51
|
Webb AJ. "Every beet you take": lowering systolic blood pressure and improving vascular function/exercise capacity via the dietary nitrate-nitrite-NO pathway in patients with COPD. Eur Respir J 2024; 63:2302238. [PMID: 38302179 DOI: 10.1183/13993003.02238-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024]
Affiliation(s)
- Andrew J Webb
- Department of Clinical Pharmacology, King's College London British Heart Foundation Centre, School of Cardiovascular and Metabolic Medicine and Sciences, London, UK
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
52
|
Alasmari AM, Alsulayyim AS, Alghamdi SM, Philip KEJ, Buttery SC, Banya WAS, Polkey MI, Armstrong PC, Rickman MJ, Warner TD, Mitchell JA, Hopkinson NS. Oral nitrate supplementation improves cardiovascular risk markers in COPD: ON-BC, a randomised controlled trial. Eur Respir J 2024; 63:2202353. [PMID: 38123239 PMCID: PMC10831142 DOI: 10.1183/13993003.02353-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Short-term studies suggest that dietary nitrate (NO3 -) supplementation may improve the cardiovascular risk profile, lowering blood pressure (BP) and enhancing endothelial function. It is not clear if these beneficial effects are sustained and whether they apply in people with COPD, who have a worse cardiovascular profile than those without COPD. Nitrate-rich beetroot juice (NR-BRJ) is a convenient dietary source of nitrate. METHODS The ON-BC trial was a randomised, double-blind, placebo-controlled parallel group study in stable COPD patients with home systolic BP (SBP) measurement ≥130 mmHg. Participants were randomly allocated (1:1) using computer-generated, block randomisation to either 70 mL NR-BRJ (400 mg NO3 -) (n=40) or an otherwise identical nitrate-depleted placebo juice (0 mg NO3 -) (n=41), once daily for 12 weeks. The primary end-point was between-group change in home SBP measurement. Secondary outcomes included change in 6-min walk distance (6MWD) and measures of endothelial function (reactive hyperaemia index (RHI) and augmentation index normalised to a heart rate of 75 beats·min-1 (AIx75)) using an EndoPAT device. Plasma nitrate and platelet function were also measured. RESULTS Compared with placebo, active treatment lowered SBP (Hodges-Lehmann treatment effect -4.5 (95% CI -5.9- -3.0) mmHg), and improved 6MWD (30.0 (95% CI 15.7-44.2) m; p<0.001), RHI (0.34 (95% CI 0.03-0.63); p=0.03) and AIx75 (-7.61% (95% CI -14.3- -0.95%); p=0.026). CONCLUSIONS In people with COPD, prolonged dietary nitrate supplementation in the form of beetroot juice produces a sustained reduction in BP, associated with an improvement in endothelial function and exercise capacity.
Collapse
Affiliation(s)
- Ali M Alasmari
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
- Respiratory Therapy Department, College of Medical Rehabilitation Sciences, Taibah University, Madinah, Saudi Arabia
| | - Abdullah S Alsulayyim
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Saeed M Alghamdi
- Clinical Technology Department, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Keir E J Philip
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
- Respiratory Medicine, Royal Brompton and Harefield Hospitals, London, UK
| | - Sara C Buttery
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| | - Winston A S Banya
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| | - Michael I Polkey
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
- Respiratory Medicine, Royal Brompton and Harefield Hospitals, London, UK
| | - Paul C Armstrong
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Matthew J Rickman
- National Heart and Lung Institute, Cardiothoracic Pharmacology, Vascular Biology, Imperial College London, London, UK
| | - Timothy D Warner
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jane A Mitchell
- National Heart and Lung Institute, Cardiothoracic Pharmacology, Vascular Biology, Imperial College London, London, UK
| | - Nicholas S Hopkinson
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| |
Collapse
|
53
|
Li J, LoBue A, Heuser SK, Cortese-Krott MM. Determination of Nitric Oxide and Its Metabolites in Biological Tissues Using Ozone-Based Chemiluminescence Detection: A State-of-the-Art Review. Antioxidants (Basel) 2024; 13:179. [PMID: 38397777 PMCID: PMC10886078 DOI: 10.3390/antiox13020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Ozone-based chemiluminescence detection (CLD) has been widely applied for determining nitric oxide (•NO) and its derived species in many different fields, such as environmental monitoring and biomedical research. In humans and animals, CLD has been applied to determine exhaled •NO and •NO metabolites in plasma and tissues. The main advantages of CLD are high sensitivity and selectivity for quantitative analysis in a wide dynamic range. Combining CLD with analytical separation techniques like chromatography allows for the analytes to be quantified with less disturbance from matrix components or impurities. Sampling techniques like microdialysis and flow injection analysis may be coupled to CLD with the possibility of real-time monitoring of •NO. However, details and precautions in experimental practice need to be addressed and clarified to avoid wrong estimations. Therefore, using CLD as a detection tool requires a deep understanding of the sample preparation procedure and chemical reactions used for liberating •NO from its derived species. In this review, we discuss the advantages and pitfalls of CLD for determining •NO species, list the different applications and combinations with other analytical techniques, and provide general practical notes for sample preparation. These guidelines are designed to assist researchers in comprehending CLD data and in selecting the most appropriate method for measuring •NO species.
Collapse
Affiliation(s)
- Junjie Li
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (J.L.); (A.L.); (S.K.H.)
| | - Anthea LoBue
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (J.L.); (A.L.); (S.K.H.)
| | - Sophia K. Heuser
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (J.L.); (A.L.); (S.K.H.)
| | - Miriam M. Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (J.L.); (A.L.); (S.K.H.)
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| |
Collapse
|
54
|
Osman MM, Mullins E, Kleprlikova H, Wilkinson IB, Lees C. Beetroot juice, exercise, and cardiovascular function in women planning to conceive. J Hypertens 2024; 42:101-108. [PMID: 37728100 PMCID: PMC10713001 DOI: 10.1097/hjh.0000000000003562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/13/2023] [Accepted: 08/22/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVE Prepregnancy optimization of cardiovascular function may reduce the risk of pre-eclampsia. We aimed to assess the feasibility and effect of preconception cardiovascular monitoring, exercise, and beetroot juice on cardiovascular parameters in women planning to conceive. DESIGN AND METHOD Prospective single-site, open-label, randomized controlled trial. Thirty-two women, aged 18-45 years, were allocated into one of four arms (1 : 1 : 1 : 1): exercise, beetroot juice, exercise plus beetroot juice and no intervention for 12 weeks. Blood pressure (BP) was measured at home daily. Cardiac output ( CO ) and total peripheral resistance (TPR) were assessed via bio-impedance. RESULTS Twenty-nine out of 32 (91%) participants completed the study. Adherence to daily BP and weight measurements were 81% and 78%, respectively ( n = 29). Eight out of 15 (53%) of participants did not drink all the provided beetroot juice because of forgetfulness and taste. After 12 weeks, exercise was associated with a reduction in standing TPR (-278 ± 0.272 dynes s cm -5 , P < 0.05), and an increase in standing CO (+0.88 ± 0.71 l/min, P < 0.05). Exercise and beetroot juice together was associated with a reduction in standing DBP ( 7 ± 6 mmHg, P < 0.05), and an increase in standing CO (+0.49 ± 0.66 l/min, P < 0.05). The control group showed a reduction in standing TPR ( 313 ± 387 dynes s cm -5 ) and standing DBP ( 8 ± 5mmHg). All groups gained weight. CONCLUSION Exercise and beetroot juice in combination showed a signal towards improving cardiovascular parameters. The control group showed improvements, indicating that home measurement devices and regular recording of parameters are interventions in themselves. Nevertheless, interventions before pregnancy to improve cardiovascular parameters may alter the occurrence of hypertensive conditions during pregnancy and require further investigation in adequately powered studies.
Collapse
Affiliation(s)
| | - Edward Mullins
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London
- The George Institute for Global Health
| | - Hana Kleprlikova
- Women's Health Research Centre, Queen Charlotte's and Chelsea Hospital, London
- NHS North West London Clinical Commissioning Group, UK
- Department of General Anthropology, Faculty of Humanities, Charles University in Prague, Czechia
| | - Ian B. Wilkinson
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge
| | - Christoph Lees
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London
| |
Collapse
|
55
|
Mirzababaei A, Mahmoodi M, Keshtkar A, Ashraf H, Abaj F, Khosravinia D, Radmehr M, Rasaei N, Mirzaei K. Association between dietary intakes of Nitrate and Nitrite with Angina and atherogenic index in adults: A cross-sectional study from Tehran University of Medical Sciences employees` cohort (TEC) study. Curr Probl Cardiol 2024; 49:102206. [PMID: 37967801 DOI: 10.1016/j.cpcardiol.2023.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Previous studies have shown that the intake of nitrate and nitrite may be associated with cardiovascular disease. Therefore, this study sought to investigate the association between dietary intakes of nitrate and nitrite with the odds of angina and atherogenic index in adults. METHODS The study analyzed 1182 adults aged 20+ in the Tehran University of Medical Sciences (TUMS) Employee's Cohort study (TEC), focusing on dietary intakes, angina, and atherogenic indexes, using a validated food frequency questionnaire (FFQ) and the Rose Angina Questionnaire (RAQ). RESULT The study found a significant inverse relationship between nitrate intake and odds of grade 2 angina. The highest dietary nitrate was associated with 29 % lower odds of grade 1 angina and also, 46 % lower odds of angina possible (P<0.05). Adults with the highest nitrate intake had 29 % lower odds of grade 1 angina and 46 % lower odds of angina possible. Adherence to nitrate reduced CRI, Atherogenic index of plasma, and TyG in participants, but no significant association was found with other factors. CONCLUSION The study suggests that high nitrate and nitrite intake can alter angina risk, and a reverse association was found between dietary nitrate intake and various atherogenic indices.
Collapse
Affiliation(s)
- Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahmoodi
- Department of Cellular and Molecular Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbasali Keshtkar
- Department of Disaster and Emergency Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Ashraf
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Abaj
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Darya Khosravinia
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mina Radmehr
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
56
|
Apte M, Nadavade N, Sheikh SS. A review on nitrates' health benefits and disease prevention. Nitric Oxide 2024; 142:1-15. [PMID: 37981005 DOI: 10.1016/j.niox.2023.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Dietary nitrates (NO3-) are naturally occurring compounds in various vegetables, especially beetroot, which is mainly supplemented in the form of BRJ. Dietary nitrates (NO3-) play a crucial function in human physiology. On consumption, nitrates (NO3-) undergo a conversion process, producing nitric oxide (NO) via a complex metabolic pathway. Nitric oxide (NO) is associated with many physiological processes, entailing immune modulation, neurotransmission, and vasodilation, enabling blood vessel dilation and relaxation, which boosts blood flow and oxygen delivery to tissues, positively influencing cardiovascular health, exercise performance, and cognitive function. There are various analytical processes to determine the level of nitrate (NO3-) present in dietary sources. The impact of dietary nitrates (NO3-) can differ among individuals. Thus, the review revisits the dietary source of nitrates (NO3-), its metabolism, absorption, excretion, analytical techniques to assess nitrates (NO3-) content in various dietary sources, and discusses health effects.
Collapse
Affiliation(s)
- Madhavi Apte
- Department: Quality Assurance, Pharmacognosy, and Phytochemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| | - Nishigandha Nadavade
- Department: Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| | - Sohail Shakeel Sheikh
- Department: Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| |
Collapse
|
57
|
Landolfo M, Spannella F, Poliseno C, Massacesi A, Giulietti F, Festa R, Cavazzin E, Sasso G, Mazza A, Sarzani R. The Effects of ESC/ESH-Based Written Generic Lifestyle Advice and a Nutraceutical on 24-Hour Blood Pressure in Patients with High-Normal Office Blood Pressure and Low-Moderate Cardiovascular Risk. Nutrients 2023; 15:5099. [PMID: 38140359 PMCID: PMC10745575 DOI: 10.3390/nu15245099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Lifestyle changes, eventually coupled with a nutraceutical, are recommended strategies for managing high-normal blood pressure (BP) patients with low-moderate cardiovascular (CV) risk. In a real-life clinical setting, we evaluated the effects of generic written lifestyle advice, extrapolated from the 2018 ESC/ESH guidelines, and a beetroot-based nutraceutical on 24 h BP in a population with a high-normal office BP and low-moderate CV risk. (2) Methods: A longitudinal observational study was conducted in two ESH Hypertension Excellence Centres on 43 consecutive subjects with high-normal BP according to repeated office BP (OBP) measurements and a low-moderate CV risk based on SCORE2/SCORE2-OP. Additionally, 24 h ambulatory BP monitoring (ABPM) was carried out at baseline and three months after lifestyle changes, according to generic written advice from the 2018 ESC/ESH guidelines, coupled with a nutraceutical containing 500 mg of dry beetroot extract. (3) Results: The mean age was 50 ± 11 years, with male prevalence (54%). The prevalence of overweight/obesity was 58%. The mean OBP was 135 ± 3/85 ± 3 mmHg. At baseline, the mean 24 h BP, daytime BP, and night-time BP were 127 ± 7/80 ± 6 mmHg, 131 ± 8/83 ± 6 mmHg, and 118 ± 8/70 ± 5 mmHg, respectively, BP profiles compatible with hypertension status in some subjects. After a median follow-up of 98 (92-121) days, all BPs, except night-time diastolic BP, were significantly decreased: -3 ± 6/-2 ± 4 mmHg for 24 h BP, -3.9 ± 6.0/-3.0 ± 4.0 mmHg for daytime BP, and -3.3 ± 7.4/-1.3 ± 4.7 mmHg for night-time BP, respectively. No significant clinical changes in body weight were detected. BP decreased independently of baseline BP levels, sex, smoking status, and body mass index, while a more substantial BP decrease was observed in older patients. (4) Conclusions: Our exploratory study shows, for the first time, that written generic lifestyle advice taken from the ESC/ESH hypertension guidelines coupled with a beetroot-based nutraceutical may represent a valid initial non-pharmacological approach in subjects with a high-normal office BP and low-moderate CV risk, even without personalized diet interventions.
Collapse
Affiliation(s)
- Matteo Landolfo
- Internal Medicine and Geriatrics, ESH Excellence Hypertension Centre, IRCCS INRCA, 60127 Ancona, Italy; (M.L.); (R.S.)
- Department of Clinical and Molecular Sciences, Centre for Obesity, University “Politecnica delle Marche”, 60126 Ancona, Italy
| | - Francesco Spannella
- Internal Medicine and Geriatrics, ESH Excellence Hypertension Centre, IRCCS INRCA, 60127 Ancona, Italy; (M.L.); (R.S.)
- Department of Clinical and Molecular Sciences, Centre for Obesity, University “Politecnica delle Marche”, 60126 Ancona, Italy
| | - Chiara Poliseno
- Internal Medicine and Geriatrics, ESH Excellence Hypertension Centre, IRCCS INRCA, 60127 Ancona, Italy; (M.L.); (R.S.)
- Department of Clinical and Molecular Sciences, Centre for Obesity, University “Politecnica delle Marche”, 60126 Ancona, Italy
| | - Adriano Massacesi
- Internal Medicine and Geriatrics, ESH Excellence Hypertension Centre, IRCCS INRCA, 60127 Ancona, Italy; (M.L.); (R.S.)
- Department of Clinical and Molecular Sciences, Centre for Obesity, University “Politecnica delle Marche”, 60126 Ancona, Italy
| | - Federico Giulietti
- Internal Medicine and Geriatrics, ESH Excellence Hypertension Centre, IRCCS INRCA, 60127 Ancona, Italy; (M.L.); (R.S.)
| | | | - Enrico Cavazzin
- ESH Excellence Hypertension Unit, Department of Internal Medicine, Rovigo General Hospital, 45100 Rovigo, Italy (A.M.)
| | - Giulio Sasso
- ESH Excellence Hypertension Unit, Department of Internal Medicine, Rovigo General Hospital, 45100 Rovigo, Italy (A.M.)
| | - Alberto Mazza
- ESH Excellence Hypertension Unit, Department of Internal Medicine, Rovigo General Hospital, 45100 Rovigo, Italy (A.M.)
| | - Riccardo Sarzani
- Internal Medicine and Geriatrics, ESH Excellence Hypertension Centre, IRCCS INRCA, 60127 Ancona, Italy; (M.L.); (R.S.)
- Department of Clinical and Molecular Sciences, Centre for Obesity, University “Politecnica delle Marche”, 60126 Ancona, Italy
| |
Collapse
|
58
|
Roth L, Dogan S, Tuna BG, Aranyi T, Benitez S, Borrell-Pages M, Bozaykut P, De Meyer GRY, Duca L, Durmus N, Fonseca D, Fraenkel E, Gillery P, Giudici A, Jaisson S, Johansson M, Julve J, Lucas-Herald AK, Martinet W, Maurice P, McDonnell BJ, Ozbek EN, Pucci G, Pugh CJA, Rochfort KD, Roks AJM, Rotllan N, Shadiow J, Sohrabi Y, Spronck B, Szeri F, Terentes-Printzios D, Tunc Aydin E, Tura-Ceide O, Ucar E, Yetik-Anacak G. Pharmacological modulation of vascular ageing: A review from VascAgeNet. Ageing Res Rev 2023; 92:102122. [PMID: 37956927 DOI: 10.1016/j.arr.2023.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Vascular ageing, characterized by structural and functional changes in blood vessels of which arterial stiffness and endothelial dysfunction are key components, is associated with increased risk of cardiovascular and other age-related diseases. As the global population continues to age, understanding the underlying mechanisms and developing effective therapeutic interventions to mitigate vascular ageing becomes crucial for improving cardiovascular health outcomes. Therefore, this review provides an overview of the current knowledge on pharmacological modulation of vascular ageing, highlighting key strategies and promising therapeutic targets. Several molecular pathways have been identified as central players in vascular ageing, including oxidative stress and inflammation, the renin-angiotensin-aldosterone system, cellular senescence, macroautophagy, extracellular matrix remodelling, calcification, and gasotransmitter-related signalling. Pharmacological and dietary interventions targeting these pathways have shown potential in ameliorating age-related vascular changes. Nevertheless, the development and application of drugs targeting vascular ageing is complicated by various inherent challenges and limitations, such as certain preclinical methodological considerations, interactions with exercise training and sex/gender-related differences, which should be taken into account. Overall, pharmacological modulation of endothelial dysfunction and arterial stiffness as hallmarks of vascular ageing, holds great promise for improving cardiovascular health in the ageing population. Nonetheless, further research is needed to fully elucidate the underlying mechanisms and optimize the efficacy and safety of these interventions for clinical translation.
Collapse
Affiliation(s)
- Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Bilge Guvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Tamas Aranyi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Sonia Benitez
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Cardiovascular Biochemistry, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Perinur Bozaykut
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkiye
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Nergiz Durmus
- Department of Pharmacology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkiye
| | - Diogo Fonseca
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Emil Fraenkel
- 1st Department of Internal Medicine, University Hospital, Pavol Jozef Šafárik University of Košice, Košice, Slovakia
| | - Philippe Gillery
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier et Universitaire de Reims, Reims, France
| | - Alessandro Giudici
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; GROW School for Oncology and Reproduction, Maastricht University, the Netherlands
| | - Stéphane Jaisson
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier et Universitaire de Reims, Reims, France
| | | | - Josep Julve
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Endocrinology, Diabetes and Nutrition group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | | | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pascal Maurice
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Barry J McDonnell
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Emine Nur Ozbek
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkiye
| | - Giacomo Pucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Christopher J A Pugh
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Keith D Rochfort
- School of Nursing, Psychotherapy, and Community Health, Dublin City University, Dublin, Ireland
| | - Anton J M Roks
- Department of Internal Medicine, Division of Vascular Disease and Pharmacology, Erasmus Medical Center, Erasmus University, Rotterdam, the Netherlands
| | - Noemi Rotllan
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Pathophysiology of lipid-related diseases, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - James Shadiow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Yahya Sohrabi
- Molecular Cardiology, Dept. of Cardiology I - Coronary and Peripheral Vascular Disease, University Hospital Münster, Westfälische Wilhelms-Universität, 48149 Münster, Germany; Department of Medical Genetics, Third Faculty of Medicine, Charles University, 100 00 Prague, Czechia
| | - Bart Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Flora Szeri
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dimitrios Terentes-Printzios
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elif Tunc Aydin
- Department of Cardiology, Hospital of Ataturk Training and Research Hospital, Katip Celebi University, Izmir, Turkiye
| | - Olga Tura-Ceide
- Biomedical Research Institute-IDIBGI, Girona, Spain; Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Eda Ucar
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Gunay Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkiye; Department of Pharmacology, Faculty of Pharmacy, Acıbadem Mehmet Aydinlar University, Istanbul, Turkiye.
| |
Collapse
|
59
|
Cottrell EC. Should the non-canonical pathway of nitric oxide generation be targeted in hypertensive pregnancies? Br J Pharmacol 2023. [PMID: 37921362 DOI: 10.1111/bph.16276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
Hypertension in pregnancy is prevalent, affecting around 10% of pregnancies worldwide, and significantly increases the risk of adverse outcomes for both mothers and their babies. Current treatment strategies for pregnant women with hypertension are limited, and new approaches for the management of hypertension in pregnancy are urgently needed. Substantial evidence from non-pregnant subjects has demonstrated the potential for dietary nitrate supplementation to increase nitric oxide (NO) bioavailability and lower blood pressure, following bioactivation via the non-canonical NO pathway. Emerging data suggest this approach may also be of benefit in pregnant women, although studies are limited. This review aims to summarise the current evidence from preclinical and clinical studies of nitrate supplementation in pregnancy, drawing on data from non-pregnant populations where appropriate and highlighting key gaps in knowledge that remain to be addressed in future trials.
Collapse
Affiliation(s)
- Elizabeth C Cottrell
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
60
|
Willmott T, Ormesher L, McBain AJ, Humphreys GJ, Myers JE, Singh G, Lundberg JO, Weitzberg E, Nihlen C, Cottrell EC. Altered Oral Nitrate Reduction and Bacterial Profiles in Hypertensive Women Predict Blood Pressure Lowering Following Acute Dietary Nitrate Supplementation. Hypertension 2023; 80:2397-2406. [PMID: 37702047 DOI: 10.1161/hypertensionaha.123.21263] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/26/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND The efficacy of dietary nitrate supplementation to lower blood pressure (BP) in pregnant women is highly variable. We aimed to investigate whether differences in oral microbiota profiles and oral nitrate-reducing capacity may explain interindividual differences in BP lowering following nitrate supplementation. METHODS Participants recruited for this study were both pregnant and nonpregnant women, with or without hypertension (n=55). Following an overnight fast, plasma, saliva, and tongue scraping samples were collected for measurement of nitrate/nitrite concentrations, oral NaR (nitrate reductase) activity, and microbiota profiling using 16S rRNA gene sequencing. Baseline BP was measured, followed by the administration of a single dose of dietary nitrate (400 mg nitrate in 70 mL beetroot juice). Post-nitrate intervention, plasma and salivary nitrate/nitrite concentrations and BP were determined 2.5 hours later. RESULTS Women with hypertension had significantly lower salivary nitrite concentrations (P=0.006) and reduced abundance of the nitrate-reducing taxa Veillonella(P=0.007) compared with normotensive women. Oral NaR activity was not significantly different in pregnant versus nonpregnant women (P=0.991) but tended to be lower in hypertensive compared with normotensive women (P=0.099). Oral NaR activity was associated with both baseline diastolic BP (P=0.050) and change in diastolic BP following acute nitrate intake (P=0.01, adjusted for baseline BP). CONCLUSIONS The abundance and activity of oral nitrate-reducing bacteria impact both baseline BP as well as the ability of dietary nitrate supplementation to lower BP. Strategies to increase oral nitrate-reducing capacity could lower BP and enhance the efficacy of dietary nitrate supplementation, in pregnancy as well as in nonpregnant adults. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT03930693.
Collapse
Affiliation(s)
- Thomas Willmott
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences (T.W., L.O., J.E.M., E.C.C.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
- Division of Pharmacy and Optometry, School of Health Sciences (T.W., A.J.M., G.J.H.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Laura Ormesher
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences (T.W., L.O., J.E.M., E.C.C.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences (T.W., A.J.M., G.J.H.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Gavin J Humphreys
- Division of Pharmacy and Optometry, School of Health Sciences (T.W., A.J.M., G.J.H.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Jenny E Myers
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences (T.W., L.O., J.E.M., E.C.C.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Gurdeep Singh
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre (G.S.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (J.O.L., E.W., C.N.)
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (J.O.L., E.W., C.N.)
| | - Carina Nihlen
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (J.O.L., E.W., C.N.)
| | - Elizabeth C Cottrell
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences (T.W., L.O., J.E.M., E.C.C.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| |
Collapse
|
61
|
Chen H, Ma Y, Li M, Li Q, Zhang M, Wang Z, Liu H, Wang J, Tong X, Zeng Y. Tongue-coating microbiome reflects cardiovascular health and determines outcome in blood pressure intervention. J Genet Genomics 2023; 50:803-806. [PMID: 36682540 DOI: 10.1016/j.jgg.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023]
Affiliation(s)
- Hairong Chen
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yue Ma
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Li
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qingwei Li
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Mengya Zhang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixiong Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongmei Liu
- Rehabilitation Hospital Affiliated to National Rehabilitation Aids Research Center, Beijing 100176, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yixin Zeng
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
62
|
Mollace R, Scarano F, Bava I, Carresi C, Maiuolo J, Tavernese A, Gliozzi M, Musolino V, Muscoli S, Palma E, Muscoli C, Salvemini D, Federici M, Macrì R, Mollace V. Modulation of the nitric oxide/cGMP pathway in cardiac contraction and relaxation: Potential role in heart failure treatment. Pharmacol Res 2023; 196:106931. [PMID: 37722519 DOI: 10.1016/j.phrs.2023.106931] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Evidence exists that heart failure (HF) has an overall impact of 1-2 % in the global population being often associated with comorbidities that contribute to increased disease prevalence, hospitalization, and mortality. Recent advances in pharmacological approaches have significantly improved clinical outcomes for patients with vascular injury and HF. Nevertheless, there remains an unmet need to clarify the crucial role of nitric oxide/cyclic guanosine 3',5'-monophosphate (NO/cGMP) signalling in cardiac contraction and relaxation, to better identify the key mechanisms involved in the pathophysiology of myocardial dysfunction both with reduced (HFrEF) as well as preserved ejection fraction (HFpEF). Indeed, NO signalling plays a crucial role in cardiovascular homeostasis and its dysregulation induces a significant increase in oxidative and nitrosative stress, producing anatomical and physiological cardiac alterations that can lead to heart failure. The present review aims to examine the molecular mechanisms involved in the bioavailability of NO and its modulation of downstream pathways. In particular, we focus on the main therapeutic targets and emphasize the recent evidence of preclinical and clinical studies, describing the different emerging therapeutic strategies developed to counteract NO impaired signalling and cardiovascular disease (CVD) development.
Collapse
Affiliation(s)
- Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Irene Bava
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Jessica Maiuolo
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Annamaria Tavernese
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Saverio Muscoli
- Division of Cardiology, Foundation PTV Polyclinic Tor Vergata, Rome 00133, Italy
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Renato Dulbecco Institute, Lamezia Terme, Catanzaro 88046, Italy.
| |
Collapse
|
63
|
Shabbir A, Chhetri I, Khambata RS, Parakaw T, Lau C, Aubdool MABN, Massimo G, Dyson N, Kapil V, Godec T, Apea V, Flint J, Orkin C, Rathod KS, Ahluwalia A. A double-blind, randomised, placebo-controlled parallel study to investigate the effect of sex and dietary nitrate on COVID-19 vaccine-induced vascular dysfunction in healthy men and women: protocol of the DiNOVasc-COVID-19 study. Trials 2023; 24:593. [PMID: 37715222 PMCID: PMC10504715 DOI: 10.1186/s13063-023-07616-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Cardiovascular events, driven by endothelial dysfunction, are a recognised complication of COVID-19. SARS-CoV-2 infections remain a persistent concern globally, and an understanding of the mechanisms causing endothelial dysfunction, particularly the role of inflammation, nitric oxide, and whether sex differences exist in this response, is lacking. We have previously demonstrated important sex differences in the inflammatory response and its impact on endothelial function and separately that the ingestion of inorganic nitrate can protect the endothelium against this dysfunction. In this study, we will investigate whether sex or a dietary inorganic nitrate intervention modulates endothelial function and inflammatory responses after the COVID-19 vaccine. METHODS DiNOVasc-COVID-19 is a double-blind, randomised, single-centre, placebo-controlled clinical trial. A total of 98 healthy volunteers (49 males and 49 females) will be recruited. Participants will be randomised into 1 of 2 sub-studies: part A or part B. Part A will investigate the effects of sex on vascular and inflammatory responses to the COVID-19 vaccine. Part B will investigate the effects of sex and dietary inorganic nitrate on vascular and inflammatory responses to the COVID-19 vaccine. In part B, participants will be randomised to receive 3 days of either nitrate-containing beetroot juice (intervention) or nitrate-deplete beetroot juice (placebo). The primary outcome for both sub-studies is a comparison of the change in flow-mediated dilatation (FMD) from baseline after COVID-19 vaccination. The study has a power of > 80% to assess the primary endpoint. Secondary endpoints include change from baseline in inflammatory and leukocyte counts and in pulse wave analysis (PWA) and pulse wave velocity (PWV) following the COVID-19 vaccination. DISCUSSION This study aims to evaluate whether sex or dietary influences endothelial function and inflammatory responses in healthy volunteers after receiving the COVID-19 vaccine. TRIAL REGISTRATION ClinicalTrials.gov NCT04889274. Registered on 5 May 2023. The study was approved by the South Central - Oxford C Research Ethics Committee (21/SC/0154).
Collapse
Affiliation(s)
- Asad Shabbir
- Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Ismita Chhetri
- Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Rayomand S Khambata
- Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Tipparat Parakaw
- Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Clement Lau
- Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Muhammad A B N Aubdool
- Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Gianmichele Massimo
- Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Nicki Dyson
- Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Vikas Kapil
- Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Thomas Godec
- Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Vanessa Apea
- Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Jan Flint
- Barts Health NHS Trust, The Royal London Hospital, London, UK
| | - Chloe Orkin
- Barts Health NHS Trust, The Royal London Hospital, London, UK
| | - Krishnaraj S Rathod
- Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Amrita Ahluwalia
- Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
64
|
Houston M, Chen C, D'Adamo CR, Papathanassiu AE, Green SJ. Effects of S-Allylcysteine-Rich Garlic Extract and Dietary Inorganic Nitrate Formula on Blood Pressure and Salivary Nitric Oxide: An Open-Label Clinical Trial Among Hypertensive Subjects. Cureus 2023; 15:e45369. [PMID: 37849591 PMCID: PMC10578647 DOI: 10.7759/cureus.45369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2023] [Indexed: 10/19/2023] Open
Abstract
INTRODUCTION The conversion of dietary inorganic nitrate (NO3-) to nitric oxide (NO) is a non-canonical pathway that plays an important role in NO biology, especially under pathological conditions. Inorganic NO3- supplementation is a proven method for controlling mild hypertension. Recent reports have suggested that another gaseous transmitter, hydrogen sulfide (H2S), influences NO biosynthesis and metabolism. Here, data are presented from an open-label clinical trial examining the effect of an encapsulated formulation (Vascanox® HP) that combines dietary sources of inorganic NO3- and S-allylcysteine (SAC), a source of H2S from garlic, on NO bioavailability and blood pressure in subjects experiencing elevated blood pressure or mild hypertension. METHODS An open-label clinical trial was conducted among patients with hypertension. Participants took Vascanox® for four weeks. Blood pressure was measured at baseline, two weeks, and four weeks. Salivary nitrite (NO2-), a surrogate of NO bioavailability, and NO3- were assessed prior to and two, six, and 24 hours after dosing on the first day of the study and prior to and two hours after dosing at subsequent study visits using saliva NO test strips. Changes in study outcomes over time were evaluated via analysis of variance (ANOVA) and paired t-tests. RESULTS Twelve participants completed the clinical trial. Vascanox® HP decreased systolic blood pressure by ~11 mmHg (p < 0.001) at two weeks and persisted beyond four weeks with daily supplementation. It also decreased the diastolic blood pressure of hypertensive subjects but not normotensive ones. The magnitude of the decrease was 11 mmHg (p < 0.01) at four weeks of study. Measurements of salivary concentrations of NO2- revealed high peak levels (743 uM) at two hours post-administration and a slow decay to elevated levels (348 uM) at 24 hours. NO2- salivary concentrations, a surrogate biomarker of NO bioavailability, remained above baseline for the duration of the study. CONCLUSIONS Vascanox® HP was shown to be a safe, effective, quick-acting, and long-lasting dietary supplement for controlling mild hypertension.
Collapse
Affiliation(s)
- Mark Houston
- Cardiology, Hypertension Institute at Saint Thomas West Hospital, Nashville, USA
| | - Chen Chen
- Nutrition, Calroy Health Sciences, Greensboro, USA
| | - Christopher R D'Adamo
- Family and Community Medicine, University of Maryland Medical Center, Baltimore, USA
| | | | - Shawn J Green
- Cardiology, Lundquist Institute at Harbor-UCLA (University of California, Los Angeles) Medical Center, Torrance, USA
- Nutrition, MyFitStrip, Rockville, USA
| |
Collapse
|
65
|
Wei C, Vanhatalo A, Kadach S, Stoyanov Z, Abu-Alghayth M, Black MI, Smallwood MJ, Rajaram R, Winyard PG, Jones AM. Reduction in blood pressure following acute dietary nitrate ingestion is correlated with increased red blood cell S-nitrosothiol concentrations. Nitric Oxide 2023; 138-139:1-9. [PMID: 37268184 DOI: 10.1016/j.niox.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Dietary nitrate (NO3-) supplementation can enhance nitric oxide (NO) bioavailability and lower blood pressure (BP) in humans. The nitrite concentration ([NO2-]) in the plasma is the most commonly used biomarker of increased NO availability. However, it is unknown to what extent changes in other NO congeners, such as S-nitrosothiols (RSNOs), and in other blood components, such as red blood cells (RBC), also contribute to the BP lowering effects of dietary NO3-. We investigated the correlations between changes in NO biomarkers in different blood compartments and changes in BP variables following acute NO3- ingestion. Resting BP was measured and blood samples were collected at baseline, and at 1, 2, 3, 4 and 24 h following acute beetroot juice (∼12.8 mmol NO3-, ∼11 mg NO3-/kg) ingestion in 20 healthy volunteers. Spearman rank correlation coefficients were determined between the peak individual increases in NO biomarkers (NO3-, NO2-, RSNOs) in plasma, RBC and whole blood, and corresponding decreases in resting BP variables. No significant correlation was observed between increased plasma [NO2-] and reduced BP, but increased RBC [NO2-] was correlated with decreased systolic BP (rs = -0.50, P = 0.03). Notably, increased RBC [RSNOs] was significantly correlated with decreases in systolic (rs = -0.68, P = 0.001), diastolic (rs = -0.59, P = 0.008) and mean arterial pressure (rs = -0.64, P = 0.003). Fisher's z transformation indicated no difference in the strength of the correlations between increases in RBC [NO2-] or [RSNOs] and decreased systolic blood pressure. In conclusion, increased RBC [RSNOs] may be an important mediator of the reduction in resting BP observed following dietary NO3- supplementation.
Collapse
Affiliation(s)
- Chenguang Wei
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK
| | - Anni Vanhatalo
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK
| | - Stefan Kadach
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK
| | - Zdravko Stoyanov
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK
| | - Mohammed Abu-Alghayth
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, 255, AL Nakhil, Bisha, 67714, Saudi Arabia
| | - Matthew I Black
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK
| | - Miranda J Smallwood
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK
| | - Raghini Rajaram
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK
| | - Paul G Winyard
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK
| | - Andrew M Jones
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK.
| |
Collapse
|
66
|
Macuh M, Kojić N, Knap B. The Effects of Nitrate Supplementation on Performance as a Function of Habitual Dietary Intake of Nitrates: A Randomized Controlled Trial of Elite Football Players. Nutrients 2023; 15:3721. [PMID: 37686753 PMCID: PMC10489871 DOI: 10.3390/nu15173721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Nitrates are an effective ergogenic supplement; however, the effects of nitrate supplements based on habitual dietary nitrate intake through diet alone are not well understood. We aimed to assess this in a group of 15 highly trained football players from Slovenian football's First Division. Participants underwent two separate Cooper performance tests either with nitrate supplementation (400 mg nitrates) or placebo while having their nutrition assessed for nitrate intake, as well as energy and macronutrient intake. Nitrate supplementation had a statistically significant positive effect on performance if baseline dietary nitrate intake was below 300 mg (p = 0.0104) in both the placebo and intervention groups. No effects of nitrate supplementation when baseline dietary nitrate intake was higher than 300 mg in the placebo group could be concluded due to the small sample size. Nitrate supplementation did not have a significant effect on perceived exertion. The daily nitrate intake of the participants was measured at 165 mg, with the majority of nitrates coming from nitrate-rich vegetables.
Collapse
Affiliation(s)
- Matjaž Macuh
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 10, 1000 Ljubljana, Slovenia
| | - Nenad Kojić
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 10, 1000 Ljubljana, Slovenia
| | - Bojan Knap
- Department of Nephrology, University Medical Centre Ljubljana, Zaloška 7, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Korytkova ulica 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
67
|
Sagar PS, Munt A, Saravanabavan S, Vahedi FA, Elhindi J, Nguyen B, Chau K, Harris DC, Lee V, Sud K, Wong N, Rangan GK. Efficacy of beetroot juice on reducing blood pressure in hypertensive adults with autosomal dominant polycystic kidney disease (BEET-PKD): study protocol for a double-blind, randomised, placebo-controlled trial. Trials 2023; 24:482. [PMID: 37507763 PMCID: PMC10386227 DOI: 10.1186/s13063-023-07519-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND In autosomal dominant polycystic kidney disease (ADPKD) impaired nitric oxide (NO) synthesis, in part, contributes to early-onset hypertension. Beetroot juice (BRJ) reduces blood pressure (BP) by increasing NO-mediated vasodilation. The aim of this double-blind, randomised, placebo-controlled study is to test the hypothesis that BRJ reduces systolic and diastolic clinic BP in hypertensive adults with ADPKD. METHODS Participants with ADPKD and treated hypertension (n = 60) will be randomly allocated (1:1) to receive a daily dose of either nitrate-replete (400 mg nitrate/day) or nitrate-deplete BRJ for 4 weeks. The co-primary outcomes are change in mean systolic and diastolic clinic BP before and after 4 weeks of treatment with daily BRJ. Secondary outcomes are changes in daily home BP, urinary albumin to creatinine ratio, serum and salivary nitrate/nitrite levels and serum asymmetric dimethylarginine levels before and after 4 weeks of BRJ. DISCUSSION The effect of BRJ in ADPKD has not been previously tested. BRJ is an accessible, natural dietary supplement that, if effective, will provide a novel adjunctive approach for treating hypertension in ADPKD. TRIAL REGISTRATION ClinicalTrials.gov NCT05401409. Retrospectively registered on 27th May 2022.
Collapse
Affiliation(s)
- Priyanka S Sagar
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, 2145, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, 2145, Australia
| | - Alexandra Munt
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, 2145, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, 2145, Australia
| | - Sayanthooran Saravanabavan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, 2145, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, 2145, Australia
| | - Farnoosh Asghar Vahedi
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, 2145, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, 2145, Australia
| | - James Elhindi
- Research and Education Network, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, 2145, Australia
| | - Beatrice Nguyen
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, 2145, Australia
| | - Katrina Chau
- Department of Renal Medicine, Blacktown Hospital, Western Sydney Local Health District, Sydney, NSW, 2148, Australia
- Blacktown Clinical School, Western Sydney University, Blacktown, NSW, 2148, Australia
| | - David C Harris
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, 2145, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, 2145, Australia
| | - Vincent Lee
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, 2145, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2145, Australia
| | - Kamal Sud
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2145, Australia
- Department of Renal Medicine, Nepean Hospital, Nepean Blue Mountains Local Health District, Sydney, NSW, 2750, Australia
| | - Nikki Wong
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2145, Australia
- Department of Renal Medicine, Nepean Hospital, Nepean Blue Mountains Local Health District, Sydney, NSW, 2750, Australia
| | - Gopala K Rangan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, 2145, Australia.
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, 2145, Australia.
| |
Collapse
|
68
|
da Silva DVT, Baião DDS, Almeida CC, Paschoalin VMF. A Critical Review on Vasoactive Nutrients for the Management of Endothelial Dysfunction and Arterial Stiffness in Individuals under Cardiovascular Risk. Nutrients 2023; 15:nu15112618. [PMID: 37299579 DOI: 10.3390/nu15112618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Pathophysiological conditions such as endothelial dysfunction and arterial stiffness, characterized by low nitric oxide bioavailability, deficient endothelium-dependent vasodilation and heart effort, predispose individuals to atherosclerotic lesions and cardiac events. Nitrate (NO3-), L-arginine, L-citrulline and potassium (K+) can mitigate arterial dysfunction and stiffness by intensifying NO bioavailability. Dietary compounds such as L-arginine, L-citrulline, NO3- and K+ exert vasoactive effects as demonstrated in clinical interventions by noninvasive flow-mediated vasodilation (FMD) and pulse-wave velocity (PWV) prognostic techniques. Daily L-arginine intakes ranging from 4.5 to 21 g lead to increased FMD and reduced PWV responses. Isolated L-citrulline intake of at least 5.6 g has a better effect compared to watermelon extract, which is only effective on endothelial function when supplemented for longer than 6 weeks and contains at least 6 g of L-citrulline. NO3- supplementation employing beetroot at doses greater than 370 mg promotes hemodynamic effects through the NO3--NO2-/NO pathway, a well-documented effect. A potassium intake of 1.5 g/day can restore endothelial function and arterial mobility, where decreased vascular tone takes place via ATPase pump/hyperpolarization and natriuresis, leading to muscle relaxation and NO release. These dietary interventions, alone or synergically, can ameliorate endothelial dysfunction and should be considered as adjuvant therapies in cardiovascular diseases.
Collapse
Affiliation(s)
- Davi Vieira Teixeira da Silva
- Instituto de Química, Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Diego Dos Santos Baião
- Instituto de Química, Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Cristine Couto Almeida
- Instituto de Química, Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Vania Margaret Flosi Paschoalin
- Instituto de Química, Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
69
|
Franceković P, Gliemann L. Endothelial Glycocalyx Preservation-Impact of Nutrition and Lifestyle. Nutrients 2023; 15:nu15112573. [PMID: 37299535 DOI: 10.3390/nu15112573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023] Open
Abstract
The endothelial glycocalyx (eGC) is a dynamic hair-like layer expressed on the apical surface of endothelial cells throughout the vascular system. This layer serves as an endothelial cell gatekeeper by controlling the permeability and adhesion properties of endothelial cells, as well as by controlling vascular resistance through the mediation of vasodilation. Pathogenic destruction of the eGC could be linked to impaired vascular function, as well as several acute and chronic cardiovascular conditions. Defining the precise functions and mechanisms of the eGC is perhaps the limiting factor of the missing link in finding novel treatments for lifestyle-related diseases such as atherosclerosis, type 2 diabetes, hypertension, and metabolic syndrome. However, the relationship between diet, lifestyle, and the preservation of the eGC is an unexplored territory. This article provides an overview of the eGC's importance for health and disease and describes perspectives of nutritional therapy for the prevention of the eGC's pathogenic destruction. It is concluded that vitamin D and omega-3 fatty acid supplementation, as well as healthy dietary patterns such as the Mediterranean diet and the time management of eating, might show promise for preserving eGC health and, thus, the health of the cardiovascular system.
Collapse
Affiliation(s)
- Paula Franceković
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark
| | - Lasse Gliemann
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark
| |
Collapse
|
70
|
Zhang H, Qin L. Positive feedback loop between dietary nitrate intake and oral health. Nutr Res 2023; 115:1-12. [PMID: 37207592 DOI: 10.1016/j.nutres.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/12/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023]
Abstract
Nitrate was once thought to be an inert end-product of endothelial-derived nitric oxide (NO) heme oxidation; however, this view has been radically revised over the past few decades. Following the clarification of the nitrate-nitrite-NO pathway, accumulated evidence has shown that nitrate derived from the diet is a supplementary source of endogenous NO generation, playing important roles in a variety of pathological and physiological conditions. However, the beneficial effects of nitrate are closely related with oral health, and oral dysfunction has an adverse effect on nitrate metabolism and further impacts overall systemic health. Moreover, an interesting positive feedback loop has been identified between dietary nitrate intake and oral health. Dietary nitrate's beneficial effect on oral health may further improve its bioavailability and promote overall systemic well-being. This review aims to provide a detailed description of the functions of dietary nitrate, with an emphasis on the key role oral health plays in nitrate bioavailability. This review also provides recommendations for a new paradigm that includes nitrate therapy in the treatment of oral diseases.
Collapse
Affiliation(s)
- Haoyang Zhang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Lizheng Qin
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
71
|
Trindade LRD, Baião DDS, da Silva DVT, Almeida CC, Pauli FP, Ferreira VF, Conte-Junior CA, Paschoalin VMF. Microencapsulated and Ready-to-Eat Beetroot Soup: A Stable and Attractive Formulation Enriched in Nitrate, Betalains and Minerals. Foods 2023; 12:foods12071497. [PMID: 37048318 PMCID: PMC10093833 DOI: 10.3390/foods12071497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Beetroot is a tuber rich in antioxidant compounds, i.e., betanin and saponins, and is one of the main sources of dietary nitrate. The aim of the present study was to microencapsulate a ready-to-eat beetroot soup by lyophilization using different encapsulating agents, which supply the required amount of bioactive nutrients. Particle size distributions ranged from 7.94 ± 1.74 to 245.66 ± 2.31 µm for beetroot soup in starch and from 30.56 ± 1.66 to 636.34 ± 2.04 µm in maltodextrin. Microparticle yields of powdered beetroot soup in starch varied from 77.68% to 88.91%, and in maltodextrin from 75.01% to 80.25%. The NO3− and total betalain contents at a 1:2 ratio were 10.46 ± 0.22 mmol·100 g−1 fresh weight basis and 219.7 ± 4.92 mg·g−1 in starch powdered beetroot soup and 8.43 ± 0.09 mmol·100 g−1 fresh weight basis and 223.9 ± 4.21 mg·g−1 in maltodextrin powdered beetroot soup. Six distinct minerals were identified and quantified in beetroot soups, namely Na, K, Mg, Mn, Zn and P. Beetroot soup microencapsulated in starch or maltodextrin complied with microbiological quality guidelines for consumption, with good acceptance and purchase intention throughout 90 days of storage. Microencapsulated beetroot soup may, thus, comprise a novel attractive strategy to offer high contents of bioaccessible dietary nitrate and antioxidant compounds that may aid in the improvement of vascular-protective effects.
Collapse
Affiliation(s)
- Lucileno Rodrigues da Trindade
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitria, Rio de Janeiro 21941-909, Brazil
| | - Diego dos Santos Baião
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Davi Vieira Teixeira da Silva
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Cristine Couto Almeida
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro 21941-598, Brazil
| | - Fernanda Petzold Pauli
- Institute of Chemistry (IQ), Fluminense Federal University, R. Dr. Mario Vianna, 523, Niterói 24210-141, Brazil
| | - Vitor Francisco Ferreira
- Institute of Chemistry (IQ), Fluminense Federal University, R. Dr. Mario Vianna, 523, Niterói 24210-141, Brazil
| | - Carlos Adam Conte-Junior
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro 21941-598, Brazil
| | - Vania Margaret Flosi Paschoalin
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
72
|
Østergaard AM, Vrist MH, Rosenbæk JB, Ejlersen JA, Mose FH, Bech JN. The effect of orally administered nitrate on renal function and blood pressure in a randomized, placebo-controlled, crossover study in healthy subjects. Nitric Oxide 2023; 134-135:1-9. [PMID: 36906115 DOI: 10.1016/j.niox.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND Several studies have shown inorganic nitrate/nitrite to reduce blood pressure in both healthy subjects and hypertensive patients. An effect presumably caused through bioconversion to nitric oxide. However, studies on inorganic nitrate/nitrite have shown inconsistent results on renal functions such as GFR and sodium excretion. The current study investigated whether orally administered nitrate would decrease blood pressure and increase GFR and urinary sodium excretion. METHODS In a randomized, placebo-controlled, double-blinded, crossover study, 18 healthy subjects received a daily dose of 24 mmol potassium nitrate and placebo (potassium chloride) during 4 days in a randomized order. Subjects also ingested a standardized diet and completed a 24-h urine collection. GFR was determined by the constant infusion technique and during GFR measurement, brachial blood pressure (BP) and central blood pressure (cBP), heart rate, and arterial stiffness were measured every half hour using the Mobil-O-Graph®. Blood samples was analyzed for nitrate, nitrite, cGMP, vasoactive hormones and electrolytes. Urine was analyzed for nitrate, nitrite, cGMP, electrolytes, ENaCγ, NCC, CrCl, CH2O and UO. RESULTS No differences in GFR, blood pressure or sodium excretion were found between the treatments with potassium nitrate and placebo. However, both nitrate and nitrite levels in plasma and urine were significantly increased by potassium nitrate intake and the 24-h urinary excretion of sodium and potassium were stable, showing adherence to the standardized diet and the study medication. CONCLUSION We found no decrease in blood pressure or increase in GFR and sodium excretion of 24 mmol potassium nitrate capsules as compared to placebo after 4 days of treatment. Healthy subjects may be able to compensate the effects of nitrate supplementation during steady state conditions. Future research should focus on long-term studies on the difference in response between healthy subjects and patients with cardiac or renal disease.
Collapse
Affiliation(s)
- A M Østergaard
- University Clinic in Nephrology and Hypertension, and Aarhus University, Denmark.
| | - M H Vrist
- University Clinic in Nephrology and Hypertension, and Aarhus University, Denmark
| | - J B Rosenbæk
- University Clinic in Nephrology and Hypertension, and Aarhus University, Denmark
| | - J A Ejlersen
- Department of Nuclear Medicine, Gødstrup Hospital, Denmark; Department of Nuclear Medicine, Viborg Hospital, Denmark
| | - F H Mose
- University Clinic in Nephrology and Hypertension, and Aarhus University, Denmark
| | - J N Bech
- University Clinic in Nephrology and Hypertension, and Aarhus University, Denmark
| |
Collapse
|
73
|
Pekas EJ, Anderson CP, Park SY. Moderate dose of dietary nitrate improves skeletal muscle microvascular function in patients with peripheral artery disease. Microvasc Res 2023; 146:104469. [PMID: 36563997 PMCID: PMC11097165 DOI: 10.1016/j.mvr.2022.104469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022]
Abstract
Peripheral artery disease (PAD) is an atherosclerotic disease characterized by compromised lower-extremity blood flow that impairs walking ability. We showed that a moderate dose of dietary nitrate in the form of beetroot juice (BRJ, 0.11 mmol/kg) can improve macrovascular function and maximal walking distance in patients with PAD. However, its impacts on the microcirculation and autonomic nervous system have not been examined. Therefore, we investigated the impacts of this dose of dietary nitrate on skeletal muscle microvascular function and autonomic nervous system function and further related these measurements to 6-min walking distance, pain-free walking distance, and exercise recovery in patients with PAD. Patients with PAD (n = 10) ingested either BRJ or placebo in a randomized crossover design. Heart rate variability, skeletal muscle microvascular function, and 6-min walking distance were performed pre- and post-BRJ and placebo. There were significant group × time interactions (P < 0.05) for skeletal muscle microvascular function, 6-min walking distance, and exercise recovery, but no changes (P > 0.05) in heart rate variability or pain-free walking distance were noted. The BRJ group demonstrated improved skeletal muscle microvascular function (∆ 22.1 ± 7.5 %·min-1), longer 6-min walking distance (Δ 37.5 ± 9.1 m), and faster recovery post-exercise (Δ -15.3 ± 4.2 s). Furthermore, changes in skeletal muscle microvascular function were positively associated with changes in 6-min walking distance (r = 0.5) and pain-free walking distance (r = 0.6). These results suggest that a moderate dose of dietary nitrate may support microvascular function, which is related to improvements in walking distance and claudication in patients with PAD.
Collapse
Affiliation(s)
- Elizabeth J Pekas
- School of Health & Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA.
| | - Cody P Anderson
- School of Health & Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA.
| | - Song-Young Park
- School of Health & Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA.
| |
Collapse
|
74
|
Antioxidant Capacity, Nitrite and Nitrate Content in Beetroot-Based Dietary Supplements. Foods 2023; 12:foods12051017. [PMID: 36900534 PMCID: PMC10000616 DOI: 10.3390/foods12051017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Due to the high content of bioactive substances, beetroot and its preserves might be a valuable constituent of a diet. Research into the antioxidant capacity and content of nitrate (III) and (V) in beetroot-based dietary supplements (DSs) worldwide is limited. The Folin-Ciocalteu method, CUPRAC, DPPH, and Griess methods were used to determine total antioxidant capacity, total phenolic content, nitrites, and nitrates content in fifty DSs and twenty beetroot samples. Moreover, the safety of products was evaluated because of the concentration of nitrites, nitrates, and the correctness of labelling. The research showed that a serving of fresh beetroot provides significantly more antioxidants, nitrites, and nitrates than most daily portions of DSs. Product P9 provided the highest dose of nitrates (169 mg/daily dose). However, in most cases, the consumption of DSs would be associated with a low health value. The acceptable daily intake was not exceeded in the cases of nitrites (0.0015-0.55%) and nitrates (0.056-48%), assuming that the supplementation followed the manufacturer's recommendation. According to European and Polish regulations, 64% of the products tested did not meet all the requirements for labelling food packaging. The findings point to the need for tighter regulation of DSs, as their consumption might be dangerous.
Collapse
|
75
|
Ageing modifies acute resting blood pressure responses to incremental consumption of dietary nitrate: a randomised, cross-over clinical trial. Br J Nutr 2023; 129:442-453. [PMID: 35508923 DOI: 10.1017/s0007114522001337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Beetroot (BR) is a rich source of nitrate (NO3-) that has been shown to reduce blood pressure (BP). Yet, no studies have examined the vascular benefits of BR in whole-food form and whether the effects are modified by age. This study was a four-arm, randomised, open-label, cross-over design in twenty-four healthy adults (young n 12, age 27 ± 4 years, old n 12, age 64 ± 5 years). Participants consumed whole-cooked BR at portions of (NO3- content in brackets) 100 g (272 mg), 200 g (544 mg) and 300 g (816 mg) and a 200-ml solution containing 1000 mg of potassium nitrate (KNO3) on four separate occasions over a 4-week period (≥7-d washout period). BP, plasma NO3- and nitrite (NO2-) concentrations, and post-occlusion reactive hyperaemia via laser Doppler, were measured pre- and up to 5-h post-intervention. Data were analysed by repeated-measures ANOVA. Plasma NO2- concentrations were higher in the young v. old at baseline and post-intervention (P < 0·05). All NO3- interventions decreased systolic and diastolic BP in young participants (P < 0·05), whereas only KNO3 (at 240-300 min post-intake) significantly decreased systolic (-4·8 mmHg, -3·5 %, P = 0·024) and diastolic (-5·4 mmHg, -6·5 %, P = 0·007) BP in older participants. In conclusion, incremental doses of dietary NO3- reduced systolic and diastolic BP in healthy young adults whereas in the older group a significant decrease was only observed with the highest dose. The lower plasma NO2- concentrations in older participants suggest that there may be mechanistic differences in the production of NO from dietary NO3- in young and older populations.
Collapse
|
76
|
Lv F, Zhang J, Tao Y. Efficacy and safety of inorganic nitrate/nitrite supplementary therapy in heart failure with preserved ejection fraction. Front Cardiovasc Med 2023; 10:1054666. [PMID: 36818337 PMCID: PMC9932197 DOI: 10.3389/fcvm.2023.1054666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Background Approximately half of patients with heart failure have a preserved ejection fraction (HFpEF). To date, only SGLT-2i, ARNi, and MRAs treatments have been shown to be effective for HFpEF. Exercise intolerance is the primary clinical feature of HFpEF. The aim of this meta-analysis was to explore the effect of inorganic nitrate/nitrite supplementary therapy on the exercise capacity of HFpEF patients. Methods We searched PubMed, Embase, Cochrane Library, OVID, and Web of Science for eligible studies for this meta-analysis. The primary outcomes were peak oxygen consumption (peak VO2), exercise time, and respiratory exchange ratio (RER) during exercise. The secondary outcomes were cardiac output, heart rate, systolic blood pressure, diastolic blood pressure, mean arterial pressure, and systemic vascular resistance during rest and exercise, respectively. Results A total of eight randomized-controlled trials were enrolled for this meta-analysis. We found no benefit of inorganic nitrate/nitrite on exercise capacity in patients with HFpEF. Inorganic nitrate/nitrite compared to placebo, did not significantly increased peak VO2 (MD = 0.361, 95% CI = -0.17 to 0.89, p = 0.183), exercise time (MD = 9.74, 95% CI = -46.47 to 65.95, p = 0.734), and respiratory exchange ratio during exercise (MD = -0.003, 95% CI = -0.036 to 0.029, p = 0.834). Among the six diameters reflecting cardiac and artery hemodynamics, inorganic nitrate/nitrite can lower rest SBP, rest/exercise DBP, rest/exercise MAP, and exercise SVR, but has no effect in cardiac output and heart rate for HFpEF patients. Conclusion Our meta-analysis suggested that inorganic nitrate/nitrite supplementary therapy has no benefit in improving the exercise capacity of patients with HFpEF, but can yield a blood pressure lowering effect, especially during exercise.
Collapse
Affiliation(s)
- Feng Lv
- Department of Cardiology, Shengzhou People’s Hospital (The First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou City, Zhejiang Province, China
| | - Junyi Zhang
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou City, Jiangsu Province, China
| | - Yuan Tao
- Department of Cardiology, Shengzhou People’s Hospital (The First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou City, Zhejiang Province, China,*Correspondence: Yuan Tao,
| |
Collapse
|
77
|
Fernandes D, Khambata RS, Massimo G, Ruivo E, Gee LC, Foster J, Goddard A, Curtis M, Barnes MR, Wade WG, Godec T, Orlandi M, D'Aiuto F, Ahluwalia A. Local delivery of nitric oxide prevents endothelial dysfunction in periodontitis. Pharmacol Res 2023; 188:106616. [PMID: 36566926 DOI: 10.1016/j.phrs.2022.106616] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/01/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
AIMS Increased cardiovascular disease risk underlies elevated rates of mortality in individuals with periodontitis. A key characteristic of those with increased cardiovascular risk is endothelial dysfunction, a phenomenon synonymous with deficiencies of bioavailable nitric oxide (NO), and prominently expressed in patients with periodontitis. Also, inorganic nitrate can be reduced to NO in vivo to restore NO levels, leading us to hypothesise that its use may be beneficial in reducing periodontitis-associated endothelial dysfunction. Herein we sought to determine whether inorganic nitrate improves endothelial function in the setting of periodontitis and if so to determine the mechanisms underpinning any responses seen. METHODS AND RESULTS Periodontitis was induced in mice by placement of a ligature for 14 days around the second molar. Treatment in vivo with potassium nitrate, either prior to or following establishment of experimental periodontitis, attenuated endothelial dysfunction, as determined by assessment of acetylcholine-induced relaxation of aortic rings, compared to control (potassium chloride treatment). These beneficial effects were associated with a suppression of vascular wall inflammatory pathways (assessed by quantitative-PCR), increases in the anti-inflammatory cytokine interleukin (IL)-10 and reduced tissue oxidative stress due to attenuation of xanthine oxidoreductase-dependent superoxide generation. In patients with periodontitis, plasma nitrite levels were not associated with endothelial function indicating dysfunction. CONCLUSION Our results suggest that inorganic nitrate protects against, and can partially reverse pre-existing, periodontitis-induced endothelial dysfunction through restoration of nitrite and thus NO levels. This research highlights the potential of dietary nitrate as adjunct therapy to target the associated negative cardiovascular outcomes in patients with periodontitis.
Collapse
Affiliation(s)
- Daniel Fernandes
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Rayomand S Khambata
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Gianmichele Massimo
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Ernesto Ruivo
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Lorna C Gee
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Julie Foster
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Alison Goddard
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Mike Curtis
- Centre for Host-Microbiome Interactions, King's College London, London, UK
| | - Michael R Barnes
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - William G Wade
- Centre for Host-Microbiome Interactions, King's College London, London, UK; Forsyth Institute, Cambridge, MA 02142, USA
| | - Thomas Godec
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Marco Orlandi
- Periodontology Unit, UCL Eastman Dental Institute, London, UK
| | | | - Amrita Ahluwalia
- William Harvey Research Institute, Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
78
|
Aslam MZ, Firdos S, Zhousi L, Wang X, Liu Y, Qin X, Yang S, Ma Y, Zhang B, Dong Q. Managing hypertension by exploiting microelements and fermented dairy products. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2129792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Muhammad Zohaib Aslam
- School of Health Science and Engineering, the University of Shanghai for Science and Technology, Shanghai, China
| | - Shumaila Firdos
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing, China
| | - Li Zhousi
- School of Health Science and Engineering, the University of Shanghai for Science and Technology, Shanghai, China
| | - Xiang Wang
- School of Health Science and Engineering, the University of Shanghai for Science and Technology, Shanghai, China
| | - Yangtai Liu
- School of Health Science and Engineering, the University of Shanghai for Science and Technology, Shanghai, China
| | - Xiaojie Qin
- School of Health Science and Engineering, the University of Shanghai for Science and Technology, Shanghai, China
| | - Shuo Yang
- School of Health Science and Engineering, the University of Shanghai for Science and Technology, Shanghai, China
| | - Yue Ma
- School of Health Science and Engineering, the University of Shanghai for Science and Technology, Shanghai, China
| | - Bolin Zhang
- D. G Khan section of Punjab Livestock and Dairy Development Department, Dera Ghazi Khan, Pakistan
| | - Qingli Dong
- School of Health Science and Engineering, the University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
79
|
Jiang W, Zhang J, Yang R, Sun X, Wu H, Zhang J, Liu S, Sun C, Ma L, Han T, Wei W. Association of urinary nitrate with diabetes complication and disease-specific mortality among adults with hyperglycemia. J Clin Endocrinol Metab 2022; 108:1318-1329. [PMID: 36576885 DOI: 10.1210/clinem/dgac741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND The hyperglycemia condition disrupts the metabolism of nitrate/nitrite and nitric oxide, and dietary nitrate intake can restore nitric oxide homeostasis. This study aims to examine whether urinary nitrate is associated with diabetes complications and long-term survival among people with hyperglycemia. METHODS A total of 6208 people with hyperglycemia who participated in the National Health and Nutrition Examination Survey from 2005 to 2014 were enrolled. Diabetes complications included congestive heart failure, coronary heart disease, angina, stroke, myocardial infarction, diabetic retinopathy, and nephropathy. Mortality wasobtained from the National Death Index until 2015. Urinary nitrate was measured by ion chromatography coupled with electrospray tandem mass spectrometry, which was log-transformed and categized into tertiles. Logistic regression models and cox proportional hazards models were respectively performed to assess the association of urinary nitrate with the risk of diabetes complications and disease-specific mortalities. RESULTS After adjustment for potential confounders including urinary perchlorate and thiocyanate, compared with the participants in the lowest tertile of nitrate, the participants in the highest tertile had lower risks of congestive heart failure(odd-ratio[OR] = 0.41, 95%CI:0.27-0.60) and diabetic nephropathy(OR = 0.50, 95%CI: 0.41-0.62). Meanwhile, during a total follow-up of 41,463 person-year, the participants in the highest tertile had lower mortality risk of all-cause(hazard-ratio[HR] = 0.78, 95%CI:0.62-0.97), cardiovascular disease(CVD)(HR = 0.56, 95%CI:0.37-0.84) and diabetes(HR = 0.47, 95%CI:0.24-0.90), which showed dose-dependent linear relationships(P for non-linearity > 0.05). Moreover, no association between nitrate and cancer mortality was observed(HR = 1.13, 95%CI:0.71-1.80). CONCLUSIONS Higher urinary nitrate is associated with lower risk of congestive heart failure and diabetic nephropathy, and lower risk of all-cause, CVD, and diabetes mortalities. These findings indicated that inorganic nitrate supplementation can be considered as a supplementary treatment for people with hyperglycemia.
Collapse
Affiliation(s)
- Wenbo Jiang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R.China
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia Zhang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R.China
| | - Ruiming Yang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R.China
| | - Xinyi Sun
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R.China
| | - Huanyu Wu
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R.China
| | - Jiacheng Zhang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R.China
| | - Siyao Liu
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R.China
| | - Lifang Ma
- Department of Pharmacology, College of Pharmacy Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, P. R.China
| | - Tianshu Han
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R.China
| | - Wei Wei
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R.China
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R.China
| |
Collapse
|
80
|
Mattos S, Cunha MR, Marques BC, d´El-Rei J, Baião DDS, Paschoalin VMF, Oigman W, Neves MF, Medeiros F. Acute Effects of Dietary Nitrate on Central Pressure and Endothelial Function in Hypertensive Patients: A Randomized, Placebo-Controlled Crossover Study. Arq Bras Cardiol 2022; 120:e20220209. [PMID: 36629601 PMCID: PMC9833313 DOI: 10.36660/abc.20220209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/01/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The diet's inorganic nitrate (NO3-) may provide a physiological substrate for reducing nitrate (NO2-) to NO independent of the endothelium. Studies suggest that inorganic NO3- has beneficial effects on cardiovascular health. OBJECTIVE This study evaluated the acute effects of 500 mL nitrate-rich beetroot juice (BRJ; containing 11.5mmol NO3-) on blood pressure and endothelial function in treated hypertensive patients. METHODS A randomized, placebo-controlled, crossover study was conducted in treated hypertensive patients (n=37; women=62%) who underwent clinical and nutritional evaluation and assessment of central hemodynamic parameters and microvascular reactivity. The significance level was p<0.05. RESULTS The mean age was 59±7 years, and mean systolic and diastolic blood pressures were 142±10/83±9mmHg. There was a significant increase in the subendocardial viability ratio (SEVR; 149±25 vs. 165±30%, p<0.001) and reduction in ejection duration (ED; 37±4 vs. 34±4%, p<0.001) in the beetroot phase but no significant SEVR difference in the control phase. The % increase in perfusion (155 vs. 159 %, p=0.042) was significantly increased in the beetroot phase, which was not observed in the control phase. In the beetroot phase, the change in SEVR showed a significant correlation with the change in the area under the curve of post-occlusive reactive hyperemia (AUC-PORH) (r=0.45, p=0.012). The change in ED showed a significant correlation with the post-intervention perfusion peak (r=-0.37, p=0.031) and AUC-PORH (r=-0.36, p=0.046). CONCLUSIONS The acute ingestion of BRJ by hypertensive patients resulted in an improvement of endothelial function, which was associated with higher subendocardial viability and performance in myocardial contraction.
Collapse
Affiliation(s)
- Samanta Mattos
- Departamento de Clínica MédicaUniversidade do Estado do Rio de JaneiroRio de JaneiroRJBrasilDepartamento de Clínica Médica – Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ – Brasil
| | - Michelle Rabello Cunha
- Departamento de Clínica MédicaUniversidade do Estado do Rio de JaneiroRio de JaneiroRJBrasilDepartamento de Clínica Médica – Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ – Brasil
| | - Bianca Cristina Marques
- Departamento de Clínica MédicaUniversidade do Estado do Rio de JaneiroRio de JaneiroRJBrasilDepartamento de Clínica Médica – Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ – Brasil
| | - Jenifer d´El-Rei
- Departamento de Clínica MédicaUniversidade do Estado do Rio de JaneiroRio de JaneiroRJBrasilDepartamento de Clínica Médica – Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ – Brasil
| | - Diego dos Santos Baião
- Instituto de QuímicaUniversidade Federal do Rio de JaneiroRio de JaneiroRJBrasilInstituto de Química – Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ – Brasil
| | - Vania M. F. Paschoalin
- Instituto de QuímicaUniversidade Federal do Rio de JaneiroRio de JaneiroRJBrasilInstituto de Química – Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ – Brasil
| | - Wille Oigman
- Departamento de Clínica MédicaUniversidade do Estado do Rio de JaneiroRio de JaneiroRJBrasilDepartamento de Clínica Médica – Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ – Brasil
| | - Mario Fritsch Neves
- Departamento de Clínica MédicaUniversidade do Estado do Rio de JaneiroRio de JaneiroRJBrasilDepartamento de Clínica Médica – Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ – Brasil
| | - Fernanda Medeiros
- Escola de NutriçãoUniversidade Federal do Estado do Rio de JaneiroRio de JaneiroRJBrasilEscola de Nutrição da Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ – Brasil
| |
Collapse
|
81
|
Rajendra A, Bondonno NP, Rainey-Smith SR, Gardener SL, Hodgson JM, Bondonno CP. Potential role of dietary nitrate in relation to cardiovascular and cerebrovascular health, cognition, cognitive decline and dementia: a review. Food Funct 2022; 13:12572-12589. [PMID: 36377891 DOI: 10.1039/d2fo02427f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
There is currently no effective treatment for dementia, of which Alzheimer's disease (AD) is the most common form. It is, therefore, imperative to focus on evidence-based preventive strategies to combat this extremely debilitating chronic disease. Nitric oxide (NO) is a key signalling molecule in the cardiovascular, cerebrovascular, and central nervous systems. Vegetables rich in nitrate, such as spinach and beetroot, are an important source of NO, with beneficial effects on validated markers of cardiovascular health and an association with a lower risk of cardiovascular disease. Given the link between cardiovascular disease risk factors and dementia, together with the important role of NO in vascular health and cognition, it is important to determine whether dietary nitrate could also improve cognitive function, markers of brain health, and lower risk of dementia. This review presents an overview of NO's role in the cardiovascular, cerebrovascular, and central nervous systems; an overview of the available evidence that nitrate, through effects on NO, improves cardiovascular health; and evaluates the current evidence regarding dietary nitrate's potential role in cerebrovascular health, cognitive function, and brain health assessed via biomarkers.
Collapse
Affiliation(s)
- Anjana Rajendra
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.
| | - Nicola P Bondonno
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia. .,Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Stephanie R Rainey-Smith
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Perth, Western Australia, Australia.,Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, Western Australia, Australia.,School of Psychological Science, University of Western Australia, Perth, Western Australia, Australia
| | - Samantha L Gardener
- Australian Alzheimer's Research Foundation, Perth, Western Australia, Australia.,Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, Western Australia, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia. .,Medical School, The University of Western Australia, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
| | - Catherine P Bondonno
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia. .,Medical School, The University of Western Australia, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
| |
Collapse
|
82
|
Karimzadeh L, Behrouz V, Sohrab G, Hedayati M, Emami G. A randomized clinical trial of beetroot juice consumption on inflammatory markers and oxidative stress in patients with type 2 diabetes. J Food Sci 2022; 87:5430-5441. [DOI: 10.1111/1750-3841.16365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Laleh Karimzadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Vahideh Behrouz
- Department of Nutrition, Faculty of Public Health Kerman University of Medical Sciences Kerman Iran
| | - Golbon Sohrab
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences TehranIran
| | - Golpar Emami
- Health Deputy Mazandaran University of Medical Sciences Sari Iran
| |
Collapse
|
83
|
Zendehbad M, Mostaghelchi M, Mojganfar M, Cepuder P, Loiskandl W. Nitrate in groundwater and agricultural products: intake and risk assessment in northeastern Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78603-78619. [PMID: 35691946 PMCID: PMC9587111 DOI: 10.1007/s11356-022-20831-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 05/11/2022] [Indexed: 05/04/2023]
Abstract
The suitability of groundwater and agricultural products for human consumption requires determining levels and assessing the health risks associated with potential pollutants. Here, particularly pollution with nitrate still remains a challenge, especially for those urban areas suffering from insufficient sewage collection systems, resulting in contaminating soil, endangering food safety, and deteriorating drinking water quality. In the present study, nitrate concentrations in the commonly consumed fruit and vegetable species were determined, and the results, together with the groundwater nitrate levels, were used to assess the associated health risks for Mashhad city residents. For this assessment, 261 water samples and 16 produce types were used to compute the daily intake of nitrate. Nitrate in groundwater was analyzed using a spectrophotometer, and produce species were examined using High-Performance Liquid Chromatography. Ward's hierarchical cluster analysis was applied for categorizing produce samples with regard to their nitrate content. Additionally, to account for the sanitation hazards associated with groundwater quality for drinking purposes, total coliform and turbidity were also assessed using the membrane filter (MF) technique and a nephelometer, respectively. Nitrate concentrations exceeded the prescribed permissible limits in 42% of the groundwater wells. The outcomes also exhibit significantly higher nitrate accumulation levels in root-tuber vegetables and leafy vegetables compared to fruit vegetables and fruits. Using cluster analysis, the accumulation of nitrate in vegetables and fruits was categorized into four clusters, specifying that radish contributes to 65.8% of the total content of nitrate in all samples. The Estimated Daily Intake (EDI) of nitrate and Health Risk Index (HRI) associated with consumption of groundwater exceeded the prescribed limit for the children's target group in Mashhad's south and central parts. Likewise, EDI and HRI values for produce consumption, in most samples, were found to be in the tolerable range, except for radish, lettuce, and cabbage, potentially posing risks for both children and adult consumers. The total coliforms in groundwater were found to violate the prescribed limit at 78.93% of the sampling locations and were generally much higher over the city's central and southern areas. A relatively strong correlation (R2 = 0.6307) between total coliform and nitrate concentrations suggests the release of anthropogenic pollution (i.e., sewage and manure) in the central and southern Mashhad.
Collapse
Affiliation(s)
- Mohammad Zendehbad
- University of Natural Resources and Life Sciences, Vienna, Department of Water, Atmosphere and Environment, Institute of Soil Physics and Rural Water Management, Muthgasse 18, 1190 Vienna, Austria.
| | - Majid Mostaghelchi
- University of Vienna, Faculty of Geosciences, Geography and Astronomy, Department of Mineralogy and Crystallography, UZA 2, Althanstraße 14, 1090, Vienna, Austria
| | - Mohsen Mojganfar
- Ferdowsi University of Mashhad, Faculty of Science, Department of Geology, Azadi Square, Mashhad, Iran
| | - Peter Cepuder
- University of Natural Resources and Life Sciences, Vienna, Department of Water, Atmosphere and Environment, Institute of Soil Physics and Rural Water Management, Muthgasse 18, 1190 Vienna, Austria
| | - Willibald Loiskandl
- University of Natural Resources and Life Sciences, Vienna, Department of Water, Atmosphere and Environment, Institute of Soil Physics and Rural Water Management, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
84
|
Miller GD, Collins S, Ives J, Williams A, Basu S, Kim-Shapiro DB, Berry MJ. Efficacy and Variability in Plasma Nitrite Levels during Long-Term Supplementation with Nitrate Containing Beetroot Juice. J Diet Suppl 2022; 20:885-910. [PMID: 36310089 PMCID: PMC10148922 DOI: 10.1080/19390211.2022.2137269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Long-term consumption of beetroot juice on efficacy of converting dietary nitrate to plasma nitrate and nitrite was investigated. Adults were randomized to consume either beetroot juice with 380 mg of nitrate (BR) or a beetroot juice placebo (PL) for 12-weeks. Plasma nitrate and nitrite were measured before and 90-minutes after consuming their intervention beverage. Percent change in nitrite across the 90 min was greater in BR (273.2 ± 39.9%) vs. PL (4.9 ± 36.9%). Long-term consumption of nitrate containing beetroot juice increased fasting nitrate and nitrite plasma levels compared to baseline.
Collapse
Affiliation(s)
- Gary D. Miller
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109
| | - Summer Collins
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
| | - James Ives
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
| | - Allie Williams
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
| | - Swati Basu
- Department of Physics, Wake Forest University, Winston-Salem, NC. 27109
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109
| | - Daniel B. Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, NC. 27109
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109
| | - Michael J. Berry
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109
| |
Collapse
|
85
|
Oue A, Iimura Y, Shinagawa A, Miyakoshi Y, Ota M. Effect of Acute Dietary Nitrate Supplementation on the Venous Vascular Response to Static Exercise in Healthy Young Adults. Nutrients 2022; 14:nu14214464. [PMID: 36364727 PMCID: PMC9659063 DOI: 10.3390/nu14214464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to test the hypothesis that acute intake of inorganic nitrate (NO3−) via supplementation would attenuate the venoconstriction and pressor response to exercise. Sixteen healthy young adults were assigned in a randomized crossover design to receive beetroot juice (BRJ) or an NO3−-depleted control beverage (prune juice: CON). Two hours after consuming the allocated beverage, participants rested in the supine position. Following the baseline period of 4 min, static handgrip exercise of the left hand was performed at 30% of the maximal voluntary contraction for 2 min. Mean arterial pressure (MAP) and heart rate (HR) were measured. Changes in venous volume in the right forearm and right calf were also measured using venous occlusion plethysmography while cuffs on the upper arm and thigh were inflated constantly to 30−40 mmHg. The plasma NO3− concentration was elevated with BRJ intake (p < 0.05). Exercise increased MAP and HR and decreased venous volume in the forearm and calf, but there were no differences between CON and BRJ. Thus, these findings suggest that acute BRJ intake does not alter the sympathetic venoconstriction in the non-exercising limbs and MAP response to exercise in healthy young adults, despite the enhanced activity of nitric oxide.
Collapse
Affiliation(s)
- Anna Oue
- Faculty of Food and Nutritional Sciences, Toyo University, Gunma 374-0193, Japan
- Correspondence: ; Tel.: +81-276-82-9145; Fax: +81-276-82-9033
| | - Yasuhiro Iimura
- Graduate School of Food and Nutritional Sciences, Toyo University, Gunma 374-0193, Japan
| | - Akiho Shinagawa
- Graduate School of Food and Nutritional Sciences, Toyo University, Gunma 374-0193, Japan
| | - Yuichi Miyakoshi
- Faculty of Food and Nutritional Sciences, Toyo University, Gunma 374-0193, Japan
| | - Masako Ota
- Faculty of Food and Nutritional Sciences, Toyo University, Gunma 374-0193, Japan
| |
Collapse
|
86
|
Endothelial and Vascular Smooth Muscle Dysfunction in Hypertension. Biochem Pharmacol 2022; 205:115263. [PMID: 36174768 DOI: 10.1016/j.bcp.2022.115263] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/11/2022]
Abstract
The development of essential hypertension involves several factors. Vascular dysfunction, characterized by endothelial dysfunction, low-grade inflammation and structural remodeling, plays an important role in the initiation and maintenance of essential hypertension. Although the mechanistic pathways by which essential hypertension develops are poorly understood, several pharmacological classes available on the clinical settings improve blood pressure by interfering in the cardiac output and/or vascular function. This review is divided in two major sections. The first section depicts the major molecular pathways as renin angiotensin aldosterone system (RAAS), endothelin, nitric oxide signalling pathway and oxidative stress in the development of vascular dysfunction. The second section describes the role of some pharmacological classes such as i) RAAS inhibitors, ii) dual angiotensin receptor-neprilysin inhibitors, iii) endothelin-1 receptor antagonists, iv) soluble guanylate cyclase modulators, v) phosphodiesterase type 5 inhibitors and vi) sodium-glucose cotransporter 2 inhibitors in the context of hypertension. Some classes are already approved in the treatment of hypertension, but others are not yet approved. However, due to their potential benefits these classes were included.
Collapse
|
87
|
Wang S, Qin L. Homeostatic medicine: a strategy for exploring health and disease. CURRENT MEDICINE 2022; 1:16. [PMID: 36189427 PMCID: PMC9510546 DOI: 10.1007/s44194-022-00016-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/01/2022] [Indexed: 12/03/2022]
Abstract
Homeostasis is a process of dynamic balance regulated by organisms, through which they maintain an internal stability and adapt to the external environment for survival. In this paper, we propose the concept of utilizing homeostatic medicine (HM) as a strategy to explore health and disease. HM is a science that studies the maintenance of the body’s homeostasis. It is also a discipline that investigates the role of homeostasis in building health, studies the change of homeostasis in disease progression, and explores ways to restore homeostasis for the prevention, diagnosis and treatment of disease at all levels of biological organization. A new dimension in the medical system with a promising future HM focuses on how homeostasis functions in the regulation of health and disease and provides strategic directions in disease prevention and control. Nitric oxide (NO) plays an important role in the control of homeostasis in multiple systems. Nitrate is an important substance that regulates NO homeostasis through the nitrate-nitrite-NO pathway. Sialin interacts with nitrate and participates in the regulation of NO production and cell biological functions for body homeostasis. The interactions between nitrate and NO or sialin is an important mechanism by which homeostasis is regulated.
Collapse
Affiliation(s)
- Songlin Wang
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069 China
- Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050 China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Lizheng Qin
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069 China
- Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050 China
- Department of Oral and Maxillofacial & Head and Neck Oncology, School of Stomatology, Capital Medical University, Beijing, 100050 China
| |
Collapse
|
88
|
Volino-Souza M, Oliveira GVD, Pinheiro VDS, Conte-Junior CA, Alvares TDS. The effect of dietary nitrate on macro- and microvascular function: A systematic review. Crit Rev Food Sci Nutr 2022; 64:1225-1236. [PMID: 36062809 DOI: 10.1080/10408398.2022.2113989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Previous studies have investigated the impact of dietary nitrate on vascular function due to the association between dietary nitrate ingestion and improvement in nitric oxide (NO) bioavailability. Considering that NO can present different effects through vascular beds (macro- vs. microvasculature) due to the specific characteristic (function and morphology) that each vessel exhibits, it is crucial to investigate the effect of dietary nitrate ingestion on the macro- and microvascular function to understand the effect of nitrate on vascular function. For this reason, this review aimed to evaluate the impact of dietary nitrate on macro- and microvascular function in humans. A total of 29 studies were included in the systematic review, of which 19 studies evaluated the effect of nitrate supplementation on macrovascular function, eight studies evaluated the effect on microvascular function, and two studies evaluated the impact on both macro- and microvascular function. The literature suggests that dietary nitrate ingestion seems to improve the vascular function in macrovasculature, whereas microvascular function appears to be modest. Future studies investigating the effect of nitrate ingestion on vascular function should focus on measuring macro- and microvascular function whenever possible so that the impact of nitrate-rich foods on vascular segments could be better understood.
Collapse
Affiliation(s)
- Mônica Volino-Souza
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
- Postgraduate Program in Food Science, Chemistry Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Gustavo Vieira de Oliveira
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, Brazil
| | - Vivian Dos Santos Pinheiro
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
- Postgraduate Program in Food Science, Chemistry Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Postgraduate Program in Food Science, Chemistry Institute, Federal University of Rio de Janeiro, RJ, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, Brazil
| | - Thiago da Silveira Alvares
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
- Food and Nutrition Institute, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Brazil
| |
Collapse
|
89
|
Acute Effects of Inorganic Nitrate Intake on Brachial and Femoral Flow-Mediated Vasodilation, and on Carotid Artery Reactivity Responses: Results of a Randomized, Double-Blinded, Placebo-Controlled Cross-Over Study in Abdominally Obese Men. Nutrients 2022; 14:nu14173560. [PMID: 36079817 PMCID: PMC9460748 DOI: 10.3390/nu14173560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/26/2022] Open
Abstract
Most trials on the effects of inorganic nitrate intake have focused on only one specific aspect of the endothelial cell response to a stimulus, thereby possibly missing other important effects. The aim of the present randomized, double-blinded, placebo-controlled cross-over study was therefore to investigate in eighteen healthy abdominally obese men (18–60 years, waist circumference ≥ 102 cm) acute effects of potassium nitrate on brachial and femoral flow-mediated vasodilation (FMD), and on carotid artery reactivity (CAR) to a cold pressure test. Participants received in random order a drink providing 10 mmol potassium nitrate (i.e., 625 mg of nitrate) or an iso-molar placebo drink with potassium chloride. Fasted and 4 h post-drink FMD and blood pressure measurements were performed. CAR responses were assessed at 4 h. Circulating nitrate plus nitrite concentration increased following nitrate intake (p = 0.003). Compared with placebo, potassium nitrate did not affect brachial (mean [95% confidence interval]: −0.2% [−2.5, 2.1], p = 0.86) and femoral FMD responses (−0.6% [−3.0; 1.7], p = 0.54). CAR responses were also not different (−0.8% [−2.5, 0.9], p = 0.32). Finally, changes in blood pressure and heart rate did not differ. No adverse events were observed. In conclusion, this trial did not provide evidence for effects of a single dose of inorganic nitrate on 4 h vascular endothelial function in abdominally obese men.
Collapse
|
90
|
Thiruvengadam M, Chung IM, Samynathan R, Chandar SRH, Venkidasamy B, Sarkar T, Rebezov M, Gorelik O, Shariati MA, Simal-Gandara J. A comprehensive review of beetroot ( Beta vulgaris L.) bioactive components in the food and pharmaceutical industries. Crit Rev Food Sci Nutr 2022; 64:708-739. [PMID: 35972148 DOI: 10.1080/10408398.2022.2108367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Beetroot is rich in various bioactive phytochemicals, which are beneficial for human health and exert protective effects against several disease conditions like cancer, atherosclerosis, etc. Beetroot has various therapeutic applications, including antioxidant, antibacterial, antiviral, and analgesic functions. Besides the pharmacological effects, food industries are trying to preserve beetroots or their phytochemicals using various food preservation methods, including drying and freezing, to preserve their antioxidant capacity. Beetroot is a functional food due to valuable active components such as minerals, amino acids, phenolic acid, flavonoid, betaxanthin, and betacyanin. Due to its stability, nontoxic and non-carcinogenic and nonpoisonous capabilities, beetroot has been used as an additive or preservative in food processing. Beetroot and its bioactive compounds are well reported to possess antioxidant, anti-inflammatory, antiapoptotic, antimicrobial, antiviral, etc. In this review, we provided updated details on (i) food processing, preservation and colorant methods using beetroot and its phytochemicals, (ii) synthesis and development of several nanoparticles using beetroot and its bioactive compounds against various diseases, (iii) the role of beetroot and its phytochemicals under disease conditions with molecular mechanisms. We have also discussed the role of other phytochemicals in beetroot and their health benefits. Recent technologies in food processing are also updated. We also addressed on molecular docking-assisted biological activity and screening for bioactive chemicals. Additionally, the role of betalain from different sources and its therapeutic effects have been listed. To the best of our knowledge, little or no work has been carried out on the impact of beetroot and its nanoformulation strategies for phytocompounds on antimicrobial, antiviral effects, etc. Moreover, epigenetic alterations caused by phytocompounds of beetroot under several diseases were not reported much. Thus, extensive research must be carried out to understand the molecular effects of beetroot in the near future.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | | | | | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Maksim Rebezov
- Department of Scientific Advisers, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russian Federation
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and management (The First Cossack University), Moscow, Russia Federation
| | - Olga Gorelik
- Faculty of Biotechnology and Food Engineering, Ural State Agrarian University, Yekaterinburg, Russian Federation
- Ural Federal Agrarian Research Center of the Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and management (The First Cossack University), Moscow, Russia Federation
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Ourense, Spain
| |
Collapse
|
91
|
Lundberg JO, Weitzberg E. Nitric oxide signaling in health and disease. Cell 2022; 185:2853-2878. [DOI: 10.1016/j.cell.2022.06.010] [Citation(s) in RCA: 346] [Impact Index Per Article: 115.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 10/16/2022]
|
92
|
karimzadeh L, Sohrab G, Hedayati M, Ebrahimof S, Emami G, Razavion T. Effects of concentrated beetroot juice consumption on glycemic control, blood pressure, and lipid profile in type 2 diabetes patients: randomized clinical trial study. Ir J Med Sci 2022:10.1007/s11845-022-03090-y. [PMID: 35869311 PMCID: PMC9307292 DOI: 10.1007/s11845-022-03090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022]
Abstract
Background While the prevalence of type 2 diabetes (T2D) is growing worldwide, dietary intake plays a remarkable role in the management of disease complications. Evidence suggests that beetroot has health-promoting potentials, including anti-inflammatory, antioxidant, and antidiabetic properties. Therefore, the present clinical trial aimed to investigate the effects of concentrated beetroot juice (BJ) supplementation on anthropometric measures, glycemic control, blood pressure (BP), and lipid profile in T2D patients. Methods In the simply randomized, parallel-group, controlled, and open-label trial, forty-six patients with T2D were randomly allocated to either the intervention group (BJ group), who consumed 24 ml concentrated BJ daily for 12 weeks, or the control group without any intervention. Anthropometric measurements, physical activity, dietary intakes, glycemic measures, lipid profile, and blood pressure were assessed at the baseline and the end of the study. Results Plasma nitric oxide (NO) in the intervention group had a higher nonsignificant increase after 12 weeks compared with the control group (8.57 ± 23.93 vs. 2.31 ± 15.98, P = 0.128). Compared with the baseline, significant reductions in plasma insulin (14.55 ± 7.85 vs. 10.62 ± 6.96, P = 0.014) and homeostasis model assessment of β-cell function (HOMA-B) (3.96 ± 0.83 vs. 3.63 ± 0.75, P = 0.038), as well as a marginally significant reduction in high-density lipoprotein cholesterol (HDL-C) (70.81 ± 11.24 vs. 65.44 ± 6.46, P = 0.058) were observed in the control group after 12 weeks. Diastolic blood pressure (DBP) was significantly reduced in the BJ group compared with the baseline (74.73 ± 16.78 vs. 72.36 ± 16.09, P = 0.046). After adjusting for baseline values, no significant effect on the levels of fasting plasma glucose (FPG), insulin, hemoglobin A1c (HgA1c), HOMA-β, homeostatic model assessment for insulin resistance (HOMA-IR), total cholesterol (TC), low-density lipoprotein (LDL), HDL, triglycerides (TG), and blood pressure (BP) was observed. Conclusions Our study showed that daily consumption of 24 ml concentrated BJ did not affect the levels of glycemic measures, blood pressure, and lipid profile. More studies are necessary to confirm these findings. Trial Registration This present clinical trial has been registered in the Iranian Registry of Clinical Trials with registration number IRCT20150815023617N5.
Collapse
Affiliation(s)
- Laleh karimzadeh
- Clinical Nutrition and Dietetics Department, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golbon Sohrab
- Clinical Nutrition and Dietetics Department, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Ebrahimof
- Department of Nutrition Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institutle, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golpar Emami
- Health Deputy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Taraneh Razavion
- Department of Medical Parasitology and Mycology of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
93
|
The Effect of Herbal Supplements on Blood Pressure: Systematic Review and Meta-Analysis. Antioxidants (Basel) 2022; 11:antiox11081419. [PMID: 35892622 PMCID: PMC9332300 DOI: 10.3390/antiox11081419] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023] Open
Abstract
Herbal supplements rich in phenolic compounds are evidenced to have a protective effect against cardiovascular diseases. Therefore, they are suggested to be included in diets for people with hypertension (HT). HT is a global health problem and is estimated to affect billions of people until the end of 2025. For this reason, every possible and effective solution preventing HT should be considered. The aim was to perform an updated meta-analysis and review of recently published studies to evaluate the effect of selected herbal supplements on blood pressure reduction. We searched the PubMed database with specified selection criteria, analysing the RCT studies from 2011 to 2021. A total of 31 studies were included in the analysis, and the meta-analysis was conducted on the data from 16 of them. The general effect size of all the supplements via placebo was d = 1.45, p < 0.05 for systolic blood pressure (SBP) and d = 0.31, p < 0.05 for diastolic blood pressure (DBP). The meta-analysis and review of the literature demonstrated that herbal supplements, such as resveratrol, cherry juice, beetroot juice, bergamot extracts, barberry, and pycnogenol, can be effective in blood pressure reduction and cardiovascular prevention, but attention should be paid to their appropriate dosage due to the possibility of side effects from the digestive system.
Collapse
|
94
|
Broxterman RM, La Salle DT, Zhao J, Reese VR, Kwon OS, Richardson RS, Trinity JD. Dietary Nitrate Supplementation and Small Muscle Mass Exercise Hemodynamics in Patients with Essential Hypertension. J Appl Physiol (1985) 2022; 133:506-516. [PMID: 35834624 PMCID: PMC9377785 DOI: 10.1152/japplphysiol.00218.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exaggerated blood pressure and diminished limb hemodynamics during exercise in patients with hypertension often are not resolved by antihypertensive medications. We hypothesized that, independent of antihypertensive medication status, dietary nitrate supplementation would increase limb blood flow, decrease mean arterial pressure (MAP), and increase limb vascular conductance during exercise in patients with hypertension. Patients with hypertension either abstained from (n=14, Off-Meds) or continued (n=12, On-Meds) antihypertensive medications. Within each group, patients consumed (cross-over design) nitrate-rich or nitrate-depleted (placebo) beetroot juice for 3-days before performing handgrip (HG) and knee-extensor exercise (KE). Blood flow and MAP were measured using Doppler ultrasound and an automated monitor, respectively. Dietary nitrate increased plasma-[nitrite] Off-Meds and On-Meds. There were no significant effects of dietary nitrate on blood flow, MAP, or vascular conductance during HG in Off-Meds or On-Meds. For KE, dietary nitrate decreased MAP (mean±SD across all three exercise intensities, 118±14 vs. 122±14 mmHg, p=0.024) and increased vascular conductance (26.2±6.1 vs. 24.7±7.0 ml/min/mmHg, p=0.024), but did not affect blood flow for Off-Meds, with no effects On-Meds. Dietary nitrate-induced changes in blood flow (r=-0.67, p<0.001), MAP (r=-0.43, p=0.009), and vascular conductance (r=-0.64, p<0.001) during KE, but only vascular conductance (r=-0.35, p=0.039) during HG, were significantly related to the magnitude of placebo values, with no differentiation between groups. Thus, the effects of dietary nitrate on limb hemodynamics and MAP during exercise in patients with hypertension are dependent on the values at baseline, independent of antihypertensive medication status, and dependent on whether exercise was performed by the forearm or quadriceps.
Collapse
Affiliation(s)
- Ryan M Broxterman
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, Salt Lake City, UT, United States.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States.,Center on Aging, University of Utah, Salt Lake City, UT, United States
| | - D Taylor La Salle
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| | - Jia Zhao
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Van R Reese
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Oh Sung Kwon
- Department of Kinesiology, University of Connecticut, Storrs, CT, United States.,Department of Orthopedic Surgery and Center of Aging, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, Salt Lake City, UT, United States.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States.,Center on Aging, University of Utah, Salt Lake City, UT, United States.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| | - Joel D Trinity
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, Salt Lake City, UT, United States.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States.,Center on Aging, University of Utah, Salt Lake City, UT, United States.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
95
|
Oue A, Iimura Y, Shinagawa A, Miyakoshi Y, Ota M. Acute dietary nitrate supplementation does not change venous volume and compliance in healthy young adults. Am J Physiol Regul Integr Comp Physiol 2022; 323:R331-R339. [PMID: 35816716 DOI: 10.1152/ajpregu.00083.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this randomized single-blind, placebo-controlled, crossover study, we investigated the influence of inorganic nitrate (NO3-) supplementation on venous volume and compliance in the resting forearm and calf. Twenty healthy young adults were assigned to receive an NO3--rich beverage (beetroot juice [BRJ]: 140 mL; ~8 mmol NO3-) or an NO3¯-depleted control beverage (prune juice [CON]: 166 mL; < 0.01 mmol NO3-). Two hours after consuming the allocated beverage, each participant rested in the supine position for 20 min. Cuffs were then placed around the right upper arm and right thigh, inflated to 60 mmHg for 8 min, and then decreased to 0 mmHg at a rate of 1 mmHg/s. During inflation and deflation of cuff pressure, changes in venous volume in the forearm and calf were measured by venous occlusion plethysmography. Venous compliance was calculated as the numerical derivative of the cuff pressure‒venous volume curve in the limbs. The plasma NO3- concentration was elevated by intake of BRJ (before, 15.5 ± 5.8 µM; after, 572.0 ± 116.1 µM, P < 0.05) but not by CON (before, 14.8 ± 7.2 µM; after, 15.3 ± 7.4 µM, P > 0.05). On the other hand, there was no significant difference in venous volume or compliance in the forearm or calf between BRJ and CON. These findings suggest that although acute inorganic NO3- supplementation may enhance the activity of nitric oxide (NO) via NO3- → nitrite → NO pathway, it does not influence venous volume or compliance in the limbs in healthy young adults.
Collapse
Affiliation(s)
- Anna Oue
- Faculty of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Yasuhiro Iimura
- Graduate School of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Akiho Shinagawa
- Graduate School of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Yuichi Miyakoshi
- Faculty of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Masako Ota
- Faculty of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| |
Collapse
|
96
|
Plasma Nitrate and Nitrite Kinetics after Single Intake of Beetroot Juice in Adult Patients on Chronic Hemodialysis and in Healthy Volunteers: A Randomized, Single-Blind, Placebo-Controlled, Crossover Study. Nutrients 2022; 14:nu14122480. [PMID: 35745210 PMCID: PMC9228981 DOI: 10.3390/nu14122480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 11/16/2022] Open
Abstract
Nitric oxide (NO) contributes to maintaining normal cardiovascular and renal function. This bioactive signalling molecule is generally formed enzymatically by NO synthase in the vascular endothelium. NO bioactivity can also be attributed to dietary intake of inorganic nitrate, which is abundant in our diet, especially in green leafy vegetables and beets. Ingested nitrate is reduced to nitrite by oral commensal bacteria and further to NO systemically. Previous studies have shown that dialysis, by means of removing nitrate and nitrite from the body, can reduce NO bioactivity. Hence, dietary intervention approaches aimed to boost the nitrate-nitrite-NO pathway may be of benefit in dialysis patients. The purpose of this study was to examine the kinetics of plasma nitrate and nitrite after a single intake of nitrate-rich concentrated beetroot juice (BJ) in adult hemodialysis (HD) patients and in age-matched healthy volunteers (HV). Eight HD patients and seven HV participated in this single center, randomized, single-blind, placebo-controlled, crossover study. Each participant received a sequential single administration of active BJ (70 mL, 400 mg nitrate) and placebo BJ (70 mL, 0 mg nitrate) in a random order separated by a washout period of seven days. For the kinetic analysis, blood samples were collected at different time-points before and up to 44 h after BJ intake. Compared with placebo, active BJ significantly increased plasma nitrate and nitrite levels both in HD patients and HV. The area under the curve and the maximal concentration of plasma nitrate, but not of nitrite, were significantly higher in HD patients as compared with HV. In both groups, active BJ ingestion did not affect blood pressure or plasma potassium levels. Both BJs were well tolerated in all participants with no adverse events reported. Our data provide useful information in planning dietary nitrate supplementation efficacy studies in patients with reduced NO bioactivity.
Collapse
|
97
|
Tosato M, Ciciarello F, Zazzara MB, Pais C, Savera G, Picca A, Galluzzo V, Coelho-Júnior HJ, Calvani R, Marzetti E, Landi F. Nutraceuticals and Dietary Supplements for Older Adults with Long COVID. Clin Geriatr Med 2022; 38:565-591. [PMID: 35868674 PMCID: PMC9212635 DOI: 10.1016/j.cger.2022.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Matteo Tosato
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Francesca Ciciarello
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Maria Beatrice Zazzara
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Cristina Pais
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Giulia Savera
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Vincenzo Galluzzo
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Hélio José Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, L.go F. Vito 8, Rome 00168, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy.
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, L.go F. Vito 8, Rome 00168, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, L.go F. Vito 8, Rome 00168, Italy
| |
Collapse
|
98
|
Miller GD, Nesbit BA, Kim-Shapiro DB, Basu S, Berry MJ. Effect of Vitamin C and Protein Supplementation on Plasma Nitrate and Nitrite Response following Consumption of Beetroot Juice. Nutrients 2022; 14:1880. [PMID: 35565845 PMCID: PMC9100995 DOI: 10.3390/nu14091880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Beetroot juice is a food high in nitrate and is associated with cardiometabolic health benefits and enhanced exercise performance through the production of nitric oxide in the nitrate−nitrite−nitric oxide pathway. Since various food components influence this pathway, the aim of this trial was to study the effect of beetroot juice alone and in conjunction with vitamin C or protein on the acute response to plasma nitrate and nitrite levels in healthy middle- to older-aged adults. In this cross-over trial, each participant received, in a randomized order, a single dose of Beet It Sport® alone; Beet It Sport®, plus a 200 mg vitamin C supplement; and Beet It Sport® plus 15 g of whey protein. Plasma levels of nitrate and nitrite were determined prior to and at 1 and 3 h after intervention. Log plasma nitrate and nitrite was calculated to obtain data that were normally distributed, and these data were analyzed using two-way within-factors ANOVA, with time and treatment as the independent factors. There were no statistically significant differences for log plasma nitrate (p = 0.308) or log plasma nitrite (p = 0.391) values across treatments. Log plasma nitrate increased significantly from pre-consumption levels after 1 h (p < 0.001) and 3 h (p < 0.001), but plasma nitrate was lower at 3 h than 1 h (p < 0.001). Log plasma nitrite increased from pre to 1 h (p < 0.001) and 3 h (p < 0.001) with log values at 3 h higher than at 1 h (p = 0.003). In this cohort, we observed no differences in log plasma nitrate and nitrite at 1 h and 3 h after co-ingesting beetroot juice with vitamin C or a whey protein supplement compared to beetroot juice alone. Further research needs to be undertaken to expand the blood-sampling time-frame and to examine factors that may influence the kinetics of the plasma nitrate to nitrite efficacy, such as differences in fluid volume and osmolarity between treatments employed.
Collapse
Affiliation(s)
- Gary D. Miller
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC 27109, USA;
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA; (B.A.N.); (D.B.K.-S.); (S.B.)
| | - Beverly A. Nesbit
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA; (B.A.N.); (D.B.K.-S.); (S.B.)
| | - Daniel B. Kim-Shapiro
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA; (B.A.N.); (D.B.K.-S.); (S.B.)
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Swati Basu
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA; (B.A.N.); (D.B.K.-S.); (S.B.)
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Michael J. Berry
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC 27109, USA;
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA; (B.A.N.); (D.B.K.-S.); (S.B.)
| |
Collapse
|
99
|
Kurtz T, Pravenec M, DiCarlo S. Mechanism-based strategies to prevent salt sensitivity and salt-induced hypertension. Clin Sci (Lond) 2022; 136:599-620. [PMID: 35452099 PMCID: PMC9069470 DOI: 10.1042/cs20210566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 12/15/2022]
Abstract
High-salt diets are a major cause of hypertension and cardiovascular (CV) disease. Many governments are interested in using food salt reduction programs to reduce the risk for salt-induced increases in blood pressure and CV events. It is assumed that reducing the salt concentration of processed foods will substantially reduce mean salt intake in the general population. However, contrary to expectations, reducing the sodium density of nearly all foods consumed in England by 21% had little or no effect on salt intake in the general population. This may be due to the fact that in England, as in other countries including the U.S.A., mean salt intake is already close to the lower normal physiologic limit for mean salt intake of free-living populations. Thus, mechanism-based strategies for preventing salt-induced increases in blood pressure that do not solely depend on reducing salt intake merit attention. It is now recognized that the initiation of salt-induced increases in blood pressure often involves a combination of normal increases in sodium balance, blood volume and cardiac output together with abnormal vascular resistance responses to increased salt intake. Therefore, preventing either the normal increases in sodium balance and cardiac output, or the abnormal vascular resistance responses to salt, can prevent salt-induced increases in blood pressure. Suboptimal nutrient intake is a common cause of the hemodynamic disturbances mediating salt-induced hypertension. Accordingly, efforts to identify and correct the nutrient deficiencies that promote salt sensitivity hold promise for decreasing population risk of salt-induced hypertension without requiring reductions in salt intake.
Collapse
Affiliation(s)
- Theodore W. Kurtz
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94017-0134, U.S.A
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Stephen E. DiCarlo
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
100
|
Benjamim CJR, Porto AA, Valenti VE, Sobrinho ACDS, Garner DM, Gualano B, Bueno Júnior CR. Nitrate Derived From Beetroot Juice Lowers Blood Pressure in Patients With Arterial Hypertension: A Systematic Review and Meta-Analysis. Front Nutr 2022; 9:823039. [PMID: 35369064 PMCID: PMC8965354 DOI: 10.3389/fnut.2022.823039] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background Although there are a considerable number of clinical studies on nitrate (NO3) rich beetroot juice (BRJ) and hypertension, it is difficult to indicate the real effects of NO3 from BRJ on the BP of hypertensive patients because there are still no estimates of the effects of NO3 derived from BRJ on the BP of hypertension patients. Objective To clarify these effects, we developed a systematic literature review with a meta-analysis of randomized clinical trials (RCTs). Design The searches were accomplished through EMBASE, Cochrane Library, MEDLINE, CINAHL, Web of Science, and LILACS databases. The study included single or double-blinded RCTs and participants older than 18 years with hypertension [systolic BP (SBP) > 130 mmHg and diastolic BP (DBP) > 80 mmHg]. NO3 BRJ was required to be consumed in a format that possibly blinded participants/researchers. These studies should also report the SBP and DBP values (mmHg) measured before and after the treatment. Risk of Bias tools and GRADE were enforced. Results Seven studies were included (218 participants). BRJ intervention time ranged from 3 to 60 days with daily dosages of 70-250 mL of BRJ. After the intervention with NO3 from BRJ, SBP underwent significant changes (p < 0.001) of -4.95 (95% CI: -8.88; -1.01) (GRADE: ⊕⊕⊕○ Moderate), but not for DBP (p = 0.06) -0.90 mmHg (95% CI: -3.16; 1.36) (GRADE: ⊕⊕⊕○ Moderate), compared to the control group. Conclusions The NO3 derived from BRJ reduces SBP, but not DBP in patients with arterial hypertension. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=269339.
Collapse
Affiliation(s)
- Cicero Jonas R. Benjamim
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | - David M. Garner
- Autonomic Nervous System Center, UNESP, Marilia, Brazil
- Cardiorespiratory Research Group, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, School Medicine, University of São Paulo, São Paulo, Brazil
| | - Carlos Roberto Bueno Júnior
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- School of Physical Education of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|