51
|
Cottrell EC. Should the non-canonical pathway of nitric oxide generation be targeted in hypertensive pregnancies? Br J Pharmacol 2023. [PMID: 37921362 DOI: 10.1111/bph.16276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
Hypertension in pregnancy is prevalent, affecting around 10% of pregnancies worldwide, and significantly increases the risk of adverse outcomes for both mothers and their babies. Current treatment strategies for pregnant women with hypertension are limited, and new approaches for the management of hypertension in pregnancy are urgently needed. Substantial evidence from non-pregnant subjects has demonstrated the potential for dietary nitrate supplementation to increase nitric oxide (NO) bioavailability and lower blood pressure, following bioactivation via the non-canonical NO pathway. Emerging data suggest this approach may also be of benefit in pregnant women, although studies are limited. This review aims to summarise the current evidence from preclinical and clinical studies of nitrate supplementation in pregnancy, drawing on data from non-pregnant populations where appropriate and highlighting key gaps in knowledge that remain to be addressed in future trials.
Collapse
Affiliation(s)
- Elizabeth C Cottrell
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
52
|
Willmott T, Ormesher L, McBain AJ, Humphreys GJ, Myers JE, Singh G, Lundberg JO, Weitzberg E, Nihlen C, Cottrell EC. Altered Oral Nitrate Reduction and Bacterial Profiles in Hypertensive Women Predict Blood Pressure Lowering Following Acute Dietary Nitrate Supplementation. Hypertension 2023; 80:2397-2406. [PMID: 37702047 DOI: 10.1161/hypertensionaha.123.21263] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/26/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND The efficacy of dietary nitrate supplementation to lower blood pressure (BP) in pregnant women is highly variable. We aimed to investigate whether differences in oral microbiota profiles and oral nitrate-reducing capacity may explain interindividual differences in BP lowering following nitrate supplementation. METHODS Participants recruited for this study were both pregnant and nonpregnant women, with or without hypertension (n=55). Following an overnight fast, plasma, saliva, and tongue scraping samples were collected for measurement of nitrate/nitrite concentrations, oral NaR (nitrate reductase) activity, and microbiota profiling using 16S rRNA gene sequencing. Baseline BP was measured, followed by the administration of a single dose of dietary nitrate (400 mg nitrate in 70 mL beetroot juice). Post-nitrate intervention, plasma and salivary nitrate/nitrite concentrations and BP were determined 2.5 hours later. RESULTS Women with hypertension had significantly lower salivary nitrite concentrations (P=0.006) and reduced abundance of the nitrate-reducing taxa Veillonella(P=0.007) compared with normotensive women. Oral NaR activity was not significantly different in pregnant versus nonpregnant women (P=0.991) but tended to be lower in hypertensive compared with normotensive women (P=0.099). Oral NaR activity was associated with both baseline diastolic BP (P=0.050) and change in diastolic BP following acute nitrate intake (P=0.01, adjusted for baseline BP). CONCLUSIONS The abundance and activity of oral nitrate-reducing bacteria impact both baseline BP as well as the ability of dietary nitrate supplementation to lower BP. Strategies to increase oral nitrate-reducing capacity could lower BP and enhance the efficacy of dietary nitrate supplementation, in pregnancy as well as in nonpregnant adults. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT03930693.
Collapse
Affiliation(s)
- Thomas Willmott
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences (T.W., L.O., J.E.M., E.C.C.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
- Division of Pharmacy and Optometry, School of Health Sciences (T.W., A.J.M., G.J.H.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Laura Ormesher
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences (T.W., L.O., J.E.M., E.C.C.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences (T.W., A.J.M., G.J.H.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Gavin J Humphreys
- Division of Pharmacy and Optometry, School of Health Sciences (T.W., A.J.M., G.J.H.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Jenny E Myers
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences (T.W., L.O., J.E.M., E.C.C.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Gurdeep Singh
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre (G.S.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (J.O.L., E.W., C.N.)
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (J.O.L., E.W., C.N.)
| | - Carina Nihlen
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (J.O.L., E.W., C.N.)
| | - Elizabeth C Cottrell
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences (T.W., L.O., J.E.M., E.C.C.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| |
Collapse
|
53
|
Dent MR, DeMartino AW. Nitric oxide and thiols: Chemical biology, signalling paradigms and vascular therapeutic potential. Br J Pharmacol 2023:10.1111/bph.16274. [PMID: 37908126 PMCID: PMC11058123 DOI: 10.1111/bph.16274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
Nitric oxide (• NO) interactions with biological thiols play crucial, but incompletely determined, roles in vascular signalling and other biological processes. Here, we highlight two recently proposed signalling paradigms: (1) the formation of a vasodilating labile nitrosyl ferrous haem (NO-ferrohaem) facilitated by thiols via thiyl radical generation and (2) polysulfides/persulfides and their interaction with • NO. We also describe the specific (bio)chemical routes in which • NO and thiols react to form S-nitrosothiols, a broad class of small molecules, and protein post-translational modifications that can influence protein function through catalytic site or allosteric structural changes. S-Nitrosothiol formation depends upon cellular conditions, but critically, an appropriate oxidant for either the thiol (yielding a thiyl radical) or • NO (yielding a nitrosonium [NO+ ]-donating species) is required. We examine the roles of these collective • NO/thiol species in vascular signalling and their cardiovascular therapeutic potential.
Collapse
Affiliation(s)
- Matthew R. Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony W. DeMartino
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
54
|
Roy R, Wilcox J, Webb AJ, O’Gallagher K. Dysfunctional and Dysregulated Nitric Oxide Synthases in Cardiovascular Disease: Mechanisms and Therapeutic Potential. Int J Mol Sci 2023; 24:15200. [PMID: 37894881 PMCID: PMC10607291 DOI: 10.3390/ijms242015200] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Nitric oxide (NO) plays an important and diverse signalling role in the cardiovascular system, contributing to the regulation of vascular tone, endothelial function, myocardial function, haemostasis, and thrombosis, amongst many other roles. NO is synthesised through the nitric oxide synthase (NOS)-dependent L-arginine-NO pathway, as well as the nitrate-nitrite-NO pathway. The three isoforms of NOS, namely neuronal (NOS1), inducible (NOS2), and endothelial (NOS3), have different localisation and functions in the human body, and are consequently thought to have differing pathophysiological roles. Furthermore, as we continue to develop a deepened understanding of the different roles of NOS isoforms in disease, the possibility of therapeutically modulating NOS activity has emerged. Indeed, impaired (or dysfunctional), as well as overactive (or dysregulated) NOS activity are attractive therapeutic targets in cardiovascular disease. This review aims to describe recent advances in elucidating the physiological role of NOS isoforms within the cardiovascular system, as well as mechanisms of dysfunctional and dysregulated NOS in cardiovascular disease. We then discuss the modulation of NO and NOS activity as a target in the development of novel cardiovascular therapeutics.
Collapse
Affiliation(s)
- Roman Roy
- Cardiovascular Department, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK;
| | - Joshua Wilcox
- Cardiovascular Department, Guy’s and St. Thomas’ NHS Foundation Trust, London SE1 7EH, UK;
| | - Andrew J. Webb
- Department of Clinical Pharmacology, British Heart Foundation Centre, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London SE1 7EH, UK;
| | - Kevin O’Gallagher
- Cardiovascular Department, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK;
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE5 9NU, UK
| |
Collapse
|
55
|
Liu H, Huang Y, Huang M, Wang M, Ming Y, Chen W, Chen Y, Tang Z, Jia B. From nitrate to NO: potential effects of nitrate-reducing bacteria on systemic health and disease. Eur J Med Res 2023; 28:425. [PMID: 37821966 PMCID: PMC10566198 DOI: 10.1186/s40001-023-01413-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
Current research has described improving multisystem disease and organ function through dietary nitrate (DN) supplementation. They have provided some evidence that these floras with nitrate (NO3-) reductase are mediators of the underlying mechanism. Symbiotic bacteria with nitrate reductase activity (NRA) are found in the human digestive tract, including the mouth, esophagus and gastrointestinal tract (GT). Nitrate in food can be converted to nitrite under the tongue or in the stomach by these symbiotic bacteria. Then, nitrite is transformed to nitric oxide (NO) by non-enzymatic synthesis. NO is currently recognized as a potent bioactive agent with biological activities, such as vasodilation, regulation of cardiomyocyte function, neurotransmission, suppression of platelet agglutination, and prevention of vascular smooth muscle cell proliferation. NO also can be produced through the conventional L-arginine-NO synthase (L-NOS) pathway, whereas endogenous NO production by L-arginine is inhibited under hypoxia-ischemia or disease conditions. In contrast, exogenous NO3-/NO2-/NO activity is enhanced and becomes a practical supplemental pathway for NO in the body, playing an essential role in various physiological activities. Moreover, many diseases (such as metabolic or geriatric diseases) are primarily associated with disorders of endogenous NO synthesis, and NO generation from the exogenous NO3-/NO2-/NO route can partially alleviate the disease progression. The imbalance of NO in the body may be one of the potential mechanisms of disease development. Therefore, the impact of these floras with nitrate reductase on host systemic health through exogenous NO3-/NO2-/NO pathway production of NO or direct regulation of floras ecological balance is essential (e.g., regulation of body homeostasis, amelioration of diseases, etc.). This review summarizes the bacteria with nitrate reductase in humans, emphasizing the relationship between the metabolic processes of this microflora and host systemic health and disease. The potential effects of nitrate reduction bacteria on human health and disease were also highlighted in disease models from different human systems, including digestive, cardiovascular, endocrine, nervous, respiratory, and urinary systems, providing innovative ideas for future disease diagnosis and treatment based on nitrate reduction bacteria.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Min Wang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
56
|
Houston M, Chen C, D'Adamo CR, Papathanassiu AE, Green SJ. Effects of S-Allylcysteine-Rich Garlic Extract and Dietary Inorganic Nitrate Formula on Blood Pressure and Salivary Nitric Oxide: An Open-Label Clinical Trial Among Hypertensive Subjects. Cureus 2023; 15:e45369. [PMID: 37849591 PMCID: PMC10578647 DOI: 10.7759/cureus.45369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2023] [Indexed: 10/19/2023] Open
Abstract
INTRODUCTION The conversion of dietary inorganic nitrate (NO3-) to nitric oxide (NO) is a non-canonical pathway that plays an important role in NO biology, especially under pathological conditions. Inorganic NO3- supplementation is a proven method for controlling mild hypertension. Recent reports have suggested that another gaseous transmitter, hydrogen sulfide (H2S), influences NO biosynthesis and metabolism. Here, data are presented from an open-label clinical trial examining the effect of an encapsulated formulation (Vascanox® HP) that combines dietary sources of inorganic NO3- and S-allylcysteine (SAC), a source of H2S from garlic, on NO bioavailability and blood pressure in subjects experiencing elevated blood pressure or mild hypertension. METHODS An open-label clinical trial was conducted among patients with hypertension. Participants took Vascanox® for four weeks. Blood pressure was measured at baseline, two weeks, and four weeks. Salivary nitrite (NO2-), a surrogate of NO bioavailability, and NO3- were assessed prior to and two, six, and 24 hours after dosing on the first day of the study and prior to and two hours after dosing at subsequent study visits using saliva NO test strips. Changes in study outcomes over time were evaluated via analysis of variance (ANOVA) and paired t-tests. RESULTS Twelve participants completed the clinical trial. Vascanox® HP decreased systolic blood pressure by ~11 mmHg (p < 0.001) at two weeks and persisted beyond four weeks with daily supplementation. It also decreased the diastolic blood pressure of hypertensive subjects but not normotensive ones. The magnitude of the decrease was 11 mmHg (p < 0.01) at four weeks of study. Measurements of salivary concentrations of NO2- revealed high peak levels (743 uM) at two hours post-administration and a slow decay to elevated levels (348 uM) at 24 hours. NO2- salivary concentrations, a surrogate biomarker of NO bioavailability, remained above baseline for the duration of the study. CONCLUSIONS Vascanox® HP was shown to be a safe, effective, quick-acting, and long-lasting dietary supplement for controlling mild hypertension.
Collapse
Affiliation(s)
- Mark Houston
- Cardiology, Hypertension Institute at Saint Thomas West Hospital, Nashville, USA
| | - Chen Chen
- Nutrition, Calroy Health Sciences, Greensboro, USA
| | - Christopher R D'Adamo
- Family and Community Medicine, University of Maryland Medical Center, Baltimore, USA
| | | | - Shawn J Green
- Cardiology, Lundquist Institute at Harbor-UCLA (University of California, Los Angeles) Medical Center, Torrance, USA
- Nutrition, MyFitStrip, Rockville, USA
| |
Collapse
|
57
|
Tan R, Baranauskas MN, Karl ST, Ortiz de Zevallos J, Shei RJ, Paris HL, Wiggins CC, Bailey SJ. Effects of dietary nitrate supplementation on peak power output: Influence of supplementation strategy and population. Nitric Oxide 2023; 138-139:105-119. [PMID: 37438201 DOI: 10.1016/j.niox.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Increasing evidence indicates that dietary nitrate supplementation has the potential to increase muscular power output during skeletal muscle contractions. However, there is still a paucity of data characterizing the impact of different nitrate dosing regimens on nitric oxide bioavailability and its potential ergogenic effects across various population groups. This review discusses the potential influence of different dietary nitrate supplementation strategies on nitric oxide bioavailability and muscular peak power output in healthy adults, athletes, older adults and some clinical populations. Effect sizes were calculated for peak power output and absolute and/or relative nitrate doses were considered where applicable. There was no relationship between the effect sizes of peak power output change following nitrate supplementation and when nitrate dosage when considered in absolute or relative terms. Areas for further research are also recommended including a focus on nitrate dosing regimens that optimize nitric oxide bioavailability for enhancing peak power at times of increased muscular work in a variety of healthy and disease populations.
Collapse
Affiliation(s)
- Rachel Tan
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA.
| | - Marissa N Baranauskas
- Department of Human Physiology & Nutrition, University of Colorado, Colorado Springs, CO, 80918, USA
| | - Sean T Karl
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA
| | | | - Ren-Jay Shei
- Indiana University Alumni Association, Indiana University, Bloomington, IN, 47408, USA
| | - Hunter L Paris
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA
| | - Chad C Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
58
|
Wei C, Vanhatalo A, Kadach S, Stoyanov Z, Abu-Alghayth M, Black MI, Smallwood MJ, Rajaram R, Winyard PG, Jones AM. Reduction in blood pressure following acute dietary nitrate ingestion is correlated with increased red blood cell S-nitrosothiol concentrations. Nitric Oxide 2023; 138-139:1-9. [PMID: 37268184 DOI: 10.1016/j.niox.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Dietary nitrate (NO3-) supplementation can enhance nitric oxide (NO) bioavailability and lower blood pressure (BP) in humans. The nitrite concentration ([NO2-]) in the plasma is the most commonly used biomarker of increased NO availability. However, it is unknown to what extent changes in other NO congeners, such as S-nitrosothiols (RSNOs), and in other blood components, such as red blood cells (RBC), also contribute to the BP lowering effects of dietary NO3-. We investigated the correlations between changes in NO biomarkers in different blood compartments and changes in BP variables following acute NO3- ingestion. Resting BP was measured and blood samples were collected at baseline, and at 1, 2, 3, 4 and 24 h following acute beetroot juice (∼12.8 mmol NO3-, ∼11 mg NO3-/kg) ingestion in 20 healthy volunteers. Spearman rank correlation coefficients were determined between the peak individual increases in NO biomarkers (NO3-, NO2-, RSNOs) in plasma, RBC and whole blood, and corresponding decreases in resting BP variables. No significant correlation was observed between increased plasma [NO2-] and reduced BP, but increased RBC [NO2-] was correlated with decreased systolic BP (rs = -0.50, P = 0.03). Notably, increased RBC [RSNOs] was significantly correlated with decreases in systolic (rs = -0.68, P = 0.001), diastolic (rs = -0.59, P = 0.008) and mean arterial pressure (rs = -0.64, P = 0.003). Fisher's z transformation indicated no difference in the strength of the correlations between increases in RBC [NO2-] or [RSNOs] and decreased systolic blood pressure. In conclusion, increased RBC [RSNOs] may be an important mediator of the reduction in resting BP observed following dietary NO3- supplementation.
Collapse
Affiliation(s)
- Chenguang Wei
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK
| | - Anni Vanhatalo
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK
| | - Stefan Kadach
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK
| | - Zdravko Stoyanov
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK
| | - Mohammed Abu-Alghayth
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, 255, AL Nakhil, Bisha, 67714, Saudi Arabia
| | - Matthew I Black
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK
| | - Miranda J Smallwood
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK
| | - Raghini Rajaram
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK
| | - Paul G Winyard
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK
| | - Andrew M Jones
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK.
| |
Collapse
|
59
|
Jockel-Schneider Y, Goßner SK, Stölzel P, Haubitz I, Carle R, Petersen N, Baulmann J, Schlagenhauf U. Impact of Dietary Nitrate on the Recovery of Therapy-related Vascular Health Impairments Following Standard Periodontal Aftercare Therapy: a Hypothesis-generating Subanalysis. PLANTA MEDICA 2023; 89:1045-1051. [PMID: 37315934 DOI: 10.1055/a-2110-1897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This follow-up study assessed the impact of a nitrate-rich diet on salivary nitrate/nitrite levels and the recovery of therapy-induced vascular impairments in a cohort of 39 periodontitis patients treated by standard subgingival mechanical plaque removal (PMPR). At baseline, saliva samples for nitrate/nitrite analysis were collected, and peripheral/central blood and augmentation pressure was documented using the Arteriograph recording system. Immediately after, PMPR vascular parameters were reassessed. All study patients received a randomly allocated supply of a lettuce beverage to be consumed for 14 days, containing either a daily dosage of 200 mg nitrate (test group, n = 20) or being void of nitrate (placebo group, n = 19). At day 14, salivary and vascular parameters were reassessed. Initial salivary and vascular parameters did not differ significantly between the groups. PMPR impaired all vascular parameters in both groups with no differences between the groups. At day 14, salivary nitrate/nitrite levels of the test group were significantly elevated compared to baseline. All vascular parameters had significantly recovered from the impairment inflicted by PMPR. In the placebo group, by contrast, salivary parameters did not differ significantly from baseline, and the recovery of impaired vascular parameters was restricted to a significant improvement of diastolic blood pressure. Correlation analysis identified a significant inverse correlation between salivary nitrate/nitrite sum and central/peripheral blood pressure and augmentation pressure. In conclusion, the data of this subanalysis suggest that increasing salivary nitrate/nitrite levels by a diet rich in nitrate may improve recovery of therapy-induced vascular impairments after PMPR.
Collapse
Affiliation(s)
| | - Sophia K Goßner
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim, Stuttgart, Germany
| | - Peggy Stölzel
- Department of Periodontology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Imme Haubitz
- Department of Periodontology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Reinhold Carle
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim, Stuttgart, Germany
- King Abdulaziz University, Faculty of Science, Biological Science Department, Jeddah, Saudi Arabia
| | - Nicole Petersen
- Department of Periodontology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Johannes Baulmann
- Private Practice for Cardiology and Internal Medicine, Bonn, Germany
| | - Ulrich Schlagenhauf
- Department of Periodontology, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
60
|
Sibley D, Chen M, West MA, Matthew AG, Santa Mina D, Randall I. Potential mechanisms of multimodal prehabilitation effects on surgical complications: a narrative review. Appl Physiol Nutr Metab 2023; 48:639-656. [PMID: 37224570 DOI: 10.1139/apnm-2022-0272] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Continuous advances in prehabilitation research over the past several decades have clarified its role in improving preoperative risk factors, yet the evidence demonstrating reduced surgical complications remains uncertain. Describing the potential mechanisms underlying prehabilitation and surgical complications represents an important opportunity to establish biological plausibility, develop targeted therapies, generate hypotheses for future research, and contribute to the rationale for implementation into the standard of care. In this narrative review, we discuss and synthesize the current evidence base for the biological plausibility of multimodal prehabilitation to reduce surgical complications. The goal of this review is to improve prehabilitation interventions and measurement by outlining biologically plausible mechanisms of benefit and generating hypotheses for future research. This is accomplished by synthesizing the available evidence for the mechanistic benefit of exercise, nutrition, and psychological interventions for reducing the incidence and severity of surgical complications reported by the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP). This review was conducted and reported in accordance with a quality assessment scale for narrative reviews. Findings indicate that prehabilitation has biological plausibility to reduce all complications outlined by NSQIP. Mechanisms for prehabilitation to reduce surgical complications include anti-inflammation, enhanced innate immunity, and attenuation of sympathovagal imbalance. Mechanisms vary depending on the intervention protocol and baseline characteristics of the sample. This review highlights the need for more research in this space while proposing potential mechanisms to be included in future investigations.
Collapse
Affiliation(s)
- Daniel Sibley
- Faculty of Kinesiology, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Maggie Chen
- Faculty of Kinesiology, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Malcolm A West
- Faculty of Medicine, Cancer Sciences, University of Southampton, UK
- NIHR Southampton Biomedical Research Centre, Perioperative and Critical Care, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Andrew G Matthew
- Department of Surgical Oncology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Daniel Santa Mina
- Faculty of Kinesiology, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Ian Randall
- Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
61
|
Volino-Souza M, Oliveira GVD, Tavares AC, Souza K, Alvares T. The effect of microencapsulated watermelon rind ( Citrullus lanatus) and beetroot ( Beta vulgaris L.) ingestion on ischemia/reperfusion-induced endothelial dysfunction: a randomised clinical trial. Food Funct 2023; 14:7959-7968. [PMID: 37561087 DOI: 10.1039/d3fo02612d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Endothelial dysfunction is commonly associated with a cardiovascular event, such as myocardial infarction. Myocardial infarction is marked by an ischemia/reperfusion (IR) phenomenon associated with endothelial dysfunction, contributing even more to future cardiovascular events. Although the supplementation with L-citrulline and nitrate from watermelon and beetroot have been used to improve vascular function, the effect of microencapsulated watermelon rind (WR) or its co-ingestion with beetroot (WR + B) on endothelial IR injury has not been addressed. Therefore, this study aimed to investigate the effect of a single dose of WR and WR + B on IR-induced macro-and microvascular dysfunction. In a randomized, crossover, placebo-controlled study, 12 volunteers underwent macro (flow-mediated dilation) and microvascular (muscle oxygen saturation) assessment and blood collection (to measure L-citrulline, L-arginine, nitrate and nitrite) before and after 20 min of blood occlusion in WR, WR + B and placebo conditions. Prolonged ischemia induced endothelial dysfunction in the macro but not in the microvasculature. The WR and WR + B supplementation significantly restored FMD after IR injury compared to the placebo (p < 0.05). However, there was no significant difference between WR and WR + B in the macrovascular function (p > 0.05). Plasma L-citrulline, L-arginine, nitrate, and nitrite significantly increased (p > 0.05) after WR and WR + B supplementation compared to the placebo. A single dose of WR and WR + B effectively minimizes IR-induced macrovascular endothelial dysfunction in healthy individuals. Beetroot co-ingestion with watermelon did not provide an additional effect of endothelial dysfunction induced by IR (NCT04781595, March 4, 2021).
Collapse
Affiliation(s)
- Mônica Volino-Souza
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil.
- Postgraduate Program in Food Science, Chemistry Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Gustavo Vieira de Oliveira
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil.
- Medical Science Institute, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Brazil
| | - Anna Carolina Tavares
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil.
- Food and Nutrition Institute, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Brazil
| | - Karen Souza
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil.
- Food and Nutrition Institute, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Brazil
| | - Thiago Alvares
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil.
- Food and Nutrition Institute, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Brazil
| |
Collapse
|
62
|
de Crom TOE, Blekkenhorst L, Vernooij MW, Ikram MK, Voortman T, Ikram MA. Dietary nitrate intake in relation to the risk of dementia and imaging markers of vascular brain health: a population-based study. Am J Clin Nutr 2023; 118:352-359. [PMID: 37536866 DOI: 10.1016/j.ajcnut.2023.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Nitric oxide is a free radical that can be produced from dietary nitrate and positively affects cardiovascular health. With cardiovascular health playing an important role in the etiology of dementia, we hypothesized a link between dietary nitrate intake and the risk of dementia. OBJECTIVES This study aimed to find the association of total, vegetable, and nonvegetable dietary nitrate intake with the risk of dementia and imaging markers of vascular brain health, such as total brain volume, global cerebral perfusion, white matter hyperintensity volume, microbleeds, and lacunar infarcts. METHODS Between 1990 and 2009, dietary intake was assessed using food-frequency questionnaires in 9543 dementia-free participants (mean age, 64 y; 58% female) from the prospective population-based Rotterdam Study. Participants were followed up for incidence dementia until January 2020. We used Cox models to determine the association between dietary nitrate intake and incident dementia. Using linear mixed models and logistic regression models, we assessed the association of dietary nitrate intake with changes in imaging markers across 3 consecutive examination rounds (mean interval between images 4.6 y). RESULTS Participants median dietary nitrate consumption was 85 mg/d (interquartile range, 55 mg/d), derived on average for 81% from vegetable sources. During a mean follow-up of 14.5 y, 1472 participants developed dementia. A higher intake of total and vegetable dietary nitrate was associated with a lower risk of dementia per 50-mg/d increase [hazard ratio (HR): 0.92; 95% confidence interval (CI): 0.87, 0.98; and HR: 0.92; 95% CI: 0.86, 0.97, respectively] but not with changes in neuroimaging markers. No association between nonvegetable dietary nitrate intake and the risk of dementia (HR: 1.15; 95% CI: 0.64, 2.07) or changes in neuroimaging markers were observed. CONCLUSIONS A higher dietary nitrate intake from vegetable sources was associated with a lower risk of dementia. We found no evidence that this association was driven by vascular brain health.
Collapse
Affiliation(s)
- Tosca O E de Crom
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Lauren Blekkenhorst
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Neurology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
63
|
Stuehr DJ, Biswas P, Dai Y, Ghosh A, Islam S, Jayaram DT. A natural heme deficiency exists in biology that allows nitric oxide to control heme protein functions by regulating cellular heme distribution. Bioessays 2023; 45:e2300055. [PMID: 37276366 PMCID: PMC10478511 DOI: 10.1002/bies.202300055] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
A natural heme deficiency that exists in cells outside of the circulation broadly compromises the heme contents and functions of heme proteins in cells and tissues. Recently, we found that the signaling molecule, nitric oxide (NO), can trigger or repress the deployment of intracellular heme in a concentration-dependent hormetic manner. This uncovers a new role for NO and sets the stage for it to shape numerous biological processes by controlling heme deployment and consequent heme protein functions in biology.
Collapse
Affiliation(s)
- Dennis J. Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland OH 44195 USA
| | - Pranjal Biswas
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland OH 44195 USA
| | - Yue Dai
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland OH 44195 USA
| | - Arnab Ghosh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland OH 44195 USA
| | - Sidra Islam
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland OH 44195 USA
| | | |
Collapse
|
64
|
Grosicki GJ, Flatt AA, Cross BL, Vondrasek JD, Blumenburg WT, Lincoln ZR, Chall A, Bryan A, Patel RP, Ricart K, Linder BA, Sanchez SO, Watso JC, Robinson AT. Acute beetroot juice reduces blood pressure in young Black and White males but not females. Redox Biol 2023; 63:102718. [PMID: 37120928 PMCID: PMC10172749 DOI: 10.1016/j.redox.2023.102718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/08/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
A complex interplay of social, lifestyle, and physiological factors contribute to Black Americans having the highest blood pressure (BP) in America. One potential contributor to Black adult's higher BP may be reduced nitric oxide (NO) bioavailability. Therefore, we sought to determine whether augmenting NO bioavailability with acute beetroot juice (BRJ) supplementation would reduce resting BP and cardiovascular reactivity in Black and White adults, but to a greater extent in Black adults. A total of 18 Black and 20 White (∼equal split by biological sex) young adults completed this randomized, placebo-controlled (nitrate (NO3-)-depleted BRJ), crossover design study. We measured heart rate, brachial and central BP, and arterial stiffness (via pulse wave velocity) at rest, during handgrip exercise, and during post-exercise circulatory occlusion. Compared with White adults, Black adults exhibited higher pre-supplementation resting brachial and central BP (Ps ≤0.035; e.g., brachial systolic BP: 116(11) vs. 121(7) mmHg, P = 0.023). Compared with placebo, BRJ (∼12.8 mmol NO3-) reduced resting brachial systolic BP similarly in Black (Δ-4±10 mmHg) and White (Δ-4±7 mmHg) adults (P = 0.029). However, BRJ supplementation reduced BP in males (Ps ≤ 0.020) but not females (Ps ≥ 0.299). Irrespective of race or sex, increases in plasma NO3- were associated with reduced brachial systolic BP (ρ = -0.237, P = 0.042). No other treatment effects were observed for BP or arterial stiffness at rest or during physical stress (i.e., reactivity); Ps ≥ 0.075. Despite young Black adults having higher resting BP, acute BRJ supplementation reduced systolic BP in young Black and White adults by a similar magnitude, an effect that was driven by males.
Collapse
Affiliation(s)
- Gregory J. Grosicki
- Biodynamics and Human Performance Center, Georgia Southern University, Armstrong Campus, Savannah, GA, USA
| | - Andrew A. Flatt
- Biodynamics and Human Performance Center, Georgia Southern University, Armstrong Campus, Savannah, GA, USA
| | - Brett L. Cross
- Biodynamics and Human Performance Center, Georgia Southern University, Armstrong Campus, Savannah, GA, USA
| | - Joseph D. Vondrasek
- Biodynamics and Human Performance Center, Georgia Southern University, Armstrong Campus, Savannah, GA, USA
| | - Wesley T. Blumenburg
- Biodynamics and Human Performance Center, Georgia Southern University, Armstrong Campus, Savannah, GA, USA
| | - Zoe R. Lincoln
- Biodynamics and Human Performance Center, Georgia Southern University, Armstrong Campus, Savannah, GA, USA
| | - Amy Chall
- Department of Diagnostic and Therapeutic Services, Georgia Southern University, Armstrong Campus, Savannah, GA, USA
| | - Anna Bryan
- Department of Diagnostic and Therapeutic Services, Georgia Southern University, Armstrong Campus, Savannah, GA, USA
| | - Rakesh P. Patel
- Department for Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Karina Ricart
- Department for Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Braxton A. Linder
- Neurovascular Physiology Laboratory, Auburn University, Auburn, AL, USA
| | - Sofia O. Sanchez
- Neurovascular Physiology Laboratory, Auburn University, Auburn, AL, USA
| | - Joseph C. Watso
- Cardiovascular and Applied Physiology Laboratory, Florida State University, Tallahassee, FL, USA
| | | |
Collapse
|
65
|
da Silva DVT, Baião DDS, Almeida CC, Paschoalin VMF. A Critical Review on Vasoactive Nutrients for the Management of Endothelial Dysfunction and Arterial Stiffness in Individuals under Cardiovascular Risk. Nutrients 2023; 15:nu15112618. [PMID: 37299579 DOI: 10.3390/nu15112618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Pathophysiological conditions such as endothelial dysfunction and arterial stiffness, characterized by low nitric oxide bioavailability, deficient endothelium-dependent vasodilation and heart effort, predispose individuals to atherosclerotic lesions and cardiac events. Nitrate (NO3-), L-arginine, L-citrulline and potassium (K+) can mitigate arterial dysfunction and stiffness by intensifying NO bioavailability. Dietary compounds such as L-arginine, L-citrulline, NO3- and K+ exert vasoactive effects as demonstrated in clinical interventions by noninvasive flow-mediated vasodilation (FMD) and pulse-wave velocity (PWV) prognostic techniques. Daily L-arginine intakes ranging from 4.5 to 21 g lead to increased FMD and reduced PWV responses. Isolated L-citrulline intake of at least 5.6 g has a better effect compared to watermelon extract, which is only effective on endothelial function when supplemented for longer than 6 weeks and contains at least 6 g of L-citrulline. NO3- supplementation employing beetroot at doses greater than 370 mg promotes hemodynamic effects through the NO3--NO2-/NO pathway, a well-documented effect. A potassium intake of 1.5 g/day can restore endothelial function and arterial mobility, where decreased vascular tone takes place via ATPase pump/hyperpolarization and natriuresis, leading to muscle relaxation and NO release. These dietary interventions, alone or synergically, can ameliorate endothelial dysfunction and should be considered as adjuvant therapies in cardiovascular diseases.
Collapse
Affiliation(s)
- Davi Vieira Teixeira da Silva
- Instituto de Química, Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Diego Dos Santos Baião
- Instituto de Química, Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Cristine Couto Almeida
- Instituto de Química, Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Vania Margaret Flosi Paschoalin
- Instituto de Química, Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
66
|
Dou C, Han X, Xie H, Liao H, Xiao X, Huang Z, Luo G, Zhang X, Yao W. Protective role of nitric oxide donors on endothelium in ischemia-reperfusion injury: a meta-analysis of randomized controlled trials. BMC Anesthesiol 2023; 23:189. [PMID: 37259069 DOI: 10.1186/s12871-023-02117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/29/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Decreased bioavailability of nitric oxide (NO) under hypoxic conditions can lead to endothelial dysfunction. NO supplementation may protect endothelial function in ischemia-reperfusion (IR) injury. Therefore, a meta-analysis of randomized controlled trials (RCTs) was performed to verify the protective effect of NO donors on endothelium in IR injury. METHODS Medline, Embase, Cochrane Library, and Web of Science databases were searched from inception to April 1, 2023. The specific inclusion criteria were as follows: (1) RCTs; (2) trials comparing NO donors with placebo control groups; and (3) trials reporting the effects of these interventions on vascular endothelial functional outcomes in IR injury. Random-effects models were used to assess pooled effect sizes, which were expressed as standardized mean differences (SMD). RESULTS Seven studies satisfied the inclusion criteria and consisted of a total of 149 participants. NO donors were protective of endothelial function in IR injury (SMD: - 1.60; 95% confidence interval [CI]: - 2.33, - 0.88, P < 0.0001; heterogeneity [I2 = 66%, P = 0.001]). Results of the subgroup analysis showed the following: absence of protective effect of NO donor use following ischemia on endothelial function in IR injury - 1.78 (95% CI: - 2.50, - 1.07) and loss of protective effect on endothelial function after prolonged NO donor use - 0.89 (95% CI: - 2.06, 0.28). CONCLUSION The short-period use of NO donors before the onset of ischemia can protect endothelial function in IR injury.
Collapse
Grants
- 81974081,81601724,2021A1515012318, 2019A1515011852,202201010765, 202102010190, National Natural Science Foundation of China ,Guangdong Basic and Applied Basic Research Foundation,Science and Technology Program of Guangzhou, China
- 81974081,81601724,2021A1515012318, 2019A1515011852,202201010765, 202102010190, National Natural Science Foundation of China ,Guangdong Basic and Applied Basic Research Foundation,Science and Technology Program of Guangzhou, China
- 81974081,81601724,2021A1515012318, 2019A1515011852,202201010765, 202102010190, National Natural Science Foundation of China ,Guangdong Basic and Applied Basic Research Foundation,Science and Technology Program of Guangzhou, China
- 81974081,81601724,2021A1515012318, 2019A1515011852,202201010765, 202102010190, National Natural Science Foundation of China ,Guangdong Basic and Applied Basic Research Foundation,Science and Technology Program of Guangzhou, China
- 81974081,81601724,2021A1515012318, 2019A1515011852,202201010765, 202102010190, National Natural Science Foundation of China ,Guangdong Basic and Applied Basic Research Foundation,Science and Technology Program of Guangzhou, China
- 81974081,81601724,2021A1515012318, 2019A1515011852,202201010765, 202102010190, National Natural Science Foundation of China ,Guangdong Basic and Applied Basic Research Foundation,Science and Technology Program of Guangzhou, China
- 81974081,81601724,2021A1515012318, 2019A1515011852,202201010765, 202102010190, National Natural Science Foundation of China ,Guangdong Basic and Applied Basic Research Foundation,Science and Technology Program of Guangzhou, China
- 81974081,81601724,2021A1515012318, 2019A1515011852,202201010765, 202102010190, National Natural Science Foundation of China ,Guangdong Basic and Applied Basic Research Foundation,Science and Technology Program of Guangzhou, China
Collapse
Affiliation(s)
- Chaoxun Dou
- Department of Anesthesiology, The third Affiliated hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xue Han
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Hanbin Xie
- Department of Anesthesiology, The third Affiliated hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Haofeng Liao
- Department of Anesthesiology, The third Affiliated hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xue Xiao
- Department of Anesthesiology, The third Affiliated hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ziyan Huang
- Department of Anesthesiology, The third Affiliated hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Gangjian Luo
- Department of Anesthesiology, The third Affiliated hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xinmin Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Weifeng Yao
- Department of Anesthesiology, The third Affiliated hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
67
|
Tan R, Baranauskas MN, Karl ST, Ortiz de Zevallos J, Shei RJ, Paris HL, Wiggins CC, Bailey SJ. Effects of dietary nitrate supplementation on muscular power output: Influence of supplementation strategy and population. Nitric Oxide 2023:S1089-8603(23)00047-2. [PMID: 37244391 DOI: 10.1016/j.niox.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Increasing evidence indicates that dietary nitrate supplementation has the potential to increase muscular power output during skeletal muscle contractions. However, there is still a paucity of data characterizing the impact of different nitrate dosing regimens on nitric oxide bioavailability its potential ergogenic effects across various population groups. This narrative review discusses the potential influence of different dietary nitrate supplementation strategies on nitric oxide bioavailability and muscular power output in healthy adults, athletes, older adults and some clinical populations. Areas for further research are also recommended including a focus individualized nitrate dosing regimens to optimize nitric oxide bioavailability and to promote muscular power enhancements in different populations.
Collapse
Affiliation(s)
- Rachel Tan
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA.
| | - Marissa N Baranauskas
- Department of Human Physiology & Nutrition, University of Colorado, Colorado Springs, CO, 80918, USA
| | - Sean T Karl
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA
| | | | - Ren-Jay Shei
- Indiana University Alumni Association, Indiana University, Bloomington, IN, 47408, USA
| | - Hunter L Paris
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA
| | - Chad C Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
68
|
Regan C, Heiland EG, Ekblom Ö, Tarassova O, Kjellenberg K, Larsen FJ, Walltott H, Fernström M, Nyberg G, Ekblom MM, Helgadóttir B. Acute effects of nitrate and breakfast on working memory, cerebral blood flow, arterial stiffness, and psychological factors in adolescents: Study protocol for a randomised crossover trial. PLoS One 2023; 18:e0285581. [PMID: 37205681 PMCID: PMC10198498 DOI: 10.1371/journal.pone.0285581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/30/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Inorganic nitrate has been shown to acutely improve working memory in adults, potentially by altering cerebral and peripheral vasculature. However, this remains unknown in adolescents. Furthermore, breakfast is important for overall health and psychological well-being. Therefore, this study will investigate the acute effects of nitrate and breakfast on working memory performance, task-related cerebral blood flow (CBF), arterial stiffness, and psychological outcomes in Swedish adolescents. METHODS This randomised crossover trial will recruit at least 43 adolescents (13-15 years old). There will be three experimental breakfast conditions: (1) none, (2) low-nitrate (normal breakfast), and (3) high-nitrate (concentrated beetroot juice with normal breakfast). Working memory (n-back tests), CBF (task-related changes in oxygenated and deoxygenated haemoglobin in the prefrontal cortex), and arterial stiffness (pulse wave velocity and augmentation index) will be measured twice, immediately after breakfast and 130 min later. Measures of psychological factors and salivary nitrate/nitrite will be assessed once before the conditions and at two-time points after the conditions. DISCUSSION This study will provide insight into the acute effects of nitrate and breakfast on working memory in adolescents and to what extent any such effects can be explained by changes in CBF. This study will also shed light upon whether oral intake of nitrate may acutely improve arterial stiffness and psychological well-being, in adolescents. Consequently, results will indicate if nitrate intake from beetroot juice or if breakfast itself could acutely improve cognitive, vascular, and psychological health in adolescents, which can affect academic performance and have implications for policies regarding school meals. TRIAL REGISTRATION The trial has been prospectively registered on 21/02/2022 at https://doi.org/10.1186/ISRCTN16596056. Trial number: ISRCTN16596056.
Collapse
Affiliation(s)
- Callum Regan
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - Emerald G. Heiland
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
- Department of Surgical Sciences, Medical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Örjan Ekblom
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Olga Tarassova
- Department of Physiology, Nutrition, and Biomechanics, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Karin Kjellenberg
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Filip J. Larsen
- Department of Physiology, Nutrition, and Biomechanics, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Hedda Walltott
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Maria Fernström
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Gisela Nyberg
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
- Department of Global Public Health, Karolinska Institutet, Solna, Sweden
| | - Maria M. Ekblom
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Björg Helgadóttir
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
- Division of Insurance Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
69
|
Bondonno CP, Zhong L, Bondonno NP, Sim M, Blekkenhorst LC, Liu A, Rajendra A, Pokharel P, Erichsen DW, Neubauer O, Croft KD, Hodgson JM. Nitrate: The Dr. Jekyll and Mr. Hyde of human health? Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
70
|
Zhang H, Qin L. Positive feedback loop between dietary nitrate intake and oral health. Nutr Res 2023; 115:1-12. [PMID: 37207592 DOI: 10.1016/j.nutres.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/12/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023]
Abstract
Nitrate was once thought to be an inert end-product of endothelial-derived nitric oxide (NO) heme oxidation; however, this view has been radically revised over the past few decades. Following the clarification of the nitrate-nitrite-NO pathway, accumulated evidence has shown that nitrate derived from the diet is a supplementary source of endogenous NO generation, playing important roles in a variety of pathological and physiological conditions. However, the beneficial effects of nitrate are closely related with oral health, and oral dysfunction has an adverse effect on nitrate metabolism and further impacts overall systemic health. Moreover, an interesting positive feedback loop has been identified between dietary nitrate intake and oral health. Dietary nitrate's beneficial effect on oral health may further improve its bioavailability and promote overall systemic well-being. This review aims to provide a detailed description of the functions of dietary nitrate, with an emphasis on the key role oral health plays in nitrate bioavailability. This review also provides recommendations for a new paradigm that includes nitrate therapy in the treatment of oral diseases.
Collapse
Affiliation(s)
- Haoyang Zhang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Lizheng Qin
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
71
|
Allen JD. Nitric oxide as a mediator of exercise performance: NO pain NO gain. Nitric Oxide 2023; 136-137:8-11. [PMID: 37116609 DOI: 10.1016/j.niox.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Jason D Allen
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, VA, USA; Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
72
|
Liubertas T, Poderys JL, Zigmantaite V, Viskelis P, Kucinskas A, Grigaleviciute R, Jurevicius J, Urbonaviciene D. The Effect of Potassium Nitrate Supplementation on the Force and Properties of Extensor digitorum longus (EDL) Muscles in Mice. Nutrients 2023; 15:nu15061489. [PMID: 36986219 PMCID: PMC10057731 DOI: 10.3390/nu15061489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Adding potassium nitrate (KNO3) to the diet improves the physiological properties of mammalian muscles (rebuilds weakened muscle, improves structure and functionality). The aim of this study was to investigate the effect of KNO3 supplementation in a mouse model. BALB/c mice were fed a KNO3 diet for three weeks, followed by a normal diet without nitrates. After the feeding period, the Extensor digitorum longus (EDL) muscle was evaluated ex vivo for contraction force and fatigue. To evaluate the possible pathological changes, the histology of EDL tissues was performed in control and KNO3-fed groups after 21 days. The histological analysis showed an absence of negative effects in EDL muscles. We also analyzed 15 biochemical blood parameters. After 21 days of KNO3 supplementation, the EDL mass was, on average, 13% larger in the experimental group compared to the controls (p < 0.05). The muscle-specific force increased by 38% in comparison with the control group (p < 0.05). The results indicate that KNO3 has effects in an experimental mouse model, showing nitrate-diet-induced muscle strength. This study contributes to a better understanding of the molecular changes in muscles following nutritional intervention and may help develop strategies and products designated to treat muscle-related issues.
Collapse
Affiliation(s)
- Tomas Liubertas
- Department of Coaching Science, Lithuanian Sports University, 44221 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-6126-6664
| | - Jonas Liudas Poderys
- Department of Coaching Science, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Vilma Zigmantaite
- Biological Research Centre, Lithuanian University of Health Science, 47181 Kaunas, Lithuania
| | - Pranas Viskelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania
| | - Audrius Kucinskas
- Biological Research Centre, Lithuanian University of Health Science, 47181 Kaunas, Lithuania
| | - Ramune Grigaleviciute
- Biological Research Centre, Lithuanian University of Health Science, 47181 Kaunas, Lithuania
| | - Jonas Jurevicius
- Institute of Cardiology, Membrane Biophysics Laboratory, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania
| | - Dalia Urbonaviciene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania
| |
Collapse
|
73
|
Østergaard AM, Vrist MH, Rosenbæk JB, Ejlersen JA, Mose FH, Bech JN. The effect of orally administered nitrate on renal function and blood pressure in a randomized, placebo-controlled, crossover study in healthy subjects. Nitric Oxide 2023; 134-135:1-9. [PMID: 36906115 DOI: 10.1016/j.niox.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND Several studies have shown inorganic nitrate/nitrite to reduce blood pressure in both healthy subjects and hypertensive patients. An effect presumably caused through bioconversion to nitric oxide. However, studies on inorganic nitrate/nitrite have shown inconsistent results on renal functions such as GFR and sodium excretion. The current study investigated whether orally administered nitrate would decrease blood pressure and increase GFR and urinary sodium excretion. METHODS In a randomized, placebo-controlled, double-blinded, crossover study, 18 healthy subjects received a daily dose of 24 mmol potassium nitrate and placebo (potassium chloride) during 4 days in a randomized order. Subjects also ingested a standardized diet and completed a 24-h urine collection. GFR was determined by the constant infusion technique and during GFR measurement, brachial blood pressure (BP) and central blood pressure (cBP), heart rate, and arterial stiffness were measured every half hour using the Mobil-O-Graph®. Blood samples was analyzed for nitrate, nitrite, cGMP, vasoactive hormones and electrolytes. Urine was analyzed for nitrate, nitrite, cGMP, electrolytes, ENaCγ, NCC, CrCl, CH2O and UO. RESULTS No differences in GFR, blood pressure or sodium excretion were found between the treatments with potassium nitrate and placebo. However, both nitrate and nitrite levels in plasma and urine were significantly increased by potassium nitrate intake and the 24-h urinary excretion of sodium and potassium were stable, showing adherence to the standardized diet and the study medication. CONCLUSION We found no decrease in blood pressure or increase in GFR and sodium excretion of 24 mmol potassium nitrate capsules as compared to placebo after 4 days of treatment. Healthy subjects may be able to compensate the effects of nitrate supplementation during steady state conditions. Future research should focus on long-term studies on the difference in response between healthy subjects and patients with cardiac or renal disease.
Collapse
Affiliation(s)
- A M Østergaard
- University Clinic in Nephrology and Hypertension, and Aarhus University, Denmark.
| | - M H Vrist
- University Clinic in Nephrology and Hypertension, and Aarhus University, Denmark
| | - J B Rosenbæk
- University Clinic in Nephrology and Hypertension, and Aarhus University, Denmark
| | - J A Ejlersen
- Department of Nuclear Medicine, Gødstrup Hospital, Denmark; Department of Nuclear Medicine, Viborg Hospital, Denmark
| | - F H Mose
- University Clinic in Nephrology and Hypertension, and Aarhus University, Denmark
| | - J N Bech
- University Clinic in Nephrology and Hypertension, and Aarhus University, Denmark
| |
Collapse
|
74
|
Sow Nutrition, Uterine Contractions, and Placental Blood Flow during the Peri-Partum Period and Short-Term Effects on Offspring: A Review. Animals (Basel) 2023; 13:ani13050910. [PMID: 36899765 PMCID: PMC10000096 DOI: 10.3390/ani13050910] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The birth process is a crucial event for piglet survival. Along with increasing litter sizes, not only has the duration of parturition increased, but placental blood flow per piglet has reduced and placental area per piglet has become smaller, making these piglets more susceptible for hypoxia. Diminishing the risk of piglet hypoxia by either reducing the total duration of parturition or increasing fetal oxygenation may reduce the incidence of stillbirth and early post-partum mortality. This review discusses options to do so by nutritionally supporting the sow in the final pre-partum period, after discussing the role of uterine contractions and placental blood flow. Providing sufficient energy seems to be a logical first step, but also other nutrients needed for uterine contractions, such as calcium, or enhancing uterine blood flow by using nitrate seem promising. These nutrient requirements may depend on litter size.
Collapse
|
75
|
Kadach S, Park JW, Stoyanov Z, Black MI, Vanhatalo A, Burnley M, Walter PJ, Cai H, Schechter AN, Piknova B, Jones AM. 15 N-labeled dietary nitrate supplementation increases human skeletal muscle nitrate concentration and improves muscle torque production. Acta Physiol (Oxf) 2023; 237:e13924. [PMID: 36606507 DOI: 10.1111/apha.13924] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/24/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
AIM Dietary nitrate (NO3 - ) supplementation increases nitric oxide bioavailability and can enhance exercise performance. We investigated the distribution and metabolic fate of ingested NO3 - at rest and during exercise with a focus on skeletal muscle. METHODS In a randomized, crossover study, 10 healthy volunteers consumed 12.8 mmol 15 N-labeled potassium nitrate (K15 NO3 ; NIT) or potassium chloride placebo (PLA). Muscle biopsies were taken at baseline, at 1- and 3-h post-supplement ingestion, and immediately following the completion of 60 maximal intermittent contractions of the knee extensors. Muscle, plasma, saliva, and urine samples were analyzed using chemiluminescence to determine absolute [NO3 - ] and [NO2 - ], and by mass spectrometry to determine the proportion of NO3 - and NO2 - that was 15 N-labeled. RESULTS Neither muscle [NO3 - ] nor [NO2 - ] were altered by PLA. Following NIT, muscle [NO3 - ] (but not [NO2 - ]) was elevated at 1-h (from ~35 to 147 nmol/g, p < 0.001) and 3-h, with almost all of the increase being 15 N-labeled. There was a significant reduction in 15 N-labeled muscle [NO3 - ] from pre- to post-exercise. Relative to PLA, mean muscle torque production was ~7% greater during the first 18 contractions following NIT. This improvement in torque was correlated with the pre-exercise 15 N-labeled muscle [NO3 - ] and the magnitude of decline in 15 N-labeled muscle [NO3 - ] during exercise (r = 0.66 and r = 0.62, respectively; p < 0.01). CONCLUSION This study shows, for the first time, that skeletal muscle rapidly takes up dietary NO3 - , the elevated muscle [NO3 - ] following NO3 - ingestion declines during exercise, and muscle NO3 - dynamics are associated with enhanced torque production during maximal intermittent muscle contractions.
Collapse
Affiliation(s)
- Stefan Kadach
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| | - Ji Won Park
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Zdravko Stoyanov
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| | - Matthew I Black
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| | - Anni Vanhatalo
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| | - Mark Burnley
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Peter J Walter
- Clinical Mass Spectrometry Core, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Hongyi Cai
- Clinical Mass Spectrometry Core, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Alan N Schechter
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Barbora Piknova
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew M Jones
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
76
|
Bryan NS, Ahmed S, Lefer DJ, Hord N, von Schwarz ER. Dietary nitrate biochemistry and physiology. An update on clinical benefits and mechanisms of action. Nitric Oxide 2023; 132:1-7. [PMID: 36690137 DOI: 10.1016/j.niox.2023.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/08/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
It is now more than 35 years since endothelium derived relaxing factor was identified as nitric oxide (NO). The last few decades have seen an explosion around nitric oxide biochemistry, physiology and clinical translation. The science reveals that all chronic disease is associated with decreased blood flow to the affected organ which results in increased inflammation, oxidative stress and immune dysfunction. This is true for cardiovascular disease, neurological disease, kidney, lung, liver disorders and every other major disorder. Since nitric oxide controls and regulates blood flow, oxygen and nutrient delivery to every cell, tissue and organ in the body and also mitigates inflammation, oxidative stress and immune dysfunction, a focus on restoring nitric oxide production is an obvious therapeutic strategy for a number of poorly managed chronic diseases. Since dietary nitrate is a major contributor to endogenous nitric oxide production, it should be considered as a means of therapy and restoration of nitric oxide. This review will update on the current state of the science and effects of inorganic nitrate administered through the diet on several chronic conditions and reveal how much is needed. It is clear now that antiseptic mouthwash and use of antacids disrupt nitrate metabolism to nitric oxide leading to clinical symptoms of nitric oxide deficiency. Based on the science, nitrate should be considered an indispensable nutrient that should be accounted for in dietary guidelines.
Collapse
Affiliation(s)
| | | | - David J Lefer
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, United States
| | - Norman Hord
- OU Health, Harold Hamm Diabetes Center, Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | | |
Collapse
|
77
|
Hikin LJ, Ho J, Morley SR, Ahluwalia A, Smith PR. Sodium nitrite poisoning: A series of 20 fatalities in which post-mortem blood nitrite and nitrate concentrations are reported. Forensic Sci Int 2023; 345:111610. [PMID: 36848754 DOI: 10.1016/j.forsciint.2023.111610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Sodium nitrite has several industrial applications however its accidental or intentional ingestion has been associated with severe toxicity and death. We present a series of 20 cases over 2 years in which evidence of sodium nitrite ingestion was found at the scene and supported by biochemical analysis of post-mortem blood nitrite and nitrate levels. Routine toxicological screening was performed on post-mortem blood samples received at University Hospitals of Leicester (UHL) NHS Trust, including ethanol analysis by headspace gas chromatography-flame ionisation detection (HS GC-FID), drug screening by high resolution accurate mass-mass spectrometry (HRAM-MS) and confirmatory drug quantitation by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Cases in which the history indicated the possibility of nitrite salts present at the scene, purchase of a suicide kit or a dusky-ash appearance of skin on post-mortem were referred to a specialist laboratory for nitrite and nitrate analysis. Analysis was based upon the gas-phase chemiluminescent reaction between nitric oxide (NO) and ozone; NO levels were determined using an NOA 280A, Sievers NO analyser. Twenty post-mortem cases in which sodium nitrite ingestion was the most probable cause of death were reported between January 2020 and February 2022; mean age was 31 years (range 14-49) with 9/20 (45%) female. 16/20 (80%) of cases had a history of depression and / or mental health issues. In half of the cases, anti-depressant / anti-psychotic drugs were prescribed; these drugs were detected in 8/20 (40%) cases. Ethanol was detected in 4/20 (20%) cases and anti-emetic drugs in 7/20 (35%) cases; anti-emetic drugs may be used to aid retention of sodium nitrite. Illicit drugs (amphetamine, cannabis and cocaine) were present in 3/20 cases (15%). Nitrite was found to be elevated in all but one case (95%), and nitrate was elevated in 17/20 (85%) cases. This paper highlights a surge in numbers of deaths across England and Wales due to sodium nitrite toxicity. Although, nitrite poisoning remains a rare cause of death, it is worthwhile considering its use in individuals with suicidal ideation given its unregulated availability online. The detection and quantitation of nitrite and nitrate requires specialised, highly reliable methodology currently only available in research laboratories. Implication of sodium nitrite ingestion also relies heavily upon circumstantial evidence combined with quantification. The provision of a quantitative nitrite / nitrate analytical service greatly assists in determining the cause of death in these cases.
Collapse
Affiliation(s)
- L J Hikin
- Forensic Toxicology Service, University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester LE1 5WW, UK.
| | - J Ho
- Centre for Cardiovascular Medicines & Devices, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - S R Morley
- Forensic Toxicology Service, University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester LE1 5WW, UK
| | - A Ahluwalia
- Centre for Cardiovascular Medicines & Devices, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - P R Smith
- Forensic Toxicology Service, University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester LE1 5WW, UK
| |
Collapse
|
78
|
LaPenna KB, Li Z, Doiron JE, Sharp TE, Xia H, Moles K, Koul K, Wang JS, Polhemus DJ, Goodchild TT, Patel RB, Shah SJ, Lefer DJ. Combination Sodium Nitrite and Hydralazine Therapy Attenuates Heart Failure With Preserved Ejection Fraction Severity in a "2-Hit" Murine Model. J Am Heart Assoc 2023; 12:e028480. [PMID: 36752224 PMCID: PMC10111505 DOI: 10.1161/jaha.122.028480] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/04/2023] [Indexed: 02/09/2023]
Abstract
Background Recent studies have suggested that cardiac nitrosative stress mediated by pathological overproduction of nitric oxide (NO) via inducible NO synthase (iNOS) contributes to the pathogenesis of heart failure with preserved ejection fraction (HFpEF). Other studies have suggested that endothelial NO synthase (eNOS) dysfunction and attenuated NO bioavailability contribute to HFpEF morbidity and mortality. We sought to further investigate dysregulated NO signaling and to examine the effects of a NO-based dual therapy (sodium nitrite+hydralazine) following the onset of HFpEF using a "2-hit" murine model. Methods and Results Nine-week-old male C57BL/6 N mice (n=15 per group) were treated concurrently with high-fat diet and N(ω)-nitro-L-arginine methyl ester (L-NAME) (0.5 g/L per day) via drinking water for 10 weeks. At week 5, mice were randomized into either vehicle (normal saline) or combination treatment with sodium nitrite (75 mg/L in the drinking water) and hydralazine (2.0 mg/kg IP, BID). Cardiac structure and function were monitored with echocardiography and invasive hemodynamic measurements. Cardiac mitochondrial respiration, aortic vascular function, and exercise performance were also evaluated. Circulating and myocardial nitrite were measured to determine the bioavailability of NO. Circulating markers of oxidative or nitrosative stress as well as systemic inflammation were also determined. Severe HFpEF was evident by significantly elevated E/E', LVEDP, and Tau in mice treated with L-NAME and HFD, which was associated with impaired NO bioavailability, mitochondrial respiration, aortic vascular function, and exercise capacity. Treatment with sodium nitrite and hydralazine restored NO bioavailability, reduced oxidative and nitrosative stress, preserved endothelial function and mitochondrial respiration, limited the fibrotic response, and improved exercise capacity, ultimately attenuating the severity of "two-hit" HFpEF. Conclusions Our data demonstrate that nitrite, a well-established biomarker of NO bioavailability and a physiological source of NO, is significantly reduced in the heart and circulation in the "2-hit" mouse HFpEF model. Furthermore, sodium nitrite+hydralazine combined therapy significantly attenuated the severity of HFpEF in the "2-hit" cardiometabolic HFpEF. These data suggest that supplementing NO-based therapeutics with a potent antioxidant and vasodilator agent may result in synergistic benefits for the treatment of HFpEF.
Collapse
Affiliation(s)
- Kyle B. LaPenna
- Cardiovascular Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLA
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLA
| | - Zhen Li
- Department of Cardiac SurgerySmidt Heart Institute, Cedars‐Sinai Medical CenterLos AngelesCA
| | - Jake E. Doiron
- Cardiovascular Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLA
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLA
| | - Thomas E. Sharp
- Cardiovascular Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLA
- Department of Medicine, Section of CardiologyLouisiana State University Health Sciences CenterNew OrleansLA
| | - Huijing Xia
- Cardiovascular Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLA
| | - Karl Moles
- Cardiovascular Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLA
| | - Kashyap Koul
- Cardiovascular Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLA
| | - John S. Wang
- Cardiovascular Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLA
| | | | - Traci T. Goodchild
- Department of Cardiac SurgerySmidt Heart Institute, Cedars‐Sinai Medical CenterLos AngelesCA
| | - Ravi B. Patel
- Division of Cardiology, Department of Medicine and Bluhm Cardiovascular InstituteNorthwestern University Feinberg School of MedicineChicagoIL
| | - Sanjiv J. Shah
- Division of Cardiology, Department of Medicine and Bluhm Cardiovascular InstituteNorthwestern University Feinberg School of MedicineChicagoIL
| | - David J. Lefer
- Department of Cardiac SurgerySmidt Heart Institute, Cedars‐Sinai Medical CenterLos AngelesCA
| |
Collapse
|
79
|
Ageing modifies acute resting blood pressure responses to incremental consumption of dietary nitrate: a randomised, cross-over clinical trial. Br J Nutr 2023; 129:442-453. [PMID: 35508923 DOI: 10.1017/s0007114522001337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Beetroot (BR) is a rich source of nitrate (NO3-) that has been shown to reduce blood pressure (BP). Yet, no studies have examined the vascular benefits of BR in whole-food form and whether the effects are modified by age. This study was a four-arm, randomised, open-label, cross-over design in twenty-four healthy adults (young n 12, age 27 ± 4 years, old n 12, age 64 ± 5 years). Participants consumed whole-cooked BR at portions of (NO3- content in brackets) 100 g (272 mg), 200 g (544 mg) and 300 g (816 mg) and a 200-ml solution containing 1000 mg of potassium nitrate (KNO3) on four separate occasions over a 4-week period (≥7-d washout period). BP, plasma NO3- and nitrite (NO2-) concentrations, and post-occlusion reactive hyperaemia via laser Doppler, were measured pre- and up to 5-h post-intervention. Data were analysed by repeated-measures ANOVA. Plasma NO2- concentrations were higher in the young v. old at baseline and post-intervention (P < 0·05). All NO3- interventions decreased systolic and diastolic BP in young participants (P < 0·05), whereas only KNO3 (at 240-300 min post-intake) significantly decreased systolic (-4·8 mmHg, -3·5 %, P = 0·024) and diastolic (-5·4 mmHg, -6·5 %, P = 0·007) BP in older participants. In conclusion, incremental doses of dietary NO3- reduced systolic and diastolic BP in healthy young adults whereas in the older group a significant decrease was only observed with the highest dose. The lower plasma NO2- concentrations in older participants suggest that there may be mechanistic differences in the production of NO from dietary NO3- in young and older populations.
Collapse
|
80
|
Karamanos A, Lu Y, Mudway IS, Ayis S, Kelly FJ, Beevers SD, Dajnak D, Fecht D, Elia C, Tandon S, Webb AJ, Grande AJ, Molaodi OR, Maynard MJ, Cruickshank JK, Harding S. Associations between air pollutants and blood pressure in an ethnically diverse cohort of adolescents in London, England. PLoS One 2023; 18:e0279719. [PMID: 36753491 PMCID: PMC9907839 DOI: 10.1371/journal.pone.0279719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/13/2022] [Indexed: 02/09/2023] Open
Abstract
Longitudinal evidence on the association between air pollution and blood pressure (BP) in adolescence is scarce. We explored this association in an ethnically diverse cohort of schoolchildren. Sex-stratified, linear random-effects modelling was used to examine how modelled residential exposure to annual average nitrogen dioxide (NO2), particulate matter (PM2.5, PM10) and ozone (O3), measures in μg/m3, associated with blood pressure. Estimates were based on 3,284 adolescents; 80% from ethnic minority groups, recruited from 51 schools, and followed up from 11-13 to 14-16 years old. Ethnic minorities were exposed to higher modelled annual average concentrations of pollution at residential postcode level than their White UK peers. A two-pollutant model (NO2 & PM2.5), adjusted for ethnicity, age, anthropometry, and pubertal status, highlighted associations with systolic, but not diastolic BP. A μg/m3 increase in NO2 was associated with a 0.30 mmHg (95% CI 0.18 to 0.40) decrease in systolic BP for girls and 0.19 mmHg (95% CI 0.07 to 0.31) decrease in systolic BP for boys. In contrast, a 1 μg/m3 increase in PM2.5 was associated with 1.34 mmHg (95% CI 0.85 to 1.82) increase in systolic BP for girls and 0.57 mmHg (95% CI 0.04 to 1.03) increase in systolic BP for boys. Associations did not vary by ethnicity, body size or socio-economic advantage. Associations were robust to adjustments for noise levels and lung function at 11-13 years. In summary, higher ambient levels of NO2 were associated with lower and PM2.5 with higher systolic BP across adolescence, with stronger associations for girls.
Collapse
Affiliation(s)
- A. Karamanos
- School of Life Course/Nutritional Sciences, King’s College London, London, United Kingdom
| | - Y. Lu
- School of Life Course/Nutritional Sciences, King’s College London, London, United Kingdom
- Clinical Research Center of The Third Xiangya Hospital, Central South University, Changsha, China
| | - I. S. Mudway
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - S. Ayis
- Faculty of Life Sciences & Medicine, Department of Population Health Sciences, School of Population Health & Environmental Sciences, King’s College London, London, United Kingdom
| | - F. J. Kelly
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - S. D. Beevers
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - D. Dajnak
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - D. Fecht
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - C. Elia
- School of Life Course/Nutritional Sciences, King’s College London, London, United Kingdom
| | - S. Tandon
- Faculty of Life Sciences & Medicine, Department of Population Health Sciences, School of Population Health & Environmental Sciences, King’s College London, London, United Kingdom
| | - A. J. Webb
- Faculty of Life Sciences & Medicine, Department of Clinical Pharmacology, King’s College London BHF Centre of Excellence, School of Cardiovascular Medicine and Sciences, King’s College, London, United Kingdom
| | - A. J. Grande
- Curso de Medicina, Universidade Estadual do Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - O. R. Molaodi
- MRC/CSO Social and Public Health Sciences Unit, Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland
| | - M. J. Maynard
- School of Clinical & Applied Sciences, Leeds Beckett University, Leeds, United Kingdom
| | - J. K. Cruickshank
- School of Life Course/Nutritional Sciences, King’s College London, London, United Kingdom
| | - S. Harding
- School of Life Course/Nutritional Sciences, King’s College London, London, United Kingdom
- Faculty of Life Sciences & Medicine, Department of Population Health Sciences, School of Population Health & Environmental Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
81
|
Is vitamin C a booster of the effects of dietary nitrate on endothelial function? Physiologic rationale and implications for research. Nutrition 2023; 109:111995. [PMID: 36917872 DOI: 10.1016/j.nut.2023.111995] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
Endothelial dysfunction (ED) is an early marker of vascular damage linked to the loss of integrity of the endothelial lining and represents a key step in the pathogenesis of atherosclerosis and cardiovascular diseases (CVDs). ED may be reversible, hence the development and testing of effective early interventions could be beneficial for the prevention and treatment of CVDs. Recent studies have demonstrated that the consumption of dietary nitrate (NO3-), an inorganic anion that serves as a substrate for the gas transmitter nitric oxide (NO), can lower blood pressure, improve endothelial function and, in observational studies, reduce the risk for CVD. We hypothesize that the co-consumption of NO3- with vitamin C, which is a potent antioxidant, could enhance the "yield" of NO produced from a given NO3- dose byThis could translate into greater NO-dependent effects on endothelial function (EF) and overall vascular health (than may be experienced with NO3- supplementation alone). This review presents evidence to suggest that the combination of vitamin C and dietary nitrate could represent a promising and effective approach to improve EF and reduce CVD risk, and discuss opportunities for future research.
Collapse
|
82
|
Cocksedge SP, Causer AJ, Winyard PG, Jones AM, Bailey SJ. Oral Temperature and pH Influence Dietary Nitrate Metabolism in Healthy Adults. Nutrients 2023; 15:nu15030784. [PMID: 36771490 PMCID: PMC9919366 DOI: 10.3390/nu15030784] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
This study tested the hypothesis that the increases in salivary and plasma [NO2-] after dietary NO3- supplementation would be greater when oral temperature and pH were independently elevated, and increased further when oral temperature and pH were elevated concurrently. Seven healthy males (mean ± SD, age 23 ± 4 years) ingested 70 mL of beetroot juice concentrate (BR, which provided ~6.2 mmol NO3-) during six separate laboratory visits. In a randomised crossover experimental design, salivary and plasma [NO3-] and [NO2-] were assessed at a neutral oral pH with a low (TLo-pHNorm), intermediate (TMid-pHNorm), and high (THi-pHNorm) oral temperature, and when the oral pH was increased at a low (TLo-pHHi), intermediate (TMid-pHHi), and high (THi-pHHi) oral temperature. Compared with the TMid-pHNorm condition (976 ± 388 µM), the mean salivary [NO2-] 1-3 h post BR ingestion was higher in the TMid-pHHi (1855 ± 423 µM), THi-pHNorm (1371 ± 653 µM), THi-pHHi (1792 ± 741 µM), TLo-pHNorm (1495 ± 502 µM), and TLo-pHHi (2013 ± 662 µM) conditions, with salivary [NO2-] also higher at a given oral temperature when the oral pH was increased (p < 0.05). Plasma [NO2-] was higher 3 h post BR ingestion in the TMid-pHHi, THi-pHHi, and TLo-pHHi conditions, but not the TLo-pHNorm and THi-pHNorm conditions, compared with TMid-pHNorm (p < 0.05). Therefore, despite ingesting the same NO3- dose, the increases in salivary [NO2-] varied depending on the temperature and pH of the oral cavity, while the plasma [NO2-] increased independently of oral temperature, but to a greater extent at a higher oral pH.
Collapse
Affiliation(s)
- Stuart P. Cocksedge
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Adam J. Causer
- Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Paul G. Winyard
- Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK
| | - Andrew M. Jones
- Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Stephen J. Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
- Correspondence:
| |
Collapse
|
83
|
Fernandes D, Khambata RS, Massimo G, Ruivo E, Gee LC, Foster J, Goddard A, Curtis M, Barnes MR, Wade WG, Godec T, Orlandi M, D'Aiuto F, Ahluwalia A. Local delivery of nitric oxide prevents endothelial dysfunction in periodontitis. Pharmacol Res 2023; 188:106616. [PMID: 36566926 DOI: 10.1016/j.phrs.2022.106616] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/01/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
AIMS Increased cardiovascular disease risk underlies elevated rates of mortality in individuals with periodontitis. A key characteristic of those with increased cardiovascular risk is endothelial dysfunction, a phenomenon synonymous with deficiencies of bioavailable nitric oxide (NO), and prominently expressed in patients with periodontitis. Also, inorganic nitrate can be reduced to NO in vivo to restore NO levels, leading us to hypothesise that its use may be beneficial in reducing periodontitis-associated endothelial dysfunction. Herein we sought to determine whether inorganic nitrate improves endothelial function in the setting of periodontitis and if so to determine the mechanisms underpinning any responses seen. METHODS AND RESULTS Periodontitis was induced in mice by placement of a ligature for 14 days around the second molar. Treatment in vivo with potassium nitrate, either prior to or following establishment of experimental periodontitis, attenuated endothelial dysfunction, as determined by assessment of acetylcholine-induced relaxation of aortic rings, compared to control (potassium chloride treatment). These beneficial effects were associated with a suppression of vascular wall inflammatory pathways (assessed by quantitative-PCR), increases in the anti-inflammatory cytokine interleukin (IL)-10 and reduced tissue oxidative stress due to attenuation of xanthine oxidoreductase-dependent superoxide generation. In patients with periodontitis, plasma nitrite levels were not associated with endothelial function indicating dysfunction. CONCLUSION Our results suggest that inorganic nitrate protects against, and can partially reverse pre-existing, periodontitis-induced endothelial dysfunction through restoration of nitrite and thus NO levels. This research highlights the potential of dietary nitrate as adjunct therapy to target the associated negative cardiovascular outcomes in patients with periodontitis.
Collapse
Affiliation(s)
- Daniel Fernandes
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Rayomand S Khambata
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Gianmichele Massimo
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Ernesto Ruivo
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Lorna C Gee
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Julie Foster
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Alison Goddard
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Mike Curtis
- Centre for Host-Microbiome Interactions, King's College London, London, UK
| | - Michael R Barnes
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - William G Wade
- Centre for Host-Microbiome Interactions, King's College London, London, UK; Forsyth Institute, Cambridge, MA 02142, USA
| | - Thomas Godec
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Marco Orlandi
- Periodontology Unit, UCL Eastman Dental Institute, London, UK
| | | | - Amrita Ahluwalia
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
84
|
Huang X, Zhang Z, Wang X, Wang G, Wang Y, Tang K, Gao B. Influence of Chronic Nitrate-Rich Beetroot Juice Supplementation on the Endurance Performance of Active Winter Triathletes: A Randomized Controlled Trial. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:195-206. [PMID: 35512758 DOI: 10.1080/07315724.2021.2021562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE The impact of high-nitrate beetroot juice (BRJ) supplementation has seen a recent explosion of interest in sports science. This study examined the potential influence of 7-day BRJ supplementation on the endurance performance of winter triathletes. METHODS Eighty young active winter triathletes (44 males, age = 21.50 ± 1.15 yrs; 36 females, age = 20.66 ± 1.45 yrs) participated in this study and were provided with either BRJ (6.5 mmol NO3-/70 mL) or a placebo (PL, 0.065 mmol NO3-/70 mL) for 7 days (a dose of ×3 per day) in a randomized, double-blind design. The athletes then completed a submaximal treadmill run, intraday cycling exhaustion testing, and a 10-km cross country (XC) skiing competition on the second day. RESULTS There was a significant decrease in the oxygen uptake, respiratory exchange ratio, and blood lactic acid level (p < 0.05) between the BRJ and PL treatment groups during V3 speed running (males: 13.3 km·h-1, females: 11.6 km·h-1). BRJ treatment also remarkably increased the time to exhaustion (TTE) during cycling exhaustion testing (males: p = 0.02, females: p = 0.04). No significant differences were observed in medium- or low-speed submaximal treadmill runs and 10-km XC skiing performance. CONCLUSIONS One week of daily nitrate-rich BRJ supplementation improved running economy at high speed during the submaximal treadmill running test and extended the TTE of athletes during cycling exhaustion testing. However, BRJ supplementation did not improve the performance in 10-km on-snow time trials in XC skiing. Regarding nutritional strategies to improve endurance performance in exercise training and competition, these results should be carefully considered owing to the different motor skill levels and competitive abilities of participants.
Collapse
Affiliation(s)
- Xizhang Huang
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China.,Key Laboratory of Winter Sports Training Monitoring and Control, Heilongjiang Research Institute of Sports Science, Harbin, China
| | - Zheng Zhang
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
| | - Xiu Wang
- Harbin No. 26 Middle School, Harbin, China
| | - Gang Wang
- Key Laboratory of Winter Sports Training Monitoring and Control, Heilongjiang Research Institute of Sports Science, Harbin, China
| | - Yan Wang
- China Winter Triathlon National Team, Heilongjiang Snow Sports Training Center, Harbin, China
| | - Kun Tang
- Key Laboratory of Winter Sports Training Monitoring and Control, Heilongjiang Research Institute of Sports Science, Harbin, China
| | - Binghong Gao
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
85
|
Hypolipidemic Effects of Beetroot Juice in SHR-CRP and HHTg Rat Models of Metabolic Syndrome: Analysis of Hepatic Proteome. Metabolites 2023; 13:metabo13020192. [PMID: 36837811 PMCID: PMC9965406 DOI: 10.3390/metabo13020192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Recently, red beetroot has attracted attention as a health-promoting functional food. Studies have shown that beetroot administration can reduce blood pressure and ameliorate parameters of glucose and lipid metabolism; however, mechanisms underlying these beneficial effects of beetroot are not yet fully understood. In the current study, we analysed the effects of beetroot on parameters of glucose and lipid metabolism in two models of metabolic syndrome: (i) transgenic spontaneously hypertensive rats expressing human C-reactive protein (SHR-CRP rats), and (ii) hereditary hypertriglyceridemic (HHTg) rats. Treatment with beetroot juice for 4 weeks was, in both models, associated with amelioration of oxidative stress, reduced circulating lipids, smaller visceral fat depots, and lower ectopic fat accumulation in the liver compared to the respective untreated controls. On the other hand, beetroot treatment had no significant effects on the sensitivity of the muscle and adipose tissue to insulin action in either model. Analyses of hepatic proteome revealed significantly deregulated proteins involved in glycerophospholipid metabolism, mTOR signalling, inflammation, and cytoskeleton rearrangement.
Collapse
|
86
|
Worley ML, Reed EL, Chapman CL, Kueck P, Seymour L, Fitts T, Zazulak H, Schlader ZJ, Johnson BD. Acute beetroot juice consumption does not alter cerebral autoregulation or cardiovagal baroreflex sensitivity during lower-body negative pressure in healthy adults. Front Hum Neurosci 2023; 17:1115355. [PMID: 36742355 PMCID: PMC9892911 DOI: 10.3389/fnhum.2023.1115355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Introduction Beetroot juice (BRJ) improves peripheral endothelial function and vascular compliance, likely due to increased nitric oxide bioavailability. It is unknown if BRJ alters cerebrovascular function and cardiovagal baroreflex control in healthy individuals. Purpose We tested the hypotheses that BRJ consumption improves cerebral autoregulation (CA) and cardiovagal baroreflex sensitivity (cBRS) during lower-body negative pressure (LBNP). Methods Thirteen healthy adults (age: 26 ± 4 years; 5 women) performed oscillatory (O-LBNP) and static LBNP (S-LBNP) before (PRE) and 3 h after consuming 500 mL of BRJ (POST). Participants inhaled 3% CO2 (21% O2, 76% N2) during a 5 min baseline and throughout LBNP to attenuate reductions in end-tidal CO2 tension (PETCO2). O-LBNP was conducted at ∼0.02 Hz for six cycles (-70 mmHg), followed by a 3-min recovery before S-LBNP (-40 mmHg) for 7 min. Beat-to-beat middle cerebral artery blood velocity (MCAv) (transcranial Doppler) and blood pressure were continuously recorded. CA was assessed using transfer function analysis to calculate coherence, gain, and phase in the very-low-frequency (VLF; 0.020-0.070 Hz) and low-frequency bands (LF; 0.07-0.20 Hz). cBRS was calculated using the sequence method. Comparisons between POST vs. PRE are reported as mean ± SD. Results During O-LBNP, coherence VLF was greater at POST (0.55 ± 0.06 vs. 0.46 ± 0.08; P < 0.01), but phase VLF (P = 0.17) and gain VLF (P = 0.69) were not different. Coherence LF and phase LF were not different, but gain LF was lower at POST (1.03 ± 0.20 vs. 1.12 ± 0.30 cm/s/mmHg; P = 0.05). During S-LBNP, CA was not different in the VLF or LF bands (all P > 0.10). Up-cBRS and Down-cBRS were not different during both LBNP protocols. Conclusion These preliminary data indicate that CA and cBRS during LBNP in healthy, young adults is largely unaffected by an acute bolus of BRJ.
Collapse
Affiliation(s)
- Morgan L. Worley
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Emma L. Reed
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
- Department of Human Physiology, Bowerman Sports Science Center, University of Oregon, Eugene, OR, United States
| | - Christopher L. Chapman
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
- Department of Human Physiology, Bowerman Sports Science Center, University of Oregon, Eugene, OR, United States
| | - Paul Kueck
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Lauren Seymour
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Triniti Fitts
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Hannah Zazulak
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Zachary J. Schlader
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
- Department of Kinesiology, School of Public Health, Indiana University Bloomington, Bloomington, IN, United States
| | - Blair D. Johnson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
- Department of Kinesiology, School of Public Health, Indiana University Bloomington, Bloomington, IN, United States
| |
Collapse
|
87
|
Mattos S, Cunha MR, Marques BC, d´El-Rei J, Baião DDS, Paschoalin VMF, Oigman W, Neves MF, Medeiros F. Acute Effects of Dietary Nitrate on Central Pressure and Endothelial Function in Hypertensive Patients: A Randomized, Placebo-Controlled Crossover Study. Arq Bras Cardiol 2022; 120:e20220209. [PMID: 36629601 PMCID: PMC9833313 DOI: 10.36660/abc.20220209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/01/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The diet's inorganic nitrate (NO3-) may provide a physiological substrate for reducing nitrate (NO2-) to NO independent of the endothelium. Studies suggest that inorganic NO3- has beneficial effects on cardiovascular health. OBJECTIVE This study evaluated the acute effects of 500 mL nitrate-rich beetroot juice (BRJ; containing 11.5mmol NO3-) on blood pressure and endothelial function in treated hypertensive patients. METHODS A randomized, placebo-controlled, crossover study was conducted in treated hypertensive patients (n=37; women=62%) who underwent clinical and nutritional evaluation and assessment of central hemodynamic parameters and microvascular reactivity. The significance level was p<0.05. RESULTS The mean age was 59±7 years, and mean systolic and diastolic blood pressures were 142±10/83±9mmHg. There was a significant increase in the subendocardial viability ratio (SEVR; 149±25 vs. 165±30%, p<0.001) and reduction in ejection duration (ED; 37±4 vs. 34±4%, p<0.001) in the beetroot phase but no significant SEVR difference in the control phase. The % increase in perfusion (155 vs. 159 %, p=0.042) was significantly increased in the beetroot phase, which was not observed in the control phase. In the beetroot phase, the change in SEVR showed a significant correlation with the change in the area under the curve of post-occlusive reactive hyperemia (AUC-PORH) (r=0.45, p=0.012). The change in ED showed a significant correlation with the post-intervention perfusion peak (r=-0.37, p=0.031) and AUC-PORH (r=-0.36, p=0.046). CONCLUSIONS The acute ingestion of BRJ by hypertensive patients resulted in an improvement of endothelial function, which was associated with higher subendocardial viability and performance in myocardial contraction.
Collapse
Affiliation(s)
- Samanta Mattos
- Departamento de Clínica MédicaUniversidade do Estado do Rio de JaneiroRio de JaneiroRJBrasilDepartamento de Clínica Médica – Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ – Brasil
| | - Michelle Rabello Cunha
- Departamento de Clínica MédicaUniversidade do Estado do Rio de JaneiroRio de JaneiroRJBrasilDepartamento de Clínica Médica – Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ – Brasil
| | - Bianca Cristina Marques
- Departamento de Clínica MédicaUniversidade do Estado do Rio de JaneiroRio de JaneiroRJBrasilDepartamento de Clínica Médica – Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ – Brasil
| | - Jenifer d´El-Rei
- Departamento de Clínica MédicaUniversidade do Estado do Rio de JaneiroRio de JaneiroRJBrasilDepartamento de Clínica Médica – Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ – Brasil
| | - Diego dos Santos Baião
- Instituto de QuímicaUniversidade Federal do Rio de JaneiroRio de JaneiroRJBrasilInstituto de Química – Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ – Brasil
| | - Vania M. F. Paschoalin
- Instituto de QuímicaUniversidade Federal do Rio de JaneiroRio de JaneiroRJBrasilInstituto de Química – Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ – Brasil
| | - Wille Oigman
- Departamento de Clínica MédicaUniversidade do Estado do Rio de JaneiroRio de JaneiroRJBrasilDepartamento de Clínica Médica – Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ – Brasil
| | - Mario Fritsch Neves
- Departamento de Clínica MédicaUniversidade do Estado do Rio de JaneiroRio de JaneiroRJBrasilDepartamento de Clínica Médica – Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ – Brasil
| | - Fernanda Medeiros
- Escola de NutriçãoUniversidade Federal do Estado do Rio de JaneiroRio de JaneiroRJBrasilEscola de Nutrição da Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ – Brasil
| |
Collapse
|
88
|
Rajendra A, Bondonno NP, Rainey-Smith SR, Gardener SL, Hodgson JM, Bondonno CP. Potential role of dietary nitrate in relation to cardiovascular and cerebrovascular health, cognition, cognitive decline and dementia: a review. Food Funct 2022; 13:12572-12589. [PMID: 36377891 DOI: 10.1039/d2fo02427f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
There is currently no effective treatment for dementia, of which Alzheimer's disease (AD) is the most common form. It is, therefore, imperative to focus on evidence-based preventive strategies to combat this extremely debilitating chronic disease. Nitric oxide (NO) is a key signalling molecule in the cardiovascular, cerebrovascular, and central nervous systems. Vegetables rich in nitrate, such as spinach and beetroot, are an important source of NO, with beneficial effects on validated markers of cardiovascular health and an association with a lower risk of cardiovascular disease. Given the link between cardiovascular disease risk factors and dementia, together with the important role of NO in vascular health and cognition, it is important to determine whether dietary nitrate could also improve cognitive function, markers of brain health, and lower risk of dementia. This review presents an overview of NO's role in the cardiovascular, cerebrovascular, and central nervous systems; an overview of the available evidence that nitrate, through effects on NO, improves cardiovascular health; and evaluates the current evidence regarding dietary nitrate's potential role in cerebrovascular health, cognitive function, and brain health assessed via biomarkers.
Collapse
Affiliation(s)
- Anjana Rajendra
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.
| | - Nicola P Bondonno
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia. .,Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Stephanie R Rainey-Smith
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Perth, Western Australia, Australia.,Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, Western Australia, Australia.,School of Psychological Science, University of Western Australia, Perth, Western Australia, Australia
| | - Samantha L Gardener
- Australian Alzheimer's Research Foundation, Perth, Western Australia, Australia.,Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, Western Australia, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia. .,Medical School, The University of Western Australia, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
| | - Catherine P Bondonno
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia. .,Medical School, The University of Western Australia, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
| |
Collapse
|
89
|
Maiuolo J, Oppedisano F, Carresi C, Gliozzi M, Musolino V, Macrì R, Scarano F, Coppoletta A, Cardamone A, Bosco F, Mollace R, Muscoli C, Palma E, Mollace V. The Generation of Nitric Oxide from Aldehyde Dehydrogenase-2: The Role of Dietary Nitrates and Their Implication in Cardiovascular Disease Management. Int J Mol Sci 2022; 23:ijms232415454. [PMID: 36555095 PMCID: PMC9779284 DOI: 10.3390/ijms232415454] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Reduced bioavailability of the nitric oxide (NO) signaling molecule has been associated with the onset of cardiovascular disease. One of the better-known and effective therapies for cardiovascular disorders is the use of organic nitrates, such as glyceryl trinitrate (GTN), which increases the concentration of NO. Unfortunately, chronic use of this therapy can induce a phenomenon known as "nitrate tolerance", which is defined as the loss of hemodynamic effects and a reduction in therapeutic effects. As such, a higher dosage of GTN is required in order to achieve the same vasodilatory and antiplatelet effects. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a cardioprotective enzyme that catalyzes the bio-activation of GTN to NO. Nitrate tolerance is accompanied by an increase in oxidative stress, endothelial dysfunction, and sympathetic activation, as well as a loss of the catalytic activity of ALDH2 itself. On the basis of current knowledge, nitrate intake in the diet would guarantee a concentration of NO such as to avoid (or at least reduce) treatment with GTN and the consequent onset of nitrate tolerance in the course of cardiovascular diseases, so as not to make necessary the increase in GTN concentrations and the possible inhibition/alteration of ALDH2, which aggravates the problem of a positive feedback mechanism. Therefore, the purpose of this review is to summarize data relating to the introduction into the diet of some natural products that could assist pharmacological therapy in order to provide the NO necessary to reduce the intake of GTN and the phenomenon of nitrate tolerance and to ensure the correct catalytic activity of ALDH2.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Pharmaceutical Biology Laboratory, in Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (J.M.); (F.O.)
| | - Francesca Oppedisano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (J.M.); (F.O.)
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, in Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Annarita Coppoletta
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Renato Dulbecco Institute, Lamezia Terme, 88046 Catanzaro, Italy
| |
Collapse
|
90
|
Beetroot Juice Produces Changes in Heart Rate Variability and Reduces Internal Load during Resistance Training in Men: A Randomized Double-Blind Crossover. Nutrients 2022; 14:nu14235119. [PMID: 36501148 PMCID: PMC9738238 DOI: 10.3390/nu14235119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Beetroot juice (BJ) has been used as a sport supplement, improving performance in resistance training (RT). However, its effect on the modulation of the autonomic nervous system has not yet been widely studied. Therefore, the objective of this randomized double-blind crossover study was to assess the effect of acute BJ supplementation compared to placebo in blood pressure (BP), heart rate (HR), heart rate variability (HRV) and internal load during RT measure as Root Mean Square of the Successive Differences between adjacent RR intervals Slope (RMSSD and RMSSD-Slope, respectively). Eleven men performed an incremental RT test (three sets at 60%, 70% and 80% of their repetition maximum) composed by back squat and bench press with. HR, HRV and RMSSD-Slope were measured during and post exercise. As the main results, RMSSD during exercise decrease in the BJ group compared to placebo (p = 0.023; ES = 0.999), there were no differences in RMSSD post-exercise, and there were differences in RMSSD-Slope between groups in favor of the BJ group (p = 0.025; ES = 1.104) with a lower internal load. In conclusion, BJ supplementation seems to be a valuable tool for the reduction in the internal load of exercise during RT measured as RMSSD-Slope while enhancing performance.
Collapse
|
91
|
Bock JM, Hanson BE, Miller KA, Seaberg NT, Ueda K, Feider AJ, Hanada S, Lira VA, Casey DP. Eight weeks of inorganic nitrate/nitrite supplementation improves aerobic exercise capacity and the gas exchange threshold in patients with type 2 diabetes. J Appl Physiol (1985) 2022; 133:1407-1414. [PMID: 36326473 PMCID: PMC9762960 DOI: 10.1152/japplphysiol.00478.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) have reduced exercise capacity, indexed by lower maximal oxygen consumption (V̇o2max) and achievement of the gas exchange threshold (GET) at a lower % V̇o2max. The ubiquitous signaling molecule nitric oxide (NO) plays a multifaceted role during exercise and, as patients with T2DM have poor endogenous NO production, we investigated if inorganic nitrate/nitrite supplementation (an exogenous source of NO) improves exercise capacity in patients with T2DM. Thirty-six patients with T2DM (10F, 59 ± 9 yr, 32.0 ± 5.1 kg/m2, HbA1c = 7.4 ± 1.4%) consumed beetroot juice containing either inorganic nitrate/nitrite (4.03 mmol/0.29 mmol) or a placebo (0.8 mmol/0.00 mmol) for 8 wk. A maximal exercise test was completed before and after both interventions. V̇o2max was determined by averaging 15-s data, whereas the GET was identified using the V-slope method and breath-by-breath data. Inorganic nitrate/nitrite increased both absolute (1.96 ± 0.67 to 2.07 ± 0.75 L/min) and relative (20.7 ± 7.0 to 21.9 ± 7.4 mL/kg/min, P < 0.05 for both) V̇o2max, whereas no changes were observed following placebo (1.94 ± 0.40 to 1.90 ± 0.39 L/min, P = 0.33; 20.0 ± 4.2 to 19.7 ± 4.6 mL/kg/min, P = 0.39). Maximal workload was also increased following inorganic nitrate/nitrite supplementation (134 ± 47 to 140 ± 51 W, P < 0.05) but not placebo (138 ± 32 to 138 ± 32 W, P = 0.98). V̇o2 at the GET (1.11 ± 0.27 to 1.27 ± 0.38L/min) and the %V̇o2max in which GET occurred (56 ± 8 to 61 ± 7%, P < 0.05 for both) increased following inorganic nitrate/nitrite supplementation but not placebo (1.10 ± 0.23 to 1.08 ± 0.21 L/min, P = 0.60; 57 ± 9 to 57 ± 8%, P = 0.90) although the workload at GET did not achieve statistical significance (group-by-time P = 0.06). Combined inorganic nitrate/nitrite consumption improves exercise capacity, maximal workload, and promotes a rightward shift in the GET in patients with T2DM. This manuscript reports data from a registered Clinical Trial at ClinicalTrials.gov ID: NCT02804932.NEW & NOTEWORTHY We report that increasing nitric oxide bioavailability via 8 wk of inorganic nitrate/nitrite supplementation improves maximal aerobic exercise capacity in patients with type 2 diabetes mellitus. Similarly, we observed a rightward shift in the gas exchange threshold. Taken together, these data indicate inorganic nitrate/nitrite may serve as a means to improve fitness in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Joshua M Bock
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Brady E Hanson
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Kayla A Miller
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Nathanael T Seaberg
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Kenichi Ueda
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Andrew J Feider
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Satoshi Hanada
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Vitor A Lira
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
92
|
Bryan NS. Nitric oxide deficiency is a primary driver of hypertension. Biochem Pharmacol 2022; 206:115325. [DOI: 10.1016/j.bcp.2022.115325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/08/2022]
|
93
|
Bath PM, Skinner CJC, Bath CS, Woodhouse LJ, Korovesi AAK, Long H, Havard D, Coleman CM, England TJ, Leyland V, Lim WS, Montgomery AA, Royal S, Avery A, Webb AJ, Gordon AL. Dietary nitrate supplementation for preventing and reducing the severity of winter infections, including COVID-19, in care homes (BEET-Winter): a randomised placebo-controlled feasibility trial. Eur Geriatr Med 2022; 13:1343-1355. [PMID: 36385690 PMCID: PMC9668238 DOI: 10.1007/s41999-022-00714-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE Infections cause considerable care home morbidity and mortality. Nitric oxide (NO) has broad-spectrum anti-viral, bacterial and yeast activity in vitro. We assessed the feasibility of supplementing dietary nitrate (NO substrate) intake in care home residents. METHODS We performed a cluster-randomised placebo-controlled trial in UK residential and nursing care home residents and compared nitrate containing (400 mg) versus free (0 mg daily) beetroot juice given for 60 days. Outcomes comprised feasibility of recruitment, adherence, salivary and urinary nitrate, and ordinal infection/clinical events. RESULTS Of 30 targeted care homes in late 2020, 16 expressed interest and only 6 participated. 49 residents were recruited (median 8 [interquartile range 7-12] per home), mean (standard deviation) age 82 (8) years, with proxy consent 41 (84%), advance directive for hospital non-admission 8 (16%) and ≥ 1 doses of COVID-19 vaccine 37 (82%). Background dietary nitrate was < 30% of acceptable daily intake. 34 (76%) residents received > 50% of juice. Residents randomised to nitrate vs placebo had higher urinary nitrate levels, median 50 [18-175] v 18 [10-50] mg/L, difference 25 [0-90]. Data paucity precluded clinical between-group comparisons; the outcome distribution was as follows: no infection 32 (67%), uncomplicated infection 0, infection requiring healthcare support 11 (23%), all-cause hospitalisation 5 (10%), all-cause mortality 0. Urinary tract infections were most common. CONCLUSIONS Recruiting UK care homes during the COVID-19 pandemic was partially successful. Supplemented dietary nitrate was tolerated and elevated urinary nitrate. Together, infections, hospitalisations and deaths occurred in 33% of residents over 60 days. A larger trial is now required. TRIAL REGISTRATION ISRCTN51124684. Application date 7/12/2020; assignment date 13/1/2021.
Collapse
Affiliation(s)
- Philip M Bath
- Stroke Trials Unit, Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, South Block D Floor, Nottingham, NG7 2UH, UK.
- Stroke, Nottingham University Hospitals NHS Trust, Nottingham, NG7 2UH, Nottinghamshire, UK.
| | - Cameron J C Skinner
- Stroke Trials Unit, Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, South Block D Floor, Nottingham, NG7 2UH, UK
| | - Charlotte S Bath
- Stroke Trials Unit, Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, South Block D Floor, Nottingham, NG7 2UH, UK
| | - Lisa J Woodhouse
- Stroke Trials Unit, Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, South Block D Floor, Nottingham, NG7 2UH, UK
| | | | - Hongjiang Long
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Diane Havard
- Stroke Trials Unit, Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, South Block D Floor, Nottingham, NG7 2UH, UK
| | - Christopher M Coleman
- Division of Infection, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Timothy J England
- Stroke Trials Unit, Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, South Block D Floor, Nottingham, NG7 2UH, UK
- Department of Stroke, University Hospitals of Derby and Burton, Derby, DE22 3NE, UK
| | | | - Wei Shen Lim
- Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, NG5 1PB, UK
| | - Alan A Montgomery
- Nottingham Clinical Trials Unit, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Simon Royal
- University of Nottingham Health Service, Cripps Health Centre, University Park, Nottingham, NG7 2QW, UK
| | - Amanda Avery
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Andrew J Webb
- Clinical Pharmacology, School of Cardiovascular Medicine and Sciences, Kings College London and British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, London, SE1 7EH, UK
| | - Adam L Gordon
- Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Derby, DE22 3NE, Derbyshire, UK
- NIHR Applied Research Collaboration-East Midlands (ARC-EM), Nottingham, UK
| |
Collapse
|
94
|
Qadir OK, Seal CJ, Ashor AW, Tassotti M, Mena P, Del Rio D, Siervo M, Brandt K. Double-blind controlled dietary cross-over intervention with differentially fertilised intact lettuce leaves shows acute reduction in blood pressure in young adults, associated with faster uptake of nitrate than of phenolics. Eur J Nutr 2022; 61:4191-4203. [PMID: 35871120 PMCID: PMC9596532 DOI: 10.1007/s00394-022-02961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 07/08/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To compare acute effects on blood pressure (BP) of ingestion of visually similar lettuce with controlled high and low content of either nitrate or phenolic compounds. METHODS In a randomised cross-over design, 19 healthy participants (22-31 years) received 50 g of lettuce containing either 530 mg (8.4 mmol) nitrate + 11 mg (0.03 mmol) phenolic compounds (HNLP); or 3 mg nitrate (0.05 mmol) + 77 mg (0.2 mmol) phenolic compounds (LNHP), obtained by differential fertilisation. Ambulatory BP was recorded along with plasma, salivary and urinary nitrate and nitrite and plasma concentrations of cyclic guanosine monophosphate (cGMP), phenolic metabolites, Trolox equivalent antioxidant capacity (TEAC) and ferric reducing antioxidant power (FRAP). RESULTS Compared with LNHP, 3 h post ingestion of HNLP, plasma nitrate increased 0.31 ± (95%CI) 0.12 mM (+ 240%), and salivary nitrate 5.5 ± 1.4 mM (+ 910%); accumulated urinary nitrate excretion increased 188 ± 72 mg (+ 296%) (all P < 0.001). Systolic BP was reduced 4.9 ± 4.2 mmHg (P = 0.031) between 3 and 6 h after ingestion of HNLP compared with LNHP; systolic BP differences were negatively correlated (P = 0.004) with differences in saliva nitrate concentrations. LNHP increased plasma phenolics at 6 h, predominantly 3'-methoxycinnamic acid-4'-glucuronide (ferulic acid-4'-glucuronide), 116%, 204 ± 138 nM more than HNLP (P = 0.001); increased cGMP 14% (P = 0.019); and reduced FRAP 3.1% (P = 0.009). CONCLUSION The acute BP difference within 6 h of consumption matched the plasma/saliva nitrate peak, not the slower changes of plasma phenolics. This is the first double-blind controlled dietary intervention demonstrating differential effects on human physiology by consumption of an intact plant food, where compositional differences were obtained by controlling growing conditions, indicating potential opportunities for health claims relating to precision/vertical farming. CLINICAL TRIAL REGISTRATION The trial was retrospectively registered on ClinicalTrials.gov, with identifier NCT02701959, on March 8, 2016.
Collapse
Affiliation(s)
- Othman K Qadir
- Human Nutrition Research Centre, Population Health Sciences Institute, William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Food Science and Quality Control Department, College of Agricultural Engineering Sciences, University of Sulaimani, 46001, Sulaymaniah, Kurdistan Region, Iraq
| | - Chris J Seal
- Human Nutrition Research Centre, Population Health Sciences Institute, William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ammar W Ashor
- Human Nutrition Research Centre, Population Health Sciences Institute, William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Department of Internal Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Michele Tassotti
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Medical School Building C, Via Volturno, 39, 43125, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Medical School Building C, Via Volturno, 39, 43125, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Medical School Building C, Via Volturno, 39, 43125, Parma, Italy
- School of Advanced Studies on Food and Nutrition, University of Parma, Parma, Italy
| | - Mario Siervo
- Human Nutrition Research Centre, Population Health Sciences Institute, William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- School of Life Sciences, Queen's Medical Centre, Nottingham University, Nottingham, NG7 2UH, UK
| | - Kirsten Brandt
- Human Nutrition Research Centre, Population Health Sciences Institute, William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
95
|
Dias C, Lourenço CF, Laranjinha J, Ledo A. Modulation of oxidative neurometabolism in ischemia/reperfusion by nitrite. Free Radic Biol Med 2022; 193:779-786. [PMID: 36403737 DOI: 10.1016/j.freeradbiomed.2022.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
Nitrite has been viewed essentially as an inert metabolic endpoint of nitric oxide (•NO). However, under certain conditions, nitrite can be a source of •NO. In the brain, this alternative source of •NO production independent of nitric oxide synthase activity may be particularly relevant in ischemia/reperfusion (I/R), where low oxygen availability limits enzymatic production of •NO. Notably, in vivo concentration of nitrite can be easily increased with diet, through the ingestion of nitrate-rich foods, opening the window for a therapeutic intervention based on diet. Considering the modulation of mitochondrial respiration by •NO, we have hypothesized that the protective action of nitrite in I/R may also result from modulation of mitochondrial function. We used high-resolution respirometry to evaluate the effects of nitrite in two in vitro models of I/R. In both cases, an increase in oxygen flux was observed following reoxygenation, a phenomenon that has been coined "oxidative burst". The amplitude of this "oxidative burst" was decreased by nitrite in a concentration-dependent manner. Additionally, a pilot in vivo study in which animals received a nitrate-rich diet as a strategy to increase circulating and tissue levels of nitrite also revealed that the "oxidative burst" was decreased in the nitrate-treated animals. These results may provide mechanistic support to the observation of a protective effect of nitrite in situations of brain ischemia.
Collapse
Affiliation(s)
- C Dias
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - C F Lourenço
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - J Laranjinha
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - A Ledo
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, Coimbra, Portugal.
| |
Collapse
|
96
|
Miller GD, Collins S, Ives J, Williams A, Basu S, Kim-Shapiro DB, Berry MJ. Efficacy and Variability in Plasma Nitrite Levels during Long-Term Supplementation with Nitrate Containing Beetroot Juice. J Diet Suppl 2022; 20:885-910. [PMID: 36310089 PMCID: PMC10148922 DOI: 10.1080/19390211.2022.2137269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Long-term consumption of beetroot juice on efficacy of converting dietary nitrate to plasma nitrate and nitrite was investigated. Adults were randomized to consume either beetroot juice with 380 mg of nitrate (BR) or a beetroot juice placebo (PL) for 12-weeks. Plasma nitrate and nitrite were measured before and 90-minutes after consuming their intervention beverage. Percent change in nitrite across the 90 min was greater in BR (273.2 ± 39.9%) vs. PL (4.9 ± 36.9%). Long-term consumption of nitrate containing beetroot juice increased fasting nitrate and nitrite plasma levels compared to baseline.
Collapse
Affiliation(s)
- Gary D. Miller
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109
| | - Summer Collins
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
| | - James Ives
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
| | - Allie Williams
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
| | - Swati Basu
- Department of Physics, Wake Forest University, Winston-Salem, NC. 27109
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109
| | - Daniel B. Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, NC. 27109
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109
| | - Michael J. Berry
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109
| |
Collapse
|
97
|
Oue A, Iimura Y, Shinagawa A, Miyakoshi Y, Ota M. Effect of Acute Dietary Nitrate Supplementation on the Venous Vascular Response to Static Exercise in Healthy Young Adults. Nutrients 2022; 14:nu14214464. [PMID: 36364727 PMCID: PMC9659063 DOI: 10.3390/nu14214464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to test the hypothesis that acute intake of inorganic nitrate (NO3−) via supplementation would attenuate the venoconstriction and pressor response to exercise. Sixteen healthy young adults were assigned in a randomized crossover design to receive beetroot juice (BRJ) or an NO3−-depleted control beverage (prune juice: CON). Two hours after consuming the allocated beverage, participants rested in the supine position. Following the baseline period of 4 min, static handgrip exercise of the left hand was performed at 30% of the maximal voluntary contraction for 2 min. Mean arterial pressure (MAP) and heart rate (HR) were measured. Changes in venous volume in the right forearm and right calf were also measured using venous occlusion plethysmography while cuffs on the upper arm and thigh were inflated constantly to 30−40 mmHg. The plasma NO3− concentration was elevated with BRJ intake (p < 0.05). Exercise increased MAP and HR and decreased venous volume in the forearm and calf, but there were no differences between CON and BRJ. Thus, these findings suggest that acute BRJ intake does not alter the sympathetic venoconstriction in the non-exercising limbs and MAP response to exercise in healthy young adults, despite the enhanced activity of nitric oxide.
Collapse
Affiliation(s)
- Anna Oue
- Faculty of Food and Nutritional Sciences, Toyo University, Gunma 374-0193, Japan
- Correspondence: ; Tel.: +81-276-82-9145; Fax: +81-276-82-9033
| | - Yasuhiro Iimura
- Graduate School of Food and Nutritional Sciences, Toyo University, Gunma 374-0193, Japan
| | - Akiho Shinagawa
- Graduate School of Food and Nutritional Sciences, Toyo University, Gunma 374-0193, Japan
| | - Yuichi Miyakoshi
- Faculty of Food and Nutritional Sciences, Toyo University, Gunma 374-0193, Japan
| | - Masako Ota
- Faculty of Food and Nutritional Sciences, Toyo University, Gunma 374-0193, Japan
| |
Collapse
|
98
|
Skeletal muscle as a reservoir for nitrate and nitrite: The role of xanthine oxidase reductase (XOR). Nitric Oxide 2022; 129:102-109. [DOI: 10.1016/j.niox.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
|
99
|
Volino-Souza M, Oliveira GVD, Pinheiro VDS, Conte-Junior CA, Alvares TDS. The effect of dietary nitrate on macro- and microvascular function: A systematic review. Crit Rev Food Sci Nutr 2022; 64:1225-1236. [PMID: 36062809 DOI: 10.1080/10408398.2022.2113989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Previous studies have investigated the impact of dietary nitrate on vascular function due to the association between dietary nitrate ingestion and improvement in nitric oxide (NO) bioavailability. Considering that NO can present different effects through vascular beds (macro- vs. microvasculature) due to the specific characteristic (function and morphology) that each vessel exhibits, it is crucial to investigate the effect of dietary nitrate ingestion on the macro- and microvascular function to understand the effect of nitrate on vascular function. For this reason, this review aimed to evaluate the impact of dietary nitrate on macro- and microvascular function in humans. A total of 29 studies were included in the systematic review, of which 19 studies evaluated the effect of nitrate supplementation on macrovascular function, eight studies evaluated the effect on microvascular function, and two studies evaluated the impact on both macro- and microvascular function. The literature suggests that dietary nitrate ingestion seems to improve the vascular function in macrovasculature, whereas microvascular function appears to be modest. Future studies investigating the effect of nitrate ingestion on vascular function should focus on measuring macro- and microvascular function whenever possible so that the impact of nitrate-rich foods on vascular segments could be better understood.
Collapse
Affiliation(s)
- Mônica Volino-Souza
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
- Postgraduate Program in Food Science, Chemistry Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Gustavo Vieira de Oliveira
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, Brazil
| | - Vivian Dos Santos Pinheiro
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
- Postgraduate Program in Food Science, Chemistry Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Postgraduate Program in Food Science, Chemistry Institute, Federal University of Rio de Janeiro, RJ, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, Brazil
| | - Thiago da Silveira Alvares
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
- Food and Nutrition Institute, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Brazil
| |
Collapse
|
100
|
Esen O, Cepicka L, Gabrys T, Karayigit R. High-Dose Nitrate Supplementation Attenuates the Increased Blood Pressure Responses to Isometric Blood Flow Restriction Exercise in Healthy Males. Nutrients 2022; 14:nu14173645. [PMID: 36079902 PMCID: PMC9460709 DOI: 10.3390/nu14173645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
The effect of nitrate (NO3−) supplementation on blood pressure (BP) responses during large muscle mass isometric and ischaemic exercise in healthy young adults is unclear. The aim of the present study was to assess the effect of 5-day supplementation of NO3− on BP responses during a short isometric contraction and a sustained ischaemic contraction. In a randomised, double-blinded, crossover design, 14 healthy active young adults underwent BP measurements after 5 days of either NO3− (NIT) or placebo (PLA) supplementation. Beat-by-beat BP was measured at pre- and post-exercise rest, and during a short (20 s) isometric contraction at 25% maximal strength and throughout a sustained ischaemic contraction. Plasma nitrite (NO2−) concentration increased significantly after NO3− supplementation compared to placebo (475 ± 93 nmol·L−1 vs. 198 ± 46 nmol·L−1, p < 0.001, d = 3.37). Systolic BP was significantly lower at pre- (p = 0.051) and post-exercise rest (p = 0.006), during a short isometric contraction (p = 0.030), and throughout a sustained ischaemic contraction (p = 0.040) after NO3− supplementation. Mean arterial pressure was significantly lower at pre- (p = 0.004) and post-exercise rest (p = 0.043), during a short isometric contraction (p = 0.041), and throughout a sustained ischaemic contraction (p = 0.021) after NO3− supplementation. Diastolic BP was lower at pre-exercise rest (p = 0.032), but not at post-exercise rest, during a short isometric contraction, and during a sustained ischaemic contraction (all p > 0.05). Five days of NO3− supplementation elevated plasma NO2− concentration and reduced BP during a short isometric contraction and a sustained ischaemic contraction in healthy adults. These observations indicate that multiple-day nitrate supplementation can decrease BP at rest and attenuate the increased BP response during isometric exercise. These findings support that NO3− supplementation is an effective nutritional intervention in reducing SBP and MAP in healthy young males during submaximal exercise.
Collapse
Affiliation(s)
- Ozcan Esen
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK
- Correspondence: ; Tel.: +44-191-232-60-02
| | - Ladislav Cepicka
- Department of Physical Education and Sport, Faculty of Education, University of West Bohemia, 30100 Pilsen, Czech Republic
| | - Tomasz Gabrys
- Department of Physical Education and Sport, Faculty of Education, University of West Bohemia, 30100 Pilsen, Czech Republic
| | - Raci Karayigit
- Department of Coaching Education, Faculty of Sport Sciences, Ankara University, Ankara 06830, Turkey
| |
Collapse
|