-oxide nanoparticles (nCeO2) on plants are contradictory due to their positive and negative effects on plants. Surface modification may affect the interaction of nCeO2 with the environment, and hence its availability to plants. In this study, the uncoated and glucose-, levan-, and pullulan-coated nCeO2 were synthesized and characterized. The aim was to determine whether nontoxic carbohydrates alter the effect of nCeO2 on the seed germination, plant growth, and metabolism of wheat and pea. We applied 200 mgL-1 of nCeO2 on plants during germination (Ger treatment) or three week-growth (Gro treatment) in hydroponics. The plant response to nCeO2 was studied by measuring changes in Ce concentration, total antioxidative activity (TAA), total phenolic content (TPC), and phenolic profile. Our results generally revealed higher Ce concentration in plants after the treatment with coated nanoparticles compared to uncoated ones. Considering all obtained results, Ger treatment had a stronger impact on the later stages of plant development than Gro treatment. The Ger treatment had a stronger impact on TPC and plant elongation, whereas Gro treatment affected more TAA and phenolic profile. Among nanoparticles, levan-coated nCeO2 had the strongest and positive impact on tested plants. Wheat showed higher sensitivity to all treatments.
Collapse
|
58
|
Mehrabanjoubani P, Abdolzadeh A, Sadeghipour HR, Aghdasi M, Bagherieh-Najjar MB, Barzegargolchini B. Silicon increases cell wall thickening and lignification in rice (Oryza sativa) root tip under excess Fe nutrition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:264-273. [PMID: 31593899 DOI: 10.1016/j.plaphy.2019.09.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/29/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
Iron (Fe) as a micronutrients and silicon (Si) as a cell wall element are important in plant cell wall extension and integrity. While the interaction of exogenous Si and excess Fe on root cell wall modifications is known, the effects of these nutritional parameters on the spatial changes in the activities of genes and/or enzymes involved in the lignification of root cell walls are not well studied. Thus, these parameters were investigated in the root apical part (AP) and basal part (BP) of rice (Oryza sativa L.) plants supplied with and without Si (1.5 mM) under normal (10 mg/L) and excess Fe (150 mg/L) nutrition for 7 days. Beside growth retardation, excess Fe increased the activities of phenylalanine ammonia lyase (PAL), superoxide dismutase and NADPH-oxidase and PAL and cell wall peroxidase (POD) genes expression, along with the increased phenols and H2O2 contents in the root AP. Furthermore, the increased thickening of endodermal, exodermal and metaxylem cell walls in the root AP by excess Fe was attributed to the enhanced POD activity. POD expression, endodermal and exodermal cell wall thickenings were not affected by excess Fe in the root BP. Si application under excess Fe exaggerated the effects of excess Fe on root cell wall thickening, increased POD activity but reduced H2O2 content in the root AP. Thus, Si application under excess Fe nutrition promotes earlier initiation of lignin polymerization closer to and toward the root tip and hence restricts the entry of excess Fe into the plant.
Collapse
Affiliation(s)
- Pooyan Mehrabanjoubani
- Department of Basic Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
| | - Ahmad Abdolzadeh
- Department of Biology, Faculty of Sciences, Golestan University, Gorgan, Iran
| | | | - Mahnaz Aghdasi
- Department of Biology, Faculty of Sciences, Golestan University, Gorgan, Iran
| | | | | |
Collapse
|
59
|
Šípošová K, Kollárová K, Lišková D, Vivodová Z. The effects of IBA on the composition of maize root cell walls. JOURNAL OF PLANT PHYSIOLOGY 2019; 239:10-17. [PMID: 31177026 DOI: 10.1016/j.jplph.2019.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 05/13/2023]
Abstract
Auxin is one of the crucial plant hormones which stimulates and controls cell and plant growth. The effects of auxin IBA (indole-3-butyric acid) during 10-days on maize plants growth in controlled conditions (hydroponic, 16-h photoperiod, 70% humidity, 25/20 °C temperature), depended on its concentration in the substrate. A high concentration (10-7 M) of IBA inhibited root growth, evoked the development of apoplasmic barriers (Casparian bands and suberin lamellae) closer to the root apex, and elevated the amount of lignin in roots. A low concentration (10-11 M) of IBA stimulated root growth but affected neither the development of apoplasmic barriers, nor the amount of lignin. Auxin in a 10-8 M concentration influenced the root growth to a minimal extent compare to the control, and it was the non-effective concentration. Plant cell walls as cell structures ensure cell enlargement and plant growth, and have to react to auxin stimulus by modification of their components. We found the most significant changes in the composition of the PF III fraction (lignocellulosic complex) of the cell wall. The presence of auxin in the substrate affected all three components of this fraction - Klason lignin and both the by acid (2 M TFA) non-hydrolysable and the hydrolysable parts of this complex. The ratio of the non-hydrolysable part to the Klason lignin increased from 1.3 to 3.3 with increasing auxin concentrations in the substrate. This may be related to the deposition of polysaccharides and lignin in the cell wall, which help maintain the specific tensile stress of, and turgor pressure on, the cell walls.
Collapse
Affiliation(s)
- Kristína Šípošová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dubravska cesta 9, 845 23 Bratislava, Slovakia
| | - Karin Kollárová
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Desana Lišková
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Zuzana Vivodová
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia.
| |
Collapse
|
60
|
Lukacova Z, Svubova R, Janikovicova S, Volajova Z, Lux A. Tobacco plants (Nicotiana benthamiana) were influenced by silicon and were not infected by dodder (Cuscuta europaea). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:179-190. [PMID: 30901576 DOI: 10.1016/j.plaphy.2019.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/19/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
The effect of silicon (Si) on tobacco (Nicotiana benthamiana) development and dodder (Cuscuta europaea) - tobacco interaction were studied. Three Si application approaches were tested: tobacco seed priming (2.5 mM Si and 5 mM Si; 2.5S, 5S), watering tobacco plants with Si solution (2.5 mM Si and 5 mM Si; 2.5W, 5W) and foliar application (1 mM Si and 2.5 mM Si; 1F, 2.5F). Dodder was not able to infect the host plant in almost all Si treatments. Only in the control and 2.5W treatments was dodder able to infect its host. A significant increase in all observed antioxidant enzymes activities (POX, CAT and SOD) occurred in the plants of 2.5W treatment after infection in comparison with the uninfected 2.5W treatment and control plants, which indicated the importance of antioxidant enzymes activities in the plant parasite - host interaction. Resistance of Si treated plants to dodder could have been due to the changes in the cell wall properties of the epidermis and cortex where activity of POX was confirmed histochemically. The growth and development of tobacco shoots were evaluated after four and eight weeks of cultivation in the individual Si treatments. The development of shoots was enhanced after eight weeks of cultivation in the 2.5S, 5S, 2.5W and 5W treatments in comparison with the control treatment. However, a negative effect of Si was observed in 1F and 2.5F treatments. In the majority of cases, the plants treated with Si had decreased chlorophyll content when compared to control, except for chl a in 5W plants after 8 weeks of cultivation. Contrary to this, carotenoids increased in all Si treated plants after eight weeks cultivation in comparison with the control. The secondary xylem formation in tobacco was enhanced after 4 and 8 weeks cultivation in shoots of plants receiving the 2.5S, 5S, 2.5W and 5W treartments. The cambium was the most active in producing secondary xylem in the 2.5S treatment. Protein profile and antioxidant enzymes activities (POX, CAT and SOD) were altered by Si treatment. After 8 weeks of cultivation, activities of POX were significantly decreased in 2.5S, 5S, 2.5W and 5W in comparison with control. Catalase was decreased in 2.5S, 5S and 5W in comparison with the control, however, 1F and 2.5F treatments had significantly increased CAT and SOD activities. The specific activity of POX was confirmed histochemically in Si treated plants in the cell walls of several stem tissues like the epidermis, cortex and pith. A small amount of H2O2 was detected in leaves in the control and Si treated plants. The amount of O2- decreased in all treatments with time. The highest Si concentration in the plants (almost 800 mg . kg-1 d. w.) was detected in the 2.5W, 5W treatments.
Collapse
Affiliation(s)
- Zuzana Lukacova
- Department of Plant Physiology, The Faculty of Natural Sciences, Comenius University, Mlynska dolina B2, Ilkovicova 6, 842 15, Bratislava 4, Slovakia.
| | - Renata Svubova
- Department of Plant Physiology, The Faculty of Natural Sciences, Comenius University, Mlynska dolina B2, Ilkovicova 6, 842 15, Bratislava 4, Slovakia
| | - Simona Janikovicova
- Department of Plant Physiology, The Faculty of Natural Sciences, Comenius University, Mlynska dolina B2, Ilkovicova 6, 842 15, Bratislava 4, Slovakia
| | - Zuzana Volajova
- Department of Plant Physiology, The Faculty of Natural Sciences, Comenius University, Mlynska dolina B2, Ilkovicova 6, 842 15, Bratislava 4, Slovakia
| | - Alexander Lux
- Department of Plant Physiology, The Faculty of Natural Sciences, Comenius University, Mlynska dolina B2, Ilkovicova 6, 842 15, Bratislava 4, Slovakia
| |
Collapse
|
61
|
Dong Q, Fang J, Huang F, Cai K. Silicon Amendment Reduces Soil Cd Availability and Cd Uptake of Two Pennisetum Species. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091624. [PMID: 31075897 PMCID: PMC6539824 DOI: 10.3390/ijerph16091624] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/27/2019] [Accepted: 05/06/2019] [Indexed: 11/26/2022]
Abstract
Silicon (Si) plays important roles in alleviating heavy metal stress, but the migrating effects and mechanisms, especially for Pennisetum, are not well studied. In this study, Pennisetum glaucum and Pennisetum glaucum × P. purpureum were used to explore the impacts of Si application on alleviating cadmium (Cd) toxicity and its possible mechanism. Treatments consist of four levels of Cd (0, 10, 50, and 100 mg·kg−1) with or without 2.0 mM Si amendments. Under Cd stress, Si application significantly increased plant biomass and Si content, reduced Cd content, and decreased the enrichment factor in shoots and roots. Si treatment also increased soil pH and soil residual Cd, while reducing available/oxidizable/reducible Cd content in soil at 50 and 100 mg·kg−1 Cd levels, thereby leading to a reduction of the soil’s available Cd. These findings indicate that Si application is effective in alleviating Cd phytotoxicity of Pennisetum, mainly through reducing plant Cd uptake and increasing soil pH and Cd immobilization, thereby reducing Cd bioavailability.
Collapse
Affiliation(s)
- Qiyu Dong
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Jianbo Fang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| | - Fei Huang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Kunzheng Cai
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
62
|
Chen D, Chen D, Xue R, Long J, Lin X, Lin Y, Jia L, Zeng R, Song Y. Effects of boron, silicon and their interactions on cadmium accumulation and toxicity in rice plants. JOURNAL OF HAZARDOUS MATERIALS 2019; 367:447-455. [PMID: 30611037 DOI: 10.1016/j.jhazmat.2018.12.111] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/12/2018] [Accepted: 12/28/2018] [Indexed: 05/11/2023]
Abstract
Cadmium (Cd) is a highly toxic heavy metal for both animals and plants. Rice consumption is a major source of Cd intake for human. Minimization of Cd accumulation in rice is key to reduce Cd hazard to human. Here we showed alleviating effects of boron (B), silicon (Si) and their mixture on Cd accumulation and toxicity in hydroponically-cultured rice plants. Cd treatment (100 μM) led to Cd accumulation in roots and shoots, as well as significant reduction in plant growth. However, amendment of either B or Si significantly alleviated Cd accumulation and toxicity. Moreover, simultaneous supply of B and Si showed better alleviating effect. However, addition of B and Si alleviated Cd-induced oxidative stress in Cd-treated plants as reflected by reduced MDA, H2O2 and O2-, as well as increased activities of major antioxidant enzymes. Cd exposure induced the expression of Cd transporter genes of OsHMA2, OsHMA3, OsNramp1 and OsNramp5. In contrast, simultaneous supplement of B and Si in Cd-treated plants compromised the gene expression. Our results show that both B and Si alleviate Cd accumulation and toxicity by improving oxidative stress and suppressing Cd uptake and transport, and the two elements display joint effect.
Collapse
Affiliation(s)
- Dongmei Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Daoqian Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Rongrong Xue
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Jun Long
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xianhui Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Yibin Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Lianghai Jia
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China.
| |
Collapse
|
63
|
Bhat JA, Shivaraj SM, Singh P, Navadagi DB, Tripathi DK, Dash PK, Solanke AU, Sonah H, Deshmukh R. Role of Silicon in Mitigation of Heavy Metal Stresses in Crop Plants. PLANTS (BASEL, SWITZERLAND) 2019; 8:E71. [PMID: 30901942 PMCID: PMC6473438 DOI: 10.3390/plants8030071] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 01/17/2023]
Abstract
Over the past few decades, heavy metal contamination in soil and water has increased due to anthropogenic activities. The higher exposure of crop plants to heavy metal stress reduces growth and yield, and affect the sustainability of agricultural production. In this regard, the use of silicon (Si) supplementation offers a promising prospect since numerous studies have reported the beneficial role of Si in mitigating stresses imposed by biotic as well as abiotic factors including heavy metal stress. The fundamental mechanisms involved in the Si-mediated heavy metal stress tolerance include reduction of metal ions in soil substrate, co-precipitation of toxic metals, metal-transport related gene regulation, chelation, stimulation of antioxidants, compartmentation of metal ions, and structural alterations in plants. Exogenous application of Si has been well documented to increase heavy metal tolerance in numerous plant species. The beneficial effects of Si are particularly evident in plants able to accumulate high levels of Si. Consequently, to enhance metal tolerance in plants, the inherent genetic potential for Si uptake should be improved. In the present review, we have discussed the potential role and mechanisms involved in the Si-mediated alleviation of metal toxicity as well as different approaches for enhancing Si-derived benefits in crop plants.
Collapse
Affiliation(s)
- Javaid Akhter Bhat
- Department of Genetics and Plant Breeding, Indian Agricultural Research Institute, New Delhi 110012, India.
| | - S M Shivaraj
- Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada.
| | - Pritam Singh
- National Agri-Food Biotechnology Institute, Mohali 140306, India.
| | - Devanna B Navadagi
- National Research Centre on Plant Biotechnology, New Delhi 110012, India.
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University, Uttar Pradesh, Noida 201313, India.
| | - Prasanta K Dash
- National Research Centre on Plant Biotechnology, New Delhi 110012, India.
| | | | - Humira Sonah
- National Agri-Food Biotechnology Institute, Mohali 140306, India.
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute, Mohali 140306, India.
| |
Collapse
|
64
|
Zargar SM, Mahajan R, Bhat JA, Nazir M, Deshmukh R. Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. 3 Biotech 2019; 9:73. [PMID: 30800584 PMCID: PMC6368905 DOI: 10.1007/s13205-019-1613-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/02/2019] [Indexed: 10/27/2022] Open
Abstract
Silicon (Si) being considered as a non-essential element for plant growth and development finds its role in providing several benefits to the plant, especially under stress conditions. Thus, Si can be regarded as "multi-talented" quasi-essential element. It is the most abundant element present in the earth's crust after oxygen predominantly as a silicon dioxide (SiO2), a form plants cannot utilize. Plants take up Si into their root from the soil in the plant-available forms (PAF) such as silicic acid or mono silicic acid [Si(OH)4 or H4SiO4]. Nevertheless, besides being abundantly available, the PAF of Si in the soil is mostly a limiting factor. To improve Si-uptake and derived benefits therein in plants, understanding the molecular basis of Si-uptake and transport within the tissues has great importance. Numerous Si-transporters (influx and efflux) have been identified in both monocot and dicot plants. A difference in the root anatomy of both monocot and dicot plants leads to a difference in the Si-uptake mechanism. In the present review, Si-transporters identified in different species, their evolution and the Si-uptake mechanism have been addressed. Further, the role of Si in biotic and abiotic stress tolerance has been discussed. The information provided here will help to plan the research in a better way to develop more sustainable cropping system by harnessing Si-derived benefits.
Collapse
Affiliation(s)
- Sajad Majeed Zargar
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, J&K 190025 India
| | - Reetika Mahajan
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu, J&K 180009 India
| | - Javaid A. Bhat
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu, J&K 180009 India
| | - Muslima Nazir
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, J&K 190025 India
| | - Rupesh Deshmukh
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab India
| |
Collapse
|
65
|
Wu Z, Xu S, Shi H, Zhao P, Liu X, Li F, Deng T, Du R, Wang X, Wang F. Comparison of foliar silicon and selenium on cadmium absorption, compartmentation, translocation and the antioxidant system in Chinese flowering cabbage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:157-164. [PMID: 30267988 DOI: 10.1016/j.ecoenv.2018.09.085] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 09/15/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
Silicon (Si) and selenium (Se) are beneficial for many higher plants when grown on stress conditions. However, the mechanisms underlying the differential effects between foliar Si and Se in alleviation of plant toxicity exposed to cadmium (Cd) stress are remained unclear. In this study, we investigated the discrepant mechanisms of foliar Si and Se on Cd absorption and compartmentation by roots, its translocation in xylem, and the antioxidant system within Chinese flowering cabbage (Brassica campestris L. ssp. chinensis var. utilis) under low and high Cd stress. Results showed that plant growth was significantly enhanced by foliar additions of Si or/and Se according to an increased plant tissue biomass at high Cd exposure. In addition, the foliar coupled addition of Si and Se showed little effects on the concentrations of Si or Se in plant tissues in comparison with the single addition of foliar Si or Se respectively. The foliar Si alone or combined with Se markedly reduced the Cd concentrations in plant shoots under two Cd treatments. This might be explained by the lower Cd concentrations in symplast and apoplast and the higher Cd concentrations in cell walls of plant roots, and the lower Cd concentrations in xylem sap. However, no great changes in these values were observed under the treatments of foliar Se alone. Moreover, the foliar additions of Si or/and Se all increased the antioxidant enzyme activities of SOD, CAT and APX in plant tissues, especially at high Cd dosage. No significant differences in the increasing degrees of these three antioxidant enzymes were found between the foliar Si and Se treatments. However, only the foliar Se alone or combined with Si markedly promoted the antioxidant enzyme activities of GR and DHAR in plant tissues. Our findings demonstrate that the alleviation of Cd toxicity by foliar Si maybe mainly responsible for inhibition of Cd absorption and its translocation to plant shoots, reinforcing its compartmentation into root cell walls, whilst enhancing the antioxidant enzyme system may be employed by foliar Se.
Collapse
Affiliation(s)
- Zhichao Wu
- Public Monitoring Center for Agro-Product, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture, Guangzhou 510640, China; Laboratory of Quality and Safety Risk Assessment for Agro-product (Guangzhou), Ministry, Guangzhou 510640, China; Hubei Provincial Engineering Laboratory for New Fertilizers/Research Center of Trace Elements College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shoujun Xu
- Public Monitoring Center for Agro-Product, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture, Guangzhou 510640, China; Laboratory of Quality and Safety Risk Assessment for Agro-product (Guangzhou), Ministry, Guangzhou 510640, China; Hubei Provincial Engineering Laboratory for New Fertilizers/Research Center of Trace Elements College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanzhi Shi
- Public Monitoring Center for Agro-Product, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture, Guangzhou 510640, China; Laboratory of Quality and Safety Risk Assessment for Agro-product (Guangzhou), Ministry, Guangzhou 510640, China
| | - Peihua Zhao
- Public Monitoring Center for Agro-Product, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture, Guangzhou 510640, China; Laboratory of Quality and Safety Risk Assessment for Agro-product (Guangzhou), Ministry, Guangzhou 510640, China
| | - Xiangxiang Liu
- Public Monitoring Center for Agro-Product, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture, Guangzhou 510640, China; Laboratory of Quality and Safety Risk Assessment for Agro-product (Guangzhou), Ministry, Guangzhou 510640, China
| | - Furong Li
- Public Monitoring Center for Agro-Product, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture, Guangzhou 510640, China; Laboratory of Quality and Safety Risk Assessment for Agro-product (Guangzhou), Ministry, Guangzhou 510640, China
| | - Tenghaobo Deng
- Public Monitoring Center for Agro-Product, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture, Guangzhou 510640, China; Laboratory of Quality and Safety Risk Assessment for Agro-product (Guangzhou), Ministry, Guangzhou 510640, China
| | - Ruiying Du
- Public Monitoring Center for Agro-Product, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture, Guangzhou 510640, China; Laboratory of Quality and Safety Risk Assessment for Agro-product (Guangzhou), Ministry, Guangzhou 510640, China
| | - Xu Wang
- Public Monitoring Center for Agro-Product, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture, Guangzhou 510640, China; Laboratory of Quality and Safety Risk Assessment for Agro-product (Guangzhou), Ministry, Guangzhou 510640, China.
| | - Fuhua Wang
- Public Monitoring Center for Agro-Product, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture, Guangzhou 510640, China; Laboratory of Quality and Safety Risk Assessment for Agro-product (Guangzhou), Ministry, Guangzhou 510640, China; Hubei Provincial Engineering Laboratory for New Fertilizers/Research Center of Trace Elements College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
66
|
Kohanová J, Martinka M, Vaculík M, White PJ, Hauser MT, Lux A. Root hair abundance impacts cadmium accumulation in Arabidopsis thaliana shoots. ANNALS OF BOTANY 2018; 122:903-914. [PMID: 29394308 PMCID: PMC6215042 DOI: 10.1093/aob/mcx220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/08/2018] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND AIMS Root hairs increase the contact area of roots with soil and thereby enhance the capacity for solute uptake. The strict hair/non-hair pattern of Arabidopsis thaliana can change with nutrient deficiency or exposure to toxic elements, which modify root hair density. The effects of root hair density on cadmium (Cd) accumulation in shoots of arabidopsis genotypes with altered root hair development and patterning were studied. METHODS Arabidopsis mutants that are unable to develop root hairs (rhd6-1 and cpc/try) or produce hairy roots (wer/myb23) were compared with the ecotype Columbia (Col-0). Plants were cultivated on nutrient agar for 2 weeks with or without Cd. Cadmium was applied as Cd(NO3)2 at two concentrations, 10 and 100 µm. Shoot biomass, root characteristics (primary root length, lateral root number, lateral root length and root hair density) and Cd concentrations in shoots were assessed. Anatomical features (suberization of the endodermis and development of the xylem) that might influence Cd uptake and translocation were also examined. KEY RESULTS Cadmium inhibited plant growth and reduced root length and the number of lateral roots and root hairs per plant. Suberin lamellae in the root endodermis and xylem differentiation developed closer to the root apex in plants exposed to 100 µm Cd. The latter effect was genotype dependent. Shoot Cd accumulation was correlated with root hair abundance when plants were grown in the presence of 10 µm Cd, but not when grown in the presence of 100 µm Cd, in which treatment the development of suberin lamellae closer to the root tip appeared to restrict Cd accumulation in shoots. CONCLUSIONS Root hair density can have a large effect on Cd accumulation in shoots, suggesting that the symplasmic pathway might play a significant role in the uptake and accumulation of this toxic element.
Collapse
Affiliation(s)
- Jana Kohanová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Michal Martinka
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Philip J White
- The James Hutton Institute, Invergowrie, Dundee, UK
- Distinguished Scientist Fellowship Programme, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
67
|
Frew A, Weston LA, Reynolds OL, Gurr GM. The role of silicon in plant biology: a paradigm shift in research approach. ANNALS OF BOTANY 2018; 121:1265-1273. [PMID: 29438453 PMCID: PMC6007437 DOI: 10.1093/aob/mcy009] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/15/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Silicon (Si) is known to have numerous beneficial effects on plants, alleviating diverse forms of abiotic and biotic stress. Research on this topic has accelerated in recent years and revealed multiple effects of Si in a range of plant species. Available information regarding the impact of Si on plant defence, growth and development is fragmented, discipline-specific, and usually focused on downstream, distal phenomena rather than underlying effects. Accordingly, there is a growing need for studies that address fundamental metabolic and regulatory processes, thereby allowing greater unification and focus of current research across disciplines. SCOPE AND CONCLUSIONS Silicon is often regarded as a plant nutritional 'non-entity'. A suite of factors associated with Si have been recently identified, relating to plant chemistry, physiology, gene regulation and interactions with other organisms. Research to date has typically focused on the impact of Si application upon plant stress responses. However, the fundamental, underlying mechanisms that account for the manifold effects of Si in plant biology remain undefined. Here, the known effects of Si in higher plants relating to alleviation of both abiotic and biotic stress are briefly reviewed and the potential importance of Si in plant primary metabolism is discussed, highlighting the need for a unifying research framework targeting common underlying mechanisms. The traditional approach of discipline-specific work on single stressors in individual plant species is currently inadequate. Thus, a holistic and comparative approach is proposed to assess the mode of action of Si between plant trait types (e.g. C3, C4 and CAM; Si accumulators and non-accumulators) and between biotic and abiotic stressors (pathogens, herbivores, drought, salt), considering potential pathways (i.e. primary metabolic processes) highlighted by recent empirical evidence. Utilizing genomic, transcriptomic, proteomic and metabolomic approaches in such comparative studies will pave the way for unification of the field and a deeper understanding of the role of Si in plants.
Collapse
Affiliation(s)
- Adam Frew
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Graham Centre for Agricultural Innovation, Wagga Wagga, New South Wales, Australia
- For correspondence. E-mail
| | - Leslie A Weston
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Graham Centre for Agricultural Innovation, Wagga Wagga, New South Wales, Australia
| | - Olivia L Reynolds
- Graham Centre for Agricultural Innovation, Wagga Wagga, New South Wales, Australia
- Biosecurity and Food Safety, New South Wales Department of Primary Industries, Narellan, New South Wales, Australia
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Geoff M Gurr
- Graham Centre for Agricultural Innovation, Wagga Wagga, New South Wales, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Orange, New South Wales, Australia
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
68
|
Greger M, Landberg T, Vaculík M. Silicon Influences Soil Availability and Accumulation of Mineral Nutrients in Various Plant Species. PLANTS 2018; 7:plants7020041. [PMID: 29783754 PMCID: PMC6027514 DOI: 10.3390/plants7020041] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 11/16/2022]
Abstract
Silicon (Si) effects on mineral nutrient status in plants are not well investigated. It is known that Si has a beneficial effect on plants under stressed conditions. The aim was to make a state of the art investigation of the Si influence: (1) on nutrient availability in four different soil types, namely clayish, sandy, alum shale and submerged soil; and (2) on accumulation of various nutrients in maize, lettuce, pea, carrot and wheat growing in hydroponics. Soil was treated with K₂SiO₃ corresponding to 80 and 1000 kg Si ha-1 and the nutrient medium with 100, 500, 1000 and 5000 μM Si. In general, Si effects were similar in all analyzed plant species and in all soil types tested. Results showed that, in soil, Si increased the availability of Ca, P, S, Mn, Zn, Cu and Mo and that of Cl and Fe tended to increase. The availability of K and Mg was not much affected by Si. Uptake from solution of S, Mg, Ca, B, Fe, and Mn increased; N, Cu, Zn and K decreased; P decreased/increased; and Cl and Mo was not influenced. Translocation to shoot of Mg, Ca, S, Mn, and Mo increased; Fe, Cu and Zn decreased; and K, P, N, Cl and B was not affected. It was concluded that, if plants had been cultivated in soil, Si-maintained increased availability of nutrients in the soil solution would probably compensate for the decrease in tissue concentration of those nutrient elements. The study shows that Si also influences the nutrient uptake in non-stressed plants.
Collapse
Affiliation(s)
- Maria Greger
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE 106 91 Stockholm, Sweden.
| | - Tommy Landberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE 106 91 Stockholm, Sweden.
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska Dolina B2, SK 842 15 Bratislava, Slovakia.
| |
Collapse
|
69
|
Zhao HM, Huang HB, Du H, Lin J, Xiang L, Li YW, Cai QY, Li H, Mo CH, Liu JS, Wong MH, Zhou DM. Intraspecific variability of ciprofloxacin accumulation, tolerance, and metabolism in Chinese flowering cabbage (Brassica parachinensis). JOURNAL OF HAZARDOUS MATERIALS 2018; 349:252-261. [PMID: 29433110 DOI: 10.1016/j.jhazmat.2018.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 06/08/2023]
Abstract
To investigate the mechanism of genotype differences in ciprofloxacin (CIP) accumulation, this study was designed to compare the tolerance and metabolic responses to CIP exposure between low (Cutai) and high (Sijiu) CIP-accumulation cultivars of Brassica parachinensis. Decreases in biomass and chlorophyll content were significantly greater (p < 0.05) and toxicities were more severe within cell ultrastructures of Cutai compared to Sijiu. A sequential growth test also revealed that Sijiu was more tolerant to CIP stress compared to Cutai. Meanwhile, significantly higher (p < 0.05) root parameters and higher areas of the stele and xylem may be responsible for the increased uptake and transport of CIP in Sijiu. Ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) analysis revealed that CIP was metabolized to three major metabolites by the hydroxylation and breakdown of the piperazinyl substituent in the CIP molecule. The enhanced metabolic transformation of CIP in Sijiu indicated a more efficient capacity to detoxify, which in turn favored an increased accumulation of CIP in this cultivar. Thus, the present study demonstrated that the stronger tolerance and metabolism of Sijiu to CIP were responsible for its high CIP accumulation, suggesting an evolutionary mechanism for adaptation to environmental stress.
Collapse
Affiliation(s)
- Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - He-Biao Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huan Du
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jing Lin
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Jie-Sheng Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ming-Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dong-Mei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
70
|
Shi Z, Yang S, Han D, Zhou Z, Li X, Liu Y, Zhang B. Silicon alleviates cadmium toxicity in wheat seedlings (Triticum aestivum L.) by reducing cadmium ion uptake and enhancing antioxidative capacity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:7638-7646. [PMID: 29285697 DOI: 10.1007/s11356-017-1077-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/18/2017] [Indexed: 05/12/2023]
Abstract
Cadmium (Cd) is a toxic element that poses a great threat to human health, while silicon (Si) is a beneficial element and has been shown to have a mitigation effect on plants under Cd toxicity. However, the mechanisms underlying the role of Si in alleviating Cd toxicity are still poorly understood in wheat. Therefore, growth status, photosynthesis parameters, root morphology, antioxidant system, and Cd2+ uptake and flux under Cd toxicity were studied through hydroponic experiment, aiming to explore the mitigation of Si on Cd toxicity in wheat seedlings. The results showed that Si supply improved plant biomass as well as photosynthetic but had little effects on root morphology of seedlings under Cd stress. Si addition decreased Cd contents both in shoots and roots. In situ measurements of Cd2+ flux showed that Si significantly inhibited the net Cd2+ influx in roots of wheat. Si also mitigated the oxidative stress in wheat leaves by decreasing malondialdialdehyde (MDA) and hydrogen peroxide (H2O2) contents as well as by increasing superoxide dismutase (SOD) and guaiacol peroxidase (POD) activity. Overall, the results revealed that Si could alleviate Cd toxicity in wheat seedlings by improving plant growth and antioxidant capacity and by decreasing Cd uptake and lipid peroxidation.
Collapse
Affiliation(s)
- Zhenya Shi
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Key Laboratory of Soil Pollution Prevention-control and Remediation, Zhengzhou, 450002, China
| | - Suqin Yang
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Key Laboratory of Soil Pollution Prevention-control and Remediation, Zhengzhou, 450002, China
| | - Dan Han
- College of Tobacco, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhen Zhou
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Key Laboratory of Soil Pollution Prevention-control and Remediation, Zhengzhou, 450002, China
| | - Xuanzhen Li
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ye Liu
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Key Laboratory of Soil Pollution Prevention-control and Remediation, Zhengzhou, 450002, China
| | - Biao Zhang
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
- Henan Key Laboratory of Soil Pollution Prevention-control and Remediation, Zhengzhou, 450002, China.
| |
Collapse
|
71
|
Kollárová K, Kamenická V, Vatehová Z, Lišková D. Impact of galactoglucomannan oligosaccharides and Cd stress on maize root growth parameters, morphology, and structure. JOURNAL OF PLANT PHYSIOLOGY 2018; 222:59-66. [PMID: 29407550 DOI: 10.1016/j.jplph.2017.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 05/13/2023]
Abstract
Biologically active oligosaccharides, including galactoglucomannan oligosaccharides (GGMOs), affect plant growth and development. The impact of GGMOs is dependent on their concentration, and the plant species and plant parts affected. The aim of this article is to ascertain the effects of GGMOs, GGMOs + Cd2+, on growth parameters, morphology, and the structure of maize (Zea mays L.) roots. We undertook this research because, in monocots, the effect of these oligosaccharides is so far unknown. In our study, GGMOs stimulated primary root elongation, induction and elongation of lateral roots, and biomass production. Their effect was dependent on the concentration used. Simultaneously, GGMOs moderated the negative effect of Cd2+ on root elongation growth. Besides, GGMOs affected the primary root structure, proven in the earlier development of xylem and Casparian bands, but not of suberin lamellae (compared to the control). The presence of Cd2+ shifted the apoplasmic barriers closer to the root apex in comparison to samples treated with GGMOs + Cd2+. GGMOs do not inhibit Cd uptake into the root directly, but they moderate its effect, and therefore their influence at the structural and metabolic level seems possible. Their positive impact on plant vitality, even in contaminated conditions, strongly indicates their potential application in remediation technologies.
Collapse
Affiliation(s)
- Karin Kollárová
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia.
| | - Viktória Kamenická
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B-2, 842 15, Bratislava, Slovakia
| | - Zuzana Vatehová
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Desana Lišková
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| |
Collapse
|
72
|
Etesami H, Jeong BR. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:881-896. [PMID: 28968941 DOI: 10.1016/j.ecoenv.2017.09.063] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/17/2017] [Accepted: 09/22/2017] [Indexed: 05/22/2023]
Abstract
In the era present, due to increasing incidences of a large number of different biotic and abiotic stresses all over the world, the growth of plants (principal crops) may be restrained by these stresses. In addition to beneficial microorganisms, use of silicon (Si)-fertilizer is known as an ecologically compatible and environmentally friendly technique to stimulate plant growth, alleviate various biotic and abiotic stresses in plants, and enhance the plant resistance to multiple stresses, because Si is not harmful, corrosive, and polluting to plants when presents in excess. Here, we reviewed the action mechanisms by which Si alleviates abiotic and biotic stresses in plants. The use of Si (mostly as industrial slags and rice straw) is predicted to become a sustainable strategy and an emerging trend in agriculture to enhance crop growth and alleviate abiotic and biotic stresses in the not too distant future. In this review article, the future research needs on the use of Si under the conditions of abiotic and biotic stresses are also highlighted.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, Faculty of Agricultural Engineering and Technology, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871 Iran.
| | - Byoung Ryong Jeong
- Horticulture Major, Division of Applies Life Science (BK21 Plus Program), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
73
|
Seal P, Das P, Biswas AK. Versatile Potentiality of Silicon in Mitigation of Biotic and Abiotic Stresses in Plants: A Review. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/ajps.2018.97105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
74
|
Doblas VG, Geldner N, Barberon M. The endodermis, a tightly controlled barrier for nutrients. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:136-143. [PMID: 28750257 DOI: 10.1016/j.pbi.2017.06.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 05/24/2023]
Abstract
Plant roots acquire nutrients from the soil and transport them upwards to the aerial parts. To reach the central vasculature of the root, water and nutrients radially cross all external cell layers. The endodermis surrounds the vascular tissues and forms diffusion barriers. It thereby compartmentalizes the root and allows control of nutrient transport from the soil to the vasculature, as well as preventing backflow of nutrients from the stele. To achieve this role, endodermal cells undergo two specialized differentiations states consisting of deposition of two impermeable polymers in the cell wall: lignin, forming the Casparian strips, and suberin lamellae. Recent publications showed that endodermal barrier formation is not a hard-wired, irreversible process. Synthesis and degradation of suberin lamellae is highly regulated by plant hormones in response to nutrient stresses. Moreover, Casparian strip continuity seems to be constantly checked by two small peptides produced in the vasculature that diffuse into the apoplastic space in order to test endodermal barrier integrity. This review discusses the recent understanding of endodermal barrier surveillance and plasticity and its role in plant nutrition.
Collapse
Affiliation(s)
- Verónica G Doblas
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Marie Barberon
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
75
|
Impact of Silicon in Plant Biomass Production: Focus on Bast Fibres, Hypotheses, and Perspectives. PLANTS 2017; 6:plants6030037. [PMID: 28891950 PMCID: PMC5620593 DOI: 10.3390/plants6030037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 11/16/2022]
Abstract
Silicon (Si) is an abundant element which, when supplied to plants, confers increased vigor and resistance to exogenous stresses, as well as enhanced stem mechanical strength. Plant species vary in their ability to take Si up and to accumulate it under the form of silicon dioxide (SiO₂) in their tissues: emblematic of this is the example of Poales, among which there is rice, a high Si accumulator. Monocots usually accumulate more Si than dicots; however, the impact that Si has on dicots, notably on economically important dicots, is a subject requiring further study and scientific efforts. In this review, we discuss the impact that Si has on bast fibre-producing plants, because of the potential importance that this element has in sustainable agriculture practices and in light of the great economic value of fibre crops in fostering a bio-economy. We discuss the data already available in the literature, as well as our own research on textile hemp. In particular, we demonstrate the beneficial effect of Si under heavy metal stress, by showing an increase in the leaf fresh weight under growth on Cd 20 µM. Additionally, we propose an effect of Si on bast fibre growth, by suggesting an action on the endogenous phytohormone levels and a mechanical role involved in the resistance to the turgor pressure during elongation. We conclude our survey with a description of the industrial and agricultural uses of Si-enriched plant biomass, where woody fibres are included in the survey.
Collapse
|
76
|
Kollárová K, Vatehová Z, Kučerová D, Lišková D. Cadmium impact, accumulation and detection in poplar callus cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15340-15346. [PMID: 28502051 DOI: 10.1007/s11356-017-9158-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Effect of cadmium cations and their interaction with silicon cations was determined in poplar calli and expressed as changes in callus growth, cell viability and cadmium cation accumulation. Cell viability throughout culture versus cadmium cation accumulation in cells is discussed. At the same time, the study sought appropriate methods for cadmium cation detection in callus cells and also in experiments with low plant material (e.g. protoplasts). Cadmium cations were determined by atomic absorption spectroscopy and using fluorescence microscopy with a specific cadmium cation fluorescent dye. The detection of cadmium cations in callus cells by the latter method appears suitable because the callus cells are surrounded by primary cell walls without auto-fluorescence and these values fit well with atomic absorption spectroscopy quantification. However, the visualisation method has some limits discussed below.
Collapse
Affiliation(s)
- Karin Kollárová
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia.
| | - Zuzana Vatehová
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Danica Kučerová
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Desana Lišková
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| |
Collapse
|
77
|
Pereira AS, Cortez PA, de Almeida AAF, Prasad MNV, França MGC, da Cunha M, de Jesus RM, Mangabeira PAO. Morphology, ultrastructure, and element uptake in Calophyllum brasiliense Cambess. (Calophyllaceae J. Agardh) seedlings under cadmium exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15576-15588. [PMID: 28516356 DOI: 10.1007/s11356-017-9187-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 05/02/2017] [Indexed: 05/08/2023]
Abstract
Cadmium (Cd) is a metal known for its genotoxicity and cytotoxicity, much concerned for its potential environmental and human health impacts. This study evaluates the toxic effect of Cd in Calophyllum brasiliense plants. The plants were cultivated for 30 days in full nutrient solution in order to adapt, and for 15 days in nutrient solution without Cd or with 4, 8, 16, and 32 μmol Cd L-1. Anatomical analysis of the leaf showed no significant effects of Cd on epidermal thickness in abaxial and adaxial sides, palisade, and spongy parenchyma. Contrastingly, changes were noticed in the ultrastructural level in the leaf mesophyll cells as rupture of the membrane of chloroplasts and disorganization of the thylakoid membranes, in starch grains and in mitochondria with rupture of the membrane and invagination of the nuclear membrane. Electron dense materials into cells of the cortex and vascular bundle were also observed. In the cells of the root system, the observed ultrastructural changes were disruption of the cell wall and electron dense material deposition in the cortex cells and vascular region. Cd accumulated in roots with low translocation into shoot. Cd toxicity also affected the photosynthetic activity, inducing stomatal closure and photosynthetic assimilation reduction and the instantaneous carboxylation efficiency, drastically reducing the leaf transpiration. The nutrient content in the stem and root was variable, according to Cd increase in nutrient solution. Based on the experimental evidence, it can be concluded that C. brasiliense has potential to bioconcentrate high Cd levels in the root system.
Collapse
Affiliation(s)
- Alezania Silva Pereira
- Department of Biological Sciences, Santa Cruz State University, Km 16, Rodovia Jorge Amado, Ilhéus, BA, 45.662-900, Brazil
| | - Priscila Andressa Cortez
- Department of Biological Sciences, Santa Cruz State University, Km 16, Rodovia Jorge Amado, Ilhéus, BA, 45.662-900, Brazil
| | - Alex-Alan Furtado de Almeida
- Department of Biological Sciences, Santa Cruz State University, Km 16, Rodovia Jorge Amado, Ilhéus, BA, 45.662-900, Brazil
| | | | | | - Maura da Cunha
- Biosciences and Biotechnology Center, North Fluminense State University, Campos dos Goytacazes, RJ, Brazil
| | - Raildo Mota de Jesus
- Department of Biological Sciences, Santa Cruz State University, Km 16, Rodovia Jorge Amado, Ilhéus, BA, 45.662-900, Brazil
| | | |
Collapse
|
78
|
Pontigo S, Godoy K, Jiménez H, Gutiérrez-Moraga A, Mora MDLL, Cartes P. Silicon-Mediated Alleviation of Aluminum Toxicity by Modulation of Al/Si Uptake and Antioxidant Performance in Ryegrass Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:642. [PMID: 28487719 PMCID: PMC5404182 DOI: 10.3389/fpls.2017.00642] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/10/2017] [Indexed: 05/04/2023]
Abstract
Silicon (Si) has been well documented to alleviate aluminum (Al) toxicity in vascular plants. However, the mechanisms underlying these responses remain poorly understood. Here, we assessed the effect of Si on the modulation of Si/Al uptake and the antioxidant performance of ryegrass plants hydroponically cultivated with Al (0 and 0.2 mM) in combination with Si (0, 0.5, and 2.0 mM). Exposure to Al significantly increased Al concentration, mainly in the roots, with a consequent reduction in root growth. However, Si applied to the culture media steadily diminished the Al concentration in ryegrass, which was accompanied by an enhancement in root dry matter production. A reduced concentration of Si in plant tissues was also observed when plants were simultaneously supplied with Al and Si. Interestingly, Si transporter genes (Lsi1 and Lsi2) were down-regulated in roots after Si or Al was applied alone; however, both Lsi1 and Lsi2 were up-regulated as a consequence of Si application to Al-treated plants, denoting that there is an increase in Si requirement in order to cope with Al stress in ryegrass. Whereas Al addition triggered lipid peroxidation, Si contributed to an attenuation of Al-induced oxidative stress by increasing phenols concentration and modulating the activities of superoxide dismutase (SOD), catalase, peroxidase, and ascorbate peroxidase antioxidant enzymes. Differential changes in gene expression of SOD isoforms (Mn-SOD, Cu/Zn-SOD, and Fe-SOD) and the profile of peroxide (H2O2) generation were also induced by Si in Al-stressed plants. This, to the best of our knowledge, is the first study to present biochemical and molecular evidence supporting the effect of Si on the alleviation of Al toxicity in ryegrass plants.
Collapse
Affiliation(s)
- Sofía Pontigo
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La FronteraTemuco, Chile
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La FronteraTemuco, Chile
| | - Karina Godoy
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La FronteraTemuco, Chile
| | - Héctor Jiménez
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La FronteraTemuco, Chile
| | - Ana Gutiérrez-Moraga
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La FronteraTemuco, Chile
- Departamento de Producción Agropecuaria, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La FronteraTemuco, Chile
| | - María de la Luz Mora
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La FronteraTemuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La FronteraTemuco, Chile
| | - Paula Cartes
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La FronteraTemuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La FronteraTemuco, Chile
| |
Collapse
|
79
|
Rizwan M, Ali S, Qayyum MF, Ok YS, Zia-Ur-Rehman M, Abbas Z, Hannan F. Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2017; 39:259-277. [PMID: 27061410 DOI: 10.1007/s10653-016-9826-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/31/2016] [Indexed: 05/20/2023]
Abstract
Maize (Zea mays L.) has been widely adopted for phytomanagement of cadmium (Cd)-contaminated soils due to its high biomass production and Cd accumulation capacity. This paper reviewed the toxic effects of Cd and its management by maize plants. Maize could tolerate a certain level of Cd in soil while higher Cd stress can decrease seed germination, mineral nutrition, photosynthesis and growth/yields. Toxicity response of maize to Cd varies with cultivar/varieties, growth medium and stress duration/extent. Exogenous application of organic and inorganic amendments has been used for enhancing Cd tolerance of maize. The selection of Cd-tolerant maize cultivar, crop rotation, soil type, and exogenous application of microbes is a representative agronomic practice to enhance Cd tolerance in maize. Proper selection of cultivar and agronomic practices combined with amendments might be successful for the remediation of Cd-contaminated soils with maize. However, there might be the risk of food chain contamination by maize grains obtained from the Cd-contaminated soils. Thus, maize cultivation could be an option for the management of low- and medium-grade Cd-contaminated soils if grain yield is required. On the other hand, maize can be grown on Cd-polluted soils only if biomass is required for energy production purposes. Long-term field trials are required, including risks and benefit analysis for various management strategies aiming Cd phytomanagement with maize.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Muhammad Farooq Qayyum
- Department of Soil Sciences, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Yong Sik Ok
- Korea Biochar Research Center and Department of Biological Environment, Kangwon National University, Chuncheon, 200-701, Korea
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zaheer Abbas
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Fakhir Hannan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| |
Collapse
|
80
|
Ju S, Yin N, Wang L, Zhang C, Wang Y. Effects of silicon on Oryza sativa L. seedling roots under simulated acid rain stress. PLoS One 2017; 12:e0173378. [PMID: 28291806 PMCID: PMC5349468 DOI: 10.1371/journal.pone.0173378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/20/2017] [Indexed: 12/01/2022] Open
Abstract
Silicon (Si) has an important function in reducing the damage of environmental stress on plants. Acid rain is a serious abiotic stress factor, and Si can alleviate the stress induced by acid rain on plants. Based on these assumptions, we investigated the effects of silicon on the growth, root phenotype, mineral element contents, hydrogen peroxide (H2O2) and antioxidative enzymes of rice (Oryza sativa L.) seedling roots under simulated acid rain (SAR) stress. The results showed that the combined or single effects of Si and/or SAR on rice roots depend on the concentration of Si and the pH of the SAR. The combined or single effects of a low or moderate concentration of Si (1.0 or 2.0 mM) and light SAR (pH 4.0) enhanced the growth of rice roots, and the combined effects were stronger than those of the single treatment. A high concentration of Si (4.0 mM) or severe SAR (pH 2.0) exerted deleterious effects. The incorporation of Si (1.0, 2.0 or 4.0 mM) into SAR with pH 3.0 or 2.0 promoted the rice root growth, decreased the H2O2 content, increased the Si concentration and the superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) activities, maintained the balance of mineral element (K, Ca, Mg, Fe, Zn, and Cu) concentrations in the roots of rice seedlings compared with SAR alone. The alleviatory effects observed with a moderate concentration of Si (2.0 mM) were better than the effects obtained with a low or high concentration of Si (1.0 or 4.0 mM). The observed effects were due to disruptions in the absorption and utilization of mineral nutrients and impacts on the activity of antioxidant enzymes in roots, and this conclusion suggests that the degree of rice root damage caused by acid rain might be attributed to not only acid rain but also the level of Si in the soil.
Collapse
Affiliation(s)
- Shuming Ju
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, Jiangsu, China
- Xuzhou Institute of Technology, Xuzhou, Jiangsu, China
| | - Ningning Yin
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, Jiangsu, China
| | - Liping Wang
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, Jiangsu, China
| | - Cuiying Zhang
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, Jiangsu, China
- Xuzhou Institute of Technology, Xuzhou, Jiangsu, China
| | - Yukun Wang
- Xuzhou Institute of Technology, Xuzhou, Jiangsu, China
| |
Collapse
|
81
|
Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK. Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 110:70-81. [PMID: 27470120 DOI: 10.1016/j.plaphy.2016.06.026] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/17/2016] [Accepted: 06/17/2016] [Indexed: 05/19/2023]
Abstract
The role of silicon (Si) in alleviating biotic as well as abiotic stresses is well known. However, the potential of silicon nanoparticle (SiNP) in regulating abiotic stress and associated mechanisms have not yet been explored. Therefore, in the present study hydroponic experiments were conducted to investigate whether Si or SiNp are more effective in the regulation of UV-B stress. UV-B (ambient and enhanced) radiation caused adverse effect on growth of wheat (Triticum aestivum) seedlings, which was accompanied by declined photosynthetic performance and altered vital leaf structures. Levels of superoxide radical and H2O2 were enhanced by UV-B as also evident from their histochemical stainings, which was accompanied by increased lipid peroxidation (LPO) and electrolyte leakage. Activities of superoxide dismutase and ascorbate peroxidase were inhibited by UV-B while catalase and guaiacol peroxidase, and all non-enzymatic antioxidants were stimulated by UV-B. Although, nitric oxide (NO) content was increased at all tested combinations, but its maximum content was observed under SiNps together with UV-B enhanced treatment. Pre-additions of SiNp as well as Si protected wheat seedlings against UV-B by regulating oxidative stress through enhanced antioxidants. Data indicate that SiNp might have protected wheat seedlings through NO-mediated triggering of antioxidant defense system, which subsequently counterbalance reactive oxygen species-induced damage to photosynthesis. Further, SiNp appear to be more effective in reducing UV-B stress than Si, which is related to its greater availability to wheat seedlings.
Collapse
Affiliation(s)
- Durgesh Kumar Tripathi
- Centre of Advanced Study in Botany, Department of Botany, Banaras Hindu University Varanasi, 221005, India.
| | - Swati Singh
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Allahabad, 211002, India
| | - Vijay Pratap Singh
- Govt. Ramanuj Pratap Singhdev Post Graduate College, Baikunthpur, Koriya, 497335, Chhattisgarh, India.
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, 211002, India.
| | - Nawal Kishore Dubey
- Centre of Advanced Study in Botany, Department of Botany, Banaras Hindu University Varanasi, 221005, India
| | - Devendra Kumar Chauhan
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Allahabad, 211002, India.
| |
Collapse
|
82
|
Líška D, Martinka M, Kohanová J, Lux A. Asymmetrical development of root endodermis and exodermis in reaction to abiotic stresses. ANNALS OF BOTANY 2016; 118:667-674. [PMID: 27112163 PMCID: PMC5055619 DOI: 10.1093/aob/mcw047] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/14/2016] [Accepted: 02/12/2016] [Indexed: 05/18/2023]
Abstract
Background and Aims In the present study, we show that development of endodermis and exodermis is sensitively regulated by water accessibility. As cadmium (Cd) is known to induce xeromorphic effects in plants, maize roots were exposed also to Cd to understand the developmental process of suberin lamella deposition in response to a local Cd source. Methods In a first experiment, maize roots were cultivated in vitro and unilaterally exposed to water-containing medium from one side and to air from the other. In a second experiment, the roots were placed between two agar medium layers with a strip of Cd-containing medium attached locally and unilaterally to the root surface. Key Results The development of suberin lamella (the second stage of exodermal and endodermal development) started asymmetrically, preferentially closer to the root tip on the side exposed to the air. In the root contact with Cd in a spatially limited area exposed to one side of the root, suberin lamella was preferentially developed in the contact region and additionally along the whole length of the root basipetally from the contact area. However, the development was unilateral and asymmetrical, facing the treated side. The same pattern occurred irrespective of the distance of Cd application from the root apex. Conclusions These developmental characteristics indicate a sensitive response of root endodermis and exodermis in the protection of vascular tissues against abiotic stresses.
Collapse
Affiliation(s)
- Denis Líška
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15 Bratislava, Slovak Republic
| | - Michal Martinka
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15 Bratislava, Slovak Republic
- Institute of Botany, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 23, Slovak Republic
| | - Jana Kohanová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15 Bratislava, Slovak Republic
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15 Bratislava, Slovak Republic
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
- * For correspondence. E-mail
| |
Collapse
|
83
|
Cooke J, Leishman MR. Consistent alleviation of abiotic stress with silicon addition: a meta‐analysis. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12713] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Julia Cooke
- Department of Environment Earth and Ecosystems The Open University Milton KeynesMK7 6AA UK
- Department of Biological Sciences Macquarie University North Ryde NSW 2109 Australia
| | - Michelle R. Leishman
- Department of Biological Sciences Macquarie University North Ryde NSW 2109 Australia
| |
Collapse
|
84
|
Yu HY, Ding X, Li F, Wang X, Zhang S, Yi J, Liu C, Xu X, Wang Q. The availabilities of arsenic and cadmium in rice paddy fields from a mining area: The role of soil extractable and plant silicon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 215:258-265. [PMID: 27209244 DOI: 10.1016/j.envpol.2016.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
Adequate silicon (Si) can greatly boost rice yield and improve grain quality through alleviating stresses associated with heavy metals and metalloids such as arsenic (As) and cadmium (Cd). The soil plant-available Si is relatively low in South China due to severe desilicification and allitization of the soils in this region. Conversely, pollution of heavy metals and metalloids in the soils of this region occurs widely, especially As and Cd pollution in paddy soil. Therefore, evaluating the plant availability of Si in paddy soil of South China and examining its correlation with the availability of heavy metals and metalloids are of great significance. Accordingly, in our study, 107 pairs of soil and rice plant samples were collected from paddy fields contaminated by As and Cd in South China. Significantly positive correlations between Si in rice plants and Si fractions in soils extracted with citric acid, NaOAc-HOAc buffer, and oxalate-ammonium oxalate buffer suggest that these extractants are more suitable for use in extracting plant-available Si in the soils of our present study. Significantly negative correlations between different Si fractions and As or Cd in rice plant tissues and negative exponential correlations between the molar ratios of Si to As/Cd in rice roots, straws, husks or grains and As/Cd in rice grains indicate that Si can significantly alleviate the accumulation of As/Cd from soils to the rice plants. Finally, a contribution assessment of soil properties to As/Cd accumulation in rice grains based on random forest showed that in addition to Si concentrations in soil or rice plants, other factors such as Fe fractions and total phosphorus also contributed largely to As/Cd accumulation in rice grains. Overall, Si exhibited its unique role in mitigating As or Cd stress in rice, and our study results provide strong field evidence for this role.
Collapse
Affiliation(s)
- Huan-Yun Yu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, China
| | - Xiaodong Ding
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, China; College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Fangbai Li
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, China.
| | - Xiangqin Wang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, China
| | - Shirong Zhang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, China
| | - Jicai Yi
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chuanping Liu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, China
| | - Xianghua Xu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, China
| | - Qi Wang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, China
| |
Collapse
|
85
|
Pandey C, Khan E, Panthri M, Tripathi RD, Gupta M. Impact of silicon on Indian mustard (Brassica juncea L.) root traits by regulating growth parameters, cellular antioxidants and stress modulators under arsenic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 104:216-25. [PMID: 27038600 DOI: 10.1016/j.plaphy.2016.03.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 05/08/2023]
Abstract
Arsenic (As) is an emerging pollutant causing inhibition in growth and development of plants resulting into phytotoxicity. On the other hand, silicon (Si) has been suggested as a modulator in abiotic and biotic stresses that, enhances plant's physiological adaptations in response to several stresses including heavy metal stress. In this study, we used roots of hydroponically grown 14 day old seedlings of Brassica juncea var. Varuna treated with 150 μM As, 1.5 mM Si and both in combination for 96 h duration. Application of Si modulated the effect of As by improving morphological traits of root along with the development of both primary and lateral roots. Changes observed in root traits showed positive correlation with As induced cell death, accumulation of reactive oxygen species (ROS), nitric oxide (NO) and intracellular superoxide radicals (O2(-)). Addition of 1.5 mM Si during As stress increased accumulation of As in roots. Mineral nutrient analysis was done using energy-dispersive X-ray fluorescence (EDXRF) technique and positively correlated with increased cysteine, proline, MDA, H2O2 and activity of antioxidant enzymes (SOD, CAT and APX). The results obtained from the above biochemical approaches support the protective and active role of Si in the regulation of As stress through the changes in root developmental process.
Collapse
Affiliation(s)
- Chandana Pandey
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 25, India
| | - Ehasanullah Khan
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 25, India
| | - Medha Panthri
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 25, India
| | - Rudra Deo Tripathi
- CSIR, National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P., India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 25, India.
| |
Collapse
|
86
|
Farooq MA, Detterbeck A, Clemens S, Dietz KJ. Silicon-induced reversibility of cadmium toxicity in rice. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3573-85. [PMID: 27122572 PMCID: PMC4892736 DOI: 10.1093/jxb/erw175] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Silicon (Si) modulates tolerance to abiotic stresses, but little is known about the reversibility of stress effects by supplementing previously stressed plants with Si. This is surprising since recovery experiments might allow mechanisms of Si-mediated amelioration to be addressed. Rice was exposed to 10 µM CdCl2 for 4 d in hydroponics, followed by 0.6mM Si(OH)4 supplementation for 4 d. Si reversed the effects of Cd, as reflected in plant growth, photosynthesis, elemental composition, and some biochemical parameters. Cd-dependent deregulation of nutrient homeostasis was partially reversed by Si supply. Photosynthetic recovery within 48h following Si supply, coupled with strong stimulation of the ascorbate-glutathione system, indicates efficient activation of defense. The response was further verified by transcript analyses with emphasis on genes encoding members of the stress-associated protein (SAP) family. The transcriptional response to Cd was mostly reversed following Si supply. Reprogramming of the Cd response was obvious for Phytochelatin synthase 1, SAP1 , SAP14, and the transcription factor genes AP2/Erf020, Hsf31, and NAC6 whose transcript levels were strongly activated in roots of Cd-stressed rice, but down-regulated in the presence of Si. These findings, together with changes in biochemical parameters, highlight the significance of Si in growth recovery of Cd-stressed rice and indicate a decisive role for readjusting cell redox homeostasis.
Collapse
Affiliation(s)
- Muhammad Ansar Farooq
- Biochemistry and Physiology of Plants, Faculty of Biology, W5-134, Bielefeld University, University Street 25, D-33501 Bielefeld, Germany
| | - Amelie Detterbeck
- Department of Plant Physiology, University of Bayreuth, University Street 30, D-95440 Bayreuth, Germany
| | - Stephan Clemens
- Department of Plant Physiology, University of Bayreuth, University Street 30, D-95440 Bayreuth, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, W5-134, Bielefeld University, University Street 25, D-33501 Bielefeld, Germany
| |
Collapse
|
87
|
Greger M, Kabir AH, Landberg T, Maity PJ, Lindberg S. Silicate reduces cadmium uptake into cells of wheat. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 211:90-7. [PMID: 26745394 DOI: 10.1016/j.envpol.2015.12.027] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 05/20/2023]
Abstract
Cadmium (Cd) is a health threat all over the world and high Cd content in wheat causes high Cd intake. Silicon (Si) decreases cadmium content in wheat grains and shoot. This work investigates whether and how silicate (Si) influences cadmium (Cd) uptake at the cellular level in wheat. Wheat seedlings were grown in the presence or absence of Si with or without Cd. Cadmium, Si, and iron (Fe) accumulation in roots and shoots was analysed. Leaf protoplasts from plants grown without Cd were investigated for Cd uptake in the presence or absence of Si using the fluorescent dye, Leadmium Green AM. Roots and shoots of plants subjected to all four treatments were investigated regarding the expression of genes involved in the Cd uptake across the plasma membrane (i.e. LCT1) and efflux of Cd into apoplasm or vacuole from the cytosol (i.e. HMA2). In addition, phytochelatin (PC) content and PC gene (PCS1) expression were analysed. Expression of iron and metal transporter genes (IRT1 and NRAMP1) were also analysed. Results indicated that Si reduced Cd accumulation in plants, especially in shoot. Si reduced Cd transport into the cytoplasm when Si was added both directly during the uptake measurements and to the growth medium. Silicate downregulated LCT1 and HMA2 and upregulated PCS1. In addition, Si enhanced PC formation when Cd was present. The IRT1 gene, which was downregulated by Cd was upregulated by Si in root and shoot facilitating Fe transport in wheat. NRAMP1 was similarly expressed, though the effect was limited to roots. This work is the first to show how Si influences Cd uptake on the cellular level.
Collapse
Affiliation(s)
- Maria Greger
- Department of Ecology, Environment and Plant Science, Stockholm University, 106 91 Stockholm, Sweden.
| | - Ahmad H Kabir
- Department of Botany, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Tommy Landberg
- Department of Ecology, Environment and Plant Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Pooja J Maity
- Department of Ecology, Environment and Plant Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Sylvia Lindberg
- Department of Ecology, Environment and Plant Science, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
88
|
Wang JL, Li T, Liu GY, Smith JM, Zhao ZW. Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects. Sci Rep 2016; 6:22028. [PMID: 26911444 PMCID: PMC4766571 DOI: 10.1038/srep22028] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/04/2016] [Indexed: 11/24/2022] Open
Abstract
A growing body of evidence suggests that plant root-associated fungi such as dark septate endophytes (DSE) can help plants overcome many biotic and abiotic stresses, of great interest is DSE-plant metal tolerance and alleviation capabilities on contaminated soils. However, the tolerance and alleviation mechanisms involved have not yet been elucidated. In the current study, the regulation and physiological response of Zea mays to its root-associated DSE, Exophiala pisciphila was analyzed under increased soil Cd stress (0, 10, 50, 100 mg kg−1). Under Cd stress, DSE inoculation significantly enhanced the activities of antioxidant enzymes and low-molecular weight antioxidants, while also inducing increased Cd accumulation in the cell wall and conversion of Cd into inactive forms by shoot and root specific regulation of genes related to metal uptake, translocation and chelation. Our results showed that DSE colonization resulted in a marked tolerance to Cd, with a significant decrease in cadmium phytotoxicity and a significant increase in maize growth by triggering antioxidant systems, altering metal chemical forms into inactive Cd, and repartitioning subcellular Cd into the cell wall. These results provide comprehensive evidence for the mechanisms by which DSE colonization bioaugments Cd tolerance in maize at physiological, cytological and molecular levels.
Collapse
Affiliation(s)
- Jun-ling Wang
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, 650091 Yunnan, P.R. China.,Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, 650091 Yunnan, P.R. China.,First People's Hospital of Qujing City, Qujing Affiliated Hospital of Kunming Medical University, Qujing 655000, China
| | - Tao Li
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, 650091 Yunnan, P.R. China.,Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, 650091 Yunnan, P.R. China
| | - Gao-yuan Liu
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, 650091 Yunnan, P.R. China.,Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, 650091 Yunnan, P.R. China
| | - Joshua M Smith
- Irving K. Barber School of Arts and Sciences, University of British Columbia Okanagan, Kelowna, British Columbia V1V 1V7, Canada
| | - Zhi-wei Zhao
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, 650091 Yunnan, P.R. China.,Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, 650091 Yunnan, P.R. China
| |
Collapse
|
89
|
Bystricka J, Musilova J, Trebichalsky P, Tomas J, Stanovic R, Bajcan D, Kavalcova P. The relationships between content of heavy metals in soil and in strawberries. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:553-558. [PMID: 26479424 DOI: 10.1080/15226514.2015.1086304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The work was aimed at assessment of quality of strawberry based on the contents of heavy metals as well as the possible correlations between selected heavy metals in soil and strawberries. The results revealed that from all observed metals in soil determined in aqua regia only in the case of cadmium the maximum permissible limit in comparison with the limit resulting from the Law No. 220/2004 as well as threshold values proposed by European Commission (EC) (2006) has been exceeded. In our paper the values of cadmium in the soil representing 1.86 to 2.41 times higher values than limit valid in the Slovak Republic (0.7 mg/kg) and 2.6 to 3.38 times higher in comparison to EC (0.5 mg/kg). In our study in 1 M NH4NO3 the values of lead ranged from 0.125 to 0.205 mg/kg representing values exceeded the limit valid in Slovak Republic (0.1 mg/kg) about 0.037-0.105 mg/kg. Despite exceeded values of heavy metals in soil, no values above the limit directly in strawberries when compared to Food Codex of Slovak Republic as well as to Commission Regulation 1881/2006 were recorded. Among the varieties statistically significant differences (P < 0.05) in intake of heavy metals were found.
Collapse
Affiliation(s)
- Judita Bystricka
- a Dept. of Chemistry , Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra , 949 76 Nitra , Slovak Republic
| | - Janette Musilova
- a Dept. of Chemistry , Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra , 949 76 Nitra , Slovak Republic
| | - Pavol Trebichalsky
- a Dept. of Chemistry , Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra , 949 76 Nitra , Slovak Republic
| | - Jan Tomas
- a Dept. of Chemistry , Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra , 949 76 Nitra , Slovak Republic
| | - Radovan Stanovic
- a Dept. of Chemistry , Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra , 949 76 Nitra , Slovak Republic
| | - Daniel Bajcan
- a Dept. of Chemistry , Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra , 949 76 Nitra , Slovak Republic
| | - Petra Kavalcova
- a Dept. of Chemistry , Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra , 949 76 Nitra , Slovak Republic
| |
Collapse
|
90
|
Vulavala VKR, Elbaum R, Yermiyahu U, Fogelman E, Kumar A, Ginzberg I. Silicon fertilization of potato: expression of putative transporters and tuber skin quality. PLANTA 2016; 243:217-29. [PMID: 26384982 DOI: 10.1007/s00425-015-2401-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/31/2015] [Indexed: 05/06/2023]
Abstract
A silicon transporter homolog was upregulated by Si fertilization and drought in potato roots and leaves. High Si in tuber skin resulted in anatomical and compositional changes suggesting delayed skin maturation. Silicon (Si) fertilization has beneficial effects on plant resistance to biotic and abiotic stresses. Potatoes, low Si accumulators, are susceptible to yield loss due to suboptimal growth conditions; thus Si fertilization may contribute to crop improvement. The effect of Si fertilization on transcript levels of putative transporters, Si uptake and tuber quality was studied in potatoes grown in a glasshouse and fertilized with sodium silicate, under normal and drought-stress conditions. Anatomical studies and Raman spectroscopic analyses of tuber skin were conducted. A putative transporter, StLsi1, with conserved amino acid domains for Si transport, was isolated. The StLsi1 transcript was detected in roots and leaves and its level increased twofold following Si fertilization, and about fivefold in leaves upon Si × drought interaction. Nevertheless, increased Si accumulation was detected only in tuber peel of Si-fertilized plants--probably due to passive movement of Si from the soil solution--where it modified skin cell morphology and cell-wall composition. Compared to controls, skin cell area was greater, suberin biosynthetic genes were upregulated and skin cell walls were enriched with oxidized aromatic moieties suggesting enhanced lignification and suberization. The accumulating data suggest delayed tuber skin maturation following Si fertilization. Despite StLsi1 upregulation, low accumulation of Si in roots and leaves may result from low transport activity. Study of Si metabolism in potato, a major staple food, would contribute to the improvement of other low Si crops to ensure food security under changing climate.
Collapse
Affiliation(s)
- Vijaya K R Vulavala
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, 5025001, Bet Dagan, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, PO Box 12, 7610001, Rehovot, Israel
| | - Rivka Elbaum
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, PO Box 12, 7610001, Rehovot, Israel
| | - Uri Yermiyahu
- Institute of Soil and Water, Agricultural Research Organization, Gilat Center, Negev, 85280, Israel
| | - Edna Fogelman
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, 5025001, Bet Dagan, Israel
| | - Akhilesh Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, 5025001, Bet Dagan, Israel
| | - Idit Ginzberg
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, 5025001, Bet Dagan, Israel.
| |
Collapse
|
91
|
Rizwan M, Meunier JD, Davidian JC, Pokrovsky OS, Bovet N, Keller C. Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:1414-27. [PMID: 26370813 DOI: 10.1007/s11356-015-5351-4] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/01/2015] [Indexed: 05/06/2023]
Abstract
We investigated the potential role of silicon in improving tolerance and decreasing cadmium (Cd) toxicity in durum wheat (Triticum turgidum L. durum) either through a reduced Cd uptake or exclusion/sequestration in non-metabolic tissues. For this, plants were grown in hydroponic conditions for 10 days either in presence or absence of 1 mM Si and for 11 additional days in various Cd concentrations (0, 0.5, 5.0 and 50 μM). After harvesting, morphological and physiological parameters as well as elemental concentrations were recorded. Cadmium caused reduction in growth parameters, photosynthetic pigments and mineral nutrient concentrations both in shoots and roots. Shoot and root contents of malate, citrate and aconitate increased, while contents of phosphate, nitrate and sulphate decreased with increasing Cd concentrations in plants. Addition of Si to the nutrient solution mitigated these adverse effects: Cd concentration in shoots decreased while concentration of Cd adsorbed at the root cell apoplasmic level increased together with Zn uptake by roots. Overall, total Cd uptake decreased in presence of Si. There was no co-localisation of Cd and Si either at the shoot or at the root levels. No Cd was detected in leaf phytoliths. In roots, Cd was mainly detected in the cortical parenchyma and Si at the endodermis level, while analysis of the outer thin root surface of the plants grown in the 50 μM Cd + 1 mM Si treatment highlighted non-homogeneous Cd and Si enrichments. These data strongly suggest the existence of a root localised protection mechanism consisting in armoring the root surface by Si- and Cd-bearing compounds and in limiting root-shoot translocation.
Collapse
Affiliation(s)
- M Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
- Aix-Marseille Université, CNRS, IRD, CEREGE UM34, 13545, Aix en Provence, France
| | - J-D Meunier
- Aix-Marseille Université, CNRS, IRD, CEREGE UM34, 13545, Aix en Provence, France
| | - J-C Davidian
- Biochimie & Physiologie Moléculaire des Plantes, UMR CNRS-INRA-Université Montpellier II-Montpellier SupAgro, Place Viala, 34060, Montpellier, Cedex 2, France
| | - O S Pokrovsky
- Geoscience and Environment Toulouse (GET), UMR 5563 CNRS, 14 Avenue Edouard Belin, 31400, Toulouse, France
- BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk, Russia
| | - N Bovet
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - C Keller
- Aix-Marseille Université, CNRS, IRD, CEREGE UM34, 13545, Aix en Provence, France.
| |
Collapse
|
92
|
Guerriero G, Hausman JF, Legay S. Silicon and the Plant Extracellular Matrix. FRONTIERS IN PLANT SCIENCE 2016; 7:463. [PMID: 27148294 PMCID: PMC4828433 DOI: 10.3389/fpls.2016.00463] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/24/2016] [Indexed: 05/04/2023]
Abstract
Silicon (Si) is one of the most abundant elements on earth. Although not considered essential for the growth and development of higher plants, it is nonetheless known to increase vigor and to play protective roles. Its protective effects include for instance alleviation of (a)biotic stress damages and heavy metal toxicity. Si was shown to interact with several components of the plant cell walls in the form of silica (SiO2). In plants SiO2 promotes strengthening of the cell walls and provides increased mechanical support to the aerial parts. The relationship SiO2-plant cell wall has been well documented in monocots and pteridophytes, which are known Si accumulators, while much less is known on the interaction of Si with the cell walls of dicots. We here provide a concise up-to-date survey on the interaction between Si and plant cell wall components by focussing on cellulose, hemicelluloses, callose, pectins, lignin, and proteins. We also describe the effects of Si on cell wall-related processes by discussing the published results in both monocots and dicots. We conclude our survey with a description of the possible mechanisms by which Si exerts priming in plants.
Collapse
|
93
|
Wang P, Deng X, Huang Y, Fang X, Zhang J, Wan H, Yang C. Comparison of subcellular distribution and chemical forms of cadmium among four soybean cultivars at young seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:19584-95. [PMID: 26272289 DOI: 10.1007/s11356-015-5126-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/27/2015] [Indexed: 06/04/2023]
Abstract
The hydroponic experiment was carried out to investigate the Cd subcellular distribution and chemical forms in roots and shoots among four soybean seedling cultivars with two Cd treatments. HX3 and GC8, two tolerant and low-grain-Cd-accumulating cultivars, had the lowest Cd concentration in roots and high Cd concentration in shoots, while BX10 and ZH24, two sensitive and high-grain-Cd-accumulating cultivars, had the highest Cd concentration in roots and the lowest Cd concentration in shoots at young seedling stage. Furthermore, the sequence of Cd subcellular distribution in roots at two Cd levels was cell wall (53.4-75.5 %) > soluble fraction (15.8-40.4 %) > organelle fraction (2.0-14.7 %), but in shoots, was soluble fraction (39.3-74.8 %) > cell wall (16.0-52.0 %) > organelle (4.8-19.5 %). BX10 and ZH24 had higher Cd concentration in all subcellular fractions in roots, but HX3 and GC8 had higher Cd concentration of soluble fraction in shoots. The sequence of Cd chemical forms in roots was FNacl (64.1-79.5 %) > FHAC (3.4-21.5 %) > Fd-H2O (3.6-13.0 %) > Fethanol (1.4-21.8) > FHCl (0.3-1.6 %) > Fother (0.2-1.4 %) at two Cd levels but, in shoots, was FNacl (19.7-51.4 %) ≥ FHAC (10.2-31.4 %) ≥ Fd-H2O (8.8-28.2 %) ≥ Fethanol (8.9-38.6 %) > FHCl (0.2-9.6 %) > Fother (2.5-11.2 %). BX10 and ZH24 had higher Cd concentrations in each extracted solutions from roots, but from shoots for GC8 and HX3. Taken together, the results uncover that root cell walls and leaf vacuoles might play important roles in Cd detoxification and limiting the symplastic movement of Cd.
Collapse
Affiliation(s)
- Peng Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Sub-center of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiaojuan Deng
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Sub-center of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Yian Huang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Sub-center of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiaolong Fang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Sub-center of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jie Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Sub-center of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Haibo Wan
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Sub-center of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Cunyi Yang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Sub-center of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
94
|
Vaculík M, Pavlovič A, Lux A. Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath's cell chloroplasts ultrastructure in maize. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:66-73. [PMID: 26036417 DOI: 10.1016/j.ecoenv.2015.05.026] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/15/2015] [Accepted: 05/16/2015] [Indexed: 05/27/2023]
Abstract
Silicon was shown to alleviate the negative effects of various biotic and abiotic stresses on plant growth. Although the positive role of Si on toxic and heavy metal Cd has been already described, the mechanisms have been explained only partially and still remain unclear. In the present study we investigated the effect of Si on photosynthetic-related processes in maize exposed to two different levels of Cd via measurements of net photosynthetic rate (AN), chlorophyll a fluorescence and pigment analysis, as well as studies of leaf tissue anatomy and cell ultrastructure using bright-field and transmission electron microscopy. We found that Si actively alleviated the toxic syndromes of Cd by increasing AN, effective photochemical quantum yield of photosystem II (ϕPSII) and content of assimilation pigments, although did not decrease the concentration of Cd in leaf tissues. Cadmium did not affect the leaf anatomy and ultrastructure of leaf mesophyll's cell chloroplasts; however, Cd negatively affected thylakoid formation in chloroplasts of bundle sheath cells, and this was alleviated by Si. Improved thylakoid formation in bundle sheath's cell chloroplasts may contribute to Si-induced enhancement of photosynthesis and related increase in biomass production in C4 plant maize.
Collapse
Affiliation(s)
- Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15 Bratislava, Slovakia.
| | - Andrej Pavlovič
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15 Bratislava, Slovakia; Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University in Olomouc, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15 Bratislava, Slovakia
| |
Collapse
|
95
|
Yeasts associated with an abandoned mining area in Pernek and their tolerance to different chemical elements. Folia Microbiol (Praha) 2015; 61:199-207. [DOI: 10.1007/s12223-015-0424-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
|
96
|
Adrees M, Ali S, Rizwan M, Zia-Ur-Rehman M, Ibrahim M, Abbas F, Farid M, Qayyum MF, Irshad MK. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 119:186-97. [PMID: 26004359 DOI: 10.1016/j.ecoenv.2015.05.011] [Citation(s) in RCA: 366] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/13/2015] [Accepted: 05/09/2015] [Indexed: 05/06/2023]
Abstract
In present era, heavy metal pollution is rapidly increasing which present many environmental problems. These heavy metals are mainly accumulated in soil and are transferred to food chain through plants grown on these soils. Silicon (Si) is the second most abundant element in the soil. It has been widely reported that Si can stimulate plant growth and alleviate various biotic and abiotic stresses, including heavy metal stress. Research to date has explored a number of mechanisms through which Si can alleviate heavy metal toxicity in plants at both plant and soil levels. Here we reviewed the mechanisms through which Si can alleviate heavy metal toxicity in plants. The key mechanisms evoked include reducing active heavy metal ions in growth media, reduced metal uptake and root-to-shoot translocation, chelation and stimulation of antioxidant systems in plants, complexation and co-precipitation of toxic metals with Si in different plant parts, compartmentation and structural alterations in plants and regulation of the expression of metal transport genes. However, these mechanisms might be associated with plant species, genotypes, metal elements, growth conditions, duration of the stress imposed and so on. Further research orientation is also discussed.
Collapse
Affiliation(s)
- Muhammad Adrees
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan.
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Ibrahim
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Farhat Abbas
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Mujahid Farid
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Muhammad Farooq Qayyum
- Department of Soil Sciences, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Kashif Irshad
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| |
Collapse
|
97
|
Wu J, Guo J, Hu Y, Gong H. Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress. FRONTIERS IN PLANT SCIENCE 2015; 6:453. [PMID: 26136764 PMCID: PMC4468629 DOI: 10.3389/fpls.2015.00453] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 06/02/2015] [Indexed: 05/06/2023]
Abstract
The alleviative effects of silicon (Si) on cadmium (Cd) toxicity were investigated in cucumber (Cucumis sativus L.) and tomato (Solanum lycopersicum L.) grown hydroponically. The growth of both plant species was inhibited by 100 μM Cd, but Si application counteracted the adverse effects on growth. Si application significantly decreased the Cd concentrations in shoots of both species and roots of cucumber. The root-to-shoot transport of Cd was depressed by added Si in tomato whereas it was increased by added Si in cucumber. The total content of organic acids was decreased in tomato leaves but increased in cucumber roots and leaves by Si application under Cd stress. Si application also increased the cell wall polysaccharide levels in the roots of both species under Cd toxicity. Si-mediated changes in levels of organic acids and cell wall polysaccharides might contribute to the differences in Cd transport in the two species. In addition, Si application also mitigated Cd-induced oxidative damage in both species. The results indicate that there were different mechanisms for Si-mediated decrease in shoot Cd accumulation: in tomato, Si supply decreased root-to-shoot Cd transport; whereas in cucumber, Si supply reduced the Cd uptake by roots. It is suggested that Si-mediated Cd tolerance is associated with different physiological responses in tomato and cucumber plants.
Collapse
Affiliation(s)
| | | | | | - Haijun Gong
- College of Horticulture, Northwest A&F UniversityYangling, Shaanxi, China
| |
Collapse
|
98
|
Bokor B, Bokorová S, Ondoš S, Švubová R, Lukačová Z, Hýblová M, Szemes T, Lux A. Ionome and expression level of Si transporter genes (Lsi1, Lsi2, and Lsi6) affected by Zn and Si interaction in maize. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:6800-11. [PMID: 25430013 DOI: 10.1007/s11356-014-3876-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/16/2014] [Indexed: 05/21/2023]
Abstract
Zinc (Zn) is an essential microelement involved in various plant physiological processes. However, in excess, Zn becomes toxic and represents serious problem for plants resulting in Zn toxicity symptoms and decreasing biomass production. The effect of high Zn and its combination with silicon (Si) on ionome and expression level of ZmLsi genes was investigated in maize (Zea mays, L; hybrid Novania). Plants were cultivated hydroponically in different treatments: control (C), Zn (800 μM ZnSO4 · 7H2O), Si5 (5 mM of sodium silicate solution), and Si5 + Zn (combination of Zn and Si treatments). Growth of plants cultivated for 10 days was significantly inhibited in the presence of high Zn concentration and also by Zn and Si interaction in plants. Based on principal component analysis (PCA) and mineral element concentration in tissues, root ionome was significantly altered in both Zn and Si5 + Zn treatments in comparison to control. Mineral elements Mn, Fe, Ca, P, Mg, Ni, Co, and K significantly decreased, and Se increased in Zn and Si5 + Zn treatments. Shoot ionome was less affected than root ionome. Concentration of shoot Cu, Mn, and P decreased, and Mo increased in Zn and Si5 + Zn treatments. The PCA also revealed that the responsibility for ionome changes is mainly due to Zn exposure and also, but less, by Si application to Zn stressed plants. Expression level of Lsi1 and Lsi2 genes for the Si influx and efflux transporters was downregulated in roots after Si supply and even more downregulated by Zinc alone and also by Zn and Si interaction. Expression level of shoot Lsi6 gene was differently regulated in the first and second leaf. These results indicate negative effect of high Zn alone and also in interaction with Si on Lsi gene expression level and together with ionomic data, it was shown that homeostatic network of mineral elements was disrupted and caused negative alterations in mineral nutrition of young maize plants.
Collapse
Affiliation(s)
- Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, 84215, Bratislava, Slovakia,
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Ma J, Cai H, He C, Zhang W, Wang L. A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. THE NEW PHYTOLOGIST 2015; 206:1063-1074. [PMID: 25645894 DOI: 10.1111/nph.13276] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/12/2014] [Indexed: 05/06/2023]
Abstract
Silicon (Si) alleviates cadmium (Cd) toxicity in rice (Oryza sativa). However, the chemical mechanisms at the single-cell level are poorly understood. Here, a suspension of rice cells exposed to Cd and/or Si treatments was investigated using a combination of plant cell nutritional, molecular biological, and physical techniques including in situ noninvasive microtest technology (NMT), polymerase chain reaction (PCR), inductively coupled plasma mass spectroscopy (ICP-MS), and atomic force microscopy (AFM) in Kelvin probe mode (KPFM). We found that Si-accumulating cells had a significantly reduced net Cd(2+) influx, compared with that in Si-limited cells. PCR analyses of the expression levels of Cd and Si transporters in rice cells showed that, when the Si concentration in the medium was increased, expression of the Si transporter gene Low silicon rice 1 (Lsi1) was up-regulated, whereas expression of the gene encoding the transporter involved in the transport of Cd, Natural resistance-associated macrophage protein 5 (Nramp5), was down-regulated. ICP-MS results revealed that 64% of the total Si in the cell walls was bound to hemicellulose constituents following the fractionation of the cell walls, and consequently inhibited Cd uptake. Furthermore, AFM in KPFM demonstrated that the heterogeneity of the wall surface potential was higher in cells cultured in the presence of Si than in those cultured in its absence, and was homogenized after the addition of Cd. These results suggest that a hemicellulose-bound form of Si with net negative charges is responsible for inhibition of Cd uptake in rice cells by a mechanism of [Si-hemicellulose matrix]Cd complexation and subsequent co-deposition.
Collapse
Affiliation(s)
- Jie Ma
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongmei Cai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Congwu He
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjun Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lijun Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
100
|
Mateos-Naranjo E, Gallé A, Florez-Sarasa I, Perdomo JA, Galmés J, Ribas-Carbó M, Flexas J. Assessment of the role of silicon in the Cu-tolerance of the C4 grass Spartina densiflora. JOURNAL OF PLANT PHYSIOLOGY 2015; 178:74-83. [PMID: 25800224 DOI: 10.1016/j.jplph.2015.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 05/04/2023]
Abstract
An experiment was designed to investigate the effect of silicon supply (0 and 500 μM) on Spartina densiflora plants grown at two copper (Cu) concentrations: 0 and 15 mM. Growth parameters together with total concentrations of calcium, Cu, potassium, magnesium, manganese, sodium and nitrogen were determined in roots and leaves. Photosynthetic traits were followed by measurement of leaf gas exchange, efficiency of PSII biochemistry, total content of photosynthetic pigments and concentration and carbamylation of Rubisco sites concentration ([Rubisco]). Respiration and oxygen isotope fractionation were measured in roots to study the in vivo activities of cytochrome oxidase (COX) and alternative oxidase (AOX) pathways, as well as AOX capacity. The results confirm that Si supply improves growth of S. densiflora under Cu stress. Improved growth was associated with higher net photosynthetic rate. Beneficial effect of Si on S. densiflora photosynthetic apparatus was associated with a reduction of the Cu impact on active Rubisco sites, as well as on the photochemical apparatus and chlorophyll concentration. Moreover, ameliorative effects of Si were associated with the avoidance of Cu translocation from roots to leaves. Finally in vivo activities of COX and AOX pathways were strongly inhibited in Cu-treated plants, and this reduction was not mitigated by Si-treatment. Therefore, Si appears to play an important role in Cu-tolerance of S. densiflora, not by avoiding its uptake by roots, but via some mechanism to avoid Cu translocation from roots to leaves, resulting in a general reduction of Cu-induced deleterious effects on the leaf photosynthetic apparatus.
Collapse
Affiliation(s)
- Enrique Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 1095, 41080 Sevilla, Spain.
| | - Alexander Gallé
- Grup de Recerca en Biologia de les Plantes Mediterrànies, Departament de Biologia (UIB-IMEDEA), Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Balears, Spain
| | - Igor Florez-Sarasa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Juan Alejandro Perdomo
- Grup de Recerca en Biologia de les Plantes Mediterrànies, Departament de Biologia (UIB-IMEDEA), Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Balears, Spain
| | - Jeroni Galmés
- Grup de Recerca en Biologia de les Plantes Mediterrànies, Departament de Biologia (UIB-IMEDEA), Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Balears, Spain
| | - Miquel Ribas-Carbó
- Grup de Recerca en Biologia de les Plantes Mediterrànies, Departament de Biologia (UIB-IMEDEA), Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Balears, Spain
| | - Jaume Flexas
- Grup de Recerca en Biologia de les Plantes Mediterrànies, Departament de Biologia (UIB-IMEDEA), Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Balears, Spain
| |
Collapse
|