51
|
Jialal I, Adams-Huet B, Devaraj S. Increased Adipocyte Hypertrophy in Patients with Nascent Metabolic Syndrome. J Clin Med 2023; 12:4247. [PMID: 37445281 DOI: 10.3390/jcm12134247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Background and Aims: Metabolic Syndrome (MetS), a global problem, predisposes to an increased risk for type 2 diabetes and premature cardiovascular disease. While MetS is associated with central obesity, there is scanty data on adipocyte hypertrophy, increased fat cell size (FCS), in MetS. The aim of this study was to investigate FCS status in adipose tissue (AT) biopsy of patients with nascent MetS without the confounding of diabetes, cardiovascular disease, smoking, or lipid therapy. Methods and Results: Fasting blood and subcutaneous gluteal AT biopsies were obtained in MetS (n = 20) and controls (n = 19). Cardio-metabolic features, FFA levels, hsCRP, and HOMA-IR were significantly increased in patients with MetS. Waist-circumference (WC) adjusted-FCS was significantly increased in patients with MetS and increased with increasing severity of MetS. Furthermore, there were significant correlations between FCS with glucose, HDL-C, and the ratio of TG: HDL-C. There were significant correlations between FCS and FFA, as well as endotoxin and monocyte TLR4 abundance. Additionally, FCS correlated with readouts of NLRP3 Inflammasome activity. Most importantly, FCS correlated with markers of fibrosis and angiogenesis. Conclusions: In conclusion, in patients with nascent MetS, we demonstrate WC-adjusted increase in FCS from gluteal adipose tissue which correlated with cellular inflammation, fibrosis, and angiogenesis. While these preliminary observations were in gluteal fat, future studies are warranted to confirm these findings in visceral and other fat depots.
Collapse
Affiliation(s)
- Ishwarlal Jialal
- Veterans Affairs Medical Center, Mather, CA 95655, USA
- UCDavis School of Medicine and VA Medical Center, 10535 Hospital Way, Mather, CA 95655, USA
| | | | - Sridevi Devaraj
- Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
52
|
Lathigara D, Kaushal D, Wilson RB. Molecular Mechanisms of Western Diet-Induced Obesity and Obesity-Related Carcinogenesis-A Narrative Review. Metabolites 2023; 13:metabo13050675. [PMID: 37233716 DOI: 10.3390/metabo13050675] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
The present study aims to provide a narrative review of the molecular mechanisms of Western diet-induced obesity and obesity-related carcinogenesis. A literature search of the Cochrane Library, Embase and Pubmed databases, Google Scholar and the grey literature was conducted. Most of the molecular mechanisms that induce obesity are also involved in the twelve Hallmarks of Cancer, with the fundamental process being the consumption of a highly processed, energy-dense diet and the deposition of fat in white adipose tissue and the liver. The generation of crown-like structures, with macrophages surrounding senescent or necrotic adipocytes or hepatocytes, leads to a perpetual state of chronic inflammation, oxidative stress, hyperinsulinaemia, aromatase activity, activation of oncogenic pathways and loss of normal homeostasis. Metabolic reprogramming, epithelial mesenchymal transition, HIF-1α signalling, angiogenesis and loss of normal host immune-surveillance are particularly important. Obesity-associated carcinogenesis is closely related to metabolic syndrome, hypoxia, visceral adipose tissue dysfunction, oestrogen synthesis and detrimental cytokine, adipokine and exosomal miRNA release. This is particularly important in the pathogenesis of oestrogen-sensitive cancers, including breast, endometrial, ovarian and thyroid cancer, but also 'non-hormonal' obesity-associated cancers such as cardio-oesophageal, colorectal, renal, pancreatic, gallbladder and hepatocellular adenocarcinoma. Effective weight loss interventions may improve the future incidence of overall and obesity-associated cancer.
Collapse
Affiliation(s)
- Dhruvi Lathigara
- Department General Surgery, UWS, Campbelltown Hospital, Campbelltown, NSW 2560, Australia
| | - Devesh Kaushal
- Department General Surgery, UWS, Campbelltown Hospital, Campbelltown, NSW 2560, Australia
| | - Robert Beaumont Wilson
- Department Upper Gastrointestinal Surgery, UNSW, Liverpool Hospital, Liverpool, NSW 2170, Australia
| |
Collapse
|
53
|
Ibáñez CA, Lira-León G, Reyes-Castro LA, Rodríguez-González GL, Lomas-Soria C, Hernández-Rojas A, Bravo-Flores E, Solis-Paredes JM, Estrada-Gutierrez G, Zambrano E. Programming Mechanism of Adipose Tissue Expansion in the Rat Offspring of Obese Mothers Occurs in a Sex-Specific Manner. Nutrients 2023; 15:nu15102245. [PMID: 37242132 DOI: 10.3390/nu15102245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
We investigated whether excessive retroperitoneal adipose tissue (AT) expansion programmed by maternal obesity (MO) affects adipocyte size distribution and gene expression in relation to adipocyte proliferation and differentiation in male and female offspring (F1) from control (F1C) and obese (F1MO) mothers. Female Wistar rats (F0) ate a control or high-fat diet from weaning through pregnancy and lactation. F1 were weaned onto a control diet and euthanized at 110 postnatal days. Fat depots were weighed to estimate the total AT. Serum glucose, triglyceride, leptin, insulin, and the insulin resistance index (HOMA-IR) were determined. Adipocyte size and adipogenic gene expression were examined in retroperitoneal fat. Body weight, retroperitoneal AT and adipogenesis differed between male and female F1Cs. Retroperitoneal AT, glucose, triglyceride, insulin, HOMA-IR and leptin were higher in male and female F1MO vs. F1C. Small adipocytes were reduced in F1MO females and absent in F1MO males; large adipocytes were increased in F1MO males and females vs. F1C. Wnt, PI3K-Akt, and insulin signaling pathways in F1MO males and Egr2 in F1MO females were downregulated vs. F1C. MO induced metabolic dysfunction in F1 through different sex dimorphism mechanisms, including the decreased expression of pro-adipogenic genes and reduced insulin signaling in males and lipid mobilization-related genes in females.
Collapse
Affiliation(s)
- Carlos A Ibáñez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Gabriela Lira-León
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Luis A Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Guadalupe L Rodríguez-González
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Consuelo Lomas-Soria
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
- CONACyT-Cátedras, Investigador por México, Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico
| | - Alejandra Hernández-Rojas
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Eyerahí Bravo-Flores
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Juan Mario Solis-Paredes
- Departamento de Investigación en Salud Reproductiva y Perinatal, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Guadalupe Estrada-Gutierrez
- Dirección de Investigación, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| |
Collapse
|
54
|
Ye J, Gao C, Liang Y, Hou Z, Shi Y, Wang Y. Characteristic and fate determination of adipose precursors during adipose tissue remodeling. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:13. [PMID: 37138165 PMCID: PMC10156890 DOI: 10.1186/s13619-023-00157-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/30/2022] [Indexed: 05/05/2023]
Abstract
Adipose tissues are essential for actively regulating systemic energy balance, glucose homeostasis, immune responses, reproduction, and longevity. Adipocytes maintain dynamic metabolic needs and possess heterogeneity in energy storage and supply. Overexpansion of adipose tissue, especially the visceral type, is a high risk for diabetes and other metabolic diseases. Changes in adipocytes, hypertrophy or hyperplasia, contribute to the remodeling of obese adipose tissues, accompanied by abundant immune cell accumulation, decreased angiogenesis, and aberrant extracellular matrix deposition. The process and mechanism of adipogenesis are well known, however, adipose precursors and their fate decision are only being defined with recent information available to decipher how adipose tissues generate, maintain, and remodel. Here, we discuss the key findings that identify adipose precursors phenotypically, with special emphasis on the intrinsic and extrinsic signals in instructing and regulating the fate of adipose precursors under pathophysiological conditions. We hope that the information in this review lead to novel therapeutic strategies to combat obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Jiayin Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Cheng Gao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yong Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Zongliu Hou
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, 650000, Yunnan, China
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China.
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
55
|
Song Q, Muller KE, Hondelink LM, diFlorio-Alexander RM, Karagas M, Hassanpour S. Non-Metastatic Axillary Lymph Nodes Have Distinct Morphology and Immunophenotype in Obese Breast Cancer patients at Risk for Metastasis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.14.23288545. [PMID: 37131732 PMCID: PMC10153305 DOI: 10.1101/2023.04.14.23288545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Obese patients have worse breast cancer outcomes than normal weight women including a 50% to 80% increased rate of axillary nodal metastasis. Recent studies have shown a potential link between increased lymph node adipose tissue and breast cancer nodal metastasis. Further investigation into potential mechanisms underlying this link may reveal potential prognostic utility of fat-enlarged lymph nodes in breast cancer patients. In this study, a deep learning framework was developed to identify morphological differences of non-metastatic axillary nodes between node-positive and node-negative obese breast cancer patients. Pathology review of the model-selected patches found an increase in the average size of adipocytes (p-value=0.004), an increased amount of white space between lymphocytes (p-value<0.0001), and an increased amount of red blood cells (p-value<0.001) in non-metastatic lymph nodes of node-positive breast cancer patients. Our downstream immunohistology (IHC) analysis showed a decrease of CD3 expression and increase of leptin expression in fat-replaced axillary lymph nodes in obese node-positive patients. In summary, our findings suggest a novel direction to further investigate the crosstalk between lymph node adiposity, lymphatic dysfunction, and breast cancer nodal metastases.
Collapse
|
56
|
Dou J, Thangaraj SV, Puttabyatappa M, Elangovan VR, Bakulski K, Padmanabhan V. Developmental programming: Adipose depot-specific regulation of non-coding RNAs and their relation to coding RNA expression in prenatal testosterone and prenatal bisphenol-A -treated female sheep. Mol Cell Endocrinol 2023; 564:111868. [PMID: 36708980 PMCID: PMC10069610 DOI: 10.1016/j.mce.2023.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Inappropriate developmental exposure to steroids is linked to metabolic disorders. Prenatal testosterone excess or bisphenol A (BPA, an environmental estrogen mimic) leads to insulin resistance and adipocyte disruptions in female lambs. Adipocytes are key regulators of insulin sensitivity. Metabolic tissue-specific differences in insulin sensitivity coupled with adipose depot-specific changes in key mRNAs, were previously observed with prenatal steroid exposure. We hypothesized that depot-specific changes in the non-coding RNA (ncRNA) - regulators of gene expression would account for the direction of changes seen in mRNAs. Non-coding RNA (lncRNA, miRNA, snoRNA, snRNA) from various adipose depots of prenatal testosterone and BPA-treated animals were sequenced. Adipose depot-specific changes in the ncRNA that are consistent with the depot-specific mRNA expression in terms of directionality of changes and functional implications in insulin resistance, adipocyte differentiation and cardiac hypertrophy were found. Importantly, the adipose depot-specific ncRNA changes were model-specific and mutually exclusive, suggestive of different regulatory entry points in this regulation.
Collapse
Affiliation(s)
- John Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | - Kelly Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
57
|
Maniyadath B, Zhang Q, Gupta RK, Mandrup S. Adipose tissue at single-cell resolution. Cell Metab 2023; 35:386-413. [PMID: 36889280 PMCID: PMC10027403 DOI: 10.1016/j.cmet.2023.02.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 03/09/2023]
Abstract
Adipose tissue exhibits remarkable plasticity with capacity to change in size and cellular composition under physiological and pathophysiological conditions. The emergence of single-cell transcriptomics has rapidly transformed our understanding of the diverse array of cell types and cell states residing in adipose tissues and has provided insight into how transcriptional changes in individual cell types contribute to tissue plasticity. Here, we present a comprehensive overview of the cellular atlas of adipose tissues focusing on the biological insight gained from single-cell and single-nuclei transcriptomics of murine and human adipose tissues. We also offer our perspective on the exciting opportunities for mapping cellular transitions and crosstalk, which have been made possible by single-cell technologies.
Collapse
Affiliation(s)
- Babukrishna Maniyadath
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Qianbin Zhang
- Department of Internal Medicine, Touchstone Diabetes Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rana K Gupta
- Department of Internal Medicine, Touchstone Diabetes Center, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Susanne Mandrup
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
58
|
Uomoto S, Takesue K, Shimizu S, Maeda N, Oshima K, Hara E, Kobayashi M, Takahashi Y, Shibutani M, Yoshida T. Phenobarbital, a hepatic metabolic enzyme inducer, inhibits preneoplastic hepatic lesions with expression of selective autophagy receptor p62 and ER-phagy receptor FAM134B in high-fat diet-fed rats through the inhibition of ER stress. Food Chem Toxicol 2023; 173:113607. [PMID: 36657701 DOI: 10.1016/j.fct.2023.113607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/17/2023]
Abstract
We investigated the role of endoplasmic reticulum (ER)-phagy in NAFLD-related hepatocarcinogenesis in high-fat diet (HFD)-fed and/or phenobarbital (PB)-treated rats by clustering the expression levels of the selective autophagy receptor p62 and the ER-phagy-specific receptor FAM134B in preneoplastic hepatic lesions. We obtained four clusters with variable expression levels of p62 and FAM134B in preneoplastic lesions, and a variable population of clusters in each group. PB administration increased the clusters with high expression levels of p62 while HFD feeding increased the clusters with high expression levels of both p62 and FAM134B. The areas of preneoplastic lesions of these clusters were significantly increased than those of other clusters with low expression levels of p62 and FAM134B. The combination of HFD feeding with PB counteracted the effects of each other, and the cluster composition was similar to that in the control group. The results were associated with decreased gene expression of ER stress, inflammatory cytokine, autophagy, and increased expression of antioxidant enzyme. The present study demonstrated that clustering analysis is useful for understanding the role of autophagy in each preneoplastic lesion, and that HFD feeding increased preneoplastic lesions through the inhibition of ER-phagy, which was cancelled with PB administration through the induction of ER-phagy.
Collapse
Affiliation(s)
- Suzuka Uomoto
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Keisuke Takesue
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Saori Shimizu
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Natsuno Maeda
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Kanami Oshima
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Emika Hara
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Mio Kobayashi
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
59
|
Kim E, Ham SA, Hwang JS, Won JP, Lee HG, Hur J, Seo HG. Zinc finger protein 251 deficiency impairs glucose metabolism by inducing adipocyte hypertrophy. Mol Cell Endocrinol 2023; 562:111838. [PMID: 36565788 DOI: 10.1016/j.mce.2022.111838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Zinc finger protein (ZFP) 251 is a member of the C2H2 ZFP family containing a Krüppel-associated box domain that might mainly act as a transcriptional repressor. However, its cellular function remains largely unknown. Here, we discovered that ZFP251 deficiency caused glucose intolerance in mice. This phenotype was associated with impaired insulin signaling due to hypertrophic changes in white adipose tissue (WAT). Gene ontology analysis revealed that ZFP251 deficiency affected the expression of genes associated with adipocyte differentiation and lipid and fatty acid metabolism. Consistent with in vivo results, hypertrophic changes were observed in Zfp251 knockdown (KD) 3T3-L1 adipocytes. In addition, Zfp251 KD 3T3-L1 preadipocytes exhibited cell cycle arrest in G0/G1 phase, leading to impaired differentiation into mature adipocytes, upon which abnormal mitotic clonal expansion and reduced expression of adipogenic markers were exhibited. These results suggest that ZFP251 deficiency causes impaired adipogenesis and adipocyte hypertrophy, leading to dysfunction of WAT.
Collapse
Affiliation(s)
- Eunsu Kim
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sun Ah Ham
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jung Seok Hwang
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jun Pil Won
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hyuk Gyoon Lee
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jinwoo Hur
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Han Geuk Seo
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
60
|
Sun Y, Wang B, Hu Q, Zhang H, Lai X, Wang T, Zhao C, Wang J, Zhang X, Niu Q, He B, Jiang E, Shi M, Feng X, Luo Y. Loss of Lkb1 in CD11c + myeloid cells protects mice from diet-induced obesity while enhancing glucose intolerance and IL-17/IFN-γ imbalance. Cell Mol Life Sci 2023; 80:63. [PMID: 36781473 PMCID: PMC9925521 DOI: 10.1007/s00018-023-04707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/04/2023] [Accepted: 01/22/2023] [Indexed: 02/15/2023]
Abstract
Adipose tissue CD11c+ myeloid cell is an independent risk factor associated with obesity and metabolic disorders. However, the underlying molecular basis remains elusive. Here, we demonstrated that liver kinase B1 (Lkb1), a key bioenergetic sensor, is involved in CD11c+ cell-mediated immune responses in diet-induced obesity. Loss of Lkb1 in CD11c+ cells results in obesity resistance but lower glucose tolerance, which accompanies tissue-specific immune abnormalities. The accumulation and CD80's expression of Lkb1 deficient adipose-tissue specific dendritic cells but not macrophages is restrained. Additionally, the balance of IL-17A and IFN-γ remarkably tips towards the latter in fat T cells and CD11c- macrophages. Mechanistically, IFN-γ promotes apoptosis of preadipocytes and inhibits their adipogenesis while IL-17A promotes the adipogenesis in vitro, which might account in part for the fat gain resistant phenotype. In summary, these findings reveal that Lkb1 is essential for fat CD11c+ dendritic cells responding to HFD exposure and provides new insights into the IL-17A/IFN-γ balance in HFD-induced obesity.
Collapse
Affiliation(s)
- Yunyan Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China.,Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, China
| | - Bing Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Qianwen Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China.,Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Haixiao Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xun Lai
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, China
| | - Tier Wang
- Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunxiao Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jiali Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xi Zhang
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, China
| | - Qing Niu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Baolin He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China. .,Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Mingxia Shi
- Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China. .,Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Yuechen Luo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China. .,Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
61
|
Hedges CP, Shetty B, Broome SC, MacRae C, Koutsifeli P, Buckels EJ, MacIndoe C, Boix J, Tsiloulis T, Matthews BG, Sinha S, Arendse M, Jaiswal JK, Mellor KM, Hickey AJR, Shepherd PR, Merry TL. Dietary supplementation of clinically utilized PI3K p110α inhibitor extends the lifespan of male and female mice. NATURE AGING 2023; 3:162-172. [PMID: 37118113 DOI: 10.1038/s43587-022-00349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 12/02/2022] [Indexed: 04/30/2023]
Abstract
Diminished insulin and insulin-like growth factor-1 signaling extends the lifespan of invertebrates1-4; however, whether it is a feasible longevity target in mammals is less clear5-12. Clinically utilized therapeutics that target this pathway, such as small-molecule inhibitors of phosphoinositide 3-kinase p110α (PI3Ki), provide a translatable approach to studying the impact of these pathways on aging. Here, we provide evidence that dietary supplementation with the PI3Ki alpelisib from middle age extends the median and maximal lifespan of mice, an effect that was more pronounced in females. While long-term PI3Ki treatment was well tolerated and led to greater strength and balance, negative impacts on common human aging markers, including reductions in bone mass and mild hyperglycemia, were also evident. These results suggest that while pharmacological suppression of insulin receptor (IR)/insulin-like growth factor receptor (IGFR) targets could represent a promising approach to delaying some aspects of aging, caution should be taken in translation to humans.
Collapse
Affiliation(s)
- C P Hedges
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - B Shetty
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - S C Broome
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - C MacRae
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - P Koutsifeli
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - E J Buckels
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - C MacIndoe
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - J Boix
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - T Tsiloulis
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - B G Matthews
- Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - S Sinha
- Department of Pathology, Waikato Hospital, Hamilton, New Zealand
| | - M Arendse
- Department of Pathology, Waikato Hospital, Hamilton, New Zealand
| | - J K Jaiswal
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - K M Mellor
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - A J R Hickey
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - P R Shepherd
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - T L Merry
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
62
|
Fatty Acids as Potent Modulators of Autophagy Activity in White Adipose Tissue. Biomolecules 2023; 13:biom13020255. [PMID: 36830623 PMCID: PMC9953325 DOI: 10.3390/biom13020255] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
A high-fat diet is one of the causative factors of obesity. The dietary profile of fatty acids is also an important variable in developing obesity, as saturated fatty acids are more obesogenic than monounsaturated and polyunsaturated fatty acids. Overweight and obesity are inseparably connected with the excess of adipose tissue in the body, characterized by hypertrophy and hyperplasia of fat cells, which increases the risk of developing metabolic syndrome. Changes observed within hypertrophic adipocytes result in elevated oxidative stress, unfolded protein accumulation, and increased endoplasmic reticulum (ER) stress. One of the processes involved in preservation of cellular homeostasis is autophagy, which is defined as an intracellular lysosome-dependent degradation system that serves to recycle available macromolecules and eliminate damaged organelles. In obesity, activation of autophagy is increased and the process appears to be regulated by different types of dietary fatty acids. This review describes the role of autophagy in adipose tissue and summarizes the current understanding of the effects of saturated and unsaturated fatty acids in autophagy modulation in adipocytes.
Collapse
|
63
|
Varshney R, Das S, Trahan GD, Farriester JW, Mullen GP, Kyere-Davies G, Presby DM, Houck JA, Webb PG, Dzieciatkowska M, Jones KL, Rodeheffer MS, Friedman JE, MacLean PS, Rudolph MC. Neonatal intake of Omega-3 fatty acids enhances lipid oxidation in adipocyte precursors. iScience 2023; 26:105750. [PMID: 36590177 PMCID: PMC9800552 DOI: 10.1016/j.isci.2022.105750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/26/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Establishing metabolic programming begins during fetal and postnatal development, and early-life lipid exposures play a critical role during neonatal adipogenesis. We define how neonatal consumption of a low omega-6 to -3 fatty acid ratio (n6/n3 FA ratio) establishes FA oxidation in adipocyte precursor cells (APCs) before they become adipocytes. In vivo, APCs isolated from mouse pups exposed to the low n6/n3 FA ratio had superior FA oxidation capacity, elevated beige adipocyte mRNAs Ppargc1α, Ucp2, and Runx1, and increased nuclear receptor NR2F2 protein. In vitro, APC treatment with NR2F2 ligand-induced beige adipocyte mRNAs and increased mitochondrial potential but not mass. Single-cell RNA-sequencing analysis revealed low n6/n3 FA ratio yielded more mitochondrial-high APCs and linked APC NR2F2 levels with beige adipocyte signatures and FA oxidation. Establishing beige adipogenesis is of clinical relevance, because fat depots with energetically active, smaller, and more numerous adipocytes improve metabolism and delay metabolic dysfunction.
Collapse
Affiliation(s)
- Rohan Varshney
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Snehasis Das
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - G. Devon Trahan
- Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob W. Farriester
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gregory P. Mullen
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gertrude Kyere-Davies
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - David M. Presby
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Julie A. Houck
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Patricia G. Webb
- Department of Reproductive Science, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry & Molecular Genetics, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Kenneth L. Jones
- Department of Cell Biology and Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Matthew S. Rodeheffer
- Department of Molecular, Cellular and Developmental Biology, Department of Comparative Medicine, Yale University, New Haven, CT, USA
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Paul S. MacLean
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Michael C. Rudolph
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
64
|
Kologrivova IV, Naryzhnaya NV, Koshelskaya OA, Suslova TE, Kravchenko ES, Kharitonova OA, Evtushenko VV, Boshchenko AA. Association of Epicardial Adipose Tissue Adipocytes Hypertrophy with Biomarkers of Low-Grade Inflammation and Extracellular Matrix Remodeling in Patients with Coronary Artery Disease. Biomedicines 2023; 11:biomedicines11020241. [PMID: 36830779 PMCID: PMC9953115 DOI: 10.3390/biomedicines11020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
The aim of the study was to compare the morphological features of epicardial adipose tissue (EAT) adipocyte with the circulating inflammatory biomarkers and parameters of extracellular matrix remodeling in patients with coronary artery disease (CAD). We recruited 42 patients with CAD (m/f 28/14) who were scheduled for coronary artery bypass graft surgery (CABG). EAT adipocytes were obtained by the enzymatic method from intraoperative adipose tissue samples. Concentrations of secreted and lipoprotein-associated phospholipase A2 (sPLA2 and LpPLA2), TNF-α, IL-1β, IL-6, IL-10, high-sensitive C-reactive protein (hsCRP), metalloproteinase-9 (MMP-9), MMP-2, C-terminal cross-linking telopeptide of type I collagen (CTX-I), and tissue inhibitor of metalloproteinase 1 (TIMP-1) were measured in blood serum. Patients were divided into two groups: group 1-with mean EAT adipocytes' size ≤ 87.32 μm; group 2-with mean EAT adipocytes' size > 87.32 μm. Patients of group 2 had higher concentrations of triglycerides, hsCRP, TNF-α, and sPLA2 and a lower concentration of CTX-I. A multiple logistic regression model was created (RN2 = 0.43, p = 0.0013). Concentrations of TNF-α, sPLA2 and CTX-I appeared to be independent determinants of the EAT adipocyte hypertrophy. ROC analysis revealed the 78% accuracy, 71% sensitivity, and 85% specificity of the model, AUC = 0.82. According to our results, chronic low-grade inflammation and extracellular matrix remodeling are closely associated with the development of hypertrophy of EAT adipocytes, with serum concentrations of TNF-α, sPLA2 and CTX-I being the key predictors, describing the variability of epicardial adipocytes' size.
Collapse
Affiliation(s)
- Irina V. Kologrivova
- Correspondence: (I.V.K.); (N.V.N.); Tel.: +79-131-053-869 (I.V.K.); +79-039-542-139 (N.V.N.)
| | - Natalia V. Naryzhnaya
- Correspondence: (I.V.K.); (N.V.N.); Tel.: +79-131-053-869 (I.V.K.); +79-039-542-139 (N.V.N.)
| | | | | | | | | | | | | |
Collapse
|
65
|
FABP4 Controls Fat Mass Expandability (Adipocyte Size and Number) through Inhibition of CD36/SR-B2 Signalling. Int J Mol Sci 2023; 24:ijms24021032. [PMID: 36674544 PMCID: PMC9867004 DOI: 10.3390/ijms24021032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
Adipose tissue hypertrophy during obesity plays pleiotropic effects on health. Adipose tissue expandability depends on adipocyte size and number. In mature adipocytes, lipid accumulation as triglycerides into droplets is imbalanced by lipid uptake and lipolysis. In previous studies, we showed that adipogenesis induced by oleic acid is signed by size increase and reduction of FAT/CD36 (SR-B2) activity. The present study aims to decipher the mechanisms involved in fat mass regulation by fatty acid/FAT-CD36 signalling. Human adipose stem cells, 3T3-L1, and its 3T3-MBX subclone cell lines were used in 2D cell cultures or co-cultures to monitor in real-time experiments proliferation, differentiation, lipolysis, and/or lipid uptake and activation of FAT/CD36 signalling pathways regulated by oleic acid, during adipogenesis and/or regulation of adipocyte size. Both FABP4 uptake and its induction by fatty acid-mediated FAT/CD36-PPARG gene transcription induce accumulation of intracellular FABP4, which in turn reduces FAT/CD36, and consequently exerts a negative feedback loop on FAT/CD36 signalling in both adipocytes and their progenitors. Both adipocyte size and recruitment of new adipocytes are under the control of FABP4 stores. This study suggests that FABP4 controls fat mass homeostasis.
Collapse
|
66
|
Dickson E, Fryklund C, Soylu-Kucharz R, Sjögren M, Stenkula KG, Björkqvist M. Altered Adipocyte Cell Size Distribution Prior to Weight Loss in the R6/2 Model of Huntington's Disease. J Huntingtons Dis 2023; 12:253-266. [PMID: 37718850 DOI: 10.3233/jhd-230587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Metabolic alterations contribute to disease onset and prognosis of Huntington's disease (HD). Weight loss in the R6/2 mouse model of HD is a consistent feature, with onset in mid-to-late stage of disease. OBJECTIVE In the present study, we aimed to investigate molecular and functional changes in white adipose tissue (WAT) that occur at weight loss in R6/2 mice. We further elaborated on the effect of leptin-deficiency and early obesity in R6/2 mice. METHODS We performed analyses at 12 weeks of age; a time point that coincides with the start of weight loss in our R6/2 mouse colony. Gonadal (visceral) and inguinal (subcutaneous) WAT depot weights were monitored, as well as adipocyte size distribution. Response to isoprenaline-stimulated glycerol release and insulin-stimulated glucose uptake in adipocytes from gonadal WAT was assessed. RESULTS In R6/2 mice, WAT depot weights were comparable to wildtype (WT) mice, and the response to insulin and isoprenaline in gonadal adipocytes was unaltered. Leptin-deficient R6/2 mice exhibited distinct changes compared to leptin-deficient WT mice. At 12 weeks, female leptin-deficient R6/2 mice had reduced body weight accompanied by an increased proportion of smaller adipocytes, while in contrast; male mice displayed a shift towards larger adipocyte sizes without a significant body weight reduction at this timepoint. CONCLUSIONS We here show that there are early sex-specific changes in adipocyte cell size distribution in WAT of R6/2 mice and leptin-deficient R6/2 mice.
Collapse
Affiliation(s)
- Elna Dickson
- Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Claes Fryklund
- Glucose Transport and Protein Trafficking, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Rana Soylu-Kucharz
- Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Marie Sjögren
- Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Karin G Stenkula
- Glucose Transport and Protein Trafficking, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Maria Björkqvist
- Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
67
|
Calderón-DuPont D, Torre-Villalvazo I, Díaz-Villaseñor A. Is insulin resistance tissue-dependent and substrate-specific? The role of white adipose tissue and skeletal muscle. Biochimie 2023; 204:48-68. [PMID: 36099940 DOI: 10.1016/j.biochi.2022.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/19/2022] [Accepted: 08/31/2022] [Indexed: 01/12/2023]
Abstract
Insulin resistance (IR) refers to a reduction in the ability of insulin to exert its metabolic effects in organs such as adipose tissue (AT) and skeletal muscle (SM), leading to chronic diseases such as type 2 diabetes, hepatic steatosis, and cardiovascular diseases. Obesity is the main cause of IR, however not all subjects with obesity develop clinical insulin resistance, and not all clinically insulin-resistant people have obesity. Recent evidence implies that IR onset is tissue-dependent (AT or SM) and/or substrate-specific (glucometabolic or lipometabolic). Therefore, the aims of the present review are 1) to describe the glucometabolic and lipometabolic activities of insulin in AT and SM in the maintenance of whole-body metabolic homeostasis, 2) to discuss the pathophysiology of substrate-specific IR in AT and SM, and 3) to highlight novel validated tests to assess tissue and substrate-specific IR that are easy to perform in clinical practice. In AT, glucometabolic IR reduces glucose availability for glycerol and fatty acid synthesis, thus decreasing the esterification and synthesis of signaling bioactive lipids. Lipometabolic IR in AT impairs the antilipolytic effect of insulin and lipogenesis, leading to an increase in circulating FFAs and generating lipotoxicity in peripheral tissues. In SM, glucometabolic IR reduces glucose uptake, whereas lipometabolic IR impairs mitochondrial lipid oxidation, increasing oxidative stress and inflammation, all of which lead to metabolic inflexibility. Understanding tissue-dependent and substrate-specific IR is of paramount importance for early detection before clinical manifestations and for the development of more specific treatments or direct interventions to prevent chronic life-threatening diseases.
Collapse
Affiliation(s)
- Diana Calderón-DuPont
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico; Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico
| | - Ivan Torre-Villalvazo
- Departamento de Fisiología de la Nutrición, Instituto Nacional en Ciencias Médicas y Nutricíon Salvador Zubirán, Mexico City, 14000, Mexico
| | - Andrea Díaz-Villaseñor
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico.
| |
Collapse
|
68
|
Kolb H. Obese visceral fat tissue inflammation: from protective to detrimental? BMC Med 2022; 20:494. [PMID: 36575472 PMCID: PMC9795790 DOI: 10.1186/s12916-022-02672-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/21/2022] [Indexed: 12/28/2022] Open
Abstract
Obesity usually is accompanied by inflammation of fat tissue, with a prominent role of visceral fat. Chronic inflammation in obese fat tissue is of a lower grade than acute immune activation for clearing the tissue from an infectious agent. It is the loss of adipocyte metabolic homeostasis that causes activation of resident immune cells for supporting tissue functions and regaining homeostasis. Initially, the excess influx of lipids and glucose in the context of overnutrition is met by adipocyte growth and proliferation. Eventual lipid overload of hypertrophic adipocytes leads to endoplasmic reticulum stress and the secretion of a variety of signals causing increased sympathetic tone, lipolysis by adipocytes, lipid uptake by macrophages, matrix remodeling, angiogenesis, and immune cell activation. Pro-inflammatory signaling of adipocytes causes the resident immune system to release increased amounts of pro-inflammatory and other mediators resulting in enhanced tissue-protective responses. With chronic overnutrition, these protective actions are insufficient, and death of adipocytes as well as senescence of several tissue cell types is seen. This structural damage causes the expression or release of immunostimulatory cell components resulting in influx and activation of monocytes and many other immune cell types, with a contribution of stromal cells. Matrix remodeling and angiogenesis is further intensified as well as possibly detrimental fibrosis. The accumulation of senescent cells also may be detrimental via eventual spread of senescence state from affected to neighboring cells by the release of microRNA-containing vesicles. Obese visceral fat inflammation can be viewed as an initially protective response in order to cope with excess ambient nutrients and restore tissue homeostasis but may contribute to tissue damage at a later stage.
Collapse
Affiliation(s)
- Hubert Kolb
- Faculty of Medicine, University of Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany. .,West-German Centre of Diabetes and Health, Düsseldorf Catholic Hospital Group, Hohensandweg 37, 40591, Düsseldorf, Germany.
| |
Collapse
|
69
|
Goodpaster BH, Bergman BC, Brennan AM, Sparks LM. Intermuscular adipose tissue in metabolic disease. Nat Rev Endocrinol 2022; 19:285-298. [PMID: 36564490 DOI: 10.1038/s41574-022-00784-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
Intermuscular adipose tissue (IMAT) is a distinct adipose depot described in early reports as a 'fatty replacement' or 'muscle fat infiltration' that was linked to ageing and neuromuscular disease. Later studies quantifying IMAT with modern in vivo imaging methods (computed tomography and magnetic resonance imaging) revealed that IMAT is proportionately higher in men and women with type 2 diabetes mellitus and the metabolic syndrome than in people without these conditions and is associated with insulin resistance and poor physical function with ageing. In parallel, agricultural research has provided extensive insight into the role of IMAT and other muscle lipids in muscle (that is, meat) quality. In addition, studies using rodent models have shown that IMAT is a bona fide white adipose tissue depot capable of robust triglyceride storage and turnover. Insight into the importance of IMAT in human biology has been limited by the dearth of studies on its biological properties, that is, the quality of IMAT. However, in the past few years, investigations have begun to determine that IMAT has molecular and metabolic features that distinguish it from other adipose tissue depots. These studies will be critical to further decipher the role of IMAT in health and disease and to better understand its potential as a therapeutic target.
Collapse
Affiliation(s)
| | - Bryan C Bergman
- Division of Endocrinology, Diabetes, and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrea M Brennan
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| |
Collapse
|
70
|
Rosas-Campos R, Meza-Rios A, Rodriguez-Sanabria JS, la Rosa-Bibiano RD, Corona-Cervantes K, García-Mena J, Santos A, Sandoval-Rodriguez A, Armendariz-Borunda J. Dietary supplementation with Mexican foods, Opuntia ficus indica, Theobroma cacao, and Acheta domesticus: Improving obesogenic and microbiota features in obese mice. Front Nutr 2022; 9:987222. [PMID: 36532548 PMCID: PMC9755723 DOI: 10.3389/fnut.2022.987222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2023] Open
Abstract
INTRODUCTION An obesogenic diet, a diet high in saturated fats and sugars, is a risk factor for the development of multiple obesity-related diseases. In this study, our aim was to evaluate the effect of supplementation with a mixture of Mexican functional foods (MexMix), Opuntia ficus indica (nopal), Theobroma cacao, and Acheta domesticus (edible crickets), compared with a high-fat and fructose/sucrose diet on an obesogenic mice model. METHODS For this study, 18 male C57BL/6J mice were used, which were divided into three groups: (1) control group: normal diet (ND), (2) HF/FS group: high-fat diet along with 4.2% fructose/sucrose and water (ad libitum access), and (3) therapeutic group (MexMix): HF/FS diet up to week 8, followed by HF/FS diet supplemented with 10% nopal, 10% cocoa, and 10% cricket for 8 weeks. RESULTS MexMix mice showed significantly reduced body weight, liver weight, visceral fat, and epididymal fat compared with HF/FS mice. Levels of triglycerides, cholesterol, LDL cholesterol, insulin, glucose, GIP, leptin, PAI-1, and resistin were also significantly reduced. For identifying the gut microbiota in the model, 16S rRNA gene sequencing analysis was performed, and the results showed that MexMix supplementation increased the abundance of Lachnospira, Eubacterium coprostanoligenes, and Blautia, bacteria involved in multiple beneficial metabolic effects. It is noteworthy that the mice supplemented with MexMix showed improvements in cognitive parameters, as evaluated by the novel object recognition test. CONCLUSION Hence, supplementation with MexMix food might represent a potential strategy for the treatment of obesity and other diseases associated with excessive intake of fats and sugars.
Collapse
Affiliation(s)
- Rebeca Rosas-Campos
- Department of Molecular Biology and Genomics, Health Sciences University Center, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, Guadalajara, Mexico
| | - Alejandra Meza-Rios
- Department of Molecular Biology and Genomics, Health Sciences University Center, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, Guadalajara, Mexico
| | - J. Samael Rodriguez-Sanabria
- Department of Molecular Biology and Genomics, Health Sciences University Center, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, Guadalajara, Mexico
| | - Ricardo De la Rosa-Bibiano
- Department of Molecular Biology and Genomics, Health Sciences University Center, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, Guadalajara, Mexico
| | | | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Cinvestav, Ciudad de México, Mexico
| | | | - Ana Sandoval-Rodriguez
- Department of Molecular Biology and Genomics, Health Sciences University Center, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, Guadalajara, Mexico
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Health Sciences University Center, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, Guadalajara, Mexico
- Tecnológico de Monterrey, EMCS, Guadalajara, Mexico
| |
Collapse
|
71
|
Mandl M, Viertler HP, Hatzmann FM, Brucker C, Großmann S, Waldegger P, Rauchenwald T, Mattesich M, Zwierzina M, Pierer G, Zwerschke W. An organoid model derived from human adipose stem/progenitor cells to study adipose tissue physiology. Adipocyte 2022; 11:164-174. [PMID: 35297273 PMCID: PMC8932919 DOI: 10.1080/21623945.2022.2044601] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We established a functional adipose organoid model system for human adipose stem/progenitor cells (ASCs) isolated from white adipose tissue (WAT). ASCs were forced to self-aggregate by a hanging-drop technique. Afterwards, spheroids were transferred into agar-coated cell culture dishes to avoid plastic-adherence and dis-aggregation. Adipocyte differentiation was induced by an adipogenic hormone cocktail. Morphometric analysis revealed a significant increase in organoid size in the course of adipogenesis until d 18. Whole mount staining of organoids using specific lipophilic dyes showed large multi- and unilocular fat deposits in differentiated cells indicating highly efficient differentiation of ASCs into mature adipocytes. Moreover, we found a strong induction of the expression of key adipogenesis and adipocyte markers (CCAAT/enhancer-binding protein (C/EBP) β, peroxisome proliferator-activated receptor (PPAR) γ, fatty acid-binding protein 4 (FABP4), adiponectin) during adipose organoid formation. Secreted adiponectin was detected in the cell culture supernatant, underscoring the physiological relevance of mature adipocytes in the organoid model. Moreover, colony formation assays of collagenase-digested organoids revealed the maintenance of a significant fraction of ASCs within newly formed organoids. In conclusion, we provide a reliable and highly efficient WAT organoid model, which enables accurate analysis of cellular and molecular markers of adipogenic differentiation and adipocyte physiology.
Collapse
Affiliation(s)
- Markus Mandl
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Hans P. Viertler
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Florian M. Hatzmann
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Camille Brucker
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Sonja Großmann
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Petra Waldegger
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Tina Rauchenwald
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Monika Mattesich
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Marit Zwierzina
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerhard Pierer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Werner Zwerschke
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria
| |
Collapse
|
72
|
Never-in-Mitosis A-Related Kinase 8 (NEK8) Regulates Adipogenesis, Glucose Homeostasis, and Obesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1947067. [PMID: 36506932 PMCID: PMC9729029 DOI: 10.1155/2022/1947067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Background Adipogenesis is a complex biological process and the leading main cause of obesity. We evaluated the role of never-in-mitosis A-related kinase 8 (NEK8) in adipocyte development and insulin sensitivity in the present study. Methods NEK8 expression was manipulated using a specific shRNA or the NEK8-full-length expressing recombinant plasmids. The interaction between NEK8 and Tafazzin (TAZ, an oncogenic transcriptional regulator) was examined by Co-immunoprecipitation (Co-IP) and confocal immunofluorescence staining. Western blot assay was performed to determine the protein expression. The in vivo role of NEK8 was explored in a mouse model of high-fat diet- (HFD-) induced insulin resistance. Results During adipogenesis, the expression of NEK8 was elevated while TAZ was downregulated. Overexpression of NEK8 promoted lipid accumulation and expression of markers for adipocyte differentiation. Mechanically, NEK8 interacted with TAZ and suppressed its expression in adipocytes. Functionally, lentiviral-mediated NEK8 inhibition ameliorates HFD-induced insulin resistance in adipocytes. Conclusion These findings suggest that NEK8 plays a critical role in adipocyte proliferation, providing novel insight into the link between NEK8 and type 2 diabetes- (T2DM-) related obesity.
Collapse
|
73
|
GLUT4 translocation and dispersal operate in multiple cell types and are negatively correlated with cell size in adipocytes. Sci Rep 2022; 12:20535. [PMID: 36446811 PMCID: PMC9708847 DOI: 10.1038/s41598-022-24736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
The regulated translocation of the glucose transporter, GLUT4, to the surface of adipocytes and muscle is a key action of insulin. This is underpinned by the delivery and fusion of GLUT4-containing vesicles with the plasma membrane. Recent studies have revealed that a further action of insulin is to mediate the dispersal of GLUT4 molecules away from the site of GLUT4 vesicle fusion with the plasma membrane. Although shown in adipocytes, whether insulin-stimulated dispersal occurs in other cells and/or is exhibited by other proteins remains a matter of debate. Here we show that insulin stimulates GLUT4 dispersal in the plasma membrane of adipocytes, induced pluripotent stem cell-derived cardiomyocytes and HeLa cells, suggesting that this phenomenon is specific to GLUT4 expressed in all cell types. By contrast, insulin-stimulated dispersal of TfR was not observed in HeLa cells, suggesting that the mechanism may be unique to GLUT4. Consistent with dispersal being an important physiological mechanism, we observed that insulin-stimulated GLUT4 dispersal is reduced under conditions of insulin resistance. Adipocytes of different sizes have been shown to exhibit distinct metabolic properties: larger adipocytes exhibit reduced insulin-stimulated glucose transport compared to smaller cells. Here we show that both GLUT4 delivery to the plasma membrane and GLUT4 dispersal are reduced in larger adipocytes, supporting the hypothesis that larger adipocytes are refractory to insulin challenge compared to their smaller counterparts, even within a supposedly homogeneous population of cells.
Collapse
|
74
|
Li Q, Spalding KL. The regulation of adipocyte growth in white adipose tissue. Front Cell Dev Biol 2022; 10:1003219. [PMID: 36483678 PMCID: PMC9723158 DOI: 10.3389/fcell.2022.1003219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/03/2022] [Indexed: 10/25/2023] Open
Abstract
Adipocytes can increase in volume up to a thousand-fold, storing excess calories as triacylglycerol in large lipid droplets. The dramatic morphological changes required of adipocytes demands extensive cytoskeletal remodeling, including lipid droplet and plasma membrane expansion. Cell growth-related signalling pathways are activated, stimulating the production of sufficient amino acids, functional lipids and nucleotides to meet the increasing cellular needs of lipid storage, metabolic activity and adipokine secretion. Continued expansion gives rise to enlarged (hypertrophic) adipocytes. This can result in a failure to maintain growth-related homeostasis and an inability to cope with excess nutrition or respond to stimuli efficiently, ultimately leading to metabolic dysfunction. We summarize recent studies which investigate the functional and cellular structure remodeling of hypertrophic adipocytes. How adipocytes adapt to an enlarged cell size and how this relates to cellular dysfunction are discussed. Understanding the healthy and pathological processes involved in adipocyte hypertrophy may shed light on new strategies for promoting healthy adipose tissue expansion.
Collapse
Affiliation(s)
- Qian Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Kirsty L. Spalding
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
75
|
High-fat diet consumption by male rat offspring of obese mothers exacerbates adipose tissue hypertrophy and metabolic alterations in adult life. Br J Nutr 2022:1-10. [PMID: 36412162 DOI: 10.1017/s0007114522003737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Obese mothers' offspring develop obesity and metabolic alterations in adulthood. Poor postnatal dietary patterns also contribute to obesity and its comorbidities. We aimed to determine whether in obese mothers' offspring an adverse postnatal environment, such as high-fat diet (HFD) consumption (second hit) exacerbates body fat accumulation, metabolic alterations and adipocyte size distribution. Female Wistar rats ate chow (C-5 %-fat) or HFD (maternal obesity (MO)-25 %-fat) from weaning until the end of lactation. Male offspring were weaned on either control (C/C and MO/C, maternal diet/offspring diet) or HFD (C/HF and MO/HF) diet. At 110 postnatal days, offspring were killed. Fat depots were excised to estimate adiposity index (AI). Serum glucose, triglyceride, leptin, insulin, insulin resistance index (HOMA-IR), corticosterone and dehydroepiandrosterone (DHEA) were determined. Adipocyte size distribution was evaluated in retroperitoneal fat. Body weight was similar in C/C and MO/C but higher in C/HF and MO/HF. AI, leptin, insulin and HOMA-IR were higher in MO/C and C/HF v. C/C but lower than MO/HF. Glucose increased in MO/HF v. MO/C. C/HF and MO/C had higher triglyceride and corticosterone than C/C, but lower corticosterone than MO/HF. DHEA and the DHEA/corticosterone ratio were lower in C/HF and MO/C v. C/C, but higher than MO/HF. Small adipocyte proportion decreased while large adipocyte proportions increased in MO/C and C/HF v. C/C and exacerbated in MO/HF v. C/HF. Postnatal consumption of a HFD by the offspring of obese mothers exacerbates body fat accumulation as well as the decrease of small and the increase of large adipocytes, which leads to larger metabolic abnormalities.
Collapse
|
76
|
Cao Y. Blood vessels in fat tissues and vasculature-derived signals in controlling lipid metabolism and metabolic disease. Chin Med J (Engl) 2022; 135:2647-2652. [PMID: 36382988 PMCID: PMC9943976 DOI: 10.1097/cm9.0000000000002406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 65 Stockholm, Sweden
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, China
| |
Collapse
|
77
|
Davies DM, van den Handel K, Bharadwaj S, Lengefeld J. Cellular enlargement - A new hallmark of aging? Front Cell Dev Biol 2022; 10:1036602. [PMID: 36438561 PMCID: PMC9688412 DOI: 10.3389/fcell.2022.1036602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2023] Open
Abstract
Years of important research has revealed that cells heavily invest in regulating their size. Nevertheless, it has remained unclear why accurate size control is so important. Our recent study using hematopoietic stem cells (HSCs) in vivo indicates that cellular enlargement is causally associated with aging. Here, we present an overview of these findings and their implications. Furthermore, we performed a broad literature analysis to evaluate the potential of cellular enlargement as a new aging hallmark and to examine its connection to previously described aging hallmarks. Finally, we highlight interesting work presenting a correlation between cell size and age-related diseases. Taken together, we found mounting evidence linking cellular enlargement to aging and age-related diseases. Therefore, we encourage researchers from seemingly unrelated areas to take a fresh look at their data from the perspective of cell size.
Collapse
Affiliation(s)
- Daniel M. Davies
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kim van den Handel
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Soham Bharadwaj
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jette Lengefeld
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
78
|
Kislev N, Eidelheit S, Perlmutter S, Benayahu D. How to follow lipid droplets dynamics during adipocyte metabolism. J Cell Physiol 2022; 237:4157-4168. [PMID: 35986713 PMCID: PMC9804707 DOI: 10.1002/jcp.30857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 01/09/2023]
Abstract
Lipid droplets (LDs) are important cellular organelles due to their ability to accumulate and store lipids. LD dynamics are associated with various cellular and metabolic processes. Accurate monitoring of LD's size and shape is of prime importance as it indicates the metabolic status of the cells. Unintrusive continuous quantification techniques have a clear advantage in analyzing LDs as they measure and monitor the cells' metabolic function and droplets over time. Here, we present a novel machine-learning-based method for LDs analysis by segmentation of phase-contrast images of differentiated adipocytes (in vitro) and adipose tissue (in vivo). We developed a new workflow based on the ImageJ waikato environment for knowledge analysis segmentation plugin, which provides an accurate, label-free, live single-cell, and organelle quantification of LD-related parameters. By applying the new method on differentiating 3T3-L1 cells, the size of LDs was analyzed over time in differentiated adipocytes and their correlation with other morphological parameters. Moreover, we analyzed the LDs dynamics during catabolic changes such as lipolysis and lipophagy and demonstrated its ability to identify different cellular subpopulations based on their structural, numerical, and spatial variability. This analysis was also implemented on unstained ex vivo adipose tissues to measure adipocyte size, an important readout of the tissue's metabolism. The presented approach can be applied in different LD-related metabolic conditions to provide a better understanding of LD biogenesis and function in vivo and in vitro while serving as a new platform that enables rapid and accurate screening of data sets.
Collapse
Affiliation(s)
- Nadav Kislev
- Department of Cell and Developmental Biology, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Shira Eidelheit
- Department of Cell and Developmental Biology, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Shaked Perlmutter
- Department of Cell and Developmental Biology, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Dafna Benayahu
- Department of Cell and Developmental Biology, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
79
|
Yang J, Vamvini M, Nigro P, Ho LL, Galani K, Alvarez M, Tanigawa Y, Renfro A, Carbone NP, Laakso M, Agudelo LZ, Pajukanta P, Hirshman MF, Middelbeek RJW, Grove K, Goodyear LJ, Kellis M. Single-cell dissection of the obesity-exercise axis in adipose-muscle tissues implies a critical role for mesenchymal stem cells. Cell Metab 2022; 34:1578-1593.e6. [PMID: 36198295 PMCID: PMC9558082 DOI: 10.1016/j.cmet.2022.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/29/2022] [Accepted: 09/09/2022] [Indexed: 11/08/2022]
Abstract
Exercise training is critical for the prevention and treatment of obesity, but its underlying mechanisms remain incompletely understood given the challenge of profiling heterogeneous effects across multiple tissues and cell types. Here, we address this challenge and opposing effects of exercise and high-fat diet (HFD)-induced obesity at single-cell resolution in subcutaneous and visceral white adipose tissue and skeletal muscle in mice with diet and exercise training interventions. We identify a prominent role of mesenchymal stem cells (MSCs) in obesity and exercise-induced tissue adaptation. Among the pathways regulated by exercise and HFD in MSCs across the three tissues, extracellular matrix remodeling and circadian rhythm are the most prominent. Inferred cell-cell interactions implicate within- and multi-tissue crosstalk centered around MSCs. Overall, our work reveals the intricacies and diversity of multi-tissue molecular responses to exercise and obesity and uncovers a previously underappreciated role of MSCs in tissue-specific and multi-tissue beneficial effects of exercise.
Collapse
Affiliation(s)
- Jiekun Yang
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maria Vamvini
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Pasquale Nigro
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Li-Lun Ho
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kyriakitsa Galani
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marcus Alvarez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yosuke Tanigawa
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashley Renfro
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicholas P Carbone
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Leandro Z Agudelo
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Roeland J W Middelbeek
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Kevin Grove
- Novo Nordisk Research Center, Seattle, WA, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
80
|
Rydén M, Andersson DP, Kotopouli MI, Stenberg E, Näslund E, Thorell A, Sørensen TIA, Arner P. Lipolysis defect in people with obesity who undergo metabolic surgery. J Intern Med 2022; 292:667-678. [PMID: 35670497 PMCID: PMC9540545 DOI: 10.1111/joim.13527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Cross-sectional studies demonstrate that catecholamine stimulation of fat cell lipolysis is blunted in obesity. We investigated whether this defect persists after substantial weight loss has been induced by metabolic surgery, and whether it is related to the outcome. DESIGN/METHODS Patients with obesity not able to successfully reduce body weight by conventional means (n = 126) were investigated before and 5 years after Roux-en-Y gastric bypass surgery (RYGB). They were compared with propensity-score matched subjects selected from a control group (n = 1017), and with the entire group after adjustment for age, sex, body mass index (BMI), fat cell volume and other clinical parameters. Catecholamine-stimulated lipolysis (glycerol release) was investigated in isolated fat cells using noradrenaline (natural hormone) or isoprenaline (synthetic beta-adrenoceptor agonist). RESULTS Following RYGB, BMI was reduced from 39.9 (37.5-43.5) (median and interquartile range) to 29.5 (26.7-31.9) kg/m2 (p < 0.0001). The post-RYGB patients had about 50% lower lipolysis rates compared with the matched and total series of controls (p < 0.0005). Nordrenaline activation of lipolysis at baseline was associated with the RYGB effect; those with high lipolysis activation (upper tertile) lost 30%-45% more in body weight, BMI or fat mass than those with low (bottom tertile) initial lipolysis activation (p < 0.0007). CONCLUSION Patients with obesity requiring metabolic surgery have impaired ability of catecholamines to stimulate lipolysis, which remains despite long-term normalization of body weight by RYGB. Furthermore, preoperative variations in the ability of catecholamines to activate lipolysis may predict the long-term reduction in body weight and fat mass.
Collapse
Affiliation(s)
- Mikael Rydén
- Department of Medicine (H7), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Daniel P Andersson
- Department of Medicine (H7), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Maria I Kotopouli
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Erik Stenberg
- Department of Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Erik Näslund
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Anders Thorell
- Department of Clinical Sciences, Danderyds Hospital, Karolinska Institutet, Stockholm, Sweden.,Department of Surgery, Ersta Hospital, Stockholm, Sweden
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Centre for Basic Metabolic Research and Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Arner
- Department of Medicine (H7), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
81
|
Wang L, van Iersel LEJ, Pelgrim CE, Lu J, van Ark I, Leusink-Muis T, Gosker HR, Langen RCJ, Schols AMWJ, Argilés JM, van Helvoort A, Kraneveld AD, Garssen J, Henricks PAJ, Folkerts G, Braber S. Effects of Cigarette Smoke on Adipose and Skeletal Muscle Tissue: In Vivo and In Vitro Studies. Cells 2022; 11:cells11182893. [PMID: 36139468 PMCID: PMC9497292 DOI: 10.3390/cells11182893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), often caused by smoking, is a chronic lung disease with systemic manifestations including metabolic comorbidities. This study investigates adaptive and pathological alterations in adipose and skeletal muscle tissue following cigarette smoke exposure using in vivo and in vitro models. Mice were exposed to cigarette smoke or air for 72 days and the pre-adipose cell line 3T3-L1 was utilized as an in vitro model. Cigarette smoke exposure decreased body weight, and the proportional loss in fat mass was more pronounced than the lean mass loss. Cigarette smoke exposure reduced adipocyte size and increased adipocyte numbers. Adipose macrophage numbers and associated cytokine levels, including interleukin-1β, interleukine-6 and tumor necrosis factor-α were elevated in smoke-exposed mice. Muscle strength and protein synthesis signaling were decreased after smoke exposure; however, muscle mass was not changed. In vitro studies demonstrated that lipolysis and fatty acid oxidation were upregulated in cigarette smoke-exposed pre-adipocytes. In conclusion, cigarette smoke exposure induces a loss of whole-body fat mass and adipose atrophy, which is likely due to enhanced lipolysis.
Collapse
Affiliation(s)
- Lei Wang
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
| | - Lieke E. J. van Iersel
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, 6200 MD Maastricht, The Netherlands
| | - Charlotte E. Pelgrim
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
| | - Jingyi Lu
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
| | - Ingrid van Ark
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
| | - Thea Leusink-Muis
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
| | - Harry R. Gosker
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, 6200 MD Maastricht, The Netherlands
| | - Ramon C. J. Langen
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, 6200 MD Maastricht, The Netherlands
| | - Annemie M. W. J. Schols
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, 6200 MD Maastricht, The Netherlands
| | - Josep M. Argilés
- Biochemistry and Molecular Biology of Cancer, Faculty of Biology, University of Barcelona, 08007 Barcelona, Spain
| | - Ardy van Helvoort
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, 6200 MD Maastricht, The Netherlands
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Paul A. J. Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
- Correspondence: ; Tel.: +31-0-622-483-913
| |
Collapse
|
82
|
Thomsen MN, Skytte MJ, Samkani A, Astrup A, Fenger M, Frystyk J, Hartmann B, Holst JJ, Larsen TM, Madsbad S, Magkos F, Rehfeld JF, Haugaard SB, Krarup T. Weight loss improves β-cell function independently of dietary carbohydrate restriction in people with type 2 diabetes: A 6-week randomized controlled trial. Front Nutr 2022; 9:933118. [PMID: 36061897 PMCID: PMC9437620 DOI: 10.3389/fnut.2022.933118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Background Carbohydrate restriction may benefit β-cell function and glucose metabolism in type 2 diabetes (T2D) but also leads to weight loss which in itself is beneficial. Methods In order to determine the additional effect of carbohydrate restriction in addition to a fixed body weight loss, we randomly assigned 72 adults with T2D and obesity (mean ± SD HbA1c 7.4 ± 0.7%, BMI 33 ± 5 kg/m2) to a carbohydrate-reduced high-protein diet (CRHP; energy percent from carbohydrate/protein/fat: 30/30/40) or an isocaloric conventional diabetes diet (CD; 50/17/33) for 6 weeks. All foods were provided free of charge and total energy intake was tailored individually, so both groups lost 6% of baseline body weight. Results Despite significantly greater reductions in HbA1c (mean [95% CI] −1.9 [−3.5, −0.3] mmol/mol) after 6 weeks, the CRHP diet neither improved glucose tolerance, β-cell response to glucose, insulin sensitivity, during a 4-h oral glucose tolerance test, nor basal proinsulin secretion when compared to the CD diet, but increased C-peptide concentration and insulin secretion rate (area under the curve [AUC] and peak) significantly more (~10%, P ≤ 0.03 for all). Furthermore, compared with the CD diet, the CRHP diet borderline increased basal glucagon concentration (16 [−0.1, 34]%, P = 0.05), but decreased glucagon net AUC (−2.0 [−3.4, −0.6] mmol/L ×240 min, P < 0.01), decreased basal triglyceride and total AUC (~20%, P < 0.01 for both), and increased gastric inhibitory polypeptide total AUC (14%, P = 0.01). Conclusion A moderately carbohydrate-restricted diet for 6 weeks decreased HbA1c but did not improve β-cell function or glucose tolerance beyond the effects of weight loss when compared with a conventional diabetes diet in people with T2D. Clinical trials registration www.Clinicaltrials.gov, Identifier: NCT02472951.
Collapse
Affiliation(s)
- Mads N. Thomsen
- Department of Endocrinology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
- *Correspondence: Mads N. Thomsen
| | - Mads J. Skytte
- Department of Endocrinology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Amirsalar Samkani
- Department of Endocrinology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Arne Astrup
- Healthy Weight Center, Novo Nordisk Foundation, Hellerup, Denmark
| | - Mogens Fenger
- Department of Clinical Biochemistry, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | - Jan Frystyk
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Bolette Hartmann
- Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J. Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas M. Larsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | - Faidon Magkos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jens F. Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Steen B. Haugaard
- Department of Endocrinology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Thure Krarup
- Department of Endocrinology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
83
|
Pruett JE, Everman SJ, Hoang NH, Salau F, Taylor LC, Edwards KS, Hosler JP, Huffman AM, Romero DG, Yanes Cardozo LL. Mitochondrial function and oxidative stress in white adipose tissue in a rat model of PCOS: effect of SGLT2 inhibition. Biol Sex Differ 2022; 13:45. [PMID: 35986388 PMCID: PMC9389812 DOI: 10.1186/s13293-022-00455-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS), characterized by androgen excess and ovulatory dysfunction, is associated with a high prevalence of obesity and insulin resistance (IR) in women. We demonstrated that sodium–glucose cotransporter-2 inhibitor (SGLT2i) administration decreases fat mass without affecting IR in the PCOS model. In male models of IR, administration of SGLT2i decreases oxidative stress and improves mitochondrial function in white adipose tissue (WAT). Therefore, we hypothesized that SGLT2i reduces adiposity via improvement in mitochondrial function and oxidative stress in WAT in PCOS model. Methods Four-week-old female rats were treated with dihydrotestosterone for 90 days (PCOS model), and SGLT2i (empagliflozin) was co-administered during the last 3 weeks. Body composition was measured before and after SGLT2i treatment by EchoMRI. Subcutaneous (SAT) and visceral (VAT) WAT were collected for histological and molecular studies at the end of the study. Results PCOS model had an increase in food intake, body weight, body mass index, and fat mass/lean mass ratio compared to the control group. SGLT2i lowered fat mass/lean ratio in PCOS. Glucosuria was observed in both groups, but had a larger magnitude in controls. The net glucose balance was similar in both SGLT2i-treated groups. The PCOS SAT had a higher frequency of small adipocytes and a lower frequency of large adipocytes. In SAT of controls, SGLT2i increased frequencies of small and medium adipocytes while decreasing the frequency of large adipocytes, and this effect was blunted in PCOS. In VAT, PCOS had a lower frequency of small adipocytes while SGLT2i increased the frequency of small adipocytes in PCOS. PCOS model had decreased mitochondrial content in SAT and VAT without impacting oxidative stress in WAT or the circulation. SGLT2i did not modify mitochondrial function or oxidative stress in WAT in both treated groups. Conclusions Hyperandrogenemia in PCOS causes expansion of WAT, which is associated with decreases in mitochondrial content and function in SAT and VAT. SGLT2i increases the frequency of small adipocytes in VAT only without affecting mitochondrial dysfunction, oxidative stress, or IR in the PCOS model. SGLT2i decreases adiposity independently of adipose mitochondrial and oxidative stress mechanisms in the PCOS model. Supplementary Information The online version contains supplementary material available at 10.1186/s13293-022-00455-x. Androgen excess in PCOS model is associated with decreased markers of mitochondrial content in both subcutaneous and visceral white adipose tissue. Androgen excess in PCOS model is associated with increased frequency of small adipocytes in subcutaneous white adipose tissue while decreasing frequency of small adipocytes in visceral white adipose tissue. SGLT2 inhibition did not modify markers of mitochondrial content or oxidative stress in either subcutaneous or visceral white adipose tissue in PCOS model. SGLT2 inhibition increased frequency of small adipocytes in both subcutaneous and visceral white adipose tissue in control rats; however, SGLT2 inhibition only increased frequency of small adipocytes in visceral white adipose tissue in PCOS model.
Collapse
|
84
|
The Effects of Shear Force-Based Processing of Lipoaspirates on White Adipose Tissue and the Differentiation Potential of Adipose Derived Stem Cells. Cells 2022; 11:cells11162543. [PMID: 36010620 PMCID: PMC9406387 DOI: 10.3390/cells11162543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Autologous lipotransfer is a promising method for tissue regeneration, because white adipose tissue contains a heterogeneous cell population, including mesenchymal stem cells, endothelial cells, immune cells, and adipocytes. In order to improve the outcome, adipose tissue can be processed before application. In this study, we investigated changes caused by mechanical processing. Lipoaspirates were processed using sedimentation, first-time centrifugation, shear-force homogenization, and second-time centrifugation. The average adipocyte size, stromal vascular cell count, and adipocyte depot size were examined histologically at every processing step. In addition, the adipose derived stem cells (ADSCs) were isolated and differentiated osteogenically and adipogenically. While homogenization causes a disruption of adipocyte depots, the shape of the remaining adipocytes is not changed. On average, these adipocytes are smaller than the depot adipocytes, they are surrounded by the ECM, and therefore mechanically more stable. The volume loss of adipocyte depots leads to a significant enrichment of stromal vascular cells such as ADSCs. However, the mechanical processing does not change the potential of the ADSCs to differentiate adipogenically or osteogenically. It thus appears that mechanically processed lipoaspirates are promising for the reparation of even mechanically stressed tissue as that found in nasolabial folds. The changes resulting from the processing correspond more to a filtration of mechanically less stable components than to a manipulation of the tissue.
Collapse
|
85
|
Cavalheiro EKFF, da Silva LE, Oliveira MP, Silva MG, Damiani AP, Ribeiro CB, Magenis ML, Cucker L, Michels M, Joaquim L, Machado RS, Vilela TC, Bitencourt RM, Andrade VM, Dal-Pizzol F, Petronilho F, Tuon T, Rezin GT. Effects of obesity on neuroinflammatory and neurochemical parameters in an animal model of reserpine-induced Parkinson's disease. Behav Brain Res 2022; 434:114019. [PMID: 35872330 DOI: 10.1016/j.bbr.2022.114019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 12/06/2022]
Abstract
Obesity is associated with low-grade chronic inflammation and oxidative stress, affecting the brain's reward system by decreasing dopaminergic neurotransmission. It is known that dopaminergic neurotransmission is also reduced in Parkinson's disease (PD), and high adiposity is considered a risk factor for the development of several neurodegenerative diseases, including PD. This study aimed to assess the effects of obesity on neuroinflammatory and neurochemical parameters in an animal model of reserpine-induced PD. The obese group showed increased inflammation and oxidative damage as well as inhibition of mitochondrial respiratory chain complexes I and II and DNA damage in the evaluated structures. The PD group did not show inflammation or mitochondrial dysfunction but exhibited oxidative damage in the hippocampus. The combination group (obesity + PD) showed reduced inflammation and oxidative stress and increased activity of complexes I and II of the mitochondrial respiratory chain in most of the analyzed structures. On the other hand, obesity + PD caused oxidative damage to proteins in the liver, prefrontal cortex, striatum, and cerebral cortex and oxidative stress in the hypothalamus, resulting in reduced catalase activity. Furthermore, the combination group showed DNA damage in blood, liver, and cerebral cortex. In conclusion, it was observed that the association of obesity and PD did not increase inflammation, oxidative stress, or mitochondrial dysfunction in most of the evaluated structures but increased oxidative damage and induced mechanisms that led to DNA damage in peripheral tissues and brain structures.
Collapse
Affiliation(s)
- Eulla Keimili Fernandes Ferreira Cavalheiro
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Larissa Espindola da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Mariana P Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Marina G Silva
- Laboratory of Behavioral Neuroscience, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Adriani P Damiani
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, UNESC, Avenida Universitária, 1105, Criciúma, SC, Brazil
| | - Catharina B Ribeiro
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, UNESC, Avenida Universitária, 1105, Criciúma, SC, Brazil
| | - Marina L Magenis
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, UNESC, Avenida Universitária, 1105, Criciúma, SC, Brazil
| | - Luana Cucker
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Richard Simon Machado
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Thais C Vilela
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Rafael M Bitencourt
- Laboratory of Behavioral Neuroscience, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Vanessa M Andrade
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, UNESC, Avenida Universitária, 1105, Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Fabrícia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Talita Tuon
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil.
| |
Collapse
|
86
|
Müller GA, Müller TD. Biological Role of the Intercellular Transfer of Glycosylphosphatidylinositol-Anchored Proteins: Stimulation of Lipid and Glycogen Synthesis. Int J Mol Sci 2022; 23:7418. [PMID: 35806423 PMCID: PMC9267055 DOI: 10.3390/ijms23137418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs), which are anchored at the outer leaflet of plasma membranes (PM) only by a carboxy-terminal GPI glycolipid, are known to fulfill multiple enzymic and receptor functions at the cell surface. Previous studies revealed that full-length GPI-APs with the complete GPI anchor attached can be released from and inserted into PMs in vitro. Moreover, full-length GPI-APs were recovered from serum, dependent on the age and metabolic state of rats and humans. Here, the possibility of intercellular control of metabolism by the intercellular transfer of GPI-APs was studied. Mutant K562 erythroleukemia (EL) cells, mannosamine-treated human adipocytes and methyl-ß-cyclodextrin-treated rat adipocytes as acceptor cells for GPI-APs, based on their impaired PM expression of GPI-APs, were incubated with full-length GPI-APs, prepared from rat adipocytes and embedded in micelle-like complexes, or with EL cells and human adipocytes with normal expression of GPI-APs as donor cells in transwell co-cultures. Increases in the amounts of full-length GPI-APs at the PM of acceptor cells as a measure of their transfer was assayed by chip-based sensing. Both experimental setups supported both the transfer and upregulation of glycogen (EL cells) and lipid (adipocytes) synthesis. These were all diminished by serum, serum GPI-specific phospholipase D, albumin, active bacterial PI-specific phospholipase C or depletion of total GPI-APs from the culture medium. Serum inhibition of both transfer and glycogen/lipid synthesis was counteracted by synthetic phosphoinositolglycans (PIGs), which closely resemble the structure of the GPI glycan core and caused dissociation of GPI-APs from serum proteins. Finally, large, heavily lipid-loaded donor and small, slightly lipid-loaded acceptor adipocytes were most effective in stimulating transfer and lipid synthesis. In conclusion, full-length GPI-APs can be transferred between adipocytes or between blood cells as well as between these cell types. Transfer and the resulting stimulation of lipid and glycogen synthesis, respectively, are downregulated by serum proteins and upregulated by PIGs. These findings argue for the (patho)physiological relevance of the intercellular transfer of GPI-APs in general and its role in the paracrine vs. endocrine (dys)regulation of metabolism, in particular. Moreover, they raise the possibility of the use of full-length GPI-APs as therapeutics for metabolic diseases.
Collapse
Affiliation(s)
- Günter A. Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Oberschleissheim, Germany;
- German Center for Diabetes Research (DZD, Deutsches Zentrum für Diabetesforschung), International Helmholtz Research School for Diabetes, 85764 Oberschleissheim, Germany
| | - Timo D. Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Oberschleissheim, Germany;
- German Center for Diabetes Research (DZD, Deutsches Zentrum für Diabetesforschung), International Helmholtz Research School for Diabetes, 85764 Oberschleissheim, Germany
| |
Collapse
|
87
|
Babenko AY. Metformin in prediabetes: key mechanisms for the prevention of diabetes and cardiometabolic risks. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2022:96-103. [DOI: 10.21518/2079-701x-2022-16-10-96-103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Today, prediabetes is regarded by the world medical community as early diabetes mellitus. The accumulated research evidence shows that prediabetes is characterized by a spectrum of complications that are similar to those of diabetes mellitus, which means that the deterioration of cardiovascular prognosis starts already at the stage of prediabetes. In the current timeframe, metformin is actually the only drug that is widely prescribed for the treatment of prediabetes to prevent type 2 diabetes mellitus and cardiovascular diseases associated with insulin resistance and hyperinsulinemia. Meanwhile, metabolically unhealthy obesity characterized by hyperinsulinemia and insulin resistance is associated with a significantly unfavourable course of prediabetes, as well as the highest risk of developing both type 2 diabetes mellitus and cardiovascular diseases, development/ progression of chronic kidney disease. The theme of this review is the priority of metformin for the management of the most prognostically unfavourable phenotypes of prediabetes. The review is also devoted to the description of the most significant mechanisms that provide effects of metformin underlying the management of key disorders that determine the unfavourable prognosis of prediabetes. In particular, it sets forth the role of unhealthy nutrition, its effects on the development of imbalance of the composition of gut microbiota, which, in turn, entails a cascade of metabolic disorders underlying the development of metabolic ill health. The review sets forth the key role of metformin as a drug that protects against the development of these disorders. The information presented in this review will be useful to personalize the choice of both the scope and nature of interventions in patients with different phenotypic characteristics.
Collapse
|
88
|
Siopis G. Obesity: A comorbidity-acquired immunodeficiency syndrome (CAIDS). Int Rev Immunol 2022; 42:415-429. [PMID: 35666083 DOI: 10.1080/08830185.2022.2083614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/25/2022] [Accepted: 05/20/2022] [Indexed: 12/15/2022]
Abstract
Accumulating data emphasize a strong link between obesity and the severity of coronavirus disease-2019 (COVID-19), including mortality. Obesity interferes with several components of the immune system including lymphoid tissue's integrity, leukocytes' development and function, complement system's activation, and the coordination of innate and adaptive immune responses. Overall, obesity results in a less efficient immune response to infectious agents. Severe acute respiratory syndrome coronavirus 2 exploits this weakened immune system in people with obesity to precipitate COVID-19, and in some cases death. It is therefore the author's recommendation that obesity should be viewed as another form of acquired immunodeficiency syndrome and be treated with the appropriate seriousness. Unlike the previously described acquired immunodeficiency syndrome (AIDS) that is caused by the Human Immunodeficiency Virus (HIV), obesity is a comorbidity-acquired immunodeficiency syndrome. People with AIDS do not die from HIV, but may die from opportunistic pathogens such as Mycobacterium tuberculosis. However, AIDS is ascribed its due importance in the course of deterioration of the patient. Similarly, obesity should be acknowledged further as a risk factor for mortality from COVID-19. Obesity is a modifiable condition and even in people with a strong genetic predisposition, lifestyle modifications can reverse obesity, and even moderate weight loss can improve the inflammatory milieu. Strong public health actions are warranted to promote lifestyle measures to reduce the burden from overweight and obesity that currently affect more than one-third of the global population, with projections alarming this may reach 55-80% within the next thirty years.
Collapse
Affiliation(s)
- George Siopis
- Institute for Physical Activity and Nutrition (IPAN), Burwood, Australia
- Faculty of Health, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| |
Collapse
|
89
|
Kulyté A, Aman A, Strawbridge RJ, Arner P, Dahlman IA. Genome-Wide Association Study Identifies Genetic Loci Associated With Fat Cell Number and Overlap With Genetic Risk Loci for Type 2 Diabetes. Diabetes 2022; 71:1350-1362. [PMID: 35320353 PMCID: PMC9163556 DOI: 10.2337/db21-0804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022]
Abstract
Interindividual differences in generation of new fat cells determine body fat and type 2 diabetes risk. In the GENetics of Adipocyte Lipolysis (GENiAL) cohort, which consists of participants who have undergone abdominal adipose biopsy, we performed a genome-wide association study (GWAS) of fat cell number (n = 896). Candidate genes from the genetic study were knocked down by siRNA in human adipose-derived stem cells. We report 318 single nucleotide polymorphisms (SNPs) and 17 genetic loci displaying suggestive (P < 1 × 10-5) association with fat cell number. Two loci pass threshold for GWAS significance, on chromosomes 2 (lead SNP rs149660479-G) and 7 (rs147389390-deletion). We filtered for fat cell number-associated SNPs (P < 1.00 × 10-5) using evidence of genotype-specific expression. Where this was observed we selected genes for follow-up investigation and hereby identified SPATS2L and KCTD18 as regulators of cell proliferation consistent with the genetic data. Furthermore, 30 reported type 2 diabetes-associated SNPs displayed nominal and consistent associations with fat cell number. In functional follow-up of candidate genes, RPL8, HSD17B12, and PEPD were identified as displaying effects on cell proliferation consistent with genetic association and gene expression findings. In conclusion, findings presented herein identify SPATS2L, KCTD18, RPL8, HSD17B12, and PEPD of potential importance in controlling fat cell numbers (plasticity), the size of body fat, and diabetes risk.
Collapse
Affiliation(s)
- Agné Kulyté
- Lipid Laboratory, Endocrinology Unit, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Alisha Aman
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Rona J. Strawbridge
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, U.K
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Peter Arner
- Lipid Laboratory, Endocrinology Unit, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Ingrid A. Dahlman
- Lipid Laboratory, Endocrinology Unit, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
- Corresponding author: Ingrid A. Dahlman,
| |
Collapse
|
90
|
Schwärzler J, Mayr L, Radlinger B, Grabherr F, Philipp M, Texler B, Grander C, Ritsch A, Hunjadi M, Enrich B, Salzmann K, Ran Q, Huber LA, Tilg H, Kaser S, Adolph TE. Adipocyte GPX4 protects against inflammation, hepatic insulin resistance and metabolic dysregulation. Int J Obes (Lond) 2022; 46:951-959. [PMID: 35031697 DOI: 10.1038/s41366-022-01064-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/14/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Metabolic inflammation is a hallmark of obesity and related disorders, afflicting substantial morbidity and mortality to individuals worldwide. White visceral and subcutaneous adipose tissue not only serves as energy storage but also controls metabolism. Adipose tissue inflammation, commonly observed in human obesity, is considered a critical driver of metabolic perturbation while molecular hubs are poorly explored. Metabolic stress evoked by e.g. long-chain fatty acids leads to oxidative perturbation of adipocytes and production of inflammatory cytokines, fuelling macrophage infiltration and systemic low-grade inflammation. Glutathione peroxidase 4 (GPX4) protects against lipid peroxidation, accumulation of oxygen-specific epitopes and cell death, collectively referred to as ferroptosis. Here, we explore the function of adipocyte GPX4 in mammalian metabolism. METHODS We studied the regulation and function of GPX4 in differentiated mouse adipocytes derived from 3T3-L1 fibroblasts. We generated two conditional adipocyte-specific Gpx4 knockout mice by crossing Gpx4fl/fl mice with Adipoq-Cre+ (Gpx4-/-AT) or Fabp4-Cre+ (Gpx4+/-Fabp4) mice. Both models were metabolically characterized by a glucose tolerance test and insulin resistance test, and adipose tissue lipid peroxidation, inflammation and cell death were assessed by quantifying oxygen-specific epitopes, transcriptional analysis of chemokines, quantification of F4/80+ macrophages and TUNEL labelling. RESULTS GPX4 expression was induced during and required for adipocyte differentiation. In mature adipocytes, impaired GPX4 activity spontaneously evoked lipid peroxidation and expression of inflammatory cytokines such as TNF-α, interleukin 1β (IL-1β), IL-6 and the IL-8 homologue CXCL1. Gpx4-/-AT mice spontaneously displayed adipocyte hypertrophy on a chow diet, which was paralleled by the accumulation of oxygen-specific epitopes and macrophage infiltration in adipose tissue. Furthermore, Gpx4-/-AT mice spontaneously developed glucose intolerance, hepatic insulin resistance and systemic low-grade inflammation, when compared to wildtype littermates, which was similarly recapitulated in Gpx4+/-Fabp4 mice. Gpx4-/-AT mice exhibited no signs of adipocyte death. CONCLUSION Adipocyte GPX4 protects against spontaneous metabolic dysregulation and systemic low-grade inflammation independent from ferroptosis, which could be therapeutically exploited in the future.
Collapse
Affiliation(s)
- Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lisa Mayr
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bernhard Radlinger
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Maureen Philipp
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bernhard Texler
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Ritsch
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Monika Hunjadi
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Enrich
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Karin Salzmann
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Qitao Ran
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Lukas A Huber
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Susanne Kaser
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
91
|
Obesity Hinders the Protective Effect of Selenite Supplementation on Insulin Signaling. Antioxidants (Basel) 2022; 11:antiox11050862. [PMID: 35624726 PMCID: PMC9138114 DOI: 10.3390/antiox11050862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
The intake of high-fat diets (HFDs) containing large amounts of saturated long-chain fatty acids leads to obesity, oxidative stress, inflammation, and insulin resistance. The trace element selenium, as a crucial part of antioxidative selenoproteins, can protect against the development of diet-induced insulin resistance in white adipose tissue (WAT) by increasing glutathione peroxidase 3 (GPx3) and insulin receptor (IR) expression. Whether selenite (Se) can attenuate insulin resistance in established lipotoxic and obese conditions is unclear. We confirm that GPX3 mRNA expression in adipose tissue correlates with BMI in humans. Cultivating 3T3-L1 pre-adipocytes in palmitate-containing medium followed by Se treatment attenuates insulin resistance with enhanced GPx3 and IR expression and adipocyte differentiation. However, feeding obese mice a selenium-enriched high-fat diet (SRHFD) only resulted in a modest increase in overall selenoprotein gene expression in WAT in mice with unaltered body weight development, glucose tolerance, and insulin resistance. While Se supplementation improved adipocyte morphology, it did not alter WAT insulin sensitivity. However, mice fed a SRHFD exhibited increased insulin content in the pancreas. Overall, while selenite protects against palmitate-induced insulin resistance in vitro, obesity impedes the effect of selenite on insulin action and adipose tissue metabolism in vivo.
Collapse
|
92
|
Niu X, Zhang Y, Lai Z, Huang X, Gao J, Lu F, Chang Q, Yuan Y. Preoperative Short-Term High Carbohydrate Diet Provides More High-Quality Transplantable Fat and Improves the Outcome of Fat Grafts in Mice. Aesthet Surg J 2022; 42:NP531-NP545. [PMID: 35460566 DOI: 10.1093/asj/sjac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Patients with a low body mass index may have inadequate high-quality adipose tissue for transplantation. The influence of high-energy diets on adipose tissue and graft retention remains unknown. OBJECTIVES We explored inguinal fat pad alternation in mice fed on a short-time high-fat diet (HFD) or a high-carbohydrate diet (HCD) preoperatively and the morphological and histological differences after transplantation. METHODS Mice were fed HFD (60% kilocalories from fat, 20% from carbohydrate), HCD (9.3% kilocalories from fat, 80.1% from carbohydrate), or normal (12% kilocalories from fat, 67% kilocalories from carbohydrate) diets for 2 or 4 weeks. Histological analyses were carried out following hematoxylin and eosin staining, and CD34 and proliferating cell nuclear antigen immunostaining. The uncoupling protein-1 (UCP-1) expression was determined by western blotting. Fat pads from each group were grafted into the dorsal region of the recipient mice and morphological and histological changes were determined 4, 8, and 12 weeks post-transplantation. Vascular endothelial growth factor α and platelet-derived growth factor α expression were determined using quantitative polymerase chain reaction. RESULTS The inguinal fat pad volume increased in the HFD and HCD groups. The presence of multilocular adipocytes in inguinal fat of HCD-fed mice, combined with the increased UCP-1 content, suggested adipocyte browning. HCD grafts showed higher volume retention and reduced oil cyst formation, possibly attributed to better angiogenesis and adipogenesis. CONCLUSIONS HCD enlarged adipose tissue and improved grafts survival rates, which may be due to the browning of fat before grafting and enhanced angiogenesis after grafting.
Collapse
Affiliation(s)
- Xingtang Niu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong , China
| | - Yuchen Zhang
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong , China
| | - Zhuhao Lai
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong , China
| | - Xiaoqi Huang
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong , China
| | - Jianhua Gao
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong , China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong , China
| | - Qiang Chang
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong , China
| | - Yi Yuan
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong , China
| |
Collapse
|
93
|
Wollman AJ, Kioumourtzoglou D, Ward R, Gould GW, Bryant NJ. Large scale, single-cell FRET-based glucose uptake measurements within heterogeneous populations. iScience 2022; 25:104023. [PMID: 35313696 PMCID: PMC8933717 DOI: 10.1016/j.isci.2022.104023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/01/2021] [Accepted: 03/01/2022] [Indexed: 11/30/2022] Open
Abstract
Fluorescent biosensors are powerful tools allowing the concentration of metabolites and small molecules, and other properties such as pH and molecular crowding to be measured inside live single cells. The technology has been hampered by lack of simple software to identify cells and quantify biosensor signals in single cells. We have developed a new software package, FRETzel, to address this gap and demonstrate its use by measuring insulin-stimulated glucose uptake in individual fat cells of varying sizes for the first time. Our results support the long-standing hypothesis that larger fat cells are less sensitive to insulin than smaller ones, a finding that has important implications for the battle against type 2 diabetes. FRETzel has been optimized using the messy and crowded environment of cultured adipocytes, demonstrating its utility for quantification of FRET biosensors in a wide range of other cell types, including fibroblasts and yeast via a simple user-friendly quantitative interface. FRETzel is a new software package for easy analysis of FRET signals in cells FRETzel is used to quantify glucose uptake in adipocytes of different sizes Reduced glucose uptake suggests that larger adipocytes have lower insulin sensitivity FRETzel is demonstrated on a range of cell types: yeast, fibroblasts, and adipocytes
Collapse
Affiliation(s)
- Adam J.M. Wollman
- Department of Biology and York Institute of Biomedical Research, University of York, York YO10 5DD, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Corresponding author
| | - Dimitrios Kioumourtzoglou
- Department of Biology and York Institute of Biomedical Research, University of York, York YO10 5DD, UK
| | - Rebecca Ward
- Department of Biology and York Institute of Biomedical Research, University of York, York YO10 5DD, UK
| | - Gwyn W. Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
- Corresponding author
| | - Nia J. Bryant
- Department of Biology and York Institute of Biomedical Research, University of York, York YO10 5DD, UK
- Corresponding author
| |
Collapse
|
94
|
Molina-Ayala MA, Rodríguez-Amador V, Suárez-Sánchez R, León-Solís L, Gómez-Zamudio J, Mendoza-Zubieta V, Cruz M, Suárez-Sánchez F. Expression of obesity- and type-2 diabetes-associated genes in omental adipose tissue of individuals with obesity. Gene X 2022; 815:146181. [PMID: 34995730 DOI: 10.1016/j.gene.2021.146181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
AIMS Obesity and type 2 diabetes mellitus are two pathologies that share metabolic abnormalities in most of the cases; however, there are differences as well. Some studies have reported that approximately 30% of obese patients have normal glucose and lipid levels in blood despite an accumulation of abdominal adipose tissue. Here, we compare the gene expression in adipose tissue of several genes associated with obesity and/or diabetes between obese patients without T2D and obese patients with T2D. METHODS Omental adipose tissue was collected during the patients elective bariatric surgery. Gene expression was determined by real-time PCR. Phenotypic variables were correlated with gene expression and 2^-ΔΔCt relative expression analysis between groups was performed. RESULTS The stronger correlations in the obese without T2D or reference group was between ICAM1 and HbA1c; HP and TC and LDL while in the obese with diabetes or case group the correlation occurred between CSF1 and BMI. A correlation between HP and TC was found in the case group as well. The expression of VEGFA, CCND2, IL1R1 and PTEN was downregulated in the obese with T2D group. CONCLUSIONS This study identified genes whose expression is different between obese subjects with and without diabetes. Those genes are related to inflammation, cholesterol transport, adipocyte differentiation/expansion and browning.
Collapse
Affiliation(s)
- Mario A Molina-Ayala
- Diabetes and Obesity Clinic, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, IMSS. Av. Cuauhtémoc 330, CP 06720 Mexico City, Mexico
| | - Virginia Rodríguez-Amador
- Medical and Biochemistry Research Unit, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, IMSS. Av. Cuauhtémoc 330, CP 06720 Mexico City, Mexico
| | - Rocío Suárez-Sánchez
- Laboratory of Genomic Medicine, 6th floor, CENIAQ, Instituto Nacional de Rehabilitación, Mexico City, Mexico
| | - Lizbel León-Solís
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Jaime Gómez-Zamudio
- Medical and Biochemistry Research Unit, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, IMSS. Av. Cuauhtémoc 330, CP 06720 Mexico City, Mexico
| | - Victoria Mendoza-Zubieta
- Endocrinology Unit, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, IMSS. Av. Cuauhtémoc 330, CP 06720 Mexico City, Mexico
| | - Miguel Cruz
- Medical and Biochemistry Research Unit, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, IMSS. Av. Cuauhtémoc 330, CP 06720 Mexico City, Mexico
| | - Fernando Suárez-Sánchez
- Medical and Biochemistry Research Unit, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, IMSS. Av. Cuauhtémoc 330, CP 06720 Mexico City, Mexico.
| |
Collapse
|
95
|
Li Y, Li J, Yu H, Liu Y, Song H, Tian X, Liu D, Yan C, Han Y. HOXA5-miR-574-5p axis promotes adipogenesis and alleviates insulin resistance. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:200-210. [PMID: 34976438 PMCID: PMC8693313 DOI: 10.1016/j.omtn.2021.08.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/31/2021] [Indexed: 11/15/2022]
Abstract
Differentiation of preadipocytes into functional adipocytes could be a major target for repressing obesity-induced insulin resistance (IR). However, the molecular mechanisms involved in adipogenesis and the development of IR are unclear. We report, for the first time, that miR-574-5p, a novel miRNA, promotes adipogenesis to suppress IR. An increase in the level of miR-574-5p significantly induced the differentiation of preadipocytes into mature adipocytes. Conversely, reduction of miR-574-5p levels blocked the differentiation of preadipocytes in vitro. In a dual-luciferase reporter assay, it was shown that homeobox A5 (HOXA5) promoted the transcription of miR-574-5p to induce the differentiation of preadipocytes. Hdac9, a direct downstream target of miR-574-5p, was involved in the regulation of adipocyte differentiation. The overexpression of miR-574-5p also promoted adipogenesis in subcutaneous fat to alleviate IR in high-fat-diet-fed mice. Additionally, miR-574-5p expression was significantly higher in the subcutaneous adipose tissue of obese patients without type 2 diabetes than in those with type 2 diabetes. There was an increase in HOXA5 expression and a decrease in histone deacetylase 9 (HDAC9) expression in the subcutaneous fat of obese patients without type 2 diabetes. These results suggest that miR-574-5p may be a potential therapeutic target for combating obesity-related IR.
Collapse
Affiliation(s)
- Yuying Li
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang 110016, China
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jiayin Li
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang 110016, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110016, China
| | - Haibo Yu
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Yanxia Liu
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Haixu Song
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Xiaoxiang Tian
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Dan Liu
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Chenghui Yan
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Yaling Han
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang 110016, China
| |
Collapse
|
96
|
Tong X, Liu S, Stein R, Imai Y. Lipid Droplets' Role in the Regulation of β-Cell Function and β-Cell Demise in Type 2 Diabetes. Endocrinology 2022; 163:6516108. [PMID: 35086144 PMCID: PMC8826878 DOI: 10.1210/endocr/bqac007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 01/29/2023]
Abstract
During development of type 2 diabetes (T2D), excessive nutritional load is thought to expose pancreatic islets to toxic effects of lipids and reduce β-cell function and mass. However, lipids also play a positive role in cellular metabolism and function. Thus, proper trafficking of lipids is critical for β cells to maximize the beneficial effects of these molecules while preventing their toxic effects. Lipid droplets (LDs) are organelles that play an important role in the storage and trafficking of lipids. In this review, we summarize the discovery of LDs in pancreatic β cells, LD lifecycle, and the effect of LD catabolism on β-cell insulin secretion. We discuss factors affecting LD formation such as age, cell type, species, and nutrient availability. We then outline published studies targeting critical LD regulators, primarily in rat and human β-cell models, to understand the molecular effect of LD formation and degradation on β-cell function and health. Furthermore, based on the abnormal LD accumulation observed in human T2D islets, we discuss the possible role of LDs during the development of β-cell failure in T2D. Current knowledge indicates that proper formation and clearance of LDs are critical to normal insulin secretion, endoplasmic reticulum homeostasis, and mitochondrial integrity in β cells. However, it remains unclear whether LDs positively or negatively affect human β-cell demise in T2D. Thus, we discuss possible research directions to address the knowledge gap regarding the role of LDs in β-cell failure.
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Siming Liu
- Department of Internal Medicine Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Roland Stein
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Yumi Imai
- Department of Internal Medicine Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
- Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246, USA
- Correspondence: Yumi Imai, MD, Department of Internal Medicine Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, 200 Hawkins Dr, PBDB Rm 3318, Iowa City, IA 52242, USA.
| |
Collapse
|
97
|
Huang XY, Chen JX, Ren Y, Fan LC, Xiang W, He XJ. Exosomal miR-122 promotes adipogenesis and aggravates obesity through the VDR/SREBF1 axis. Obesity (Silver Spring) 2022; 30:666-679. [PMID: 35170865 DOI: 10.1002/oby.23365] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE This study examined the effects of miR-122-enriched exosomes on the expression of vitamin D3 receptor (VDR) and sterol regulatory element-binding transcription factor 1 (SREBF1) and their roles during adipogenesis. METHODS The roles of miR-122, SREBF1, and VDR were investigated during adipogenesis. The relationships between VDR and miR-122 or SREBF1 were assessed by dual-luciferase reporter and chromatin immunoprecipitation assays. The potential role of miR-122/VDR/SREBF1 was evaluated in high-fat diet-induced obese male mice. RESULTS High levels of miR-122 were found only in adipose tissue-derived exosomes (Exo-AT) and Exo-AT-treated cells. Overexpression of miR-122 promoted adipogenesis, and inhibition of miR-122 prevented adipogenesis by regulating VDR, SREBF1, peroxisome proliferator-activated receptor gamma, lipoprotein lipase, and adiponectin. Knockdown of Srebf1 or overexpression of VDR could inhibit adipogenesis. However, exosomal miR-122 could reverse their inhibitory effects. The dual-luciferase reporter assay and chromatin immunoprecipitation assays confirmed that VDR was a direct target of miR-122. It could bind to the BS1 region of the SREBF1 promoter and inhibit SREBF1 expression. Moreover, miR-122 inhibition could alleviate obesity in high-fat diet-induced obese male mice, possibly through upregulating the VDR/SREBF1 axis. CONCLUSION MiR-122-enriched Exo-AT promoted adipogenesis by regulating the VDR/SREBF1 axis.
Collapse
Affiliation(s)
- Xiao-Yan Huang
- Department of Genetics, Metabolism and Endocrinology, Hainan Women and Children's Medical Center, Haikou, Hainan Province, China
| | - Ji-Xiong Chen
- Department of Medical Care Center, Hainan Provincial People's Hospital, Haikou, Hainan Province, China
| | - Yi Ren
- Department of Pediatrics, Haikou Maternal and Child Health Hospital, Haikou, Hainan Province, China
| | - Li-Chun Fan
- Department of Child Healthcare, Hainan Women and Children's Medical Center, Haikou, Hainan Province, China
| | - Wei Xiang
- Department of Child Healthcare, Hainan Women and Children's Medical Center, Haikou, Hainan Province, China
- NHC Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, Hainan Province, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan Province, China
| | - Xiao-Jie He
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Laboratory of Pediatrics Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
98
|
Metformin: Expanding the Scope of Application-Starting Earlier than Yesterday, Canceling Later. Int J Mol Sci 2022; 23:ijms23042363. [PMID: 35216477 PMCID: PMC8875586 DOI: 10.3390/ijms23042363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Today the area of application of metformin is expanding, and a wealth of data point to its benefits in people without carbohydrate metabolism disorders. Already in the population of people leading an unhealthy lifestyle, before the formation of obesity and prediabetes metformin smooths out the adverse effects of a high-fat diet. Being prescribed at this stage, metformin will probably be able to, if not prevent, then significantly reduce the progression of all subsequent metabolic changes. To a large extent, this review will discuss the proofs of the evidence for this. Another recent important change is a removal of a number of restrictions on its use in patients with heart failure, acute coronary syndrome and chronic kidney disease. We will discuss the reasons for these changes and present a new perspective on the role of increasing lactate in metformin therapy.
Collapse
|
99
|
Ishii M, Ikeda N, Miyata H, Takahashi M, Nishimura M. Purple sweet potato leaf extracts suppress adipogenic differentiation of human bone marrow-derived mesenchymal stem cells. J Food Biochem 2022; 46:e14057. [PMID: 35034358 DOI: 10.1111/jfbc.14057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/25/2021] [Accepted: 11/21/2021] [Indexed: 11/27/2022]
Abstract
Purple sweet potato (Ipomoea batatas L.) leaf extract (PSPLE) is known to exhibit various biological effects. However, the anti-adipogenic effects of PSPLE on mesenchymal stem cells (MSCs) remain unknown. In the present study, we investigated the effect of PSPLE on the adipogenic differentiation of human bone marrow MSCs. PSPLE treatment significantly reduced lipid accumulation and triglyceride levels during adipogenic differentiation. PSPLE suppressed the expression of PPARγ and C/EBPα, which are the master transcription factors orchestrating adipogenesis; moreover, it inhibited the expression of adiponectin, adipocyte protein 2 (aP2), and lipoprotein lipase (LPL), which are downstream target genes involved in adipogenic differentiation. Furthermore, PSPLE treatment suppressed glucose transporter 4 expression and intracellular glucose uptake and significantly inhibited the adipogenic differentiation induced factor-stimulated Akt signaling activation. These results indicate that PSPLE suppresses the differentiation of undifferentiated MSCs into adipocyte lineages and inhibits the terminal differentiation from preadipocytes into mature adipocytes. PRACTICAL APPLICATION: The increase in the prevalence of obesity worldwide is a problem today. Obesity is induced by an excessive accumulation of adipocytes and causes obesity-related diseases, such as diabetes, hypertension, and hyperlipidemia. Natural compounds derived from plants and fruits have a variety of biological activities and are expected to exert therapeutic effects against various diseases. This study shows that purple sweet potato (Ipomoea batatas L.) leaf extract (PSPLE) suppresses adipogenesis of bone marrow-derived mesenchymal stem cells. Thus, PSPLE may be a novel functional food for controlling obesity.
Collapse
Affiliation(s)
- Masakazu Ishii
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Nao Ikeda
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Haruka Miyata
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Manami Takahashi
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Masahiro Nishimura
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| |
Collapse
|
100
|
Pincu Y, Yoel U, Haim Y, Makarenkov N, Maixner N, Shaco-Levy R, Bashan N, Dicker D, Rudich A. Assessing Obesity-Related Adipose Tissue Disease (OrAD) to Improve Precision Medicine for Patients Living With Obesity. Front Endocrinol (Lausanne) 2022; 13:860799. [PMID: 35574032 PMCID: PMC9098964 DOI: 10.3389/fendo.2022.860799] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
Obesity is a heterogenous condition that affects the life and health of patients to different degrees and in different ways. Yet, most approaches to treat obesity are not currently prescribed, at least in a systematic manner, based on individual obesity sub-phenotypes or specifically-predicted health risks. Adipose tissue is one of the most evidently affected tissues in obesity. The degree of adipose tissue changes - "adiposopathy", or as we propose to relate to herein as Obesity-related Adipose tissue Disease (OrAD), correspond, at least cross-sectionally, to the extent of obesity-related complications inflicted on an individual patient. This potentially provides an opportunity to better personalize anti-obesity management by utilizing the information that can be retrieved by assessing OrAD. This review article will summarize current knowledge on histopathological OrAD features which, beyond cross-sectional analyses, had been shown to predict future obesity-related endpoints and/or the response to specific anti-obesity interventions. In particular, the review explores adipocyte cell size, adipose tissue inflammation, and fibrosis. Rather than highly-specialized methods, we emphasize standard pathology laboratory approaches to assess OrAD, which are readily-available in most clinical settings. We then discuss how OrAD assessment can be streamlined in the obesity/weight-management clinic. We propose that current studies provide sufficient evidence to inspire concerted efforts to better explore the possibility of predicting obesity related clinical endpoints and response to interventions by histological OrAD assessment, in the quest to improve precision medicine in obesity.
Collapse
Affiliation(s)
- Yair Pincu
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Uri Yoel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
- The Endocrinology Service, Soroka University Medical Center, Beer-Sheva, Israel
| | - Yulia Haim
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
- The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nataly Makarenkov
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Nitzan Maixner
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Ruthy Shaco-Levy
- Institute of Pathology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nava Bashan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Dror Dicker
- Department of Internal Medicine D, Hasharon Hospital, Rabin Medical Center, Petah Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
- *Correspondence: Assaf Rudich, ; Dror Dicker,
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
- The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- *Correspondence: Assaf Rudich, ; Dror Dicker,
| |
Collapse
|