51
|
Yao Y, Imirzalioglu C, Falgenhauer L, Falgenhauer J, Heinmüller P, Domann E, Chakraborty T. Plasmid-Mediated Spread of Carbapenem Resistance in Enterobacterales: A Three-Year Genome-Based Survey. Antibiotics (Basel) 2024; 13:682. [PMID: 39199982 PMCID: PMC11350871 DOI: 10.3390/antibiotics13080682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
The worldwide emergence and dissemination of carbapenem-resistant Gram-negative bacteria (CRGNB) is a challenging problem of antimicrobial resistance today. Outbreaks with CRGNB have severe consequences for both the affected healthcare settings as well as the patients with infection. Thus, bloodstream infections caused by metallo-ß-lactamase-producing Enterobacterales can often have clinical implications, resulting in high mortality rates due to delays in administering effective treatment and the limited availability of treatment options. The overall threat of CRGNB is substantial because carbapenems are used to treat infections caused by ESBL-producing Enterobacterales which also exist with high frequency within the same geographical regions. A genome-based surveillance of 589 CRGNB from 61 hospitals across the federal state Hesse in Germany was implemented using next-generation sequencing (NGS) technology to obtain a high-resolution landscape of carbapenem-resistant isolates over a three-year period (2017-2019). The study examined all reportable CRGNB isolates submitted by participating hospitals. This included isolates carrying known carbapenemases (435) together with carbapenem-resistant non-carbapenemase producers (154). Predominant carbapenemase producers included Klebsiella pneumoniae, Escherichia coli, Citrobacter freundii and Acinetobacter baumannii. Over 80% of 375 carbapenem-resistant determinants including KPC-, NDM-, VIM- and OXA-48-like ones detected in 520 Enterobacterales were plasmid-encoded, and half of these were dominated by a few incompatibility (Inc) types, viz., IncN, IncL/M, IncFII and IncF(K). Our results revealed that plasmids play an extraordinary role in the dissemination of carbapenem resistance in the heterogeneous CRGNB population. The plasmids were also associated with several multispecies dissemination events and local outbreaks throughout the study period, indicating the substantial role of horizontal gene transfer in carbapenemase spread. Furthermore, due to vertical and horizontal plasmid transfer, this can have an impact on implant-associated infections and is therefore important for antibiotic-loaded bone cement and drug-containing devices in orthopedic surgery. Future genomic surveillance projects should increase their focus on plasmid characterization.
Collapse
Affiliation(s)
- Yancheng Yao
- Institute of Medical Microbiology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (C.I.); (L.F.); (J.F.); (T.C.)
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392 Giessen, Germany
| | - Can Imirzalioglu
- Institute of Medical Microbiology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (C.I.); (L.F.); (J.F.); (T.C.)
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392 Giessen, Germany
| | - Linda Falgenhauer
- Institute of Medical Microbiology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (C.I.); (L.F.); (J.F.); (T.C.)
- Institute for Hygiene and Environmental Medicine, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
- Hessisches Landesamt für Gesundheit und Pflege (HLfGP), Heinrich-Hertz-Strasse 5, 35683 Dillenburg, Germany;
| | - Jane Falgenhauer
- Institute of Medical Microbiology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (C.I.); (L.F.); (J.F.); (T.C.)
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392 Giessen, Germany
- Institute for Hygiene and Environmental Medicine, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Petra Heinmüller
- Hessisches Landesamt für Gesundheit und Pflege (HLfGP), Heinrich-Hertz-Strasse 5, 35683 Dillenburg, Germany;
| | - Eugen Domann
- Institute of Medical Microbiology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (C.I.); (L.F.); (J.F.); (T.C.)
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392 Giessen, Germany
- Institute for Hygiene and Environmental Medicine, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (C.I.); (L.F.); (J.F.); (T.C.)
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392 Giessen, Germany
| |
Collapse
|
52
|
Lyu Y, Yu S, Zhu L, Guo Y, Yu S, Pan C, Zhu L, Wang H, Wang D, Guo X, Liu X. Genome sequences of two Bacillus anthracis strains utilized as veterinary vaccines in China. Microbiol Resour Announc 2024; 13:e0028124. [PMID: 38916302 PMCID: PMC11256820 DOI: 10.1128/mra.00281-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
In this report, we present the complete genome sequences of two Bacillus anthracis strains utilized as veterinary vaccines in China. The sequencing was conducted using a hybrid assembly methodology that combined Illumina short reads and PacBio long reads. This approach provides a high-quality representative sequence for the strains mentioned above.
Collapse
Affiliation(s)
- Yufei Lyu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
- Laboratory of Advanced Biotechnology, Beijing, China
| | - Shuo Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Lingwei Zhu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Shujuan Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Dongshu Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
- Laboratory of Advanced Biotechnology, Beijing, China
| | - Xuejun Guo
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiankai Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
- Laboratory of Advanced Biotechnology, Beijing, China
| |
Collapse
|
53
|
Antwerpen M, Beyer W, Grass G. New Insights into the Phylogeny of the A.Br.161 ("A.Br.Heroin") Clade of Bacillus anthracis. Pathogens 2024; 13:593. [PMID: 39057820 PMCID: PMC11279936 DOI: 10.3390/pathogens13070593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Bacillus anthracis is a rare but highly dangerous zoonotic bacterial pathogen. At the beginning of this century, a new manifestation of the disease, injectional anthrax, emerged as a result of recreational heroin consumption involving contaminated drugs. The organisms associated with this 13-year-lasting outbreak event in European drug consumers were all grouped into the canonical single-nucleotide polymorphism (canSNP) clade A-branch (A.Br.) 161 of B. anthracis. Related clade A.Br.161 strains of B. anthracis not associated with heroin consumption have also been identified from different countries, mostly in Asia. Because of inadvertent spread by anthropogenic activities, other strains of this A.Br.161 lineage were, however, isolated from several countries. Thus, without additional isolates from this clade, its origin of evolution or its autochthonous region remains obscure. Here, we genomically characterized six new A.Br.161 group isolates, some of which were from Iran, with others likely historically introduced into Germany. All the chromosomes of these isolates could be grouped into a distinct sub-clade within the A.Br.161 clade. This sub-clade is separated from the main A.Br.161 lineage by a single SNP. We have developed this SNP into a PCR assay facilitating the future attribution of strains to this group.
Collapse
Affiliation(s)
- Markus Antwerpen
- Bundeswehr Institute of Microbiology (IMB), 80937 Munich, Germany
| | - Wolfgang Beyer
- Department of Livestock Infectiology and Environmental Hygiene, Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Gregor Grass
- Bundeswehr Institute of Microbiology (IMB), 80937 Munich, Germany
| |
Collapse
|
54
|
Liu T, Lee S, Kim M, Fan P, Boughton RK, Boucher C, Jeong KC. A study at the wildlife-livestock interface unveils the potential of feral swine as a reservoir for extended-spectrum β-lactamase-producing Escherichia coli. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134694. [PMID: 38788585 DOI: 10.1016/j.jhazmat.2024.134694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Wildlife is known to serve as carriers and sources of antimicrobial resistance (AMR). Due to their unrestricted movements and behaviors, they can spread antimicrobial resistant bacteria among livestock, humans, and the environment, thereby accelerating the dissemination of AMR. Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is one of major concerns threatening human and animal health, yet transmission mechanisms at the wildlife-livestock interface are not well understood. Here, we investigated the mechanisms of ESBL-producing bacteria spreading across various hosts, including cattle, feral swine, and coyotes in the same habitat range, as well as from environmental samples over a two-year period. We report a notable prevalence and clonal dissemination of ESBL-producing E. coli in feral swine and coyotes, suggesting their persistence and adaptation within wildlife hosts. In addition, in silico studies showed that horizontal gene transfer, mediated by conjugative plasmids and insertion sequences elements, may play a key role in spreading the ESBL genes among these bacteria. Furthermore, the shared gut resistome of cattle and feral swine suggests the dissemination of antibiotic resistance genes at the wildlife-livestock interface. Taken together, our results suggest that feral swine may serve as a reservoir of ESBL-producing E. coli.
Collapse
Affiliation(s)
- Ting Liu
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611 USA; Department of Animal Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611 USA
| | - Shinyoung Lee
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611 USA; Department of Animal Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611 USA
| | - Miju Kim
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611 USA; Department of Animal Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611 USA; Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Peixin Fan
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611 USA; Department of Animal Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611 USA
| | - Raoul K Boughton
- Range Cattle Research and Education Center, Wildlife Ecology and Conservation, University of Florida, Ona, FL 33865, USA
| | - Christina Boucher
- Department of Computer and Information Science and Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611 USA
| | - Kwangcheol C Jeong
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611 USA; Department of Animal Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611 USA.
| |
Collapse
|
55
|
Gassiep I, Chatfield MD, Permana B, Burnard D, Bauer MJ, Cuddihy T, Forde BM, Mayer-Coverdale J, Norton RE, Harris PNA. The Genomic Epidemiology of Clinical Burkholderia pseudomallei Isolates in North Queensland, Australia. Pathogens 2024; 13:584. [PMID: 39057811 PMCID: PMC11279585 DOI: 10.3390/pathogens13070584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/26/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Background:Burkholderia pseudomallei, the causative agent of melioidosis, is highly genetically recombinant, resulting in significant genomic diversity. Multiple virulence factors have been associated with specific disease presentations. To date, there are limited data relating to genomic diversity and virulence factors associated with melioidosis cases in North Queensland, Australia. Aim: To describe the genetic diversity of B. pseudomallei and identify virulence factors associated with clinical risk factors and patient outcomes. Methods: Whole genome sequencing of clinical isolates was performed and analysed with clinical data obtained from a retrospective melioidosis cohort study. Results: Fifty-nine distinct sequence types (STs) were identified from the 128 clinical isolates. Six STs comprised 64/128 (50%) isolates. Novel STs accounted for 38/59 (64%) STs, with ST TSV-13 as the most prevalent (n = 7), and were less likely to possess an LPS A genotype or YLF gene cluster (p < 0.001). These isolates were most likely to be found outside the inner city (aOR: 4.0, 95% CI: 1.7-9.0, p = 0.001). ST TSV-13 was associated with increased mortality (aOR: 6.1, 95% CI: 1.2-30.9, p = 0.03). Patients with a history of alcohol excess were less likely to be infected by fhaB3 (aOR 0.2, 95% CI: 0.1-0.7, p = 0.01) or YLF (aOR: 0.4, 95% CI: 0.2-0.9, p = 0.04) positive isolates. Conclusions: There are a significant number of novel sequence types in Townsville, Australia. An emerging novel ST appears to have an association with geographic location and mortality. Ongoing investigation is required to further understand the impact of this ST on the Townsville region.
Collapse
Affiliation(s)
- Ian Gassiep
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women’s Hospital Campus, Herston, Brisbane, QLD 4029, Australia; (M.D.C.); (B.P.); (M.J.B.); (B.M.F.); (J.M.-C.); (P.N.A.H.)
- Department of Infectious Diseases, Mater Hospital Brisbane, Brisbane, QLD 4101, Australia
- Pathology Queensland, Royal Brisbane and Women’s Hospital, Herston, Brisbane, QLD 4029, Australia
| | - Mark D. Chatfield
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women’s Hospital Campus, Herston, Brisbane, QLD 4029, Australia; (M.D.C.); (B.P.); (M.J.B.); (B.M.F.); (J.M.-C.); (P.N.A.H.)
| | - Budi Permana
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women’s Hospital Campus, Herston, Brisbane, QLD 4029, Australia; (M.D.C.); (B.P.); (M.J.B.); (B.M.F.); (J.M.-C.); (P.N.A.H.)
| | - Delaney Burnard
- Queensland Cyber Infrastructure Foundation, Brisbane, QLD 4067, Australia;
| | - Michelle J. Bauer
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women’s Hospital Campus, Herston, Brisbane, QLD 4029, Australia; (M.D.C.); (B.P.); (M.J.B.); (B.M.F.); (J.M.-C.); (P.N.A.H.)
| | - Thom Cuddihy
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4067, Australia;
| | - Brian M. Forde
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women’s Hospital Campus, Herston, Brisbane, QLD 4029, Australia; (M.D.C.); (B.P.); (M.J.B.); (B.M.F.); (J.M.-C.); (P.N.A.H.)
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4067, Australia;
| | - Johanna Mayer-Coverdale
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women’s Hospital Campus, Herston, Brisbane, QLD 4029, Australia; (M.D.C.); (B.P.); (M.J.B.); (B.M.F.); (J.M.-C.); (P.N.A.H.)
- Sullivan Nicolaides Pathology, Brisbane, QLD 4006, Australia
- Herston Infectious Diseases Institute, Royal Brisbane and Woman’s Hospital, Herston, Brisbane, QLD 4029, Australia
| | - Robert E. Norton
- Pathology Queensland, Townsville University Hospital, Townsville, QLD 4814, Australia;
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Patrick N. A. Harris
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women’s Hospital Campus, Herston, Brisbane, QLD 4029, Australia; (M.D.C.); (B.P.); (M.J.B.); (B.M.F.); (J.M.-C.); (P.N.A.H.)
- Pathology Queensland, Royal Brisbane and Women’s Hospital, Herston, Brisbane, QLD 4029, Australia
| |
Collapse
|
56
|
Seru LV, Forde TL, Roberto-Charron A, Mavrot F, Niu YD, Kutz SJ. Genomic characterization and virulence gene profiling of Erysipelothrix rhusiopathiae isolated from widespread muskox mortalities in the Canadian Arctic Archipelago. BMC Genomics 2024; 25:691. [PMID: 39004696 PMCID: PMC11247837 DOI: 10.1186/s12864-024-10592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Muskoxen are important ecosystem components and provide food, economic opportunities, and cultural well-being for Indigenous communities in the Canadian Arctic. Between 2010 and 2021, Erysipelothrix rhusiopathiae was isolated from carcasses of muskoxen, caribou, a seal, and an Arctic fox during multiple large scale mortality events in the Canadian Arctic Archipelago. A single strain ('Arctic clone') of E. rhusiopathiae was associated with the mortalities on Banks, Victoria and Prince Patrick Islands, Northwest Territories and Nunavut, Canada (2010-2017). The objectives of this study were to (i) characterize the genomes of E. rhusiopathiae isolates obtained from more recent muskox mortalities in the Canadian Arctic in 2019 and 2021; (ii) identify and compare common virulence traits associated with the core genome and mobile genetic elements (i.e. pathogenicity islands and prophages) among Arctic clone versus other E. rhusiopathiae genomes; and iii) use pan-genome wide association studies (GWAS) to determine unique genetic contents of the Arctic clone that may encode virulence traits and that could be used for diagnostic purposes. RESULTS Phylogenetic analyses revealed that the newly sequenced E. rhusiopathiae isolates from Ellesmere Island, Nunavut (2021) also belong to the Arctic clone. Of 17 virulence genes analysed among 28 Arctic clone isolates, four genes - adhesin, rhusiopathiae surface protein-A (rspA), choline binding protein-B (cbpB) and CDP-glycerol glycerophosphotransferase (tagF) - had amino acid sequence variants unique to this clone when compared to 31 other E. rhusiopathiae genomes. These genes encode proteins that facilitate E. rhusiopathiae to attach to the host endothelial cells and form biofilms. GWAS analyses using Scoary found several unique genes to be overrepresented in the Arctic clone. CONCLUSIONS The Arctic clone of E. rhusiopathiae was associated with multiple muskox mortalities spanning over a decade and multiple Arctic islands with distances over 1000 km, highlighting the extent of its spatiotemporal spread. This clone possesses unique gene content, as well as amino acid variants in multiple virulence genes that are distinct from the other closely related E. rhusiopathiae isolates. This study establishes an essential foundation on which to investigate whether these differences are correlated with the apparent virulence of this specific clone through in vitro and in vivo studies.
Collapse
Affiliation(s)
| | - Taya L Forde
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK.
| | | | - Fabien Mavrot
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Yan D Niu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Susan J Kutz
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
57
|
Yu T, Xu X, Liu Y, Wang X, Wu S, Qiu Z, Liu X, Pan X, Gu C, Wang S, Dong L, Li W, Yao X. Multi-omics signatures reveal genomic and functional heterogeneity of Cutibacterium acnes in normal and diseased skin. Cell Host Microbe 2024; 32:1129-1146.e8. [PMID: 38936370 DOI: 10.1016/j.chom.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/19/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Cutibacterium acnes is the most abundant bacterium of the human skin microbiome since adolescence, participating in both skin homeostasis and diseases. Here, we demonstrate individual and niche heterogeneity of C. acnes from 1,234 isolate genomes. Skin disease (atopic dermatitis and acne) and body site shape genomic differences of C. acnes, stemming from horizontal gene transfer and selection pressure. C. acnes harbors characteristic metabolic functions, fewer antibiotic resistance genes and virulence factors, and a more stable genome compared with Staphylococcus epidermidis. Integrated genome, transcriptome, and metabolome analysis at the strain level unveils the functional characteristics of C. acnes. Consistent with the transcriptome signature, C. acnes in a sebum-rich environment induces toxic and pro-inflammatory effects on keratinocytes. L-carnosine, an anti-oxidative stress metabolite, is up-regulated in the C. acnes metabolome from atopic dermatitis and attenuates skin inflammation. Collectively, our study reveals the joint impact of genes and the microenvironment on C. acnes function.
Collapse
Affiliation(s)
- Tianze Yu
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoqiang Xu
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yang Liu
- 01life Institute, Shenzhen 518000, China
| | - Xiaokai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Shi Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhuoqiong Qiu
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaochun Liu
- Department of Allergy and Rheumatology, Hospital for Skin Diseases, Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Xiaoyu Pan
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chaoying Gu
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shangshang Wang
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lixin Dong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China.
| | - Wei Li
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Xu Yao
- Department of Allergy and Rheumatology, Hospital for Skin Diseases, Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| |
Collapse
|
58
|
Dulyayangkul P, Sealey JE, Lee WWY, Satapoomin N, Reding C, Heesom KJ, Williams PB, Avison MB. Improving nitrofurantoin resistance prediction in Escherichia coli from whole-genome sequence by integrating NfsA/B enzyme assays. Antimicrob Agents Chemother 2024; 68:e0024224. [PMID: 38767379 PMCID: PMC11232377 DOI: 10.1128/aac.00242-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/13/2024] [Indexed: 05/22/2024] Open
Abstract
Nitrofurantoin resistance in Escherichia coli is primarily caused by mutations damaging two enzymes, NfsA and NfsB. Studies based on small isolate collections with defined nitrofurantoin MICs have found significant random genetic drift in nfsA and nfsB, making it extremely difficult to predict nitrofurantoin resistance from whole-genome sequence (WGS) where both genes are not obviously disrupted by nonsense or frameshift mutations or insertional inactivation. Here, we report a WGS survey of 200 oqxAB-negative E. coli from community urine samples, of which 34 were nitrofurantoin resistant. We characterized individual non-synonymous mutations seen in nfsA and nfsB among this collection using complementation cloning and NfsA/B enzyme assays in cell extracts. We definitively identified R203C, H11Y, W212R, A112E, and A112T in NfsA and R121C, Q142H, F84S, P163H, W46R, K57E, and V191G in NfsB as amino acid substitutions that reduce enzyme activity sufficiently to cause resistance. In contrast, E58D, I117T, K141E, L157F, A172S, G187D, and A188V in NfsA and G66D, M75I, V93A, and A174E in NfsB are functionally silent in this context. We identified that 9/166 (5.4%) nitrofurantoin-susceptible isolates were "pre-resistant," defined as having loss of function mutations in nfsA or nfsB. Finally, using NfsA/B enzyme assays and proteomics, we demonstrated that 9/34 (26.5%) ribE wild-type nitrofurantoin-resistant isolates also carried functionally wild-type nfsB or nfsB/nfsA. In these cases, NfsA/B activity was reduced through downregulated gene expression. Our biological understanding of nitrofurantoin resistance is greatly improved by this analysis but is still insufficient to allow its reliable prediction from WGS data.
Collapse
Affiliation(s)
- Punyawee Dulyayangkul
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Jordan E Sealey
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Winnie W Y Lee
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Naphat Satapoomin
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Carlos Reding
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kate J Heesom
- University of Bristol Proteomics Facility, Bristol, United Kingdom
| | - Philip B Williams
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Matthew B Avison
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
59
|
Slettemeås JS, Sekse C, Sunde M, Norström M, Wester AL, Naseer U, Simonsen GS, Ulstad CR, Urdahl AM, Lagesen K. Comparative genomics of quinolone-resistant Escherichia coli from broilers and humans in Norway. BMC Microbiol 2024; 24:248. [PMID: 38971718 PMCID: PMC11227169 DOI: 10.1186/s12866-024-03412-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND The usage of fluoroquinolones in Norwegian livestock production is very low, including in broiler production. Historically, quinolone-resistant Escherichia coli (QREC) isolated from Norwegian production animals rarely occur. However, with the introduction of a selective screening method for QREC in the Norwegian monitoring programme for antimicrobial resistance in the veterinary sector in 2014; 89.5% of broiler caecal samples and 70.7% of broiler meat samples were positive. This triggered the concern if there could be possible links between broiler and human reservoirs of QREC. We are addressing this by characterizing genomes of QREC from humans (healthy carriers and patients) and broiler isolates (meat and caecum). RESULTS The most frequent mechanism for quinolone resistance in both broiler and human E. coli isolates were mutations in the chromosomally located gyrA and parC genes, although plasmid mediated quinolone resistance (PMQR) was also identified. There was some relatedness of the isolates within human and broiler groups, but little between these two groups. Further, some overlap was seen for isolates with the same sequence type isolated from broiler and humans, but overall, the SNP distance was high. CONCLUSION Based on data from this study, QREC from broiler makes a limited contribution to the incidence of QREC in humans in Norway.
Collapse
Affiliation(s)
| | - Camilla Sekse
- Norwegian Veterinary Institute, P.O. box 64, Ås, 1431, Norway
| | - Marianne Sunde
- Norwegian Veterinary Institute, P.O. box 64, Ås, 1431, Norway
| | | | - Astrid Louise Wester
- Norwegian Institute of Public Health, P.O. box 4404, Nydalen, Oslo, 0403, Norway
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway
| | - Umaer Naseer
- Norwegian Institute of Public Health, P.O. box 4404, Nydalen, Oslo, 0403, Norway
| | - Gunnar Skov Simonsen
- University Hospital of North Norway, Breivika, Tromsø, 9038, Norway
- Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | | | | | - Karin Lagesen
- Norwegian Veterinary Institute, P.O. box 64, Ås, 1431, Norway
| |
Collapse
|
60
|
Leclercq SO, Bochereau P, Foubert I, Baumard Y, Travel A, Doublet B, Baucheron S. Persistence of commensal multidrug-resistant Escherichia coli in the broiler production pyramid is best explained by strain recirculation from the rearing environment. Front Microbiol 2024; 15:1406854. [PMID: 39035436 PMCID: PMC11259971 DOI: 10.3389/fmicb.2024.1406854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/07/2024] [Indexed: 07/23/2024] Open
Abstract
Despite the success of mitigation policies in several countries to reduce the use of antibiotics in veterinary medicine, pathogenic and commensal bacteria resistant to antibiotics are still circulating in livestock animals. However, factors contributing the most to antimicrobial resistance (AMR) persistence in these settings are yet not clearly identified. The broiler production, with its highly segmented, pyramidal structure offers an ideal context to understand and control the spread of resistant bacteria. By taking advantage of an experimental facility reproducing the whole broiler production pyramid, we demonstrate that resistant E. coli persist in our system primarily though recirculation of a few commensal clones surviving in the rearing environment. No vertical transmission from hens to offspring nor strain acquisition at the hatchery were detected, while import of new strains from outside the facility seems limited. Moreover, each clone carries its own resistance-conferring plasmid(s), and a single putative plasmid horizontal transfer could have been inferred. These results, observed for now in a small experimental facility with high level of biosecurity, must be confirmed in a commercial farm context but still provide invaluable information for future mitigation policies.
Collapse
|
61
|
Yan Z, Fu B, Zhu Y, Zhang Y, Wu Y, Xiong P, Zhou H, Wang Y, Wang S, Chen G, Zhang R, Sun C. High intestinal carriage of Clostridium perfringens in healthy individuals and ICU patients in Hangzhou, China. Microbiol Spectr 2024; 12:e0338523. [PMID: 38771047 PMCID: PMC11218483 DOI: 10.1128/spectrum.03385-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/09/2024] [Indexed: 05/22/2024] Open
Abstract
Clostridium perfringens has emerged as a growing public health concern due to its ability to cause various infections and its increasing resistance to antibiotics. To assess its current epidemiology in clinical settings, we conducted a survey involving 426 healthy individuals and 273 ICU inpatients at a provincial hospital in China. Our findings revealed a high prevalence of C. perfringens in healthy individuals (45.77%, 95% CI: 41.0%-50.6%) and ICU patients (12.82%, 95% CI: 9.1%-17.4%). The identified 220 C. perfringens isolates displayed substantial resistance to erythromycin (57.9%), clindamycin (50.7%), and tetracycline (32.0%), primarily attributed to the presence of erm(Q) (54.4%), lnu(P) (13.8%), tetB(P) (83.6%), and tetA(P) (66.7%). Notably, C. perfringens isolates from this particular hospital demonstrated a high degree of sequence type diversity and phylogenic variation, suggesting that the potential risk of infection primarily arises from the bacteria's gut colonization rather than clonal transmissions within the clinical environment. This study provides an updated analysis of the current epidemiology of C. perfringens in healthy individuals and ICU patients in China and emphasizes the need to optimize intervention strategies against its public health threat. IMPORTANCE Clostridium perfringens is a bacterium of growing public health concern due to its ability to cause infections and its increasing resistance to antibiotics. Understanding its epidemiology in clinical settings is essential for intervention strategies. This study surveyed healthy individuals and ICU inpatients in a provincial hospital in China. It found a high prevalence of C. perfringens, indicating infection risk. The isolates also showed significant antibiotic resistance. Importantly, the study revealed diverse sequence types and phylogenetic variation, suggesting infection risk from intestinal colonization rather than clonal transmission in hospitals. This analysis emphasizes the need to optimize intervention strategies against this public health threat.
Collapse
Affiliation(s)
- Zelin Yan
- Department of Clinical Laboratory, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Bo Fu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanyan Zhu
- Department of Clinical Laboratory, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yanyan Zhang
- Department of Clinical Laboratory, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yuchen Wu
- Department of Clinical Laboratory, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Panfeng Xiong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Hongwei Zhou
- Department of Clinical Laboratory, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shaolin Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Gongxiang Chen
- Department of Clinical Laboratory, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Rong Zhang
- Department of Clinical Laboratory, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Chengtao Sun
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
62
|
Kim N, Ma J, Kim W, Kim J, Belenky P, Lee I. Genome-resolved metagenomics: a game changer for microbiome medicine. Exp Mol Med 2024; 56:1501-1512. [PMID: 38945961 PMCID: PMC11297344 DOI: 10.1038/s12276-024-01262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 07/02/2024] Open
Abstract
Recent substantial evidence implicating commensal bacteria in human diseases has given rise to a new domain in biomedical research: microbiome medicine. This emerging field aims to understand and leverage the human microbiota and derivative molecules for disease prevention and treatment. Despite the complex and hierarchical organization of this ecosystem, most research over the years has relied on 16S amplicon sequencing, a legacy of bacterial phylogeny and taxonomy. Although advanced sequencing technologies have enabled cost-effective analysis of entire microbiota, translating the relatively short nucleotide information into the functional and taxonomic organization of the microbiome has posed challenges until recently. In the last decade, genome-resolved metagenomics, which aims to reconstruct microbial genomes directly from whole-metagenome sequencing data, has made significant strides and continues to unveil the mysteries of various human-associated microbial communities. There has been a rapid increase in the volume of whole metagenome sequencing data and in the compilation of novel metagenome-assembled genomes and protein sequences in public depositories. This review provides an overview of the capabilities and methods of genome-resolved metagenomics for studying the human microbiome, with a focus on investigating the prokaryotic microbiota of the human gut. Just as decoding the human genome and its variations marked the beginning of the genomic medicine era, unraveling the genomes of commensal microbes and their sequence variations is ushering us into the era of microbiome medicine. Genome-resolved metagenomics stands as a pivotal tool in this transition and can accelerate our journey toward achieving these scientific and medical milestones.
Collapse
Affiliation(s)
- Nayeon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Junyeong Ma
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Wonjong Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jungyeon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA.
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
63
|
Huang YC, Chen CJ, Kuo AJ, Hwang KR, Chien CC, Lee CY, Wu TH, Ko WC, Hsueh PR. Dissemination of meticillin-resistant Staphylococcus aureus sequence type 8 (USA300) in Taiwan. J Hosp Infect 2024; 149:108-118. [PMID: 38782057 DOI: 10.1016/j.jhin.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND In Taiwan, sequence type (ST) 239 and ST59 were two major clones among meticillin-resistant Staphylococcus aureus (MRSA) clinical isolates in the past two decades. USA300 (ST8) prevailed in the Americas but not in outside areas. Recently USA300 (ST8) emerged and was increasingly identified in Taiwan; we thus conducted an island-wide study to explore the role of USA300 among MRSA isolates. METHODS One hundred MRSA bloodstream isolates identified in 2020 from each of the six participating hospitals in Taiwan were collected and characterized. The first 10 ST8 isolates from each hospital were further analysed by whole-genome sequencing. RESULTS Of the 590 confirmed MRSA isolates, a total of 22 pulsotypes and 21 STs were identified. The strain of pulsotype AI/ST8 was the most common lineage identified, accounting for 187 isolates (31.7%) and dominating in five of six hospitals, followed by pulsotype A/ST239 (14.7%), pulsotype C/ST59 (13.9%) and pulsotype D/ST59 (9.2%). Of the 187 pulsotype AI/ST8 isolates, 184 isolates were characterized as USA300 and clustered in three major sub-pulsotypes, accounting for 78%. Ninety per cent of the 60 ST8 isolates for whole-genome sequencing were clustered in three major clades. CONCLUSIONS In 2020, USA300 became the most common clone of MRSA in Taiwan, accounting for >30% of MRSA bloodstream isolates island wide. Most of USA300 isolates circulating in Taiwan might have been imported on multiple occasions and evolved into at least three successful local clades. MRSA USA300 has successfully established its role in Taiwan, an area outside of the Americas.
Collapse
Affiliation(s)
- Y-C Huang
- Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan; College of Medicine, Chang Gung University, Taoyuan City, Taiwan.
| | - C-J Chen
- Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan; College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - A-J Kuo
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan; Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
| | - K-R Hwang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan; Department of Laboratory Medicine, Chang Gung Memorial Hospital at Keelung, Keelung City, Taiwan
| | - C-C Chien
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung City, Taiwan
| | - C-Y Lee
- Department of Pediatrics, Chang Bing Show Chwan Memorial Hospital, Changhua County, Taiwan
| | - T-H Wu
- Department of Pediatrics, Chang Hua Show Chwan Memorial Hospital, Changhua, Taiwan
| | - W-C Ko
- Department of Medicine, National Cheng Kung University Hospital, Tainan City, Taiwan
| | - P-R Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan; Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
64
|
Yebra G, Mrochen D, Fischer S, Pfaff F, Ulrich RG, Pritchett-Corning K, Holtfreter S, Fitzgerald JR. Bacteriophage-driven emergence and expansion of Staphylococcus aureus in rodent populations. PLoS Pathog 2024; 20:e1012378. [PMID: 39047021 PMCID: PMC11299810 DOI: 10.1371/journal.ppat.1012378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/05/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Human activities such as agriculturalization and domestication have led to the emergence of many new pathogens via host-switching events between humans, domesticated and wild animals. Staphylococcus aureus is a multi-host opportunistic pathogen with a global healthcare and economic burden. Recently, it was discovered that laboratory and wild rodents can be colonised and infected with S. aureus, but the origins and zoonotic potential of rodent S. aureus is unknown. In order to trace their evolutionary history, we employed a dataset of 1249 S. aureus genome sequences including 393 of isolates from rodents and other small mammals (including newly determined sequences for 305 isolates from 7 countries). Among laboratory mouse populations, we identified multiple widespread rodent-specific S. aureus clones that likely originated in humans. Phylogeographic analysis of the most common murine lineage CC88 suggests that it emerged in the 1980s in laboratory mouse facilities most likely in North America, from where it spread to institutions around the world, via the distribution of mice for research. In contrast, wild rodents (mice, voles, squirrels) were colonized with a unique complement of S. aureus lineages that are widely disseminated across Europe. In order to investigate the molecular basis for S. aureus adaptation to rodent hosts, genome-wide association analysis was carried out revealing a unique complement of bacteriophages associated with a rodent host ecology. Of note, we identified novel prophages and pathogenicity islands in rodent-derived S. aureus that conferred the potential for coagulation of rodent plasma, a key phenotype of abscess formation and persistence. Our findings highlight the remarkable capacity of S. aureus to expand into new host populations, driven by the acquisition of genes promoting survival in new host-species.
Collapse
Affiliation(s)
- Gonzalo Yebra
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel Mrochen
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Fischer
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Kathleen Pritchett-Corning
- Charles River, Research and Professional Services, Wilmington, Massachusetts, United States of America
- Office of Animal Resources, Harvard University Faculty of Arts and Sciences, Cambridge, Massachusetts, United States of America
| | - Silva Holtfreter
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - J. Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
65
|
Long MB, Gilmour A, Kehl M, Tabor DE, Keller AE, Warrener P, Gopalakrishnan V, Rosengren S, Crichton ML, McIntosh E, Giam YH, Keir HR, Brailsford W, Hughes R, Belvisi MG, Sellman BR, DiGiandomenico A, Chalmers JD. A Bispecific Monoclonal Antibody Targeting Psl and PcrV Enhances Neutrophil-Mediated Killing of Pseudomonas aeruginosa in Patients with Bronchiectasis. Am J Respir Crit Care Med 2024; 210:35-46. [PMID: 38754132 DOI: 10.1164/rccm.202308-1403oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/16/2024] [Indexed: 05/18/2024] Open
Abstract
Rationale: Pseudomonas aeruginosa infection is associated with worse outcomes in bronchiectasis. Impaired neutrophil antimicrobial responses contribute to bacterial persistence. Gremubamab is a bivalent, bispecific monoclonal antibody targeting Psl exopolysaccharide and the type 3 secretion system component PcrV. Objectives: This study evaluated the efficacy of gremubamab to enhance killing of P. aeruginosa by neutrophils from patients with bronchiectasis and to prevent P. aeruginosa-associated cytotoxicity. Methods: P. aeruginosa isolates from a global bronchiectasis cohort (n = 100) underwent whole-genome sequencing to determine target prevalence. Functional activity of gremubamab against selected isolates was tested in vitro and in vivo. Patients with bronchiectasis (n = 11) and control subjects (n = 10) were enrolled, and the effect of gremubamab in peripheral blood neutrophil opsonophagocytic killing (OPK) assays against P. aeruginosa was evaluated. Serum antibody titers to Psl and PcrV were determined (n = 30; 19 chronic P. aeruginosa infection, 11 no known P. aeruginosa infection), as was the effect of gremubamab treatment in OPK and anti-cytotoxic activity assays. Measurements and Main Results: Psl and PcrV were conserved in isolates from chronically infected patients with bronchiectasis. Seventy-three of 100 isolates had a full psl locus, and 99 of 100 contained the pcrV gene, with 20 distinct full-length PcrV protein subtypes identified. PcrV subtypes were successfully bound by gremubamab and the monoclonal antibody-mediated potent protective activity against tested isolates. Gremubamab increased bronchiectasis patient neutrophil-mediated OPK (+34.6 ± 8.1%) and phagocytosis (+70.0 ± 48.8%), similar to effects observed in neutrophils from control subjects (OPK, +30.1 ± 7.6%). No evidence of competition between gremubamab and endogenous antibodies was found, with protection against P. aeruginosa-induced cytotoxicity and enhanced OPK demonstrated with and without addition of patient serum. Conclusions: Gremubamab enhanced bronchiectasis patient neutrophil phagocytosis and killing of P. aeruginosa and reduced virulence.
Collapse
Affiliation(s)
- Merete B Long
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Amy Gilmour
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Margaret Kehl
- Vaccine and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - David E Tabor
- Vaccine and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Ashley E Keller
- Vaccine and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Paul Warrener
- Vaccine and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | | | - Sanna Rosengren
- Translational Science and Experimental Medicine, Respiratory & Immunology, Respiratory and Immunology, and
| | - Megan L Crichton
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Eve McIntosh
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Yan Hui Giam
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Holly R Keir
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Wayne Brailsford
- Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; and
| | - Rod Hughes
- Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Maria G Belvisi
- Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; and
| | - Bret R Sellman
- Vaccine and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Antonio DiGiandomenico
- Vaccine and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
66
|
Wong SC, Chen JH, Kwok MO, Siu CY, Yuen LL, AuYeung CH, Li CK, Li BH, Chan BW, So SY, Chiu KH, Yuen KY, Cheng VC. Air dispersal of multi-drug-resistant organisms including meticillin-resistant Staphylococcus aureus, carbapenem-resistant Acinetobacter baumannii and carbapenemase-producing Enterobacterales in general wards: surveillance culture of air grilles. J Hosp Infect 2024; 149:26-35. [PMID: 38705476 DOI: 10.1016/j.jhin.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND The environmental surveillance of air grilles in clinical areas has not been systematically analysed. METHODS Samples were collected from frequently touched items (N = 529), air supply (N = 295) and exhaust (N = 184) grilles in six medical and 11 surgical wards for the cultures of multi-drug-resistant organisms (MDROs): meticillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant Acinetobacter baumannii (CRAB) and carbapenemase-producing Enterobacterales (CPE), and isolates were selected for whole-genome sequencing (WGS). The contamination rates were correlated with the colonization pressures of the respective MDROs. RESULTS From 3rd October to 21st November 2023, 9.8% (99/1008) of the samples tested positive, with MRSA (24.2%, 24/99), CRAB (59.6%, 59/99) and CPE (2.0%, 2/99), being the only detected MDROs. The contamination rate in air exhaust grilles (26.6%, 49/184) was significantly higher than in air supply grilles (5.8%, 17/295; P<0.001). The contamination rate of air exhaust grilles with any MDRO in acute medical wards (73.7%, 14/19) was significantly higher than in surgical wards (12.5%, 4/32; P<0.001). However, there was no difference in the contamination rate of air exhaust grilles between those located inside and outside the cohort cubicles for MDROs (27.1%, 13/48 vs 28.8%, 30/104; P=0.823). Nevertheless, the weekly CRAB colonization pressure showed a significant correlation with the overall environmental contamination rate (r = 0.878; 95% confidence interval (CI): 0.136-0.986; P=0.004), as well as with the contamination rate in air supply grilles (r = 0.960; 95% CI: 0.375-0.999; P<0.001) and air exhaust grilles (r = 0.850; 95% CI: 0.401-0.980; P=0.008). WGS demonstrated clonal relatedness of isolates collected from patients and air exhaust grilles. CONCLUSIONS Air grilles may serve as MDRO reservoirs. Cohort nursing in open cubicles may not completely prevent MDRO transmission through air dispersal, prompting the consideration of future hospital design.
Collapse
Affiliation(s)
- S C Wong
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China
| | - J H Chen
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - M O Kwok
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China
| | - C Y Siu
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China
| | - L L Yuen
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China
| | - C H AuYeung
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China
| | - C K Li
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China
| | - B H Li
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China
| | - B W Chan
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - S Y So
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - K H Chiu
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - K Y Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - V C Cheng
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China.
| |
Collapse
|
67
|
White RT, Bakker S, Burton M, Castro ML, Couldrey C, Dyet K, Eustace A, Harland C, Hutton S, Macartney-Coxson D, Tarring C, Velasco C, Voss EM, Williamson J, Bloomfield M. Rapid identification and subsequent contextualization of an outbreak of methicillin-resistant Staphylococcus aureus in a neonatal intensive care unit using nanopore sequencing. Microb Genom 2024; 10:001273. [PMID: 38967541 PMCID: PMC11316549 DOI: 10.1099/mgen.0.001273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
Outbreaks of methicillin-resistant Staphylococcus aureus (MRSA) are well described in the neonatal intensive care unit (NICU) setting. Genomics has revolutionized the investigation of such outbreaks; however, to date, this has largely been completed retrospectively and has typically relied on short-read platforms. In 2022, our laboratory established a prospective genomic surveillance system using Oxford Nanopore Technologies sequencing for rapid outbreak detection. Herein, using this system, we describe the detection and control of an outbreak of sequence-type (ST)97 MRSA in our NICU. The outbreak was identified 13 days after the first MRSA-positive culture and at a point where there were only two known cases. Ward screening rapidly defined the extent of the outbreak, with six other infants found to be colonized. There was minimal transmission once the outbreak had been detected and appropriate infection control measures had been instituted; only two further ST97 cases were detected, along with three unrelated non-ST97 MRSA cases. To contextualize the outbreak, core-genome single-nucleotide variants were identified for phylogenetic analysis after de novo assembly of nanopore data. Comparisons with global (n=45) and national surveillance (n=35) ST97 genomes revealed the stepwise evolution of methicillin resistance within this ST97 subset. A distinct cluster comprising nine of the ten ST97-IVa genomes from the NICU was identified, with strains from 2020 to 2022 national surveillance serving as outgroups to this cluster. One ST97-IVa genome presumed to be part of the outbreak formed an outgroup and was retrospectively excluded. A second phylogeny was created using Illumina sequencing, which considerably reduced the branch lengths of the NICU isolates on the phylogenetic tree. However, the overall tree topology and conclusions were unchanged, with the exception of the NICU outbreak cluster, where differences in branch lengths were observed. This analysis demonstrated the ability of a nanopore-only prospective genomic surveillance system to rapidly identify and contextualize an outbreak of MRSA in a NICU.
Collapse
Affiliation(s)
- Rhys T. White
- Institute of Environmental Science and Research, Health Group, Porirua 5022, New Zealand
| | - Sarah Bakker
- Institute of Environmental Science and Research, Health Group, Porirua 5022, New Zealand
| | - Megan Burton
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington 6021, New Zealand
| | - M. Leticia Castro
- Institute of Environmental Science and Research, Health Group, Porirua 5022, New Zealand
| | - Christine Couldrey
- Livestock Improvement Corporation, Research and Development, Newstead 3286, New Zealand
| | - Kristin Dyet
- Institute of Environmental Science and Research, Health Group, Porirua 5022, New Zealand
| | - Alexandra Eustace
- Institute of Environmental Science and Research, Health Group, Porirua 5022, New Zealand
| | - Chad Harland
- Livestock Improvement Corporation, Research and Development, Newstead 3286, New Zealand
| | - Samantha Hutton
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington 6021, New Zealand
| | - Donia Macartney-Coxson
- Institute of Environmental Science and Research, Health Group, Porirua 5022, New Zealand
| | - Claire Tarring
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington 6021, New Zealand
| | - Charles Velasco
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington 6021, New Zealand
| | - Emma M. Voss
- Livestock Improvement Corporation, Research and Development, Newstead 3286, New Zealand
- University of Otago, Department of Microbiology and Immunology, Dunedin 9016, New Zealand
| | - John Williamson
- University of Otago, Department of Microbiology and Immunology, Dunedin 9016, New Zealand
| | - Max Bloomfield
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington 6021, New Zealand
- Te Whatu Ora/Health New Zealand, Infection Prevention and Control, Capital, Coast & Hutt Valley, Wellington 6021, New Zealand
| |
Collapse
|
68
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Baker‐Austin C, Hervio‐Heath D, Martinez‐Urtaza J, Caro ES, Strauch E, Thébault A, Guerra B, Messens W, Simon AC, Barcia‐Cruz R, Suffredini E. Public health aspects of Vibrio spp. related to the consumption of seafood in the EU. EFSA J 2024; 22:e8896. [PMID: 39045511 PMCID: PMC11263920 DOI: 10.2903/j.efsa.2024.8896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Vibrio parahaemolyticus, Vibrio vulnificus and non-O1/non-O139 Vibrio cholerae are the Vibrio spp. of highest relevance for public health in the EU through seafood consumption. Infection with V. parahaemolyticus is associated with the haemolysins thermostable direct haemolysin (TDH) and TDH-related haemolysin (TRH) and mainly leads to acute gastroenteritis. V. vulnificus infections can lead to sepsis and death in susceptible individuals. V. cholerae non-O1/non-O139 can cause mild gastroenteritis or lead to severe infections, including sepsis, in susceptible individuals. The pooled prevalence estimate in seafood is 19.6% (95% CI 13.7-27.4), 6.1% (95% CI 3.0-11.8) and 4.1% (95% CI 2.4-6.9) for V. parahaemolyticus, V. vulnificus and non-choleragenic V. cholerae, respectively. Approximately one out of five V. parahaemolyticus-positive samples contain pathogenic strains. A large spectrum of antimicrobial resistances, some of which are intrinsic, has been found in vibrios isolated from seafood or food-borne infections in Europe. Genes conferring resistance to medically important antimicrobials and associated with mobile genetic elements are increasingly detected in vibrios. Temperature and salinity are the most relevant drivers for Vibrio abundance in the aquatic environment. It is anticipated that the occurrence and levels of the relevant Vibrio spp. in seafood will increase in response to coastal warming and extreme weather events, especially in low-salinity/brackish waters. While some measures, like high-pressure processing, irradiation or depuration reduce the levels of Vibrio spp. in seafood, maintaining the cold chain is important to prevent their growth. Available risk assessments addressed V. parahaemolyticus in various types of seafood and V. vulnificus in raw oysters and octopus. A quantitative microbiological risk assessment relevant in an EU context would be V. parahaemolyticus in bivalve molluscs (oysters), evaluating the effect of mitigations, especially in a climate change scenario. Knowledge gaps related to Vibrio spp. in seafood and aquatic environments are identified and future research needs are prioritised.
Collapse
|
69
|
Rasoanandrasana S, Rabenandrasana MAN, Ravaoharisoa LM, Randrianaivo N, Rahajamanana VL, Rakotovao-Ravahatra ZD, Moura A, Lecuit M, Rakotovao AL. Clinical and genomic features of a Listeria monocytogenes fatal case of meningitis in Madagascar. Access Microbiol 2024; 6:000764.v3. [PMID: 39045257 PMCID: PMC11261731 DOI: 10.1099/acmi.0.000764.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/04/2024] [Indexed: 07/25/2024] Open
Abstract
Listeriosis constitutes a significant public health threat due to its high mortality rate. This study investigates the microbiological and genomic characteristics of Listeria monocytogenes isolates in Madagascar, where listeriosis is a notifiable disease. The analysis focuses on a fatal case of meningeal listeriosis in a 12-year-old child. Genomic analysis revealed a novel cgMLST type (L2-SL8-ST8-CT11697; CC8, serogroup Iia) with typical virulence and antibiotic resistance profiles. These isolates, unique to Madagascar, formed an independent clade in the phylogenetic tree. This study presents the first genomic characterization of Listeria isolates in Madagascar, highlighting the necessity of ongoing genomic surveillance to strengthen listeriosis prevention and control strategies in the region.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alexandra Moura
- Institut Pasteur, Biology of Infection Unit, Université Paris Cité, Inserm U1117, Paris, 75015, France
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, Paris, France
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Université Paris Cité, Inserm U1117, Paris, 75015, France
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, Paris, France
- Division of Infectious Diseases and Tropical Medicine, Institut Imagine, APHP, Necker-Enfants Malades University Hospital, Paris, France
| | | |
Collapse
|
70
|
Bjerg CSB, Poehlein A, Bömeke M, Himmelbach A, Schramm A, Brüggemann H. Increased biofilm formation in dual-strain compared to single-strain communities of Cutibacterium acnes. Sci Rep 2024; 14:14547. [PMID: 38914744 PMCID: PMC11196685 DOI: 10.1038/s41598-024-65348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
Cutibacterium acnes is a known opportunistic pathogen in orthopedic implant-associated infections (OIAIs). The species of C. acnes comprises distinct phylotypes. Previous studies suggested that C. acnes can cause single- as well as multi-typic infections, i.e. infections caused by multiple strains of different phylotypes. However, it is not known if different C. acnes phylotypes are organized in a complex biofilm community, which could constitute a multicellular strategy to increase biofilm strength and persistency. Here, the interactions of two C. acnes strains belonging to phylotypes IB and II were determined in co-culture experiments. No adverse interactions between the strains were observed in liquid culture or on agar plates; instead, biofilm formation in both microtiter plates and on titanium discs was significantly increased when combining both strains. Fluorescence in situ hybridization showed that both strains co-occurred throughout the biofilm. Transcriptome analyses revealed strain-specific alterations of gene expression in biofilm-embedded cells compared to planktonic growth, in particular affecting genes involved in carbon and amino acid metabolism. Overall, our results provide first insights into the nature of dual-type biofilms of C. acnes, suggesting that strains belonging to different phylotypes can form biofilms together with additive effects. The findings might influence the perception of C. acnes OIAIs in terms of diagnosis and treatment.
Collapse
Affiliation(s)
- Cecilie Scavenius Brønnum Bjerg
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Mechthild Bömeke
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Andreas Schramm
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Holger Brüggemann
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
71
|
Sreekumaran S, V K P, Premnath M, P R P, M N A, Mathew J, K J, E K R. Novel in-genome based analysis demonstrates the evolution of OmpK37, antimicrobial resistance gene from a potentially pathogenic pandrug resistant Klebsiella pneumoniae MS1 isolated from healthy broiler feces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172713. [PMID: 38657814 DOI: 10.1016/j.scitotenv.2024.172713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Antimicrobial resistance transmission from farm animals to humans is a critical health concern and hence a detailed molecular surveillance is essential for tracking the spread and consequent evolution of antimicrobial resistance. In this study, a pan-drug resistant Klebsiella pneumoniae MS1 strain was isolated from a healthy broiler farm and studied. From the results of the study, MS1 was found to be is resistant to 18 tested antibiotics and has a high-risk to be pathogenic to humans with a probability of 0.80. The whole genome sequencing data of MS1 was used to predict the presence of antimicrobial resistance genes and pathogenicity. The genome analysis has revealed MS1 to have 34 AMR genes. Out of these, the AMR gene OmpK37 codes for an important protein involved in cell permeability and hence in antibiotic resistance. Further analysis was carried out by using an in-genome analysis method to understand the evolution of OmpK37 and the underlying reason for the emergence of resistance. From the detailed analysis, the current study could demonstrate for the first time the evolution of OmpK37 from OmpC. Though structurally OmpK37 was very similar to other porins present in MS1, it was found to have higher mutability as a distinguishing feature which makes it an important protein in monitoring the evolving resistances in microorganisms.
Collapse
Affiliation(s)
- Sreejith Sreekumaran
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
| | - Priya V K
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
| | - Manjusha Premnath
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
| | - Prathiush P R
- State Institute of Animal Diseases, Thiruvananthapuram, Kerala 695563, India
| | - Anisha M N
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
| | - Jyothis Mathew
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
| | - Jayachandran K
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
| | - Radhakrishnan E K
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India.
| |
Collapse
|
72
|
Sobh G, Araj GF, Finianos M, Sourenian T, Hrabak J, Papagiannitsis CC, Chaar ME, Bitar I. Molecular characterization of carbapenem and ceftazidime-avibactam-resistant Enterobacterales and horizontal spread of bla NDM-5 gene at a Lebanese medical center. Front Cell Infect Microbiol 2024; 14:1407246. [PMID: 38962322 PMCID: PMC11219574 DOI: 10.3389/fcimb.2024.1407246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction In the battle against multidrug-resistant bacterial infections, ceftazidime- avibactam (CZA) stands as a pivotal defense, particularly against carbapenemresistant (CR) Gram-negative pathogens. However, the rise in resistance against this drug poses a significant threat to its effectiveness, highlighting the critical need for in-depth studies about its resistance mechanisms. Methods This research focuses on the genomic characterization of CR- and CZA-resistant Escherichia coli (n=26) and Klebsiella pneumoniae (n=34) strains, harboring the blaNDM and/or blaOXA-48-like genes, at a major Lebanese tertiary care medical center, using whole genome sequencing (WGS). Results Our findings revealed a notable prevalence of blaNDM in all K. pneumoniae strains isolates, with 27 of these also harboring blaOXA-48. On the other hand, E. coli strains predominantly carried the blaNDM-5 gene. Whole genome sequencing (WGS) identified a predominance of ST383 among K. pneumoniae strains, which possessed a multi-replicon IncFIB-IncHI1B plasmid harboring the blaNDM-5. Additionally, various Inc group plasmids in K. pneumoniae across multiple sequence types were found to carry the blaNDM. Similarly, diverse STs of E. coli were observed to carry blaNDM-5 on different plasmids. Discussion The study underscores NDM carbapenemases as a paramount resistance mechanism in Lebanon,jeopardizing critical last-resort treatments. It also illuminates the role of varied sequence types and mobile genetic elements in the spread of NDM resistance,stressing the urgent need for strategies to mitigate this threat, especially in nosocomial infections.
Collapse
Affiliation(s)
- Ghena Sobh
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - George F. Araj
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Marc Finianos
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia
| | - Tsolaire Sourenian
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia
| | - Jaroslav Hrabak
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia
| | | | - Mira El Chaar
- Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia
| |
Collapse
|
73
|
Shen Y, Zhou Y, Gong J, Li G, Liu Y, Xu X, Chen M. Genomic investigation of Salmonella enterica Serovar Welikade from a pediatric diarrhea case first time in Shanghai, China. BMC Genomics 2024; 25:604. [PMID: 38886668 PMCID: PMC11181664 DOI: 10.1186/s12864-024-10489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Salmonella, an important foodborne pathogen, was estimated to be responsible for 95.1 million cases and 50,771 deaths worldwide. Sixteen serovars were responsible for approximately 80% of Salmonella infections in humans in China, and infections caused by a few uncommon serovars have been reported in recent years, though not with S. Welikade. This study reports the first clinical case caused by S. Welikade in China and places Chinese S. Welikade isolates in the context of global isolates via genomic analysis. For comparison, S. Welikade isolates were also screened in the Chinese Local Surveillance System for Salmonella (CLSSS). The minimum inhibitory concentrations (MICs) of 28 antimicrobial agents were determined using the broth microdilution method. The isolates were sequenced on an Illumina platform to identify antimicrobial resistance genes, virulence genes, and phylogenetic relationships. RESULTS The S. Welikade isolate (Sal097) was isolated from a two-year-old boy with acute gastroenteritis in 2021. Along with the other two isolates found in CLSSS, the three Chinese isolates were susceptible to all the examined antimicrobial agents, and their sequence types (STs) were ST5123 (n = 2) and ST3774 (n = 1). Single nucleotide polymorphism (SNP)-based phylogenetic analysis revealed that global S. Welikade strains can be divided into four groups, and these three Chinese isolates were assigned to B (n = 2; Sal097 and XXB1016) and C (n = 1; XXB700). In Group B, the two Chinese ST5123 isolates were closely clustered with three UK ST5123 isolates. In Group C, the Chinese isolate was closely related to the other 12 ST3774 isolates. The number of virulence genes in the S. Welikade isolates ranged from 59 to 152. The galF gene was only present in Group A, the pipB2 gene was only absent from Group A, the avrA gene was only absent from Group B, and the allB, sseK1, sspH2, STM0287, and tlde1 were found only within Group C and D isolates. There were 15 loci unique to the Sal097 isolate. CONCLUSION This study is the first to characterize and investigate clinical S. Welikade isolates in China. Responsible for a pediatric case of gastroenteritis in 2021, the clinical isolate harbored no antimicrobial resistance and belonged to phylogenetic Group B of global S. Welikade genomes.
Collapse
Affiliation(s)
- Yinfang Shen
- Department of Pediatrics, Meilong Community Health Center of Minhang District, Shanghai, China
| | - Yibin Zhou
- Department of Infectious Disease Control, Center for Disease Control and Prevention of Minhang District, Shanghai, China
| | - Jingyu Gong
- Jinshan Hospital, Fudan University, Shanghai, China
| | - Gang Li
- Jinshan Hospital, Fudan University, Shanghai, China
| | - Yue Liu
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xuebin Xu
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| | - Mingliang Chen
- Research and Translational Laboratory of Acute Injury and Secondary Infection, and, Department of Laboratory Medicine , Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
74
|
Xu Y, Zheng Z, Sun R, Ye L, Chan EWC, Chen S. Epidemiological and genetic characterization of multidrug-resistant non-O1 and non-O139 Vibrio cholerae from food in southern China. Int J Food Microbiol 2024; 418:110734. [PMID: 38759293 DOI: 10.1016/j.ijfoodmicro.2024.110734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
This study reports a comprehensive epidemiological and genetic analysis of V. cholerae strains, specifically non-O1/non-O139 serogroups, isolated from animal-derived food samples in Guangdong province from 2015 to 2019. A total of 21 V. cholerae strains were obtained, which exhibited high resistance rates for nalidixic acid (57.14 %, 12/21), ampicillin (33.33 %, 7/21), and ciprofloxacin (19.05 %, 4/21). The quinolone resistance-related gene, qnrVC, was prevalent in 80.95 % (17/21) of the isolates. Additionally, chromosomally mediated quinolone-resistance mutations, including mutations in GyrA at position 83 (S83I) and ParC at position 85 (S85L), were detected in 47.62 % of the isolates. The combination of target mutation and qnrVC genes was shown to mediate resistance or intermediate resistance to ciprofloxacin in V. cholerae. Furthermore, an IncC-type conjugative plasmid carrying thirteen antibiotic resistance genes, including genes conferring resistance to two clinically important antibiotics, cephalosporins and fluoroquinolones, was identified in the shrimp-derived strain Vc516. While none of our food isolates harbored the toxigenic CTX- and TCP-encoding genes, they did possess genes encoding toxins such as HlyA and Autoinducer-2. Notably, some V. cholerae strains from this study exhibited a close genetic relationship with clinical strains, suggesting their potential to cause human infections. Taken together, this study provides a comprehensive view of the epidemiological features and genetic basis of antimicrobial resistance and virulence potential of V. cholerae strains isolated from food in southern China, thereby advancing our understanding of this important pathogen.
Collapse
Affiliation(s)
- Yating Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Zhiwei Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Ruanyang Sun
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sheng Chen
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, People's Republic of China.
| |
Collapse
|
75
|
Uea-Anuwong T, Biggel M, Cernela N, Hung WW, Lugsomya K, Kiu LH, Gröhn YT, Boss S, Stephan R, Nüesch-Inderbinen M, Magouras I. Antimicrobial resistance and phylogenetic relatedness of extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli in peridomestic rats (Rattus norvegicus and Rattus tanezumi) linked to city areas and animal farms in Hong Kong. ENVIRONMENTAL RESEARCH 2024; 251:118623. [PMID: 38462086 DOI: 10.1016/j.envres.2024.118623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/12/2024]
Abstract
Extended-spectrum β-lactamase-producing Escherichia (E.) coli (ESBL-EC) in the clinical setting have emerged as a major threat to public and animal health. Wildlife, including Rattus spp. may serve as reservoirs and spreaders of ESBL-EC in the environment. Peridomestic rats are well adapted to living in proximity to humans and animals in a variety of urban and agricultural environments and may serve as sentinels to identify variations of ESBL-EC within their different habitats. In this study, a set of 221 rats (Rattus norvegicus, R. tanezumi, R. andamanensis, and Niviventer huang) consisting of 104 rats from city areas, 44 from chicken farms, 52 from pig farms, and 21 from stables of horse-riding schools were screened for ESBL-EC. Overall, a total of 134 ESBL-EC were isolated from the caecal samples of 130 (59%) rats. The predominant blaESBL genes were blaCTX-M-14, blaCTX-M-15, blaCTX-M-55, and blaCTX-M-65. Phylogenetic analysis revealed a total of 62 sequence types (STs) and 17 SNP clusters. E. coli ST10 and ST155 were common to ESBL-EC from city areas and chicken farms, and ST44 were found among ESBL-EC from city areas and pig farms. Extra-intestinal pathogenic E. coli (ExPEC) ST69, ST131 and ST1193 were found exclusively among rats from city areas, and avian pathogenic E. coli (APEC) ST177 was restricted to ESBL-EC originating from chicken farms. Phylogenetic analysis showed that the populations of rodent ESBL-EC from city areas, chicken farms and pig farms were genetically different, suggesting a certain degree of partitioning between the human and animal locations. This study contributes to current understanding of ESBL-EC occurring in rats in ecologically diverse locations.
Collapse
Affiliation(s)
- Theethawat Uea-Anuwong
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Michael Biggel
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Nicole Cernela
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Wu Wai Hung
- Centre for Applied One Health Research and Policy Advice, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Kittitat Lugsomya
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Lam Hoi Kiu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Yrjö Tapio Gröhn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Sara Boss
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | | | - Ioannis Magouras
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China; Centre for Applied One Health Research and Policy Advice, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
| |
Collapse
|
76
|
Dziuba MK, McIntire KM, Seto K, Davenport ES, Rogalski MA, Gowler CD, Baird E, Vaandrager M, Huerta C, Jaye R, Corcoran FE, Withrow A, Ahrendt S, Salamov A, Nolan M, Tejomurthula S, Barry K, Grigoriev IV, James TY, Duffy MA. Phylogeny, morphology, virulence, ecology, and host range of Ordospora pajunii (Ordosporidae), a microsporidian symbiont of Daphnia spp. mBio 2024; 15:e0058224. [PMID: 38651867 PMCID: PMC11237803 DOI: 10.1128/mbio.00582-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
The impacts of microsporidia on host individuals are frequently subtle and can be context dependent. A key example of the latter comes from a recently discovered microsporidian symbiont of Daphnia, the net impact of which was found to shift from negative to positive based on environmental context. Given this, we hypothesized low baseline virulence of the microsporidian; here, we investigated the impact of infection on hosts in controlled conditions and the absence of other stressors. We also investigated its phylogenetic position, ecology, and host range. The genetic data indicate that the symbiont is Ordospora pajunii, a newly described microsporidian parasite of Daphnia. We show that O. pajunii infection damages the gut, causing infected epithelial cells to lose microvilli and then rupture. The prevalence of this microsporidian could be high (up to 100% in the lab and 77% of adults in the field). Its overall virulence was low in most cases, but some genotypes suffered reduced survival and/or reproduction. Susceptibility and virulence were strongly host-genotype dependent. We found that North American O. pajunii were able to infect multiple Daphnia species, including the European species Daphnia longispina, as well as Ceriodaphnia spp. Given the low, often undetectable virulence of this microsporidian and potentially far-reaching consequences of infections for the host when interacting with other pathogens or food, this Daphnia-O. pajunii symbiosis emerges as a valuable system for studying the mechanisms of context-dependent shifts between mutualism and parasitism, as well as for understanding how symbionts might alter host interactions with resources. IMPORTANCE The net outcome of symbiosis depends on the costs and benefits to each partner. Those can be context dependent, driving the potential for an interaction to change between parasitism and mutualism. Understanding the baseline fitness impact in an interaction can help us understand those shifts; for an organism that is generally parasitic, it should be easier for it to become a mutualist if its baseline virulence is relatively low. Recently, a microsporidian was found to become beneficial to its Daphnia hosts in certain ecological contexts, but little was known about the symbiont (including its species identity). Here, we identify it as the microsporidium Ordospora pajunii. Despite the parasitic nature of microsporidia, we found O. pajunii to be, at most, mildly virulent; this helps explain why it can shift toward mutualism in certain ecological contexts and helps establish O. pajunii is a valuable model for investigating shifts along the mutualism-parasitism continuum.
Collapse
Affiliation(s)
- Marcin K. Dziuba
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kristina M. McIntire
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kensuke Seto
- Faculty of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Elizabeth S. Davenport
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mary A. Rogalski
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
- Biology Department, Bowdoin College, Brunswick, Maine, USA
| | - Camden D. Gowler
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Emma Baird
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Megan Vaandrager
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Cristian Huerta
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Riley Jaye
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Fiona E. Corcoran
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alicia Withrow
- Center for Advanced Microscopy, Michigan State University, East Lansing, Michigan, USA
| | - Steven Ahrendt
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Asaf Salamov
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Matt Nolan
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Sravanthi Tejomurthula
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Kerrie Barry
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Igor V. Grigoriev
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Timothy Y. James
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Meghan A. Duffy
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
77
|
Spilsberg B, Nilsen HK, Gulla S, Lagesen K, Colquhoun DJ, Olsen AB. Draft genome sequences of 13 Tenacibaculum maritimum isolates from farmed Norwegian Cyclopterus lumpus (lumpfish) and Scophthalmus maximus (turbot). Microbiol Resour Announc 2024; 13:e0016524. [PMID: 38682771 PMCID: PMC11237539 DOI: 10.1128/mra.00165-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
Thirteen bacterial isolates of Tenacibaculum maritimum were sequenced and assembled. The strains were isolated from four disease outbreaks in farmed marine fish in Norway. Eight isolates were from Cyclopterus lumpus (lumpfish), and five were from Scophthalmus maximus (turbot). Overall, sequence similarity did not correlate with host species or geographic location.
Collapse
|
78
|
Flatgard BM, Williams AD, Amin MB, Hobman JL, Stekel DJ, Rousham EK, Islam MA. Tracking antimicrobial resistance transmission in urban and rural communities in Bangladesh: a One Health study of genomic diversity of ESBL-producing and carbapenem-resistant Escherichia coli. Microbiol Spectr 2024; 12:e0395623. [PMID: 38700359 PMCID: PMC11237648 DOI: 10.1128/spectrum.03956-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant threat to global health and sustainable development goals, especially in low- and middle-income countries (LMICs). This study aimed to understand the transmission of AMR between poultry, humans, and the environment in Bangladesh using a One Health approach. We analyzed the whole genome sequences (WGS) of 117 extended-spectrum β-lactamase-producing Escherichia coli (ESBL-Ec) isolates, with 46 being carbapenem resistant. These isolates were obtained from human (n = 20) and poultry feces (n = 12), as well as proximal environments (wastewater) (n = 85) of three different study sites, including rural households (n = 48), rural poultry farms (n = 20), and urban wet markets (n = 49). The WGS of ESBL-Ec isolates were compared with 58 clinical isolates from global databases. No significant differences in antibiotic resistance genes (ARGs) were observed in ESBL-Ec isolated from humans with and without exposure to poultry. Environmental isolates showed higher ARG diversity than human and poultry isolates. No clonal transmission between poultry and human isolates was found, but wastewater was a reservoir for ESBL-Ec for both. Except for one human isolate, all ESBL-Ec isolates were distinct from clinical isolates. Most isolates (77.8%) carried at least one plasmid replicon type, with IncFII being the most prevalent. IncFIA was predominant in human isolates, while IncFII, Col(MG828), and p0111 were common in poultry. We observed putative sharing of ARG-carrying plasmids among isolates, mainly from wastewater. However, in most cases, bacterial isolates sharing plasmids were also clonally related, suggesting clonal spread was more probable than just plasmid transfer. IMPORTANCE Our study underscores that wastewater discharged from households and wet markets carries antibiotic-resistant organisms from both human and animal sources. Thus, direct disposal of wastewater into the environment not only threatens human health but also endangers food safety by facilitating the spread of antimicrobial resistance (AMR) to surface water, crops, vegetables, and subsequently to food-producing animals. In regions with intensive poultry production heavily reliant on the prophylactic use of antibiotics, compounded by inadequate waste management systems, such as Bangladesh, the ramifications are particularly pronounced. Wastewater serves as a pivotal juncture for the dissemination of antibiotic-resistant organisms and functions as a pathway through which strains of human and animal origin can infiltrate the environment and potentially colonize new hosts. Further research is needed to thoroughly characterize wastewater isolates/populations and understand their potential impact on interconnected environments, communities, and wildlife.
Collapse
Affiliation(s)
- Brandon M. Flatgard
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Alexander D. Williams
- Laboratory of Data Discovery for Health Ltd, Hong Kong Science and Technology Park, Tai Po, Hong Kong, China
- School of Public Health, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | | | - Jon L. Hobman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, United Kingdom
| | - Dov J. Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, United Kingdom
- Department of Mathematics and Applied Mathematics, University of Johannesburg, Johannesburg, South Africa
| | - Emily K. Rousham
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Mohammad Aminul Islam
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
- Laboratory of Food Safety and One Health, icddr,b, Dhaka, Bangladesh
| |
Collapse
|
79
|
Cohen-Gihon I, Israeli O, Bilinsky G, Vasker B, Lazar S, Beth-Din A, Zvi A, Ghanem-Zoubi N, Atiya-Nasagi Y. Insights from genomic analysis of a novel Coxiella burnetii strain isolated in Israel. New Microbes New Infect 2024; 59:101242. [PMID: 38577384 PMCID: PMC10993178 DOI: 10.1016/j.nmni.2024.101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
The diagnosis of Q fever is challenging due to nonspecific symptoms and negative standard blood culture results. Serological testing through immunofluorescence assay (IFA) is the most commonly used method for diagnosing this disease. Polymerase chain reaction (PCR) tests can also be used to detect bacterial DNA if taken at an appropriate time. Once the presence of bacteria is confirmed in a sample, an enrichment step is required before characterizing it through sequencing. Cultivating C. burnetii is challenging as it can only be isolated by inoculation into cell culture, embryonated eggs, or animals. In this article, we describe the isolation of C. burnetii from a valve specimen in Vero cells. We conducted genome sequencing and taxonomy profiling of this isolate and were able to determine its taxonomic affiliation. Furthermore, Multispacer sequence typing (MST) analysis suggests that the infection originated from a local strain of C. burnetii found around northern Israel and Lebanon. This novel strain belongs to a previously described genotype MST6, harboring the QpRS plasmid, never reported in Israel.
Collapse
Affiliation(s)
- Inbar Cohen-Gihon
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ofir Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Gal Bilinsky
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Barak Vasker
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shirley Lazar
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Adi Beth-Din
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Anat Zvi
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | | | - Yafit Atiya-Nasagi
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| |
Collapse
|
80
|
Mendonça R, Furtado R, Coelho A, Correia CB, Suyarko E, Borges V, Gomes JP, Pista A, Batista R. Raw milk cheeses from Beira Baixa, Portugal-A contributive study for the microbiological hygiene and safety assessment. Braz J Microbiol 2024; 55:1759-1772. [PMID: 38622468 PMCID: PMC11153484 DOI: 10.1007/s42770-024-01332-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Due to specific bacterial microbiota, raw milk cheeses have appreciated sensory properties. However, they may pose a threat to consumer safety due to potential pathogens presence. This study evaluated the microbiological contamination of 98 raw milk cheeses from Beira Baixa, Portugal. Presence and enumeration of Coagulase Positive Staphylococci (CPS), Listeria monocytogenes, Salmonella spp., pathogenic Escherichia coli, and indicator microorganisms (non-pathogenic E. coli and Listeria spp.) was attained. E. coli antimicrobial resistance (AMR) was also evaluated. PCR and/or Whole genome sequencing (WGS) was used to characterize E. coli, Salmonella spp. and L. monocytogenes isolates. Sixteen cheeses (16.3%) were classified as Satisfactory, 59 (60.2%) as Borderline and 23 (23.5%) as Unsatisfactory/Potential Injurious to Health. L. monocytogenes, CPS > 104 cfu g-1, Extraintestinal pathogenic E. coli (ExPEC) and Salmonella spp. were detected in 4.1%, 6.1%, 3.1% and 1.0% of the samples, respectively. Listeria innocua (4.1%) and E. coli > 104 cfu g-1 (16.3%) were also detected. AMR E. coli was detected in 23/98 (23.5%) of the cheese samples, of which two were multidrug resistant. WGS identified genotypes already associated to human disease and Listeria spp. cluster analysis indicated that cheese contamination might be related with noncompliance with Good Hygiene Practices during cheese production.
Collapse
Affiliation(s)
- Rita Mendonça
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.
- Faculty of Sciences, University of Lisbon, Lisbon, Portugal.
| | - Rosália Furtado
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Anabela Coelho
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Cristina Belo Correia
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Elena Suyarko
- Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- NOVA School of Science and Technology, 2829-516, Caparica, Portugal
| | - Vítor Borges
- Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - João Paulo Gomes
- Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Animal and Veterinary Research Center (CECAV), Faculty of Veterinary Medicine, Lusófona University-Lisbon University Centre, Lisbon, Portugal
| | - Angela Pista
- Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Rita Batista
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.
| |
Collapse
|
81
|
Hofstetter KS, Jacko NF, Shumaker MJ, Talbot BM, Petit RA, Read TD, David MZ. Strain Differences in Bloodstream and Skin Infection: Methicillin-Resistant Staphylococcus aureus Isolated in 2018-2021 in a Single Health System. Open Forum Infect Dis 2024; 11:ofae261. [PMID: 38854395 PMCID: PMC11160326 DOI: 10.1093/ofid/ofae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Staphylococcus aureus is a common cause of skin and soft-tissue infections (SSTIs) and has become the most common cause of bloodstream infections (BSIs) in recent years, but whether the strains causing these two clinical syndromes overlap has not been studied adequately. USA300/500 (clonal complex [CC] 8-sequence type [ST] 8) and USA100 (CC5-ST5) have dominated among methicillin-resistant S aureus (MRSA) strains in the United States since the early 2000s. We compared the genomes of unselected MRSA isolates from 131 SSTIs with those from 145 BSIs at a single US center in overlapping periods in 2018-2021. CC8 MRSA was more common among SSTIs, and CC5 was more common among BSIs, consistent with prior literature. Based on clustering genomes with a threshold of 15 single-nucleotide polymorphisms, we identified clusters limited to patients with SSTI and separate clusters exclusively comprising patients with BSIs. However, we also identified eight clusters that included at least one SSTI and one BSI isolate. This suggests that virulent MRSA strains are transmitted from person to person locally in the healthcare setting or the community and that single lineages are often capable of causing both SSTIs and BSIs.
Collapse
Affiliation(s)
- Katrina S Hofstetter
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Natasia F Jacko
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Margot J Shumaker
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brooke M Talbot
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Robert A Petit
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Michael Z David
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
82
|
Baysal Ö, Studholme DJ, Jimenez-Quiros C, Tör M. Genome sequence of the plant-growth-promoting bacterium Bacillus velezensis EU07. Access Microbiol 2024; 6:000762.v3. [PMID: 38868377 PMCID: PMC11165630 DOI: 10.1099/acmi.0.000762.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/17/2024] [Indexed: 06/14/2024] Open
Abstract
Many Gram-positive spore-forming rhizobacteria of the genus Bacillus show potential as biocontrol biopesticides that promise improved sustainability and ecological safety in agriculture. Here, we present a draft-quality genome sequence for Bacillus velezensis EU07, which shows growth-promotion in tomato plants and biocontrol against Fusarium head blight. We found that the genome of EU07 is almost identical to that of the commercially used strain QST713, but identified 46 single-nucleotide differences that distinguish these strains from each other. The availability of this genome sequence will facilitate future efforts to unravel the genetic and molecular basis for EU07's beneficial properties.
Collapse
Affiliation(s)
- Ömür Baysal
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, 48000 Menteşe, Turkey
- Department of Biological Sciences, University of Worcester, Worcester, UK
| | | | | | - Mahmut Tör
- Department of Biological Sciences, University of Worcester, Worcester, UK
| |
Collapse
|
83
|
Cohen-Gihon I, Zaide G, Amit S, Zohar I, Schwartz O, Maor Y, Israeli O, Bilinsky G, Israeli M, Lazar S, Gur D, Aftalion M, Zvi A, Beth-Din A, Bar-Haim E, Elia U, Cohen O, Mamroud E, Chitlaru T. Genome sequence of two novel virulent clinical strains of Burkholderia pseudomallei isolated from acute melioidosis cases imported to Israel from India and Thailand. BMC Genom Data 2024; 25:47. [PMID: 38783201 PMCID: PMC11118722 DOI: 10.1186/s12863-024-01225-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE Burkholderia pseudomallei, the etiological cause of melioidosis, is a soil saprophyte endemic in South-East Asia, where it constitutes a public health concern of high-priority. Melioidosis cases are sporadically identified in nonendemic areas, usually associated with travelers or import of goods from endemic regions. Due to extensive intercontinental traveling and the anticipated climate change-associated alterations of the soil bacterial flora, there is an increasing concern for inadvertent establishment of novel endemic areas, which may expand the global burden of melioidosis. Rapid diagnosis, isolation and characterization of B. pseudomallei isolates is therefore of utmost importance particularly in non-endemic locations. DATA DESCRIPTION We report the genome sequences of two novel clinical isolates (MWH2021 and MST2022) of B. pseudomallei identified in distinct acute cases of melioidosis diagnosed in two individuals arriving to Israel from India and Thailand, respectively. The data includes preliminary genetic analysis of the genomes determining their phylogenetic classification in rapport to the genomes of 131 B. pseudomallei strains documented in the NCBI database. Inspection of the genomic data revealed the presence or absence of loci encoding for several documented virulence determinants involved in the molecular pathogenesis of melioidosis. Virulence analysis in murine models of acute or chronic melioidosis established that both strains belong to the highly virulent class of B. pseudomalleii.
Collapse
Affiliation(s)
- Inbar Cohen-Gihon
- Department of Biochemistry and Molecular Genetics, Institute for Biological Research, Ness-Ziona, Israel
| | - Galia Zaide
- Department of Biochemistry and Molecular Genetics, Institute for Biological Research, Ness-Ziona, Israel
| | - Sharon Amit
- Clinical Microbiology, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Iris Zohar
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Infectious Disease Unit, Wolfson Medical Center, Holon, Israel
| | - Orna Schwartz
- Microbiology and Immunology Laboratory Wolfson Medical Center, Holon, Israel
| | - Yasmin Maor
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Infectious Disease Unit, Wolfson Medical Center, Holon, Israel
| | - Ofir Israeli
- Department of Biochemistry and Molecular Genetics, Institute for Biological Research, Ness-Ziona, Israel
| | - Gal Bilinsky
- Department of Biochemistry and Molecular Genetics, Institute for Biological Research, Ness-Ziona, Israel
| | - Ma'ayan Israeli
- Department of Biochemistry and Molecular Genetics, Institute for Biological Research, Ness-Ziona, Israel
| | - Shirley Lazar
- Department of Biochemistry and Molecular Genetics, Institute for Biological Research, Ness-Ziona, Israel
| | - David Gur
- Department of Biochemistry and Molecular Genetics, Institute for Biological Research, Ness-Ziona, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Institute for Biological Research, Ness-Ziona, Israel
| | - Anat Zvi
- Department of Biochemistry and Molecular Genetics, Institute for Biological Research, Ness-Ziona, Israel
| | - Adi Beth-Din
- Department of Biochemistry and Molecular Genetics, Institute for Biological Research, Ness-Ziona, Israel
| | - Erez Bar-Haim
- Department of Biochemistry and Molecular Genetics, Institute for Biological Research, Ness-Ziona, Israel
| | - Uri Elia
- Department of Biochemistry and Molecular Genetics, Institute for Biological Research, Ness-Ziona, Israel
| | - Ofer Cohen
- Department of Biochemistry and Molecular Genetics, Institute for Biological Research, Ness-Ziona, Israel
| | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Institute for Biological Research, Ness-Ziona, Israel
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Institute for Biological Research, Ness-Ziona, Israel.
- Faculty of Digital Technologies in Medicine, Holon Institute of Technology, Holon, Israel.
| |
Collapse
|
84
|
Zhang Y, Lyu Y, Wang D, Feng M, Shen S, Zhu L, Pan C, Zai X, Wang S, Guo Y, Yu S, Gong X, Chen Q, Wang H, Wang Y, Liu X. Rapid Identification of Brucella Genus and Species In Silico and On-Site Using Novel Probes with CRISPR/Cas12a. Microorganisms 2024; 12:1018. [PMID: 38792847 PMCID: PMC11124060 DOI: 10.3390/microorganisms12051018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Human brucellosis caused by Brucella is a widespread zoonosis that is prevalent in many countries globally. The high homology between members of the Brucella genus and Ochrobactrum spp. often complicates the determination of disease etiology in patients. The efficient and reliable identification and distinction of Brucella are of primary interest for both medical surveillance and outbreak purposes. A large amount of genomic data for the Brucella genus was analyzed to uncover novel probes containing single-nucleotide polymorphisms (SNPs). GAMOSCE v1.0 software was developed based on the above novel eProbes. In conjunction with clinical requirements, an RPA-Cas12a detection method was developed for the on-site determination of B. abortus and B. melitensis by fluorescence and lateral flow dipsticks (LFDs). We demonstrated the potential of these probes for rapid and accurate detection of the Brucella genus and five significant Brucella species in silico using GAMOSCE. GAMOSCE was validated on different Brucella datasets and correctly identified all Brucella strains, demonstrating a strong discrimination ability. The RPA-Cas12a detection method showed good performance in detection in clinical blood samples and veterinary isolates. We provide both in silico and on-site methods that are convenient and reliable for use in local hospitals and public health programs for the detection of brucellosis.
Collapse
Affiliation(s)
- Yan Zhang
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Lingang New City, Shanghai 201306, China
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Yufei Lyu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
- Laboratory of Advanced Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Dongshu Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Meijie Feng
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Lingang New City, Shanghai 201306, China
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Sicheng Shen
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Li Zhu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Chao Pan
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Xiaodong Zai
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Shuyi Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Yan Guo
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Shujuan Yu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Xiaowei Gong
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Chengguan District, Lanzhou 730046, China
| | - Qiwei Chen
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Chengguan District, Lanzhou 730046, China
| | - Hengliang Wang
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Lingang New City, Shanghai 201306, China
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
- Laboratory of Advanced Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Yuanzhi Wang
- School of Medicine, Shihezi University, Xinjiang Uygur Autonomous Region, Shihezi 832002, China
| | - Xiankai Liu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
- Laboratory of Advanced Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| |
Collapse
|
85
|
Tan S, Li X, Lu B, Lin Y, Cai Y, He J, Chen S, Gao J, Gao J, Qiang X. Genomic Insights into the First Emergence of blaNDM-5-Carrying Carbapenem-Resistant Salmonella enterica Serovar London Strain in China. Infect Drug Resist 2024; 17:1781-1790. [PMID: 38736433 PMCID: PMC11088413 DOI: 10.2147/idr.s458625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
Carbapenem-resistant Salmonella enterica (S. enterica) pose a significant threat to public health, causing gastroenteritis and invasive infections. We report the first emergence of a carbapenem-resistant S. enterica serovar London strain, A132, carrying the blaNDM-5 gene in China. Whole-genome sequencing and bioinformatics analysis assigned A132 to be ST155, a multidrug-resistant clone frequently reported in China. The strain A132 exhibited resistance to multiple antibiotics, with 20 acquired antibiotic resistance genes (ARGs) identified, predominantly located on the IncFIB plasmid (pA132-1-NDM). Notably, the blaNDM-5 gene was located within an IS26 flanked-class 1 integron-ISCR1 complex, comprising two genetic cassettes. One cassette is the class 1 integron, which may facilitate the transmission of the entire complex, while the other is the blaNDM-5-containing ISCR1-IS26-flanked cassette, carrying multiple other ARGs. Genbank database search based on the blaNDM-5-carrying cassette identified a similar genetic context found in transmissible IncFIA plasmids from Escherichia coli (p91) and Enterobacter hormaechei (p388) with a shared host range, suggesting the potential for cross-species transmission of blaNDM-5. To our knowledge, this is the first reported case of Salmonella serovar London ST155 harboring blaNDM-5 gene. Phylogenetic analysis indicated a close relationship between A132 and eight S. London ST155 strains isolated from the same province. However, A132 differed by carrying the blaNDM-5 gene and four unique ARGs. Given the high transmissibility of the F-type plasmid harboring blaNDM-5 and 18 other ARGs, it is imperative to implement vigilant surveillance and adopt appropriate infection control measures to mitigate the threat to public health.
Collapse
Affiliation(s)
- Shaohua Tan
- Department of Clinical Laboratory, The First People’s Hospital of Huzhou, Huzhou, Zhejiang, 313000, People’s Republic of China
| | - Xiangchen Li
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, 310020, People’s Republic of China
| | - Bing Lu
- Department of Clinical Laboratory, The First People’s Hospital of Huzhou, Huzhou, Zhejiang, 313000, People’s Republic of China
- School of Medicine, Huzhou University, Huzhou, Zhejiang, 313000, People’s Republic of China
| | - Yibin Lin
- School of Medicine, Huzhou University, Huzhou, Zhejiang, 313000, People’s Republic of China
| | - Yunxiang Cai
- Department of Clinical Laboratory, The First People’s Hospital of Huzhou, Huzhou, Zhejiang, 313000, People’s Republic of China
| | - Jie He
- Department of Infectious Diseases, The First People’s Hospital of Huzhou, Huzhou, Zhejiang, 313000, People’s Republic of China
| | - Sisi Chen
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, 310020, People’s Republic of China
| | - Junli Gao
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, 310020, People’s Republic of China
| | - Junshun Gao
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, 310020, People’s Republic of China
| | - Xinhua Qiang
- Department of Clinical Laboratory, The First People’s Hospital of Huzhou, Huzhou, Zhejiang, 313000, People’s Republic of China
| |
Collapse
|
86
|
Ma Z, Wang B, Zeng D, Ding H, Zeng Z. Rapid Dissemination of blaNDM-5 Gene among Carbapenem-Resistant Escherichia coli Isolates in a Yellow-Feather Broiler Farm via Multiple Plasmid Replicon. Pathogens 2024; 13:387. [PMID: 38787239 PMCID: PMC11124502 DOI: 10.3390/pathogens13050387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Although carbapenems have not been approved for animal use, carbapenem-resistant Escherichia coli (CREC) strains are increasingly being detected in food-producing animals, posing a significant public health risk. However, the epidemiological characteristics of CREC isolates in yellow-feather broiler farms remain unclear. We comprehensively investigated the genetic features of carbapenem-resistance genes among E. coli isolates recovered from a yellow-feather broiler farm in Guangdong province, China. Among the 172 isolates, 88 (51.2%) were recovered from chicken feces (88.5%, 54/61), the farm environment (51.1%, 24/47), and specimens of dead chickens (15.6%, 41/64). All CREC isolates were positive for the blaNDM-5 gene and negative for other carbapenem-resistance genes. Among 40 randomly selected isolates subjected to whole-genome sequencing, 10 belonged to distinct sequence types (STs), with ST167 (n = 12) being the most prevalent across different sources, suggesting that the dissemination of blaNDM-5 was mainly due to horizontal and clonal transmission. Plasmid analysis indicated that IncX3, IncHI2, and IncR-X1-X3 hybrid plasmids were responsible for the rapid transmission of the blaNDM-5 gene, and the genetic surrounding of blaNDM-5 contained a common mobile element of the genetic fragment designated "IS5-△ISAba125-blaNDM-5-bleMBL-trpF-dsbC". These findings demonstrate a critical role of multiple plasmid replicons in the dissemination of blaNDM-5 and carbapenem resistance.
Collapse
Affiliation(s)
- Zhenbao Ma
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (Z.M.); (B.W.); (D.Z.)
- Animal Husbandry and Fisheries Research Center of Guangdong Haid Group Co., Ltd., Guangzhou 511490, China
| | - Bo Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (Z.M.); (B.W.); (D.Z.)
| | - Dongping Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (Z.M.); (B.W.); (D.Z.)
| | - Huanzhong Ding
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (Z.M.); (B.W.); (D.Z.)
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (Z.M.); (B.W.); (D.Z.)
| |
Collapse
|
87
|
Bloomfield M, Hutton S, Burton M, Tarring C, Velasco C, Clissold C, Balm M, Kelly M, Macartney-Coxson D, White R. Early identification of a ward-based outbreak of Clostridioides difficile using prospective multilocus sequence type-based Oxford Nanopore genomic surveillance. Infect Control Hosp Epidemiol 2024; 45:1-7. [PMID: 38706217 PMCID: PMC11518675 DOI: 10.1017/ice.2024.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
OBJECTIVE To describe an outbreak of sequence type (ST)2 Clostridioides difficile infection (CDI) detected by a recently implemented multilocus sequence type (MLST)-based prospective genomic surveillance system using Oxford Nanopore Technologies (ONT) sequencing. SETTING Hemato-oncology ward of a public tertiary referral centre. METHODS From February 2022, we began prospectively sequencing all C. difficile isolated from inpatients at our institution on the ONT MinION device, with the output being an MLST. Bed-movement data are used to construct real-time ST-specific incidence charts based on ward exposures over the preceding three months. RESULTS Between February and October 2022, 76 of 118 (64.4%) CDI cases were successfully sequenced. There was wide ST variation across cases and the hospital, with only four different STs being seen in >4 patients. A clear predominance of ST2 CDI cases emerged among patients with exposure to our hemato-oncology ward between May and October 2022, which totalled ten patients. There was no detectable rise in overall CDI incidence for the ward or hospital due to the outbreak. Following a change in cleaning product to an accelerated hydrogen peroxide wipe and several other interventions, no further outbreak-associated ST2 cases were detected. A retrospective phylogenetic analysis using original sequence data showed clustering of the suspected outbreak cases, with the exception of two cases that were retrospectively excluded from the outbreak. CONCLUSIONS Prospective genomic surveillance of C. difficile using ONT sequencing permitted the identification of an outbreak of ST2 CDI that would have otherwise gone undetected.
Collapse
Affiliation(s)
- Max Bloomfield
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington, New Zealand
- Te Whatu Ora/Health New Zealand, Infection Prevention and Control, Capital, Coast and Hutt Valley, Wellington, New Zealand
| | - Samantha Hutton
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington, New Zealand
| | - Megan Burton
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington, New Zealand
| | - Claire Tarring
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington, New Zealand
| | - Charles Velasco
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington, New Zealand
| | - Carolyn Clissold
- Te Whatu Ora/Health New Zealand, Infection Prevention and Control, Capital, Coast and Hutt Valley, Wellington, New Zealand
| | - Michelle Balm
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington, New Zealand
- Te Whatu Ora/Health New Zealand, Infection Prevention and Control, Capital, Coast and Hutt Valley, Wellington, New Zealand
| | - Matthew Kelly
- Te Whatu Ora/Health New Zealand, Infection Prevention and Control, Capital, Coast and Hutt Valley, Wellington, New Zealand
| | | | - Rhys White
- Institute of Environmental Science and Research, Health Group, Porirua, New Zealand
| |
Collapse
|
88
|
Kille B, Nute MG, Huang V, Kim E, Phillippy AM, Treangen TJ. Parsnp 2.0: scalable core-genome alignment for massive microbial datasets. Bioinformatics 2024; 40:btae311. [PMID: 38724243 PMCID: PMC11128092 DOI: 10.1093/bioinformatics/btae311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 05/21/2024] Open
Abstract
MOTIVATION Since 2016, the number of microbial species with available reference genomes in NCBI has more than tripled. Multiple genome alignment, the process of identifying nucleotides across multiple genomes which share a common ancestor, is used as the input to numerous downstream comparative analysis methods. Parsnp is one of the few multiple genome alignment methods able to scale to the current era of genomic data; however, there has been no major release since its initial release in 2014. RESULTS To address this gap, we developed Parsnp v2, which significantly improves on its original release. Parsnp v2 provides users with more control over executions of the program, allowing Parsnp to be better tailored for different use-cases. We introduce a partitioning option to Parsnp, which allows the input to be broken up into multiple parallel alignment processes which are then combined into a final alignment. The partitioning option can reduce memory usage by over 4× and reduce runtime by over 2×, all while maintaining a precise core-genome alignment. The partitioning workflow is also less susceptible to complications caused by assembly artifacts and minor variation, as alignment anchors only need to be conserved within their partition and not across the entire input set. We highlight the performance on datasets involving thousands of bacterial and viral genomes. AVAILABILITY AND IMPLEMENTATION Parsnp v2 is available at https://github.com/marbl/parsnp.
Collapse
Affiliation(s)
- Bryce Kille
- Department of Computer Science, Rice University, Houston, TX 77005, United States
| | - Michael G Nute
- Department of Computer Science, Rice University, Houston, TX 77005, United States
| | - Victor Huang
- Department of Computer Science, Rice University, Houston, TX 77005, United States
| | - Eddie Kim
- Department of Computer Science, Rice University, Houston, TX 77005, United States
| | - Adam M Phillippy
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Todd J Treangen
- Department of Computer Science, Rice University, Houston, TX 77005, United States
- Department of Bioengineering, Rice University, Houston, TX 77030, United States
| |
Collapse
|
89
|
Chen Z, Toro M, Moreno-Switt AI, Adell AD, Delgado-Suárez EJ, Bonelli RR, Oliveira CJB, Reyes-Jara A, Huang X, Albee B, Grim CJ, Allard M, Tallent SM, Brown EW, Bell RL, Meng J. Unveiling the genomic landscape of Salmonella enterica serotypes Typhimurium, Newport, and Infantis in Latin American surface waters: a comparative analysis. Microbiol Spectr 2024; 12:e0004724. [PMID: 38546218 PMCID: PMC11064523 DOI: 10.1128/spectrum.00047-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/06/2024] [Indexed: 05/03/2024] Open
Abstract
Surface waters are considered ecological habitats where Salmonella enterica can persist and disseminate to fresh produce production systems. This study aimed to explore the genomic profiles of S. enterica serotypes Typhimurium, Newport, and Infantis from surface waters in Chile, Mexico, and Brazil collected between 2019 and 2022. We analyzed the whole genomes of 106 S. Typhimurium, 161 S. Newport, and 113 S. Infantis isolates. Our phylogenetic analysis exhibited distinct groupings of isolates by their respective countries except for a notable case involving a Chilean S. Newport isolate closely related to two Mexican isolates, showing 4 and 13 single nucleotide polymorphisms of difference, respectively. The patterns of the most frequently detected antimicrobial resistance genes varied across countries and serotypes. A strong correlation existed between integron carriage and genotypic multidrug resistance (MDR) across serotypes in Chile and Mexico (R > 0.90, P < 0.01), while integron(s) were not detected in any of the Brazilian isolates. By contrast, we did not identify any strong correlation between plasmid carriage and genotypic MDR across diverse countries and serotypes.IMPORTANCEUnveiling the genomic landscape of S. enterica in Latin American surface waters is pivotal for ensuring public health. This investigation sheds light on the intricate genomic diversity of S. enterica in surface waters across Chile, Mexico, and Brazil. Our research also addresses critical knowledge gaps, pioneering a comprehensive understanding of surface waters as a reservoir for multidrug-resistant S. enterica. By integrating our understanding of integron carriage as biomarkers into broader MDR control strategies, we can also work toward targeted interventions that mitigate the emergence and dissemination of MDR in S. enterica in surface waters. Given its potential implications for food safety, this study emphasizes the critical need for informed policies and collaborative initiatives to address the risks associated with S. enterica in surface waters.
Collapse
Affiliation(s)
- Zhao Chen
- Joint Institute for Food Safety and Applied Nutrition and Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA
| | - Magaly Toro
- Joint Institute for Food Safety and Applied Nutrition and Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Andrea I. Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Aiko D. Adell
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Facultad de Agronomía y Sistemas Naturales, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Enrique J. Delgado-Suárez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad de Nacional Autónoma de México, Mexico City, Mexico
| | - Raquel R. Bonelli
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Angélica Reyes-Jara
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Xinyang Huang
- Joint Institute for Food Safety and Applied Nutrition and Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Brett Albee
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA
| | - Christopher J. Grim
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA
| | - Marc Allard
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA
| | - Sandra M. Tallent
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA
| | - Eric W. Brown
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA
| | - Rebecca L. Bell
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition and Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
90
|
Izdebski R, Biedrzycka M, Urbanowicz P, Żabicka D, Błauciak T, Lechowicz D, Gałecka-Ziółkowska B, Gniadkowski M. Large hospital outbreak caused by OXA-244-producing Escherichia coli sequence type 38, Poland, 2023. Euro Surveill 2024; 29:2300666. [PMID: 38818748 PMCID: PMC11141128 DOI: 10.2807/1560-7917.es.2024.29.22.2300666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/04/2024] [Indexed: 06/01/2024] Open
Abstract
In February 2023, Escherichia coli sequence type (ST) 38 producing oxacillinase 244 (OXA-244-Ec ST38) was detected from three patients in a hospital in western Poland. Overall, OXA-244-Ec ST38 was detected from 38 colonised patients in 13 wards between February and June 2023. The outbreak was investigated on site by an infection control team, and the bacterial isolates were characterised microbiologically and by whole genome sequencing. We could not identify the primary source of the outbreak or reconstruct the transmission sequence. In some of the 13 affected wards or their groups linked by the patients' movement, local outbreaks occurred. The tested outbreak isolates were resistant to β-lactams (penicillins, cephalosporins, aztreonam and ertapenem) and to trimethoprim-sulfamethoxazole. Consistently, apart from bla OXA-244, all isolates contained also the bla CMY-2 and bla CTX-M-14 genes, coding for an AmpC-like cephalosporinase and extended-spectrum β-lactamase, respectively, and genes conferring resistance to trimethoprim-sulfamethoxazole, sul2 and dfrA1. Genomes of the isolates formed a tight cluster, not of the major recent European Cluster A but of the older Cluster B, with related isolates identified in Germany. This outbreak clearly demonstrates that OXA-244-Ec ST38 has a potential to cause hospital outbreaks which are difficult to detect, investigate and control.
Collapse
Affiliation(s)
- Radosław Izdebski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Marta Biedrzycka
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Paweł Urbanowicz
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Dorota Żabicka
- National Reference Centre for Susceptibility Testing, Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Teresa Błauciak
- Bacteriological and Serological Laboratory, Multispecialist Hospital, Nowa Sól, Poland
| | - Dorota Lechowicz
- Hospital Infection Control and Prevention Team, Multispecialist Hospital, Nowa Sól, Poland
| | | | - Marek Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| |
Collapse
|
91
|
Dong H, Zhu S, Sun F, Feng Q, Guo C, Wu Z, Wu S, Wang A, Yu S. Comparative analysis of antimicrobial resistance phenotype and genotype of Riemerella anatipestifer. Vet Microbiol 2024; 292:110047. [PMID: 38471429 DOI: 10.1016/j.vetmic.2024.110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
Riemerella anatipestifer is one of the important bacterial pathogens that threaten the waterfowl farming industry. In this study, 157 suspected R. anatipestifer strains were isolated from diseased ducks and geese from seven regions of China during 2019-2020, and identified using multiple polymerase chain reaction (PCR). Antimicrobial susceptibility tests and whole-genome sequence (WGS) analysis were then performed for comparative analysis of antimicrobial resistance phenotypes and genotypes. The results showed that these strains were susceptible to florfenicol, ceftriaxone, spectinomycin, sulfafurazole and cefepime, but resistant to kanamycin, amikacin, gentamicin, and streptomycin, exhibiting multiple antimicrobial resistance phenotypes. WGS analysis revealed a wide distribution of genotypes among the 157 strains with no apparent regional pattern. Through next-generation sequencing analysis of antimicrobial resistance genes, a total of 88 resistance genes were identified. Of them, 19 tetracycline resistance genes were most commonly found, followed by 15 efflux pump resistance genes, 11 glycopeptide resistance genes and seven macrolide resistance genes. The 157 R. anatipestifer strains contained 42-55 resistance genes each, with the strains carrying 47 different resistance genes being the most abundant. By comparing the antimicrobial resistance phenotype and genotype, it was observed that a high correlation between them for most antimicrobial resistance properties was detected, except for a difference in aminoglycoside resistance phenotype and genotype. In conclusion, 157 R. anatipestifer strains exhibited severe multiple antimicrobial resistance phenotypes and genotypes, emphasizing the need for improved antimicrobial usage guidelines. The wide distribution and diverse types of resistance genes among these strains provide a foundation for studying novel mechanisms of antimicrobial resistance.
Collapse
Affiliation(s)
- Hongyan Dong
- Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, No. 8 Phoenix East Road, Taizhou 225300, China
| | - Shanyuan Zhu
- Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, No. 8 Phoenix East Road, Taizhou 225300, China.
| | - Fan Sun
- Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, No. 8 Phoenix East Road, Taizhou 225300, China
| | - Qi Feng
- Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, No. 8 Phoenix East Road, Taizhou 225300, China
| | - Changming Guo
- Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, No. 8 Phoenix East Road, Taizhou 225300, China
| | - Zhi Wu
- Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, No. 8 Phoenix East Road, Taizhou 225300, China
| | - Shuang Wu
- Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, No. 8 Phoenix East Road, Taizhou 225300, China
| | - Anping Wang
- Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, No. 8 Phoenix East Road, Taizhou 225300, China
| | - Shengqing Yu
- Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, No. 8 Phoenix East Road, Taizhou 225300, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No 518 Ziyue Road, Shanghai 200241, China.
| |
Collapse
|
92
|
Salaheen S, Kim SW, Karns JS, Van Kessel JAS, Haley BJ. Microdiversity of Salmonella Kentucky During Long-Term Colonization of a Dairy Herd. Foodborne Pathog Dis 2024; 21:306-315. [PMID: 38285435 DOI: 10.1089/fpd.2023.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Salmonella enterica subsp. enterica serovar Kentucky was repeatedly isolated from a commercial dairy herd that was enrolled in a longitudinal study where feces of asymptomatic dairy cattle were sampled intensively over an 8-year period. The genomes of 5 Salmonella Kentucky isolates recovered from the farm 2 years before the onset of the long-term colonization event and 13 isolates collected during the period of endemicity were sequenced. A phylogenetic analysis inferred that the Salmonella Kentucky strains from the farm were distinct from poultry strains collected from the same region, and three subclades (K, A1, and A2) were identified among the farm isolates, each appearing at different times during the study. Based on the phylogenetic analysis, three separate lineages of highly similar Salmonella Kentucky were present in succession on the farm. Genomic heterogeneity between the clades helped identify regions, most notably transcriptional regulators, of the Salmonella Kentucky genome that may be involved in competition among highly similar strains. Notably, a region annotated as a hemolysin expression modulating protein (Hha) was identified in a putative plasmid region of strains that colonized a large portion of cows in the herd, suggesting that it may play a role in asymptomatic persistence within the bovine intestine. A cell culture assay of isolates from the three clades with bovine epithelial cells demonstrated a trend of decreased invasiveness of Salmonella Kentucky isolates over time, suggesting that clade-specific interactions with the animals on the farm may have played a role in the dynamics of strain succession. Results of this analysis further demonstrate an underappreciated level of genomic diversity within strains of the same Salmonella serovar, particularly those isolated during a long-term period of asymptomatic colonization within a single dairy herd.
Collapse
Affiliation(s)
- Serajus Salaheen
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, USA
| | - Seon Woo Kim
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, USA
| | - Jeffrey S Karns
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, USA
| | - Jo Ann S Van Kessel
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, USA
| | - Bradd J Haley
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, USA
| |
Collapse
|
93
|
Lee JT, Li Z, Nunez LD, Katzel D, Perrin Jr. BS, Raghuraman V, Rajyaguru U, Llamera KE, Andrew L, Anderson AS, Hovius JW, Liberator PA, Simon R, Hao L. Development of a sequence-based in silico OspA typing method for Borrelia burgdorferi sensu lato. Microb Genom 2024; 10:001252. [PMID: 38787376 PMCID: PMC11165634 DOI: 10.1099/mgen.0.001252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Lyme disease (LD), caused by spirochete bacteria of the genus Borrelia burgdorferi sensu lato, remains the most common vector-borne disease in the northern hemisphere. Borrelia outer surface protein A (OspA) is an integral surface protein expressed during the tick cycle, and a validated vaccine target. There are at least 20 recognized Borrelia genospecies, that vary in OspA serotype. This study presents a new in silico sequence-based method for OspA typing using next-generation sequence data. Using a compiled database of over 400 Borrelia genomes encompassing the 4 most common disease-causing genospecies, we characterized OspA diversity in a manner that can accommodate existing and new OspA types and then defined boundaries for classification and assignment of OspA types based on the sequence similarity. To accommodate potential novel OspA types, we have developed a new nomenclature: OspA in silico type (IST). Beyond the ISTs that corresponded to existing OspA serotypes 1-8, we identified nine additional ISTs that cover new OspA variants in B. bavariensis (IST9-10), B. garinii (IST11-12), and other Borrelia genospecies (IST13-17). The IST typing scheme and associated OspA variants are available as part of the PubMLST Borrelia spp. database. Compared to traditional OspA serotyping methods, this new computational pipeline provides a more comprehensive and broadly applicable approach for characterization of OspA type and Borrelia genospecies to support vaccine development.
Collapse
Affiliation(s)
- Jonathan T. Lee
- Vaccine Research and Development, Pfizer, Inc., Pearl River, NY, 10965, USA
| | - Zhenghui Li
- Vaccine Research and Development, Pfizer, Inc., Pearl River, NY, 10965, USA
| | - Lorna D. Nunez
- Vaccine Research and Development, Pfizer, Inc., Pearl River, NY, 10965, USA
| | - Daniel Katzel
- Pfizer Digital, Pfizer, Inc., Pearl River, NY, 10965, USA
| | | | - Varun Raghuraman
- Vaccine Research and Development, Pfizer, Inc., Pearl River, NY, 10965, USA
| | - Urvi Rajyaguru
- Vaccine Research and Development, Pfizer, Inc., Pearl River, NY, 10965, USA
| | - Katrina E. Llamera
- Vaccine Research and Development, Pfizer, Inc., Pearl River, NY, 10965, USA
| | - Lubomira Andrew
- Vaccine Research and Development, Pfizer, Inc., Pearl River, NY, 10965, USA
| | | | - Joppe W. Hovius
- Amsterdam University Medical Centers (UMC), location Academic Medical Center (AMC), Department of Internal Medicine, Division of Infectious Diseases, Center for Experimental and Molecular Medicine, Amsterdam Institute for Immunology and Infectious Diseases, University of Amsterdam, Amsterdam, Netherlands
| | - Paul A. Liberator
- Vaccine Research and Development, Pfizer, Inc., Pearl River, NY, 10965, USA
| | - Raphael Simon
- Vaccine Research and Development, Pfizer, Inc., Pearl River, NY, 10965, USA
| | - Li Hao
- Vaccine Research and Development, Pfizer, Inc., Pearl River, NY, 10965, USA
| |
Collapse
|
94
|
Xia Y, Wang Z, Hu Y, Zhao P, Li J, Zhang L, Fang R, Zhao J. Isolation, Identification, Genomic Diversity, and Antimicrobial Resistance Analysis of Streptococcus suis in Hubei Province of China from 2021 to 2023. Microorganisms 2024; 12:917. [PMID: 38792744 PMCID: PMC11124115 DOI: 10.3390/microorganisms12050917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Streptococcus suis (S. suis) is a zoonotic pathogen capable of causing severe diseases in humans and pigs, including meningitis, sepsis, polyserositis, arthritis, and endocarditis. This study aimed to investigate the biological characteristics of 19 strains of S. suis isolated from diseased pigs in Hubei Province between 2021 and 2023. Through bioinformatics analysis, we investigated the serotype, MLST, pan-genome characteristics, SNP, AMR, and ICE of the 19 S. suis isolates. Among the 19 S. suis strains, ten serotypes were identified, and serotype 9 was the most prevalent (21.05%). Ten new alleles and nine new sequence types (STs) were discovered, with ST28 and ST243 emerging as the predominant STs. The results of the pan-genomic analysis of S. suis indicate that there are 943 core genes, 2259 shell genes, and 5663 cloud genes. Through SNP evolutionary analysis, we identified a strong genetic similarity between SS31 and the reference genome P1/7. The analysis of antibiotic resistance genes revealed widespread presence of erm(B) and tet(O) genes among 19 strains of S. suis. This association may be linked to the high resistance of S. suis to lincosamides, macrolides, and tetracyclines. Integrative and conjugative elements (ICEs) and integrative and mobilizable elements (IMEs) were identified in 16 strains, with a carriage rate of 84.21%, and resistance genes were identified within the ICE/IME elements of 8 strains. Antimicrobial susceptibility testing revealed that all strains showed sensitivity to vancomycin and lincomycin but resistance to tilmicosin, tiamulin, amoxicillin, and doxycycline. This study contributes to our understanding of the genomic diversity of S. suis in Hubei Province of China, providing essential data for the comprehensive prevention and control of S. suis infections in China.
Collapse
Affiliation(s)
- Yingjun Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.X.); (Y.H.); (P.Z.); (J.L.); (L.Z.); (R.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China;
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoyang Wang
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China;
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanli Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.X.); (Y.H.); (P.Z.); (J.L.); (L.Z.); (R.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China;
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengfei Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.X.); (Y.H.); (P.Z.); (J.L.); (L.Z.); (R.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China;
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhai Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.X.); (Y.H.); (P.Z.); (J.L.); (L.Z.); (R.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China;
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.X.); (Y.H.); (P.Z.); (J.L.); (L.Z.); (R.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China;
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.X.); (Y.H.); (P.Z.); (J.L.); (L.Z.); (R.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China;
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.X.); (Y.H.); (P.Z.); (J.L.); (L.Z.); (R.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China;
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
95
|
Rodriguez-Ruiz JP, Xavier BB, Stöhr W, van Heirstraeten L, Lammens C, Finn A, Goossens H, Bielicki JA, Sharland M, Malhotra-Kumar S. High-resolution genomics identifies pneumococcal diversity and persistence of vaccine types in children with community-acquired pneumonia in the UK and Ireland. BMC Microbiol 2024; 24:146. [PMID: 38678217 PMCID: PMC11055344 DOI: 10.1186/s12866-024-03300-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Streptococcus pneumoniae is a global cause of community-acquired pneumonia (CAP) and invasive disease in children. The CAP-IT trial (grant No. 13/88/11; https://www.capitstudy.org.uk/ ) collected nasopharyngeal swabs from children discharged from hospitals with clinically diagnosed CAP, and found no differences in pneumococci susceptibility between higher and lower antibiotic doses and shorter and longer durations of oral amoxicillin treatment. Here, we studied in-depth the genomic epidemiology of pneumococcal (vaccine) serotypes and their antibiotic resistance profiles. METHODS Three-hundred and ninety pneumococci cultured from 1132 nasopharyngeal swabs from 718 children were whole-genome sequenced (Illumina) and tested for susceptibility to penicillin and amoxicillin. Genome heterogeneity analysis was performed using long-read sequenced isolates (PacBio, n = 10) and publicly available sequences. RESULTS Among 390 unique pneumococcal isolates, serotypes 15B/C, 11 A, 15 A and 23B1 were most prevalent (n = 145, 37.2%). PCV13 serotypes 3, 19A, and 19F were also identified (n = 25, 6.4%). STs associated with 19A and 19F demonstrated high genome variability, in contrast to serotype 3 (n = 13, 3.3%) that remained highly stable over a 20-year period. Non-susceptibility to penicillin (n = 61, 15.6%) and amoxicillin (n = 10, 2.6%) was low among the pneumococci analysed here and was independent of treatment dosage and duration. However, all 23B1 isolates (n = 27, 6.9%) were penicillin non-susceptible. This serotype was also identified in ST177, which is historically associated with the PCV13 serotype 19F and penicillin susceptibility, indicating a potential capsule-switch event. CONCLUSIONS Our data suggest that amoxicillin use does not drive pneumococcal serotype prevalence among children in the UK, and prompts consideration of PCVs with additional serotype coverage that are likely to further decrease CAP in this target population. Genotype 23B1 represents the convergence of a non-vaccine genotype with penicillin non-susceptibility and might provide a persistence strategy for ST types historically associated with vaccine serotypes. This highlights the need for continued genomic surveillance.
Collapse
Affiliation(s)
- Juan Pablo Rodriguez-Ruiz
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, Antwerp, Belgium
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, Antwerp, Belgium
| | - Wolfgang Stöhr
- MRC Clinical Trials Unit, University College London, London, UK
| | - Liesbet van Heirstraeten
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, Antwerp, Belgium
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, Antwerp, Belgium
| | | | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, Antwerp, Belgium
| | - Julia Anna Bielicki
- Paediatric Infectious Diseases Research Group, St George's University of London, London, UK
| | - Michael Sharland
- Paediatric Infectious Diseases Research Group, St George's University of London, London, UK
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, Antwerp, Belgium.
| |
Collapse
|
96
|
Nhu NTK, Phan MD, Hancock SJ, Peters KM, Alvarez-Fraga L, Forde BM, Andersen SB, Miliya T, Harris PNA, Beatson SA, Schlebusch S, Bergh H, Turner P, Brauner A, Westerlund-Wikström B, Irwin AD, Schembri MA. High-risk Escherichia coli clones that cause neonatal meningitis and association with recrudescent infection. eLife 2024; 12:RP91853. [PMID: 38622998 PMCID: PMC11021048 DOI: 10.7554/elife.91853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Neonatal meningitis is a devastating disease associated with high mortality and neurological sequelae. Escherichia coli is the second most common cause of neonatal meningitis in full-term infants (herein NMEC) and the most common cause of meningitis in preterm neonates. Here, we investigated the genomic relatedness of a collection of 58 NMEC isolates spanning 1974-2020 and isolated from seven different geographic regions. We show NMEC are comprised of diverse sequence types (STs), with ST95 (34.5%) and ST1193 (15.5%) the most common. No single virulence gene profile was conserved in all isolates; however, genes encoding fimbrial adhesins, iron acquisition systems, the K1 capsule, and O antigen types O18, O75, and O2 were most prevalent. Antibiotic resistance genes occurred infrequently in our collection. We also monitored the infection dynamics in three patients that suffered recrudescent invasive infection caused by the original infecting isolate despite appropriate antibiotic treatment based on antibiogram profile and resistance genotype. These patients exhibited severe gut dysbiosis. In one patient, the causative NMEC isolate was also detected in the fecal flora at the time of the second infection episode and after treatment. Thus, although antibiotics are the standard of care for NMEC treatment, our data suggest that failure to eliminate the causative NMEC that resides intestinally can lead to the existence of a refractory reservoir that may seed recrudescent infection.
Collapse
Affiliation(s)
- Nguyen Thi Khanh Nhu
- Institute for Molecular Bioscience (IMB), The University of QueenslandBrisbaneAustralia
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbaneAustralia
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
| | - Minh-Duy Phan
- Institute for Molecular Bioscience (IMB), The University of QueenslandBrisbaneAustralia
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbaneAustralia
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
| | - Steven J Hancock
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbaneAustralia
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
| | - Kate M Peters
- Institute for Molecular Bioscience (IMB), The University of QueenslandBrisbaneAustralia
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbaneAustralia
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
| | - Laura Alvarez-Fraga
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbaneAustralia
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
| | - Brian M Forde
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
- University of Queensland Centre for Clinical Research, The University of QueenslandBrisbaneAustralia
| | - Stacey B Andersen
- Genome Innovation Hub, The University of QueenslandBrisbaneAustralia
| | - Thyl Miliya
- Cambodia Oxford Medical Research Unit, Angkor Hospital for ChildrenSiem ReapCambodia
| | - Patrick NA Harris
- University of Queensland Centre for Clinical Research, The University of QueenslandBrisbaneAustralia
- Pathology Queensland, Queensland HealthBrisbaneAustralia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbaneAustralia
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
| | - Sanmarie Schlebusch
- University of Queensland Centre for Clinical Research, The University of QueenslandBrisbaneAustralia
- Pathology Queensland, Queensland HealthBrisbaneAustralia
- Q-PHIRE Genomics and Public Health Microbiology, Forensic and Scientific Services, Coopers PlainsBrisbaneAustralia
| | - Haakon Bergh
- Pathology Queensland, Queensland HealthBrisbaneAustralia
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for ChildrenSiem ReapCambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University HospitalStockholmSweden
| | | | - Adam D Irwin
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
- University of Queensland Centre for Clinical Research, The University of QueenslandBrisbaneAustralia
- Infection Management Prevention Service, Queensland Children's HospitalBrisbaneAustralia
| | - Mark A Schembri
- Institute for Molecular Bioscience (IMB), The University of QueenslandBrisbaneAustralia
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbaneAustralia
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
| |
Collapse
|
97
|
Chudejova K, Sourenian T, Palkovicova J, Stredanska K, Nechutna L, Vlkova K, Studentova V, Hrabak J, Papagiannitsis CC, Dolejska M, Bitar I. Genomic characterization of ST38 NDM-5-producing Escherichia coli isolates from an outbreak in the Czech Republic. Antimicrob Agents Chemother 2024:e0013324. [PMID: 38624228 DOI: 10.1128/aac.00133-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024] Open
Abstract
A 2-year national genomic screening in the Czech Republic identified a notable prevalence of the New Delhi metallo-β-lactamase 5 (NDM-5)-producing Escherichia coli sequence type 38 (ST38) in the city of Brno. Forty-two ST38 E. coli isolates harbored the blaNDM-5 gene on the chromosome. Virulence factors confirmed the persistence of these isolates through biofilm formation. Single Nucleotide Polymorphisms (SNPs)-based phylogeny and CRISPR assay typing showed minimal genomic variations, implying a clonally driven outbreak. Results suggest that this high-risk clone may impose a nationwide problem.
Collapse
Affiliation(s)
- Katerina Chudejova
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Tsolaire Sourenian
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jana Palkovicova
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Katarina Stredanska
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Lucie Nechutna
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Katerina Vlkova
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Vendula Studentova
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jaroslav Hrabak
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | | | - Monika Dolejska
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, The University Hospital Brno, Brno, Czech Republic
| | - Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
98
|
Garrido-Palazuelos LI, Aguirre-Sánchez JR, Castro-Del Campo N, López-Cuevas O, González-Torres B, Chaidez C, Medrano-Félix JA. Genomic characteristics of Salmonella Montevideo and Pomona: impact of isolation source on antibiotic resistance, virulence and metabolic capacity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-16. [PMID: 38576268 DOI: 10.1080/09603123.2024.2336597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Salmonella enterica is known for its disease-causing serotypes, including Montevideo and Pomona. These serotypes have been found in various environments, including river water, sediments, food, and animals. However, the global spread of these serotypes has increased, leading to many reported infections and outbreaks. The goal of this study was the genomic analysis of 48 strains of S. Montevideo and S. Pomona isolated from different sources, including clinical. Results showed that environmental strains carried more antibiotic resistance genes than the clinical strains, such as genes for resistance to aminoglycosides, chloramphenicol, and sulfonamides. Additionally, the type 4 secretion system, was only found in environmental strains. .Also many phosphotransferase transport systems were identified and the presence of genes for the alternative pathway Entner-Doudoroff. The origin of isolation may have a significant impact on the ability of Salmonella isolates to adapt and survive in different environments, leading to genomic flexibility and a selection advantage.
Collapse
Affiliation(s)
- Lennin Isaac Garrido-Palazuelos
- Laboratorio Nacional Para la Investigación En Inocuidad Alimentaria (LANIIA), Centro de Investigación En Alimentación y Desarrollo A.C (CIAD), Culiacán, México
| | - José Roberto Aguirre-Sánchez
- Laboratorio Nacional Para la Investigación En Inocuidad Alimentaria (LANIIA), Centro de Investigación En Alimentación y Desarrollo A.C (CIAD), Culiacán, México
| | - Nohelia Castro-Del Campo
- Laboratorio Nacional Para la Investigación En Inocuidad Alimentaria (LANIIA), Centro de Investigación En Alimentación y Desarrollo A.C (CIAD), Culiacán, México
| | - Osvaldo López-Cuevas
- Laboratorio Nacional Para la Investigación En Inocuidad Alimentaria (LANIIA), Centro de Investigación En Alimentación y Desarrollo A.C (CIAD), Culiacán, México
| | - Berenice González-Torres
- Laboratorio Nacional Para la Investigación En Inocuidad Alimentaria (LANIIA), Centro de Investigación En Alimentación y Desarrollo A.C (CIAD), Culiacán, México
| | - Cristóbal Chaidez
- Laboratorio Nacional Para la Investigación En Inocuidad Alimentaria (LANIIA), Centro de Investigación En Alimentación y Desarrollo A.C (CIAD), Culiacán, México
| | - José Andrés Medrano-Félix
- Investigadoras e investigadores por México Centro de Investigación En Alimentación y Desarrollo A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Culiacán, México
| |
Collapse
|
99
|
Yousuf B, Flint A, Weedmark K, Pagotto F, Ramirez-Arcos S. Comparative virulome analysis of four Staphylococcus epidermidis strains from human skin and platelet concentrates using whole genome sequencing. Access Microbiol 2024; 6:000780.v3. [PMID: 38737800 PMCID: PMC11083402 DOI: 10.1099/acmi.0.000780.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/29/2024] [Indexed: 05/14/2024] Open
Abstract
Staphylococcus epidermidis is one of the predominant bacterial contaminants in platelet concentrates (PCs), a blood component used to treat bleeding disorders. PCs are a unique niche that triggers biofilm formation, the main pathomechanism of S. epidermidis infections. We performed whole genome sequencing of four S. epidermidis strains isolated from skin of healthy human volunteers (AZ22 and AZ39) and contaminated PCs (ST10002 and ST11003) to unravel phylogenetic relationships and decipher virulence mechanisms compared to 24 complete S. epidermidis genomes in GenBank. AZ39 and ST11003 formed a separate unique lineage with strains 14.1 .R1 and SE95, while AZ22 formed a cluster with 1457 and ST10002 closely grouped with FDAAGOS_161. The four isolates were assigned to sequence types ST1175, ST1174, ST73 and ST16, respectively. All four genomes exhibited biofilm-associated genes ebh, ebp, sdrG, sdrH and atl. Additionally, AZ22 had sdrF and aap, whereas ST10002 had aap and icaABCDR. Notably, AZ39 possesses truncated ebh and sdrG and harbours a toxin-encoding gene. All isolates carry multiple antibiotic resistance genes conferring resistance to fosfomycin (fosB), β-lactams (blaZ) and fluoroquinolones (norA). This study reveales a unique lineage for S. epidermidis and provides insight into the genetic basis of virulence and antibiotic resistance in transfusion-associated S. epidermidis strains.
Collapse
Affiliation(s)
- Basit Yousuf
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Annika Flint
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Kelly Weedmark
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Franco Pagotto
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Sandra Ramirez-Arcos
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
100
|
Moreira da Silva J, Menezes J, Fernandes L, Santos Costa S, Amaral A, Pomba C. Carbapenemase-producing Enterobacterales strains causing infections in companion animals-Portugal. Microbiol Spectr 2024; 12:e0341623. [PMID: 38446073 PMCID: PMC10986603 DOI: 10.1128/spectrum.03416-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024] Open
Abstract
An increase in Klebsiella pneumoniae carbapenem-resistant human nosocomial strains is occurring in Europe, namely with the blaOXA-48-like and blaKPC-like genes. We determined the prevalence of carbapenemase-producing Enterobacterales clinical strains in companion animals in Portugal and characterized their mobile genetic elements. Susceptibility data of a consecutive collection of 977 Enterobacterales clinical strains from a Portuguese private veterinary diagnostic laboratory were evaluated (January-December 2020). Additional phenotypical and genotypical assays were performed in a subset of 261 strains with a resistant phenotype. Whole-genome sequencing was performed for carbapenemase-producing strains. The frequency of carbapenemase-producing Enterobacterales clinical strains in companion animals in Portugal was 0.51% (n = 5/977). Thus, five strains were characterized: (i) one OXA-181-producing K. pneumoniae ST273, (ii) two KPC-3-producing K. pneumoniae ST147; (iii) one KPC-3-producing K. pneumoniae ST392; and (iv) one OXA-48-producing E. coli ST127. The blaKPC-3 gene was located on transposon Tn4401d on IncFIA type plasmid for the K. pneumoniae ST147 strains and on a IncN-type plasmid for the K. pneumoniae ST392 strain, while blaOXA-181 gene was located on an IncX3 plasmid. All de novo assembled plasmids and plasmid-encoded transposons harboring carbapenemase genes were homologous to those previously described in the human healthcare. No plasmid replicons were detected on the OXA-48-producing E. coli ST127. The dissemination of carbapenem resistance is occurring horizontally via plasmid spreading from the human high burden carbapenem resistance setting to the companion animal sector. Furthermore, companion animals may act as reservoirs of carbapenem resistance. Implementation of carbapenemase detection methods in routine clinical veterinary microbiology is urgently needed. IMPORTANCE This is the first study on the prevalence of carbapenemase-producing Enterobacterales (CPE) clinical strains from companion animals in Portugal. Despite the generally low prevalence of CPE in companion animals, it is imperative for veterinary diagnostic laboratories to employ diagnostic methods for carbapenemase detection. The resemblance found in the mobile genetic elements transporting carbapenemase genes between veterinary medicine and human medicine implies a potential circulation within a One Health framework.
Collapse
Affiliation(s)
- Joana Moreira da Silva
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, Vila Real, Portugal
| | - Juliana Menezes
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, Vila Real, Portugal
| | - Laura Fernandes
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, Vila Real, Portugal
| | - Sofia Santos Costa
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| | - Andreia Amaral
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, Vila Real, Portugal
| | - Constança Pomba
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, Vila Real, Portugal
- Genevet, Veterinary Molecular Diagnostic Laboratory, Carnaxide, Portugal
| |
Collapse
|