51
|
Martin-Blazquez A, Martin-Lorenzo M, Santiago-Hernandez A, Heredero A, Donado A, Lopez JA, Anfaiha-Sanchez M, Ruiz-Jimenez R, Esteban V, Vazquez J, Aldamiz-Echevarria G, Alvarez-Llamas G. Analysis of Vascular Smooth Muscle Cells from Thoracic Aortic Aneurysms Reveals DNA Damage and Cell Cycle Arrest as Hallmarks in Bicuspid Aortic Valve Patients. J Proteome Res 2024; 23:3012-3024. [PMID: 38594816 PMCID: PMC11301675 DOI: 10.1021/acs.jproteome.3c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/26/2024] [Accepted: 03/24/2024] [Indexed: 04/11/2024]
Abstract
Thoracic aortic aneurysm (TAA) is mainly sporadic and with higher incidence in the presence of a bicuspid aortic valve (BAV) for unknown reasons. The lack of drug therapy to delay TAA progression lies in the limited knowledge of pathophysiology. We aimed to identify the molecular hallmarks that differentiate the aortic dilatation associated with BAV and tricuspid aortic valve (TAV). Aortic vascular smooth muscle cells (VSMCs) isolated from sporadic TAA patients with BAV or TAV were analyzed by mass spectrometry. DNA oxidative damage assay and cell cycle profiling were performed in three independent cohorts supporting proteomics data. The alteration of secreted proteins was confirmed in plasma. Stress phenotype, oxidative stress, and enhanced DNA damage response (increased S-phase arrest and apoptosis) were found in BAV-TAA patients. The increased levels of plasma C1QTNF5, LAMA2, THSB3, and FAP confirm the enhanced stress in BAV-TAA. Plasma FAP and BGN point to an increased inflammatory condition in TAV. The arterial wall of BAV patients shows a limited capacity to counteract drivers of sporadic TAA. The molecular pathways identified support the need of differential molecular diagnosis and therapeutic approaches for BAV and TAV patients, showing specific markers in plasma which may serve to monitor therapy efficacy.
Collapse
Affiliation(s)
- Ariadna Martin-Blazquez
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Marta Martin-Lorenzo
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
| | | | - Angeles Heredero
- Cardiac
Surgery Service, Fundación Jiménez
Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Alicia Donado
- Cardiac
Surgery Service, Fundación Jiménez
Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Juan A Lopez
- Laboratory
of Cardiovascular Proteomics, Centro Nacional
de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER
de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Miriam Anfaiha-Sanchez
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Rocio Ruiz-Jimenez
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Vanesa Esteban
- Department
of Allergy and Immunology, IIS-Fundación
Jiménez Díaz, Fundación Jiménez Díaz
Hospital-UAM, 28040 Madrid, Spain
- Faculty
of Medicine and Biomedicine, Alfonso X El
Sabio University, 28691 Madrid, Spain
| | - Jesus Vazquez
- Laboratory
of Cardiovascular Proteomics, Centro Nacional
de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER
de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | | | - Gloria Alvarez-Llamas
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
- RICORS2040, Fundación Jiménez Díaz, 28040 Madrid, Spain
- Department
of Biochemistry and Molecular Biology, Complutense
University, 28040 Madrid, Spain
| |
Collapse
|
52
|
Bhardwaj K, Rajawat NK, Mathur N, Kaushik A. Evaluation of Neuroprotective Effect of Gut Microbe in Parkinson's Disease: An In Silico and In Vivo Approach. Neuromolecular Med 2024; 26:32. [PMID: 39090268 DOI: 10.1007/s12017-024-08799-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder marked by the death of dopaminergic neurons in the substantia nigra region of the brain. Aggregation of alpha-synuclein (α-synuclein) is a contributing factor to Parkinson's disease pathogenesis. The objective of this study is to investigate the neuroprotective effects of gut microbes on α-synuclein aggregation using both in silico and in vivo approaches. We focussed on the interaction between α-synuclein and metabolites released by gut bacteria that protect from PD. We employed three probiotic microbe strains against α-synuclein protein: Lactobacillus casei, Escherichia coli, and Bacillus subtilis, with their chosen PDB IDs being Dihydrofolate reductase (3DFR), methionine synthetase (6BM5), and tryptophanyl-tRNA synthetase (3PRH), respectively. Using HEX Dock 6.0 software, we examined the interactions between these proteins. Among the various metabolites, methionine synthetase produced by E. coli showed potential interactions with α-synuclein. To further evaluate the neuroprotective benefits of E. coli, an in vivo investigation was performed using a rotenone-induced Parkinsonian mouse model. The motor function of the animals was assessed through behavioural tests, and oxidative stress and neurotransmitter levels were also examined. The results demonstrated that, compared to the rotenone-induced PD mouse model, the rate of neurodegeneration was considerably reduced in mice treated with E. coli. Additionally, histopathological studies provided evidence of the neuroprotective effects of E. coli. In conclusion, this study lays the groundwork for future research, suggesting that gut bacteria may serve as potential therapeutic agents in the development of medications to treat Parkinson's disease. fig. 1.
Collapse
Affiliation(s)
- Kanika Bhardwaj
- Department of Zoology, IIS (Deemed to be University), Jaipur, Rajasthan, 302020, India
| | - Neelu Kanwar Rajawat
- Department of Zoology, IIS (Deemed to be University), Jaipur, Rajasthan, 302020, India.
| | - Nupur Mathur
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, 302020, India
| | - Aviral Kaushik
- Birla Institute of Scientific Research, Jaipur, Rajasthan, 302020, India
| |
Collapse
|
53
|
Kandell RM, Wu JR, Kwon EJ. Reprograming Clots for In Vivo Chemical Targeting in Traumatic Brain Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301738. [PMID: 38780012 PMCID: PMC11293973 DOI: 10.1002/adma.202301738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2024] [Indexed: 05/25/2024]
Abstract
Traumatic brain injury (TBI) is a critical public health concern, yet there are no therapeutics available to improve long-term outcomes. Drug delivery to TBI remains a challenge due to the blood-brain barrier and increased intracranial pressure. In this work, a chemical targeting approach to improve delivery of materials to the injured brain, is developed. It is hypothesized that the provisional fibrin matrix can be harnessed as an injury-specific scaffold that can be targeted by materials via click chemistry. To accomplish this, the brain clot is engineered in situ by delivering fibrinogen modified with strained cyclooctyne (SCO) moieties, which incorporated into the injury lesion and is retained there for days. Improved intra-injury capture and retention of diverse, clickable azide-materials including a small molecule azide-dye, 40 kDa azide-PEG nanomaterial, and a therapeutic azide-protein in multiple dosing regimens is subsequently observed. To demonstrate therapeutic translation of this approach, a reduction in reactive oxygen species levels in the injured brain after delivery of the antioxidant catalase, is achieved. Further, colocalization between azide and SCO-fibrinogen is specific to the brain over off-target organs. Taken together, a chemical targeting strategy leveraging endogenous clot formation is established which can be applied to improve therapeutic delivery after TBI.
Collapse
Affiliation(s)
- Rebecca M. Kandell
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Jason R. Wu
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Ester J. Kwon
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
54
|
Datta M, Majumder R, Banerjee A, Bandyopadhyay D, Chattopadhyay A. Melatonin protects against diclofenac induced oxidative stress mediated myocardial toxicity in rats: A mechanistic insight. Food Chem Toxicol 2024; 190:114813. [PMID: 38876380 DOI: 10.1016/j.fct.2024.114813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Diclofenac, a traditional non-steroidal anti-inflammatory drug, is commonly used for treating chronic pain and inflammation. Recently, a number of articles have highlighted the toxicities associated with diclofenac. The current study explores the molecular mechanism of diclofenac induced cardiac toxicity following oxidative stress. Diclofenac inhibits catalase, disrupts the redox balance in cardiac tissue, accelerates the monoamine oxidase induced hydroperoxide generation and eventually inhibits crucial mitochondrial enzyme, viz., aldehyde dehydrogenase, thereby causing myocardial injury. Melatonin, the pineal indoleamine with high antioxidative efficacy, is well known for its cardio-protective properties and its dietary consumption has profound impact on cardiac health. The present study demonstrates perhaps for the first time, that apart from ameliorating oxidative load in the cardiac tissue, melatonin also attenuates the inhibition of catalase and aldehyde dehydrogenase, and prevents stress mediated stimulation of monoamine oxidase. Moreover, favourable binding of diclofenac with melatonin may protect the myocardium from the deleterious effects of this drug. The results indicate toward a novel mechanism of protection by melatonin, having future therapeutic relevance.
Collapse
Affiliation(s)
- Madhuri Datta
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India; Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Romit Majumder
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India; Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Adrita Banerjee
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India; Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India.
| | - Aindrila Chattopadhyay
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India.
| |
Collapse
|
55
|
Abdulazeez R, Highab SM, Onyawole UF, Jeje MT, Musa H, Shehu DM, Ndams IS. Co-administration of resveratrol rescued lead-induced toxicity in Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104470. [PMID: 38763436 DOI: 10.1016/j.etap.2024.104470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/23/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Lead toxicity poses a significant environmental concern linked to diverse health issues. This study explores the potential mitigating effects of resveratrol on lead-induced toxicity in Drosophila melanogaster. Adult fruit flies, aged three days, were orally exposed to lead (60 mg/L), Succimer (10 mg), and varying concentrations of resveratrol (50, 100, and 150 mg). The investigation encompassed the assessment of selected biological parameters, biochemical markers, oxidative stress indicators, and antioxidant enzymes. Resveratrol exhibited a dose-dependent enhancement of egg-laying, eclosion rate, filial generation output, locomotor activity, and life span in D. melanogaster, significantly to 150 mg of diet. Most of the investigated biochemical parameters were significantly rescued in lead-exposed fruit flies when co-treated with resveratrol (p < 0.05). However, oxidative stress remained unaffected by resveratrol. The findings suggest that resveratrol effectively protects against lead toxicity in Drosophila melanogaster and may hold therapeutic potential as an agent for managing lead poisoning in humans.
Collapse
Affiliation(s)
- R Abdulazeez
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
| | - S M Highab
- Department of Clinical Pharmacology and Therapeutics, Faculty of Clinical Sciences, College of Medicine and Health Sciences, Federal University, Dutse, Jigawa State, Nigeria
| | - U F Onyawole
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - M T Jeje
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - H Musa
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - D M Shehu
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - I S Ndams
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| |
Collapse
|
56
|
Li H, Chen F, Qin M, Liao C, Shi Y, Wu S, Rong K, Zhang X. Short-term dietary teprenone improved thermal tolerance and mitigated liver damage caused by heat stress in juvenile largemouth bass (Micropterus salmoides). Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110984. [PMID: 38692348 DOI: 10.1016/j.cbpb.2024.110984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Heat stress seriously threatens fish survival and health, demanding immediate attention. Teprenone is a gastric mucosal protective agent that can induce heat shock protein expression. This research investigated the effects of teprenone on largemouth bass (Micropterus salmoides) subjected to heat stress. Juvenile fish were assigned to different groups: group C (control group, 0 mg teprenone/kg diet), T0, T200, T400, and T800 (0, 200, 400, and 800 mg teprenone/kg diet, respectively), which were fed for 3 days, followed by a day without the diet. All groups except group C were subjected to acute heat stress (from 24 °C to 35 °C at 1 °C per hour and then maintained at 35 °C for 3 h). The results were as follows: The critical thermal maxima were significantly higher in the T200, T400, and T800 groups compared with the T0 group (P < 0.05). Heat stress caused severe damage to the tissue morphology of the liver, while teprenone significantly reduced this injury (P < 0.05). Serum cortisol concentration decreased gradually as teprenone concentration increased, and the lowest concentration was observed in the T800 group (P < 0.05). Compared with the T0 group, the serum activities of aspartate aminotransferase, alanine aminotransferase, and gamma-glutamyl transferase were significantly lower in the T200, T400, and T800 groups (P < 0.05). The liver activities of catalase, total superoxide dismutase, and peroxidase were significantly higher in the T200 group than in the T0 group (P < 0.05). Transcript levels of the heat shock proteins (hsp90, hsp70, hspa5, and hsf1) and caspase family (caspase3 and caspase9) in the liver of the T200 group were significantly higher than those of the T0 group (P < 0.05). Western blot results showed that HSP70 and HSPA5 in the liver were significantly upregulated in the T200 group compared with the T0 group (P < 0.05). In summary, dietary teprenone improved thermal tolerance, alleviated heat stress damage in the liver, enhanced antioxidant capacity, and upregulated heat shock proteins in juvenile largemouth bass. This study offers theoretical support for applying teprenone in aquaculture to reduce financial losses caused by abiotic factors.
Collapse
Affiliation(s)
- Hongyun Li
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Feifei Chen
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Mu Qin
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Chenlei Liao
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yaqi Shi
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Sihan Wu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Keming Rong
- Research Institute of Huanong-Tianchen, Wuhan 430070, People's Republic of China; Hubei Tianchen Biotechnology Co., Ltd, Wuhan 430207, China.
| | - Xuezhen Zhang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; Research Institute of Huanong-Tianchen, Wuhan 430070, People's Republic of China.
| |
Collapse
|
57
|
Emmanuel NS, Yusuf T, Bako IG, Malgwi IS, Eze ED, Ali Z, Aliyu M. Hematological changes, oxidative stress assessment, and dysregulation of aquaporin-3 channel, prolactin, and oxytocin receptors in kidneys of lactating Wistar rats treated with monosodium glutamate. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6213-6229. [PMID: 38446217 DOI: 10.1007/s00210-024-03008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
High consumption of locally produced delicacies could expose nursing mothers to high monosodium glutamate (MSG) levels, frequently used as a necessary condiment in low-income countries. Thus, this study evaluated some novel preliminary changes in renal hormonal receptors, the aquaporin-3 channel, oxidative stress markers, and hematological indices induced by monosodium glutamate in lactating rats. Post-parturition, twenty-four (24) lactating Wistar rats were divided into four (4) groups of six rats each (n = 6). Oral administration of distilled water and MSG started three (3) days postpartum as follows: group 1: distilled water (1 ml/kg BW), group 2: MSG (925 mg/kg BW), group 3: MSG (1850 mg/kg BW), and group 4: MSG (3700 mg/kg BW). At the end of the experiment, which lasted fourteen (14) days, animals were sacrificed and samples of blood and tissues were obtained for biochemical analysis. MSG administration significantly (p < 0.05) increased ROS and MDA, with a significant (p < 0.05) decrease in kidney antioxidants. Serum creatinine, total, conjugated, and unconjugated bilirubin significantly (p < 0.05) increased with MSG administration. The prolactin receptor was significantly reduced (p < 0.05), while the oxytocin receptor and aquaporin-3 channel were significantly (p < 0.05) increased in the MSG-administered groups. There were significant (p < 0.05) changes in the hematological indices of the MSG-administered animals. Thus, the findings of this study suggest that high MSG consumption causes hematological alterations and may alter renal function via increased ROS production and dysregulation of the AQP-3 channel, prolactin, and oxytocin receptors in the kidneys of lactating Wistar rats.
Collapse
Affiliation(s)
- Nachamada Solomon Emmanuel
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria.
| | - Tanko Yusuf
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Ibrahim Gaya Bako
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Ibrahim Samaila Malgwi
- Department of Human Physiology, College of Medical Sciences, University of Maiduguri, Maiduguri, Borno, Nigeria
| | - Ejike Daniel Eze
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye Campus, Huye, Rwanda
| | - Zubairu Ali
- Department of Human Physiology, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Mohammed Aliyu
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| |
Collapse
|
58
|
Lievanos-Ruiz FJ, Fenton-Navarro B. Enzymatic biomarkers of oxidative stress in patients with depressive disorders. A systematic review. Clin Biochem 2024; 130:110788. [PMID: 38969053 DOI: 10.1016/j.clinbiochem.2024.110788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Oxidative stress (OS) results from the imbalance between the production of reactive oxygen species and the body's antioxidant mechanisms and is associated with various diseases, including depression. Antioxidants protect cells by neutralizing free radicals and include enzymatic components such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), and glutathione S-transferase (GST). The concentration of these biomarkers can quantify OS. This research aimed to gather available information published in the last ten years about the concentration of enzymatic OS biomarkers in samples from patients with depressive disorders. METHOD A systematic review was conducted following the PRISMA guidelines, including original scientific articles that evaluated enzymatic OS biomarkers in participants with depressive disorders, using the keywords and boolean operators "superoxide dismutase" OR "catalase" OR "glutathione" AND "depress*" in the databases PubMed, SAGE Journals, DOAJ, Scielo, Dialnet, and Redalyc. RESULTS The initial search showed 614 results, with only 28 articles meeting the selection criteria. It was observed that all evaluated oxidative stress enzymatic markers showed a significant increase or decrease in patients with depressive disorders, due to a wide variability in the depressive disorders studied, the type of biological sample analyzed, and the techniques used. CONCLUSION There is evidence of the relationship between enzymatic OS biomarkers and depressive disorders, but additional studies are needed to clarify the nature of this relationship, particularly considering the different types of depressive disorders.
Collapse
Affiliation(s)
- F J Lievanos-Ruiz
- Laboratorio de Glicobiología y Farmacognosia, División de estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, Mexico.
| | - B Fenton-Navarro
- Laboratorio de Glicobiología y Farmacognosia, División de estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, Mexico.
| |
Collapse
|
59
|
Saeed HE, Ibrahim RR, Kamel S, El-Nahass ES, Khalifa AG. Behavioral, biochemical, histopathological evaluation and gene expression of brain injury induced by nanoceria injected intranasal or intraperitoneal in mice. Toxicol Res (Camb) 2024; 13:tfae095. [PMID: 38966091 PMCID: PMC11221883 DOI: 10.1093/toxres/tfae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
Background Nanotechnology has shown a remarkable progress nevertheless, there is a growing concern about probable neurotoxic and neurodegenerative effects due to NPs exposure. Various toxicological and epidemiological studies reported that the brain is a main target for ultrafine particles. Brain inflammation is considered as a possible mechanism that can participate to neurotoxic and neurodegenerative effects. Whether nanoparticles (NPs) may produce neurotoxicity and promote neurodegenerative is largely unstudied. The present study was done to investigate whether intranasal and intra-peritoneal exposure to cerium oxide nanoparticles (CeO2NPs, nanoceria (NC)) could cause neurotoxicity and neurodegenerative changes in the brain tissue through conducting some behavioral tests, biochemical evaluation, histopathological examinations of brain hippocampus and gene expressions. Method Fifteen mice were separated into 3 equal groups. In group (I) "control group", mice were received distilled water orally and kept as a control group. Mice in the group (II) "NC I/P group" were injected i.p with cerium oxide nanoparticles at a dose of 40 mg/kg b.wt, twice weekly for 3 weeks. In group (III) "NC I/N group" mice were received nanoceria intranasally (40 mg/kg b.wt), twice weekly for 3 weeks. Results Exposure to nanceria resulted in oxidative damage in brain tissue, a significant increase in malondialdehyde (MDA) and acetylcholinestrase (AchE) levels, significant decrease in reduced glutathione (GSH) concentration, upregulation in the apoptosis-related genes (c-Jun: c-Jun N-terminal kinases (JNKs), c-Fos: Fos protooncogene, AP-1 transcription factor subunit, c-Myc: c-myelocytomatosis oncogene product or MYC protooncogene, bHLH transcription factor), locomotor and cognitive impairment in mice but the effect was more obvious when nanoceria adminstred intraperitoneally. Conculsion Nanoceria cause oxidative damage in brain tissue of mice when adminstred nanoceria intraperitoneally more than those received nanoceria intranasal.
Collapse
Affiliation(s)
- Hanan E Saeed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Rasha Ragab Ibrahim
- Department of Animal and Poultry Management and Wealth Development, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Shaimaa Kamel
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Cairo, 12211, Egypt
| | - El-Shaymaa El-Nahass
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahlam G Khalifa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
60
|
Wang X, Zhang T, Li W, Zhang M, Zhao L, Wang N, Zhang X, Zhang B. Dietary supplementation with Macleaya cordata extract alleviates intestinal injury in broiler chickens challenged with lipopolysaccharide by regulating gut microbiota and plasma metabolites. Front Immunol 2024; 15:1414869. [PMID: 39100674 PMCID: PMC11294198 DOI: 10.3389/fimmu.2024.1414869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction The prevention and mitigation of intestinal immune challenge is crucial for poultry production. This study investigated the effects of dietary Macleaya cordata extract (MCE) supplementation on the prevention of intestinal injury in broiler chickens challenged with lipopolysaccharide (LPS). Methods A total of 256 one-day-old male Arbor Acres broilers were randomly divided into 4 treatment groups using a 2×2 factorial design with 2 MCE supplemental levels (0 and 400 mg/kg) and 2 LPS challenge levels (0 and 1 mg/kg body weight). The experiment lasted for 21 d. Results and discussion The results showed that MCE supplementation increased the average daily feed intake during days 0-14. MCE supplementation and LPS challenge have an interaction on the average daily gain during days 15-21. MCE supplementation significantly alleviated the decreased average daily gain of broiler chickens induced by LPS. MCE supplementation increased the total antioxidant capacity and the activity of catalase and reduced the level of malondialdehyde in jejunal mucosa. MCE addition elevated the villus height and the ratio of villus height to crypt depth of the ileum. MCE supplementation decreased the mRNA expression of pro-inflammatory cytokines interleukin (IL)-6 and IL-8 in the jejunum. MCE addition mitigated LPS-induced mRNA up-expression of pro-inflammatory factors IL-1β and IL-17 in the jejunum. MCE supplementation increased the abundance of probiotic bacteria (such as Lactobacillus and Blautia) and reduced the abundance of pathogenic bacteria (such as Actinobacteriota, Peptostretococcaceae, and Rhodococcus), leading to alterations in gut microbiota composition. MCE addition altered several metabolic pathways such as Amino acid metabolism, Nucleotide metabolism, Energy metabolism, Carbohydrate metabolism, and Lipid metabolism in broilers. In these pathways, MCE supplementation increased the levels of L-aspartic acid, L-Glutamate, L-serine, etc., and reduced the levels of phosphatidylcholine, phosphatidylethanolamine, thromboxane B2, 13-(S)-HODPE, etc. In conclusion, dietary supplementation of 400 mg/kg MCE effectively improved the growth performance and intestinal function in LPS-challenged broiler chickens, probably due to the modulation of gut microbiota and plasma metabolites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Beibei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
61
|
Wahyuni DK, Kharisma VD, Murtadlo AAA, Rahmawati CT, Syukriya AJ, Prasongsuk S, Subramaniam S, Wibowo AT, Purnobasuki H. The antioxidant and antimicrobial activity of ethanolic extract in roots, stems, and leaves of three commercial Cymbopogon species. BMC Complement Med Ther 2024; 24:272. [PMID: 39026301 PMCID: PMC11264733 DOI: 10.1186/s12906-024-04573-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Cymbopogon is a member of the family Poaceae and has been explored for its phytochemicals and bioactivities. Although the antimicrobial activities of Cymbopogon spp. extracts have been extensively studied, comprehensive analyses are required to identify promising compounds for the treatment of antimicrobial resistance. Therefore, this study investigated the antioxidant and antimicrobial properties of Cymbopogon spp. ethanolic extracts in every single organ. METHODS Ethanolic extracts were obtained from three Indonesian commercial species of Cymbopogon spp., namely Cymbopogon citratus (L.) Rendle, Cymbopogon nardus (DC.) Spatf., and Cymbopogon winterianus Jowitt. The leaf, stem, and root extracts were evaluated via metabolite profiling using gas chromatography-mass spectrometry (GC-MS). In silico and in vitro analyses were used to evaluate the antioxidant and antimicrobial properties of the Cymbopogon spp. ethanolic extracts. In addition, bioactivity was measured using cytotoxicity assays. Antioxidant assays were performed using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azino-bis [3-ethylbenzothiazoline-6-sulfonic acid (ABTS) to determine toxicity to Huh7it-1 cells using a tetrazolium bromide (MTT) assay. Finally, the antimicrobial activity of these extracts was evaluated against Candida albicans, Bacillus subtilis, Staphylococcus aureus, and Escherichia coli using a well diffusion assay. RESULTS GC-MS analysis revealed 53 metabolites. Of these, 2,5-bis(1,1-dimethylethyl)- phenol (27.87%), alpha-cadinol (26.76%), and 1,2-dimethoxy-4-(1-propenyl)-benzene (20.56%) were the predominant compounds. C. winterianus and C. nardus leaves exhibited the highest antioxidant activity against DPPH and ABTS, respectively. Contrastingly, the MTT assay showed low cytotoxicity. C. nardus leaf extract exhibited the highest antimicrobial activity against E. coli and S. aureus, whereas C. winterianus stem extract showed the highest activity against B. substilis. Furthermore, computational pathway analysis predicted that antimicrobial activity mechanisms were related to antioxidant activity. CONCLUSIONS These findings demonstrate that the leaves had strong antioxidant activity, whereas both the leaves and stems showed great antimicrobial activity. Furthermore, all Cymbopogon spp. ethanolic extracts showed low toxicity. These findings provide a foundation for future studies that assess the clinical safety of Cymbopogon spp. as novel drug candidates.
Collapse
Affiliation(s)
- Dwi Kusuma Wahyuni
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, 60115, East Java, Indonesia.
| | - Viol Dhea Kharisma
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, 60115, East Java, Indonesia
| | - Ahmad Affan Ali Murtadlo
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, 60115, East Java, Indonesia
| | - Cici Tya Rahmawati
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, 60115, East Java, Indonesia
| | - Alvi Jauharotus Syukriya
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, 60115, East Java, Indonesia
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, 10330, Bangkok, Thailand
| | - Sehanat Prasongsuk
- Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, 10330, Bangkok, Thailand
| | - Sreeramanan Subramaniam
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, 60115, East Java, Indonesia
- School of Biological Science, Universiti Sains Malaysia, 11800, Georgetown, Malaysia
| | - Anjar Tri Wibowo
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, 60115, East Java, Indonesia
| | - Hery Purnobasuki
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, 60115, East Java, Indonesia.
| |
Collapse
|
62
|
Reda RM, El-Murr A, Abdel-Basset NA, Metwally MMM, Ibrahim RE. Implications of ammonia stress for the pathogenicity of Shewanella spp. in Oreochromis niloticus: effects on hematological, biochemical, immunological, and histopathological parameters. BMC Vet Res 2024; 20:324. [PMID: 39026304 PMCID: PMC11256577 DOI: 10.1186/s12917-024-04175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Environmental stressors (such as ammonia) in aquaculture could increase the risk of pathogenicity, posing a more severe threat to farmed fish. The aim of this study was to investigate the effects of ammonia stress on the pathogenicity of Shewanella spp. in Oreochromis niloticus. First, a 96-hour static test was used to determine the median lethal concentration (LC50) of unionized ammonia to Nile tilapia. After 96 h of exposure, the Un-ionized ammonia (UIA) LC50 was estimated to be 4.26 mg/L. Second, an experiment was conducted to test the effect of unionized ammonia stress on the pathogenicity of Shewanella spp. in O. niloticus for 30 days. A study involved 180 fish divided into six groups, with the first group serving as a control. The second group (AMN1/10) and the third group (AMN1/20) were not challenged and were exposed to 1/10 (0.42 mg/L) and 1/20 (0.21 mg/L) of the 96-hour LC50 of UIA, respectively. Then 0.2 mL (0.14 × 105) of Shewanella spp. was intraperitoneally injected into the fourth (SH), fifth (SH + AMN1/10), and sixth (SH + AMN1/20) groups, which were subjected to 0, 1/10 (0.42 mg/L), and 1/20 (0.21 mg/L) of the 96-hour LC50 of UIA, respectively. The survival rate, hematological indices, immunological parameters, and antioxidant activity of the fish significantly decreased when they were exposed to ammonia and Shewanella infection separately or together. Histopathological changes were also observed in the kidney and liver. Furthermore, both individual and combined exposures significantly altered renal and hepatic function, with notable increases in glucose and cortisol levels, as well as in the expression of proinflammatory cytokine genes (TNF-α and IL-1ß). However, the detrimental effects of co-exposure to ammonia stress and Shewanella infection were greater than those of separate exposures. As a result, we may say that increased ammonia concentrations enhance the infection of Shewanella spp. These findings could contribute to a better understanding of Shewanella infection in Nile tilapia.
Collapse
Affiliation(s)
- Rasha M Reda
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| | - Abdelhakeem El-Murr
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Nehal A Abdel-Basset
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr, Egypt
| | - Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| |
Collapse
|
63
|
Krzisch M, Yuan B, Chen W, Osaki T, Fu D, Garrett-Engele CM, Svoboda DS, Andrykovich KR, Gallagher MD, Sur M, Jaenisch R. The A53T Mutation in α-Synuclein Enhances Proinflammatory Activation in Human Microglia Upon Inflammatory Stimulus. Biol Psychiatry 2024:S0006-3223(24)01459-8. [PMID: 39029776 DOI: 10.1016/j.biopsych.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/08/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease, following Alzheimer's. It is characterized by the aggregation of α-synuclein into Lewy bodies and Lewy neurites in the brain. Microglia-driven neuroinflammation may contribute to neuronal death in PD; however, the exact role of microglia remains unclear and has been understudied. The A53T mutation in the gene coding for α-synuclein has been linked to early-onset PD, and exposure to A53T mutant human α-synuclein increases the potential for inflammation of murine microglia. To date, its effect has not been studied in human microglia. METHODS Here, we used 2-dimensional cultures of human pluripotent stem cell-derived microglia and transplantation of these cells into the mouse brain to assess the cell autonomous effects of the A53T mutation on human microglia. RESULTS We found that A53T mutant human microglia had an intrinsically increased propensity toward proinflammatory activation upon inflammatory stimulus. Additionally, transplanted A53T mutant microglia showed a strong decrease in catalase expression in noninflammatory conditions and increased oxidative stress. CONCLUSIONS Our results indicate that A53T mutant human microglia display cell autonomous phenotypes that may worsen neuronal damage in early-onset PD.
Collapse
Affiliation(s)
- Marine Krzisch
- School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire, United Kingdom.
| | - Bingbing Yuan
- Bioinformatics and Research Computing Facility, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Wenyu Chen
- Wellesley College, Wellesley, Massachusetts
| | - Tatsuya Osaki
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Dongdong Fu
- Jaenisch laboratory, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | | | | | - Kristin R Andrykovich
- Jaenisch laboratory, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Michael D Gallagher
- Jaenisch laboratory, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Rudolf Jaenisch
- Jaenisch laboratory, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts.
| |
Collapse
|
64
|
Ji Y, Morel Y, Tran AQ, Lipinski MM, Sarkar C, Jones JW. Development and evaluation of a liquid chromatography-tandem mass spectrometry method for simultaneous measurement of toxic aldehydes from brain tissue. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1242:124208. [PMID: 38880056 PMCID: PMC11227393 DOI: 10.1016/j.jchromb.2024.124208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Reactive aldehydes are a class of electrophilic low molecular weight compounds that play an essential role in physiological function and lipid peroxidation. These molecules are implicated in many diseases, especially cardiovascular and neurodegenerative diseases, and are potential endogenous markers of lipid peroxidation. However, there are limited options to accurately quantify multiple reactive aldehydes in brain tissue. This study developed and validated a 3-nitrophenylhydrazine derivatization-based LC-MS/MS method to quantify four reactive aldehydes: malondialdehyde, acrolein, 4-hydroxy-2-hexenal and 4-hydroxy-2-nonenal. Method development involved comparing the sensitivity of detection between widely used derivatization reagents: 2,4-dinitrophenylhydrazine and 3-nitrophenylhydrazine. Our data showed that 3-nitrophenylhydrazine resulted in greater sensitivity. Additional method development included evaluation of hydrolysis sample pretreatment, selection of protein precipitation reagent, and optimization of derivatization conditions. The optimized conditions included no hydrolysis and use of 20 % trichloroacetic acid as the protein precipitation reagent. The optimized derivatization condition was 25 mM 3-nitrophenylhydrazine reacted at 20 °C for 30 min. The chromatographic conditions were optimized to reduce matrix effects, ion suppression, and efficient analysis time (<7-minute analytical run). The four aldehyde species were accurately quantified in brain tissue using stable-labeled internal standards. Application of this assay to a traumatic brain injury mouse model revealed significant accumulation of acrolein, 4-hydroxy-2-hexenal, and 4-hydroxy-2-nonenal at 28 days post injury. Overall, a validated method was developed to rapidly quantify the most prominent reactive aldehydes associated with lipid peroxidation during injury progression following acute brain trauma.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Yulemni Morel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Anh Q Tran
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Marta M Lipinski
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chinmoy Sarkar
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA.
| |
Collapse
|
65
|
Nikpendar M, Javanbakht M, Moosavian H, Sajjadi S, Nilipour Y, Moosavian T, Fazli M. Effect of recurrent severe insulin-induced hypoglycemia on the cognitive function and brain oxidative status in the rats. Diabetol Metab Syndr 2024; 16:161. [PMID: 39004753 PMCID: PMC11247731 DOI: 10.1186/s13098-024-01410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Episodes of recurrent or severe hypoglycemia can occur in patients with diabetes mellitus, insulinoma, neonatal hypoglycemia, and medication errors. However, little is known about the short-term and long-term effects of repeated episodes of acute severe hypoglycemia on the brain, particularly in relation to hippocampal damage and cognitive dysfunction. METHODS Thirty-six wistar rats were randomly assigned to either the experimental or control group. The rats were exposed to severe hypoglycemia, and assessments were conducted to evaluate oxidative stress in brain tissue, cognitive function using the Morris water maze test, as well as histopathology and immunohistochemistry studies. The clinical and histopathological evaluations were conducted in the short-term and long-term. RESULTS The mortality rate attributed to hypoglycemia was 34%, occurring either during hypoglycemia or within 24 h after induction. Out of the 14 rats monitored for 7 to 90 days following severe/recurrent hypoglycemia, all exhibited clinical symptoms, which mostly resolved within three days after the last hypoglycemic episode, except for three rats. Despite the decrease in catalase activity in the brain, the total antioxidant capacity following severe insulin-induced hypoglycemia increased. The histopathology findings revealed that the severity of the hippocampal damage was higher compared to the brain cortex 90 days after hypoglycemia. Memory impairments with neuron loss particularly pronounced in the dentate gyrus region of the hippocampus were observed in the rats with severe hypoglycemia. Additionally, there was an increase in reactive astrocytes indicated by GFAP immunoreactivity in the brain cortex and hippocampus. CONCLUSION Recurrent episodes of severe hypoglycemia can lead to high mortality rates, memory impairments, and severe histopathological changes in the brain. While many histopathological and clinical changes improved after three months, it seems that the vulnerability of the hippocampus and the development of sustained changes in the hippocampus were greater and more severe compared to the brain cortex following severe and recurrent hypoglycemia. Furthermore, it does not appear that oxidative stress plays a central role in neuronal damage following severe insulin-induced hypoglycemia. Further research is necessary to assess the consequences of repeated hypoglycemic episodes on sustained damage across various brain regions.
Collapse
Affiliation(s)
- Mahvash Nikpendar
- Brain and Spinal Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamidreza Moosavian
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Sepideh Sajjadi
- Brain and Spinal Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yalda Nilipour
- Pediatric Pathology Research Center, Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Toktam Moosavian
- Pediatric Neurology Department, Loghman Hakim Hospital, Shahidbeheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Fazli
- Department of Biology, Faculty of Basic Science, Islamic Azad University, Tehran, Iran
| |
Collapse
|
66
|
Ma C, Li H, Lu S, Li X. Thyroid-associated ophthalmopathy: the role of oxidative stress. Front Endocrinol (Lausanne) 2024; 15:1400869. [PMID: 39055057 PMCID: PMC11269105 DOI: 10.3389/fendo.2024.1400869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Thyroid-associated ophthalmopathy (TAO) is an autoimmune condition affecting the eyes, characterized by proptosis, extraocular muscle involvement, and in severe cases, vision impairment including diplopia, optic neuropathy, and potential blindness. The exact etiology of TAO remains elusive; however, increased oxidative stress and decreased antioxidant capacity are pivotal in its pathogenesis. Elevated oxidative stress not only directly damages orbital tissues but also influences thyroid function and autoimmune responses, exacerbating tissue destruction. This review explores the role of oxidative stress in TAO, elucidates its mechanisms, and evaluates the efficacy and limitations of antioxidant therapies in managing TAO. The findings aim to enhance understanding of oxidative stress mechanisms in TAO and propose potential antioxidant strategies for future therapeutic development.
Collapse
Affiliation(s)
- Chao Ma
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haoyu Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, Hunan, China
| | - Shuwen Lu
- Department of Ophthalmology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xian Li
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
67
|
Min JH, Sarlus H, Harris RA. Copper toxicity and deficiency: the vicious cycle at the core of protein aggregation in ALS. Front Mol Neurosci 2024; 17:1408159. [PMID: 39050823 PMCID: PMC11267976 DOI: 10.3389/fnmol.2024.1408159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The pathophysiology of ALS involves many signs of a disruption in copper homeostasis, with both excess free levels and functional deficiency likely occurring simultaneously. This is crucial, as many important physiological functions are performed by cuproenzymes. While it is unsurprising that many ALS symptoms are related to signs of copper deficiency, resulting in vascular, antioxidant system and mitochondrial oxidative respiration deficiencies, there are also signs of copper toxicity such as ROS generation and enhanced protein aggregation. We discuss how copper also plays a key role in proteostasis and interacts either directly or indirectly with many of the key aggregate-prone proteins implicated in ALS, such as TDP-43, C9ORF72, SOD1 and FUS as well as the effect of their aggregation on copper homeostasis. We suggest that loss of cuproprotein function is at the core of ALS pathology, a condition that is driven by a combination of unbound copper and ROS that can either initiate and/or accelerate protein aggregation. This could trigger a positive feedback cycle whereby protein aggregates trigger the aggregation of other proteins in a chain reaction that eventually captures elements of the proteostatic mechanisms in place to counteract them. The end result is an abundance of aggregated non-functional cuproproteins and chaperones alongside depleted intracellular copper stores, resulting in a general lack of cuproenzyme function. We then discuss the possible aetiology of ALS and illustrate how strong risk factors including environmental toxins such as BMAA and heavy metals can functionally behave to promote protein aggregation and disturb copper metabolism that likely drives this vicious cycle in sporadic ALS. From this synthesis, we propose restoration of copper balance using copper delivery agents in combination with chaperones/chaperone mimetics, perhaps in conjunction with the neuroprotective amino acid serine, as a promising strategy in the treatment of this incurable disease.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
68
|
Anoy MMI, Kim WJ, Gelston S, Fleming D, Patel R, Beyenal H. Evaluation of treatment of methicillin-resistant Staphylococcus aureus biofilms with intermittent electrochemically generated H 2O 2 or HOCl. Antimicrob Agents Chemother 2024; 68:e0172223. [PMID: 38771032 PMCID: PMC11232386 DOI: 10.1128/aac.01722-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Chronic wound infections can be difficult to treat and may lead to impaired healing and worsened patient outcomes. Novel treatment strategies are needed. This study evaluated the effects of intermittently produced hydrogen peroxide (H2O2) and hypochlorous acid (HOCl), generated via an electrochemical bandage (e-bandage), against methicillin-resistant Staphylococcus aureus biofilms in an agar membrane biofilm model. By changing the working electrode potential, the e-bandage generated either HOCl (1.5 VAg/AgCl) or H2O2 (-0.6 VAg/AgCl). The degree of biocidal activity of intermittent treatment with HOCl and H2O2 correlated with HOCl treatment time; HOCl treatment durations of 0, 1.5, 3, 4.5, and 6 hours (with the rest of the 6-hour total treatment time devoted to H2O2 generation) resulted in mean biofilm reductions of 1.36 ± 0.2, 2.22 ± 0.16, 3.46 ± 0.38, 4.63 ± 0.74, and 7.66 ± 0.5 log CFU/cm2, respectively, vs. non-polarized controls, respectively. However, application of H2O2 immediately after HOCl treatment was detrimental to biofilm removal. For example, 3 hours HOCl treatment followed by 3 hours H2O2 resulted in a 1.90 ± 0.84 log CFU/cm2 lower mean biofilm reduction than 3 hours HOCl treatment followed by 3 hours non-polarization. HOCl generated over 3 hours exhibited biocidal activity for at least 7.5 hours after e-bandage operation ceased; 3 hours of HOCl generation followed by 7.5 hours of non-polarization resulted in a biofilm cell reduction of 7.92 ± 0.12 log CFU/cm2 vs. non-polarized controls. Finally, intermittent treatment with HOCl (i.e., interspersed with periods of e-bandage non-polarization) for various intervals showed similar effects (approximately 6 log CFU/cm2 reduction vs. non-polarized control) to continuous treatment with HOCl for 3 hours, followed by 3 hours of non-polarization. These findings suggest that timing and sequencing of HOCl and H2O2 treatments are crucial for maximizing biofilm control when using an e-bandage strategy.
Collapse
Affiliation(s)
- Md Monzurul Islam Anoy
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - Won-Jun Kim
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - Suzanne Gelston
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - Derek Fleming
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Robin Patel
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| |
Collapse
|
69
|
Dangabar Shadrack A, Garba A, Samuel Ndidi U, Aminu S, Muhammad A. Isometamidium chloride alters redox status, down-regulates p53 and PARP1 genes while modulating at proteomic level in Drosophila melanogaster. Drug Chem Toxicol 2024; 47:416-426. [PMID: 36883353 DOI: 10.1080/01480545.2023.2186314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023]
Abstract
As trypanocide, several side effects have been reported in the use of Isometamidium chloride. This study was therefore, designed to evaluate its ability to induce oxidative stress and DNA damage using D. melanogaster as a model organism. The LC50 of the drug was determined by exposing the flies (1-3 days old of both genders) to six different concentrations (1 mg, 10 mg, 20 mg, 40 mg, 50 mg and 100 mg per 10 g of diet) of the drug for a period of seven days. The effect of the drug on survival (28 days), climbing behavior, redox status, oxidative DNA lesion, expression of p53 and PARP1 (Poly-ADP-Ribose Polymerase-1) genes after five days exposure of flies to 4.49 mg, 8.97 mg, 17.94 mg and 35.88 mg per 10 g diet was evaluated. The interaction of the drug in silico with p53 and PARP1 proteins was also evaluated. The result showed the LC50 of isometamidium chloride to be 35.88 mg per 10 g diet for seven days. Twenty-eight (28) days of exposure to isometamidium chloride showed a decreased percentage survival in a time and concentration-dependent manner. Isometamidium chloride significantly (p < 0.05) reduced climbing ability, total thiol level, Glutathione-S-transferase, and Catalase activity. The level of H2O2 was significantly (p < 0.05) increased. The result also showed significant (p < 0.05) reduction in the relative mRNA levels of p53 and PARP1 genes. The in silico molecular docking of isometamidium with p53 and PARP1 proteins showed high binding energy of -9.4 Kcal/mol and -9.2 Kcal/mol respectively. The results suggest that isometamidium chloride could be cytotoxic and a potential inhibitor of p53 and PARP1 proteins.
Collapse
Affiliation(s)
- Apollos Dangabar Shadrack
- Department of Food Technology and Home Economics, National Agricultural Extension Research and Liaison Services, Ahmadu Bello University, Zaria, Nigeria
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Africa Center of Excellence on Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
| | - Auwalu Garba
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Africa Center of Excellence on Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
| | - Uche Samuel Ndidi
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Africa Center of Excellence on Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
| | - Suleiman Aminu
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Africa Center of Excellence on Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Africa Center of Excellence on Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
- Center for Biomedical Research, Tuskegee University, Tuskegee, AL, USA
| |
Collapse
|
70
|
Macit MN, Collin E, Pfenninger M, Foitzik S, Feldmeyer B. Genomic basis of adaptation to climate and parasite prevalence and the importance of odorant perception in the ant Temnothorax longispinosus. Mol Ecol 2024; 33:e17417. [PMID: 38808556 DOI: 10.1111/mec.17417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
A co-evolutionary arms race ensues when parasites exhibit exploitative behaviour, which prompts adaptations in their hosts, in turn triggering counter-adaptations by the parasites. To unravel the genomic basis of this coevolution from the host's perspective, we collected ants of the host species Temnothorax longispinosus, parasitized by the social parasite Temnothorax americanus, from 10 populations in the northeastern United States exhibiting varying levels of parasite prevalence and living under different climatic conditions. We conducted a genome-wide association study (GWAS) to identify single nucleotide polymorphisms (SNPs) associated with both prevalence and climate. Our investigation highlighted a multitude of candidate SNPs associated with parasite prevalence, particularly in genes responsible for sensory perception of smell including odorant receptor genes. We further focused on population-specific compositions of cuticular hydrocarbons, a complex trait important for signalling, communication and protection against desiccation. The relative abundances of n-alkanes were correlated with climate, while there was only a trend between parasite prevalence and the relative abundances of known recognition cues. Furthermore, we identified candidate genes likely involved in the synthesis and recognition of specific hydrocarbons. In addition, we analysed the population-level gene expression in the antennae, the primary organ for odorant reception, and established a strong correlation with parasite prevalence. Our comprehensive study highlights the intricate genomic patterns forged by the interplay of diverse selection factors and how these are manifested in the expression of various phenotypes.
Collapse
Affiliation(s)
- Maide Nesibe Macit
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Erwann Collin
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| |
Collapse
|
71
|
Olopade EO, Morakinyo AE, Alao JO, Oyedepo TA. Effects of n-hexane fraction of Piper guineense seed extract on N ω-nitro-L-arginine methyl ester hydrochloride-induced hypertension in rats. Cell Biochem Funct 2024; 42:e4095. [PMID: 39004810 DOI: 10.1002/cbf.4095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
This study aimed to investigate the effects of the n-hexane fraction of the ethanolic seed extract of PG (NFESEPG) on hypertension induced by Nω-nitro-L-arginine methyl ester (L-NAME) in rats. Specifically, the study examined the impact of NFESEPG on blood pressure, oxidative stress markers, NO concentration, angiotensin-converting enzyme (ACE) and arginase activities, and cardiac biomarkers in hypertensive rats. The study involved collecting, identifying, and processing the PG plant to obtain the ethanolic seed extract. The extract was then partitioned with solvents to isolate the n-hexane fraction. Hypertension was induced in rats by oral administration of L-NAME for 10 days, while concurrent treatment with NFESEPG at two doses (200 and 400 mg/kg/day) was administered orally. Blood pressure was measured using a noninvasive tail-cuff method, and various biochemical parameters were assessed. Treatment with both doses of NFESEPG significantly reduced systolic and diastolic blood pressure in L-NAME-induced hypertensive rats. Additionally, NFESEPG administration increased NO concentration and decreased ACE and arginase activities, malondialdehyde (MDA) levels, and cardiac biomarkers in hypertensive rats. The findings indicate that NFESEPG effectively lowered blood pressure in hypertensive rats induced by L-NAME, potentially through mechanisms involving the modulation of oxidative stress, NO bioavailability, and cardiac biomarkers. These results suggest the therapeutic potential of NFESEPG in managing hypertension and related cardiovascular complications.
Collapse
Affiliation(s)
| | | | - Jude Oluwapelumi Alao
- School of Public Health and Interdisciplinary Studies, Auckland University of Technology, Auckland, New Zealand
| | | |
Collapse
|
72
|
Bandiwadekar A, Jose J, Gopan G, Augustin V, Ashtekar H, Khot KB. Transdermal delivery of resveratrol loaded solid lipid nanoparticle as a microneedle patch: a novel approach for the treatment of Parkinson's disease. Drug Deliv Transl Res 2024:10.1007/s13346-024-01656-0. [PMID: 38949746 DOI: 10.1007/s13346-024-01656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
Parkinson's disease (PD), affecting millions of people worldwide and expected to impact 10 million by 2030, manifests a spectrum of motor and non-motor symptoms linked to the decline of dopaminergic neurons. Current therapies manage PD symptoms but lack efficacy in slowing disease progression, emphasizing the urgency for more effective treatments. Resveratrol (RSV), recognized for its neuroprotective and antioxidative properties, encounters challenges in clinical use for PD due to limited bioavailability. Researchers have investigated lipid-based nanoformulations, specifically solid lipid nanoparticles (SLNs), to enhance RSV stability. Oral drug delivery via SLNs faces obstacles, prompting exploration into transdermal delivery using SLNs integrated with microneedles (MNs) for improved patient compliance. In this study, an RSV-loaded SLNs (RSV -SLNs) incorporated into the MN patch was developed for transdermal RSV delivery to improve its stability and patient compliance. Characterization studies demonstrated favorable physical properties of SLNs with a sustained drug release profile of 78.36 ± 0.74%. The developed MNs exhibited mechanical robustness and skin penetration capabilities. Ex vivo permeation studies displayed substantial drug permeation of 68.39 ± 1.4% through the skin. In an in vivo pharmacokinetic study, the RSV-SLNs delivered through MNs exhibited a significant increase in Cmax, Tmax, and AUC0 - t values, alongside a reduced elimination rate in blood plasma in contrast to the administration of pure RSV via MNs. Moreover, an in vivo study showcased enhanced behavioral functioning and increased brain antioxidant levels in the treated animals. In-vivo skin irritation study revealed no signs of irritation till 24 h which permits long-term MNs application. Histopathological analysis showed notable changes in the brain regions of the rat, specifically the striatum and substantia nigra, after the completion of the treatment. Based on these findings, the development of an RSV-SLN loaded MNs (RSVSNLMP) patch presents a novel approach, with the potential to enhance the drug's efficiency, patient compliance, and therapeutic outcomes for PD, offering a promising avenue for advanced PD therapy.
Collapse
Affiliation(s)
- Akshay Bandiwadekar
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics,, NITTE Deemed-to-be University, Mangalore, 575018, India
| | - Jobin Jose
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics,, NITTE Deemed-to-be University, Mangalore, 575018, India.
| | - Gopika Gopan
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics,, NITTE Deemed-to-be University, Mangalore, 575018, India
| | - Varsha Augustin
- NGSM Institute of Pharmaceutical Sciences, NITTE Deemed-to-be University, Department of NITTE University Center for Animal Research & Experimentation (NUCARE), Mangalore, 575018, India
| | - Harsha Ashtekar
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmacology, NITTE Deemed-to-be University, Mangalore, 575018, India
| | - Kartik Bhairu Khot
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics,, NITTE Deemed-to-be University, Mangalore, 575018, India
| |
Collapse
|
73
|
Ng MJ, Mohamad Razif MF, Kong BH, Yap HYY, Ng ST, Tan CS, Fung SY. RNA-seq transcriptome and pathway analysis of the medicinal mushroom Lignosus tigris (Polyporaceae) offer insights into its bioactive compounds with anticancer and antioxidant potential. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118073. [PMID: 38513780 DOI: 10.1016/j.jep.2024.118073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/17/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal mushrooms belonging to the Lignosus spp., colloquially known as Tiger Milk mushrooms (TMMs), are used as traditional medicine by communities across various regions of China and Southeast Asia to enhance immunity and to treat various diseases. At present, three Lignosus species have been identified in Malaysia: L. rhinocerus, L. tigris, and L. cameronensis. Similarities in their macroscopic morphologies and the nearly indistinguishable appearance of their sclerotia often lead to interchangeability between them. Hence, substantiation of their traditional applications via identification of their individual bioactive properties is imperative in ensuring that they are safe for consumption. L. tigris was first identified in 2013. Thus far, studies on L. tigris cultivar sclerotia (Ligno TG-K) have shown that it possesses significant antioxidant activities and has greater antiproliferative action against selected cancer cells in vitro compared to its sister species, L. rhinocerus TM02®. Our previous genomics study also revealed significant genetic dissimilarities between them. Further omics investigations on Ligno TG-K hold immense potential in facilitating the identification of its bioactive compounds and their associated bioactivities. AIM OF STUDY The overall aim of this study was to investigate the gene expression profile of Ligno TG-K via de novo RNA-seq and pathway analysis. We also aimed to identify highly expressed genes encoding compounds that contribute to its cytotoxic and antioxidant properties, as well as perform a comparative transcriptomics analysis between Ligno TG-K and its sister species, L. rhinocerus TM02®. MATERIALS AND METHODS Total RNA from fresh 3-month-old cultivated L. tigris sclerotia (Ligno TG-K) was extracted and analyzed via de novo RNA sequencing. Expressed genes were analyzed using InterPro and NCBI-Nr databases for domain identification and homology search. Functional categorization based on gene functions and pathways was performed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Clusters of Orthologous Genes (COG) databases. Selected genes were subsequently subjected to phylogenetic analysis. RESULTS Our transcriptomics analysis of Ligno TG-K revealed that 68.06% of its genes are expressed in the sclerotium; 80.38% of these were coding transcripts. Our analysis identified highly expressed transcripts encoding proteins with prospective medicinal properties. These included serine proteases (FPKM = 7356.68), deoxyribonucleases (FPKM = 3777.98), lectins (FPKM = 3690.87), and fungal immunomodulatory proteins (FPKM = 2337.84), all of which have known associations with anticancer activities. Transcripts linked to proteins with antioxidant activities, such as superoxide dismutase (FPKM = 1161.69) and catalase (FPKM = 1905.83), were also highly expressed. Results of our sequence alignments revealed that these genes and their orthologs can be found in other mushrooms. They exhibit significant sequence similarities, suggesting possible parallels in their anticancer and antioxidant bioactivities. CONCLUSION This study is the first to provide a reference transcriptome profile of genes expressed in the sclerotia of L. tigris. The current study also presents distinct COG profiles of highly expressed genes in Ligno TG-K and L. rhinocerus TM02®, highlighting that any distinctions uncovered may be attributed to their interspecies variations and inherent characteristics that are unique to each species. Our findings suggest that Ligno TG-K contains bioactive compounds with prospective medicinal properties that warrant further investigations. CLASSIFICATION Systems biology and omics.
Collapse
Affiliation(s)
- Min Jia Ng
- Medicinal Mushroom Research Group (MMRG), Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Muhammad Fazril Mohamad Razif
- Medicinal Mushroom Research Group (MMRG), Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Boon Hong Kong
- Medicinal Mushroom Research Group (MMRG), Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| | - Hui-Yeng Yeannie Yap
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, IMU University, Kuala Lumpur, Malaysia
| | - Szu Ting Ng
- LiGNO Biotech Sdn. Bhd., Balakong Jaya, Selangor, Malaysia
| | - Chon Seng Tan
- LiGNO Biotech Sdn. Bhd., Balakong Jaya, Selangor, Malaysia
| | - Shin-Yee Fung
- Medicinal Mushroom Research Group (MMRG), Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia; Center for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur, Malaysia; Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
74
|
Wang H, Liu J, Qiang S, Che Y, Hu T. 4-tert-Butylphenol impairs the liver by inducing excess liver lipid accumulation via disrupting the lipid metabolism pathway in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124385. [PMID: 38897274 DOI: 10.1016/j.envpol.2024.124385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/04/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Endocrine disrupting chemicals (EDCs) can disrupt normal endocrine function by interfering with the synthesis and release of hormones, causing adverse reactions to development, immunity, nerves, and reproduction. 4-tert-Butylphenol (4-t-BP) is disruptive to early zebrafish development, but its effects on zebrafish liver are unknown. In this study, the adverse effects of 4-t-BP on the liver were investigated using zebrafish as a model organism. 4-t-BP inhibited liver development in zebrafish embryos and induced liver damage in adult zebrafish. Even if F1 was not directly exposed to 4-t-BP, its growth and development were inhibited. 4-t-BP can lead to an increase in lipid accumulation, total cholesterol and triglycerides contents, and the activities of alanine transaminase and aspartate aminotransferase in zebrafish embryos and adult zebrafish livers, and also cause an acceleration of glucose metabolism in zebrafish embryos. In addition, qRT-PCR showed that 4-t-BP induced the changes in the expressions of liver development-, steroid and unsaturated fatty acid biosynthesis-, and glycerolipid and arachidonic acid metabolism-related genes in zebrafish embryos and inflammatory factors-, antioxidant enzymes- and lipid metabolism-related genes in adult zebrafish livers. Transcriptome sequencing of embryos showed that 4-t-BP altered the expressions of lipid metabolism pathways such as steroid and unsaturated fatty acid biosynthesis, glycerolipid, and arachidonic acid metabolism pathways. Therefore, 4-t-BP may be external stimuli that cause oxidative stress, inflammation, and lipid accumulation in zebrafish liver, resulting in tissue damage and dysfunction in zebrafish liver.
Collapse
Affiliation(s)
- Huiyun Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Juan Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Shuting Qiang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yufeng Che
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
75
|
Anwar S, Alrumaihi F, Sarwar T, Babiker AY, Khan AA, Prabhu SV, Rahmani AH. Exploring Therapeutic Potential of Catalase: Strategies in Disease Prevention and Management. Biomolecules 2024; 14:697. [PMID: 38927099 PMCID: PMC11201554 DOI: 10.3390/biom14060697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The antioxidant defense mechanisms play a critical role in mitigating the deleterious effects of reactive oxygen species (ROS). Catalase stands out as a paramount enzymatic antioxidant. It efficiently catalyzes the decomposition of hydrogen peroxide (H2O2) into water and oxygen, a potentially harmful byproduct of cellular metabolism. This reaction detoxifies H2O2 and prevents oxidative damage. Catalase has been extensively studied as a therapeutic antioxidant. Its applications range from direct supplementation in conditions characterized by oxidative stress to gene therapy approaches to enhance endogenous catalase activity. The enzyme's stability, bioavailability, and the specificity of its delivery to target tissues are significant hurdles. Furthermore, studies employing conventional catalase formulations often face issues related to enzyme purity, activity, and longevity in the biological milieu. Addressing these challenges necessitates rigorous scientific inquiry and well-designed clinical trials. Such trials must be underpinned by sound experimental designs, incorporating advanced catalase formulations or novel delivery systems that can overcome existing limitations. Enhancing catalase's stability, specificity, and longevity in vivo could unlock its full therapeutic potential. It is necessary to understand the role of catalase in disease-specific contexts, paving the way for precision antioxidant therapy that could significantly impact the treatment of diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Shehwaz Anwar
- Department of Medical Laboratory Technology, Mohan Institute of Nursing and Paramedical Sciences, Mohan Group of Institutions, Bareilly 243302, India;
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Tarique Sarwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Sitrarasu Vijaya Prabhu
- Department of Biotechnology, Microbiology and Bioinformatics, National College (Autonomous), Tiruchirapalli 620001, India;
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
76
|
Brinza I, Boiangiu RS, Honceriu I, Abd-Alkhalek AM, Eldahshan OA, Dumitru G, Hritcu L, Todirascu-Ciornea E. Investigating the Potential of Essential Oils from Citrus reticulata Leaves in Mitigating Memory Decline and Oxidative Stress in the Scopolamine-Treated Zebrafish Model. PLANTS (BASEL, SWITZERLAND) 2024; 13:1648. [PMID: 38931080 PMCID: PMC11207389 DOI: 10.3390/plants13121648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Petitgrain essential oil (PGEO) is derived from the water distillation process on mandarin (Citrus reticulata) leaves. The chemical constituents of PGEO were analyzed by gas chromatography/mass spectrometry (GC/MS) method which revealed the presence of six compounds (100%). The major peaks were for methyl-N-methyl anthranilate (89.93%) and γ-terpinene (6.25%). Over 19 days, zebrafish (Tubingen strain) received PGEO (25, 150, and 300 μL/L) before induction of cognitive impairment with scopolamine immersion (SCOP, 100 μM). Anxiety-like behavior and memory of the zebrafish were assessed by a novel tank diving test (NTT), Y-maze test, and novel object recognition test (NOR). Additionally, the activity of acetylcholinesterase (AChE) and the extent of the brain's oxidative stress were explored. In conjunction, in silico forecasts were used to determine the pharmacokinetic properties of the principal compounds discovered in PGEO, employing platforms such as SwissADME, Molininspiration, and pKCSM. The findings provided evidence that PGEO possesses the capability to enhance memory by AChE inhibition, alleviate SCOP-induced anxiety during behavioral tasks, and diminish brain oxidative stress.
Collapse
Affiliation(s)
- Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.); (I.H.); (E.T.-C.)
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.); (I.H.); (E.T.-C.)
| | - Iasmina Honceriu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.); (I.H.); (E.T.-C.)
| | | | - Omayma A. Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt;
- Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Gabriela Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.); (I.H.); (E.T.-C.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.); (I.H.); (E.T.-C.)
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.); (I.H.); (E.T.-C.)
| |
Collapse
|
77
|
Houerbi N, Kim J, Overbey EG, Batra R, Schweickart A, Patras L, Lucotti S, Ryon KA, Najjar D, Meydan C, Damle N, Chin C, Narayanan SA, Guarnieri JW, Widjaja G, Beheshti A, Tobias G, Vatter F, Hirschberg JW, Kleinman A, Afshin EE, MacKay M, Chen Q, Miller D, Gajadhar AS, Williamson L, Tandel P, Yang Q, Chu J, Benz R, Siddiqui A, Hornburg D, Gross S, Shirah B, Krumsiek J, Mateus J, Mao X, Matei I, Mason CE. Secretome profiling reveals acute changes in oxidative stress, brain homeostasis, and coagulation following short-duration spaceflight. Nat Commun 2024; 15:4862. [PMID: 38862464 PMCID: PMC11166969 DOI: 10.1038/s41467-024-48841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
As spaceflight becomes more common with commercial crews, blood-based measures of crew health can guide both astronaut biomedicine and countermeasures. By profiling plasma proteins, metabolites, and extracellular vesicles/particles (EVPs) from the SpaceX Inspiration4 crew, we generated "spaceflight secretome profiles," which showed significant differences in coagulation, oxidative stress, and brain-enriched proteins. While >93% of differentially abundant proteins (DAPs) in vesicles and metabolites recovered within six months, the majority (73%) of plasma DAPs were still perturbed post-flight. Moreover, these proteomic alterations correlated better with peripheral blood mononuclear cells than whole blood, suggesting that immune cells contribute more DAPs than erythrocytes. Finally, to discern possible mechanisms leading to brain-enriched protein detection and blood-brain barrier (BBB) disruption, we examined protein changes in dissected brains of spaceflight mice, which showed increases in PECAM-1, a marker of BBB integrity. These data highlight how even short-duration spaceflight can disrupt human and murine physiology and identify spaceflight biomarkers that can guide countermeasure development.
Collapse
Affiliation(s)
- Nadia Houerbi
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Eliah G Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Richa Batra
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Annalise Schweickart
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Laura Patras
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Serena Lucotti
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Krista A Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Deena Najjar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Christopher Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - S Anand Narayanan
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Joseph W Guarnieri
- Center of Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Gabrielle Widjaja
- Center of Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Gabriel Tobias
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Seer, Inc., Redwood City, CA, 94065, USA
| | - Fanny Vatter
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Seer, Inc., Redwood City, CA, 94065, USA
| | | | - Ashley Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Evan E Afshin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Matthew MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Dawson Miller
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | - Qiu Yang
- Seer, Inc., Redwood City, CA, 94065, USA
| | | | - Ryan Benz
- Seer, Inc., Redwood City, CA, 94065, USA
| | | | | | - Steven Gross
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Bader Shirah
- Department of Neuroscience, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Jan Krumsiek
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jaime Mateus
- Space Exploration Technologies Corporation (SpaceX), Hawthorne, CA, USA
| | - Xiao Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University Health, Loma Linda, CA, 92350, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, NY, 10021, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
78
|
Kamalakannan M, Rajendran D, Thomas J, Chandrasekaran N. Synergistic impact of nanoplastics and nanopesticides on Artemia salina and toxicity analysis. NANOSCALE ADVANCES 2024; 6:3119-3134. [PMID: 38868821 PMCID: PMC11166108 DOI: 10.1039/d4na00013g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/18/2024] [Indexed: 06/14/2024]
Abstract
Polystyrene nanoplastics (PSNPs) when exposed to nanopermethrin (NPER) exacerbate toxicity on Artemia salina. In the environment, NPs act as a vector for other pollutants mainly heavy metals and pesticides. Nanopesticides are efficient compared to their bulk form. The adsorption of NPER on PSNPs was studied systematically and it was found that the binding of NPER is inversely proportional to its concentration. NPER adsorption on PSNPs followed pseudo-first-order kinetics with an adsorption percentage of 1.7%, 3.7%, 7.7%, 15.4%, and 30.8% when PSNPs were incubated with 2 mg L-1,4 mg L-1, 8 mg L-1, 16 mg L-1, and 32 mg L-1 of NPER. The adsorption followed the Langmuir isotherm. The increased hydrodynamic size of the NPER/PSNP complex was observed. Different characterization studies were performed for NPER, PSNPs, and their complex using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, and gas chromatography-mass spectrometry. The LC50 value for the NPER/PSNP complex treated with Artemia salina was 3.127 mg L-1, compared to LC50 NPER which was found to be 4.536 mg L-1. PSNPs had a lower mortality rate in Artemia salina, where 50% mortality (LC50) was not observed at their working concentration. Both the nanoforms led to morphological changes in Artemia salina. Reactive oxygen species increased to 87.94% for the NPER/PSNP complex, 78.93% for NPER, and 23.65% for PSNPs. Greater amounts of ROS in the cells may have led to SOD degradation. Superoxide dismutase activity for the NPER/PSNP complex was 1.2 U mg-1, NPER was 1.3 U mg-1, and PSNPs was 2.1 U mg-1. A lipid peroxidation study reveals that the melondialdehyde synthesis by NPER/PSNPs complex, NPER and PSNPs were found to be 2.21 nM mg-1, 1.59 nM mg-1, and 0.91 nM mg-1 respectively. Catalase activity in a complex of NPER/PSNPs, NPER, and PSNPs was found to be 1.25 U mg-1, 0.94 U mg-1, and 0.49 U mg-1. This study envisages the individual and combined toxicity of nanopesticides and PSNPs on aquatic organisms. Increased plastic usage and new-age chemicals for agriculture could result in the formation of a PSNPs-NPER complex potentially causing highly toxic effects on aquatic animals, compared to their pristine forms. Therefore, we should also consider the other side of nanotechnology in agriculture.
Collapse
Affiliation(s)
- Mahalakshmi Kamalakannan
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore-632014 Tamil Nadu India +91 416 2243092 +91 416 2202624
| | - Durgalakshmi Rajendran
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore-632014 Tamil Nadu India +91 416 2243092 +91 416 2202624
| | - John Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore-632014 Tamil Nadu India +91 416 2243092 +91 416 2202624
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore-632014 Tamil Nadu India +91 416 2243092 +91 416 2202624
| |
Collapse
|
79
|
Edo GI, Onoharigho FO, Jikah AN, Agbo JJ. The ameliorative effect of methanol extract of Ricinodendron heudelotii (Baill.) leaves on paracetamol-induced hepatotoxicity in Wistar rats. Drug Chem Toxicol 2024:1-10. [PMID: 38839563 DOI: 10.1080/01480545.2024.2362891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Plants are a rich source of antioxidants that are produced naturally. Therefore, this study was aimed to evaluate the effect of the plant Ricinodendron heudelotii (Baill.) in the attenuation of paracetamol (PCM) hepatotoxicity in Wistar rats. Twenty-four male albino Wistar rats weighing between 200 and 250 g were divided into four groups, with six rats each. Group 1 served as the control group, receiving just distilled water. Groups 2 and 3 received orally 250 mg/kg bwt/day PCM and 300 mg/kg bwt/day methanol extract of Ricinodendron heudelotii (Baill.) leaves for two weeks, respectively. For group 4, the Ricinodendron heudelotii (Baill.) leaf extract was pre-administered for 1 week before receiving 300 mg/kg bwt/day Ricinodendron heudelotii (Baill.) leaves extract and 250 mg/kg bwt/day PCM for 2 weeks. As a marker of liver damage, serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were measured. Liver tissue reduced glutathione (GSH) concentration, superoxide dismutase (SOD), glutathione-S-transferase (GST), and catalase activities were utilized to determine antioxidant state, while malondialdehyde (MDA) concentration was employed as a lipid peroxidation indicator. When compared to the control group, the activities of serum AST, ALT, SOD, and MDA levels were considerably (p < 0.05) higher in the PCM group, although GSH level and GST and catalase activities were significantly lower. In comparison to the PCM group, co-administration of PCM with Ricinodendron heudelotii (Baill.) extract decreased serum AST and ALT activities. This study shows that the leaf extracts of Ricinodendron heudelotii (Baill.) protects Wistar rats' livers from PCM-induced oxidative stress by increasing antioxidant enzymes.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science & Technology, Ozoro, Nigeria
| | | | | | - Joy Johnson Agbo
- Department of Nursing, Faculty of Health Sciences, Cyprus International University, Nicosia, Cyprus
| |
Collapse
|
80
|
Murgia M, Rittweger J, Reggiani C, Bottinelli R, Mann M, Schiaffino S, Narici MV. Spaceflight on the ISS changed the skeletal muscle proteome of two astronauts. NPJ Microgravity 2024; 10:60. [PMID: 38839773 PMCID: PMC11153545 DOI: 10.1038/s41526-024-00406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Skeletal muscle undergoes atrophy and loss of force during long space missions, when astronauts are persistently exposed to altered gravity and increased ionizing radiation. We previously carried out mass spectrometry-based proteomics from skeletal muscle biopsies of two astronauts, taken before and after a mission on the International Space Station. The experiments were part of an effort to find similarities between spaceflight and bed rest, a ground-based model of unloading, focused on proteins located at the costameres. We here extend the data analysis of the astronaut dataset and show compartment-resolved changes in the mitochondrial proteome, remodeling of the extracellular matrix and of the antioxidant response. The astronauts differed in their level of onboard physical exercise, which correlated with their respective preservation of muscle mass and force at landing in previous analyses. We show that the mitochondrial proteome downregulation during spaceflight, particularly the inner membrane and matrix, was dramatic for both astronauts. The expression of autophagy regulators and reactive oxygen species scavengers, however, showed partially opposite expression trends in the two subjects, possibly correlating with their level of onboard exercise. As mitochondria are primarily affected in many different tissues during spaceflight, we hypothesize that reactive oxygen species (ROS) rather than mechanical unloading per se could be the primary cause of skeletal muscle mitochondrial damage in space. Onboard physical exercise might have a strong direct effect on the prevention of muscle atrophy through mechanotransduction and a subsidiary effect on mitochondrial quality control, possibly through upregulation of autophagy and anti-oxidant responses.
Collapse
Affiliation(s)
- Marta Murgia
- Department of Biomedical Sciences, University of Padova, 35131, Padua, Italy.
- Max-Planck-Institute of Biochemistry, 82152, Martinsried, Germany.
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, University Hospital Cologne, Cologne, Germany
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, 35131, Padua, Italy
- Science and Research Center Koper, Institute for Kinesiology Research, 6000, Koper, Slovenia
| | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Matthias Mann
- Department of Biomedical Sciences, University of Padova, 35131, Padua, Italy
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Marco V Narici
- Department of Biomedical Sciences, University of Padova, 35131, Padua, Italy
- Science and Research Center Koper, Institute for Kinesiology Research, 6000, Koper, Slovenia
- CIR-MYO Myology Center, 35121, Padua, Italy
| |
Collapse
|
81
|
Imade O, Ilesanmi BV, Ogunwole GO, Elekofehinti OO, Souza MCO, Barbosa F, Adedire CO, Adeyemi JA. Effects of 2,4-dichlorophenol on non-specific immunity, histopathological lesions, and redox balance in African Catfish, clarias gariepinus (Burchell, 1822). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:480-495. [PMID: 38591921 DOI: 10.1080/15287394.2024.2339538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The toxic effects of 2, 4-dichlorophenol (2, 4-DCP) on aquatic organisms are well-established; however, the details regarding the mechanisms underlying the toxicity, especially immunotoxicity are poorly understood. Consequently, the aim of this study was to investigate the histopathologic, oxidative stress and immunotoxic effects attributed to exposure to sublethal concentrations of 2,4-DCP in the African catfish, Clarias gariepinus. Juvenile C. gariepinus were exposed to 0.4, 0.8, or 1.6 mg/L 2, 4-DCP for 28 days after which blood and head kidney were extracted for the determination of various nonspecific innate immune parameters while the liver was excised for histopathology examination and measurement of oxidative stress biomarkers. Control fish were maintained in water spiked 10 µL/L ethanol, representing the solvent control. A significant increase was noted in the activities of lactate dehydrogenase and superoxide dismutase as well as in levels of lipid peroxidation and DNA fragmentation in a dose-dependent manner, with higher adverse effects observed at the highest concentration tested (1.6 mg/L). The total white blood cells (WBC) count was significantly elevated in fish exposed to 2,4-DCP compared to control. Myeloperoxidase content was decreased significantly in fish exposed to 2,4-DCP especially at the highest concentration (1.6 mg/L) compared to controls. The respiratory burst activity did not differ markedly amongst groups. Histopathological lesions noted included edema, leucocyte infiltration, and depletion of hemopoietic tissue in the head kidney of exposed fish. There was significant upregulation in the mRNA expression of tumor necrosis factor (TNF-α) and heat shock protein 70 (HSP 70) but downregulation of major histocompatibility complex 2 (MHC 2) in exposed fish. Data demonstrated that exposure to 2,4-DCP resulted in histopathological lesions, oxidative stress, and compromised immune system in C. gariepinus.
Collapse
Affiliation(s)
- Osayimwen Imade
- Department of Biology, School of Life Sciences, Federal University of Technology, Akure, Nigeria
| | - Bobola V Ilesanmi
- Department of Biology, School of Life Sciences, Federal University of Technology, Akure, Nigeria
| | - Germaine O Ogunwole
- Department of Biology, School of Life Sciences, Federal University of Technology, Akure, Nigeria
| | - Olusola O Elekofehinti
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, Nigeria
| | - Marília Cristina Oliveira Souza
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Chris O Adedire
- Department of Biology, School of Life Sciences, Federal University of Technology, Akure, Nigeria
| | - Joseph A Adeyemi
- Department of Biology, School of Life Sciences, Federal University of Technology, Akure, Nigeria
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
82
|
Faizan M, Kumar R, Mazumder A, Salahuddin, Kukreti N, Kumar A, Chaitanya MVNL. The medicinal chemistry of piperazines: A review. Chem Biol Drug Des 2024; 103:e14537. [PMID: 38888058 DOI: 10.1111/cbdd.14537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 06/20/2024]
Abstract
The versatile basic structure of piperazine allows for the development and production of newer bioactive molecules that can be used to treat a wide range of diseases. Piperazine derivatives are unique and can easily be modified for the desired pharmacological activity. The two opposing nitrogen atoms in a six-membered piperazine ring offer a large polar surface area, relative structural rigidity, and more acceptors and donors of hydrogen bonds. These properties frequently result in greater water solubility, oral bioavailability, and ADME characteristics, as well as improved target affinity and specificity. Various synthetic protocols have been reported for piperazine and its derivatives. In this review, we focused on recently published synthetic protocols for the synthesis of the piperazine and its derivatives. The structure-activity relationship concerning different biological activities of various piperazine-containing drugs has also been highlighted to provide a good understanding to researchers for future research on piperazines.
Collapse
Affiliation(s)
- Md Faizan
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Rajnish Kumar
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Salahuddin
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| | - Arvind Kumar
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - M V N L Chaitanya
- School of Pharmaceutical Science, Lovely Professional University, Phagwara, India
| |
Collapse
|
83
|
Boukari O, Ghoghbane S, Khemissi W, Lassili T, Tebourbi O, Rhouma KB, Sakly M, Hallegue D. Phycocyanin alleviates alcohol-induced testicular injury in male Wistar rats. Clin Exp Reprod Med 2024; 51:102-111. [PMID: 38229438 PMCID: PMC11140253 DOI: 10.5653/cerm.2023.06422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 01/18/2024] Open
Abstract
OBJECTIVE Given the noteworthy implications of alcohol consumption and its association with male infertility, there has been a notable focus on investigating natural alternatives to mitigate its adverse effects. Thus, this study was conducted to assess the potential protective effect of phycocyanin extract derived from the blue algae Arthrospira (Spirulina) platensis against ethanol-induced oxidative stress, disturbances in testicular morphology, and alterations in sperm production. METHODS Male rats were divided into four groups (five rats each): the control group received a saline solution, the ethanol exposed group (EtOH) was subjected to intraperitoneal injections of 10 mL/kg of ethanol solution at a concentration of 38% (v/v), the phycocyanin alone treated group (P) received oral administration of phycocyanin at a dosage of 50 mg/kg, and the phycocyanin-cotreated group (PE) was given oral phycocyanin followed by ethanol injections. All treatments were administered over a period of 14 days. RESULTS Our findings demonstrated that ethanol exposure induced reproductive toxicity, characterized by reduced sperm production and viability, alterations in testicular weight and morphology, increased lipid peroxidation levels, and elevated oxidative enzyme activity. In addition, the ethanol-intoxicated group showed perturbations in serum biochemical parameters. However, the simultaneous exposure to ethanol and phycocyanin exhibited a counteractive effect against ethanol toxicity. CONCLUSION The results showed that supplementation of phycocyanin prevented oxidative and testicular morphological damage-induced by ethanol and maintained normal sperm production, and viability.
Collapse
Affiliation(s)
- Oumayma Boukari
- Laboratory of Integrated Physiology, Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Tunisia
| | - Soumaya Ghoghbane
- Laboratory of Integrated Physiology, Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Tunisia
| | - Wahid Khemissi
- Laboratory of Integrated Physiology, Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Tunisia
| | - Thalja Lassili
- Laboratory of Human and Experimental Pathological Anatomy, Pasteur Institute, Tunis, Tunisia
| | - Olfa Tebourbi
- Laboratory of Integrated Physiology, Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Tunisia
| | - Khemais Ben Rhouma
- Laboratory of Integrated Physiology, Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Tunisia
| | - Mohsen Sakly
- Laboratory of Integrated Physiology, Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Tunisia
| | - Dorsaf Hallegue
- Laboratory of Integrated Physiology, Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Tunisia
| |
Collapse
|
84
|
Sabi EM, AlAfaleq NO, Mujamammi AH, Al-Shouli ST, Althafar ZM, Bin Dahman LS, Sumaily KM. Gramine Exerts Cytoprotective Effects and Antioxidant Properties Against H 2O 2-Induced Oxidative Stress in HEK 293 Cells. Appl Biochem Biotechnol 2024; 196:3471-3487. [PMID: 37668758 DOI: 10.1007/s12010-023-04693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Oxidative stress caused due to the perturbations in the oxidant-antioxidant system can damage molecules and cause cellular alteration leading to the pathogenesis of multiple diseases. This study was designed and performed to investigate the antioxidant and anti-inflammatory effects of an alkaloid, gramine on H2O2-induced oxidative stress on HEK 293 cells. Cell viability and morphometric analysis of cells treated with H2O2 and gramine were studied. Oxidative stress and inflammatory and antioxidant enzymes such as ROS, LPO, NO, SOD, GSH, and CAT were analyzed. Furthermore, mRNA expression of SOD, CAT, and COX-2 was also evaluated. H2O2 at concentration > 0.3 mM and gramine at concentration > 80 μg/mL affect the proliferation. Viability and morphometric analysis showed that gramine has protective effects. Treating cells with gramine suppressed oxidative stress and inflammatory enzymes, whereas antioxidant enzymes were enhanced. SOD and CAT mRNA levels were overexpressed and COX-2 mRNA levels were decreased in the treated groups. Gramine possesses effective antioxidant potential and can regulate oxidative stress and damages associated with it.
Collapse
Affiliation(s)
- Essa M Sabi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, P.O. Box 2925, Riyadh, 11461, Saudi Arabia.
| | - Nouf O AlAfaleq
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed H Mujamammi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, P.O. Box 2925, Riyadh, 11461, Saudi Arabia
| | - Samia T Al-Shouli
- Immunology Unit, Department of Pathology, College of Medicine, King Saud University, P.O. Box 2925, Riyadh, 11461, Saudi Arabia
| | - Ziyad M Althafar
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences in Alquwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Lotfi S Bin Dahman
- Department of Medical Biochemistry, College of Medicine and Health Sciences, Hadhramout University, Mukalla, 50511, Yemen
| | - Khalid M Sumaily
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, P.O. Box 2925, Riyadh, 11461, Saudi Arabia
| |
Collapse
|
85
|
Fahmy HM, Shekewy S, Elhusseiny FA, Elmekawy A. Enhanced Biocompatibility by Evaluating the Cytotoxic and Genotoxic Effects of Magnetic Iron Oxide Nanoparticles and Chitosan on Hepatocellular Carcinoma Cells (HCC). Cell Biochem Biophys 2024; 82:1027-1042. [PMID: 38558242 PMCID: PMC11344728 DOI: 10.1007/s12013-024-01256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Hepatocellular carcinoma (HCC), the fifth most prevalent cancer worldwide, is influenced by a myriad of clinic-pathological factors, including viral infections and genetic abnormalities. This study delineates the synthesis, characterization, and the biological efficacy of iron oxide nanoparticles (Fe3O4) and chitosan-coated iron oxide nanoparticles (Fe3O4-CS) against HCC. Analytical methods confirmed the successful synthesis of both nanoparticles, with Fe3O4-CS demonstrating a smaller, uniform spherical morphology and distinct surface and magnetic properties attributable to its chitosan coating. The prepared materials were analyzed using various techniques, and their potential cytotoxic effects on HepG2 cancer cells line for HCC were investigated. In biological evaluations against HepG2 cells, a notable distinction in cytotoxicity was observed. Fe3O4 showed modest anticancer activity with an IC50 of 383.71 ± 23.9 µg/mL, whereas Fe3O4 exhibited a significantly enhanced cytotoxic effect, with a much lower IC50 of 39.15 ± 39.2 µg/mL. The Comet assay further evidenced Fe3O4-CS potent DNA damaging effect, showcasing its superior ability to induce apoptosis through extensive DNA fragmentation. Biochemical analyses integrated into our results reveal that Fe3O4-CS not only induces significant DNA damage but also markedly alters oxidative stress markers. Compared to control and Fe3O4-treated cells, Fe3O4-CS exposure significantly elevated levels of oxidative stress markers: superoxide dismutase (SOD) increased to 192.07 U/ml, catalase (CAT) decreased to 0.03 U/L, glutathione peroxidase (GPx) rose dramatically to 18.76 U/gT, and malondialdehyde (MDA) levels heightened to 30.33 nmol/gT. These results underscore the potential of Fe3O4-CS nanoparticles not only in inducing significant DNA damage conducive to cancer cell apoptosis but also in altering enzymatic activities and oxidative stress markers, suggesting a dual mechanism of action that may underpin their therapeutic advantage in cancer treatment. Our findings advocate for the further exploration of Fe3O4-CS nanoparticles in the development of anticancer drugs, emphasizing their capability to trigger oxidative stress and enhance antioxidant defense mechanisms.
Collapse
Affiliation(s)
- Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Samar Shekewy
- Physics Department, Faculty of Science, Tanta University, Tanta, Egypt
- Physics Department, Faculty of Science, Menofia University, Menofia, Egypt
| | | | - Ahmed Elmekawy
- Physics Department, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
86
|
Michael P, Panchavarnam S, Bagthasingh C, Palaniappan S, Velu R, Mohaideenpitchai MM, Palraj M, Muthumariyapan S, David EP. Innate immune response of snakehead fish to Indian strain of snakehead rhabdovirus (SHRV-In) infection and the infectivity potential of the virus to other freshwater fishes. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109577. [PMID: 38643957 DOI: 10.1016/j.fsi.2024.109577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/08/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
A new virus known as snakehead rhabdovirus (SHRV-In) was discovered in South India in striped snakehead (Channa striata) that had hemorrhagic patches and cutaneous ulcerations. The virus is the most potentially harmful pathogen of snakehead because it could cause 100% mortality within 5 days. The goal of the current investigation was to evaluate the infectivity of rhabdovirus in freshwater fishes and to analyze the immune response in snakehead fish after challenge with SHRV-In. The infectivity study of SHRV-In against three freshwater fish such as tilapia, grass carp and loach showed that the virus could not induce mortality in any of them. Snakehead fish challenged with SHRV-In showed significant (p < 0.05) changes in haematological parameters such as red blood cell (RBC), haemoglobin (HGB), haematocrit (HCT), mean corpuscular haemoglobin concentration (MCHC), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), white blood cell (WBC), total platelet (PLT) counts, mean platelet volume (MPV) and immunological markers such as respiratory burst, superoxide dismutase, catalase activity and myeloperoxidase activity at 6, 12, 24 and 48 hpi. Real time PCR was executed to examine the expression profile of innate immune genes such as IRF-7, IL-8 and IL-12 in Snakehead fish at 6, 12, 24 and 48 h post SHRV-In infection. Immune gene expression of IRF-7, IL-8 and IL-12 were up-regulated in the spleen when compared to kidney at 6 and 12 hpi. However, the expression level of all the genes was down-regulated at 24 and 48 hpi. The down regulation of innate immune genes after 24 hpi in these tissues may be the result of increased multiplication of SHRV-In by interfering with the immune signaling pathway.
Collapse
Affiliation(s)
- Priyadharshini Michael
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India
| | - Sivasankar Panchavarnam
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India.
| | - Chrisolite Bagthasingh
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India
| | - Subash Palaniappan
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India
| | - Rani Velu
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India
| | - Mohamed Mansoor Mohaideenpitchai
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India
| | - Mageshkumar Palraj
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India
| | - Selvamagheswaran Muthumariyapan
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India
| | - Evangelin Paripoorana David
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India
| |
Collapse
|
87
|
Benedetto N, Mangieri C, De Biasio F, Carvalho RF, Milella L, Russo D. Malus pumila Mill. cv Annurca apple extract might be therapeutically useful against oxidative stress and patterned hair loss. FEBS Open Bio 2024; 14:955-967. [PMID: 38711215 PMCID: PMC11148120 DOI: 10.1002/2211-5463.13805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/17/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Patterned hair loss (PHL) or androgenetic alopecia is a condition affecting about 50% of people worldwide. Several pharmacological medications have been developed over the years, but few studies have investigated their effectiveness. Therefore, new, safer and more effective strategies are required. Recent investigations showed that Annurca apple extract application could induce keratin production and promote hair growth thanks to the high amount of procyanidin B2 contained in. Hence, this study aimed to investigate the role of an Annurca apple extract in preventing PHL by testing it on human follicle dermal papilla cells (HFDPCs) for the first time. Treatment of HFDPCs with Annurca apple extract counteracted intracellular reactive oxygen species accumulation by increasing the activity of antioxidant enzymes such as superoxide dismutase 2 and catalase. Furthermore, treatment with Annurca apple extract increased β-catenin and fibroblast growth factor 2, which are involved in hair growth stimulation. These data suggest that Annurca apple extract may be a potential therapeutically useful nutraceutical product for preventing or treating hair loss by reducing oxidative stress and inducing the expression of hair growth-related factors.
Collapse
Affiliation(s)
| | | | | | | | - Luigi Milella
- Department of ScienceUniversity of BasilicataPotenzaItaly
| | - Daniela Russo
- Department of ScienceUniversity of BasilicataPotenzaItaly
- Spinoff Bioactiplant S.r.l.PotenzaItaly
| |
Collapse
|
88
|
Chang KH, Chen CM. The Role of NRF2 in Trinucleotide Repeat Expansion Disorders. Antioxidants (Basel) 2024; 13:649. [PMID: 38929088 PMCID: PMC11200942 DOI: 10.3390/antiox13060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Trinucleotide repeat expansion disorders, a diverse group of neurodegenerative diseases, are caused by abnormal expansions within specific genes. These expansions trigger a cascade of cellular damage, including protein aggregation and abnormal RNA binding. A key contributor to this damage is oxidative stress, an imbalance of reactive oxygen species that harms cellular components. This review explores the interplay between oxidative stress and the NRF2 pathway in these disorders. NRF2 acts as the master regulator of the cellular antioxidant response, orchestrating the expression of enzymes that combat oxidative stress. Trinucleotide repeat expansion disorders often exhibit impaired NRF2 signaling, resulting in inadequate responses to excessive ROS production. NRF2 activation has been shown to upregulate antioxidative gene expression, effectively alleviating oxidative stress damage. NRF2 activators, such as omaveloxolone, vatiquinone, curcumin, sulforaphane, dimethyl fumarate, and resveratrol, demonstrate neuroprotective effects by reducing oxidative stress in experimental cell and animal models of these diseases. However, translating these findings into successful clinical applications requires further research. In this article, we review the literature supporting the role of NRF2 in the pathogenesis of these diseases and the potential therapeutics of NRF2 activators.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
89
|
Toraman E. Biochemical and molecular evaluation of oxidative stress and mitochondrial damage in fruit fly exposed to carmoisine. Mol Biol Rep 2024; 51:685. [PMID: 38796672 DOI: 10.1007/s11033-024-09616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/06/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND In today's world, appearance is an important factor in almost all areas of our lives. Therefore, it has become common to use dyes to color foods to make them look appetizing and visually appealing. However, food additives have negative effects on biochemical processes in cells at both high and low doses. METHODS AND RESULTS This study investigated the effect of carmoisine, a commonly used food coloring, on oxidative stress and damage parameters in Drosophila melanogaster in terms of both enzymatic and gene expression. The change in mitochondrial DNA copy number (mtDNA-CN), a marker of oxidative stress, was also examined. When the data obtained were analyzed, it was observed that carmoisine caused a significant decrease in GSH levels depending on the increase in dose. SOD, CAT, GPx, and AChE enzyme activities and gene expression levels were also found to be significantly decreased. All groups also showed a significant decrease in mtDNA-CN. The effect of carmoisine on Drosophila melanogaster morphology was also investigated in our study. However, no significant change was observed in terms of morphological development in any group. CONCLUSIONS When all the findings were evaluated together, it was observed that carmoisin triggered oxidative stress and these effects became more risky at high doses. Therefore, we believe that the consumer should be made more aware of the side effects of azo dyes in food and that the type and concentration of each substance added to food should be specified.
Collapse
Affiliation(s)
- Emine Toraman
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Türkiye, 25240, Turkey.
| |
Collapse
|
90
|
Vilchis-Landeros MM, Vázquez-Meza H, Vázquez-Carrada M, Uribe-Ramírez D, Matuz-Mares D. Antioxidant Enzymes and Their Potential Use in Breast Cancer Treatment. Int J Mol Sci 2024; 25:5675. [PMID: 38891864 PMCID: PMC11171593 DOI: 10.3390/ijms25115675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
According to the World Health Organization (WHO), breast cancer (BC) is the deadliest and the most common type of cancer worldwide in women. Several factors associated with BC exert their effects by modulating the state of stress. They can induce genetic mutations or alterations in cell growth, encouraging neoplastic development and the production of reactive oxygen species (ROS). ROS are able to activate many signal transduction pathways, producing an inflammatory environment that leads to the suppression of programmed cell death and the promotion of tumor proliferation, angiogenesis, and metastasis; these effects promote the development and progression of malignant neoplasms. However, cells have both non-enzymatic and enzymatic antioxidant systems that protect them by neutralizing the harmful effects of ROS. In this sense, antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), thioredoxin reductase (TrxR), and peroxiredoxin (Prx) protect the body from diseases caused by oxidative damage. In this review, we will discuss mechanisms through which some enzymatic antioxidants inhibit or promote carcinogenesis, as well as the new therapeutic proposals developed to complement traditional treatments.
Collapse
Affiliation(s)
- María Magdalena Vilchis-Landeros
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| | - Melissa Vázquez-Carrada
- Institute of Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Daniel Uribe-Ramírez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, Mexico City C.P. 07738, Mexico;
| | - Deyamira Matuz-Mares
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| |
Collapse
|
91
|
Basudkar V, Gujrati G, Ajgaonkar S, Gandhi M, Mehta D, Nair S. Emerging Vistas for the Nutraceutical Withania somnifera in Inflammaging. Pharmaceuticals (Basel) 2024; 17:597. [PMID: 38794167 PMCID: PMC11123800 DOI: 10.3390/ph17050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Inflammaging, a coexistence of inflammation and aging, is a persistent, systemic, low-grade inflammation seen in the geriatric population. Various natural compounds have been greatly explored for their potential role in preventing and treating inflammaging. Withania somnifera has been used for thousands of years in traditional medicine as a nutraceutical for its numerous health benefits including regenerative and adaptogenic effects. Recent preclinical and clinical studies on the role of Withania somnifera and its active compounds in treating aging, inflammation, and oxidative stress have shown promise for its use in healthy aging. We discuss the chemistry of Withania somnifera, the etiology of inflammaging and the protective role(s) of Withania somnifera in inflammaging in key organ systems including brain, lung, kidney, and liver as well as the mechanistic underpinning of these effects. Furthermore, we elucidate the beneficial effects of Withania somnifera in oxidative stress/DNA damage, immunomodulation, COVID-19, and the microbiome. We also delineate a putative protein-protein interaction network of key biomarkers modulated by Withania somnifera in inflammaging. In addition, we review the safety/potential toxicity of Withania somnifera as well as global clinical trials on Withania somnifera. Taken together, this is a synthetic review on the beneficial effects of Withania somnifera in inflammaging and highlights the potential of Withania somnifera in improving the health-related quality of life (HRQoL) in the aging population worldwide.
Collapse
Affiliation(s)
- Vivek Basudkar
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Gunjan Gujrati
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Saiprasad Ajgaonkar
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Manav Gandhi
- College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Dilip Mehta
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Sujit Nair
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| |
Collapse
|
92
|
Arafa SSI, Omar EA, Yousef MI, Srour TM, Shehata AI. Modulation of growth performance, feed utilization, and physiological traits in redbelly Tilapia (Tilapia zillii) through environmental and sex-based interactions. J Anim Physiol Anim Nutr (Berl) 2024; 108:611-634. [PMID: 38193575 DOI: 10.1111/jpn.13918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024]
Abstract
This study explored the combined influence of tank color, stocking density, and gender on Tilapia zillii's performance and well-being. In this 120-day trial, 320 T. zillii, each initially weighing 10.0 ± 0.1 g/fish, were distributed among 24 tanks. The experiment included eight distinct treatment combinations, varying tank color (blue and green), stocking density (10 and 30 fish/m3) and sex (monosexual and mixed). The results showed that blue tanks improved specific growth rate and condition factor, while green tanks were better for feed utilization. Density at 30 fish/m3 showed the highest mean values of final body weight and total length, weight gain (WG), and gain length. Mono-sex outperformed mixed-sex ones in WG and daily growth. Interactions between color, density and sex were significant, affecting growth and feed utilization. Green tanks were best for protein profiles, while blue tanks excelled in glucose. A density of 10 fish/m3 yielded the highest protein profiles, and mono-sex fish had higher protein profiles. For lipid profiles, green tanks were superior, and density affected lipid profiles. Mixed-sex populations were best for certain lipid profile parameters. Interactions between these factors also played a significant role, making the biochemical profiles of T. zillii a complex interplay of various factors. The results explored that tank color, fish density and sex influence the activity of nonspecific immune enzymes in the liver of T. zillii. Blue tanks and lower fish density led to higher nonspecific immune enzymes, while mono-sex fish exhibited more significant nonspecific immune enzymes. Complex interactions between these factors also influenced nonspecific immune enzyme activities. Blue tanks increased malondialdehyde (MDA) levels, while green tanks raised glutathione S-transferases (GST) and catalase (CAT) levels. Lower fish density led to higher MDA, while higher density increased GST and CAT. Mono-sex fish had more MDA and GST, while mixed-sex fish showed greater CAT levels. Complex interactions among these factors affected the antioxidant levels in T. zillii. In summary, our study suggests that rearing T. zillii in green tanks at higher densities (30 fish/m3) and in mono-sex conditions yields the best results in terms of growth and overall performance.
Collapse
Affiliation(s)
- Shireen S I Arafa
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Eglal Ali Omar
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mokhtar I Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Tarek Mohamed Srour
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Akram Ismael Shehata
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| |
Collapse
|
93
|
Swahn H, Mertens J, Olmer M, Myers K, Mondala TS, Natarajan P, Head SR, Alvarez‐Garcia O, Lotz MK. Shared and Compartment-Specific Processes in Nucleus Pulposus and Annulus Fibrosus During Intervertebral Disc Degeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309032. [PMID: 38403470 PMCID: PMC11077672 DOI: 10.1002/advs.202309032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/08/2024] [Indexed: 02/27/2024]
Abstract
Elucidating how cell populations promote onset and progression of intervertebral disc degeneration (IDD) has the potential to enable more precise therapeutic targeting of cells and mechanisms. Single-cell RNA-sequencing (scRNA-seq) is performed on surgically separated annulus fibrosus (AF) (19,978; 26,983 cells) and nucleus pulposus (NP) (20,884; 24,489 cells) from healthy and diseased human intervertebral discs (IVD). In both tissue types, depletion of cell subsets involved in maintenance of healthy IVD is observed, specifically the immature cell subsets - fibroblast progenitors and stem cells - indicative of an impairment of normal tissue self-renewal. Tissue-specific changes are also identified. In NP, several fibrotic populations are increased in degenerated IVD, indicating tissue-remodeling. In degenerated AF, a novel disease-associated subset is identified, which expresses disease-promoting genes. It is associated with pathogenic biological processes and the main gene regulatory networks include thrombospondin signaling and FOXO1 transcription factor. In NP and AF cells thrombospondin protein promoted expression of genes associated with TGFβ/fibrosis signaling, angiogenesis, and nervous system development. The data reveal new insights of both shared and tissue-specific changes in specific cell populations in AF and NP during IVD degeneration. These identified mechanisms and molecules are novel and more precise targets for IDD prevention and treatment.
Collapse
Affiliation(s)
- Hannah Swahn
- Department of Molecular and Cellular Biology & Department of Molecular MedicineScripps ResearchLa JollaCA92037USA
| | - Jasmin Mertens
- Department of Molecular and Cellular Biology & Department of Molecular MedicineScripps ResearchLa JollaCA92037USA
| | - Merissa Olmer
- Department of Molecular and Cellular Biology & Department of Molecular MedicineScripps ResearchLa JollaCA92037USA
| | - Kevin Myers
- Department of Molecular and Cellular Biology & Department of Molecular MedicineScripps ResearchLa JollaCA92037USA
| | - Tony S. Mondala
- Center for Computational Biology & Bioinformatics and Genomics CoreScripps ResearchLa JollaCA92037USA
| | - Padmaja Natarajan
- Center for Computational Biology & Bioinformatics and Genomics CoreScripps ResearchLa JollaCA92037USA
| | - Steven R. Head
- Center for Computational Biology & Bioinformatics and Genomics CoreScripps ResearchLa JollaCA92037USA
| | - Oscar Alvarez‐Garcia
- Department of Molecular and Cellular Biology & Department of Molecular MedicineScripps ResearchLa JollaCA92037USA
| | - Martin K. Lotz
- Department of Molecular and Cellular Biology & Department of Molecular MedicineScripps ResearchLa JollaCA92037USA
| |
Collapse
|
94
|
Bouyahya A, Bakrim S, Aboulaghras S, El Kadri K, Aanniz T, Khalid A, Abdalla AN, Abdallah AA, Ardianto C, Ming LC, El Omari N. Bioactive compounds from nature: Antioxidants targeting cellular transformation in response to epigenetic perturbations induced by oxidative stress. Biomed Pharmacother 2024; 174:116432. [PMID: 38520868 DOI: 10.1016/j.biopha.2024.116432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
Oxidative stress results from a persistent imbalance in oxidation levels that promotes oxidants, playing a crucial role in the early and sustained phases of DNA damage and genomic and epigenetic instability, both of which are intricately linked to the development of tumors. The molecular pathways contributing to carcinogenesis in this context, particularly those related to double-strand and single-strand breaks in DNA, serve as indicators of DNA damage due to oxidation in cancer cases, as well as factors contributing to epigenetic instability through ectopic expressions. Oxidative stress has been considered a therapeutic target for many years, and an increasing number of studies have highlighted the promising effectiveness of natural products in cancer treatment. In this regard, we present significant research on the therapeutic targeting of oxidative stress using natural molecules and underscore the essential role of oxidative stress in cancer. The consequences of stress, especially epigenetic instability, also offer significant therapeutic prospects. In this context, the use of natural epi-drugs capable of modulating and reorganizing the epigenetic network is beginning to emerge remarkably. In this review, we emphasize the close connections between oxidative stress, epigenetic instability, and tumor transformation, while highlighting the role of natural substances as antioxidants and epi-drugs in the anti-tumoral context.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Sara Aboulaghras
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Kawtar El Kadri
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Tarik Aanniz
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan PO Box: 114, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed A Abdallah
- Department of Anatomy, Faculty of Medicine, Umm Alqura University, Makkah 21955, Saudi Arabia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia; School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam.
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| |
Collapse
|
95
|
Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol 2024; 98:1323-1367. [PMID: 38483584 PMCID: PMC11303474 DOI: 10.1007/s00204-024-03696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 01/31/2024] [Indexed: 03/27/2024]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are well recognized for playing a dual role, since they can be either deleterious or beneficial to biological systems. An imbalance between ROS production and elimination is termed oxidative stress, a critical factor and common denominator of many chronic diseases such as cancer, cardiovascular diseases, metabolic diseases, neurological disorders (Alzheimer's and Parkinson's diseases), and other disorders. To counteract the harmful effects of ROS, organisms have evolved a complex, three-line antioxidant defense system. The first-line defense mechanism is the most efficient and involves antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). This line of defense plays an irreplaceable role in the dismutation of superoxide radicals (O2•-) and hydrogen peroxide (H2O2). The removal of superoxide radicals by SOD prevents the formation of the much more damaging peroxynitrite ONOO- (O2•- + NO• → ONOO-) and maintains the physiologically relevant level of nitric oxide (NO•), an important molecule in neurotransmission, inflammation, and vasodilation. The second-line antioxidant defense pathway involves exogenous diet-derived small-molecule antioxidants. The third-line antioxidant defense is ensured by the repair or removal of oxidized proteins and other biomolecules by a variety of enzyme systems. This review briefly discusses the endogenous (mitochondria, NADPH, xanthine oxidase (XO), Fenton reaction) and exogenous (e.g., smoking, radiation, drugs, pollution) sources of ROS (superoxide radical, hydrogen peroxide, hydroxyl radical, peroxyl radical, hypochlorous acid, peroxynitrite). Attention has been given to the first-line antioxidant defense system provided by SOD, CAT, and GPx. The chemical and molecular mechanisms of antioxidant enzymes, enzyme-related diseases (cancer, cardiovascular, lung, metabolic, and neurological diseases), and the role of enzymes (e.g., GPx4) in cellular processes such as ferroptosis are discussed. Potential therapeutic applications of enzyme mimics and recent progress in metal-based (copper, iron, cobalt, molybdenum, cerium) and nonmetal (carbon)-based nanomaterials with enzyme-like activities (nanozymes) are also discussed. Moreover, attention has been given to the mechanisms of action of low-molecular-weight antioxidants (vitamin C (ascorbate), vitamin E (alpha-tocopherol), carotenoids (e.g., β-carotene, lycopene, lutein), flavonoids (e.g., quercetin, anthocyanins, epicatechin), and glutathione (GSH)), the activation of transcription factors such as Nrf2, and the protection against chronic diseases. Given that there is a discrepancy between preclinical and clinical studies, approaches that may result in greater pharmacological and clinical success of low-molecular-weight antioxidant therapies are also subject to discussion.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Suliman Y Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
| |
Collapse
|
96
|
Rai R, Jat D, Mishra SK. Naringenin mitigates aluminum toxicity-induced learning memory impairments and neurodegeneration through amelioration of oxidative stress. J Biochem Mol Toxicol 2024; 38:e23717. [PMID: 38742857 DOI: 10.1002/jbt.23717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Aluminum chloride (AlCl3) is a potent neurotoxic substance known to cause memory impairment and oxidative stress-dependent neurodegeneration. Naringenin (NAR) is a dietary flavonoid with potent antioxidant and anti-inflammatory properties which was implemented against AlCl3-induced neurotoxicity to ascertain its neuroprotective efficacy. Experimental neurotoxicity in mice was induced by exposure of AlCl3 (10 mg/kg, p.o.) followed by treatment with NAR (10 mg/kg, p.o.) for a total of 63 days. Assessed the morphometric, learning memory dysfunction (novel object recognition, T- and Y-maze tests), neuronal oxidative stress, and histopathological alteration in different regions of the brain, mainly cortex, hippocampus, thalamus, and cerebellum. AlCl3 significantly suppressed the spatial learning and memory power which were notably improved by administration of NAR. The levels of oxidative stress parameters nitric oxide, advanced oxidation of protein products, protein carbonylation, lipid peroxidation, superoxide dismutase, catalase, glutathione reductase, reduced glutathione, and the activity of acetylcholine esterase were altered 1.5-3 folds by AlCl3 significantly. Treatment of NAR remarkably restored the level of oxidative stress parameters and maintained the antioxidant defense system. AlCl3 suppressed the expression of neuronal proliferation marker NeuN that was restored by NAR treatment which may be a plausible mechanism. NAR showed therapeutic efficacy as a natural supplement against aluminum-intoxicated memory impairments and histopathological alteration through a mechanism involving an antioxidant defense system and neuronal proliferation.
Collapse
Affiliation(s)
- Ravina Rai
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | - Deepali Jat
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | | |
Collapse
|
97
|
Pandey AN, Yadav PK, Premkumar KV, Tiwari M, Pandey AK, Chaube SK. Reactive oxygen species signalling in the deterioration of quality of mammalian oocytes cultured in vitro: Protective effect of antioxidants. Cell Signal 2024; 117:111103. [PMID: 38367792 DOI: 10.1016/j.cellsig.2024.111103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
The in vitro fertilization (IVF) is the first choice of infertile couples worldwide to plan for conception. Besides having a significant advancement in IVF procedure, the success rate is still poor. Although several approaches have been tested to improve IVF protocol, minor changes in culture conditions, physical factors and/or drug treatment generate reactive oxygen species (ROS) in oocytes. Due to large size and huge number of mitochondria, oocyte is more susceptible towards ROS-mediated signalling under in vitro culture conditions. Elevation of ROS levels destabilize maturation promoting factor (MPF) that results in meiotic exit from diplotene as well as metaphase-II (M-II) arrest in vitro. Once meiotic exit occurs, these oocytes get further arrested at metaphase-I (M-I) stage or metaphase-III (M-III)-like stage under in vitro culture conditions. The M-I as well as M-III arrested oocytes are not fit for fertilization and limits IVF outcome. Further, the generation of excess levels of ROS cause oxidative stress (OS) that initiate downstream signalling to initiate various death pathways such as apoptosis, autophagy, necroptosis and deteriorates oocyte quality under in vitro culture conditions. The increase of cellular enzymatic antioxidants and/or supplementation of exogenous antioxidants in culture medium protect ROS-induced deterioration of oocyte quality in vitro. Although a growing body of evidence suggests the ROS and OS-mediated deterioration of oocyte quality in vitro, their downstream signalling and related mechanisms remain poorly understood. Hence, this review article summarizes the existing evidences concerning ROS and OS-mediated downstream signalling during deterioration of oocyte quality in vitro. The use of various antioxidants against ROS and OS-mediated impairment of oocyte quality in vitro has also been explored in order to increase the success rate of IVF during assisted reproductive health management.
Collapse
Affiliation(s)
- Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Karuppanan V Premkumar
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ajai K Pandey
- Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
98
|
Haryuni RD, Nukui T, Piao JL, Shirakura T, Matsui C, Sugimoto T, Baba K, Nakane S, Nakatsuji Y. Elevated Serum Xanthine Oxidase and Its Correlation with Antioxidant Status in Patients with Parkinson's Disease. Biomolecules 2024; 14:490. [PMID: 38672506 PMCID: PMC11048637 DOI: 10.3390/biom14040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative movement disorder associated with a loss of dopamine neurons in the substantia nigra. The diagnosis of PD is sensitive since it shows clinical features that are common with other neurodegenerative diseases. In addition, most symptoms arise at the late stage of the disease, where most dopaminergic neurons are already damaged. Several studies reported that oxidative stress is a key modulator in the development of PD. This condition occurs due to excess reactive oxygen species (ROS) production in the cellular system and the incapability of antioxidants to neutralize it. In this study, we focused on the pathology of PD by measuring serum xanthine oxidase (XO) activity, which is an enzyme that generates ROS. Interestingly, the serum XO activity of patients with PD was markedly upregulated compared to patients with other neurological diseases (ONDs) as a control. Moreover, serum XO activity in patients with PD showed a significant correlation with the disease severity based on the Hoehn and Yahr (HY) stages. The investigation of antioxidant status also revealed that serum uric acid levels were significantly lower in the severe group (HY ≥ 3) than in the ONDs group. Together, these results suggest that XO activity may contribute to the development of PD and might potentially be a biomarker for determining disease severity in patients with PD.
Collapse
Affiliation(s)
- Ratna Dini Haryuni
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan (T.N.); (J.-L.P.); (S.N.)
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency, Jakarta 10340, Indonesia
| | - Takamasa Nukui
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan (T.N.); (J.-L.P.); (S.N.)
| | - Jin-Lan Piao
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan (T.N.); (J.-L.P.); (S.N.)
| | - Takashi Shirakura
- Teijin Institute for Bio-Medical Research, Teijin Pharma Ltd., Tokyo 191-8512, Japan; (T.S.)
| | - Chieko Matsui
- Teijin Institute for Bio-Medical Research, Teijin Pharma Ltd., Tokyo 191-8512, Japan; (T.S.)
| | - Tomoyuki Sugimoto
- Faculty of Data Science, Graduate School of Data Science, University of Shiga, 1-1-1 Banba, Hikone 522-8533, Japan;
| | - Kousuke Baba
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan (T.N.); (J.-L.P.); (S.N.)
| | - Shunya Nakane
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan (T.N.); (J.-L.P.); (S.N.)
| | - Yuji Nakatsuji
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan (T.N.); (J.-L.P.); (S.N.)
| |
Collapse
|
99
|
Zanfardino P, Amati A, Doccini S, Cox SN, Tullo A, Longo G, D'Erchia A, Picardi E, Nesti C, Santorelli FM, Petruzzella V. OPA1 mutation affects autophagy and triggers senescence in autosomal dominant optic atrophy plus fibroblasts. Hum Mol Genet 2024; 33:768-786. [PMID: 38280232 DOI: 10.1093/hmg/ddae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/06/2024] [Indexed: 01/29/2024] Open
Abstract
In several cases of mitochondrial diseases, the underlying genetic and bioenergetic causes of reduced oxidative phosphorylation (OxPhos) in mitochondrial dysfunction are well understood. However, there is still limited knowledge about the specific cellular outcomes and factors involved for each gene and mutation, which contributes to the lack of effective treatments for these disorders. This study focused on fibroblasts from a patient with Autosomal Dominant Optic Atrophy (ADOA) plus syndrome harboring a mutation in the Optic Atrophy 1 (OPA1) gene. By combining functional and transcriptomic approaches, we investigated the mitochondrial function and identified cellular phenotypes associated with the disease. Our findings revealed that fibroblasts with the OPA1 mutation exhibited a disrupted mitochondrial network and function, leading to altered mitochondrial dynamics and reduced autophagic response. Additionally, we observed a premature senescence phenotype in these cells, suggesting a previously unexplored role of the OPA1 gene in inducing senescence in ADOA plus patients. This study provides novel insights into the mechanisms underlying mitochondrial dysfunction in ADOA plus and highlights the potential importance of senescence in disease progression.
Collapse
Affiliation(s)
- Paola Zanfardino
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of study of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Alessandro Amati
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of study of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Viale del Tirreno, 56128 Calambrone, Pisa, Italy
| | - Sharon N Cox
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of study of Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Giovanna Longo
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of study of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Annamaria D'Erchia
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of study of Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of study of Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Claudia Nesti
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Viale del Tirreno, 56128 Calambrone, Pisa, Italy
| | - Filippo M Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Viale del Tirreno, 56128 Calambrone, Pisa, Italy
| | - Vittoria Petruzzella
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of study of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
100
|
Yang H, Sun W, Yang M, Li J, Zhang J, Zhang X. Variations to plasma H 2O 2 levels and TAC in chronical medicated and treatment-resistant male schizophrenia patients: Correlations with psychopathology. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:45. [PMID: 38605069 PMCID: PMC11009317 DOI: 10.1038/s41537-024-00468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Accumulating evidence suggests that imbalanced oxidative stress (OS) may contribute to the mechanism of schizophrenia. The aim of the present study was to evaluate the associations of OS parameters with psychopathological symptoms in male chronically medicated schizophrenia (CMS) and treatment-resistant schizophrenia (TRS) patients. Levels of hydrogen peroxide (H2O2), hydroxyl radical (·OH), peroxidase (POD), α-tocopherol (α-toc), total antioxidant capacity (TAC), matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinases-1 (TIMP-1) were assayed in males with CMS and TRS, and matched healthy controls. Schizophrenia symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS). The results demonstrated significant differences in the variables H2O2 (F = 5.068, p = 0.008), ·OH (F = 31.856, p < 0.001), POD (F = 14.043, p < 0.001), α-toc (F = 3.711, p = 0.027), TAC (F = 24.098, p < 0.001), and MMP-9 (F = 3.219, p = 0.043) between TRS and CMS patients and healthy controls. For TRS patients, H2O2 levels were correlated to the PANSS positive subscale (r = 0.386, p = 0.032) and smoking (r = -0,412, p = 0.021), while TAC was significantly negatively correlated to the PANSS total score (r = -0.578, p = 0.001) and POD and TAC levels were positively correlated to body mass index (r = 0.412 and 0.357, p = 0.021 and 0.049, respectively). For patients with CMS, ·OH levels and TAC were positively correlated to the PANSS general subscale (r = 0.308, p = 0.031) and negatively correlated to the PANSS total score (r = -0.543, p < 0.001). Furthermore, H2O2, α-toc, and ·OH may be protective factors against TRS, and POD was a risk factor. Patients with CMS and TRS exhibit an imbalance in OS, thus warranting future investigations.
Collapse
Affiliation(s)
- Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, China
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, China
| | - Wenxi Sun
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, China
| | - Man Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, China
| | - Jin Li
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, China
| | - Jing Zhang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, China
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, China.
| |
Collapse
|