51
|
Su W, Zhao Z, Li G, Tang X, Xu L, Tang Y, Wei Y, Cui H, Zhang T, Zhang J, Liu X, Guo Q, Wang J. Thalamo-hippocampal dysconnectivity is associated with serum cholesterol level in drug-naïve patients with first-episode schizophrenia. J Psychiatr Res 2022; 151:497-506. [PMID: 35623125 DOI: 10.1016/j.jpsychires.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/25/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Hippocampal deficits and metabolic dysregulations such as dyslipidemia have been frequently reported in schizophrenia and are suggested to contribute to the pathophysiology of schizophrenia. Hippocampus is particularly susceptible to environmental challenges including metabolism and inflammation. However, evidence linking hippocampal alterations and metabolic dysregulations are quite sparse in drug-naïve schizophrenia. A total of 166 drug-naïve patients with first-episode schizophrenia (FES) and 78 healthy controls (HC) underwent measures for several serum metabolic markers, structural and resting-state functional magnetic resonance imaging (rs-fMRI), as well as diffusion tensor imaging (DTI). Seed-to-voxel functional connectivity (FC) and probabilistic tractography were performed to assess the functional and microstructural connectivity of the bilateral hippocampi. Clinical symptoms were evaluated with Positive and Negative Syndrome Scale (PANSS). Patients with FES showed significantly decreased total cholesterol (Chol) level. Patients showed elevated FC between the left hippocampus and bilateral thalami while showing decreased microstructural connectivity between the left hippocampus and bilateral thalami. Multiple regression analyses showed that FC from the left hippocampus to the right superior frontal gyrus (SFG), bilateral frontal pole (FP), and right thalamus were negatively associated with the Chol level, while no association was observed in the HC group. Our study validated alterations in both functional and microstructural thalamo-hippocampal connectivities, and abnormal cholesterol level in FES. Moreover, decreased cholesterol level is associated with elevated thalamo-hippocampal functional connectivity in patients with FES, suggesting that dyslipidemia may interact with the hippocampal dysfunction in FES.
Collapse
Affiliation(s)
- Wenjun Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zexin Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Guanjun Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Department of Early Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiaochen Tang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lihua Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yingying Tang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yanyan Wei
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Huiru Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Tianhong Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Xiaohua Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Department of Early Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Qian Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Department of Early Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, 200031, China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
52
|
Noveir SD, Kerman BE, Xian H, Meuret C, Smadi S, Martinez AE, Johansson J, Zetterberg H, Parks BA, Kuklenyik Z, Mack WJ, Johansson JO, Yassine HN. Effect of the ABCA1 agonist CS-6253 on amyloid-β and lipoprotein metabolism in cynomolgus monkeys. Alzheimers Res Ther 2022; 14:87. [PMID: 35751102 PMCID: PMC9229758 DOI: 10.1186/s13195-022-01028-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Inducing brain ATP-binding cassette 1 (ABCA1) activity in Alzheimer's disease (AD) mouse models is associated with improvement in AD pathology. The purpose of this study was to investigate the effects of the ABCA1 agonist peptide CS-6253 on amyloid-β peptides (Aβ) and lipoproteins in plasma and cerebrospinal fluid (CSF) of cynomolgus monkeys, a species with amyloid and lipoprotein metabolism similar to humans. METHODS CS-6253 peptide was injected intravenously into cynomolgus monkeys at various doses in three different studies. Plasma and CSF samples were collected at several time points before and after treatment. Levels of cholesterol, triglyceride (TG), lipoprotein particles, apolipoproteins, and Aβ were measured using ELISA, ion-mobility analysis, and asymmetric-flow field-flow fractionation (AF4). The relationship between the change in levels of these biomarkers was analyzed using multiple linear regression models and linear mixed-effects models. RESULTS Following CS-6253 intravenous injection, within minutes, small plasma high-density lipoprotein (HDL) particles were increased. In two independent experiments, plasma TG, apolipoprotein E (apoE), and Aβ42/40 ratio were transiently increased following CS-6253 intravenous injection. This change was associated with a non-significant decrease in CSF Aβ42. Both plasma total cholesterol and HDL-cholesterol levels were reduced following treatment. AF4 fractionation revealed that CS-6253 treatment displaced apoE from HDL to intermediate-density- and low density-lipoprotein (IDL/LDL)-sized particles in plasma. In contrast to plasma, CS-6253 had no effect on the assessed CSF apolipoproteins or lipids. CONCLUSIONS Treatment with the ABCA1 agonist CS-6253 appears to favor Aβ clearance from the brain.
Collapse
Affiliation(s)
- Sasan D Noveir
- Departments of Medicine and Neurology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Bilal E Kerman
- Departments of Medicine and Neurology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Haotian Xian
- Departments of Medicine and Neurology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Cristiana Meuret
- Departments of Medicine and Neurology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sabrina Smadi
- Departments of Medicine and Neurology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ashley E Martinez
- Departments of Medicine and Neurology, University of Southern California, Los Angeles, CA, 90033, USA
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Bryan A Parks
- Centers for Disease Control and Prevention, Atlanta, GA, 30341, USA
| | | | - Wendy J Mack
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, 90033, USA
| | | | - Hussein N Yassine
- Departments of Medicine and Neurology, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
53
|
Zhao J, Zhang H, Fan X, Yu X, Huai J. Lipid Dyshomeostasis and Inherited Cerebellar Ataxia. Mol Neurobiol 2022; 59:3800-3828. [PMID: 35420383 PMCID: PMC9148275 DOI: 10.1007/s12035-022-02826-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
Cerebellar ataxia is a form of ataxia that originates from dysfunction of the cerebellum, but may involve additional neurological tissues. Its clinical symptoms are mainly characterized by the absence of voluntary muscle coordination and loss of control of movement with varying manifestations due to differences in severity, in the site of cerebellar damage and in the involvement of extracerebellar tissues. Cerebellar ataxia may be sporadic, acquired, and hereditary. Hereditary ataxia accounts for the majority of cases. Hereditary ataxia has been tentatively divided into several subtypes by scientists in the field, and nearly all of them remain incurable. This is mainly because the detailed mechanisms of these cerebellar disorders are incompletely understood. To precisely diagnose and treat these diseases, studies on their molecular mechanisms have been conducted extensively in the past. Accumulating evidence has demonstrated that some common pathogenic mechanisms exist within each subtype of inherited ataxia. However, no reports have indicated whether there is a common mechanism among the different subtypes of inherited cerebellar ataxia. In this review, we summarize the available references and databases on neurological disorders characterized by cerebellar ataxia and show that a subset of genes involved in lipid homeostasis form a new group that may cause ataxic disorders through a common mechanism. This common signaling pathway can provide a valuable reference for future diagnosis and treatment of ataxic disorders.
Collapse
Affiliation(s)
- Jin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xueyu Fan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xue Yu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jisen Huai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
54
|
Pon1 Deficiency Promotes Trem2 Pathway-Mediated Microglial Phagocytosis and Inhibits Pro-inflammatory Cytokines Release In Vitro and In Vivo. Mol Neurobiol 2022; 59:4612-4629. [PMID: 35589918 DOI: 10.1007/s12035-022-02827-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 04/02/2022] [Indexed: 11/27/2022]
Abstract
Paraoxonase 1 (PON1) plays an anti-inflammatory role in the cardiovascular system. Levels of serum PON1 and polymorphisms in this gene were linked to Alzheimer's disease (AD) and Parkinson disease (PD), but its function in the neuroimmune system and AD is not clear. To address this issue, we used Pon1 knockout rats previously generated by our lab to investigate the role of Pon1 in microglia. Knockout of Pon1 in rat brain tissues protected against LPS-induced microglia activation. Pon1 deficiency in rat primary microglia increased Trem2 (triggering receptor expressed in myeloid cells 2) expression, phagocytosis, and IL-10 (M2-phenotype marker) release, but decreased production of pro-inflammatory cytokines such as IL-1β, IL-6, and IL-18 especially TNF-α (M1-phenotype markers) induced by LPS. Pon1 deficiency in rat primary microglia activated Trem2 pathway but decreased LPS-induced ERK activation. The phagocytosis-promoting effect of Pon1 knockout could be reversed by administration of recombinant PON1 protein. The interaction between PON1 and TREM2 was verified by co-immunoprecipitation (co-IP) using rat brain tissues or over-expressed BV2 cell lysates, which might be involved in lysosomal localization of TREM2. Furthermore, Pon1 knockout also enhanced microglial phagocytosis and clearance of exogenous Aβ by an intrahippocampal injection and decrease the transcription of cytokines such as IL-1β, IL-6, and TNF-α in vivo. These results suggest that Pon1 knockout facilitates microglial phagocytosis and inhibits the production of proinflammatory cytokines both in vivo and in vitro, in which the interaction between Pon1 and Trem2 may be involved. These findings provide novel insights into the role of PON1 in neuroinflammation and highlight TREM2 as a potential target for Alzheimer's disease therapy.
Collapse
|
55
|
Tong JH, Gong SQ, Zhang YS, Dong JR, Zhong X, Wei MJ, Liu MY. Association of Circulating Apolipoprotein AI Levels in Patients With Alzheimer's Disease: A Systematic Review and Meta-Analysis. Front Aging Neurosci 2022; 14:899175. [PMID: 35663584 PMCID: PMC9157647 DOI: 10.3389/fnagi.2022.899175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 11/26/2022] Open
Abstract
With the development of medicine, our research on Alzheimer's disease (AD) has been further deepened, but the mechanism of its occurrence and development has not been fully revealed, and there is currently no effective treatment method. Several studies have shown that apolipoprotein AI (ApoA-I) can affect the occurrence and development of Alzheimer's disease by binding to amyloid β (Aβ). However, the association between circulating levels of ApoA-I and AD remains controversial. We conducted a meta-analysis of 18 studies published between 1992 and 2017 to determine whether the ApoA-I levels in the blood and cerebrospinal fluid (CSF) are abnormal in AD. Literatures were searched in PubMed, EMBASE and Web of Science databases without language limitations. A pooled subject sample including 1,077 AD patients and 1,271 healthy controls (HCs) was available to assess circulating ApoA-I levels; 747 AD patients and 680 HCs were included for ApoA-I levels in serum; 246 AD patients and 456 HCs were included for ApoA-I levels in plasma; 201 AD patients and 447 HCs were included for ApoA-I levels in CSF. It was found that serum and plasma levels of ApoA-I were significantly reduced in AD patients compared with HCs {[standardized mean difference (SMD) = −1.16; 95% confidence interval (CI) (−1.72, −0.59); P = 0.000] and [SMD = −1.13; 95% CI (−2.05, −0.21); P = 0.016]}. Patients with AD showed a tendency toward higher CSF ApoA-I levels compared with HCs, although this difference was non-significant [SMD = 0.20; 95% CI (−0.16, 0.56); P = 0.273]. In addition, when we analyzed the ApoA-I levels of serum and plasma together, the circulating ApoA-I levels in AD patients was significantly lower [SMD = −1.15; 95% CI (−1.63, −0.66); P = 0.000]. These results indicate that ApoA-I deficiency may be a risk factor of AD, and ApoA-I has the potential to serve as a biomarker for AD and provide experimental evidence for diagnosis of AD. Systematic Review Registration: PROSPERO, identifier: 325961.
Collapse
|
56
|
Berdowska I, Matusiewicz M, Krzystek-Korpacka M. HDL Accessory Proteins in Parkinson’s Disease—Focusing on Clusterin (Apolipoprotein J) in Regard to Its Involvement in Pathology and Diagnostics—A Review. Antioxidants (Basel) 2022; 11:antiox11030524. [PMID: 35326174 PMCID: PMC8944556 DOI: 10.3390/antiox11030524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Parkinson’s disease (PD)—a neurodegenerative disorder (NDD) characterized by progressive destruction of dopaminergic neurons within the substantia nigra of the brain—is associated with the formation of Lewy bodies containing mainly α-synuclein. HDL-related proteins such as paraoxonase 1 and apolipoproteins A1, E, D, and J are implicated in NDDs, including PD. Apolipoprotein J (ApoJ, clusterin) is a ubiquitous, multifunctional protein; besides its engagement in lipid transport, it modulates a variety of other processes such as immune system functionality and cellular death signaling. Furthermore, being an extracellular chaperone, ApoJ interacts with proteins associated with NDD pathogenesis (amyloid β, tau, and α-synuclein), thus modulating their properties. In this review, the association of clusterin with PD is delineated, with respect to its putative involvement in the pathological mechanism and its application in PD prognosis/diagnosis.
Collapse
Affiliation(s)
- Izabela Berdowska
- Correspondence: (I.B.); (M.M.); Tel.: +48-71-784-13-92 (I.B.); +48-71-784-13-70 (M.M.)
| | | | | |
Collapse
|
57
|
Emerging role of HDL in brain cholesterol metabolism and neurodegenerative disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159123. [PMID: 35151900 DOI: 10.1016/j.bbalip.2022.159123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 01/07/2023]
Abstract
High-density lipoproteins (HDLs play a key role in cholesterol homeostasis maintenance in the central nervous system (CNS), by carrying newly synthesized cholesterol from astrocytes to neurons, to support their lipid-related physiological functions. As occurs for plasma HDLs, brain lipoproteins are assembled through the activity of membrane cholesterol transporters, undergo remodeling mediated by specific enzymes and transport proteins, and finally deliver cholesterol to neurons by a receptor-mediated internalization process. A growing number of evidences indicates a strong association between alterations of CNS cholesterol homeostasis and neurodegenerative disorders, in particular Alzheimer's disease (AD), and a possible role in this relationship may be played by defects in brain HDL metabolism. In the present review, we summarize and critically examine the current state of knowledge on major modifications of HDL and HDL-mediated brain cholesterol transport in AD, by taking into consideration the individual steps of this process. We also describe potential and encouraging HDL-based therapies that could represent new therapeutic strategies for AD treatment. Finally, we revise the main plasma and brain HDL modifications in other neurodegenerative disorders including Parkinson's disease (PD), Huntington's disease (HD), and frontotemporal dementia (FTD).
Collapse
|
58
|
Aqul AA, Ramirez CM, Lopez AM, Burns DK, Repa JJ, Turley SD. Molecular markers of brain cholesterol homeostasis are unchanged despite a smaller brain mass in a mouse model of cholesteryl ester storage disease. Lipids 2022; 57:3-16. [PMID: 34618372 PMCID: PMC8766890 DOI: 10.1002/lipd.12325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023]
Abstract
Lysosomal acid lipase (LAL), encoded by the gene LIPA, facilitates the intracellular processing of lipids by hydrolyzing cholesteryl esters and triacylglycerols present in newly internalized lipoproteins. Loss-of-function mutations in LIPA result in cholesteryl ester storage disease (CESD) or Wolman disease when mutations cause complete loss of LAL activity. Although the phenotype of a mouse CESD model has been extensively characterized, there has not been a focus on the brain at different stages of disease progression. In the current studies, whole-brain mass and the concentrations of cholesterol in both the esterified (EC) and unesterified (UC) fractions were measured in Lal-/- and matching Lal+/+ mice (FVB-N strain) at ages ranging from 14 up to 280 days after birth. Compared to Lal+/+ controls at 50, 68-76, 140-142, and 230-280 days of age, Lal-/- mice had brain weights that averaged approximately 6%, 7%, 18%, and 20% less, respectively. Brain EC levels were higher in the Lal-/- mice at every age, being elevated 27-fold at 230-280 days. Brain UC concentrations did not show a genotypic difference at any age. The elevated brain EC levels in the Lal-/- mice did not reflect EC in residual blood. An mRNA expression analysis for an array of genes involved in the synthesis, catabolism, storage, and transport of cholesterol in the brains of 141-day old mice did not detect any genotypic differences although the relative mRNA levels for several markers of inflammation were moderately elevated in the Lal-/- mice. The possible sites of EC accretion in the central nervous system are discussed.
Collapse
Affiliation(s)
- Amal A. Aqul
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Charina M. Ramirez
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Adam M. Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Dennis K. Burns
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Joyce J. Repa
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Stephen D. Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| |
Collapse
|
59
|
Chelliah SS, Bhuvanendran S, Magalingam KB, Kamarudin MNA, Radhakrishnan AK. Identification of blood-based biomarkers for diagnosis and prognosis of Parkinson's disease: A systematic review of proteomics studies. Ageing Res Rev 2022; 73:101514. [PMID: 34798300 DOI: 10.1016/j.arr.2021.101514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022]
Abstract
Parkinson's Disease (PD), a neurodegenerative disorder, is characterised by the loss of motor function and dopamine neurons. Therapeutic avenues remain a challenge due to lack of accuracy in early diagnosis, monitoring of disease progression and limited therapeutic options. Proteomic platforms have been utilised to discover biomarkers for numerous diseases, a tool that may benefit the diagnosis and monitoring of disease progression in PD patients. Therefore, this systematic review focuses on analysing blood-based candidate biomarkers (CB) identified via proteomics platforms for PD. This study systematically reviewed articles across six databases (EMBASE, Cochrane, Ovid Medline, Scopus, Science Direct and PubMed) published between 2010 and 2020. Of the 504 articles identified, 12 controlled-PD studies were selected for further analysis. A total of 115 candidate biomarkers (CB) were identified across selected 12-controlled studies, of which 23 CB were found to be replicable in more than two cohorts. Using the PANTHER Go-Slim classification system and STRING network, the gene function and protein interactions between biomarkers were analysed. Our analysis highlights Apolipoprotein A-I (ApoA-I), which is essential in lipid metabolism, oxidative stress, and neuroprotection demonstrates high replicability across five cohorts with consistent downregulation across four cohorts. Since ApoA-I was highly replicable across blood fractions, proteomic platforms and continents, its relationship with cholesterol, statin and oxidative stress as PD biomarker, its role in the pathogenesis of PD is discussed in this paper. The present study identified ApoA-I as a potential biomarker via proteomics analysis of PD for the early diagnosis and prediction of disease progression.
Collapse
Affiliation(s)
- Shalini Sundramurthi Chelliah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Saatheeyavaane Bhuvanendran
- Brain Research Institute Monash Sunway (BRIMS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Kasthuri Bai Magalingam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Muhamad Noor Alfarizal Kamarudin
- Brain Research Institute Monash Sunway (BRIMS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| |
Collapse
|
60
|
Sierri G, Dal Magro R, Vergani B, Leone BE, Formicola B, Taiarol L, Fagioli S, Kravicz M, Tremolizzo L, Calabresi L, Re F. Reduced Levels of ABCA1 Transporter Are Responsible for the Cholesterol Efflux Impairment in β-Amyloid-Induced Reactive Astrocytes: Potential Rescue from Biomimetic HDLs. Int J Mol Sci 2021; 23:ijms23010102. [PMID: 35008528 PMCID: PMC8745016 DOI: 10.3390/ijms23010102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
The cerebral synthesis of cholesterol is mainly handled by astrocytes, which are also responsible for apoproteins’ synthesis and lipoproteins’ assembly required for the cholesterol transport in the brain parenchyma. In Alzheimer disease (AD), these processes are impaired, likely because of the astrogliosis, a process characterized by morphological and functional changes in astrocytes. Several ATP-binding cassette transporters expressed by brain cells are involved in the formation of nascent discoidal lipoproteins, but the effect of beta-amyloid (Aβ) assemblies on this process is not fully understood. In this study, we investigated how of Aβ1-42-induced astrogliosis affects the metabolism of cholesterol in vitro. We detected an impairment in the cholesterol efflux of reactive astrocytes attributable to reduced levels of ABCA1 transporters that could explain the decreased lipoproteins’ levels detected in AD patients. To approach this issue, we designed biomimetic HDLs and evaluated their performance as cholesterol acceptors. The results demonstrated the ability of apoA-I nanodiscs to cross the blood–brain barrier in vitro and to promote the cholesterol efflux from astrocytes, making them suitable as a potential supportive treatment for AD to compensate the depletion of cerebral HDLs.
Collapse
Affiliation(s)
- Giulia Sierri
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
| | - Roberta Dal Magro
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
| | - Barbara Vergani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (B.V.); (B.E.L.); (L.T.)
| | - Biagio Eugenio Leone
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (B.V.); (B.E.L.); (L.T.)
| | - Beatrice Formicola
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
| | - Lorenzo Taiarol
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
| | - Stefano Fagioli
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
| | - Marcelo Kravicz
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
| | - Lucio Tremolizzo
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (B.V.); (B.E.L.); (L.T.)
| | - Laura Calabresi
- Department of Pharmacological and Biomolecular Science, Centro Grossi Paoletti, University of Milan, 20133 Milan, Italy;
| | - Francesca Re
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
- Correspondence:
| |
Collapse
|
61
|
Structural and Functional Changes of Reconstituted High-Density Lipoprotein (HDL) by Incorporation of α-synuclein: A Potent Antioxidant and Anti-Glycation Activity of α-synuclein and apoA-I in HDL at High Molar Ratio of α-synuclein. Molecules 2021; 26:molecules26247485. [PMID: 34946565 PMCID: PMC8707077 DOI: 10.3390/molecules26247485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 01/05/2023] Open
Abstract
α-synuclein (α-syn) is a major culprit of Parkinson's disease (PD), although lipoprotein metabolism is very important in the pathogenesis of PD. α-syn was expressed and purified using the pET30a expression vector from an E. coli expression system to elucidate the physiological effects of α-syn on lipoprotein metabolism. The human α-syn protein (140 amino acids) with His-tag (8 amino acids) was expressed and purified to at least 95% purity. Isoelectric focusing gel electrophoresis showed that the isoelectric point (pI) of α-syn and apoA-I were pI = 4.5 and pI = 6.4, respectively. The lipid-free α-syn showed almost no phospholipid-binding ability, while apoA-I showed rapid binding ability with a half-time (T1/2) = 8 ± 0.7 min. The α-syn and apoA-I could be incorporated into the reconstituted HDL (rHDL, molar ratio 95:5:1:1, palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC):cholesterol:apoA-I:α-syn with the production of larger particles (92 Å) than apoA-I-rHDL (86 and 78 Å) and α-syn-rHDL (65 Å). An rHDL containing both apoA-I and α-syn showed lower α-helicity around 45% with a red shift of the Trp wavelength maximum fluorescence (WMF) from 339 nm, while apoA-I-HDL showed 76% α-helicity and 337 nm of WMF. The denaturation by urea addition showed that the incorporation of α-syn in rHDL caused a larger increase in the WMF than apoA-I-rHDL, suggesting that the destabilization of the secondary structure of apoA-I by the addition of α-syn. On the other hand, the addition of α-syn induced two-times higher resistance to rHDL glycation at apoA-I:α-syn molar ratios of 1:1 and 1:2. Interestingly, low α-syn in rHDL concentrations, molar ratio of 1:0.5 (apoA-I:α-syn), did not prevent glycation with more multimerization of apoA-I. In the lipid-free and lipid-bound state, α-syn showed more potent antioxidant activity than apoA-I against cupric ion-mediated LDL oxidation. On the other hand, microinjection of α-syn (final 2 μM) resulted in 10% less survival of zebrafish embryos than apoA-I. A subcutaneous injection of α-syn (final 34 μM) resulted in less tail fin regeneration than apoA-I. Interestingly, incorporation of α-syn at a low molar ratio (apoA-I:α-syn, 1:0.5) in rHDL resulted destabilization of the secondary structure and impairment of apoA-I functionality via more oxidation and glycation. However, at a higher molar ratio of α-syn in rHDL (apoA-I:α-syn = 1:1 or 1:2) exhibited potent antioxidant and anti-glycation activity without aggregation. In conclusion, there might be a critical concentration of α-syn and apoA-I in HDL-like complex to prevent the aggregation of apoA-I via structural and functional enhancement.
Collapse
|
62
|
Auler N, Tonner H, Pfeiffer N, Grus FH. Antibody and Protein Profiles in Glaucoma: Screening of Biomarkers and Identification of Signaling Pathways. BIOLOGY 2021; 10:biology10121296. [PMID: 34943212 PMCID: PMC8698915 DOI: 10.3390/biology10121296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Glaucoma is a chronic eye disease that is one of the leading causes of blindness worldwide. Currently, the only therapeutic option is to lower intraocular pressure. The onset of the disease is often delayed because patients do not notice visual impairment until very late, which is why glaucoma is also known as “the silent thief of sight”. Therefore, early detection and definition of specific markers, the so-called biomarkers, are immensely important. For the methodical implementation, high-throughput methods and omic-based methods came more and more into focus. Thus, interesting targets for possible biomarkers were already suggested by clinical research and basic research, respectively. This review article aims to join the findings of the two disciplines by collecting overlaps as well as differences in various clinical studies and to shed light on promising candidates concerning findings from basic research, facilitating conclusions on possible therapy options. Abstract Glaucoma represents a group of chronic neurodegenerative diseases, constituting the second leading cause of blindness worldwide. To date, chronically elevated intraocular pressure has been identified as the main risk factor and the only treatable symptom. However, there is increasing evidence in the recent literature that IOP-independent molecular mechanisms also play an important role in the progression of the disease. In recent years, it has become increasingly clear that glaucoma has an autoimmune component. The main focus nowadays is elucidating glaucoma pathogenesis, finding early diagnostic options and new therapeutic approaches. This review article summarizes the impact of different antibodies and proteins associated with glaucoma that can be detected for example by microarray and mass spectrometric analyzes, which (i) provide information about expression profiles and associated molecular signaling pathways, (ii) can possibly be used as a diagnostic tool in future and, (iii) can identify possible targets for therapeutic approaches.
Collapse
|
63
|
Nazeri Z, Azizidoost S, Cheraghzadeh M, Mohammadi A, Kheirollah A. Increased protein expression of ABCA1, HMG-CoA reductase, and CYP46A1 induced by garlic and allicin in the brain mouse and astrocytes-isolated from C57BL/6J. AVICENNA JOURNAL OF PHYTOMEDICINE 2021; 11:473-483. [PMID: 34745919 PMCID: PMC8554280 DOI: 10.22038/ajp.2021.17834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/25/2020] [Accepted: 01/16/2021] [Indexed: 01/02/2023]
Abstract
Objective: Regulation of cholesterol level is essential for the brain optimal function. The beneficial effect of garlic consumption on cholesterol homeostasis is well known; however, the molecular mechanism to support its properties is unclear. Here, we investigated the beneficial effect of aqueous extract of garlic and allicin on lipid profile and the main players involved in brain cholesterol homeostasis including ABCA1, HMG-CoA reductase, and CYP46A1 in both C57BL/6J mice brain and astrocytes. Materials and Methods: Thirty mice were divided into control and garlic groups. Garlic group was fed with the aqueous extract of garlic. Serum lipids were measured and brain protein levels of ABCA1, HMGCR, and CYP46A1 were determined by western blotting. Changes in these proteins expression were also studied in the presence of allicin in cultured astrocytes. Results: A moderate decrease in serum total cholesterol and a significant increase in plasma HDL-C levels (p<0.05) were detected. A significant increase in ABCA1, HMGCR, and CYP46A1 protein levels was observed in the garlic group and in the cultured astrocytes treated with allicin by western blotting (p<0.05). Conclusion: Our findings indicated that the main players involved in cholesterol turnover including HMGCR that is involved in cholesterol synthesis, ABCA1 that is important in cholesterol efflux, and CYP46A1 that is necessary in cholesterol degradation, were up regulated by garlic/allicin in both animal and cell culture model. We concluded that increasing cholesterol turnover is a possible mechanism for the beneficial effects of garlic in cholesterol homeostasis.
Collapse
Affiliation(s)
- Zahra Nazeri
- Department of Biochemistry, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Azizidoost
- Department of Biochemistry, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Cheraghzadeh
- Department of Biochemistry, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Asma Mohammadi
- Department of Biochemistry, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Department of Biochemistry, Medical School, Cellular & Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
64
|
Koch M, Aroner SA, Fitzpatrick AL, Longstreth WT, Furtado JD, Mukamal KJ, Jensen MK. HDL (High-Density Lipoprotein) Subspecies, Prevalent Covert Brain Infarcts, and Incident Overt Ischemic Stroke: Cardiovascular Health Study. Stroke 2021; 53:1292-1300. [PMID: 34645286 DOI: 10.1161/strokeaha.121.034299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND PURPOSE Whether HDL (high-density lipoprotein) is associated with risk of vascular brain injury is unclear. HDL is comprised of many apo (apolipoprotein) species, creating distinct subtypes of HDL. METHODS We utilized sandwich ELISA to determine HDL subspecies from plasma collected in 1998/1999 from 2001 CHS (Cardiovascular Health Study) participants (mean age, 80 years). RESULTS In cross-sectional analyses, participants with higher apoA1 in plasma and lower apoE in HDL were less likely to have prevalent covert magnetic resonance imaging-defined infarcts: odds ratio for apoA1 Q4 versus Q1, 0.68 (95% CI, 0.50-0.93), and odds ratio for apoE Q4 versus Q1, 1.36 (95% CI, 1.01-1.84). Similarly, apoA1 in the subspecies of HDL that lacked apoC3, apoJ, or apoE was inversely related to covert infarcts, and apoE in the subspecies of HDL that lacked apoC3 or apoJ was directly related to covert infarcts in prospective analyses. In contrast, the concentrations of apoA1 and apoE in the complementary subspecies of HDL that contained these apos were unrelated to covert infarcts. Patterns of associations between incident overt ischemic stroke and apoA1, apoE, and apoA1 and apoE in subspecies of HDL were similar to those observed for covert infarcts but less pronounced. CONCLUSIONS This study highlights HDL subspecies defined by apo content as relevant biomarkers of covert and overt vascular brain injury.
Collapse
Affiliation(s)
- Manja Koch
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (M.K., S.A.A., J.D.F., K.J.M., M.K.J.)
| | - Sarah A Aroner
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (M.K., S.A.A., J.D.F., K.J.M., M.K.J.).,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston (S.A.A.)
| | - Annette L Fitzpatrick
- Department of Family Medicine, University of Washington, Seattle. (A.L.F.).,Department of Epidemiology, University of Washington, Seattle. (A.L.F.).,Department of Global Health, University of Washington, Seattle. (A.L.F.)
| | - W T Longstreth
- Department of Neurology, University of Washington, Seattle. (W.T.L.).,Department of Epidemiology, University of Washington, Seattle. (W.T.L.)
| | - Jeremy D Furtado
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (M.K., S.A.A., J.D.F., K.J.M., M.K.J.)
| | - Kenneth J Mukamal
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (M.K., S.A.A., J.D.F., K.J.M., M.K.J.).,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA (K.J.M.)
| | - Majken K Jensen
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (M.K., S.A.A., J.D.F., K.J.M., M.K.J.).,Department of Public Health, Section of Epidemiology, University of Copenhagen, Denmark (M.K.J.)
| |
Collapse
|
65
|
Van Valkenburgh J, Meuret C, Martinez AE, Kodancha V, Solomon V, Chen K, Yassine HN. Understanding the Exchange of Systemic HDL Particles Into the Brain and Vascular Cells Has Diagnostic and Therapeutic Implications for Neurodegenerative Diseases. Front Physiol 2021; 12:700847. [PMID: 34552500 PMCID: PMC8450374 DOI: 10.3389/fphys.2021.700847] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/29/2021] [Indexed: 12/02/2022] Open
Abstract
High-density lipoproteins (HDLs) are complex, heterogenous lipoprotein particles, consisting of a large family of apolipoproteins, formed in subspecies of distinct shapes, sizes, and functions and are synthesized in both the brain and the periphery. HDL apolipoproteins are important determinants of Alzheimer’s disease (AD) pathology and vascular dementia, having both central and peripheral effects on brain amyloid-beta (Aβ) accumulation and vascular functions, however, the extent to which HDL particles (HLD-P) can exchange their protein and lipid components between the central nervous system (CNS) and the systemic circulation remains unclear. In this review, we delineate how HDL’s structure and composition enable exchange between the brain, cerebrospinal fluid (CSF) compartment, and vascular cells that ultimately affect brain amyloid metabolism and atherosclerosis. Accordingly, we then elucidate how modifications of HDL-P have diagnostic and therapeutic potential for brain vascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Juno Van Valkenburgh
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Cristiana Meuret
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ashley E Martinez
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Vibha Kodancha
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Victoria Solomon
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Hussein N Yassine
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
66
|
Interactions of Lipids, Lipoproteins, and Apolipoproteins with the Blood-Brain Barrier. Pharm Res 2021; 38:1469-1475. [PMID: 34518942 DOI: 10.1007/s11095-021-03098-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
Lipids and lipoproteins are a diverse group of substances and their interactions with the blood-brain barrier (BBB) is similarly diverse. Some lipoproteins such as high density lipoprotein (HDL), apolipoprotein (apo) A-I, apoJ, some free fatty acids, and triglycerides cross the BBB whereas others such as apoE do not. Some forms of cholesterol can cross the BBB and others do not. Lipids can have effects on BBB preservation and function: HDL may protect the BBB during multiple sclerosis, cholesterol can disrupt the BBB, and triglycerides inhibit the transport of leptin across the BBB and the activation of the hypothalamic leptin receptor. ApoE is associated with many effects on the BBB, with the specific isoform apoE4 having detrimental effects. In summary, the diverse ways in which lipids, lipoproteins, and apolipoproteins interact with the BBB is important in both health and disease.
Collapse
|
67
|
Sterol and lipid analyses identifies hypolipidemia and apolipoprotein disorders in autism associated with adaptive functioning deficits. Transl Psychiatry 2021; 11:471. [PMID: 34504056 PMCID: PMC8429516 DOI: 10.1038/s41398-021-01580-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 12/30/2022] Open
Abstract
An improved understanding of sterol and lipid abnormalities in individuals with autism spectrum disorder (ASD) could lead to personalized treatment approaches. Toward this end, in blood, we identified reduced synthesis of cholesterol in families with ≥2 children with ASD participating with the Autism Genetic Resource Exchange (AGRE), as well as reduced amounts of high-density lipoprotein cholesterol (HDL), apolipoprotein A1 (ApoA1) and apolipoprotein B (ApoB), with 19.9% of the subjects presenting with apolipoprotein patterns similar to hypolipidemic clinical syndromes and 30% with either or both ApoA1 and ApoB less than the fifth centile. Subjects with levels less than the fifth centile of HDL or ApoA1 or ApoA1 + ApoB had lower adaptive functioning than other individuals with ASD, and hypocholesterolemic subjects had apolipoprotein deficits significantly divergent from either typically developing individuals participating in National Institutes of Health or the National Health and Nutrition Examination Survey III.
Collapse
|
68
|
Chai AB, Lam HHJ, Kockx M, Gelissen IC. Apolipoprotein E isoform-dependent effects on the processing of Alzheimer's amyloid-β. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158980. [PMID: 34044125 DOI: 10.1016/j.bbalip.2021.158980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022]
Abstract
Since the identification of the apolipoprotein E (apoE) *ε4 allele as a major genetic risk factor for late-onset Alzheimer's disease, significant efforts have been aimed at elucidating how apoE4 expression confers greater brain amyloid-β (Aβ) burden, earlier disease onset and worse clinical outcomes compared to apoE2 and apoE3. ApoE primarily functions as a lipid carrier to regulate cholesterol metabolism in circulation as well as in the brain. However, it has also been suggested to interact with hydrophobic Aβ peptides to influence their processing in an isoform-dependent manner. Here, we review evidence from in vitro and in vivo studies extricating the effects of the three apoE isoforms, on different stages of the Aβ processing pathway including synthesis, aggregation, deposition, clearance and degradation. ApoE4 consistently correlates with impaired Aβ clearance, however data regarding Aβ synthesis and aggregation are conflicting and likely reflect inconsistencies in experimental approaches across studies. We further discuss the physical and chemical properties of apoE that may explain the inherent differences in activity between the isoforms. The lipidation status and lipid transport function of apoE are intrinsically linked with its ability to interact with Aβ. Traditionally, apoE-oriented therapeutic strategies for Alzheimer's disease have been proposed to non-specifically enhance or inhibit apoE activity. However, given the wide-ranging physiological functions of apoE in the brain and periphery, a more viable approach may be to specifically target and neutralise the pathological apoE4 isoform.
Collapse
Affiliation(s)
- Amanda B Chai
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Hin Hei Julian Lam
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Maaike Kockx
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Concord, NSW 2139, Australia
| | - Ingrid C Gelissen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
69
|
Jin Y, Chifodya K, Han G, Jiang W, Chen Y, Shi Y, Xu Q, Xi Y, Wang J, Zhou J, Zhang H, Ding Y. High-density lipoprotein in Alzheimer's disease: From potential biomarkers to therapeutics. J Control Release 2021; 338:56-70. [PMID: 34391838 DOI: 10.1016/j.jconrel.2021.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
The inverse correlation between high-density lipoprotein (HDL) levels in vivo and the risk of Alzheimer's disease (AD) has become an inspiration for HDL-inspired AD therapy, including plain HDL and various intelligent HDL-based drug delivery systems. In this review, we will focus on the two endogenous HDL subtypes in the central nervous system (CNS), apolipoprotein E-based HDL (apoE-HDL) and apolipoprotein A-I-based HDL (apoA-I-HDL), especially their influence on AD pathophysiology to reveal HDL's potential as biomarkers for risk prediction, and summarize the relevant therapeutic mechanisms to propose possible treatment strategies. We will emphasize the latest advances of HDL as therapeutics (plain HDL and HDL-based drug delivery systems) to discuss the potential for AD therapy and review innovative techniques in the preparation of HDL-based nanoplatforms to provide a basis for the rational design and future development of anti-AD drugs.
Collapse
Affiliation(s)
- Yi Jin
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China
| | - Kudzai Chifodya
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Guochen Han
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China
| | - Wenxin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yun Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Shi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Qiao Xu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yilong Xi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Wang
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jianping Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China.
| | - Huaqing Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China.
| | - Yang Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China.
| |
Collapse
|
70
|
A Review of Acute Coronary Syndrome and its Potential Impact on Cognitive Function. Glob Heart 2021; 16:53. [PMID: 34381674 PMCID: PMC8344957 DOI: 10.5334/gh.934] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 07/26/2021] [Indexed: 11/20/2022] Open
Abstract
According to the World Health Organization (WHO) forecasts, in 2030, the number of people suffering from dementia will reach 82 million people worldwide, representing a huge burden on health and social care systems. Epidemiological data indicates a relationship between coronary heart disease (CHD) and the occurrence of cognitive impairment (CI) and dementia. It is known that both diseases have common risk factors. However, the impact of myocardial infarction (MI) on cognitive function remains controversial and largely unknown. The main goal of this study is to attempt to summarize and discuss selected scientific reports on the causes, mechanisms and effects of CI in patients after acute coronary syndrome (ACS), especially after MI. The risk of CI can increase in patients after ACS, and can therefore also adversely affect the further course of treatment. A late diagnosis of CI can lead to serious clinical implications, such as an increase in the number of hospitalizations and mortality.
Collapse
|
71
|
Hoscheidt S, Sanderlin AH, Baker LD, Jung Y, Lockhart S, Kellar D, Whitlow C, Hanson AJ, Friedman S, Register T, Leverenz JB, Craft S. Mediterranean and Western diet effects on Alzheimer's disease biomarkers, cerebral perfusion, and cognition in mid-life: A randomized trial. Alzheimers Dement 2021; 18:457-468. [PMID: 34310044 PMCID: PMC9207984 DOI: 10.1002/alz.12421] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 11/28/2022]
Abstract
Introduction Mid‐life dietary patterns are associated with Alzheimer's disease (AD) risk, although few controlled trials have been conducted. Methods Eighty‐seven participants (age range: 45 to 65) with normal cognition (NC, n = 56) or mild cognitive impairment (MCI, n = 31) received isocaloric diets high or low in saturated fat, glycemic index, and sodium (Western‐like/West‐diet vs. Mediterranean‐like/Med‐diet) for 4 weeks. Diet effects on cerebrospinal fluid (CSF) biomarkers, cognition, and cerebral perfusion were assessed to determine whether responses differed by cognitive status. Results CSF amyloid beta (Aβ)42/40 ratios increased following the Med‐diet, and decreased after West‐diet for NC adults, whereas the MCI group showed the reverse pattern. For the MCI group, the West‐diet reduced and the Med‐diet increased total tau (t‐tau), whereas CSF Aβ42/t‐tau ratios increased following the West‐diet and decreased following the Med‐diet. For NC participants, the Med‐diet increased and the West‐diet decreased cerebral perfusion. Discussion Diet response during middle age may highlight early pathophysiological processes that increase AD risk.
Collapse
Affiliation(s)
| | | | - Laura D Baker
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Youngkyoo Jung
- University of California-Davis, Sacramento, California, USA
| | - Samuel Lockhart
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Derek Kellar
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Angela J Hanson
- University of Washington Medical Center, Seattle, Washington, USA
| | - Seth Friedman
- Seattle Children's Hospital, Seattle, Washington, USA
| | - Thomas Register
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - James B Leverenz
- Cleveland Clinic Lou Ruovo Center for Brain Health, Cleveland, Ohio, USA
| | - Suzanne Craft
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
72
|
Ooi KLM, Vacy K, Boon WC. Fatty acids and beyond: Age and Alzheimer's disease related changes in lipids reveal the neuro-nutraceutical potential of lipids in cognition. Neurochem Int 2021; 149:105143. [PMID: 34311029 DOI: 10.1016/j.neuint.2021.105143] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/19/2022]
Abstract
Lipids are essential in maintaining brain function, and lipid profiles have been reported to be altered in aged and Alzheimer's disease (AD) brains as compared to healthy mature brains. Both age and AD share common metabolic hallmarks such as increased oxidative stress and perturbed metabolic function, and age remains the most strongly correlated risk factor for AD, a neurodegenerative disease. A major accompanying pathological symptom of these conditions is cognitive impairment, which is linked with changes in lipid metabolism. Thus, nutraceuticals that affect brain lipid metabolism or lipid levels as a whole have the potential to ameliorate cognitive decline. Lipid analyses and lipidomic studies reveal changes in specific lipid types with aging and AD, which can identify potential lipid-based nutraceuticals to restore the brain to a healthy lipid phenotype. The brain lipid profile can be influenced directly with dietary administration of lipids themselves, although because of synergistic effects of nutrients it may be more useful to consider a multi-component diet rather than single nutrient supplementation. Gut microbiota also serve as a source of beneficial lipids, and the value of treatments that manipulate the composition of gut microbiome should not be ignored. Lastly, instead of direct supplementation, compounds that affect pathways involved with lipid metabolism should also be considered as a way of manipulating lipid levels to improve cognition. In this review, we briefly discuss the role of lipids in the brain, the changing lipid profile in AD, current research on lipid-based nutraceuticals and their therapeutic potential to combat cognitive impairment.
Collapse
Affiliation(s)
- Kei-Lin Murata Ooi
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Kristina Vacy
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Wah Chin Boon
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia; School of Biosciences, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
73
|
Structural and Functional Impairments of Reconstituted High-Density Lipoprotein by Incorporation of Recombinant β-Amyloid42. Molecules 2021; 26:molecules26144317. [PMID: 34299592 PMCID: PMC8303321 DOI: 10.3390/molecules26144317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
Beta (β)-amyloid (Aβ) is a causative protein of Alzheimer’s disease (AD). In the pathogenesis of AD, the apolipoprotein (apo) A-I and high-density lipoprotein (HDL) metabolism is essential for the clearance of Aβ. In this study, recombinant Aβ42 was expressed and purified via the pET-30a expression vector and E.coli production system to elucidate the physiological effects of Aβ on HDL metabolism. The recombinant human Aβ protein (51 aa) was purified to at least 95% purity and characterized in either the lipid-free and lipid-bound states with apoA-I. Aβ was incorporated into the reconstituted HDL (rHDL) (molar ratio 95:5:1, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC):cholesterol:apoA-I) with various apoA-I:Aβ ratios from 1:0 to 1:0.5, 1:1 and 1:2. With an increasing molar ratio of Aβ, the α-helicity of apoA-I was decreased from 62% to 36% with a red shift of the Trp wavelength maximum fluorescence from 337 to 340 nm in apoA-I. The glycation reaction of apoA-I was accelerated further by the addition of Aβ. The treatment of fructose and Aβ caused more multimerization of apoA-I in the lipid-free state and in HDL. The phospholipid-binding ability of apoA-I was impaired severely by the addition of Aβ in a dose-dependent manner. The phagocytosis of LDL into macrophages was accelerated more by the presence of Aβ with the production of more oxidized species. Aβ severely impaired tissue regeneration, and a microinjection of Aβ enhanced embryotoxicity. In conclusion, the beneficial functions of apoA-I and HDL were severely impaired by the addition of Aβ via its detrimental effect on secondary structure. The impairment of HDL functionality occurred more synergistically by means of the co-addition of fructose and Aβ.
Collapse
|
74
|
Rao W, Zhang Y, Li K, Zhang XY. Association between cognitive impairment and apolipoprotein A1 or apolipoprotein B levels is regulated by apolipoprotein E variant rs429358 in patients with chronic schizophrenia. Aging (Albany NY) 2021; 13:16353-16366. [PMID: 34135129 PMCID: PMC8266354 DOI: 10.18632/aging.203161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022]
Abstract
ApoE gene polymorphism may be involved in the change in blood lipid profile and cognitive impairment of the general population. However, few studies explored the effects of ApoE gene polymorphism on blood lipid levels and cognition in schizophrenia. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was employed to evaluate the cognition and the SNPStats was used to investigate the association of ApoE rs429358 with schizophrenia. The models of analysis of covariance and multivariate analysis were conducted to investigate the effect of ApoE rs429358 on cognition in schizophrenia. Altogether, 637 patients with schizophrenia and 467 healthy controls were recruited in this study. The findings in the case group found that both the ApoA1 and ApoB levels were predictors for RBANS total score (p < 0.001 vs. p = 0.011), immediate memory (p < 0.001 vs. p = 0.019), language (p < 0.001 vs. p = 0.013), attention (p < 0.001 vs. p < 0.001), except ApoA1 level only was a predictor for visuospatial/constructional (p = 0.014) and delayed memory (p < 0.001). When the association was examined in different ApoE rs429358 genotype subgroups, the association between ApoA1 level and RBANS scores (except for the language score) or between ApoB level and RBANS scores (except for the attention score) was regulated by ApoE rs429358. Our results suggest that patients with schizophrenia have broad cognitive impairment compared with healthy controls. For patients with schizophrenia, both ApoA1 and ApoB levels were positively associated with cognition. There was a significant association between ApoA1 or ApoB levels and cognition in schizophrenia, which was regulated by the ApoE rs429358.
Collapse
Affiliation(s)
- Wenwang Rao
- Institute of Mental Health, Hebei Mental Health Centre, Hebei Province, China.,Unit of Psychiatry, Department of Public Health and Medicinal Administration & Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Yunshu Zhang
- Institute of Mental Health, Hebei Mental Health Centre, Hebei Province, China.,Department of Sleep Medicine, Hebei Psychiatric Hospital, Hebei Province, China
| | - Keqing Li
- Institute of Mental Health, Hebei Mental Health Centre, Hebei Province, China.,Department of Sleep Medicine, Hebei Psychiatric Hospital, Hebei Province, China
| | - Xiang Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
75
|
Pingale TD, Gupta GL. Novel therapeutic approaches for Parkinson's disease by targeting brain cholesterol homeostasis. J Pharm Pharmacol 2021; 73:862-873. [PMID: 33822122 DOI: 10.1093/jpp/rgaa063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/17/2020] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Human brain is composed of 25% of the cholesterol & any dysfunction in brain cholesterol homeostasis contributes to neurodegenerative disorders such as Parkinson, Alzheimer's, Huntington's disease, etc. A growing literature indicates that alteration in neurotransmission & brain cholesterol metabolism takes place in the early stage of the disease. The current paper summarizes the role of cholesterol & its homeostasis in the pathophysiology of Parkinson's disease. KEY FINDINGS Literature findings suggest the possible role of lipids such as oxysterols, lipoproteins, etc. in Parkinson's disease pathophysiology. Cholesterol performs a diverse role in the brain but any deviation in its levels leads to neurodegeneration. Dysregulation of lipid caused by oxidative stress & inflammation leads to α-synuclein trafficking which contributes to Parkinson's disease progression. Also, α-synuclein by binding to membrane lipid forms lipid-protein complex & results in its aggregation. Different targets such as Phospholipase A2, Stearoyl-CoA desaturase enzyme, proprotein convertase subtilisin/kexin type 9, etc. have been identified as a potential novel approach for Parkinson's disease treatment. SUMMARY In the current review, we have discussed the possible molecular role of cholesterol homeostasis in Parkinson's disease progression. We also identified potential therapeutic targets that need to be evaluated clinically for the development of Parkinson's treatment.
Collapse
Affiliation(s)
- Tanvi Dayanand Pingale
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM'S NMIMS, Shirpur, Maharashtra, India
| | - Girdhari Lal Gupta
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM'S NMIMS, Shirpur, Maharashtra, India
| |
Collapse
|
76
|
Rapid Decrease in HDL-C in the Puberty Period of Boys Associated with an Elevation of Blood Pressure and Dyslipidemia in Korean Teenagers: An Explanation of Why and When Men Have Lower HDL-C Levels Than Women. Med Sci (Basel) 2021; 9:medsci9020035. [PMID: 34074048 PMCID: PMC8163168 DOI: 10.3390/medsci9020035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Low serum high-density lipoproteins-cholesterol (HDL-C) levels and high blood pressure are linked to each other and are recognized as independent risk factors of cardiovascular disease and dementia. HDL can cross the blood-brain barrier to remove amyloid plaque and the blood-testis barrier to supply cholesterol for spermatogenesis, but LDL cannot. During the teenage period, between 10 and 19 years of age, the systolic blood pressure (BP) increased gradually to 7.9% in boys (p < 0.001), but not in girls (p = 0.141). The boys' group showed a remarkable decrease in the total cholesterol (TC) and HDL-C from 10 to 15 years of age (p < 0.001). After then, the TC level increased again at 19 years of age to the previous level (p < 0.001). On the other hand, the HDL-C level at 19 years of age in the boys' group was not restored to the previous level at 10 years of age. The girls' group maintained similar TC (p < 0.001) and HDL-C (p < 0.001) levels from 10 to 19 years of age. These results suggest there was a remarkable difference in cholesterol consumption, particularly in the HDL-C level between boys and girls during the pubertal period. Correlation analysis showed an inverse association between the HDL-C level and SBP in boys (r = -0.133, p < 0.001) and girls (r = -0.065, p = 0.009) from 10 to 19 years of age. Interestingly, only the boys' group showed an inverse association with the diastolic BP (r = -0.122, p < 0.001); the girls' group did not have such an association (r = -0.016, p = 0.516). In conclusion, the boys' group showed a sharp decrease in the HDL-C level from 10 to 15 years of age, whereas the girls' group showed an increase in the HDL-C level during the same period. These results explain why men have a lower serum HDL-C level than women in adulthood.
Collapse
|
77
|
Kjeldsen EW, Thomassen JQ, Juul Rasmussen I, Nordestgaard BG, Tybjærg-Hansen A, Frikke-Schmidt R. Plasma HDL cholesterol and risk of dementia - observational and genetic studies. Cardiovasc Res 2021; 118:1330-1343. [PMID: 33964140 DOI: 10.1093/cvr/cvab164] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/03/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
AIMS The association of plasma high-density lipoprotein (HDL) cholesterol with risk of dementia is unclear. We therefore tested the hypothesis that high levels of plasma HDL cholesterol are associated with increased risk of dementia and whether a potential association is of a causal nature. METHODS AND RESULTS In two prospective population-based studies, the Copenhagen General Population Study and the Copenhagen City Heart Study (N = 111,984 individuals), we first tested whether high plasma HDL cholesterol is associated with increased risk of any dementia and its subtypes. These analyses in men and women separately were adjusted multifactorially for other risk factors including apolipoprotein E (APOE) genotype. Second, taking advantage of two-sample Mendelian randomization, we tested whether genetically elevated HDL cholesterol was causally associated with Alzheimer's disease using publicly available consortia data on 643,836 individuals. Observationally, multifactorially adjusted Cox regression restricted cubic spline models showed that both men and women with extreme high HDL cholesterol concentrations had increased risk of any dementia and of Alzheimer's disease. Men in the 96th-99th and 100th versus the 41st-60th percentiles of HDL cholesterol had multifactorially including APOE genotype adjusted hazard ratios of 1.66 (95% confidence interval 1.30-2.11) and 2.00 (1.35-2.98) for any dementia and 1.59 (1.16-2.20) and 1.87 (1.11-3.16) for Alzheimer's disease. Corresponding estimates for women were 0.94 (0.74-1.18) and 1.45 (1.03-2.05) for any dementia and 0.94 (0.70-1.26) and 1.69 (1.13-2.53) for Alzheimer's disease. Genetically, the two-sample Mendelian randomization odds ratio for Alzheimer's disease per 1 standard deviation increase in HDL cholesterol was 0.92 (0.74-1.10) in the IGAP2019 consortium and 0.98 (0.95-1.00) in the ADSP/IGAP/PGC-ALZ/UKB consortium. Similar estimates were observed in sex stratified analyses. CONCLUSION High plasma HDL cholesterol was observationally associated with increased risk of any dementia and Alzheimer's disease, suggesting that HDL cholesterol can be used as an easily accessible plasma biomarker for individual risk assessment. TRANSLATIONAL PERSPECTIVE The present study identifies very high plasma HDL cholesterol levels as an independent risk factor for any dementia and Alzheimer's disease in both men and women of the general population. Two-sample Mendelian randomization studies do not support that this association is of a causal nature, indicating HDL cholesterol as a non-causal risk factor for Alzheimer's disease. Our findings suggest that very high HDL cholesterol can be used as an easily accessible plasma biomarker to evaluate increased risk of dementia and potential identification of high-risk individuals for early targeted prevention - an area highly recommended to direct attention towards.
Collapse
Affiliation(s)
- Emilie W Kjeldsen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Jesper Q Thomassen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Ida Juul Rasmussen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Børge G Nordestgaard
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark.,The Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen University Hospital, 2000 Frederiksberg, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark.,The Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen University Hospital, 2000 Frederiksberg, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
78
|
Dash R, Mitra S, Ali MC, Oktaviani DF, Hannan MA, Choi SM, Moon IS. Phytosterols: Targeting Neuroinflammation in Neurodegeneration. Curr Pharm Des 2021; 27:383-401. [PMID: 32600224 DOI: 10.2174/1381612826666200628022812] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/02/2020] [Indexed: 11/22/2022]
Abstract
Plant-derived sterols, phytosterols, are well known for their cholesterol-lowering activity in serum and their anti-inflammatory activities. Recently, phytosterols have received considerable attention due to their beneficial effects on various non-communicable diseases, and recommended use as daily dietary components. The signaling pathways mediated in the brain by phytosterols have been evaluated, but little is known about their effects on neuroinflammation, and no clinical studies have been undertaken on phytosterols of interest. In this review, we discuss the beneficial roles of phytosterols, including their attenuating effects on inflammation, blood cholesterol levels, and hallmarks of the disease, and their regulatory effects on neuroinflammatory disease pathways. Despite recent advancements made in phytosterol pharmacology, some critical questions remain unanswered. Therefore, we have tried to highlight the potential of phytosterols as viable therapeutics against neuroinflammation and to direct future research with respect to clinical applications.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Sarmistha Mitra
- Plasma Bioscience Research Center, Plasma Bio-display, Kwangwoon University, Seoul-01897, Korea
| | - Md Chayan Ali
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia-7003, Bangladesh
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Sung Min Choi
- Department of Pediatrics, Dongguk University College of Medicine, Gyeongju-38066, Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| |
Collapse
|
79
|
Sulliman NC, Ghaddar B, Gence L, Patche J, Rastegar S, Meilhac O, Diotel N. HDL biodistribution and brain receptors in zebrafish, using HDLs as vectors for targeting endothelial cells and neural progenitors. Sci Rep 2021; 11:6439. [PMID: 33742021 PMCID: PMC7979862 DOI: 10.1038/s41598-021-85183-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/24/2021] [Indexed: 12/25/2022] Open
Abstract
High density lipoproteins (HDLs) display pleiotropic functions such as anti-inflammatory, antioxidant, anti-protease, and anti-apoptotic properties. These effects are mediated by four main receptors: SCARB1 (SR-BI), ABCA1, ABCG1, and CD36. Recently, HDLs have emerged for their potential involvement in brain functions, considering their epidemiological links with cognition, depression, and brain plasticity. However, their role in the brain is not well understood. Given that the zebrafish is a well-recognized model for studying brain plasticity, metabolic disorders, and apolipoproteins, it could represent a good model for investigating the role of HDLs in brain homeostasis. By analyzing RNA sequencing data sets and performing in situ hybridization, we demonstrated the wide expression of scarb1, abca1a, abca1b, abcg1, and cd36 in the brain of adult zebrafish. Scarb1 gene expression was detected in neural stem cells (NSCs), suggesting a possible role of HDLs in NSC activity. Accordingly, intracerebroventricular injection of HDLs leads to their uptake by NSCs without modulating their proliferation. Next, we studied the biodistribution of HDLs in the zebrafish body. In homeostatic conditions, intraperitoneal injection of HDLs led to their accumulation in the liver, kidneys, and cerebral endothelial cells in zebrafish, similar to that observed in mice. After telencephalic injury, HDLs were diffused within the damaged parenchyma and were taken up by ventricular cells, including NSCs. However, they failed to modulate the recruitment of microglia cells at the injury site and the injury-induced proliferation of NSCs. In conclusion, our results clearly show a functional HDL uptake process involving several receptors that may impact brain homeostasis and suggest the use of HDLs as delivery vectors to target NSCs for drug delivery to boost their neurogenic activity.
Collapse
Affiliation(s)
- Nora Cassam Sulliman
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Batoul Ghaddar
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Laura Gence
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Jessica Patche
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021, Karlsruhe, Germany
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis de La Réunion, France
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France.
| |
Collapse
|
80
|
Morris G, Puri BK, Bortolasci CC, Carvalho A, Berk M, Walder K, Moreira EG, Maes M. The role of high-density lipoprotein cholesterol, apolipoprotein A and paraoxonase-1 in the pathophysiology of neuroprogressive disorders. Neurosci Biobehav Rev 2021; 125:244-263. [PMID: 33657433 DOI: 10.1016/j.neubiorev.2021.02.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/29/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
Lowered high-density lipoprotein (HDL) cholesterol has been reported in major depressive disorder, bipolar disorder, first episode of psychosis, and schizophrenia. HDL, its major apolipoprotein component, ApoA1, and the antioxidant enzyme paraoxonase (PON)1 (which is normally bound to ApoA1) all have anti-atherogenic, antioxidant, anti-inflammatory, and immunomodulatory roles, which are discussed in this paper. The paper details the pathways mediating the anti-inflammatory effects of HDL, ApoA1 and PON1 and describes the mechanisms leading to compromised HDL and PON1 levels and function in an environment of chronic inflammation. The molecular mechanisms by which changes in HDL, ApoA1 and PON1 might contribute to the pathophysiology of the neuroprogressive disorders are explained. Moreover, the anti-inflammatory actions of ApoM-mediated sphingosine 1-phosphate (S1P) signalling are reviewed as well as the deleterious effects of chronic inflammation and oxidative stress on ApoM/S1P signalling. Finally, therapeutic interventions specifically aimed at improving the levels and function of HDL and PON1 while reducing levels of inflammation and oxidative stress are considered. These include the so-called Mediterranean diet, extra virgin olive oil, polyphenols, flavonoids, isoflavones, pomegranate juice, melatonin and the Mediterranean diet combined with the ketogenic diet.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | | | - Chiara C Bortolasci
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia.
| | - Andre Carvalho
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Berk
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Walder
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Estefania G Moreira
- Post-Graduation Program in Health Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Michael Maes
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
81
|
Buchroithner B, Mayr S, Hauser F, Priglinger E, Stangl H, Santa-Maria AR, Deli MA, Der A, Klar TA, Axmann M, Sivun D, Mairhofer M, Jacak J. Dual Channel Microfluidics for Mimicking the Blood-Brain Barrier. ACS NANO 2021; 15:2984-2993. [PMID: 33480670 PMCID: PMC7905877 DOI: 10.1021/acsnano.0c09263] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/19/2021] [Indexed: 05/25/2023]
Abstract
High-resolution imaging is essential for analysis of the steps and way stations of cargo transport in in vitro models of the endothelium. In this study, we demonstrate a microfluidic system consisting of two channels horizontally separated by a cell-growth-promoting membrane. Its design allows for high-resolution (down to single-molecule level) imaging using a high numerical aperture objective with a short working distance. To reduce optical aberrations and enable single-molecule-sensitive imaging, an observation window was constructed in the membrane via laser cutting with subsequent structuring using 3D multiphoton lithography for improved cell growth. The upper channel was loaded with endothelial cells under flow conditions, which showed polarization and junction formation. A coculture of human vascular endothelial cells with pericytes was developed that mimics the blood-brain barrier. Finally, this dual channel microfluidics system enabled 3D localization microscopy of the cytoskeleton and 3D single-molecule-sensitive tracing of lipoprotein particles.
Collapse
Affiliation(s)
- Boris Buchroithner
- Department
of Medical Engineering, University of Applied
Sciences Upper Austria, Garnisonstraße 21, 4020 Linz, Austria
| | - Sandra Mayr
- Department
of Medical Engineering, University of Applied
Sciences Upper Austria, Garnisonstraße 21, 4020 Linz, Austria
| | - Fabian Hauser
- Department
of Medical Engineering, University of Applied
Sciences Upper Austria, Garnisonstraße 21, 4020 Linz, Austria
| | - Eleni Priglinger
- Ludwig
Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria
| | - Herbert Stangl
- Institute
of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währingerstrasse 10, 1090 Vienna, Austria
| | - Ana Raquel Santa-Maria
- Institute
of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Maria A. Deli
- Institute
of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Andras Der
- Institute
of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Thomas A. Klar
- Institute
of Applied Physics, Johannes Kepler University
Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Markus Axmann
- Department
of Medical Engineering, University of Applied
Sciences Upper Austria, Garnisonstraße 21, 4020 Linz, Austria
| | - Dmitry Sivun
- Department
of Medical Engineering, University of Applied
Sciences Upper Austria, Garnisonstraße 21, 4020 Linz, Austria
| | - Mario Mairhofer
- Department
of Medical Engineering, University of Applied
Sciences Upper Austria, Garnisonstraße 21, 4020 Linz, Austria
| | - Jaroslaw Jacak
- Department
of Medical Engineering, University of Applied
Sciences Upper Austria, Garnisonstraße 21, 4020 Linz, Austria
| |
Collapse
|
82
|
Jacobo-Albavera L, Domínguez-Pérez M, Medina-Leyte DJ, González-Garrido A, Villarreal-Molina T. The Role of the ATP-Binding Cassette A1 (ABCA1) in Human Disease. Int J Mol Sci 2021; 22:ijms22041593. [PMID: 33562440 PMCID: PMC7915494 DOI: 10.3390/ijms22041593] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Cholesterol homeostasis is essential in normal physiology of all cells. One of several proteins involved in cholesterol homeostasis is the ATP-binding cassette transporter A1 (ABCA1), a transmembrane protein widely expressed in many tissues. One of its main functions is the efflux of intracellular free cholesterol and phospholipids across the plasma membrane to combine with apolipoproteins, mainly apolipoprotein A-I (Apo A-I), forming nascent high-density lipoprotein-cholesterol (HDL-C) particles, the first step of reverse cholesterol transport (RCT). In addition, ABCA1 regulates cholesterol and phospholipid content in the plasma membrane affecting lipid rafts, microparticle (MP) formation and cell signaling. Thus, it is not surprising that impaired ABCA1 function and altered cholesterol homeostasis may affect many different organs and is involved in the pathophysiology of a broad array of diseases. This review describes evidence obtained from animal models, human studies and genetic variation explaining how ABCA1 is involved in dyslipidemia, coronary heart disease (CHD), type 2 diabetes (T2D), thrombosis, neurological disorders, age-related macular degeneration (AMD), glaucoma, viral infections and in cancer progression.
Collapse
Affiliation(s)
- Leonor Jacobo-Albavera
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Mayra Domínguez-Pérez
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Diana Jhoseline Medina-Leyte
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Mexico City CP04510, Mexico
| | - Antonia González-Garrido
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Teresa Villarreal-Molina
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
- Correspondence:
| |
Collapse
|
83
|
Pes GM, Park YM, Sechi GP. Cholesterol Trafficking in the Brain: Are We Overlooking an Important Risk Factor for Parkinson Disease? Neurology 2021; 96:465-466. [PMID: 33536270 DOI: 10.1212/wnl.0000000000011595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Giovanni Mario Pes
- From the Department of Medical, Surgical and Experimental Sciences (G.M.P., G.P.S.), University of Sassari; Sardinia Longevity Blue Zone Observatory (G.M.P.), Ogliastra, Italy; and Department of Epidemiology (Y.-M.P.), Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock
| | - Yong-Moon Park
- From the Department of Medical, Surgical and Experimental Sciences (G.M.P., G.P.S.), University of Sassari; Sardinia Longevity Blue Zone Observatory (G.M.P.), Ogliastra, Italy; and Department of Epidemiology (Y.-M.P.), Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock
| | - Gian Pietro Sechi
- From the Department of Medical, Surgical and Experimental Sciences (G.M.P., G.P.S.), University of Sassari; Sardinia Longevity Blue Zone Observatory (G.M.P.), Ogliastra, Italy; and Department of Epidemiology (Y.-M.P.), Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock.
| |
Collapse
|
84
|
Park JH, Lee CW, Nam MJ, Kim H, Kwon DY, Yoo JW, Lee KN, Han K, Jung JH, Park YG, Kim DH. Association of High-Density Lipoprotein Cholesterol Variability and the Risk of Developing Parkinson Disease. Neurology 2021; 96:e1391-e1401. [PMID: 33536275 DOI: 10.1212/wnl.0000000000011553] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To investigate the longitudinal association among high-density lipoprotein cholesterol (HDL-C) level, HDL-C variability, and the risk of developing Parkinson disease (PD). METHODS We conducted a nationwide, population-based cohort study. We included 382,391 patients aged ≥65 years who underwent at least 3 health examinations provided by the Korean National Health Insurance System from 2008 to 2013 and followed up until 2017. Individuals with a history of PD and missing values were excluded (n = 1,987). We assessed HDL-C variability using 3 indices, including variability independent of the mean (VIM). A multivariate-adjusted Cox proportional hazards regression analysis was performed. RESULTS Among the 380,404 participants, 2,733 individuals were newly diagnosed with PD during a median follow-up period of 5 years. The lowest quartile (Q1) group of baseline HDL-C and mean HDL-C was associated with increased PD incidence as compared with the highest quartile (Q4) group (adjusted hazard ratio [aHR], 1.20; 95% confidence interval [CI], 1.08-1.34; and aHR, 1.16; 95% CI, 1.04-1.30, respectively). The Q4 group of HDL-C variability (VIM) was associated with increased PD incidence compared to the Q1 group (aHR, 1.19; 95% CI, 1.06-1.33). The group with the Q1 of baseline HDL-C and with the Q4 of HDL-C variability had the highest risk of PD incidence (aHR, 1.6; 95% CI, 1.31-1.96). CONCLUSION Lower HDL-C level and greater HDL-C variability were associated with a higher incidence of PD.
Collapse
Affiliation(s)
- Joo-Hyun Park
- From the Departments of Family Medicine (J.-H.P., C.-w.L., M.J.N., H.K., D.-H.K.) and Neurology (D.-Y.K.), Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea; Department of Internal Medicine (J.W.Y.), University of Nevada Las Vegas School of Medicine; Department of Statistics and Actuarial Science (K.N.L., K.H.), Soongsil University; and Department of Biostatistics (J.-H.J., Y.-G.P.), College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Chung-Woo Lee
- From the Departments of Family Medicine (J.-H.P., C.-w.L., M.J.N., H.K., D.-H.K.) and Neurology (D.-Y.K.), Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea; Department of Internal Medicine (J.W.Y.), University of Nevada Las Vegas School of Medicine; Department of Statistics and Actuarial Science (K.N.L., K.H.), Soongsil University; and Department of Biostatistics (J.-H.J., Y.-G.P.), College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Myung Ji Nam
- From the Departments of Family Medicine (J.-H.P., C.-w.L., M.J.N., H.K., D.-H.K.) and Neurology (D.-Y.K.), Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea; Department of Internal Medicine (J.W.Y.), University of Nevada Las Vegas School of Medicine; Department of Statistics and Actuarial Science (K.N.L., K.H.), Soongsil University; and Department of Biostatistics (J.-H.J., Y.-G.P.), College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyunjin Kim
- From the Departments of Family Medicine (J.-H.P., C.-w.L., M.J.N., H.K., D.-H.K.) and Neurology (D.-Y.K.), Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea; Department of Internal Medicine (J.W.Y.), University of Nevada Las Vegas School of Medicine; Department of Statistics and Actuarial Science (K.N.L., K.H.), Soongsil University; and Department of Biostatistics (J.-H.J., Y.-G.P.), College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Do-Young Kwon
- From the Departments of Family Medicine (J.-H.P., C.-w.L., M.J.N., H.K., D.-H.K.) and Neurology (D.-Y.K.), Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea; Department of Internal Medicine (J.W.Y.), University of Nevada Las Vegas School of Medicine; Department of Statistics and Actuarial Science (K.N.L., K.H.), Soongsil University; and Department of Biostatistics (J.-H.J., Y.-G.P.), College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Won Yoo
- From the Departments of Family Medicine (J.-H.P., C.-w.L., M.J.N., H.K., D.-H.K.) and Neurology (D.-Y.K.), Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea; Department of Internal Medicine (J.W.Y.), University of Nevada Las Vegas School of Medicine; Department of Statistics and Actuarial Science (K.N.L., K.H.), Soongsil University; and Department of Biostatistics (J.-H.J., Y.-G.P.), College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyu Na Lee
- From the Departments of Family Medicine (J.-H.P., C.-w.L., M.J.N., H.K., D.-H.K.) and Neurology (D.-Y.K.), Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea; Department of Internal Medicine (J.W.Y.), University of Nevada Las Vegas School of Medicine; Department of Statistics and Actuarial Science (K.N.L., K.H.), Soongsil University; and Department of Biostatistics (J.-H.J., Y.-G.P.), College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyungdo Han
- From the Departments of Family Medicine (J.-H.P., C.-w.L., M.J.N., H.K., D.-H.K.) and Neurology (D.-Y.K.), Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea; Department of Internal Medicine (J.W.Y.), University of Nevada Las Vegas School of Medicine; Department of Statistics and Actuarial Science (K.N.L., K.H.), Soongsil University; and Department of Biostatistics (J.-H.J., Y.-G.P.), College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Jin-Hyung Jung
- From the Departments of Family Medicine (J.-H.P., C.-w.L., M.J.N., H.K., D.-H.K.) and Neurology (D.-Y.K.), Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea; Department of Internal Medicine (J.W.Y.), University of Nevada Las Vegas School of Medicine; Department of Statistics and Actuarial Science (K.N.L., K.H.), Soongsil University; and Department of Biostatistics (J.-H.J., Y.-G.P.), College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong-Gyu Park
- From the Departments of Family Medicine (J.-H.P., C.-w.L., M.J.N., H.K., D.-H.K.) and Neurology (D.-Y.K.), Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea; Department of Internal Medicine (J.W.Y.), University of Nevada Las Vegas School of Medicine; Department of Statistics and Actuarial Science (K.N.L., K.H.), Soongsil University; and Department of Biostatistics (J.-H.J., Y.-G.P.), College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Do-Hoon Kim
- From the Departments of Family Medicine (J.-H.P., C.-w.L., M.J.N., H.K., D.-H.K.) and Neurology (D.-Y.K.), Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea; Department of Internal Medicine (J.W.Y.), University of Nevada Las Vegas School of Medicine; Department of Statistics and Actuarial Science (K.N.L., K.H.), Soongsil University; and Department of Biostatistics (J.-H.J., Y.-G.P.), College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
85
|
Zimetti F, Adorni MP, Marsillach J, Marchi C, Trentini A, Valacchi G, Cervellati C. Connection between the Altered HDL Antioxidant and Anti-Inflammatory Properties and the Risk to Develop Alzheimer's Disease: A Narrative Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6695796. [PMID: 33505588 PMCID: PMC7811424 DOI: 10.1155/2021/6695796] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023]
Abstract
The protein composition of high-density lipoprotein (HDL) is extremely fluid. The quantity and quality of protein constituents drive the multiple biological functions of these lipoproteins, which include the ability to contrast atherogenesis, sustained inflammation, and toxic effects of reactive species. Several diseases where inflammation and oxidative stress participate in the pathogenetic process are characterized by perturbation in the HDL proteome. This change inevitably affects the functionality of the lipoprotein. An enlightening example in this frame comes from the literature on Alzheimer's disease (AD). Growing lines of epidemiological evidence suggest that loss of HDL-associated proteins, such as lipoprotein phospholipase A2 (Lp-PLA2), glutathione peroxidase-3 (GPx-3), and paraoxonase-1 and paraoxonase-3 (PON1, PON3), may be a feature of AD, even at the early stage. Moreover, the decrease in these enzymes with antioxidant/defensive action appears to be accompanied by a parallel increase of prooxidant and proinflammatory mediators, in particular myeloperoxidase (MPO) and serum amyloid A (SAA). This type of derangement of balance between two opposite forces makes HDL dysfunctional, i.e., unable to exert its "natural" vasculoprotective property. In this review, we summarized and critically analyzed the most significant findings linking HDL accessory proteins and AD. We also discuss the most convincing hypothesis explaining the mechanism by which an observed systemic occurrence may have repercussions in the brain.
Collapse
Affiliation(s)
- Francesca Zimetti
- Department of Food and Drug, University of Parma, Parma 43124, Italy
| | - Maria Pia Adorni
- Department of Medicine and Surgery, Unit of Neurosciences, University of Parma, Parma 43121, Italy
| | - Judit Marsillach
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Cinzia Marchi
- Department of Food and Drug, University of Parma, Parma 43124, Italy
| | - Alessandro Trentini
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara 44121, Italy
- Plants for Human Health Institute, Animal Sciences Department, NC Research Campus Kannapolis, NC State University, 28081 NC, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Carlo Cervellati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
86
|
Mohammadi S, Dolatshahi M, Rahmani F. Shedding light on thyroid hormone disorders and Parkinson disease pathology: mechanisms and risk factors. J Endocrinol Invest 2021; 44:1-13. [PMID: 32500445 DOI: 10.1007/s40618-020-01314-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons. Dopaminergic system is interconnected with the hypothalamic-pituitary-thyroid axis. Dopamine (DA) upregulates thyrotropin releasing hormone (TRH) while downregulating thyroid stimulating hormone (TSH) and thyroid hormones. Moreover, TRH stimulates DA release. PD is associated with impaired regulation of TSH and thyroid hormones (TH) levels, which in turn associate with severity and different subtypes of PD, while levodopa and bromocriptine treatment can interfere with hypothalamic-pituitary-thyroid axis. Thyroid disturbances, including hypothyroidism, Hashimoto's thyroiditis (HT), hyperthyroidism and Graves' disease (GD) not only increase the risk of PD but also share some clinical signs with PD. Also, several genes including RASD2, WSB1, MAPT, GIRK2, LRRK2 and gene products like neurotensin and NOX/DUOX affect the risk for both PD and thyroid disease. Hypothyroidism is associated with obesity, hypercholesterolemia, anemia and altered cerebral blood flow which are associated with PD pathology. Herein we provide a comprehensive view on the association between PD and thyroid hormones regulation and dysregulations, hoping to provide new avenues towards targeted treatment of PD. We performed a comprehensive search in literature using Pubmed and Scopus, yielding to a total number of 36 original articles that had addressed the association between thyroid hormone disorders and PD.
Collapse
Affiliation(s)
- S Mohammadi
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - M Dolatshahi
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - F Rahmani
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
87
|
Marsillach J, Adorni MP, Zimetti F, Papotti B, Zuliani G, Cervellati C. HDL Proteome and Alzheimer's Disease: Evidence of a Link. Antioxidants (Basel) 2020; 9:E1224. [PMID: 33287338 PMCID: PMC7761753 DOI: 10.3390/antiox9121224] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Several lines of epidemiological evidence link increased levels of high-density lipoprotein-cholesterol (HDL-C) with lower risk of Alzheimer's disease (AD). This observed relationship might reflect the beneficial effects of HDL on the cardiovascular system, likely due to the implication of vascular dysregulation in AD development. The atheroprotective properties of this lipoprotein are mostly due to its proteome. In particular, apolipoprotein (Apo) A-I, E, and J and the antioxidant accessory protein paraoxonase 1 (PON1), are the main determinants of the biological function of HDL. Intriguingly, these HDL constituent proteins are also present in the brain, either from in situ expression, or derived from the periphery. Growing preclinical evidence suggests that these HDL proteins may prevent the aberrant changes in the brain that characterize AD pathogenesis. In the present review, we summarize and critically examine the current state of knowledge on the role of these atheroprotective HDL-associated proteins in AD pathogenesis and physiopathology.
Collapse
Affiliation(s)
- Judit Marsillach
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA;
| | - Maria Pia Adorni
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Giovanni Zuliani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.Z.); (C.C.)
| | - Carlo Cervellati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.Z.); (C.C.)
| |
Collapse
|
88
|
Sodero AO. 24S-hydroxycholesterol: Cellular effects and variations in brain diseases. J Neurochem 2020; 157:899-918. [PMID: 33118626 DOI: 10.1111/jnc.15228] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022]
Abstract
The adult brain exhibits a characteristic cholesterol homeostasis, with low synthesis rate and active catabolism. Brain cholesterol turnover is possible thanks to the action of the enzyme cytochrome P450 46A1 (CYP46A1) or 24-cholesterol hydroxylase, that transforms cholesterol into 24S-hydroxycholesterol (24S-HC). But before crossing the blood-brain barrier (BBB), this oxysterol, that is the most abundant in the brain, can act locally, affecting the functioning of neurons, astrocytes, oligodendrocytes, and vascular cells. The first part of this review addresses different aspects of 24S-HC production and elimination from the brain. The second part concentrates in the effects of 24S-HC at the cellular level, describing how this oxysterol affects cell viability, amyloid β production, neurotransmission, and transcriptional activity. Finally, the role of 24S-HC in Alzheimer, Huntington and Parkinson diseases, multiple sclerosis and amyotrophic lateral sclerosis, as well as the possibility of using this oxysterol as predictive and/or evolution biomarker in different brain disorders is discussed.
Collapse
Affiliation(s)
- Alejandro O Sodero
- Institute of Biomedical Research (BIOMED), Pontifical Catholic University of Argentina (UCA) and National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
89
|
Gliozzi M, Musolino V, Bosco F, Scicchitano M, Scarano F, Nucera S, Zito MC, Ruga S, Carresi C, Macrì R, Guarnieri L, Maiuolo J, Tavernese A, Coppoletta AR, Nicita C, Mollace R, Palma E, Muscoli C, Belzung C, Mollace V. Cholesterol homeostasis: Researching a dialogue between the brain and peripheral tissues. Pharmacol Res 2020; 163:105215. [PMID: 33007421 DOI: 10.1016/j.phrs.2020.105215] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Cholesterol homeostasis is a highly regulated process in human body because of its several functions underlying the biology of cell membranes, the synthesis of all steroid hormones and bile acids and the need of trafficking lipids destined to cell metabolism. In particular, it has been recognized that peripheral and central nervous system cholesterol metabolism are separated by the blood brain barrier and are regulated independently; indeed, peripherally, it depends on the balance between dietary intake and hepatic synthesis on one hand and its degradation on the other, whereas in central nervous system it is synthetized de novo to ensure brain physiology. In view of this complex metabolism and its relevant functions in mammalian, impaired levels of cholesterol can induce severe cellular dysfunction leading to metabolic, cardiovascular and neurodegenerative diseases. The aim of this review is to clarify the role of cholesterol homeostasis in health and disease highlighting new intriguing aspects of the cross talk between its central and peripheral metabolism.
Collapse
Affiliation(s)
- Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Saverio Nucera
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Stefano Ruga
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Lorenza Guarnieri
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Annamaria Tavernese
- Division of Cardiology, University Hospital Policlinico Tor Vergata, Rome, Italy.
| | - Anna Rita Coppoletta
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Caterina Nicita
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy; IRCCS San Raffaele Pisana, Via di Valcannuta, Rome, Italy.
| | | | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy; IRCCS San Raffaele Pisana, Via di Valcannuta, Rome, Italy.
| |
Collapse
|
90
|
Abu Hamdeh S, Khoonsari PE, Shevchenko G, Gordh T, Ericson H, Kultima K. Increased CSF Levels of Apolipoproteins and Complement Factors in Trigeminal Neuralgia Patients-In Depth Proteomic Analysis Using Mass Spectrometry. THE JOURNAL OF PAIN 2020; 21:1075-1084. [PMID: 32553624 DOI: 10.1016/j.jpain.2020.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/27/2019] [Accepted: 03/14/2020] [Indexed: 01/03/2023]
Abstract
The main cause of trigeminal neuralgia (TN) is compression of a blood vessel at the root entry zone of the trigeminal nerve. However, a neurovascular conflict does not seem to be the only etiology and other mechanisms are implicated in the development of the disease. We hypothesized that TN patients may have distinct protein expression in the CSF. In this study, lumbar CSF from TN patients (n = 17), scheduled to undergo microvascular decompression, and from controls (n = 20) was analyzed and compared with in depth mass spectrometry TMTbased quantitative proteomics. We identified 2552 unique proteins, of which 46 were significantly altered (26 increased, and 20 decreased, q-value < .05) in TN patients compared with controls. An over-representation analysis showed proteins involved in high-density lipoprotein, such as Apolipoprotein A4, Apolipoprotein M, and Apolipoprotein A1, and the extracellular region, including proteins involved in the complement cascade to be over-represented. We conclude that TN patients have distinct protein expression in the CSF compared to controls. The pathophysiological background of the protein alterations found in this study warrants further investigation in future studies. PERSPECTIVE: In this article, cerebrospinal fluid from patients with trigeminal neuralgia was analyzed using in depth shotgun proteomics, revealing 46 differentially expressed proteins compared to controls. Among these, apolipoproteins and proteins involved in the complement system were elevated and significantly over-represented, implying an inflammatory component in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Sami Abu Hamdeh
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden.
| | - Payam Emami Khoonsari
- Department of Medical Sciences, Chemical Chemistry, Uppsala University, Uppsala, Sweden
| | - Ganna Shevchenko
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Torsten Gordh
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Hans Ericson
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Chemical Chemistry, Uppsala University, Uppsala, Sweden; Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
91
|
Castaño D, Rattanasopa C, Monteiro-Cardoso VF, Corlianò M, Liu Y, Zhong S, Rusu M, Liehn EA, Singaraja RR. Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv Drug Deliv Rev 2020; 159:54-93. [PMID: 32423566 DOI: 10.1016/j.addr.2020.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Lipids are hydrophobic and amphiphilic molecules involved in diverse functions such as membrane structure, energy metabolism, immunity, and signaling. However, altered intra-cellular lipid levels or composition can lead to metabolic and inflammatory dysfunction, as well as lipotoxicity. Thus, intra-cellular lipid homeostasis is tightly regulated by multiple mechanisms. Since most peripheral cells do not catabolize cholesterol, efflux (extra-cellular transport) of cholesterol is vital for lipid homeostasis. Defective efflux contributes to atherosclerotic plaque development, impaired β-cell insulin secretion, and neuropathology. Of these, defective lipid efflux in macrophages in the arterial walls leading to foam cell and atherosclerotic plaque formation has been the most well studied, likely because a leading global cause of death is cardiovascular disease. Circulating high density lipoprotein particles play critical roles as acceptors of effluxed cellular lipids, suggesting their importance in disease etiology. We review here mechanisms and pathways that modulate lipid efflux, the role of lipid efflux in disease etiology, and therapeutic options aimed at modulating this critical process.
Collapse
|
92
|
Livingston JM, McDonald MW, Gagnon T, Jeffers MS, Gomez-Smith M, Antonescu S, Cron GO, Boisvert C, Lacoste B, Corbett D. Influence of metabolic syndrome on cerebral perfusion and cognition. Neurobiol Dis 2020; 137:104756. [PMID: 31978604 DOI: 10.1016/j.nbd.2020.104756] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/19/2019] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Vascular cognitive impairment (VCI) is associated with chronic cerebral hypoperfusion (CCH) and memory deficits, and often occurs concurrently with metabolic syndrome (MetS). Despite their common occurrence, it is unknown whether CCH and MetS act synergistically to exacerbate VCI-associated pathology. Here, using male Sprague-Dawley rats, we examined the effects of a clinically relevant model of adolescent-onset MetS and adult-onset CCH on neuro-vascular outcomes, combining a cafeteria diet with a 2-vessel occlusion (2VO) model. Using longitudinal imaging, histology, and behavioural assessments, we identified several features of MetS and CCH including reduced cerebral blood volume, white matter atrophy, alterations in hippocampal cell density, and memory impairment. Furthermore, we identified a number of significant associations, potentially predictive of MetS and pathophysiological outcomes. White matter volume was positively correlated to HDL cholesterol; hippocampal cell density was negatively correlated to fasted blood glucose; cerebral blood flow and volume was negatively predicted by the combination of 2VO surgery and increased fasted blood glucose. These results emphasize the importance of including comorbid conditions when modeling VCI, and they outline a highly translational preclinical model that could be used to investigate potential interventions to mitigate VCI-associated pathology and cognitive decline.
Collapse
Affiliation(s)
- Jessica M Livingston
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthew W McDonald
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | - Therese Gagnon
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthew S Jeffers
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | - Mariana Gomez-Smith
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sabina Antonescu
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Greg O Cron
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada; Department of Medical Imaging, The Ottawa Hospital, Ottawa, ON, Canada; Department of Radiology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Carlie Boisvert
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada; Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Dale Corbett
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
93
|
Improvement in verbal learning over the first year of antipsychotic treatment is associated with serum HDL levels in a cohort of first episode psychosis patients. Eur Arch Psychiatry Clin Neurosci 2020; 270:49-58. [PMID: 31028479 PMCID: PMC7033047 DOI: 10.1007/s00406-019-01017-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 04/16/2019] [Indexed: 11/14/2022]
Abstract
To investigate whether changes in serum lipids are associated with cognitive performance in first episode psychosis (FEP) patients during their first year of antipsychotic drug treatment. One hundred and thirty-two antipsychotic-treated FEP patients were included through the TOP study along with 83 age- and gender-matched healthy controls (HC). Information regarding cognitive performance, psychotic symptoms, lifestyle, body mass index, serum lipids [total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein cholesterol, and triglycerides] and antipsychotic treatment was obtained at baseline and after 1 year. The cognitive test battery is comprised of assessments for verbal learning, processing speed, working memory, verbal fluency, and inhibition. Mixed-effects models were used to study the relationship between changes over time in serum lipids and cognitive domains, controlling for potential confounders. There was a significant group by HDL interaction effect for verbal learning (F = 11.12, p = 0.001), where an increase in HDL levels was associated with improvement in verbal learning in FEP patients but not in HC. Practice effects, lifestyle, and psychotic symptoms did not significantly affect this relationship. Antipsychotic-treated FEP patients who increased in HDL levels during the first year of follow-up exhibited better verbal learning capacity. Further investigations are needed to clarify the underlying mechanisms.
Collapse
|
94
|
Lefterov I, Wolfe CM, Fitz NF, Nam KN, Letronne F, Biedrzycki RJ, Kofler J, Han X, Wang J, Schug J, Koldamova R. APOE2 orchestrated differences in transcriptomic and lipidomic profiles of postmortem AD brain. Alzheimers Res Ther 2019; 11:113. [PMID: 31888770 PMCID: PMC6937981 DOI: 10.1186/s13195-019-0558-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND The application of advanced sequencing technologies and improved mass-spectrometry platforms revealed significant changes in gene expression and lipids in Alzheimer's disease (AD) brain. The results so far have prompted further research using "multi-omics" approaches. These approaches become particularly relevant, considering the inheritance of APOEε4 allele as a major genetic risk factor of AD, disease protective effect of APOEε2 allele, and a major role of APOE in brain lipid metabolism. METHODS Postmortem brain samples from inferior parietal lobule genotyped as APOEε2/c (APOEε2/carriers), APOEε3/3, and APOEε4/c (APOEε4/carriers), age- and gender-matched, were used to reveal APOE allele-associated changes in transcriptomes and lipidomes. Differential gene expression and co-expression network analyses were applied to identify up- and downregulated Gene Ontology (GO) terms and pathways for correlation to lipidomics data. RESULTS Significantly affected GO terms and pathways were determined based on the comparisons of APOEε2/c datasets to those of APOEε3/3 and APOEε4/c brain samples. The analysis of lists of genes in highly correlated network modules and of those differentially expressed demonstrated significant enrichment in GO terms associated with genes involved in intracellular proteasomal and lysosomal degradation of proteins, protein aggregates and organelles, ER stress, and response to unfolded protein, as well as mitochondrial function, electron transport, and ATP synthesis. Small nucleolar RNA coding units important for posttranscriptional modification of mRNA and therefore translation and protein synthesis were upregulated in APOEε2/c brain samples compared to both APOEε3/3 and APOEε4/c. The analysis of lipidomics datasets revealed significant changes in ten major lipid classes (exclusively a decrease in APOEε4/c samples), most notably non-bilayer-forming phosphatidylethanolamine and phosphatidic acid, as well as mitochondrial membrane-forming lipids. CONCLUSIONS The results of this study, despite the advanced stage of AD, point to the significant differences in postmortem brain transcriptomes and lipidomes, suggesting APOE allele associated differences in pathogenic mechanisms. Correlations within and between lipidomes and transcriptomes indicate coordinated effects of changes in the proteasomal system and autophagy-canonical and selective, facilitating intracellular degradation, protein entry into ER, response to ER stress, nucleolar modifications of mRNA, and likely myelination in APOEε2/c brains. Additional research and a better knowledge of the molecular mechanisms of proteostasis in the early stages of AD are required to develop more effective diagnostic approaches and eventually efficient therapeutic strategies.
Collapse
Affiliation(s)
- Iliya Lefterov
- Department of Environmental and Occupational Health, University of Pittsburgh, 130 De Soto Str., Pittsburgh, PA, 15261, USA.
| | - Cody M Wolfe
- Department of Environmental and Occupational Health, University of Pittsburgh, 130 De Soto Str., Pittsburgh, PA, 15261, USA
| | - Nicholas F Fitz
- Department of Environmental and Occupational Health, University of Pittsburgh, 130 De Soto Str., Pittsburgh, PA, 15261, USA
| | - Kyong Nyon Nam
- Department of Environmental and Occupational Health, University of Pittsburgh, 130 De Soto Str., Pittsburgh, PA, 15261, USA
| | - Florent Letronne
- Department of Environmental and Occupational Health, University of Pittsburgh, 130 De Soto Str., Pittsburgh, PA, 15261, USA
| | - Richard J Biedrzycki
- Department of Environmental and Occupational Health, University of Pittsburgh, 130 De Soto Str., Pittsburgh, PA, 15261, USA
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Xianlin Han
- Department of Medicine & Biochemistry, Barshop Institute for Longevity and Aging Studies, UT Health-San Antonio, San Antonio, TX, 78229, USA
| | - Jianing Wang
- Department of Medicine & Biochemistry, Barshop Institute for Longevity and Aging Studies, UT Health-San Antonio, San Antonio, TX, 78229, USA
| | - Jonathan Schug
- Department of Genetics, Functional Genomics Core, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Radosveta Koldamova
- Department of Environmental and Occupational Health, University of Pittsburgh, 130 De Soto Str., Pittsburgh, PA, 15261, USA.
| |
Collapse
|
95
|
Jin U, Park SJ, Park SM. Cholesterol Metabolism in the Brain and Its Association with Parkinson's Disease. Exp Neurobiol 2019; 28:554-567. [PMID: 31698548 PMCID: PMC6844833 DOI: 10.5607/en.2019.28.5.554] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is the second most progressive neurodegenerative disorder of the aging population after Alzheimer’s disease (AD). Defects in the lysosomal systems and mitochondria have been suspected to cause the pathogenesis of PD. Nevertheless, the pathogenesis of PD remains obscure. Abnormal cholesterol metabolism is linked to numerous disorders, including atherosclerosis. The brain contains the highest level of cholesterol in the body and abnormal cholesterol metabolism links also many neurodegenerative disorders such as AD, PD, Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). The blood brain barrier effectively prevents uptake of lipoprotein-bound cholesterol from blood circulation. Accordingly, cholesterol level in the brain is independent from that in peripheral tissues. Because cholesterol metabolism in both peripheral tissue and the brain are quite different, cholesterol metabolism associated with neurodegeneration should be examined separately from that in peripheral tissues. Here, we review and compare cholesterol metabolism in the brain and peripheral tissues. Furthermore, the relationship between alterations in cholesterol metabolism and PD pathogenesis is reviewed.
Collapse
Affiliation(s)
- Uram Jin
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Cardiology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Soo Jin Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, Suwon 16499, Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Korea.,BK21 Plus Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
96
|
Patel D, Ahmad F, Kambach DM, Sun Q, Halim AS, Kramp T, Camphausen KA, Stommel JM. LXRβ controls glioblastoma cell growth, lipid balance, and immune modulation independently of ABCA1. Sci Rep 2019; 9:15458. [PMID: 31664073 PMCID: PMC6820787 DOI: 10.1038/s41598-019-51865-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 10/04/2019] [Indexed: 01/07/2023] Open
Abstract
Cholesterol is a critical component of membranes and a precursor for hormones and other signaling molecules. Previously, we showed that unlike astrocytes, glioblastoma cells do not downregulate cholesterol synthesis when plated at high density. In this report, we show that high cell density induces ABCA1 expression in glioblastoma cells, enabling them to get rid of excess cholesterol generated by an activated cholesterol biosynthesis pathway. Because oxysterols are agonists for Liver X Receptors (LXRs), we investigated whether increased cholesterol activates LXRs to maintain cholesterol homeostasis in highly-dense glioblastoma cells. We observed that dense cells had increased oxysterols, which activated LXRβ to upregulate ABCA1. Cells with CRISPR-mediated knockdown of LXRβ, but not ABCA1, had decreased cell cycle progression and cell survival, and decreased feedback repression of the mevalonate pathway in densely-plated glioma cells. LXRβ gene expression poorly correlates with ABCA1 in glioblastoma patients, and expression of each gene correlates with poor patient prognosis in different prognostic subtypes. Finally, gene expression and lipidomics analyses cells revealed that LXRβ regulates the expression of immune response gene sets and lipids known to be involved in immune modulation. Thus, therapeutic targeting of LXRβ in glioblastoma might be effective through diverse mechanisms.
Collapse
Affiliation(s)
- Deven Patel
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fahim Ahmad
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Diane M Kambach
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Qian Sun
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alan S Halim
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tamalee Kramp
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kevin A Camphausen
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jayne M Stommel
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
97
|
ApoE4 Alters ABCA1 Membrane Trafficking in Astrocytes. J Neurosci 2019; 39:9611-9622. [PMID: 31641056 DOI: 10.1523/jneurosci.1400-19.2019] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/10/2019] [Accepted: 10/07/2019] [Indexed: 11/21/2022] Open
Abstract
The APOE ε4 allele is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). ApoE protein aggregation plays a central role in AD pathology, including the accumulation of β-amyloid (Aβ). Lipid-poor ApoE4 protein is prone to aggregate and lipidating ApoE4 protects it from aggregation. The mechanisms regulating ApoE4 aggregation in vivo are surprisingly not known. ApoE lipidation is controlled by the activity of the ATP binding cassette A1 (ABCA1). ABCA1 recycling and degradation is regulated by ADP-ribosylation factor 6 (ARF6). We found that ApoE4 promoted greater expression of ARF6 compared with ApoE3, trapping ABCA1 in late-endosomes and impairing its recycling to the cell membrane. This was associated with lower ABCA1-mediated cholesterol efflux activity, a greater percentage of lipid-free ApoE particles, and lower Aβ degradation capacity. Human CSF from APOE ε4/ε4 carriers showed a lower ability to induce ABCA1-mediated cholesterol efflux activity and greater percentage of aggregated ApoE protein compared with CSF from APOE ε3/ε3 carriers. Enhancing ABCA1 activity rescued impaired Aβ degradation in ApoE4-treated cells and reduced both ApoE and ABCA1 aggregation in the hippocampus of male ApoE4-targeted replacement mice. Together, our data demonstrate that aggregated and lipid-poor ApoE4 increases ABCA1 aggregation and decreases ABCA1 cell membrane recycling. Enhancing ABCA1 activity to reduce ApoE and ABCA1 aggregation is a potential therapeutic strategy for the prevention of ApoE4 aggregation-driven pathology.SIGNIFICANCE STATEMENT ApoE protein plays a key role in the formation of amyloid plaques, a hallmark of Alzheimer's disease (AD). ApoE4 is more aggregated and hypolipidated compared with ApoE3, but whether enhancing ApoE lipidation in vivo can reverse ApoE aggregation is not known. ApoE lipidation is controlled by the activity of the ATP binding cassette A1 (ABCA1). In this study, we demonstrated that the greater propensity of lipid-poor ApoE4 to aggregate decreased ABCA1 membrane recycling and its ability to lipidate ApoE. Importantly, enhancing ABCA1 activity to lipidate ApoE reduced ApoE and ABCA1 aggregation. This work provides critical insights into the interactions among ABCA1, ApoE lipidation and aggregation, and underscores the promise of stabilizing ABCA1 activity to prevent ApoE-driven aggregation pathology.
Collapse
|
98
|
Honsho M, Dorninger F, Abe Y, Setoyama D, Ohgi R, Uchiumi T, Kang D, Berger J, Fujiki Y. Impaired plasmalogen synthesis dysregulates liver X receptor-dependent transcription in cerebellum. J Biochem 2019; 166:353-361. [PMID: 31135054 DOI: 10.1093/jb/mvz043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
Synthesis of ethanolamine plasmalogen (PlsEtn) is regulated by modulating the stability of fatty acyl-CoA reductase 1 (Far1) on peroxisomal membrane, a rate-limiting enzyme in plasmalogen synthesis. Dysregulation of plasmalogen homeostasis impairs cholesterol biosynthesis in cultured cells by altering the stability of squalene epoxidase (SQLE). However, regulation of PlsEtn synthesis and physiological consequences of plasmalogen homeostasis in tissues remain unknown. In the present study, we found that the protein but not the transcription level of Far1 in the cerebellum of the Pex14 mutant mouse expressing Pex14p lacking its C-terminal region (Pex14ΔC/ΔC) is higher than that from wild-type mouse, suggesting that Far1 is stabilized by the lowered level of PlsEtn. The protein level of SQLE was increased, whereas the transcriptional activity of the liver X receptors (LXRs), ligand-activated transcription factors of the nuclear receptor superfamily, is lowered in the cerebellum of Pex14ΔC/ΔC and the mice deficient in dihydroxyacetonephosphate acyltransferase, the initial enzyme for the synthesis of PlsEtn. These results suggest that the reduction of plasmalogens in the cerebellum more likely compromises the cholesterol homeostasis, thereby reducing the transcriptional activities of LXRs, master regulators of cholesterol homeostasis.
Collapse
Affiliation(s)
- Masanori Honsho
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Yuichi Abe
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Ryohei Ohgi
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
99
|
Correa-Burrows P, Blanco E, Gahagan S, Burrows R. Cardiometabolic health in adolescence and its association with educational outcomes. J Epidemiol Community Health 2019; 73:1071-1077. [DOI: 10.1136/jech-2019-212256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/31/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022]
Abstract
AimTo explore the association of selected cardiometabolic biomarkers and metabolic syndrome (MetS) with educational outcomes in adolescents from Chile.MethodsOf 678 participants, 632 (52% males) met criteria for the study. At 16 years, waist circumference (WC), systolic blood pressure, triglycerides (TG), high-density lipoprotein and glucose were measured. A continuous cardiometabolic risk score (zMetS) using indicators of obesity, lipids, glucose and blood pressure was computed, with lower values denoting a healthier cardiometabolic profile. MetS was diagnosed with the International Diabetes Federation/American Heart Association/National Heart, Lung, and Blood Institute joint criteria. Data on high school (HS) graduation, grade point average (GPA), college examination rates and college test scores were collected. Data were analysed controlling for sociodemographic, lifestyle and educational confounders.ResultzMetS, WC, TG and homeostatic model assessment of insulin resistance at 16 years were negatively and significantly associated with the odds of completing HS and taking college exams. Notably, for a one-unit increase in zMetS, we found 52% (OR: 0.48, 95% CI 0.227 to 0.98) and 39% (OR: 0.61, 95% CI 0.28 to 0.93) reduction in the odds of HS completion and taking college exams, respectively. The odds of HS completion and taking college exams in participants with MetS were 37% (95% CI 0.14 to 0.98) and 33% (95% CI 0.15 to 0.79) that of participants with no cardiometabolic risk factors. Compared with adolescents with no risk factors, those with MetS had lower GPA (515 vs 461 points; p=0.002; Cohen’s d=0.55). Adolescents having the MetS had significantly lower odds of passing the mathematics exam for college compared with peers with no cardiometabolic risk factors (OR: 0.49; 95% CI 0.16 to 0.95).ConclusionIn Chilean adolescents, cardiometabolic health was associated with educational outcomes.
Collapse
|
100
|
Amirsardari Z, Rahmani F, Rezaei N. Cognitive impairments in HCV infection: From pathogenesis to neuroimaging. J Clin Exp Neuropsychol 2019; 41:987-1000. [PMID: 31405320 DOI: 10.1080/13803395.2019.1652728] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Extrahepatic manifestations of hepatitis C virus (HCV) infection, in particular cognitive impairments, can be present in the absence of clinical liver dysfunction. Executive memory, attention, and concentration are cognitive domains that are most frequently affected. Microstructural and functional changes in cortical gray matter and basal ganglia associate these neuropsychiatric changes in early HCV infection. No study has covered the relationship between imaging features of HCV-related cognitive impairment and HCV pathology. Herein we summarize evidence suggesting a direct pathology of HCV in microglia, astrocytes, and microvascular endothelial cells, and a neuroinflammatory response in HCV-related cognitive decline. Lipoproteins and their receptors mediate HCV infectivity in the central nervous system and confer susceptibility to HCV-related cognitive decline. Magnetic resonance spectroscopy has revealed changes compatible with reactive gliosis and microglial activation in basal ganglia, frontal and occipital white matter, in the absence of cirrhosis or hepatic encephalopathy. Similarly, diffusion imaging shows evidence of structural disintegrity in the axonal fibers of white matter tracts associated with temporal and frontal cortices. We also discuss the cognitive benefits and side-effects of the two most popular therapeutic protocols interferon-based therapy and interferon-free therapy using direct acting anti-virals. Evidences support a network-based pattern of disruption in functional connectivity in HCV patients and a common neuronal substrate for HCV-related and interferon-therapy-associated cognitive decline. These evidences might help identify patients who benefit from either interferon-based or interferon-free treatment regimen.
Collapse
Affiliation(s)
- Zahra Amirsardari
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences , Tehran , Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Farzaneh Rahmani
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences , Tehran , Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Nima Rezaei
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN) , Tehran , Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|