51
|
Bryan NS, Ahmed S, Lefer DJ, Hord N, von Schwarz ER. Dietary nitrate biochemistry and physiology. An update on clinical benefits and mechanisms of action. Nitric Oxide 2023; 132:1-7. [PMID: 36690137 DOI: 10.1016/j.niox.2023.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/08/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
It is now more than 35 years since endothelium derived relaxing factor was identified as nitric oxide (NO). The last few decades have seen an explosion around nitric oxide biochemistry, physiology and clinical translation. The science reveals that all chronic disease is associated with decreased blood flow to the affected organ which results in increased inflammation, oxidative stress and immune dysfunction. This is true for cardiovascular disease, neurological disease, kidney, lung, liver disorders and every other major disorder. Since nitric oxide controls and regulates blood flow, oxygen and nutrient delivery to every cell, tissue and organ in the body and also mitigates inflammation, oxidative stress and immune dysfunction, a focus on restoring nitric oxide production is an obvious therapeutic strategy for a number of poorly managed chronic diseases. Since dietary nitrate is a major contributor to endogenous nitric oxide production, it should be considered as a means of therapy and restoration of nitric oxide. This review will update on the current state of the science and effects of inorganic nitrate administered through the diet on several chronic conditions and reveal how much is needed. It is clear now that antiseptic mouthwash and use of antacids disrupt nitrate metabolism to nitric oxide leading to clinical symptoms of nitric oxide deficiency. Based on the science, nitrate should be considered an indispensable nutrient that should be accounted for in dietary guidelines.
Collapse
Affiliation(s)
| | | | - David J Lefer
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, United States
| | - Norman Hord
- OU Health, Harold Hamm Diabetes Center, Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | | |
Collapse
|
52
|
Hikin LJ, Ho J, Morley SR, Ahluwalia A, Smith PR. Sodium nitrite poisoning: A series of 20 fatalities in which post-mortem blood nitrite and nitrate concentrations are reported. Forensic Sci Int 2023; 345:111610. [PMID: 36848754 DOI: 10.1016/j.forsciint.2023.111610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Sodium nitrite has several industrial applications however its accidental or intentional ingestion has been associated with severe toxicity and death. We present a series of 20 cases over 2 years in which evidence of sodium nitrite ingestion was found at the scene and supported by biochemical analysis of post-mortem blood nitrite and nitrate levels. Routine toxicological screening was performed on post-mortem blood samples received at University Hospitals of Leicester (UHL) NHS Trust, including ethanol analysis by headspace gas chromatography-flame ionisation detection (HS GC-FID), drug screening by high resolution accurate mass-mass spectrometry (HRAM-MS) and confirmatory drug quantitation by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Cases in which the history indicated the possibility of nitrite salts present at the scene, purchase of a suicide kit or a dusky-ash appearance of skin on post-mortem were referred to a specialist laboratory for nitrite and nitrate analysis. Analysis was based upon the gas-phase chemiluminescent reaction between nitric oxide (NO) and ozone; NO levels were determined using an NOA 280A, Sievers NO analyser. Twenty post-mortem cases in which sodium nitrite ingestion was the most probable cause of death were reported between January 2020 and February 2022; mean age was 31 years (range 14-49) with 9/20 (45%) female. 16/20 (80%) of cases had a history of depression and / or mental health issues. In half of the cases, anti-depressant / anti-psychotic drugs were prescribed; these drugs were detected in 8/20 (40%) cases. Ethanol was detected in 4/20 (20%) cases and anti-emetic drugs in 7/20 (35%) cases; anti-emetic drugs may be used to aid retention of sodium nitrite. Illicit drugs (amphetamine, cannabis and cocaine) were present in 3/20 cases (15%). Nitrite was found to be elevated in all but one case (95%), and nitrate was elevated in 17/20 (85%) cases. This paper highlights a surge in numbers of deaths across England and Wales due to sodium nitrite toxicity. Although, nitrite poisoning remains a rare cause of death, it is worthwhile considering its use in individuals with suicidal ideation given its unregulated availability online. The detection and quantitation of nitrite and nitrate requires specialised, highly reliable methodology currently only available in research laboratories. Implication of sodium nitrite ingestion also relies heavily upon circumstantial evidence combined with quantification. The provision of a quantitative nitrite / nitrate analytical service greatly assists in determining the cause of death in these cases.
Collapse
Affiliation(s)
- L J Hikin
- Forensic Toxicology Service, University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester LE1 5WW, UK.
| | - J Ho
- Centre for Cardiovascular Medicines & Devices, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - S R Morley
- Forensic Toxicology Service, University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester LE1 5WW, UK
| | - A Ahluwalia
- Centre for Cardiovascular Medicines & Devices, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - P R Smith
- Forensic Toxicology Service, University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester LE1 5WW, UK
| |
Collapse
|
53
|
Ageing modifies acute resting blood pressure responses to incremental consumption of dietary nitrate: a randomised, cross-over clinical trial. Br J Nutr 2023; 129:442-453. [PMID: 35508923 DOI: 10.1017/s0007114522001337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Beetroot (BR) is a rich source of nitrate (NO3-) that has been shown to reduce blood pressure (BP). Yet, no studies have examined the vascular benefits of BR in whole-food form and whether the effects are modified by age. This study was a four-arm, randomised, open-label, cross-over design in twenty-four healthy adults (young n 12, age 27 ± 4 years, old n 12, age 64 ± 5 years). Participants consumed whole-cooked BR at portions of (NO3- content in brackets) 100 g (272 mg), 200 g (544 mg) and 300 g (816 mg) and a 200-ml solution containing 1000 mg of potassium nitrate (KNO3) on four separate occasions over a 4-week period (≥7-d washout period). BP, plasma NO3- and nitrite (NO2-) concentrations, and post-occlusion reactive hyperaemia via laser Doppler, were measured pre- and up to 5-h post-intervention. Data were analysed by repeated-measures ANOVA. Plasma NO2- concentrations were higher in the young v. old at baseline and post-intervention (P < 0·05). All NO3- interventions decreased systolic and diastolic BP in young participants (P < 0·05), whereas only KNO3 (at 240-300 min post-intake) significantly decreased systolic (-4·8 mmHg, -3·5 %, P = 0·024) and diastolic (-5·4 mmHg, -6·5 %, P = 0·007) BP in older participants. In conclusion, incremental doses of dietary NO3- reduced systolic and diastolic BP in healthy young adults whereas in the older group a significant decrease was only observed with the highest dose. The lower plasma NO2- concentrations in older participants suggest that there may be mechanistic differences in the production of NO from dietary NO3- in young and older populations.
Collapse
|
54
|
Cocksedge SP, Causer AJ, Winyard PG, Jones AM, Bailey SJ. Oral Temperature and pH Influence Dietary Nitrate Metabolism in Healthy Adults. Nutrients 2023; 15:nu15030784. [PMID: 36771490 PMCID: PMC9919366 DOI: 10.3390/nu15030784] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
This study tested the hypothesis that the increases in salivary and plasma [NO2-] after dietary NO3- supplementation would be greater when oral temperature and pH were independently elevated, and increased further when oral temperature and pH were elevated concurrently. Seven healthy males (mean ± SD, age 23 ± 4 years) ingested 70 mL of beetroot juice concentrate (BR, which provided ~6.2 mmol NO3-) during six separate laboratory visits. In a randomised crossover experimental design, salivary and plasma [NO3-] and [NO2-] were assessed at a neutral oral pH with a low (TLo-pHNorm), intermediate (TMid-pHNorm), and high (THi-pHNorm) oral temperature, and when the oral pH was increased at a low (TLo-pHHi), intermediate (TMid-pHHi), and high (THi-pHHi) oral temperature. Compared with the TMid-pHNorm condition (976 ± 388 µM), the mean salivary [NO2-] 1-3 h post BR ingestion was higher in the TMid-pHHi (1855 ± 423 µM), THi-pHNorm (1371 ± 653 µM), THi-pHHi (1792 ± 741 µM), TLo-pHNorm (1495 ± 502 µM), and TLo-pHHi (2013 ± 662 µM) conditions, with salivary [NO2-] also higher at a given oral temperature when the oral pH was increased (p < 0.05). Plasma [NO2-] was higher 3 h post BR ingestion in the TMid-pHHi, THi-pHHi, and TLo-pHHi conditions, but not the TLo-pHNorm and THi-pHNorm conditions, compared with TMid-pHNorm (p < 0.05). Therefore, despite ingesting the same NO3- dose, the increases in salivary [NO2-] varied depending on the temperature and pH of the oral cavity, while the plasma [NO2-] increased independently of oral temperature, but to a greater extent at a higher oral pH.
Collapse
Affiliation(s)
- Stuart P. Cocksedge
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Adam J. Causer
- Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Paul G. Winyard
- Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK
| | - Andrew M. Jones
- Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Stephen J. Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
- Correspondence:
| |
Collapse
|
55
|
Fernandes D, Khambata RS, Massimo G, Ruivo E, Gee LC, Foster J, Goddard A, Curtis M, Barnes MR, Wade WG, Godec T, Orlandi M, D'Aiuto F, Ahluwalia A. Local delivery of nitric oxide prevents endothelial dysfunction in periodontitis. Pharmacol Res 2023; 188:106616. [PMID: 36566926 DOI: 10.1016/j.phrs.2022.106616] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/01/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
AIMS Increased cardiovascular disease risk underlies elevated rates of mortality in individuals with periodontitis. A key characteristic of those with increased cardiovascular risk is endothelial dysfunction, a phenomenon synonymous with deficiencies of bioavailable nitric oxide (NO), and prominently expressed in patients with periodontitis. Also, inorganic nitrate can be reduced to NO in vivo to restore NO levels, leading us to hypothesise that its use may be beneficial in reducing periodontitis-associated endothelial dysfunction. Herein we sought to determine whether inorganic nitrate improves endothelial function in the setting of periodontitis and if so to determine the mechanisms underpinning any responses seen. METHODS AND RESULTS Periodontitis was induced in mice by placement of a ligature for 14 days around the second molar. Treatment in vivo with potassium nitrate, either prior to or following establishment of experimental periodontitis, attenuated endothelial dysfunction, as determined by assessment of acetylcholine-induced relaxation of aortic rings, compared to control (potassium chloride treatment). These beneficial effects were associated with a suppression of vascular wall inflammatory pathways (assessed by quantitative-PCR), increases in the anti-inflammatory cytokine interleukin (IL)-10 and reduced tissue oxidative stress due to attenuation of xanthine oxidoreductase-dependent superoxide generation. In patients with periodontitis, plasma nitrite levels were not associated with endothelial function indicating dysfunction. CONCLUSION Our results suggest that inorganic nitrate protects against, and can partially reverse pre-existing, periodontitis-induced endothelial dysfunction through restoration of nitrite and thus NO levels. This research highlights the potential of dietary nitrate as adjunct therapy to target the associated negative cardiovascular outcomes in patients with periodontitis.
Collapse
Affiliation(s)
- Daniel Fernandes
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Rayomand S Khambata
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Gianmichele Massimo
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Ernesto Ruivo
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Lorna C Gee
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Julie Foster
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Alison Goddard
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Mike Curtis
- Centre for Host-Microbiome Interactions, King's College London, London, UK
| | - Michael R Barnes
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - William G Wade
- Centre for Host-Microbiome Interactions, King's College London, London, UK; Forsyth Institute, Cambridge, MA 02142, USA
| | - Thomas Godec
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Marco Orlandi
- Periodontology Unit, UCL Eastman Dental Institute, London, UK
| | | | - Amrita Ahluwalia
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
56
|
Worley ML, Reed EL, Chapman CL, Kueck P, Seymour L, Fitts T, Zazulak H, Schlader ZJ, Johnson BD. Acute beetroot juice consumption does not alter cerebral autoregulation or cardiovagal baroreflex sensitivity during lower-body negative pressure in healthy adults. Front Hum Neurosci 2023; 17:1115355. [PMID: 36742355 PMCID: PMC9892911 DOI: 10.3389/fnhum.2023.1115355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Introduction Beetroot juice (BRJ) improves peripheral endothelial function and vascular compliance, likely due to increased nitric oxide bioavailability. It is unknown if BRJ alters cerebrovascular function and cardiovagal baroreflex control in healthy individuals. Purpose We tested the hypotheses that BRJ consumption improves cerebral autoregulation (CA) and cardiovagal baroreflex sensitivity (cBRS) during lower-body negative pressure (LBNP). Methods Thirteen healthy adults (age: 26 ± 4 years; 5 women) performed oscillatory (O-LBNP) and static LBNP (S-LBNP) before (PRE) and 3 h after consuming 500 mL of BRJ (POST). Participants inhaled 3% CO2 (21% O2, 76% N2) during a 5 min baseline and throughout LBNP to attenuate reductions in end-tidal CO2 tension (PETCO2). O-LBNP was conducted at ∼0.02 Hz for six cycles (-70 mmHg), followed by a 3-min recovery before S-LBNP (-40 mmHg) for 7 min. Beat-to-beat middle cerebral artery blood velocity (MCAv) (transcranial Doppler) and blood pressure were continuously recorded. CA was assessed using transfer function analysis to calculate coherence, gain, and phase in the very-low-frequency (VLF; 0.020-0.070 Hz) and low-frequency bands (LF; 0.07-0.20 Hz). cBRS was calculated using the sequence method. Comparisons between POST vs. PRE are reported as mean ± SD. Results During O-LBNP, coherence VLF was greater at POST (0.55 ± 0.06 vs. 0.46 ± 0.08; P < 0.01), but phase VLF (P = 0.17) and gain VLF (P = 0.69) were not different. Coherence LF and phase LF were not different, but gain LF was lower at POST (1.03 ± 0.20 vs. 1.12 ± 0.30 cm/s/mmHg; P = 0.05). During S-LBNP, CA was not different in the VLF or LF bands (all P > 0.10). Up-cBRS and Down-cBRS were not different during both LBNP protocols. Conclusion These preliminary data indicate that CA and cBRS during LBNP in healthy, young adults is largely unaffected by an acute bolus of BRJ.
Collapse
Affiliation(s)
- Morgan L. Worley
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Emma L. Reed
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
- Department of Human Physiology, Bowerman Sports Science Center, University of Oregon, Eugene, OR, United States
| | - Christopher L. Chapman
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
- Department of Human Physiology, Bowerman Sports Science Center, University of Oregon, Eugene, OR, United States
| | - Paul Kueck
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Lauren Seymour
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Triniti Fitts
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Hannah Zazulak
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Zachary J. Schlader
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
- Department of Kinesiology, School of Public Health, Indiana University Bloomington, Bloomington, IN, United States
| | - Blair D. Johnson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
- Department of Kinesiology, School of Public Health, Indiana University Bloomington, Bloomington, IN, United States
| |
Collapse
|
57
|
King L, Wang Q, Xia L, Wang P, Jiang G, Li W, Huang Y, Liang X, Peng X, Li Y, Chen L, Liu L. Environmental exposure to perchlorate, nitrate and thiocyanate, and thyroid function in Chinese adults: A community-based cross-sectional study. ENVIRONMENT INTERNATIONAL 2023; 171:107713. [PMID: 36565572 DOI: 10.1016/j.envint.2022.107713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/27/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Evidence on environmental exposure to perchlorate, nitrate, and thiocyanate, three thyroidal sodium iodine symporter (NIS) inhibitors, and thyroid function in the Chinese population remains limited. OBJECTIVE To investigate the associations of environmental exposure to perchlorate, nitrate, and thiocyanate with markers of thyroid function in Chinese adults. METHODS A total of 2441 non-pregnant adults (mean age 50.4 years and 39.1% male) with a median urinary iodine of 180.1 μg/L from four communities in Shenzhen were included in this cross-sectional study. Urinary perchlorate, nitrate, thiocyanate, and thyroid profiles, including serum free thyroxine (FT4), total thyroxine (TT4), free triiodothyronine (FT3), total triiodothyronine (TT3), and thyroid stimulating hormone (TSH), were measured. Generalized linear model was applied to investigate the single-analyte associations. Weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) models were used to examine the association between the co-occurrence of three anions and thyroid profile. RESULTS The median levels of urinary perchlorate, nitrate, and thiocyanate were 5.8 μg/g, 76.4 mg/g, and 274.1 μg/g, respectively. After adjusting for confounders, higher urinary perchlorate was associated with lower serum FT4, TT4, and TT3, and higher serum FT3 and TSH (all P < 0.05). Comparing extreme tertiles, subjects in the highest nitrate tertile had marginally elevated TT3 (β: 0.02, 95% CI: 0.00-0.04). Each 1-unit increase in log-transformed urinary thiocyanate was associated with a 0.04 (95% CI: 0.02-0.06) pmol/L decrease in serum FT3. The WQS indices were inversely associated with serum FT4, TT4, and FT3 (all P < 0.05). In the BKMR model, the mixture of three anions was inversely associated with serum FT4, TT4, and FT3. CONCLUSIONS Our study provides evidence that individual and combined environmental exposure to perchlorate, nitrate, and thiocyanate are associated with significant changes in thyroid function markers in the Chinese population with adequate iodine intake.
Collapse
Affiliation(s)
- Lei King
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Xia
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanhua Jiang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanyi Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoling Liang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolin Peng
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Yonggang Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
58
|
Baik JS, Min JH, Ju SM, Ahn JH, Ko SH, Chon HS, Kim MS, Shin YI. Effects of Fermented Garlic Extract Containing Nitric Oxide Metabolites on Blood Flow in Healthy Participants: A Randomized Controlled Trial. Nutrients 2022; 14:5238. [PMID: 36558397 PMCID: PMC9781726 DOI: 10.3390/nu14245238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Aged or fermented garlic extract (FGE) is a natural remedy that improves vascular function through increasing vascular nitric oxide (NO) bioavailability. This is because nitrite (NO2-), a NO metabolite, can be produced through bioconversion with macrobacteria during the fermentation of foods like garlic. We aimed to evaluate the effects of NO2- in FGE on blood flow (BF), blood pressure (BP), velocity of the common carotid artery (CCA) and internal carotid artery (ICA), regional cerebral BF (rCBF), and peripheral BF (PBF). The study was divided into two parts: (1) Thirty healthy adults were divided into FGE and placebo groups to compare BP and velocity of the CCA and ICA; and (2) Twenty-eight healthy adults were divided into FGE and placebo groups to compare rCBF and PBF and determine changes before/after ingestion. Significant changes were noted in BP and the velocity of both CCA 30-60 min after FGE ingestion. FGE ingestion resulted in significant increases in rCBF and increases in body surface temperature through alterations in PBF. No detectable clinical side effects were noted. Overall, oral administration of NO2- containing FGE demonstrated acute positive effects in upregulating BF, including the CCA, BP, rCBF, and PBF. Follow-up studies with larger sample sizes and long-term ingestion may be needed.
Collapse
Affiliation(s)
- Ji Soo Baik
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Ji Hong Min
- Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Sung Min Ju
- Department of Pathology, College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Jae Hyun Ahn
- Department of General Medicine, University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Sung Hwa Ko
- Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
- Department of Rehabilitation Medicine, The Graduate School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | | | - Min Sun Kim
- Center for Nitric Oxide Metabolite, Wonkwang University, Iksan 54538, Republic of Korea
| | - Yong Il Shin
- Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
- Department of Rehabilitation Medicine, The Graduate School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
59
|
Miller GD, Collins S, Ives J, Williams A, Basu S, Kim-Shapiro DB, Berry MJ. Efficacy and Variability in Plasma Nitrite Levels during Long-Term Supplementation with Nitrate Containing Beetroot Juice. J Diet Suppl 2022; 20:885-910. [PMID: 36310089 PMCID: PMC10148922 DOI: 10.1080/19390211.2022.2137269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Long-term consumption of beetroot juice on efficacy of converting dietary nitrate to plasma nitrate and nitrite was investigated. Adults were randomized to consume either beetroot juice with 380 mg of nitrate (BR) or a beetroot juice placebo (PL) for 12-weeks. Plasma nitrate and nitrite were measured before and 90-minutes after consuming their intervention beverage. Percent change in nitrite across the 90 min was greater in BR (273.2 ± 39.9%) vs. PL (4.9 ± 36.9%). Long-term consumption of nitrate containing beetroot juice increased fasting nitrate and nitrite plasma levels compared to baseline.
Collapse
Affiliation(s)
- Gary D. Miller
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109
| | - Summer Collins
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
| | - James Ives
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
| | - Allie Williams
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
| | - Swati Basu
- Department of Physics, Wake Forest University, Winston-Salem, NC. 27109
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109
| | - Daniel B. Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, NC. 27109
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109
| | - Michael J. Berry
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109
| |
Collapse
|
60
|
Yousefzadeh N, Jeddi S, Afzali H, Kashfi K, Ghasemi A. Chronic nitrate administration increases the expression the genes involved in the browning of white adipose tissue in female rats. Cell Biochem Funct 2022; 40:750-759. [PMID: 36098488 DOI: 10.1002/cbf.3741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/06/2022] [Accepted: 08/19/2022] [Indexed: 11/08/2022]
Abstract
Nitrate, a nitric oxide (NO) donor, has antiobesity effect in female rats. This study hypothesized that the antiobesity effect of nitrate in female rats is due to the browning of white adipose tissue (WAT). Female Wistar rats (aged 8 months) were divided into two groups (n = 10/group): the control group received tap water and the nitrate group received water containing 100 mg/L of sodium nitrate for 9 months. At months 0, 3, 6, and 9, obesity indices were measured. At month 9, gonadal adipose tissue was used to measure messenger RNA (mRNA) and protein levels of peroxisome proliferator-activated receptor-γ (PPAR-γ), PPAR-γ coactivator 1-α (PGC1-α), uncoupling protein 1 (UCP1), and adipocyte density and area. After the 9-month intervention, nitrate-treated rats had lower body weight, body mass index, thoracic circumference, and abdominal circumference by 6.4% (p = .012), 9.1% (p = .029), 6.0% (p = .056), and 5.7% (p = .098), respectively. In addition, nitrate-treated rats had higher PPAR-γ (mRNA: 1.78-fold, p = .016 and protein: 19%, p = .076), PGC1-α (mRNA: 1.69-fold, p = .012 and protein: 68%, p = .001), and UCP1 (mRNA: 2.50-fold, p = .001 and protein: 81%, p = .001) in gonadal adipose tissue. Nitrate also reduced adipocyte area by 35% (p = .054) and increased adipocyte density by 31% (p = .086). In conclusion, antiobesity effect of nitrate in female rats is associated with increased browning of gonadal adipose tissue as indicated by higher expression of PPAR-γ, PGC1-α, and UCP1 and reduced adipocyte area and increased adipocyte density.
Collapse
Affiliation(s)
- Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Afzali
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, New York, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
61
|
Esen O, Cepicka L, Gabrys T, Karayigit R. High-Dose Nitrate Supplementation Attenuates the Increased Blood Pressure Responses to Isometric Blood Flow Restriction Exercise in Healthy Males. Nutrients 2022; 14:nu14173645. [PMID: 36079902 PMCID: PMC9460709 DOI: 10.3390/nu14173645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
The effect of nitrate (NO3−) supplementation on blood pressure (BP) responses during large muscle mass isometric and ischaemic exercise in healthy young adults is unclear. The aim of the present study was to assess the effect of 5-day supplementation of NO3− on BP responses during a short isometric contraction and a sustained ischaemic contraction. In a randomised, double-blinded, crossover design, 14 healthy active young adults underwent BP measurements after 5 days of either NO3− (NIT) or placebo (PLA) supplementation. Beat-by-beat BP was measured at pre- and post-exercise rest, and during a short (20 s) isometric contraction at 25% maximal strength and throughout a sustained ischaemic contraction. Plasma nitrite (NO2−) concentration increased significantly after NO3− supplementation compared to placebo (475 ± 93 nmol·L−1 vs. 198 ± 46 nmol·L−1, p < 0.001, d = 3.37). Systolic BP was significantly lower at pre- (p = 0.051) and post-exercise rest (p = 0.006), during a short isometric contraction (p = 0.030), and throughout a sustained ischaemic contraction (p = 0.040) after NO3− supplementation. Mean arterial pressure was significantly lower at pre- (p = 0.004) and post-exercise rest (p = 0.043), during a short isometric contraction (p = 0.041), and throughout a sustained ischaemic contraction (p = 0.021) after NO3− supplementation. Diastolic BP was lower at pre-exercise rest (p = 0.032), but not at post-exercise rest, during a short isometric contraction, and during a sustained ischaemic contraction (all p > 0.05). Five days of NO3− supplementation elevated plasma NO2− concentration and reduced BP during a short isometric contraction and a sustained ischaemic contraction in healthy adults. These observations indicate that multiple-day nitrate supplementation can decrease BP at rest and attenuate the increased BP response during isometric exercise. These findings support that NO3− supplementation is an effective nutritional intervention in reducing SBP and MAP in healthy young males during submaximal exercise.
Collapse
Affiliation(s)
- Ozcan Esen
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK
- Correspondence: ; Tel.: +44-191-232-60-02
| | - Ladislav Cepicka
- Department of Physical Education and Sport, Faculty of Education, University of West Bohemia, 30100 Pilsen, Czech Republic
| | - Tomasz Gabrys
- Department of Physical Education and Sport, Faculty of Education, University of West Bohemia, 30100 Pilsen, Czech Republic
| | - Raci Karayigit
- Department of Coaching Education, Faculty of Sport Sciences, Ankara University, Ankara 06830, Turkey
| |
Collapse
|
62
|
Acute Effects of Inorganic Nitrate Intake on Brachial and Femoral Flow-Mediated Vasodilation, and on Carotid Artery Reactivity Responses: Results of a Randomized, Double-Blinded, Placebo-Controlled Cross-Over Study in Abdominally Obese Men. Nutrients 2022; 14:nu14173560. [PMID: 36079817 PMCID: PMC9460748 DOI: 10.3390/nu14173560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/26/2022] Open
Abstract
Most trials on the effects of inorganic nitrate intake have focused on only one specific aspect of the endothelial cell response to a stimulus, thereby possibly missing other important effects. The aim of the present randomized, double-blinded, placebo-controlled cross-over study was therefore to investigate in eighteen healthy abdominally obese men (18–60 years, waist circumference ≥ 102 cm) acute effects of potassium nitrate on brachial and femoral flow-mediated vasodilation (FMD), and on carotid artery reactivity (CAR) to a cold pressure test. Participants received in random order a drink providing 10 mmol potassium nitrate (i.e., 625 mg of nitrate) or an iso-molar placebo drink with potassium chloride. Fasted and 4 h post-drink FMD and blood pressure measurements were performed. CAR responses were assessed at 4 h. Circulating nitrate plus nitrite concentration increased following nitrate intake (p = 0.003). Compared with placebo, potassium nitrate did not affect brachial (mean [95% confidence interval]: −0.2% [−2.5, 2.1], p = 0.86) and femoral FMD responses (−0.6% [−3.0; 1.7], p = 0.54). CAR responses were also not different (−0.8% [−2.5, 0.9], p = 0.32). Finally, changes in blood pressure and heart rate did not differ. No adverse events were observed. In conclusion, this trial did not provide evidence for effects of a single dose of inorganic nitrate on 4 h vascular endothelial function in abdominally obese men.
Collapse
|
63
|
Broxterman RM, La Salle DT, Zhao J, Reese VR, Kwon OS, Richardson RS, Trinity JD. Dietary Nitrate Supplementation and Small Muscle Mass Exercise Hemodynamics in Patients with Essential Hypertension. J Appl Physiol (1985) 2022; 133:506-516. [PMID: 35834624 PMCID: PMC9377785 DOI: 10.1152/japplphysiol.00218.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exaggerated blood pressure and diminished limb hemodynamics during exercise in patients with hypertension often are not resolved by antihypertensive medications. We hypothesized that, independent of antihypertensive medication status, dietary nitrate supplementation would increase limb blood flow, decrease mean arterial pressure (MAP), and increase limb vascular conductance during exercise in patients with hypertension. Patients with hypertension either abstained from (n=14, Off-Meds) or continued (n=12, On-Meds) antihypertensive medications. Within each group, patients consumed (cross-over design) nitrate-rich or nitrate-depleted (placebo) beetroot juice for 3-days before performing handgrip (HG) and knee-extensor exercise (KE). Blood flow and MAP were measured using Doppler ultrasound and an automated monitor, respectively. Dietary nitrate increased plasma-[nitrite] Off-Meds and On-Meds. There were no significant effects of dietary nitrate on blood flow, MAP, or vascular conductance during HG in Off-Meds or On-Meds. For KE, dietary nitrate decreased MAP (mean±SD across all three exercise intensities, 118±14 vs. 122±14 mmHg, p=0.024) and increased vascular conductance (26.2±6.1 vs. 24.7±7.0 ml/min/mmHg, p=0.024), but did not affect blood flow for Off-Meds, with no effects On-Meds. Dietary nitrate-induced changes in blood flow (r=-0.67, p<0.001), MAP (r=-0.43, p=0.009), and vascular conductance (r=-0.64, p<0.001) during KE, but only vascular conductance (r=-0.35, p=0.039) during HG, were significantly related to the magnitude of placebo values, with no differentiation between groups. Thus, the effects of dietary nitrate on limb hemodynamics and MAP during exercise in patients with hypertension are dependent on the values at baseline, independent of antihypertensive medication status, and dependent on whether exercise was performed by the forearm or quadriceps.
Collapse
Affiliation(s)
- Ryan M Broxterman
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, Salt Lake City, UT, United States.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States.,Center on Aging, University of Utah, Salt Lake City, UT, United States
| | - D Taylor La Salle
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| | - Jia Zhao
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Van R Reese
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Oh Sung Kwon
- Department of Kinesiology, University of Connecticut, Storrs, CT, United States.,Department of Orthopedic Surgery and Center of Aging, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, Salt Lake City, UT, United States.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States.,Center on Aging, University of Utah, Salt Lake City, UT, United States.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| | - Joel D Trinity
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, Salt Lake City, UT, United States.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States.,Center on Aging, University of Utah, Salt Lake City, UT, United States.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
64
|
Oue A, Iimura Y, Shinagawa A, Miyakoshi Y, Ota M. Acute dietary nitrate supplementation does not change venous volume and compliance in healthy young adults. Am J Physiol Regul Integr Comp Physiol 2022; 323:R331-R339. [PMID: 35816716 DOI: 10.1152/ajpregu.00083.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this randomized single-blind, placebo-controlled, crossover study, we investigated the influence of inorganic nitrate (NO3-) supplementation on venous volume and compliance in the resting forearm and calf. Twenty healthy young adults were assigned to receive an NO3--rich beverage (beetroot juice [BRJ]: 140 mL; ~8 mmol NO3-) or an NO3¯-depleted control beverage (prune juice [CON]: 166 mL; < 0.01 mmol NO3-). Two hours after consuming the allocated beverage, each participant rested in the supine position for 20 min. Cuffs were then placed around the right upper arm and right thigh, inflated to 60 mmHg for 8 min, and then decreased to 0 mmHg at a rate of 1 mmHg/s. During inflation and deflation of cuff pressure, changes in venous volume in the forearm and calf were measured by venous occlusion plethysmography. Venous compliance was calculated as the numerical derivative of the cuff pressure‒venous volume curve in the limbs. The plasma NO3- concentration was elevated by intake of BRJ (before, 15.5 ± 5.8 µM; after, 572.0 ± 116.1 µM, P < 0.05) but not by CON (before, 14.8 ± 7.2 µM; after, 15.3 ± 7.4 µM, P > 0.05). On the other hand, there was no significant difference in venous volume or compliance in the forearm or calf between BRJ and CON. These findings suggest that although acute inorganic NO3- supplementation may enhance the activity of nitric oxide (NO) via NO3- → nitrite → NO pathway, it does not influence venous volume or compliance in the limbs in healthy young adults.
Collapse
Affiliation(s)
- Anna Oue
- Faculty of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Yasuhiro Iimura
- Graduate School of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Akiho Shinagawa
- Graduate School of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Yuichi Miyakoshi
- Faculty of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Masako Ota
- Faculty of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| |
Collapse
|
65
|
Somani YB, Soares RN, Gosalia J, Delgado JM, Flanagan M, Basu S, Kim-Shapiro DB, Murias JM, Proctor DN. A single dose of dietary nitrate supplementation protects against endothelial ischemia-reperfusion injury in early postmenopausal women. Appl Physiol Nutr Metab 2022; 47:749-761. [PMID: 35358395 PMCID: PMC10941101 DOI: 10.1139/apnm-2021-0693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The onset of menopause and accompanying changes to ovarian hormones often precedes endothelial dysfunction in women. In particular, accelerated impairments in macrovascular and microvascular function coincide with the loss of estrogen, as does impaired endothelial responses to ischemia-reperfusion (IR) injury. In healthy, early postmenopausal women (n = 12; 3.9 ± 1.5 years since menopause) we tested the hypothesis that acute dietary nitrate (NO3-) supplementation would improve endothelial function and attenuate the magnitude of endothelial dysfunction following whole-arm IR in comparison with placebo. In this randomized, double-blind, placebo-controlled, crossover study we tested participants before and after NO3--rich (BRnitrate) and NO3--depleted (BRplacebo) beetroot juice (BR) consumption, as well as following IR injury, and 15 min after IR to assess recovery. Analyses with repeated-measures general linear models revealed a condition × time interaction for brachial artery flow-mediated dilation (FMD; P = 0.04), and no interaction effect was found for the near-infrared spectroscopy-derived reperfusion slope (P = 0.86). Follow-up analysis showed a significant decline in FMD following IR injury with BRplacebo in comparison with all other timepoints (all, P < 0.05), while this decline was not present with BRnitrate (all, P > 0.05). Our findings demonstrate that a single dose of dietary NO3- minimizes IR-induced macrovascular endothelial dysfunction in healthy, early postmenopausal women, but does not improve resting macrovascular and microvascular function. Trial registration number: NCT03644472. Novelty: In healthy, early postmenopausal women, a single dose of NO3--rich BR can protect against IR-induced endothelial dysfunction. This protection may be due to nitric oxide bioactivity during IR rather than improved endothelial function prior to the IR protocol per se.
Collapse
Affiliation(s)
- Y B Somani
- Department of Kinesiology, Integrative Vascular Physiology Lab, Penn State University, University Park, PA, USA
| | - R N Soares
- Dalton Cardiovascular Research Center, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - J Gosalia
- Department of Kinesiology, Integrative Vascular Physiology Lab, Penn State University, University Park, PA, USA
| | - J M Delgado
- Department of Kinesiology, Integrative Vascular Physiology Lab, Penn State University, University Park, PA, USA
| | - M Flanagan
- Penn State Hershey Family and Community Medicine, University Park, PA, USA
| | - S Basu
- Translational Science Center and Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - D B Kim-Shapiro
- Translational Science Center and Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - J M Murias
- Department of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - D N Proctor
- Department of Kinesiology, Integrative Vascular Physiology Lab, Penn State University, University Park, PA, USA
| |
Collapse
|
66
|
Shannon OM, Clifford T, Seals DR, Craighead DH, Rossman MJ. Nitric oxide, aging and aerobic exercise: Sedentary individuals to Master's athletes. Nitric Oxide 2022; 125-126:31-39. [PMID: 35705144 DOI: 10.1016/j.niox.2022.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022]
Abstract
Aging is associated with a decline in physiological function and exercise performance. These effects are mediated, at least in part, by an age-related decrease in the bioavailability of nitric oxide (NO), a ubiquitous gasotransmitter and regulator of myriad physiological processes. The decrease in NO bioavailability with aging is especially apparent in sedentary individuals, whereas older, physically active individuals maintain higher levels of NO with advancing age. Strategies which enhance NO bioavailability (including nutritional supplementation) have been proposed as a potential means of reducing the age-related decrease in physiological function and enhancing exercise performance and may be of interest to a range of older individuals including those taking part in competitive sport. In this brief review we discuss the effects of aging on physiological function and endurance exercise performance, and the potential role of changes in NO bioavailability in these processes. We also provide a summary of current evidence for dietary supplementation with substrates for NO production - including inorganic nitrate and nitrite, l-arginine and l-citrulline - for improving exercise capacity/performance in older adults. Additionally, we discuss the (limited) evidence on the effects of (poly)phenols and other dietary antioxidants on NO bioavailability in older individuals. Finally, we provide suggestions for future research.
Collapse
Affiliation(s)
- Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Tom Clifford
- School of Sport, Exercise and Health Science, Loughborough University, Loughborough, UK
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Daniel H Craighead
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
67
|
Katz-Brull R. Tolerance of Rodents to an Intravenous Bolus Injection of Sodium Nitrate in a High Concentration. BIOLOGY 2022; 11:biology11050794. [PMID: 35625522 PMCID: PMC9138515 DOI: 10.3390/biology11050794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Nitrate is found in many foods and is a common metabolite that is supplied mostly through the diet. Recently, we have found that an analog of this compound, labeled with the stable isotope (non-radioactive) nitrogen-15, is a potentially useful contrast agent for magnetic resonance imaging (MRI), as it does not include a metal component as most other MRI contrast agents. This analog was previously shown with a very high magnetic resonance signal, which is relatively long-lasting, when combined with the new adjunct technology to MRI called hyperpolarization. Prior to serving as a contrast agent for MRI in patients, this agent needs to be tested and validated in small animals. As a prerequisite to such studies, one must ensure that the injection of the naturally abundant agent (not labeled with any isotopes) will be tolerated by the animals. The purpose of the current study was to evaluate the tolerance to an intravenous injection of sodium nitrate in rats and mice, as MRI contrast agents are routinely administered in this way. We have found that a high dose of sodium nitrate can be safely injected into rats and mice. This result opens the way for preclinical MRI studies with sodium nitrate. Abstract Nitrate, the inorganic anion NO3−, is found in many foods and is an endogenous mammalian metabolite, which is supplied mostly through the diet. Although much is known about the safety of sodium nitrate when given per os, methodological safety data on intravenous bolus injection of sodium nitrate to rodents are lacking. Recently, we have proposed a new use for nitrate, as a contrast agent for magnetic resonance imaging that will be metal free and leave no traces in the body and the environment further to the imaging examination. It was shown that a stable isotope-labelled analog of this ion (15NO3−), in a sodium nitrate solution form and hyperpolarized state, produces a high magnetic resonance signal with prolonged visibility. Therefore, sodium nitrate was targeted for further preclinical development in this context. In the absence of methodological safety data on the potential effects of a high concentration sodium nitrate bolus intravenous injection into rodents, we carried out such an investigation in mice and rats (n = 12 of each, 6 males and 6 females in each group, altogether 24 animals). We show here that an intravenous bolus administration of sodium nitrate at a concentration of 150 mM and a dose of 51 mg/Kg does not lead to adverse effects in mice and rats. This is the first investigation of the tolerance of rodents to an intravenous injection of sodium nitrate.
Collapse
Affiliation(s)
- Rachel Katz-Brull
- Department of Radiology, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
- The Wohl Institute for Translational Medicine, Hadassah Medical Organization, Jerusalem 9112001, Israel
| |
Collapse
|
68
|
Sayyar A, Oladi M, Hosseini M, Nakhaee S, Ataie Z, Farrokhfall K. Effect of red beetroot juice on oxidative status and islet insulin release in adult male rats. Diabetol Metab Syndr 2022; 14:58. [PMID: 35461298 PMCID: PMC9034606 DOI: 10.1186/s13098-022-00830-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/06/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Beetroot is rich in inorganic nitrate and it has been shown that inorganic nitrate has beneficial effects on metabolic syndrome. This study aims to investigate the effect of red beetroot juice (RBJ) on carbohydrate metabolism in adult insulin-resistant rats. MATERIALS AND METHODS Sixteen male Wistar rats (32 weeks old) were divided into two equal groups: control and RBJ. Treatment with drinking water (control) and 100% RBJ (RBJ) was lasted for 5 weeks. At the end of the 4th week the intraperitoneal glucose tolerance test was performed and at the end of the study period animals were sacrificed and blood and tissue (aorta, heart, and liver) samples were collected. Furthermore, pancreatic islets were isolated and their insulin secretion activity was investigated in different glycemic conditions. RESULTS Compared to the control group, RBJ-treated rats showed lower blood glucose and insulin levels in the glucose tolerance test. Serum and tissue levels of nitric oxide in the RBJ group were significantly higher than those in the control group. The liver peroxidation and serum aspartate transaminase levels were significantly increased in the RBJ-treated animals compared to the control group. The islets of RBJ group exhibited lower insulin secretion, especially in 16.7 mM glucose concentration (supraphysiologic condition) than control group. CONCLUSIONS RBJ consumption improves glucose metabolism in rats via increasing nitric oxide metabolites in an insulin-independent manner. However, future studies are needed to minimize the potential hepatic adverse consequences.
Collapse
Affiliation(s)
- Armin Sayyar
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Oladi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehran Hosseini
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Nakhaee
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Zomorrod Ataie
- Health Clinical Science Research Center, Islamic Azad University, Zahedan Branch, Zahedan, Iran
- Student Research Committee, Islamic Azad University, Zahedan Branch, Zahedan, Iran
| | - Khadijeh Farrokhfall
- Experimental Medicine Laboratory, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
69
|
Rogerson D, Aguilar Mora FA, Young JS, Klonizakis M. No effect of nitrate-rich beetroot juice on microvascular function and blood pressure in younger and older individuals: a randomised, placebo-controlled double-blind pilot study. Eur J Clin Nutr 2022; 76:1380-1386. [PMID: 35352014 PMCID: PMC9550618 DOI: 10.1038/s41430-022-01115-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 11/09/2022]
Abstract
Background/Objectives To compare the effects of supplemental inorganic nitrate (NO3) on microvascular endothelial function and blood pressure in younger vs. older participants. Subjects/Methods 25 individuals participated in a double-blind, randomised, placebo-controlled crossover pilot study. Participants were stratified by age (18–35 and ≥55 years) and consumed a single dose beetroot juice (providing 6.4 mmol NO3) or NO3-depleted beetroot juice. Blood pressure, microvascular function (via Laser Doppler Flowmetry; LDF) and urinary NO3 were assessed, and the effects of NO3 supplementation on cardiovascular parameters were compared between participants and conditions using mixed-design ANOVA. Results Treatments and methods were well tolerated, and no adverse events were reported. Urinary NO3 increased 3 h following ingestion in both groups, (P = 0.02). Levels remained elevated at 24 h post consumption in younger participants only (P = 0.02). Beetroot juice had no effect on blood pressure in either group nor on microcirculatory endothelial function. Conclusions Beetroot juice had no effect on blood pressure or microvascular endothelial function in young and older individuals. Dosage and timing regimens for supplemental beetroot juice should be avenues for further inquiry.
Collapse
|
70
|
Stamm P, Kalinovic S, Oelze M, Steven S, Czarnowski A, Kvandova M, Bayer F, Reinhardt C, Münzel T, Daiber A. Mechanistic Insights into Inorganic Nitrite-Mediated Vasodilation of Isolated Aortic Rings under Oxidative/Hypertensive Conditions and S-Nitros(yl)ation of Proteins in Germ-Free Mice. Biomedicines 2022; 10:biomedicines10030730. [PMID: 35327532 PMCID: PMC8945819 DOI: 10.3390/biomedicines10030730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023] Open
Abstract
The prevalence and clinical importance of arterial hypertension are still growing. Inorganic nitrite (NO2-) represents an attractive dietary antihypertensive agent, but its metabolism and mode of action, which we aimed to investigate with the present study, are not completely understood. Isolated aortic rings from rats were treated ex vivo with oxidants, and rats were infused in vivo with angiotensin-II. Vascular responses to acetylcholine (ACh) and nitrite were assessed by isometric tension recording. The loss of vasodilatory potency in response to oxidants was much more pronounced for ACh as compared to nitrite ex vivo (but not in vivo with angiotensin-II). This effect may be caused by the redox regulation of conversion to xanthine oxidase (XO). Conventionally raised and germ-free mice were treated with nitrite by gavage, which did not improve ACh-mediated vasodilation, but did increase the plasma levels of S-nitros(yl)ated proteins in the conventionally-raised, but not in the germ-free mice. In conclusion, inorganic nitrite represents a dietary drug option to treat arterial hypertension in addition to already established pharmacological treatment. Short-term oxidative stress did not impair the vasodilatory properties of nitrite, which may be beneficial in cardiovascular disease patients. The gastrointestinal microbiome appears to play a key role in nitrite metabolism and bioactivation.
Collapse
Affiliation(s)
- Paul Stamm
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany;
| | - Sanela Kalinovic
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
| | - Matthias Oelze
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
| | - Sebastian Steven
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
- Center for Thrombosis and Hemostasis Mainz, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Alexander Czarnowski
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
| | - Miroslava Kvandova
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
| | - Franziska Bayer
- Center for Thrombosis and Hemostasis Mainz, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Christoph Reinhardt
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany;
- Center for Thrombosis and Hemostasis Mainz, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany;
- Correspondence: (T.M.); (A.D.); Tel.: +49-6131-17-6280 (A.D.)
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany;
- Correspondence: (T.M.); (A.D.); Tel.: +49-6131-17-6280 (A.D.)
| |
Collapse
|
71
|
Wang Y, Chen W, Zhou J, Wang Y, Wang H, Wang Y. Nitrate Metabolism and Ischemic Cerebrovascular Disease: A Narrative Review. Front Neurol 2022; 13:735181. [PMID: 35309590 PMCID: PMC8927699 DOI: 10.3389/fneur.2022.735181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022] Open
Abstract
Inorganic and organic nitrates are present in vivo and in vitro. Inorganic nitrate is considered a pool of nitric oxide (NO), but it can be converted into nitrite and NO through various mechanisms. It plays an important role in the regulation of complex physiological and biochemical reactions, such as anti-inflammatory processes and the inhibition of platelet aggregation, which are closely related to the pathology and treatment of cerebrovascular disease. Ischemic cerebrovascular disease is characterized by high incidence, recurrence, and disability rates. Nitrate, nitrite, and NO were recently found to be involved in cerebrovascular disease. In this review, we describe the relationship between cerebrovascular disease and nitrate metabolism to provide a basis for further advances in laboratory and clinical medicine.
Collapse
Affiliation(s)
- Yicong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Laboratory for Oral and General Health Integration and Translation, Beijing, China
| | - Weiqi Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Laboratory for Oral and General Health Integration and Translation, Beijing, China
| | - Jian Zhou
- Laboratory for Oral and General Health Integration and Translation, Beijing, China
- School of Stomatology, Capital Medical University, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hao Wang
- Laboratory for Oral and General Health Integration and Translation, Beijing, China
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Hao Wang
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Laboratory for Oral and General Health Integration and Translation, Beijing, China
- Yilong Wang
| |
Collapse
|
72
|
Poole DC, Ferguson SK, Musch TI, Porcelli S. Role of nitric oxide in convective and diffusive skeletal microvascular oxygen kinetics. Nitric Oxide 2022; 121:34-44. [PMID: 35123062 DOI: 10.1016/j.niox.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/29/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Progress in understanding physiological mechanisms often consists of discrete discoveries made across different models and species. Accordingly, understanding the mechanistic bases for how altering nitric oxide (NO) bioavailability impacts exercise tolerance (or not) depends on integrating information from cellular energetics and contractile regulation through microvascular/vascular control of O2 transport and pulmonary gas exchange. This review adopts state-of-the-art concepts including the intramyocyte power grid, the Wagner conflation of perfusive and diffusive O2 conductances, and the Critical Power/Critical Speed model of exercise tolerance to address how altered NO bioavailability may, or may not, affect physical performance. This question is germane from the elite athlete to the recreational exerciser and particularly the burgeoning heart failure (and other clinical) populations for whom elevating O2 transport and/or exercise capacity translates directly to improved life quality and reduced morbidity and mortality. The dearth of studies in females is also highlighted, and areas of uncertainty and questions for future research are identified.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Scott K Ferguson
- Department of Kinesiology and Exercise Science, University of Hawaii, Hilo, HI, 96720, USA
| | - Timothy I Musch
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Simone Porcelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
73
|
Lee SS, McGrattan A, Soh YC, Alawad M, Su TT, Palanisamy UD, Hussin AM, Kassim ZB, Mohd Ghazali ANB, Christa Maree Stephan B, Allotey P, Reidpath DD, Robinson L, Mohan D, Siervo M. Feasibility and Acceptability of a Dietary Intervention to Reduce Salt Intake and Increase High-Nitrate Vegetable Consumption in Malaysian Middle-Aged and Older Adults with Elevated Blood Pressure: Findings from the DePEC-Nutrition Trial. Nutrients 2022; 14:nu14030430. [PMID: 35276789 PMCID: PMC8839221 DOI: 10.3390/nu14030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
The DePEC-Nutrition trial is a complex dietary and behavioural intervention of salt intake reduction combined with increased high-nitrate vegetable consumption among Malaysian middle-aged and older adults with elevated blood pressure. This study aimed to assess the feasibility and acceptability of the trial. Participants were recruited from the South East Asia Community Observatory (SEACO) database and randomised into one of four groups: (1) low salt; (2) high-nitrate vegetable; (3) combined high-nitrate vegetable and low salt; and (4) control. The intervention included a combination of group counselling sessions, information booklets, reinforcement videos and text messages to modify dietary behaviour. The primary outcomes evaluated were the measures of feasibility and acceptability of (1) recruitment, follow-up attendance and retention; (2) data collection procedures and clinical outcome measures; and (3) individual and combined multi-modal dietary interventions. A total of 74 participants were recruited, and the 10-month retention rate was 73%. Data collection procedures were acceptable with minimal missing data. All intervention strategies were feasible and acceptable, with group counselling being the most acceptable strategy. This study provides important insights into improving the screening process of participants, facilitating their access to the research facilities and refining the measurement protocols and dietary recommendations, which are instrumental in formulating the design of a full-scale definitive DePEC-Nutrition trial.
Collapse
Affiliation(s)
- Siew Siew Lee
- Global Public Health, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.L.); (Y.C.S.); (M.A.); (T.T.S.)
| | - Andrea McGrattan
- School of Biomedical, Nutritional and Sports Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Yee Chang Soh
- Global Public Health, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.L.); (Y.C.S.); (M.A.); (T.T.S.)
- South East Asia Community Observatory (SEACO), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 45700, Malaysia;
| | - Mawada Alawad
- Global Public Health, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.L.); (Y.C.S.); (M.A.); (T.T.S.)
- South East Asia Community Observatory (SEACO), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 45700, Malaysia;
| | - Tin Tin Su
- Global Public Health, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.L.); (Y.C.S.); (M.A.); (T.T.S.)
- South East Asia Community Observatory (SEACO), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 45700, Malaysia;
| | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Azizah Mat Hussin
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang 43000, Malaysia;
| | - Zaid bin Kassim
- District Health Office, Pejabat Kesihatan Daerah (PKD) Segamat, Segamat 85000, Malaysia; (Z.b.K.); (A.N.b.M.G.)
| | | | | | - Pascale Allotey
- International Institute for Global Health, United Nations University, Kuala Lumpur 56000, Malaysia;
| | - Daniel D. Reidpath
- South East Asia Community Observatory (SEACO), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 45700, Malaysia;
- International Centre for Diarrhoeal Disease Research, ICDDR, B, Dhaka 1212, Bangladesh
| | - Louise Robinson
- Population Health Science Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK;
| | - Devi Mohan
- Global Public Health, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.L.); (Y.C.S.); (M.A.); (T.T.S.)
- Correspondence: ; Tel.: +60-3-5515-9658
| | - Mario Siervo
- School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, UK;
| |
Collapse
|
74
|
Kadach S, Piknova B, Black MI, Park JW, Wylie LJ, Stoyanov Z, Thomas SM, McMahon NF, Vanhatalo A, Schechter AN, Jones AM. Time course of human skeletal muscle nitrate and nitrite concentration changes following dietary nitrate ingestion. Nitric Oxide 2022; 121:1-10. [PMID: 35032643 PMCID: PMC8860874 DOI: 10.1016/j.niox.2022.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/11/2022]
Abstract
Dietary nitrate (NO3−) ingestion can be beneficial for health and exercise performance. Recently, based on animal and limited human studies, a skeletal muscle NO3− reservoir has been suggested to be important in whole body nitric oxide (NO) homeostasis. The purpose of this study was to determine the time course of changes in human skeletal muscle NO3− concentration ([NO3− ) following the ingestion of dietary NO3−. Sixteen participants were allocated to either an experimental group (NIT: n = 11) which consumed a bolus of ~1300 mg (12.8 mmol) potassium nitrate (KNO3), or a placebo group (PLA: n = 5) which consumed a bolus of potassium chloride (KCl). Biological samples (muscle (vastus lateralis), blood, saliva and urine) were collected shortly before NIT or PLA ingestion and at intervals over the course of the subsequent 24 h. At baseline, no differences were observed for muscle [NO3−] and [NO2−] between NIT and PLA (P > 0.05). In PLA, there were no changes in muscle [NO3−] or [NO2−] over time. In NIT, muscle [NO3−] was significantly elevated above baseline (54 ± 29 nmol/g) at 0.5 h, reached a peak at 3 h (181 ± 128 nmol/g), and was not different to baseline from 9 h onwards (P > 0.05). Muscle [NO2−] did not change significantly over time. Following ingestion of a bolus of dietary NO3− skeletal muscle [NO3−] increases rapidly, reaches a peak at ~3 h and subsequently declines towards baseline values. Following dietary NO3− ingestion, human m. vastus lateralis [NO3−] expressed a slightly delayed pharmacokinetic profile compared to plasma [NO3−].
Collapse
Affiliation(s)
- Stefan Kadach
- University of Exeter, College of Life and Environmental Sciences, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - Barbora Piknova
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Matthew I Black
- University of Exeter, College of Life and Environmental Sciences, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - Ji Won Park
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lee J Wylie
- University of Exeter, College of Life and Environmental Sciences, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - Zdravko Stoyanov
- University of Exeter, College of Life and Environmental Sciences, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - Samantha M Thomas
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nicholas F McMahon
- University of Queensland, School of Human Movement and Nutrition Sciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Anni Vanhatalo
- University of Exeter, College of Life and Environmental Sciences, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - Alan N Schechter
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew M Jones
- University of Exeter, College of Life and Environmental Sciences, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK.
| |
Collapse
|
75
|
Chen X, Chen Y, Feng M, Huang X, Li C, Han F, Zhang Q, Gao X. Altered Salivary Microbiota in Patients with Obstructive Sleep Apnea Comorbid Hypertension. Nat Sci Sleep 2022; 14:593-607. [PMID: 35422668 PMCID: PMC9005082 DOI: 10.2147/nss.s347630] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/11/2022] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Microorganisms contribute to the pathogenesis of obstructive sleep apnea (OSA)-associated hypertension (HTN), while more studies focus on intestinal microbiome. However, the relationship between oral microbiota and OSA-associated HTN has yet to be elucidated. This study aimed to identify differences in salivary microbiota between patients with OSA comorbid HTN compared with OSA patients, and furthermore evaluate the relationship between oral microbiome changes and increased blood pressure in patients with OSA. PATIENTS AND METHODS This study collected salivary samples from 103 participants, including 27 healthy controls, 27 patients with OSA, 23 patients with HTN, and 26 patients with OSA comorbid HTN, to explore alterations of the oral microbiome using 16S rRNA gene V3-V4 high-throughput sequencing. And ultra-high-performance liquid chromatography was used for metabolomic analysis. RESULTS Alpha- and beta-diversity analyses revealed a substantial difference in community structure and diversity in patients with OSA comorbid HTN compared with patients with OSA or HTN. The relative abundance of the genus Actinomyces was significantly decreased in patients with HTN compared with healthy controls, and those with OSA concomitant HTN compared with the patients in OSA, but was not significantly different between patients with OSA and healthy controls. Linear discriminant analysis effect size and variance analysis also indicated that the genera Haemophilus, Neisseria, and Lautropia were enriched in HTN. In addition, Oribacterium was an unique taxa in the OSA comorbid HTN group compared with the control group. Metabolomic analysis of saliva identified compounds associated with cardiovascular disease in patients with OSA comorbid HTN.2-hydroxyadenine, was significantly increased in the group of patients with OSA compared with controls, and L-carnitine was significantly decreased in patients with OSA comorbid HTN compared with OSA patients. CONCLUSION This study highlighted noninvasive biomarkers for patients with OSA comorbid HTN. As the first study to find alterations of the salivary microbiome in patients with OSA comorbid HTN, it may provide a theoretical foundation for clinical diagnosis and treatment of this condition.
Collapse
Affiliation(s)
- Xuehui Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Yanlong Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Mengqi Feng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Xin Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Changtao Li
- Department of Orthodontics, Beijing Haidian Hospital, Haidian Section of Peking University Third Hospital, Beijing, 100080, People's Republic of China
| | - Fang Han
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Qian Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.,National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China
| | - Xuemei Gao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.,National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China
| |
Collapse
|
76
|
Li B, Huang Y, Luo C, Peng X, Jiao Y, Zhou L, Yin J, Liu L. Inverse Association of Plasma Molybdenum with Metabolic Syndrome in a Chinese Adult Population: A Case-Control Study. Nutrients 2021; 13:nu13124544. [PMID: 34960095 PMCID: PMC8707707 DOI: 10.3390/nu13124544] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
Molybdenum has been found to be associated with metabolic disorders. However, the relationship between molybdenum and metabolic syndrome (MetS) is still unclear. A large case-control study was conducted in a Chinese population from the baseline of Ezhou-Shenzhen cohort. A total of 5356 subjects were included with 2678 MetS and 2678 controls matched by sex and age (±2 years). Medians (IQRs) of plasma molybdenum concentrations were 1.24 μg/L for MetS cases and 1.46 μg/L for controls. After adjustment for multiple covariates, the odds ratio (OR) and 95% confidence intervals (CIs) for MetS were 1.00 (reference), 0.71 (0.59-0.84), 0.56 (0.46-0.68), and 0.47 (0.39-0.58) across quartiles of plasma molybdenum, and per SD increment of log-transformed molybdenum was associated with a 23% lower risk of MetS. In the spline analysis, the risk of MetS and its components decreased steeply with increasing molybdenum and followed by a plateau when the cutoff point was observed around 2.0 μg/L. The dose-dependent relationship of molybdenum with MetS remained consistent when considering other essential elements in the Bayesian kernel machine regression (BKMR) model. In our study, higher plasma molybdenum was significantly associated with a lower risk of MetS, as well as its components, in a dose-response manner.
Collapse
Affiliation(s)
- Ben Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (B.L.); (Y.H.); (C.L.); (X.P.); (L.Z.)
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yue Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (B.L.); (Y.H.); (C.L.); (X.P.); (L.Z.)
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Cheng Luo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (B.L.); (Y.H.); (C.L.); (X.P.); (L.Z.)
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Xiaolin Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (B.L.); (Y.H.); (C.L.); (X.P.); (L.Z.)
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- Department of Non-Communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen 518000, China
| | - Yang Jiao
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Li Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (B.L.); (Y.H.); (C.L.); (X.P.); (L.Z.)
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Jiawei Yin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (B.L.); (Y.H.); (C.L.); (X.P.); (L.Z.)
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- Correspondence: (J.Y.); (L.L.); Tel./Fax: +86-27-83-650-522 (J.Y. & L.L.)
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (B.L.); (Y.H.); (C.L.); (X.P.); (L.Z.)
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- Correspondence: (J.Y.); (L.L.); Tel./Fax: +86-27-83-650-522 (J.Y. & L.L.)
| |
Collapse
|
77
|
Cheng CJ, Kuo YT, Chen JW, Wei GJ, Lin YJ. Probabilistic risk and benefit assessment of nitrates and nitrites by integrating total diet study-based exogenous dietary exposure with endogenous nitrite formation using toxicokinetic modeling. ENVIRONMENT INTERNATIONAL 2021; 157:106807. [PMID: 34418847 DOI: 10.1016/j.envint.2021.106807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/28/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The impacts of dietary nitrates and nitrites on human health have been a controversial topic for many years. However, the risk and benefit assessment of nitrates and nitrites is complicated by the large variation in nitrate and nitrite intake among people and the endogenous nitrite formation in the body. This study conducted a probabilistic risk-benefit assessment of dietary nitrates and nitrites based on internal dose by integrating exogenous and endogenous exposures with human trial data on cardiovascular benefits. A total diet study was carried out to quantify the age-specific dietary intakes of nitrates and nitrites. A previously well-validated human toxicokinetic model was used to predict internal doses for different age groups. In addition, the integrated approach was applied to different populations from different countries/regions based on reported exposure estimates to conduct a comprehensive risk-benefit assessment of dietary nitrates and nitrites. The results demonstrated that vegetable consumption was the main contributor to the internal nitrate and nitrite levels in all age groups. Exposure to nitrates and nitrites exceeding acceptable daily intakes in a variety of foods showed cardiovascular benefits. The probabilistic risk assessment showed that the exposure to nitrates and nitrites did not pose an appreciable health and safety risk. Therefore, the present results suggest that dietary nitrates and nitrites have clear cardiovascular benefits that may outweigh potential risks. Our analysis contributes significantly to addressing the controversy regarding risks and benefits from dietary nitrates and nitrites, and our approach could be applied to other dietary constituents with the potential for both risks and benefits.
Collapse
Affiliation(s)
- Cheng-Jih Cheng
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 112, Taiwan
| | - Yuh-Ting Kuo
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 112, Taiwan
| | - Jein-Wen Chen
- Department of Food and Beverage Management, Cheng Shiu University, Kaohsiung 833, Taiwan; Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan; Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Guor-Jien Wei
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 112, Taiwan; Metabolomics-Proteomics Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yi-Jun Lin
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
78
|
Baranauskas MN, Freemas JA, Tan R, Carter SJ. Moving beyond inclusion: Methodological considerations for the menstrual cycle and menopause in research evaluating effects of dietary nitrate on vascular function. Nitric Oxide 2021; 118:39-48. [PMID: 34774755 DOI: 10.1016/j.niox.2021.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/18/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
Recent reports have acknowledged the underrepresentation of women in the field of dietary nitrate (NO3-) research. Undoubtedly, greater participation from women is warranted to clarify potential sex differences in the responses to dietary NO3- interventions. However, careful consideration for the effects of sex hormones - principally 17β-estradiol - on endogenous nitric oxide (NO) synthesis and dietary NO3- reductase capacity is necessary for improved interpretation and reproducibility of such investigations. From available literature, we present a narrative review describing how hormonal variations across the menstrual cycle, as well as with menopause, may impact NO biosynthesis catalyzed by NO synthase enzymes and NO3- reduction via the enterosalivary pathway. In doing so, we address methodological considerations related to the menstrual cycle and hormonal contraceptive use relevant for the inclusion of premenopausal women along with factors to consider when testing postmenopausal women. Adherence to such methodological practices may explicate the utility of dietary NO3- supplementation as a means to improve vascular function among women across the lifespan.
Collapse
Affiliation(s)
- Marissa N Baranauskas
- Department of Kinesiology, School of Public Health - Bloomington, Bloomington, Indiana University, 47405, USA.
| | - Jessica A Freemas
- Department of Kinesiology, School of Public Health - Bloomington, Bloomington, Indiana University, 47405, USA
| | - Rachel Tan
- Department of Natural Science, Seaver College, Pepperdine University, 90263, USA
| | - Stephen J Carter
- Department of Kinesiology, School of Public Health - Bloomington, Bloomington, Indiana University, 47405, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| |
Collapse
|
79
|
Capper TE, Siervo M, Clifford T, Taylor G, Iqbal W, West D, Stevenson EJ. Pharmacokinetic Profile of Incremental Oral Doses of Dietary Nitrate in Young and Older Adults: A Crossover Randomized Clinical Trial. J Nutr 2021; 152:130-139. [PMID: 34718635 PMCID: PMC8754575 DOI: 10.1093/jn/nxab354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dietary nitrate consumption can increase concentrations of nitrate and nitrite in blood, saliva, and urine. Whether the change in concentrations is influenced by age is currently unknown. OBJECTIVES We aimed to measure changes in nitrate and nitrite concentrations in plasma, urine, and saliva and exhaled NO concentrations after single incremental doses of dietary nitrate in young and older healthy adults. METHODS Twelve young (18-35 y old) and 12 older (60-75 y old) healthy, nonsmoking participants consumed single doses of 100 g, 200 g, 300 g whole beetroot (BR) and 1000 mg potassium nitrate (positive control) ≥7 d apart in a crossover, randomized clinical trial. Plasma nitrate and nitrite concentrations and exhaled NO concentrations were measured over a 5-h period. Salivary nitrate and nitrite concentrations were measured over a 12-h period and urinary nitrate over a 24-h period. Time, intervention, age, and interaction effects were measured with repeated-measures ANOVAs. RESULTS Dose-dependent increases were seen in plasma, salivary, and urinary nitrate after BR ingestion (all P ≤ 0.002) but there were no differences between age groups at baseline (all P ≥ 0.56) or postintervention (all P ≥ 0.12). Plasma nitrite concentrations were higher in young than older participants at baseline (P = 0.04) and after consumption of 200 g (P = 0.04; +25.7 nmol/L; 95% CI: 0.97, 50.3 nmol/L) and 300 g BR (P = 0.02; +50.3 nmol/L; 95% CI: 8.57, 92.1 nmol/L). Baseline fractional exhaled NO (FeNO) concentrations were higher in the younger group [P = 0.03; +8.60 parts per billion (ppb); 95% CI: 0.80, 16.3 ppb], and rose significantly over the 5-h period, peaking 5 h after KNO3 consumption (39.4 ± 4.5 ppb; P < 0.001); however, changes in FeNO were not influenced by age (P = 0.276). CONCLUSIONS BR is a source of bioavailable dietary nitrate in both young and older adults and can effectively raise nitrite and nitrate concentrations. Lower plasma nitrite and FeNO concentrations were found in older subjects, confirming the impact of ageing on NO bioavailability across different systems.This trial was registered at www.isrctn.com as ISRCTN86706442.
Collapse
Affiliation(s)
| | | | - Tom Clifford
- Human Nutrition Research Centre, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Guy Taylor
- Human Nutrition Research Centre, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Wasim Iqbal
- Human Nutrition Research Centre, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Daniel West
- Human Nutrition Research Centre, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
80
|
Welk A, Patjek S, Gärtner M, Baguhl R, Schwahn C, Below H. Antibacterial and antiplaque efficacy of a lactoperoxidase-thiocyanate-hydrogen-peroxide-system-containing lozenge. BMC Microbiol 2021; 21:302. [PMID: 34732139 PMCID: PMC8564979 DOI: 10.1186/s12866-021-02333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022] Open
Abstract
Background Antimicrobial agents are considered valuable adjuncts to mechanical methods of plaque control. However, their long-term use can be limited because of side effects. Therefore, using physiological substances is promising due to no risk of development, for example, of microbial resistances, allergies or DNA damaging. The lactoperoxidase-thiocyanate-hydrogen peroxide system (LPO-system) is a highly effective antimicrobial system. This study aimed to evaluate in a randomized study with a four-replicate cross-over design the effectiveness of two oral hygiene lozenges containing LPO-system in oral hygiene. Results After using the mouth rinse as positive control (A) and allocated test lozenges (B) (0.083% H2O2) & (C) (0.04% H2O2) for 4 days instead of the normal oral hygiene procedures (tooth brushing etc.), Listerine rinse (A) was statistically significantly more effective than the LPO-system-lozenge with 0.083% H2O2, the LPO-system-lozenge with 0.04% H2O2, and the placebo lozenge (D) in inhibiting plaque. Lozenges B and C were statistically significantly more effective than the placebo lozenge, but no statistically significant differences could be observed between them. The LPO-system-lozenge (B) reduced statistically significantly more S. mutans than the LPO-system-lozenge with (C) and the placebo lozenge (D). The LPO-system-lozenge (C) reduced statistically significantly more Lactobacilli than Listerine (A), the LPO-system-lozenge (B) and the placebo lozenge (D). There were no statistically significant differences in the total CFUs between Listerine rinse, the LPO-system-lozenge with 0.083% H2O2 (B), the LPO-system-lozenge with 0.04% H2O2 (C), and the placebo lozenge (D). On day 5 there were no differences of the OSCN−-values between all A, B, C, and D. However, the SCN−-values increased over the days in both LPO-system-lozenges (B/C). The statistically significant differences between B/C and A/D on day 5 were as followed: A to B p = 0.0268; A to C p = 0.0035; B to D p = 0.0051; C to D p = 0.0007. Only in the group of Listerine (A) increased the NO3−/NO2−-quotient over the test time, which indicates a reduction of nitrate-reducing bacteria. On Day 5 the statistically significant difference between A and B was p = 0.0123. Conclusions The results indicate that lozenges containing a complete LPO-system, inhibiting plaque regrowth and reducing cariogenic bacteria, may be used in the daily oral hygiene.
Collapse
Affiliation(s)
- A Welk
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive and Pediatric Dentistry, Dental School of the University Medicine Greifswald, Walther-Rathenau-Str. 42a, 17475, Greifswald, Germany.
| | - S Patjek
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive and Pediatric Dentistry, Dental School of the University Medicine Greifswald, Walther-Rathenau-Str. 42a, 17475, Greifswald, Germany
| | - M Gärtner
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive and Pediatric Dentistry, Dental School of the University Medicine Greifswald, Walther-Rathenau-Str. 42a, 17475, Greifswald, Germany
| | - R Baguhl
- Institute of Hygiene and Environmental Medicine of the University Medicine Greifswald, Greifswald, Germany
| | - Ch Schwahn
- Dental School, Department of Prosthodontics, University of Greifswald, Greifswald, Germany
| | - H Below
- Institute of Hygiene and Environmental Medicine of the University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
81
|
Miller L, Hébert CD, Grimes SD, Toomey JS, Oh JY, Rose JJ, Patel RP. Safety and toxicology assessment of sodium nitrite administered by intramuscular injection. Toxicol Appl Pharmacol 2021; 429:115702. [PMID: 34464673 PMCID: PMC8459319 DOI: 10.1016/j.taap.2021.115702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
Intramuscular (IM) injection of nitrite (1-10 mg/kg) confers survival benefit and protects against lung injury after exposure to chlorine gas in preclinical models. Herein, we evaluated safety/toxicity parameters after single, and repeated (once daily for 7 days) IM injection of nitrite in male and female Sprague Dawley rats and Beagle dogs. The repeat dose studies were performed in compliance with the Federal Drug Administration's (FDA) Good Laboratory Practices Code of Federal Regulations (21 CFR Part 58). Parameters evaluated consisted of survival, clinical observations, body weights, clinical pathology, plasma drug levels, methemoglobin and macroscopic and microscopic pathology. In rats and dogs, single doses of ≥100 mg/kg and 60 mg/kg resulted in death and moribundity, while repeated administration of ≤30 or ≤ 10 mg/kg/day, respectively, was well tolerated. Therefore, the maximum tolerated dose following repeated administration in rats and dogs were determined to be 30 mg/kg/day and 10 mg/kg/day, respectively. Effects at doses below the maximum tolerated dose (MTD) were limited to emesis (in dogs only) and methemoglobinemia (in both species) with clinical signs (e.g. blue discoloration of lips) being dose-dependent, transient and reversible. These signs were not considered adverse, therefore the No Observed Adverse Effect Level (NOAEL) for both rats and dogs was 10 mg/kg/day in males (highest dose tested for dogs), and 3 mg/kg/day in females. Toxicokinetic assessment of plasma nitrite showed no difference between male and females, with Cmax occurring between 5 mins and 0.5 h (rats) or 0.25 h (dogs). In summary, IM nitrite was well tolerated in rats and dogs at doses previously shown to confer protection against chlorine gas toxicity.
Collapse
Affiliation(s)
- Lutfiya Miller
- Intertek Health Sciences, Inc., Pharmaceuticals & Healthcare, Mississauga, ON, Canada
| | | | | | - James S Toomey
- Southern Research, Birmingham, AL, United States of America
| | - Joo-Yeun Oh
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason J Rose
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rakesh P Patel
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
82
|
Sheridan HC, Parker LJF, Hammond KM. DIETARY SUPPLEMENTS FOR CONSIDERATION IN ELITE FEMALE FOOTBALLERS. Eur J Sport Sci 2021; 22:733-744. [PMID: 34623938 DOI: 10.1080/17461391.2021.1988149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The physical demands of professional female football have intensified in recent years. Supplements are only advised in addition to a healthy, balanced diet, but may warrant a greater prevalence in the professional game to support well-being, recovery, and performance. Supplements used by players should be safe, legal, and scientifically proven to be effective. An individual approach should be taken to using supplements dependant on the needs and goals of the player. Female players should aim to improve the frequency of protein intake throughout the day, whilst tailoring doses to individual body mass. Vitamin D supplementation is vital throughout the winter months in countries with limited sun exposure, however doses should be administered based on individual blood test results. Iron is likely to be important to the well-being of female athletes throughout the season, in particular during the menses. Omega-3 and collagen may be of greater benefit to female than male athletes during recovery from soft tissue injury, whilst probiotics and creatine are beneficial throughout the season for reducing risk of illness and optimising recovery, respectively. Ergogenic supplements for football include beta-alanine, nitrate and caffeine. Caution should be taken with caffeine use due to the varying tolerance of difference athletes and sleep impairments that can follow.
Collapse
Affiliation(s)
| | - Lloyd J F Parker
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Kelly M Hammond
- School of Health & Society, University of Salford, Manchester, M54WT
| |
Collapse
|
83
|
Moreira LDSG, Fanton S, Cardozo L, Borges NA, Combet E, Shiels PG, Stenvinkel P, Mafra D. Pink pressure: beetroot (Beta vulgaris rubra) as a possible novel medical therapy for chronic kidney disease. Nutr Rev 2021; 80:1041-1061. [PMID: 34613396 DOI: 10.1093/nutrit/nuab074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) manifests with systemic inflammation, oxidative stress, and gut dysbiosis, resulting in metabolic disorders and elevated rates of cardiovascular disease-associated death. These all correlate with a high economic cost to healthcare systems. Growing evidence indicates that diet is an indispensable ally in the prevention and management of CKD and its complications. In this context, the root vegetable beetroot (Beta vulgaris rubra) deserves special attention because it is a source of several bioactive compounds, such as nitrate, betaine, and betalain, and has shown beneficial effects in CKD, including reduction of blood pressure, anti-inflammatory effects, and antioxidant actions by scavenging radical oxidative species, as observed in preclinical studies. Beetroot consumption as a possible therapeutic strategy to improve the clinical treatment of patients with CKD and future directions for clinical studies are addressed in this narrative review.
Collapse
Affiliation(s)
- Laís de Souza Gouveia Moreira
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Susane Fanton
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ludmila Cardozo
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Natalia A Borges
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Emilie Combet
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Paul G Shiels
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Stenvinkel
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Denise Mafra
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
84
|
van der Avoort CMT, Ten Haaf DSM, Bongers CCWG, van Oorschot F, Verdijk LB, van Loon LJC, Hopman MTE. Increasing Nitrate-Rich Vegetable Intake Lowers Ambulatory Blood Pressure in (pre)Hypertensive Middle-Aged and Older Adults: A 12-Wk Randomized Controlled Trial. J Nutr 2021; 151:2667-2679. [PMID: 34236392 DOI: 10.1093/jn/nxab157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/28/2020] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Emerging evidence suggests that increasing dietary nitrate intake may be an effective approach to improve cardiovascular health. However, the effects of a prolonged elevation of nitrate intake through an increase in vegetable consumption are understudied. OBJECTIVE Our primary aim was to determine the impact of 12 wk of increased daily consumption of nitrate-rich vegetables or nitrate supplementation on blood pressure (BP) in (pre)hypertensive middle-aged and older adults. METHODS In a 12-wk randomized, controlled study (Nijmegen, The Netherlands), 77 (pre)hypertensive participants (BP: 144 ± 13/87 ± 7 mmHg, age: 65 ± 10 y) either received an intervention with personalized monitoring and feedback aiming to consume ∼250-300 g nitrate-rich vegetables/d (∼350-400 mg nitrate/d; n = 25), beetroot juice supplementation (400 mg nitrate/d; n = 26), or no intervention (control; n = 26). Before and after intervention, 24-h ambulatory BP was measured. Data were analyzed using repeated measures ANOVA (time × treatment), followed by within-group (paired t-test) and between-group analyses (1-factor ANOVA) where appropriate. RESULTS The 24-h systolic BP (SBP) (primary outcome) changed significantly (P-interaction time × treatment = 0.017) with an increase in the control group (131 ± 8 compared with 135 ± 10 mmHg; P = 0.036); a strong tendency for a decline in the nitrate-rich vegetable group (129 ± 10 compared with 126 ± 9 mmHg; P = 0.051) which was different from control (P = 0.020); but no change in the beetroot juice group (133 ± 11 compared with 132 ± 12 mmHg; P = 0.56). A significant time × treatment interaction was also found for daytime SBP (secondary outcome, P = 0.011), with a significant decline in the nitrate-rich vegetable group (134 ± 10 compared with 129 ± 9 mmHg; P = 0.006) which was different from control (P = 0.010); but no changes in the beetroot juice (138 ± 12 compared with 137 ± 14 mmHg; P = 0.41) and control group (136 ± 10 compared with 137 ± 11 mmHg; P = 0.08). Diastolic BP (secondary outcome) did not change in any of the groups. CONCLUSIONS A prolonged dietary intervention focusing on high-nitrate vegetable intake is an effective strategy to lower SBP in (pre)hypertensive middle-aged and older adults. This trial was registered at www.trialregister.nl as NL7814.
Collapse
Affiliation(s)
- Cindy M T van der Avoort
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Maastricht, The Netherlands.,Institute of Sport and Exercise Studies, HAN University of Applied Sciences, Nijmegen, The Netherlands.,Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dominique S M Ten Haaf
- Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Coen C W G Bongers
- Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frederieke van Oorschot
- Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lex B Verdijk
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Luc J C van Loon
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Maastricht, The Netherlands.,Institute of Sport and Exercise Studies, HAN University of Applied Sciences, Nijmegen, The Netherlands
| | - Maria T E Hopman
- Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
85
|
He Y, Liu J, Cai H, Zhang J, Yi J, Niu Y, Xi H, Peng X, Guo L. Effect of inorganic nitrate supplementation on blood pressure in older adults: A systematic review and meta-analysis. Nitric Oxide 2021; 113-114:13-22. [PMID: 33905826 DOI: 10.1016/j.niox.2021.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/01/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Previous clinical studies have shown controversial results regarding the effect of inorganic nitrate supplementation on blood pressure (BP) in older individuals. We performed this systematic review and meta-analysis to assess the effect of inorganic nitrate on BP in older adults. METHODS Eligible studies were searched in Cochrane Library, PubMed, Scopus, Web of Science, and Embase. Randomized controlled trials which evaluated the effect of inorganic nitrate consumption on BP in older adults were recruited. The random-effect model was used to calculate the pooled effect sizes. RESULTS 22 studies were included in this meta-analysis. Overall, inorganic nitrate consumption significantly reduced systolic blood pressure (SBP) by -3.90 mmHg (95% confidence interval: -5.23 to -2.57; P < 0.001) and diastolic blood pressure (DBP) by -2.62 mmHg (95% confidence interval: -3.86 to -1.37; P < 0.005) comparing with the control group. Subgroup analysis showed that the BP was significantly reduced when participants' age≥65, BMI>30, or baseline BP in prehypertension stage. And both SBP and DBP decreased significantly after acute nitrate supplementation of a single dose (<1 day) or more than 1-week. However, participants with hypertension at baseline were not associated with significant changes in both SBP and DBP. Subgroup analysis of measurement methods showed that only the resting BP group showed a significant reduction in SBP and DBP, compared with the 24-h ambulatory BP monitoring (ABPM) group and daily home BP measurement group. CONCLUSION These results demonstrate that consuming inorganic nitrate can significantly reduce SBP and DBP in older adults, especially in whose age ≥ 65, BMI>30, or baseline BP in prehypertension stage.
Collapse
Affiliation(s)
- Yayu He
- School of Nursing, Jilin University, Changchun, Jilin, 130021, China.
| | - Jinshu Liu
- School of Nursing, Jilin University, Changchun, Jilin, 130021, China.
| | - Hongwei Cai
- School of Nursing, Jilin University, Changchun, Jilin, 130021, China.
| | - Jun Zhang
- The Second Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Jiang Yi
- The Second Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Yirou Niu
- School of Nursing, Jilin University, Changchun, Jilin, 130021, China.
| | - Huihui Xi
- School of Nursing, Jilin University, Changchun, Jilin, 130021, China.
| | - Xinyue Peng
- School of Nursing, Jilin University, Changchun, Jilin, 130021, China.
| | - Lirong Guo
- School of Nursing, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
86
|
The mediterranean way. Should elderly people eat leafy vegetables and beetroot to lower high blood pressure? Aging Clin Exp Res 2021; 33:2613-2621. [PMID: 33389684 DOI: 10.1007/s40520-020-01760-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/21/2020] [Indexed: 10/22/2022]
|
87
|
Kobayashi J. Lifestyle-mediated nitric oxide boost to prevent SARS-CoV-2 infection: A perspective. Nitric Oxide 2021; 115:55-61. [PMID: 34364972 PMCID: PMC8340570 DOI: 10.1016/j.niox.2021.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 01/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide and has seriously threatened public health by causing significant morbidity and mortality. Patients with coronavirus disease (COVID-19) with preexisting endothelial dysfunction caused by aging, diabetes, hypertension, and obesity are at high risk for life-threatening thromboembolic complications. This suggests a possibility that reduced endothelial nitric oxide (NO) production and NO bioavailability could be a common underlying pathology for the progression of COVID-19. Increasingly, evidence from experimental and clinical studies of SARS-CoV-2 infection shows that NO inhibits the pathogenesis of COVID-19, including virus entry into host cells, viral replication, host immune response, and subsequent thromboembolic complications. Restoring NO bioavailability may have the potential to be a preventive or early-treatment option for COVID-19. This review aims to provide in-depth discussion of NO bioavailability to prevent SARS-CoV-2 infection, particularly by focusing on lifestyle factors such as nitrate-rich diets, physical exercise, and nasal breathing, which could be easily performed on a daily basis to boost NO bioavailability.
Collapse
Affiliation(s)
- Jun Kobayashi
- Faculty of Pharmaceutical Science, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| |
Collapse
|
88
|
Gee LC, Massimo G, Lau C, Primus C, Fernandes D, Chen J, Rathod KS, Hamers AJP, Filomena F, Nuredini G, Ibrahim AS, Khambata RS, Gupta AK, Moon JC, Kapil V, Ahluwalia A. Inorganic nitrate attenuates cardiac dysfunction: role for xanthine oxidoreductase and nitric oxide. Br J Pharmacol 2021; 179:4757-4777. [PMID: 34309015 DOI: 10.1111/bph.15636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/28/2022] Open
Abstract
Nitric oxide (NO) is a vasodilator and independent modulator of cardiac remodelling. Commonly, in cardiac disease (e.g. heart failure) endothelial dysfunction (synonymous with NO-deficiency) has been implicated in increased blood pressure (BP), cardiac hypertrophy and fibrosis. Currently no effective therapies replacing NO have succeeded in the clinic. Inorganic nitrate (NO3 - ), through chemical reduction to nitrite and then NO, exerts potent BP-lowering but whether it might be useful in treating undesirable cardiac remodelling is unknown. In a nested age- and sex-matched case-control study of hypertensive patients +/- left ventricular hypertrophy (NCT03088514) we show that lower plasma nitrite concentration and vascular dysfunction accompany cardiac hypertrophy and fibrosis in patients. In mouse models of cardiac remodelling, we also show that restoration of circulating nitrite levels using dietary nitrate improves endothelial dysfunction through targeting of xanthine oxidoreductase (XOR)-driven H2 O2 and superoxide, and reduces cardiac fibrosis through NO-mediated block of SMAD-phosphorylation leading to improvements in cardiac structure and function. We show that via these mechanisms dietary nitrate offers easily translatable therapeutic options for treatment of cardiac dysfunction.
Collapse
Affiliation(s)
- Lorna C Gee
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Gianmichele Massimo
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Clement Lau
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Christopher Primus
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Daniel Fernandes
- Departamento de Farmacologia, Federal University of Santa Catarina, Florianópolis, Santa Catarina,, Brazil
| | - Jianmin Chen
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Krishnaraj S Rathod
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Alexander Jozua Pedro Hamers
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Federica Filomena
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Gani Nuredini
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Abdiwahab Shidane Ibrahim
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Rayomand S Khambata
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Ajay K Gupta
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - James C Moon
- UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Vikas Kapil
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Amrita Ahluwalia
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
89
|
Bath PM, Coleman CM, Gordon AL, Lim WS, Webb AJ. Nitric oxide for the prevention and treatment of viral, bacterial, protozoal and fungal infections. F1000Res 2021; 10:536. [PMID: 35685687 PMCID: PMC9171293 DOI: 10.12688/f1000research.51270.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Although the antimicrobial potential of nitric oxide (NO) is widely published, it is little used clinically. NO is a key signalling molecule modulating vascular, neuronal, inflammatory and immune responses. Endogenous antimicrobial activity is largely mediated by high local NO concentrations produced by cellular inducible nitric oxide synthase, and by derivative reactive nitrogen oxide species including peroxynitrite and S-nitrosothiols. NO may be taken as dietary substrate (inorganic nitrate, L-arginine), and therapeutically as gaseous NO, and transdermal, sublingual, oral, intranasal and intravenous nitrite or nitrate. Numerous preclinical studies have demonstrated that NO has generic static and cidal activities against viruses (including β-coronaviruses such as SARS-CoV-2), bacteria, protozoa and fungi/yeasts in vitro. Therapeutic effects have been seen in animal models in vivo, and phase II trials have demonstrated that NO donors can reduce microbial infection. Nevertheless, excess NO, as occurs in septic shock, is associated with increased morbidity and mortality. In view of the dose-dependent positive and negative effects of NO, safety and efficacy trials of NO and its donors are needed for assessing their role in the prevention and treatment of infections. Trials should test dietary inorganic nitrate for pre- or post-exposure prophylaxis and gaseous NO or oral, topical or intravenous nitrite and nitrate for treatment of mild-to-severe infections, including due to SARS-CoV-2 (COVID-19). This review summarises the evidence base from in vitro, in vivo and early phase clinical studies of NO activity in viral, bacterial, protozoal and fungal infections.
Collapse
Affiliation(s)
- Philip M Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
- Stroke, Nottingham University Hospitals NHS Trust, Nottingham, Notts, NG7 2UH, UK
| | - Christopher M Coleman
- Division of Infection, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
| | - Adam L Gordon
- Unit of Injury, Inflammation and Recovery Sciences, University of Nottingham, Derby, Derbyshire, DE22 3NE, UK
- NIHR Applied Research Collaboration-East Midlands (ARC-EM), Nottingham, Notts, UK
| | - Wei Shen Lim
- Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, NG5 1PB, UK
| | - Andrew J Webb
- Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, Kings College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
90
|
Bath PM, Coleman CM, Gordon AL, Lim WS, Webb AJ. Nitric oxide for the prevention and treatment of viral, bacterial, protozoal and fungal infections. F1000Res 2021; 10:536. [PMID: 35685687 PMCID: PMC9171293 DOI: 10.12688/f1000research.51270.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/18/2023] Open
Abstract
Although the antimicrobial potential of nitric oxide (NO) is widely published, it is little used clinically. NO is a key signalling molecule modulating vascular, neuronal, inflammatory and immune responses. Endogenous antimicrobial activity is largely mediated by high local NO concentrations produced by cellular inducible nitric oxide synthase, and by derivative reactive nitrogen oxide species including peroxynitrite and S-nitrosothiols. NO may be taken as dietary substrate (inorganic nitrate, L-arginine), and therapeutically as gaseous NO, and transdermal, sublingual, oral, intranasal and intravenous nitrite or nitrate. Numerous preclinical studies have demonstrated that NO has generic static and cidal activities against viruses (including β-coronaviruses such as SARS-CoV-2), bacteria, protozoa and fungi/yeasts in vitro. Therapeutic effects have been seen in animal models in vivo, and phase II trials have demonstrated that NO donors can reduce microbial infection. Nevertheless, excess NO, as occurs in septic shock, is associated with increased morbidity and mortality. In view of the dose-dependent positive and negative effects of NO, safety and efficacy trials of NO and its donors are needed for assessing their role in the prevention and treatment of infections. Trials should test dietary inorganic nitrate for pre- or post-exposure prophylaxis and gaseous NO or oral, topical or intravenous nitrite and nitrate for treatment of mild-to-severe infections, including due to SARS-CoV-2 (COVID-19). This review summarises the evidence base from in vitro, in vivo and early phase clinical studies of NO activity in viral, bacterial, protozoal and fungal infections.
Collapse
Affiliation(s)
- Philip M. Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
- Stroke, Nottingham University Hospitals NHS Trust, Nottingham, Notts, NG7 2UH, UK
| | - Christopher M. Coleman
- Division of Infection, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
| | - Adam L. Gordon
- Unit of Injury, Inflammation and Recovery Sciences, University of Nottingham, Derby, Derbyshire, DE22 3NE, UK
- NIHR Applied Research Collaboration-East Midlands (ARC-EM), Nottingham, Notts, UK
| | - Wei Shen Lim
- Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, NG5 1PB, UK
| | - Andrew J. Webb
- Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, Kings College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
91
|
Kobayashi J. Nitrite in breast milk: roles in neonatal pathophysiology. Pediatr Res 2021; 90:30-36. [PMID: 33173179 DOI: 10.1038/s41390-020-01247-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/03/2020] [Accepted: 10/13/2020] [Indexed: 11/09/2022]
Abstract
Dietary nitrate has beneficial effects on health maintenance and prevention of lifestyle-related diseases in adulthood by serving as an alternative source of nitric oxide (NO) through the enterosalivary nitrate-nitrite-NO pathway, particularly when endogenous NO generation is lacking due to vascular endothelial dysfunction. However, this pathway is not developed in the early postnatal period due to a lack of oral commensal nitrate-reducing bacteria and less saliva production than in adults. To compensate for the decrease in nitrite during this period, colostrum contains the highest amount of nitrite compared with transitional, mature, and even artificial milk, suggesting that colostrum plays an important role in tentatively replenishing nitrite, in addition to involving a nutritional aspect, until the enterosalivary nitrate-nitrite-NO pathway is established. Increasing evidence demonstrates that breast milk rich in nitrite can be effective in the prevention of neonatal infections and gastrointestinal diseases such as infantile hypertrophic pyloric stenosis and necrotizing enterocolitis, suggesting that breastfeeding is advantageous for newborns at risk, given the physiological role of nitrite in the early postnatal period. IMPACT: The aim of this review is to discuss the physiological roles of nitrite in breast milk and its implications for neonates. Nitrite in breast milk may compensate for the decrease in nitrite during the early neonatal period until the enterosalivary nitrate-nitrite-nitric oxide pathway is established. Breast milk rich in nitrite may be effective in the prevention of neonatal infections and gastrointestinal diseases by providing nitric oxide bioavailability.
Collapse
Affiliation(s)
- Jun Kobayashi
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Science, Josai University, Saitama, Japan.
| |
Collapse
|
92
|
Beirne AM, Mitchelmore O, Palma S, Andiapen M, Rathod KS, Hammond V, Bellin A, Cooper J, Wright P, Antoniou S, Yaqoob MM, Naci H, Mathur A, Ahluwalia A, Jones DA. NITRATE-CIN Study: Protocol of a Randomized (1:1) Single-Center, UK, Double-Blind Placebo-Controlled Trial Testing the Effect of Inorganic Nitrate on Contrast-Induced Nephropathy in Patients Undergoing Coronary Angiography for Acute Coronary Syndromes. J Cardiovasc Pharmacol Ther 2021; 26:303-309. [PMID: 33764198 PMCID: PMC8132002 DOI: 10.1177/1074248421000520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Contrast-induced nephropathy (CIN), an acute kidney injury resulting from the administration of intravascular iodinated contrast media, is a significant cause of morbidity/mortality following coronary angiographic procedures in high-risk patients. Despite preventative measures intended to mitigate the risk of CIN, there remains a need for novel effective treatments. Evidence suggests that delivery of nitric oxide (NO) through chemical reduction of inorganic nitrate to NO may offer a novel therapeutic strategy to reduce CIN and thus preserve long term renal function. DESIGN The NITRATE-CIN trial is a single-center, randomized, double-blind placebo-controlled trial, which plans to recruit 640 patients presenting with acute coronary syndromes (ACS) who are at risk of CIN. Patients will be randomized to either inorganic nitrate therapy (capsules containing 12 mmol KNO3) or placebo capsules containing potassium chloride (KCl) daily for 5 days. The primary endpoint is development of CIN using the Kidney Disease Improving Global Outcomes (KDIGO) criteria. A key secondary endpoint is renal function over a 3-month follow-up period. Additional secondary endpoints include serum renal biomarkers (e.g. neutrophil gelatinase-associated lipocalin) at 6 h, 48 h and 3 months following administration of contrast. Cost-effectiveness of inorganic nitrate therapy will also be evaluated. SUMMARY This study is designed to investigate the hypothesis that inorganic nitrate treatment decreases the rate of CIN as part of semi-emergent coronary angiography for ACS. Inorganic nitrate is a simple and easy to administer intervention that may prove useful in prevention of CIN in at-risk patients undergoing coronary angiographic procedures.
Collapse
Affiliation(s)
- Anne-Marie Beirne
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, United Kingdom
- Barts Interventional Group, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| | - Oliver Mitchelmore
- Barts Interventional Group, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| | - Susana Palma
- Barts Interventional Group, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| | - Mervyn Andiapen
- Barts Interventional Group, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| | - Krishnaraj S. Rathod
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, United Kingdom
- Barts Interventional Group, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| | - Victoria Hammond
- Barts Cardiovascular Clinical Trials Unit, Queen Mary University of London, London, United Kingdom
| | - Anna Bellin
- Barts Cardiovascular Clinical Trials Unit, Queen Mary University of London, London, United Kingdom
| | - Jackie Cooper
- Barts Cardiovascular Clinical Trials Unit, Queen Mary University of London, London, United Kingdom
| | - Paul Wright
- Department of Pharmacy, Barts Heart Centre, London, United Kingdom
| | - Sotiris Antoniou
- Department of Pharmacy, Barts Heart Centre, London, United Kingdom
| | | | - Huseyin Naci
- Department of Health Policy, London School of Economics, London, United Kingdom
| | - Anthony Mathur
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, United Kingdom
- Barts Interventional Group, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| | - Amrita Ahluwalia
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, United Kingdom
- Barts Cardiovascular Clinical Trials Unit, Queen Mary University of London, London, United Kingdom
| | - Daniel A. Jones
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, United Kingdom
- Barts Interventional Group, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
- Barts Cardiovascular Clinical Trials Unit, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
93
|
Repeated administration of inorganic nitrate on blood pressure and arterial stiffness: a systematic review and meta-analysis of randomized controlled trials. J Hypertens 2021; 38:2122-2140. [PMID: 32723980 DOI: 10.1097/hjh.0000000000002524] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE We aim to synthesize effects of repeated administration (≥3 days) of inorganic nitrate on blood pressure and arterial stiffness measures. METHODS We conducted a systematic review and meta-analysis of randomized controlled trials with at least 3 days treatment of inorganic nitrate on blood pressure and arterial stiffness in individuals with or without elevated cardiovascular disease risk. MEDLINE, EMBASE and the Cochrane Library were searched through 2 July 2019. Two independent reviewers extracted relevant study data. Data were pooled using the generic inverse variance method with random-effects model, and expressed as mean differences with 95% confidence intervals. Certainty in the evidence was assessed using GRADE. RESULTS Forty-seven trials were included (n = 1101). Administration of inorganic nitrate significantly lowered SBP [mean difference: -2.91 mmHg, 95% confidence interval (95% CI): -3.92 to -1.89, I = 76%], DBP (mean difference: -1.45 mmHg, 95% CI: -2.22 to -0.68, I = 78%], central SBP (mean difference: -1.56 mmHg, 95% CI: -2.62 to -0.50, I = 30%) and central DBP (mean difference: -1.99 mmHg, 95% CI: -2.37 to -1.60, I = 0%). There was no effect on 24-h blood pressure, augmentation index or pulse wave velocity. Certainty in the evidence was graded moderate for central blood pressure, pulse wave velocity and low for peripheral blood pressure, 24-h blood pressure and augmentation index. CONCLUSION Repeated administration (≥3 days) of inorganic nitrate lower peripheral and central blood pressure. Results appear to be driven by beneficial effects in healthy and hypertensive individuals. More studies are required to increase certainty in the evidence.
Collapse
|
94
|
Bahrami LS, Arabi SM, Feizy Z, Rezvani R. The effect of beetroot inorganic nitrate supplementation on cardiovascular risk factors: A systematic review and meta-regression of randomized controlled trials. Nitric Oxide 2021; 115:8-22. [PMID: 34119659 DOI: 10.1016/j.niox.2021.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Inorganic nitrate is one of the most effective compounds in beetroot for improving cardiovascular function due to its conversion to nitric oxide in the body. This review and meta-analysis aimed to investigate the role of beetroot inorganic nitrate supplementation on adults' cardiovascular risk factors. METHODS We conducted a systematic literature review of articles published without time limitation until November 2020 in PubMed, Embase, ISI Web of Science, Scopus, Cochrane Library, and gray literature databases. We included the original randomized clinical trials (RCTs) in which the effect of beetroot inorganic nitrate supplementation on endothelial function, arterial stiffness, and blood pressure was studied. RESULTS 43 studies were included for qualitative synthesis, out of which 27 were eligible for meta-analysis. Beetroot inorganic nitrate supplementation significantly decreased Arterial Stiffness (Pulse Wave Velocity (-0.27 m/s, p = 0.04)) and increased Endothelial function (Flow Mediated Dilation: 0.62%, p = 0.002) but did not change other parameters (p > 0.05). CONCLUSION Beetroot inorganic nitrate supplementation might have a beneficial effect on cardiovascular risk factors. Further high-quality investigations will be needed to provide sufficient evidence.
Collapse
Affiliation(s)
- Leila Sadat Bahrami
- Metabolic Syndrome Research Center, Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyyed Mostafa Arabi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Zahra Feizy
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX79414, USA.
| | - Reza Rezvani
- Metabolic Syndrome Research Center, Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
95
|
Shannon OM, Easton C, Shepherd AI, Siervo M, Bailey SJ, Clifford T. Dietary nitrate and population health: a narrative review of the translational potential of existing laboratory studies. BMC Sports Sci Med Rehabil 2021; 13:65. [PMID: 34099037 PMCID: PMC8186051 DOI: 10.1186/s13102-021-00292-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dietary inorganic nitrate (NO3-) is a polyatomic ion, which is present in large quantities in green leafy vegetables and beetroot, and has attracted considerable attention in recent years as a potential health-promoting dietary compound. Numerous small, well-controlled laboratory studies have reported beneficial health effects of inorganic NO3- consumption on blood pressure, endothelial function, cerebrovascular blood flow, cognitive function, and exercise performance. Translating the findings from small laboratory studies into 'real-world' applications requires careful consideration. MAIN BODY This article provides a brief overview of the existing empirical evidence basis for the purported health-promoting effects of dietary NO3- consumption. Key areas for future research are then proposed to evaluate whether promising findings observed in small animal and human laboratory studies can effectively translate into clinically relevant improvements in population health. These proposals include: 1) conducting large-scale, longer duration trials with hard clinical endpoints (e.g. cardiovascular disease incidence); 2) exploring the feasibility and acceptability of different strategies to facilitate a prolonged increase in dietary NO3- intake; 3) exploitation of existing cohort studies to explore associations between NO3- intake and health outcomes, a research approach allowing larger samples sizes and longer duration follow up than is feasible in randomised controlled trials; 4) identifying factors which might account for individual differences in the response to inorganic NO3- (e.g. sex, genetics, habitual diet) and could assist with targeted/personalised nutritional interventions; 5) exploring the influence of oral health and medication on the therapeutic potential of NO3- supplementation; and 6) examining potential risk of adverse events with long term high- NO3- diets. CONCLUSION The salutary effects of dietary NO3- are well established in small, well-controlled laboratory studies. Much less is known about the feasibility and efficacy of long-term dietary NO3- enrichment for promoting health, and the factors which might explain the variable responsiveness to dietary NO3- supplementation between individuals. Future research focussing on the translation of laboratory data will provide valuable insight into the potential applications of dietary NO3- supplementation to improve population health.
Collapse
Affiliation(s)
- Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Chris Easton
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Blantyre, Scotland, UK
| | - Anthony I Shepherd
- School of Sport, Health & Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| |
Collapse
|
96
|
Aliahmadi M, Amiri F, Bahrami LS, Hosseini AF, Abiri B, Vafa M. Effects of raw red beetroot consumption on metabolic markers and cognitive function in type 2 diabetes patients. J Diabetes Metab Disord 2021; 20:673-682. [PMID: 34222085 PMCID: PMC8212206 DOI: 10.1007/s40200-021-00798-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES This study aimed to investigate the effects of raw red beetroot consumption on metabolic markers and cognitive function in type 2 diabetes patients. METHODS In a quasi-experimental study, 44 type 2 diabetes patients (57 ± 4.5 years) consumed raw red beetroot (100 g, daily), for 8 weeks. Metabolic markers including body weight, glucose and lipid profile parameters, inflammatory and oxidative stress markers, paraoxonase-1 activity, hepatic enzymes, blood pressure and cognitive function were measured at the beginning and end of 8 weeks. RESULTS Raw red beetroot consumption resulted in a significant decrease in fasting blood sugar (FBS) levels (-13.53 mg/dL), glycosylated hemoglobin (HbA1c)(-0.34%), apolipoproteinB100 (ApoB100) (-8.25 mg/dl), aspartate aminotransferase (AST) (-1.75 U/L), alanine aminotransferase (ALT) (-3.7 U/L), homocysteine (-7.88 μmol/l), systolic (-0.73 mmHg) and diastolic blood pressure (-0.34 mmHg), anda significant increase in total antioxidant capacity (TAC) (105 μmol/L) and cognitive function tests (all P values <0.05). Other variables did not change significantly after the intervention. CONCLUSIONS Raw red beetroot consumption for 8 weeks in T2DM patients has beneficial impacts on cognitive function, glucose metabolism and other metabolic markers.
Collapse
Affiliation(s)
- Mitra Aliahmadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amiri
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Sadat Bahrami
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Agha Fatemeh Hosseini
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Abiri
- Department of Nutrition, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
97
|
O'Gallagher K, Cabaco AR, Ryan M, Roomi A, Gu H, Dancy L, Melikian N, Chowienczyk PJ, Webb AJ, Shah AM. Direct cardiac versus systemic effects of inorganic nitrite on human left ventricular function. Am J Physiol Heart Circ Physiol 2021; 321:H175-H184. [PMID: 34018850 PMCID: PMC8505166 DOI: 10.1152/ajpheart.00081.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inorganic nitrite is a source of nitric oxide (NO) and is considered as a potential therapy in settings where endogenous NO bioactivity is reduced and left ventricular (LV) function impaired. However, the effects of nitrite on human cardiac contractile function, and the extent to which these are direct or indirect, are unclear. We studied 40 patients undergoing diagnostic cardiac catheterization who had normal LV systolic function and were not found to have obstructive coronary disease. They received either an intracoronary sodium nitrite infusion (8.7–26 µmol/min, n = 20) or an intravenous sodium nitrite infusion (50 µg/kg/min, n = 20). LV pressure-volume relations were recorded. The primary end point was LV end-diastolic pressure (LVEDP). Secondary end points included indices of LV systolic and diastolic function. Intracoronary nitrite infusion induced a significant reduction in LVEDP, LV end-diastolic pressure-volume relationship (EDPVR), and the time to LV end-systole (LVEST) but had no significant effect on LV systolic function or systemic hemodynamics. Intravenous nitrite infusion induced greater effects, with significant decreases in LVEDP, EDPVR, LVEST, LV dP/dtmin, tau, and mean arterial pressure. Inorganic nitrite has modest direct effects on human LV diastolic function, independent of LV loading conditions and without affecting LV systolic properties. However, the systemic administration of nitrite has larger effects on LV diastolic function, which are related to reduction in both preload and afterload. These contractile effects of inorganic nitrite may indicate a favorable profile for conditions characterized by LV diastolic dysfunction. NEW & NOTEWORTHY This is the first study to assess the direct and indirect effects of inorganic nitrite on invasive measures of left ventricular function in humans in vivo. Inorganic nitrite has a modest direct myocardial effect, improving diastolic function. Systemic administration of nitrite has larger effects related to alterations in cardiac preload and afterload. The changes induced by nitrite appear favorable for potential use in conditions characterized by LV diastolic dysfunction.
Collapse
Affiliation(s)
- Kevin O'Gallagher
- Department of Cardiology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom.,Department of Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Ana R Cabaco
- Department of Cardiology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Matthew Ryan
- Department of Cardiology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Ali Roomi
- Department of Cardiology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Haotian Gu
- Department of Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Luke Dancy
- Department of Cardiology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Narbeh Melikian
- Department of Cardiology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Philip J Chowienczyk
- Department of Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Andrew J Webb
- Department of Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Ajay M Shah
- Department of Cardiology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| |
Collapse
|
98
|
Amirpoor A, Zavar R, Amerizadeh A, Asgary S, Moradi S, Farzaei MH, Masoumi G, Sadeghi M. Effect of Beetroot Consumption on Serum Lipid Profile: A Systematic Review and Meta-Analysis. Curr Probl Cardiol 2021; 47:100887. [PMID: 34154819 DOI: 10.1016/j.cpcardiol.2021.100887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/02/2021] [Indexed: 11/03/2022]
Abstract
Beetroot has recently become very popular among people as a medicinal superfood that decreases blood pressure and improves athletes' performance. The present meta-analysis aimed to investigate the effect of beetroot consumption on serum lipid profile. A literature search was conducted covering PubMed, ISI Web of Science, Scopus, and Google scholar of English human subject randomized clinical trials (RCT) up to December 2020. Pooled results showed that beetroot consumption had no significant effect on any of the variables. The mean difference (95% CI) between intervention and control groups for TC was 1.25 (-0.03, 2.53), for TG -0.47 (-1.16, 0.21), for HDL 0.54 (-0.13, 1.21) and for LDL was -0.48(-1.04, 0.09). Subgroup analysis by the health condition of subjects, the form of beetroot consumption, and type of intervention showed no significant differences. It can be concluded that beetroot cannot be categorized as an effective supplementation for adjustment of lipid profile.
Collapse
Affiliation(s)
- Afshin Amirpoor
- Department of Cardiology, Chamran Cardiovascular Medical and Research Hospital Isfahan, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reihaneh Zavar
- Department of Cardiology, Chamran Cardiovascular Medical and Research Hospital Isfahan, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefeh Amerizadeh
- Cardiac Department, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajjad Moradi
- Nutritional Sciences Department, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Nutritional Sciences Department, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Masoumi
- Department of Cardiology, Chamran Cardiovascular Medical and Research Hospital Isfahan, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Sadeghi
- Cardiac Rehabilitation Research Centre, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
99
|
Abu-Alghayth M, Vanhatalo A, Wylie LJ, McDonagh ST, Thompson C, Kadach S, Kerr P, Smallwood MJ, Jones AM, Winyard PG. S-nitrosothiols, and other products of nitrate metabolism, are increased in multiple human blood compartments following ingestion of beetroot juice. Redox Biol 2021; 43:101974. [PMID: 33940546 PMCID: PMC8111767 DOI: 10.1016/j.redox.2021.101974] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022] Open
Abstract
Ingested inorganic nitrate (NO3⁻) has multiple effects in the human body including vasodilation, inhibition of platelet aggregation, and improved skeletal muscle function. The functional effects of oral NO3⁻ involve the in vivo reduction of NO3⁻ to nitrite (NO2⁻) and thence to nitric oxide (NO). However, the potential involvement of S-nitrosothiol (RSNO) formation is unclear. We hypothesised that the RSNO concentration ([RSNO]) in red blood cells (RBCs) and plasma is increased by NO3⁻-rich beetroot juice ingestion. In healthy human volunteers, we tested the effect of dietary supplementation with NO3⁻-rich beetroot juice (BR) or NO3⁻-depleted beetroot juice (placebo; PL) on [RSNO], [NO3⁻] and [NO2⁻] in RBCs, whole blood and plasma, as measured by ozone-based chemiluminescence. The median basal [RSNO] in plasma samples (n = 22) was 10 (5–13) nM (interquartile range in brackets). In comparison, the median values for basal [RSNO] in the corresponding RBC preparations (n = 19) and whole blood samples (n = 19) were higher (p < 0.001) than in plasma, being 40 (30–60) nM and 35 (25–80) nM, respectively. The median RBC [RSNO] in a separate cohort of healthy subjects (n = 5) was increased to 110 (93–125) nM after ingesting BR (12.8 mmol NO3⁻) compared to a corresponding baseline value of 25 (21–31) nM (Mann-Whitney test, p < 0.01). The median plasma [RSNO] in another cohort of healthy subjects (n = 14) was increased almost ten-fold to 104 (58–151) nM after BR supplementation (7 × 6.4 mmol of NO3⁻ over two days, p < 0.01) compared to PL. In conclusion, RBC and plasma [RSNO] are increased by BR ingestion. In addition to NO2⁻, RSNO may be involved in dietary NO3⁻ metabolism/actions. Human ingestion of NO3⁻-rich beetroot juice caused increased plasma S-nitrosothiol levels compared with baseline. Beetroot juice ingestion also caused increased S-nitrosothiol and NO2⁻ levels in red blood cells compared with baseline. RSNO formation may contribute to the physiological effects of dietary NO3⁻.
Collapse
Affiliation(s)
- Mohammed Abu-Alghayth
- University of Exeter Medical School, College of Medicine and Health, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Anni Vanhatalo
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Lee J Wylie
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Sinead Tj McDonagh
- University of Exeter Medical School, College of Medicine and Health, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Christopher Thompson
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Stefan Kadach
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Paul Kerr
- Royal Devon and Exeter NHS Foundation Trust, Exeter, EX1 2PD, UK
| | - Miranda J Smallwood
- University of Exeter Medical School, College of Medicine and Health, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Andrew M Jones
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Paul G Winyard
- University of Exeter Medical School, College of Medicine and Health, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK.
| |
Collapse
|
100
|
Ferguson SK, Woessner MN, Holmes MJ, Belbis MD, Carlström M, Weitzberg E, Allen JD, Hirai DM. Effects of inorganic nitrate supplementation on cardiovascular function and exercise tolerance in heart failure. J Appl Physiol (1985) 2021; 130:914-922. [PMID: 33475460 PMCID: PMC8424551 DOI: 10.1152/japplphysiol.00780.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/11/2023] Open
Abstract
Heart failure (HF) results in a myriad of central and peripheral abnormalities that impair the ability to sustain skeletal muscle contractions and, therefore, limit tolerance to exercise. Chief among these abnormalities is the lowered maximal oxygen uptake, which is brought about by reduced cardiac output and exacerbated by O2 delivery-utilization mismatch within the active skeletal muscle. Impaired nitric oxide (NO) bioavailability is considered to play a vital role in the vascular dysfunction of both reduced and preserved ejection fraction HF (HFrEF and HFpEF, respectively), leading to the pursuit of therapies aimed at restoring NO levels in these patient populations. Considering the complementary role of the nitrate-nitrite-NO pathway in the regulation of enzymatic NO signaling, this review explores the potential utility of inorganic nitrate interventions to increase NO bioavailability in the HFrEF and HFpEF patient population. Although many preclinical investigations have suggested that enhanced reduction of nitrite to NO in low Po2 and pH environments may make a nitrate-based therapy especially efficacious in patients with HF, inconsistent results have been found thus far in clinical settings. This brief review provides a summary of the effectiveness (or lack thereof) of inorganic nitrate interventions on exercise tolerance in patients with HFrEF and HFpEF. Focus is also given to practical considerations and current gaps in the literature to facilitate the development of effective nitrate-based interventions to improve exercise tolerance in patients with HF.
Collapse
Affiliation(s)
- Scott K Ferguson
- Department of Kinesiology and Exercise Science, College of Natural and Health Sciences, University of Hawaii at Hilo, Hilo, Hawaii
| | - Mary N Woessner
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Michael J Holmes
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| | - Michael D Belbis
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Jason D Allen
- Department of Kinesiology & Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia
| | - Daniel M Hirai
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| |
Collapse
|