51
|
Guerrero R, Guerrero C, Acosta O. Induction of Cell Death in the Human Acute Lymphoblastic Leukemia Cell Line Reh by Infection with Rotavirus Isolate Wt1-5. Biomedicines 2020; 8:E242. [PMID: 32722005 PMCID: PMC7460319 DOI: 10.3390/biomedicines8080242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/27/2022] Open
Abstract
Cancer is a major health problem that poses a great challenge to health care systems worldwide. Tools for cancer treatment have rapidly advanced in recent years, resulting in therapeutic strategies which are alternative and complementary to conventional treatment. To identify the cell surface receptors used by a tumor cell-adapted rotavirus and the cell death markers induced by its infection, we use Wt1-5, a rotavirus isolate recently adapted to tumor cells, to infect the human acute lymphoblastic leukemia cell line, Reh. The expression of cell surface receptors used by Wt1-5 was determined using flow cytometry and an antibody blocking assay to test for their implication in virus infection. Viral antigens and cell death markers induced by rotavirus infection were followed by flow cytometric analysis. The present study showed that rotavirus Wt1-5 was able to use cell surface proteins such as heat shock proteins (HSPs) 90, 70, 60 and 40, Hsc70, PDI and integrin β3. Rotavirus Wt1-5 induced cytotoxic effects including changes in cell membrane permeability, alteration of mitochondrial membrane potential, DNA fragmentation and activation of cell death signaling. Wt1-5 deserves to be further studied as a candidate oncolytic agent due to its ability to induce apoptosis in lymphoblastic leukemia-derived cells.
Collapse
Affiliation(s)
| | - Carlos Guerrero
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 30 No. 45-03 Bloque 47, Ciudad Universitaria, Bogotá 111321, Colombia; (R.G.); (O.A.)
| | | |
Collapse
|
52
|
Olguín JE, Medina-Andrade I, Rodríguez T, Rodríguez-Sosa M, Terrazas LI. Relevance of Regulatory T Cells during Colorectal Cancer Development. Cancers (Basel) 2020; 12:E1888. [PMID: 32674255 PMCID: PMC7409056 DOI: 10.3390/cancers12071888] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, there has been a significant increase in the study of own and foreign human factors favoring the development of different types of cancer, including genetic and environmental ones. However, the fact that the immune response plays a fundamental role in the development of immunity and susceptibility to colorectal cancer (CRC) is much stronger. Among the many cell populations of the immune system that participate in restricting or favoring CRC development, regulatory T cells (Treg) play a major role in orchestrating immunomodulation during CRC. In this review, we established concrete evidence supporting the fact that Treg cells have an important role in the promotion of tumor development during CRC, mediating an increasing suppressive capacity which controls the effector immune response, and generating protection for tumors. Furthermore, Treg cells go through a process called "phenotypic plasticity", where they co-express transcription factors that promote an inflammatory profile. We reunited evidence that describes the interaction between the different effector populations of the immune response and its modulation by Treg cells adapted to the tumor microenvironment, including the mechanisms used by Treg cells to suppress the protective immune response, as well as the different subpopulations of Treg cells participating in tumor progression, generating susceptibility during CRC development. Finally, we discussed whether Treg cells might or might not be a therapeutic target for an effective reduction in the morbidity and mortality caused by CRC.
Collapse
Affiliation(s)
- Jonadab E. Olguín
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México (UNAM), Av. De los Barrios # 1, Tlalnepantla 54090, Mexico; (J.E.O.); (I.M.-A.); (T.R.); (M.R.-S.)
- Unidad de Biomedicina, FES Iztacala, UNAM, Av. De los Barrios # 1, Tlalnepantla 54090, Mexico
| | - Itzel Medina-Andrade
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México (UNAM), Av. De los Barrios # 1, Tlalnepantla 54090, Mexico; (J.E.O.); (I.M.-A.); (T.R.); (M.R.-S.)
- Unidad de Biomedicina, FES Iztacala, UNAM, Av. De los Barrios # 1, Tlalnepantla 54090, Mexico
| | - Tonathiu Rodríguez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México (UNAM), Av. De los Barrios # 1, Tlalnepantla 54090, Mexico; (J.E.O.); (I.M.-A.); (T.R.); (M.R.-S.)
| | - Miriam Rodríguez-Sosa
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México (UNAM), Av. De los Barrios # 1, Tlalnepantla 54090, Mexico; (J.E.O.); (I.M.-A.); (T.R.); (M.R.-S.)
| | - Luis I. Terrazas
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México (UNAM), Av. De los Barrios # 1, Tlalnepantla 54090, Mexico; (J.E.O.); (I.M.-A.); (T.R.); (M.R.-S.)
- Unidad de Biomedicina, FES Iztacala, UNAM, Av. De los Barrios # 1, Tlalnepantla 54090, Mexico
| |
Collapse
|
53
|
p110δ PI3K as a therapeutic target of solid tumours. Clin Sci (Lond) 2020; 134:1377-1397. [DOI: 10.1042/cs20190772] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
AbstractFrom the time of first characterization of PI3K as a heterodimer made up of a p110 catalytic subunit and a regulatory subunit, a wealth of evidence have placed the class IA PI3Ks at the forefront of drug development for the treatment of various diseases including cancer. The p110α isoform was quickly brought at the centre of attention in the field of cancer research by the discovery of cancer-specific gain-of-function mutations in PIK3CA gene in a range of human solid tumours. In contrast, p110δ PI3K was placed into the spotlight of immunity, inflammation and haematologic malignancies because of the preferential expression of this isoform in leucocytes and the rare mutations in PIK3CD gene. The last decade, however, several studies have provided evidence showing that the correlation between the PIK3CA mutations and the response to PI3K inhibition is less clear than originally considered, whereas concurrently an unexpected role of p110δ PI3K in solid tumours has being emerging. While PIK3CD is mostly non-mutated in cancer, the expression levels of p110δ protein seem to act as an intrinsic cancer-causing driver in various solid tumours including breast, prostate, colorectal and liver cancer, Merkel-Cell carcinoma, glioblastoma and neurobalstoma. Furthermore, p110δ selective inhibitors are being studied as potential single agent treatments or as combination partners in attempt to improve cancer immunotherapy, with both strategies to shown great promise for the treatment of several solid tumours. In this review, we discuss the evidence implicating the p110δ PI3K in human solid tumours, their impact on the current state of the field and the potential of using p110δ-selective inhibitors as monotherapy or combined therapy in different cancer contexts.
Collapse
|
54
|
Zhang Y, Schmidt-Wolf IGH. Ten-year update of the international registry on cytokine-induced killer cells in cancer immunotherapy. J Cell Physiol 2020; 235:9291-9303. [PMID: 32484595 DOI: 10.1002/jcp.29827] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022]
Abstract
Cytokine-induced killer (CIK) cells represent an exceptional T-cell population uniting a T cell and natural killer cell-like phenotype in their terminally differentiated CD3+ CD56+ subset, which features non-MHC-restricted tumor-killing activity. CIK cells have provided encouraging results in initial clinical studies and revealed synergistic antitumor effects when combined with standard therapeutic procedures. We established the international registry on CIK cells (IRCC) to collect and evaluate clinical trials for the treatment of cancer patients in 2010. Moreover, our registry set new standards on the reporting of results from clinical trials using CIK cells. In the present update, a total of 106 clinical trials including 10,225 patients were enrolled in IRCC, of which 4,889 patients in over 30 distinct tumor entities were treated with CIK cells alone or in combination with conventional or novel therapies. Significantly improved median progression-free survival and overall survival were shown in 27 trials, and 9 trials reported a significantly increased 5-year survival rate. Mild adverse effects and graft-versus-host diseases were also observed in the studies. Recently, more efforts have been put into the improvement of antitumoral efficacy by CIK cells including the administration of immune checkpoint inhibitors and modification with chimeric antigen receptorc. The minimal toxicity and multiple improvements on their tumor-killing activity both make CIK cells a favorable therapeutic tool in the clinical practice of cancer immunotherapy.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| |
Collapse
|
55
|
Liu Q, Zhang D, Qian H, Chu Y, Yang Y, Shao J, Xu Q, Liu B. Superior Antitumor Efficacy of IFN-α2b-Incorporated Photo-Cross-Linked Hydrogels Combined with T Cell Transfer and Low-Dose Irradiation Against Gastric Cancer. Int J Nanomedicine 2020; 15:3669-3680. [PMID: 32547021 PMCID: PMC7261665 DOI: 10.2147/ijn.s249174] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction The exhaustion and poor homing of activated lymphocytes are critical obstacles in adoptive cell immunotherapy for solid tumors. In order to effectively deliver immune cells into tumors, we encapsulated interferon-α2b (IFN-α2b) into macroporous hydrogels as an enhancement factor and utilized low-dose irradiation (LDI) as a tumoral attractor of T cells. Methods Hydroxypropyl cellulose hydrogels were prepared by irradiation techniques, and the cross-sectional microstructure was characterized by scanning electron microscopy. The synergistic antitumor mechanism of combination of IFN-α2b and CIK cells was evaluated by detecting the expression of activation marker CD69 on CIK cell surface and IFN-γ production by CIK cells. The in vivo antitumor activity of IFN-α2b-incorporated hydroxypropyl cellulose hydrogels combined with CIK and radiation was evaluated in an MKN-45 xenografted nude mice model. Results The bioactivity of IFN-α2b was well maintained in ultraviolet-reactive, rapidly cross-linkable hydroxypropyl cellulose hydrogels. In vitro studies demonstrated IFN-α2b-activated T cells, as evidenced by upregulating early activation marker CD69 and secretion inflammatory cytokine IFN-γ. In vivo real-time image showed our hydrogels kept a higher amount of drug delivery at the tumor site for a long time compared with free drug injection. Low-dose irradiation promoted T cell accumulation and infiltration in subcutaneous tumors. Combination of IFN-α2b-loaded hydrogels (Gel-IFN) with T cells and LDI exhibited higher efficacy to eradicate human gastric cancer xenograted tumors with less proliferating cells and more necrotic regions compared with IFN-α2b or T cells alone. Discussion HPC hydrogels kept the activity of IFN-α2b and stably release of IFN-α2b to stimulate T cells for a long time. At the same time, low-dose radiation recruits T cells into tumors. This innovative integration mode of IFN-α2b-loaded hydrogels and radiotherapy offers a potent strategy to improve the therapeutic outcome of T cell therapy.
Collapse
Affiliation(s)
- Qin Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Dinghu Zhang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China.,Department of Radiology, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Hanqing Qian
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Yanhong Chu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Yan Yang
- Department of Oncology, Jiangning Hospital, Nanjing, People's Republic of China
| | - Jie Shao
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Qiuping Xu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
56
|
Alatoom A, Sapudom J, Soni P, Mohamed WKE, Garcia-Sabaté A, Teo J. Artificial Biosystem for Modulation of Interactions between Antigen-Presenting Cells and T Cells. ACTA ACUST UNITED AC 2020; 4:e2000039. [PMID: 32453495 DOI: 10.1002/adbi.202000039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/08/2020] [Indexed: 12/12/2022]
Abstract
T cell activation is triggered by signal molecules on the surface of antigen-presenting cells (APC) and subsequent exertion of cellular forces. Deciphering the biomechanical and biochemical signals in this complex process is of interest and will contribute to an improvement in immunotherapy strategies. To address underlying questions, coculture and biomimetic models are established. Mature dendritic cells (mDC) are first treated with cytochalasin B (CytoB), a cytoskeletal disruption agent known to lower apparent cellular stiffness and reduction in T cell proliferation is observed. It is attempted to mimic mDC and T cell interactions using polyacrylamide (PA) gels with defined stiffness corresponding to mDC (0.2-25 kPa). Different ratios of anti-CD3 (aCD3) and anti-CD28 (aCD28) antibodies are immobilized onto PA gels. The results show T cell proliferation is triggered by both aCD3 and aCD28 in a stiffness-dependent manner. Cells cultured on aCD3 immobilized on gels has significantly enhanced proliferation and IL-2 secretion, compared to aCD28. Furthermore, ZAP70 phosphorylation is enhanced in stiffer substrate a in a aCD3-dependent manner. The biosystem provides an approach to study the reduction of T cell proliferation observed on CytoB-treated mDC. Overall, the biosystem allows distinguishing the impact of biophysical and biochemical signals of APC and T cell interactions in vitro.
Collapse
Affiliation(s)
- Aseel Alatoom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Priya Soni
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Walaa Kamal E Mohamed
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Jeremy Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE.,Department of Mechanical Engineering, Tandon School of Engineering New York University, USA.,Department of Biomedical Engineering, Tandon School of Engineering New York University, USA
| |
Collapse
|
57
|
Hassan G, Seno M. Blood and Cancer: Cancer Stem Cells as Origin of Hematopoietic Cells in Solid Tumor Microenvironments. Cells 2020; 9:cells9051293. [PMID: 32455995 PMCID: PMC7290570 DOI: 10.3390/cells9051293] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/27/2022] Open
Abstract
The concepts of hematopoiesis and the generation of blood and immune cells from hematopoietic stem cells are some steady concepts in the field of hematology. However, the knowledge of hematopoietic cells arising from solid tumor cancer stem cells is novel. In the solid tumor microenvironment, hematopoietic cells play pivotal roles in tumor growth and progression. Recent studies have reported that solid tumor cancer cells or cancer stem cells could differentiate into hematopoietic cells. Here, we discuss efforts and research that focused on the presence of hematopoietic cells in tumor microenvironments. We also discuss hematopoiesis from solid tumor cancer stem cells and clarify the notion of differentiation of solid tumor cancer stem cells into non-cancer hematopoietic stem cells.
Collapse
Affiliation(s)
- Ghmkin Hassan
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan;
- Department of Microbiology and Biochemistry, Faculty of Pharmacy, Damascus University, Damascus 10769, Syria
| | - Masaharu Seno
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan;
- Correspondence: ; Tel.: +81-86-251-8216
| |
Collapse
|
58
|
Zhou X, Ding X, Li H, Yang C, Ma Z, Xu G, Yang S, Zhang D, Xie X, Xin L, Luo X. Upregulation of TIGIT and PD-1 in Colorectal Cancer with Mismatch-repair Deficiency. Immunol Invest 2020; 50:338-355. [PMID: 32397769 DOI: 10.1080/08820139.2020.1758130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xuebing Zhou
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Department of General Surgery Center, People's Hospital of Ningxia Hui Autonomous region, Yinchuan, China
| | - Xiaoling Ding
- Department of Gastroenterology, People's Hospital of Ningxia Hui Autonomous region, Yinchuan, China
| | - Hai Li
- Department of Anal-Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Chun Yang
- Department of Anal-Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhanbing Ma
- Department of Medical Genetics and Cell Biology, Ningxia Medical University, Yinchuan, China
| | - Guangxian Xu
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shaoqi Yang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Dong Zhang
- Department of Anal-Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaoliang Xie
- Department of Anal-Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lei Xin
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiaoli Luo
- Department of Anal-Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
59
|
Ishiguro S, Upreti D, Robben N, Burghart R, Loyd M, Ogun D, Le T, Delzeit J, Nakashima A, Thakkar R, Nakashima A, Suzuki K, Comer J, Tamura M. Water extract from Euglena gracilis prevents lung carcinoma growth in mice by attenuation of the myeloid-derived cell population. Biomed Pharmacother 2020; 127:110166. [PMID: 32361165 DOI: 10.1016/j.biopha.2020.110166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/22/2022] Open
Abstract
The partially purified water extract from Euglena gracilis (EWE) was evaluated for its antitumor and immunomodulatory effects in cell cultures and in a mouse orthotopic lung carcinoma allograft model. In two-dimensional cell culture, the EWE treatment inhibited cell growth of both murine Lewis lung carcinoma (LLC) and human lung carcinoma cells (A549 and H1299) in a dose- and time-dependent manner. In contrast, the growth of mouse bone marrow cells (BMCs), but not mouse splenocytes (SPLs), was stimulated by the treatment with EWE. In three-dimensional spheroid culture, spheroid growth of LLC cells was significantly attenuated by EWE treatment. In a mouse LLC orthotopic allograft model, pretreatment with EWE (150-200 mg/kg/day, via drinking water) three weeks prior to the LLC cell inoculation, but not post-treatment after LLC cell inoculation, significantly attenuated the growth of LLC tumors in immunocompetent syngeneic mouse lung. This tumor growth attenuation coincided with a significant decrease in the population of myeloid-derived cells, primarily neutrophils. Flow cytometric analysis revealed that the EWE treatment significantly attenuated growth of granulocytic myeloid-derived suppressor cells (gMDSC) in BMCs and that this decrease was due to induction of gMDSC-specific apoptosis and differentiation of monocytic MDSCs (mMDSC) to macrophages. The present study provides evidence that EWE pretreatment inhibits lung carcinoma growth mainly by stimulating host antitumor immunity through attenuation of growth of gMDSCs and decreasing the number of peripheral granulocytes. This study suggests that the partially purified extract derived from Euglena gracilis contains significant bioactive materials that prevent lung carcinoma growth.
Collapse
Affiliation(s)
- Susumu Ishiguro
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, United States.
| | - Deepa Upreti
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, United States.
| | - Nicole Robben
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, United States.
| | - Riley Burghart
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, United States.
| | - Mayme Loyd
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, United States.
| | - Damilola Ogun
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, United States.
| | - Tran Le
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, United States.
| | - Jennifer Delzeit
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, United States.
| | - Arashi Nakashima
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, United States.
| | - Ravindra Thakkar
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, United States.
| | | | - Kengo Suzuki
- Euglena Co., Ltd., Minato-ku, Tokyo 108-0014, Japan.
| | - Jeffrey Comer
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, United States.
| | - Masaaki Tamura
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, United States.
| |
Collapse
|
60
|
Barrueto L, Caminero F, Cash L, Makris C, Lamichhane P, Deshmukh RR. Resistance to Checkpoint Inhibition in Cancer Immunotherapy. Transl Oncol 2020; 13:100738. [PMID: 32114384 PMCID: PMC7047187 DOI: 10.1016/j.tranon.2019.12.010] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
The interaction of the host immune system with tumor cells in the tissue microenvironment is essential in understanding tumor immunity and development of successful cancer immunotherapy. The presence of lymphocytes in tumors is highly correlated with an improved outcome. T cells have a set of cell surface receptors termed immune checkpoints that when activated suppress T cell function. Upregulation of immune checkpoint receptors such as programmed cell death 1 (PD-1) and cytotoxic T lymphocyte associated protein 4 (CTLA-4) occurs during T cell activation in an effort to prevent damage from an excessive immune response. Immune checkpoint inhibitors allow the adaptive immune system to respond to tumors more effectively. There has been clinical success in different types of cancer blocking immune checkpoint receptors such as PD-1 and CTLA. However, relapse has occurred. The innate and acquired/therapy induced resistance to treatment has been encountered. Aberrant cellular signal transduction is a major contributing factor to resistance to immunotherapy. Combination therapies with other co-inhibitory immune checkpoints such as TIM-3, LAG3 and VISTA are currently being tested to overcome resistance to cancer immunotherapy. Expression of TIM-3 has been associated with resistance to PD-1 blockade and combined blockade of TIM-3 and PD-1 has demonstrated improved responses in preclinical models. LAG3 blockade has the potential to increase the responsiveness of cytotoxic T-cells to tumors. Furthermore, tumors that were found to express VISTA had an increased rate of growth due to the T cell suppression. The growing understanding of the inhibitory immune checkpoints’ ligand biology, signaling mechanisms, and T-cell suppression in the tumor microenvironment continues to fuel preclinical and clinical advancements in design, testing, and approval of agents that block checkpoint molecules. Our review seeks to bridge fundamental regulatory mechanisms across inhibitory immune checkpoint receptors that are of great importance in resistance to cancer immunotherapy. We will summarize the biology of different checkpoint molecules, highlight the effect of individual checkpoint inhibition as anti-tumor therapies, and outline the literatures that explore mechanisms of resistance to individual checkpoint inhibition pathways.
Collapse
Affiliation(s)
- Luisa Barrueto
- Lake Erie College of Osteopathic Medicine, College of Osteopathic Medicine, Bradenton, FL
| | - Francheska Caminero
- Lake Erie College of Osteopathic Medicine, College of Osteopathic Medicine, Bradenton, FL
| | - Lindsay Cash
- Lake Erie College of Osteopathic Medicine, College of Osteopathic Medicine, Bradenton, FL
| | - Courtney Makris
- Lake Erie College of Osteopathic Medicine, College of Osteopathic Medicine, Bradenton, FL
| | - Purushottam Lamichhane
- Lake Erie College of Osteopathic Medicine, Florida School of Dental Medicine, Bradenton, FL.
| | - Rahul R Deshmukh
- Lake Erie College of Osteopathic Medicine, School of Pharmacy, Bradenton, FL.
| |
Collapse
|
61
|
Quintella CM, Quintella HM, Rohweder M, Quintella GM. Advances in patent applications related to cancer vaccine using CpG-ODN and OX40 association. Expert Opin Ther Pat 2020; 30:287-301. [PMID: 32008403 DOI: 10.1080/13543776.2020.1724960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: This review aims to assess the available technologies, advances, and trends from technological readiness level 4 to level 8 for cancer immunologic therapeutics using the association of OX40 and CPG-ODN, usually known as cancer vaccine.Areas covered: Patent documents and clinic studies referring to the use of CpG-ODN and of OX40 association for cancer therapeutics. Patent data were obtained within the worldwide basis of the European Patent Office (EPO). The 138 patents of 36 patent families found were analyzed focusing on word distribution of technology developers and potential markets, legal status, annual evolution of first priority, technological domains, applicants and co-applicants and detailed analysis of each technology. Two clinical studies are in progress.Expert opinion: Traditional methods in post cancer diagnosis are being replaced by immunological association therapies. It is expected that the development of cancer vaccines will expand the scope of cancer-specific immunotherapy, especially if associated with alternative systems for expression and delivery with future potential. It is expected that genetic and controlled and/or specific nano delivery are improved. Furthermore, these new developments will likely address the problem of long-term treatments, reducing cancer mortality and reducing patient numbers worldwide.
Collapse
Affiliation(s)
- Cristina M Quintella
- Chemistry Institute, Federal University of Bahia, Campus Universitário de Ondina, Salvador, BA, Brasil.,Medicine School, Federal University of Minas Gerais, Belo Horizonte, MG, Brasil
| | - Heitor M Quintella
- PROFNIT - Postgraduate Program on Intellectual Property and Technology Transfer for Innovation, Federal University of Bahia, Campus Universitário de Ondina, Salvador, BA, Brasil
| | - Mayla Rohweder
- Chemistry Institute, Federal University of Bahia, Campus Universitário de Ondina, Salvador, BA, Brasil.,Medicine School, Federal University of Minas Gerais, Belo Horizonte, MG, Brasil.,CEPARH - Research and Assistance Center on Human Reproduction, Salvador, BA, Brazil
| | - Guilherme M Quintella
- Chemistry Institute, Federal University of Bahia, Campus Universitário de Ondina, Salvador, BA, Brasil.,Medicine School, Federal University of Minas Gerais, Belo Horizonte, MG, Brasil.,Quintellar Legal Consulting Company, Salvador, BA, Brazil
| |
Collapse
|
62
|
Chen H, Fan Y, Hao X, Yang C, Peng Y, Guo R, Shi X, Cao X. Adoptive cellular immunotherapy of tumors via effective CpG delivery to dendritic cells using dendrimer-entrapped gold nanoparticles as a gene vector. J Mater Chem B 2020; 8:5052-5063. [DOI: 10.1039/d0tb00678e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PEGylated Au DENPs ({(Au0)25-G5·NH2-mPEG20}) are synthesized and used as a novel nonviral vector to deliver CpG to mature BMDCs for the subsequent activation of T cells for adoptive tumor immunotherapy.
Collapse
Affiliation(s)
- Huan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Yu Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Xinxin Hao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Chao Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Yucheng Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| |
Collapse
|
63
|
Abstract
Recent advances in the development of gene editing technologies, especially the CRISPR/Cas 9 system, have substantially enhanced our ability to make precise and efficient changes in the genomes of various cells. In particular, the genetic engineering of T cells holds huge potential to improve the efficacy and safety of T cells-based cancer therapy. Due to its ease of use and high efficiency, CRISPR/Cas9 enables efficient gene knockout, site-specific knock-in, and genome-wide screen in T cells. Here we review the current progress of applying gene editing to T-cell therapy, focusing on the technical aspects of the CRISPR/Cas9 platform. We also discuss the challenges and future prospects.
Collapse
Affiliation(s)
- Xingying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Chen Cheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Wen Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
64
|
Li D, Xiang S, Shen J, Xiao M, Zhao Y, Wu X, Du F, Ji H, Li M, Zhao Q, Kaboli PJ, Yang X, Xiao Z, Qin B, Wen Q. Comprehensive understanding of B7 family in gastric cancer: expression profile, association with clinicopathological parameters and downstream targets. Int J Biol Sci 2020; 16:568-582. [PMID: 32025206 PMCID: PMC6990920 DOI: 10.7150/ijbs.39769] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
Objectives: B7 family members were identified as co-stimulators or co-inhibitors of the immune response and played important roles in cancer immunotherapy; however, their dysregulation in gastric cancer is still unclear. Methods: Data were obtained from TCGA and GTEX database. B7 mutations, association with DNA methylation and affected proteins were analyzed in cBioportal. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Gene Ontology (GO) project was studied by DAVID to find the downstream signaling pathway and important metabolic process, respectively. Protein-protein interaction network was analyzed in STRING and Cytoscape. A total of 160 paired specimens in tissue microarray from patients with gastric cancer were used to detect the expression levels of seven B7 family members via immunohistochemical analysis. Results: Bioinformatics studies revealed dysregulation of B7 members in gastric cancer. Gene and protein alteration were found in B7 family members. Furthermore, DNA methylation and gene alteration may be both involved in B7 member dysregulation in gastric cancer. Importantly, the high expression of B7-H6 is associated with good overall patient survival. B7 family members primarily affect the EGFR tyrosine kinase inhibitor resistance signaling pathway in gastric cancer and TP53 may be an important target of the family. The low expression of B7-1 and high expression of B7-H3 and B7-H7 were validated by IHC staining. Conclusions: Our results provide insight into B7 family member expression in gastric cancer and stress their importance in stomach tumorigenesis, which may be beneficial for designing future cancer treatments.
Collapse
Affiliation(s)
- Dan Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Mingtao Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Huijiao Ji
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Xiao Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Bo Qin
- Shenzhen Aier Aye Hospital, Shenzhen, 518032, Guangdong, PR China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
65
|
Hoo WPY, Siak PY, In LLA. Overview of Current Immunotherapies Targeting Mutated KRAS Cancers. Curr Top Med Chem 2019; 19:2158-2175. [PMID: 31483231 DOI: 10.2174/1568026619666190904163524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
The occurrence of somatic substitution mutations of the KRAS proto-oncogene is highly prevalent in certain cancer types, which often leads to constant activation of proliferative pathways and subsequent neoplastic transformation. It is often seen as a gateway mutation in carcinogenesis and has been commonly deemed as a predictive biomarker for poor prognosis and relapse when conventional chemotherapeutics are employed. Additionally, its mutational status also renders EGFR targeted therapies ineffective owing to its downstream location. Efforts to discover new approaches targeting this menacing culprit have been ongoing for years without much success, and with incidences of KRAS positive cancer patients being on the rise, researchers are now turning towards immunotherapies as the way forward. In this scoping review, recent immunotherapeutic developments and advances in both preclinical and clinical studies targeting K-ras directly or indirectly via its downstream signal transduction machinery will be discussed. Additionally, some of the challenges and limitations of various K-ras targeting immunotherapeutic approaches such as vaccines, adoptive T cell therapies, and checkpoint inhibitors against KRAS positive cancers will be deliberated.
Collapse
Affiliation(s)
- Winfrey Pui Yee Hoo
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Pui Yan Siak
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Lionel L A In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
66
|
Chen L, Qiao D, Wang J, Tian G, Wang M. Cancer immunotherapy with lymphocytes genetically engineered with T cell receptors for solid cancers. Immunol Lett 2019; 216:51-62. [PMID: 31597088 DOI: 10.1016/j.imlet.2019.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/18/2019] [Accepted: 10/02/2019] [Indexed: 12/15/2022]
Abstract
Adoptive transfer of T cells genetically engineered with chimeric antigen receptors (CAR-T cells) have proven to be highly effective for treating CD19+ B cell-derived hematologic malignancies. However, due to the lack of ideal tumor surface antigens, CAR-T cell therapy has limited success in treating solid tumors. T cells genetically engineered with T cell receptors (TCR-T cells) recognize intracellular and cell-surface antigens in the context of major histocompatibility complex (MHC) presentation and thus have the potential to access much more target antigens than CAR-T cells, providing great promise in treating solid tumors. There is an increasing interest in the application of TCR-T cell therapy for solid tumors, and fifty-six clinical trials are undergoing worldwide to confirm its validity. In this review, we summarize the recent progress in clinical studies of TCR-T cell therapy, describe strategies in the preparation and characterization of TCR-T cells, focusing on antigen selection, TCR isolation and methods to further enhance the potency of adoptively transferred cells.
Collapse
Affiliation(s)
- Lei Chen
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen International Biological Valley-Life Science Industrial Park, Dapeng New District, Shenzhen, China
| | - Dongjuan Qiao
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen International Biological Valley-Life Science Industrial Park, Dapeng New District, Shenzhen, China
| | - Juntao Wang
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen International Biological Valley-Life Science Industrial Park, Dapeng New District, Shenzhen, China
| | - Geng Tian
- Department of Oncology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Mingjun Wang
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen International Biological Valley-Life Science Industrial Park, Dapeng New District, Shenzhen, China.
| |
Collapse
|
67
|
Wang R, He Z, Cai P, Zhao Y, Gao L, Yang W, Zhao Y, Gao X, Gao F. Surface-Functionalized Modified Copper Sulfide Nanoparticles Enhance Checkpoint Blockade Tumor Immunotherapy by Photothermal Therapy and Antigen Capturing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13964-13972. [PMID: 30912920 DOI: 10.1021/acsami.9b01107] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nanomaterial-based tumor photothermal therapy (PTT) has attracted increasing attention and been a promising method for cancer treatment because of its low level of adverse effects and noninvasiveness. However, thermotherapy alone still cannot control tumor metastasis and recurrence. Here, we developed surface-functionalized modified copper sulfide nanoparticles (CuS NPs). CuS NPs can not only be used as photothermal mediators for tumor hyperthermia but can adsorb tumor antigens released during hyperthermia as an antigen-capturing agent to induce antitumor immune response. We selected maleimide polyethylene glycol-modified CuS NPs (CuS NPs-PEG-Mal) with stronger antigen adsorption capacity, in combination with an immune checkpoint blocker (anti-PD-L1) to evaluate the effect of hyperthermia, improving immunotherapy in a 4T1 breast cancer tumor model. The results showed that hyperthermia based on CuS NPs-PEG-Mal distinctly increased the levels of inflammatory cytokines in the serum, leading to a tumor immunogenic microenvironment. In cooperation with anti-PD-L1, PTT mediated by CuS NPs-PEG-Mal enhanced the number of tumor-infiltrating CD8+ T cells and inhibited the growth in primary and distant tumor sites of the 4T1 tumor model. The therapeutic strategies provide a simple and effective treatment option for metastatic and recurrent tumors.
Collapse
Affiliation(s)
- Ruoping Wang
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
- School of Pharmacy , Hebei University , Baoding 071002 , China
| | - Zhesheng He
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Pengju Cai
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Yao Zhao
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Liang Gao
- Department of Chemistry and Chemical Engineering , Beijing University of Technology , Beijing 100124 , China
| | - Wenzhi Yang
- School of Pharmacy , Hebei University , Baoding 071002 , China
| | - Yuliang Zhao
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Xueyun Gao
- Department of Chemistry and Chemical Engineering , Beijing University of Technology , Beijing 100124 , China
| | - Fuping Gao
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
68
|
Polyphenols as Immunomodulatory Compounds in the Tumor Microenvironment: Friends or Foes? Int J Mol Sci 2019; 20:ijms20071714. [PMID: 30959898 PMCID: PMC6479528 DOI: 10.3390/ijms20071714] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023] Open
Abstract
Polyphenols are natural antioxidant compounds ubiquitously found in plants and, thus, ever present in human nutrition (tea, wine, chocolate, fruits and vegetables are typical examples of polyphenol-rich foods). Widespread evidence indicate that polyphenols exert strong antioxidant, anti-inflammatory, anti-microbial and anti-cancer activities, and thus, they are generally regarded to as all-purpose beneficial nutraceuticals or supplements whose use can only have a positive influence on the body. A closer look to the large body of results of years of investigations, however, present a more complex scenario where polyphenols exert different and, sometimes, paradoxical effects depending on dose, target system and cell type and the biological status of the target cell. Particularly, the immunomodulatory potential of polyphenols presents two opposite faces to researchers trying to evaluate their usability in future cancer therapies: on one hand, these compounds could be beneficial suppressors of peri-tumoral inflammation that fuels cancer growth. On the other hand, they might suppress immunotherapeutic approaches and give rise to immunosuppressive cell clones that, in turn, would aid tumor growth and dissemination. In this review, we summarize knowledge of the immunomodulatory effects of polyphenols with a particular focus on cancer microenvironment and immunotherapy, highlighting conceptual pitfalls and delicate cell-specific effects in order to aid the design of future therapies involving polyphenols as chemoadjuvants.
Collapse
|
69
|
Pan-Cancer analysis of the expression and regulation of matrisome genes across 32 tumor types. Matrix Biol Plus 2019; 1:100004. [PMID: 33543003 PMCID: PMC7852311 DOI: 10.1016/j.mbplus.2019.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/28/2022] Open
Abstract
The microenvironment plays a central role in cancer, and neoplastic cells actively shape it to their needs by complex arrays of extracellular matrix (ECM) proteins, enzymes, cytokines and growth factors collectively referred to as the matrisome. Studies on the cancer matrisome have been performed for single or few neoplasms, but a more systematic analysis is still missing. Here we present a Pan-Cancer study of matrisome gene expression in 10,487 patients across 32 tumor types, supplemented with transcription factors (TFs) and driver genes/pathways regulating each tumor's matrisome. We report on 919 TF-target pairs, either used specifically or shared across tumor types, and their prognostic significance, 40 master regulators, 31 overarching regulatory pathways and the potential for druggability with FDA-approved cancer drugs. These results provide a comprehensive transcriptional architecture of the cancer matrisome and suggest the need for development of specific matrisome-targeting approaches for future therapies. In-depth characterization of matrisome gene expression and regulation in 10,487 patients across 32 human tumor types. Identification of transcription factor (TF) and “master regulators” governing each cancer’s matrisome. Analysis unveils therapeutic possibilities and suggests new treatments by repurposing of FDA-approved cancer drugs.
Collapse
|
70
|
Li D, Toji S, Watanabe K, Torigoe T, Tsukahara T. Identification of novel human leukocyte antigen-A*11:01-restricted cytotoxic T-lymphocyte epitopes derived from osteosarcoma antigen papillomavirus binding factor. Cancer Sci 2019; 110:1156-1168. [PMID: 30767336 PMCID: PMC6447853 DOI: 10.1111/cas.13973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 01/10/2023] Open
Abstract
Osteosarcoma is the most common malignancy of bone that affects young people. Neoadjuvant chemotherapy and surgery have significantly improved the prognosis. However, the prognosis of non-responders to chemotherapy is still poor. To develop peptide-based immunotherapy for osteosarcoma, we previously identified CTL epitopes derived from papillomavirus binding factor (PBF) in the context of human leukocyte antigen (HLA)-A2, HLA-A24 and HLA-B55. In the present study, we identified two novel CTL epitopes, QVT (QVTVWLLEQK) and LSA (LSALPPPLHK), in the context of HLA-A11 using a sequence of screenings based on the predicted affinity of peptides, in vitro folding ability of peptide/HLA-A11 complex, reactivity of peptide/HLA-A11 tetramer and interferon (IFN)-γ production of T cells that was induced by mixed lymphocyte peptide culture under a limiting dilution condition. CTL clones directed to QVT and LSA peptides showed specific cytotoxicity against HLA-A11+ PBF+ osteosarcoma (HOS-A11) cells. In contrast, another epitope, ASV (ASVLSRRLGK), could highly induce cognate tetramer-positive CTL. This might be because the ASV peptide mimics the peptide ASV (R6Q) (ASVLSQRLGK) derived from bacterial polypeptides, ROK family proteins. However, ASV-induced CTL did not show cytokine production against the cognate peptide. In conclusion, the CTL epitopes QVT and LSA peptides might be useful for the development of immunotherapy targeting PBF for patients with osteosarcoma.
Collapse
Affiliation(s)
- Dongliang Li
- Ina Laboratory, Medical & Biological Laboratories Co., LtdInaJapan
| | - Shingo Toji
- Ina Laboratory, Medical & Biological Laboratories Co., LtdInaJapan
| | - Kazue Watanabe
- Ina Laboratory, Medical & Biological Laboratories Co., LtdInaJapan
| | - Toshihiko Torigoe
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| | - Tomohide Tsukahara
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| |
Collapse
|
71
|
Yu L, Wang J. T cell-redirecting bispecific antibodies in cancer immunotherapy: recent advances. J Cancer Res Clin Oncol 2019; 145:941-956. [PMID: 30798356 DOI: 10.1007/s00432-019-02867-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/18/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Globally, cancer is a critical illness which seriously threatens human health. T-cell-based cancer immunotherapy for some patients has demonstrated impressive achievements including chimeric antigen receptor T cells, immune checkpoint inhibitors and T cell-redirecting bispecific antibodies (TRBAs). TRBAs recruit T cells to lyse cancer cells bypassing the antigen presentation through the major histocompatibility complex pathways. In this review we summarized the TRBAs formats, biophysical characteristics, the preclinical and clinical trial results, as well as the challenges faced by TRBAs in tumour therapy. METHODS Herein the relevant literature and clinical trials from the PubMed and ClinicalTrials.gov database. RESULTS The advances in protein engineering technology have generated diverse TRBAs format which can be classified into two categories: IgG-like TRBAs and non-IgG-like TRBAs. Multiple applications of TRBAs showed encouraging curative effect and entered clinical trials for lymphoid malignancy and solid tumour. CONCLUSIONS TRBA is a powerful tool for the cancer treatment and the clinical studies showed potent anti-tumour efficacy in hematologic malignancies. Although the clinical outcomes of TRBAs in solid tumours are less satisfied than hematologic malignancies, many preclinical antibodies and combination therapies are being evaluated.
Collapse
Affiliation(s)
- Lin Yu
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China.
| |
Collapse
|
72
|
Padayachee ER, Adeola HA, Van Wyk JC, Nsole Biteghe FA, Chetty S, Khumalo NP, Barth S. Applications of SNAP-tag technology in skin cancer therapy. Health Sci Rep 2019; 2:e103. [PMID: 30809593 PMCID: PMC6375544 DOI: 10.1002/hsr2.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 10/11/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cancer treatment in the 21st century has seen immense advances in optical imaging and immunotherapy. Significant progress has been made in the bioengineering and production of immunoconjugates to achieve the goal of specifically targeting tumors. DISCUSSION In the 21st century, antibody drug conjugates (ADCs) have been the focus of immunotherapeutic strategies in cancer. ADCs combine the unique targeting of monoclonal antibodies (mAbs) with the cancer killing ability of cytotoxic drugs. However, due to random conjugation methods of drug to antibody, ADCs are associated with poor antigen specificity and low cytotoxicity, resulting in a drug to antibody ratio (DAR) >1. This means that the cytotoxic drugs in ADCs are conjugated randomly to antibodies, by cysteine or lysine residues. This generates heterogeneous ADC populations with 0 to 8 drugs per an antibody, each with distinct pharmacokinetic, efficacy, and toxicity properties. Additionally, heterogeneity is created not only by different antibody to ligand ratios but also by different sites of conjugation. Hence, much effort has been made to find and establish antibody conjugation strategies that enable us to better control stoichiometry and site-specificity. This includes utilizing protein self-labeling tags as fusion partners to the original protein. Site-specific conjugation is a significant characteristic of these engineered proteins. SNAP-tag is one such engineered self-labeling protein tag shown to have promising potential in cancer treatment. The SNAP-tag is fused to an antibody of choice and covalently reacts specifically in a 1:1 ratio with benzylguanine (BG) substrates, eg, fluorophores or photosensitizers, to target skin cancer. This makes SNAP-tag a versatile technique in optical imaging and photoimmunotherapy of skin cancer. CONCLUSION SNAP-tag technology has the potential to contribute greatly to a broad range of molecular oncological applications because it combines efficacious tumor targeting, minimized local and systemic toxicity, and noninvasive assessment of diagnostic/prognostic molecular biomarkers of cancer.
Collapse
Affiliation(s)
- Eden Rebecca Padayachee
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Henry Ademola Adeola
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health SciencesUniversity of Cape Town and Groote Schuur HospitalCape TownSouth Africa
| | - Jennifer Catherine Van Wyk
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health SciencesUniversity of Cape Town and Groote Schuur HospitalCape TownSouth Africa
| | - Fleury Augustine Nsole Biteghe
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Shivan Chetty
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Nonhlanhla Patience Khumalo
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health SciencesUniversity of Cape Town and Groote Schuur HospitalCape TownSouth Africa
| | - Stefan Barth
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
73
|
Cohen S, Fishman P. Targeting the A 3 adenosine receptor to treat cytokine release syndrome in cancer immunotherapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:491-497. [PMID: 30787591 PMCID: PMC6363488 DOI: 10.2147/dddt.s195294] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer patients undergoing immunotherapy may develop cytokine release syndrome (CRS), an inflammatory cytokine storm condition, followed by neurotoxic manifestations and may be life-threatening. The current treatments for CRS successfully reduce the inflammatory response but may limit the anticancer effect of the given immunotherapy and fail to overcome the neurotoxic adverse events. Adenosine, a ubiquitous purine nucleoside, induces a plethora of effects in the body via its binding to four adenosine receptors A1, A2a, A2b, and the A3. Highly selective agonists to the A3 adenosine receptor act as inhibitors of proinflammatory cytokines, possess robust anti-inflammatory and anticancer activity, and concomitantly, induce neuroprotective effects. Piclidenoson and namodenoson belong to this group of compounds, are effective upon oral administration, show an excellent safety profile in human clinical studies, and therefore, may be considered as drug candidates to treat CRS. In this article, the detailed anti-inflammatory characteristics of these compounds and the rationale to use them as drugs to combat CRS are described.
Collapse
Affiliation(s)
- Shira Cohen
- Can-Fite BioPharma Ltd., Kiryat-Matalon, Petah-Tikva 49170, Israel,
| | - Pnina Fishman
- Can-Fite BioPharma Ltd., Kiryat-Matalon, Petah-Tikva 49170, Israel,
| |
Collapse
|
74
|
Bone Marrow Mast Cell Antibody-Targetable Cell Surface Protein Expression Profiles in Systemic Mastocytosis. Int J Mol Sci 2019; 20:ijms20030552. [PMID: 30696068 PMCID: PMC6387409 DOI: 10.3390/ijms20030552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/30/2022] Open
Abstract
Despite recent therapeutic advances, systemic mastocytosis (SM) remains an incurable disease due to limited complete remission (CR) rates even after novel therapies. To date, no study has evaluated the expression on SM bone marrow mast cells (BMMC) of large panel of cell surface suitable for antibody-targeted therapy. In this study, we analyzed the expression profile of six cell-surface proteins for which antibody-based therapies are available, on BMMC from 166 SM patients vs. 40 controls. Overall, variable patterns of expression for the markers evaluated were observed among SM BMMC. Thus, CD22, CD30, and CD123, while expressed on BMMC from patients within every subtype of SM, showed highly variable patterns with a significant fraction of negative cases among advanced SM (aggressive SM (ASM), ASM with an associated clonal non-MC lineage disease (ASM-AHN) and MC leukemia (MCL)), 36%, 46%, and 39%, respectively. In turn, CD25 and FcεRI were found to be expressed in most cases (89% and 92%) in virtually all BMMC (median: 92% and 95%) from both indolent and advanced SM, but with lower/absent levels in a significant fraction of MC leukemia (MCL) and both in MCL and well-differentiated SM (WDSM) patients, respectively. In contrast, CD33 was the only marker expressed on all BMMC from every SM patient. Thus, CD33 emerges as the best potentially targetable cell-surface membrane marker in SM, particularly in advanced SM.
Collapse
|
75
|
Sukari A, Abdallah N, Nagasaka M. Unleash the power of the mighty T cells-basis of adoptive cellular therapy. Crit Rev Oncol Hematol 2019; 136:1-12. [PMID: 30878123 DOI: 10.1016/j.critrevonc.2019.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 02/04/2023] Open
Abstract
Adoptive cellular therapy (ACT) is an immunotherapy which involves the passive transfer of lymphocytes into a lymphodepleted host after ex vivo stimulation and expansion. Tumor-infiltrating lymphocytes (TILs) have shown objective tumor responses mainly restricted to melanoma and rely on a laborious manufacturing process. These limitations led to emergence of engineered cells, where normal peripheral blood lymphocytes are modified to express T cell receptors (TCRs) or chimeric antigen receptors (CARs) specific for tumor-associated antigens (TAAs). To date, CD19-targeted chimeric antigen receptor T (CAR T) cells have been the most extensively studied, showing complete and durable responses in B-cell malignancies. Antitumor responses with engineered T cells have often been accompanied by undesired toxicities in clinical trials including cytokine release syndrome (CRS) and neurotoxicity. In this review, we provide an overview of adoptive cellular strategies, early and ongoing clinical trials, adverse events and strategies to mitigate side effects and overcome limitations.
Collapse
Affiliation(s)
- Ammar Sukari
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Nadine Abdallah
- Department of Internal Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Misako Nagasaka
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; Department of Advanced Medical Innovation, St. Marianna University Graduate School of Medicine, Kawasaki, Kanagawa, Japan
| |
Collapse
|
76
|
Schlake T, Thess A, Thran M, Jordan I. mRNA as novel technology for passive immunotherapy. Cell Mol Life Sci 2019; 76:301-328. [PMID: 30334070 PMCID: PMC6339677 DOI: 10.1007/s00018-018-2935-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/13/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022]
Abstract
While active immunization elicits a lasting immune response by the body, passive immunotherapy transiently equips the body with exogenously generated immunological effectors in the form of either target-specific antibodies or lymphocytes functionalized with target-specific receptors. In either case, administration or expression of recombinant proteins plays a fundamental role. mRNA prepared by in vitro transcription (IVT) is increasingly appreciated as a drug substance for delivery of recombinant proteins. With its biological role as transient carrier of genetic information translated into protein in the cytoplasm, therapeutic application of mRNA combines several advantages. For example, compared to transfected DNA, mRNA harbors inherent safety features. It is not associated with the risk of inducing genomic changes and potential adverse effects are only temporary due to its transient nature. Compared to the administration of recombinant proteins produced in bioreactors, mRNA allows supplying proteins that are difficult to manufacture and offers extended pharmacokinetics for short-lived proteins. Based on great progress in understanding and manipulating mRNA properties, efficacy data in various models have now demonstrated that IVT mRNA constitutes a potent and flexible platform technology. Starting with an introduction into passive immunotherapy, this review summarizes the current status of IVT mRNA technology and its application to such immunological interventions.
Collapse
Affiliation(s)
- Thomas Schlake
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany.
| | - Andreas Thess
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| | - Moritz Thran
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| | - Ingo Jordan
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| |
Collapse
|
77
|
Sattiraju A, Mintz A. Pericytes in Glioblastomas: Multifaceted Role Within Tumor Microenvironments and Potential for Therapeutic Interventions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:65-91. [PMID: 31147872 DOI: 10.1007/978-3-030-16908-4_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is an aggressive and lethal disease that often results in a poor prognosis. Unlike most solid tumors, GBM is characterized by diffuse infiltrating margins, extensive angiogenesis, hypoxia, necrosis, and clonal heterogeneity. Recurrent disease is an unavoidable consequence for many patients as standard treatment options such as surgery, radiotherapy, and chemotherapy have proven to be insufficient in causing long-term survival benefits. Systemic delivery of promising drugs is hindered due to the blood-brain barrier and non-uniform perfusion within GBM tissue. In recent years, many investigations have highlighted the role of GBM stem cells (GSCs) and their microenvironment in the initiation and maintenance of tumor tissue. Preclinical and early clinical studies to target GSCs and microenvironmental components are currently underway. Of these strategies, immunotherapy using checkpoint inhibitors and redirected cytotoxic T cells have shown promising results in early investigations. But, GBM microenvironment is heterogenous and recent investigations have shown cell populations within this microenvironment to be plastic. These studies underline the importance of identifying the role of and targeting multiple cell populations within the GBM microenvironment which could have a synergistic effect when combined with novel therapies. Pericytes are multipotent perivascular cells that play a vital role within the GBM microenvironment by assisting in tumor initiation, survival, and progression. Due to their role in regulating the blood-brain barrier permeability, promoting angiogenesis, tumor growth, clearing extracellular matrix for infiltrating GBM cells and in helping GBM cells evade immune surveillance, pericytes could be ideal therapeutic targets for stymieing or exploiting their role within the GBM microenvironment. This chapter will introduce hallmarks of GBM and elaborate on the contributions of pericytes to these hallmarks by examining recent findings. In addition, the chapter also highlights the therapeutic value of targeting pericytes, while discussing conventional and novel GBM therapies and obstacles to their efficacy.
Collapse
Affiliation(s)
- Anirudh Sattiraju
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
78
|
Border EC, Sanderson JP, Weissensteiner T, Gerry AB, Pumphrey NJ. Affinity-enhanced T-cell receptors for adoptive T-cell therapy targeting MAGE-A10: strategy for selection of an optimal candidate. Oncoimmunology 2018; 8:e1532759. [PMID: 30713784 PMCID: PMC6343776 DOI: 10.1080/2162402x.2018.1532759] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022] Open
Abstract
Circulating T-cells that have passed thymic selection generally bear T-cell receptors (TCRs) with sub-optimal affinity for cancer-associated antigens, resulting in a limited ability to detect and eliminate tumor cells. Engineering TCRs to increase their affinity for cancer targets is a promising strategy for generating T-cells with enhanced potency for adoptive immunotherapy in cancer patients. However, this manipulation also risks generating cross-reactivity to antigens expressed by normal tissue, with potentially serious consequences. Testing in animal models might not detect such cross-reactivity due to species differences in the antigenic repertoire. To mitigate the risk of off-target toxicities in future clinical trials, we therefore developed an extensive in vitro testing strategy. This approach involved systematic substitution at each position of the antigenic peptide sequence using all natural amino acids to generate a profile of peptide specificity (“X-scan”). The likelihood of off-target reactivity was investigated by searching the human proteome for sequences matching this profile, and testing against a panel of primary cell lines. Starting from a diverse panel of parental TCRs, we engineered several affinity-enhanced TCRs specific for the cancer-testis antigen MAGE-A10. Two of these TCRs had affinities and specificities which appeared to be equally optimal when tested in conventional biochemical and cellular assays. The X-scan method, however, permitted us to select the most specific and potent candidate for further pre-clinical and clinical testing.
Collapse
|
79
|
Consonni M, Dellabona P, Casorati G. Potential advantages of CD1-restricted T cell immunotherapy in cancer. Mol Immunol 2018; 103:200-208. [PMID: 30308433 DOI: 10.1016/j.molimm.2018.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/01/2018] [Accepted: 09/29/2018] [Indexed: 12/11/2022]
Abstract
Adoptive cell therapy (ACT) using tumor-specific "conventional" MHC-restricted T cells obtained from tumor-infiltrating lymphocytes, or derived ex vivo by either antigen-specific expansion or genetic engineering of polyclonal T cell populations, shows great promise for cancer treatment. However, the wide applicability of this therapy finds limits in the high polymorphism of MHC molecules that restricts the use in the autologous context. CD1 antigen presenting molecules are nonpolymorphic and specialized for lipid antigen presentation to T cells. They are often expressed on malignant cells and, therefore, may represent an attractive target for ACT. We provide a brief overview of the CD1-resticted T cell response in tumor immunity and we discuss the pros and cons of ACT approaches based on unconventional CD1-restricted T cells.
Collapse
Affiliation(s)
- Michela Consonni
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
80
|
Recombinant Viruses for Cancer Therapy. Biomedicines 2018; 6:biomedicines6040094. [PMID: 30257488 PMCID: PMC6316473 DOI: 10.3390/biomedicines6040094] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 12/28/2022] Open
Abstract
Recombinant viruses are novel therapeutic agents that can be utilized for treatment of various diseases, including cancers. Recombinant viruses can be engineered to express foreign transgenes and have a broad tropism allowing gene expression in a wide range of host cells. They can be selected or designed for specific therapeutic goals; for example, recombinant viruses could be used to stimulate host immune response against tumor-specific antigens and therefore overcome the ability of the tumor to evade the host's immune surveillance. Alternatively, recombinant viruses could express immunomodulatory genes which stimulate an anti-cancer immune response. Oncolytic viruses can replicate specifically in tumor cells and induce toxic effects leading to cell lysis and apoptosis. However, each of these approaches face certain difficulties that must be resolved to achieve maximum therapeutic efficacy. In this review we discuss actively developing approaches for cancer therapy based on recombinant viruses, problems that need to be overcome, and possible prospects for further development of recombinant virus based therapy.
Collapse
|
81
|
Choo YW, Kang M, Kim HY, Han J, Kang S, Lee JR, Jeong GJ, Kwon SP, Song SY, Go S, Jung M, Hong J, Kim BS. M1 Macrophage-Derived Nanovesicles Potentiate the Anticancer Efficacy of Immune Checkpoint Inhibitors. ACS NANO 2018; 12:8977-8993. [PMID: 30133260 DOI: 10.1021/acsnano.8b02446] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cancer immunotherapy modulates immune cells to induce antitumor immune responses. Tumors employ immune checkpoints to evade immune cell attacks. Immune checkpoint inhibitors such as anti-PD-L1 antibody (aPD-L1), which is being used clinically for cancer treatments, can block immune checkpoints so that the immune system can attack tumors. However, immune checkpoint inhibitor therapy may be hampered by polarization of macrophages within the tumor microenvironment (TME) into M2 tumor-associated macrophages (TAMs), which suppress antitumor immune responses and promote tumor growth by releasing anti-inflammatory cytokines and angiogenic factors. In this study, we used exosome-mimetic nanovesicles derived from M1 macrophages (M1NVs) to repolarize M2 TAMs to M1 macrophages that release pro-inflammatory cytokines and induce antitumor immune responses and investigated whether the macrophage repolarization can potentiate the anticancer efficacy of aPD-L1. M1NV treatment induced successful polarization of M2 macrophages to M1 macrophages in vitro and in vivo. Intravenous injection of M1NVs into tumor-bearing mice suppressed tumor growth. Importantly, injection of a combination of M1NVs and aPD-L1 further reduced the tumor size, compared to the injection of either M1NVs or aPD-L1 alone. Thus, our study indicates that M1NV injection can repolarize M2 TAMs to M1 macrophages and potentiate antitumor efficacy of the checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Yeon Woong Choo
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Mikyung Kang
- Interdisciplinary Program for Bioengineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Han Young Kim
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Jin Han
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Seokyung Kang
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Ju-Ro Lee
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Gun-Jae Jeong
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Sung Pil Kwon
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Seuk Young Song
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Seokhyeong Go
- Interdisciplinary Program for Bioengineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for Bioengineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
- Interdisciplinary Program for Bioengineering , Seoul National University , Seoul 08826 , Republic of Korea
- Institute of Chemical Processes , Seoul National University , Seoul 08826 , Republic of Korea
| |
Collapse
|
82
|
Liu J, Liu X, Han Y, Zhang J, Liu D, Ma G, Li C, Liu L, Kong D. Nanovaccine Incorporated with Hydroxychloroquine Enhances Antigen Cross-Presentation and Promotes Antitumor Immune Responses. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30983-30993. [PMID: 30136844 DOI: 10.1021/acsami.8b09348] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Induction of effective antigen-specific CD8+ T-cell responses is critical for cancer immunotherapy success. Hydroxychloroquine (HCQ) is a widely used classical antimalarial and antirheumatic drug. HCQ is also an endosomal membrane disrupting agent that can lead to vesicular swelling and membrane permeabilization, which likely facilitates the release of therapeutic agents from lysosomes into the cytoplasm. Here, we develop a minimalistic nanovaccine, which is composed of poly(lactide- co-glycolide)acid (PLGA) nanoparticles (NPs) encapsulating a physical mixture of ovalbumin (OVA, a model antigen) and HCQ (HCQ-OVA-PLGA NPs). We tested whether HCQ could spatiotemporally control the cytosolic delivery of antigens, enhance antigen processing and presentation via the major histocompatibility complex (MHC)-I pathway, and thus generate a sufficient antitumor cytotoxic T-cell response. The results of in vitro experiments showed that HCQ-OVA-PLGA NPs significantly enhanced OVA escape from lysosomes into the cytoplasm within bone-marrow-derived dendritic cells. We also observed that HCQ-OVA-PLGA NPs enhanced the expression level of MHC-I on dendritic cells and improved cross-presentation of antigen, compared to free OVA or OVA-PLGA NPs. Results of in vivo experiments confirmed that HCQ initiated Th1-type responses and strong CD8+ T-cell responses that induced tumor cell apoptosis. Moreover, vaccination of mice with HCQ-OVA-PLGA NPs effectively generated memory immune responses in vivo and prevented tumor progression. We conclude that co-encapsulation of HCQ with antigens in nanovaccines can boost antigen-specific antitumor immune responses, particularly through CD8+ T-cells, serving as a simple and effective platform for the treatment of tumors and infectious diseases.
Collapse
Affiliation(s)
- Jiale Liu
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering , Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin 300192 , China
| | - Xiaoxuan Liu
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering , Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin 300192 , China
| | - Yanfeng Han
- Institute of Biomedical & Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , China
- School of Biomedical Sciences , University of Queensland , St Lucia, Brisbane , Queensland 4072 , Australia
| | - Jing Zhang
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering , Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin 300192 , China
| | - Dan Liu
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering , Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin 300192 , China
| | - Guilei Ma
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering , Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin 300192 , China
| | - Chen Li
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering , Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin 300192 , China
| | - Lanxia Liu
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering , Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin 300192 , China
| | - Deling Kong
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering , Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin 300192 , China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences , Nankai University , Tianjin 300071 , China
| |
Collapse
|
83
|
Tirino G, Pompella L, Petrillo A, Laterza MM, Pappalardo A, Caterino M, Orditura M, Ciardiello F, Galizia G, De Vita F. What's New in Gastric Cancer: The Therapeutic Implications of Molecular Classifications and Future Perspectives. Int J Mol Sci 2018; 19:E2659. [PMID: 30205505 PMCID: PMC6165492 DOI: 10.3390/ijms19092659] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 02/05/2023] Open
Abstract
Despite some remarkable innovations and the advent of novel molecular classifications the prognosis of patients with advanced gastric cancer (GC) remains overall poor and current clinical application of new advances is disappointing. During the last years only Trastuzumab and Ramucirumab have been approved and currently used as standard of care targeted therapies, but the systemic management of advanced disease did not radically change in contrast with the high number of molecular drivers identified. The Cancer Genome Atlas (TCGA) and Asian Cancer Research Group (ACRG) classifications paved the way, also for GC, to that more contemporary therapeutic approach called "precision medicine" even if tumor heterogeneity and a complex genetic landscape still represent a strong barrier. The identification of specific cancer subgroups is also making possible a better selection of patients that are most likely to respond to immunotherapy. This review aims to critically overview the available molecular classifications summarizing the main druggable molecular drivers and their possible therapeutic implications also taking advantage of new technologies and acquisitions.
Collapse
Affiliation(s)
- Giuseppe Tirino
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via Pansini n.5, 80131 Naples, Italy.
| | - Luca Pompella
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via Pansini n.5, 80131 Naples, Italy.
| | - Angelica Petrillo
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via Pansini n.5, 80131 Naples, Italy.
| | - Maria Maddalena Laterza
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via Pansini n.5, 80131 Naples, Italy.
| | - Annalisa Pappalardo
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via Pansini n.5, 80131 Naples, Italy.
| | - Marianna Caterino
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via Pansini n.5, 80131 Naples, Italy.
| | - Michele Orditura
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via Pansini n.5, 80131 Naples, Italy.
| | - Fortunato Ciardiello
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via Pansini n.5, 80131 Naples, Italy.
| | - Gennaro Galizia
- Division of GI Tract Surgical Oncology, Department of Cardio-Thoracic and Respiratory Sciences, School of Medicine, University of Campania "Luigi Vanvitelli", Via Pansini n.5, 80131 Naples, Italy.
| | - Ferdinando De Vita
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via Pansini n.5, 80131 Naples, Italy.
| |
Collapse
|
84
|
Luke GA, Ryan MD. "Therapeutic applications of the 'NPGP' family of viral 2As". Rev Med Virol 2018; 28:e2001. [PMID: 30094875 DOI: 10.1002/rmv.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022]
Abstract
Oligopeptide "2A" and "2A-like" sequences ("2As"; 18-25aa) are found in a range of RNA virus genomes controlling protein biogenesis through "recoding" of the host-cell translational apparatus. Insertion of multiple 2As within a single open reading frame (ORF) produces multiple proteins; hence, 2As have been used in a very wide range of biotechnological and biomedical applications. During translation, these 2A peptide sequences mediate a eukaryote-specific, self-"cleaving" event, termed "ribosome skipping" with very high efficiency. A particular advantage of using 2As is the ability to simultaneously translate a number of proteins at an equal level in all eukaryotic systems although, naturally, final steady-state levels depend upon other factors-notably protein stability. By contrast, the use of internal ribosome entry site elements for co-expression results in an unbalanced expression due to the relative inefficiency of internal initiation. For example, a 1:1 ratio is of particular importance for the biosynthesis of the heavy-chain and light-chain components of antibodies: highly valuable as therapeutic proteins. Furthermore, each component of these "artificial polyprotein" systems can be independently targeted to different sub-cellular sites. The potential of this system was vividly demonstrated by concatenating multiple gene sequences, linked via 2A sequences, into a single, long, ORF-a polycistronic construct. Here, ORFs comprising the biosynthetic pathways for violacein (five gene sequences) and β-carotene (four gene sequences) were concatenated into a single cistron such that all components were co-expressed in the yeast Pichia pastoris. In this review, we provide useful information on 2As to serve as a guide for future utilities of this co-expression technology in basic research, biotechnology, and clinical applications.
Collapse
Affiliation(s)
- Garry A Luke
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, St Andrews, UK
| | - Martin D Ryan
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
85
|
Notch signaling pathway suppresses CD8 + T cells activity in patients with lung adenocarcinoma. Int Immunopharmacol 2018; 63:129-136. [PMID: 30086535 DOI: 10.1016/j.intimp.2018.07.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/28/2022]
Abstract
Evolution and progression of cancer always leads to CD8+ T cells dysfunction/exhaustion. Controversy remains as to the role of Notch signaling pathway in CD8+ T cells regulation in tumorigenesis. Thus, the aim of this study was to investigate the immunomodulatory activity of Notch signaling pathway to peripheral and lung-resident CD8+ T cells in patients with lung adenocarcinoma. Forty-eight lung adenocarcinoma patients and twenty healthy individuals were enrolled in the current study, and CD8+ T cells were purified from both peripheral bloods and bronchoalveolar lavage fluids. Notch receptor mRNA expression was semi-quantified by real-time PCR. Cytolytic and noncytolytic activity of CD8+ T cells evaluated in direct and indirect contact co-culture with A549 cells in response to Notch signaling inhibition by measuring of lactate dehydrogenase release and cytokines production. Expression of Fas ligand (FasL), perforin, and granzyme B were also assessed by flow cytometry. Notch2 mRNA expression was elevated in both peripheral and lung-resident CD8+ T cells in lung adenocarcinoma patients, however, did not correlated with tumor stages or epidermal growth factor receptor mutation. Peripheral CD8+ T cells from healthy individuals exhibited stronger cytotoxicity in direct contact co-culture system, which was not influenced by Notch signaling inhibition. Moreover, suppression of Notch signaling augmented cytotoxicity of peripheral and lung-resident CD8+ T cells from lung adenocarcinoma patients in direct contact co-culture system, and promoted interferon-γ production in both systems. This process was accompanied by increased expression of FasL and perforin within CD8+ T cells. The current data revealed a potential immunosuppressive property of Notch signaling pathway to CD8+ T cells probably via inhibition of FasL and perforin in lung adenocarcinoma patients.
Collapse
|
86
|
Du J, Wei J, Yang Y, Su S, Shao J, Chen F, Meng F, Zou Z, Liu B. Disappearance of bone metastases in chemotherapy-resistant gastric cancer treated with antigen peptide-pulsed dendritic cell-activated cytotoxic T lymphocyte immunotherapy: A case report. Oncol Lett 2018; 16:875-881. [PMID: 29963158 PMCID: PMC6019880 DOI: 10.3892/ol.2018.8781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 09/28/2017] [Indexed: 12/22/2022] Open
Abstract
The adoptive transfer of cytotoxic T lymphocytes (CTLs) stimulated by specific tumor antigen peptide-pulsed dendritic cells (DCs) is one of the most promising immunotherapeutic strategies currently available for patients with gastric cancer (GC). The present case report describes a patient with chemotherapy-resistant stage IV GC with multiple bone metastases, who had been treated with antigen peptide-pulsed DC-CTLs. DCs and CTLs were transfused into the patient subcutaneously and intravenously with simultaneous oral administration of low-dose cyclophosphamide. Following 3 cycles of combination therapy, marked remission regarding the number of metastatic bone lesions was achieved, confirmed by the use of enhanced computerized tomography, computerized tomography and magnetic resonance imaging. After 1 year, 8 cycles of adoptive immunotherapy were administered, and a further decrease in the number of metastatic bone lesions was observed in addition to a marked improvement in the patient's quality of life. Therefore, personalized antigen peptide-pulsed DC-CTLs combined with oral administration of low-dose cyclophosphamide may serve as a promising anticancer therapy to eradicate tumor cells, and therefore this approach is recommended for future cases of a similar nature.
Collapse
Affiliation(s)
- Juan Du
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Jia Wei
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Yang Yang
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Shu Su
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Jie Shao
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Fangjun Chen
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Fanyan Meng
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Zhengyun Zou
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
87
|
Truong DH, Tran TTP, Nguyen HT, Phung CD, Pham TT, Yong CS, Kim JO, Tran TH. Modulating T-cell-based cancer immunotherapy via particulate systems. J Drug Target 2018; 27:145-163. [PMID: 29741964 DOI: 10.1080/1061186x.2018.1474360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Immunotherapy holds tremendous promise for improving cancer treatment in which an appropriate stimulator may naturally trigger the immune system to control cancer. Up-to-date, adoptive T-cell therapy has received two new FDA approvals that provide great hope for some cancer patient groups. Nevertheless, expense and safety-related issues require further study to obtain insight into targets for efficient immunotherapy. The development of material science was largely responsible for providing a promising horizon to strengthen immunoengineering. In this review, we focus on T-cell characteristics in the context of the immune system against cancer and discuss several approaches of exploiting engineered particles to manipulate the responses of T cells and the tumour microenvironment.
Collapse
Affiliation(s)
- Duy Hieu Truong
- a Institute of Research and Development, Duy Tan University , Da Nang , Vietnam
| | - Thi Thu Phuong Tran
- b The Institute of Molecular Genetics of Montpellier, CNRS , Montpellier , France
| | - Hanh Thuy Nguyen
- c College of Pharmacy , Yeungnam University , Gyeongsan , Republic of Korea
| | - Cao Dai Phung
- c College of Pharmacy , Yeungnam University , Gyeongsan , Republic of Korea
| | - Tung Thanh Pham
- c College of Pharmacy , Yeungnam University , Gyeongsan , Republic of Korea
| | - Chul Soon Yong
- c College of Pharmacy , Yeungnam University , Gyeongsan , Republic of Korea
| | - Jong Oh Kim
- c College of Pharmacy , Yeungnam University , Gyeongsan , Republic of Korea
| | - Tuan Hiep Tran
- d Department for Management of Science and Technology Development , Ton Duc Thang University , Ho Chi Minh City , Vietnam.,e Faculty of Pharmacy , Ton Duc Thang University , Ho Chi Minh City , Vietnam
| |
Collapse
|
88
|
Antonarakis ES, Small EJ, Petrylak DP, Quinn DI, Kibel AS, Chang NN, Dearstyne E, Harmon M, Campogan D, Haynes H, Vu T, Sheikh NA, Drake CG. Antigen-Specific CD8 Lytic Phenotype Induced by Sipuleucel-T in Hormone-Sensitive or Castration-Resistant Prostate Cancer and Association with Overall Survival. Clin Cancer Res 2018; 24:4662-4671. [PMID: 29858218 DOI: 10.1158/1078-0432.ccr-18-0638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/15/2018] [Accepted: 05/31/2018] [Indexed: 12/25/2022]
Abstract
Purpose: Sipuleucel-T is FDA approved for the treatment of metastatic castration-resistant prostate cancer (mCRPC) based on the IMPACT trial showing a 4.1-month benefit in median overall survival (OS) for patients receiving sipuleucel-T versus control. Although efficacy of sipuleucel-T is well established, its mechanism remains incompletely understood.Patients and Methods: Patient samples from three sipuleucel-T trials were assessed for peripheral cellular immune responses to the immunogen PA2024 and the target antigen prostatic acid phosphatase (PAP). PAP- and PA2024-specific proliferative and cytolytic responses were characterized to delineate sipuleucel-T-induced immune responses. To quantify potential cytotoxic T lymphocyte (CTL) activity, cell-surface CD107a expression on PAP- or PA2024-specific CD8+ T cells was measured in sipuleucel-T-treated patient and healthy volunteer samples.Results: Increased PA2024-specific CD4+ (P = 0.030) and CD8+ (P = 0.052) T-cell proliferation from baseline to week 6 was observed (N = 14) post-sipuleucel-T, with greater magnitude of PA2024-specific responses compared with PAP. PAP- and PA2024-CTL activity (CD107a positivity) significantly increased at weeks 6 and 26 after sipuleucel-T treatment (P < 0.0001; N = 22). At 26 weeks post-sipuleucel-T, OS correlated with the magnitude of PAP (Pearson R, 0.52; P = 0.013) or PA2024 (Pearson R, 0.67; P = 0.0006) CTL activity. Higher PA2024-CTL activity at week 26 was significantly associated with longer OS using tertile analysis (P = 0.0005; N = 22), with PA2024 responses correlating with PAP responses at week 26 (R = 0.90; P = 1.53E-08).Conclusions: This study is the first to report PAP-specific CD8+ T-cell responses elicited by sipuleucel-T treatment. Increased and persistent potential PA2024-specific CTL activity correlated with PAP-specific CTL activity and associated with improved OS following sipuleucel-T treatment. Clin Cancer Res; 24(19); 4662-71. ©2018 AACR.
Collapse
Affiliation(s)
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | | | - David I Quinn
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Adam S Kibel
- Dana Farber/Brigham and Women's Cancer Center, Harvard University, Boston, Massacheuttes
| | | | | | - Matt Harmon
- Dendreon Pharmaceuticals, LLC, Seattle, Washington
| | | | | | - Tuyen Vu
- Dendreon Pharmaceuticals, LLC, Seattle, Washington
| | | | - Charles G Drake
- Columbia University Herbert Irving Comprehensive Cancer Center, Department of Urology, and the Columbia Center for Translational Immunology (CCTI), New York, New York.
| |
Collapse
|
89
|
Expression and Clinical Correlations of Costimulatory Molecules on Peripheral T Lymphocyte Subsets of Early-Stage Severe Sepsis: A Prospective Observational Study. Shock 2018; 49:631-640. [DOI: 10.1097/shk.0000000000001017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
90
|
Ma WJ, Wang X, Yan WT, Zhou ZG, Pan ZZ, Chen G, Zhang RX. Indoleamine-2,3-dioxygenase 1/cyclooxygenase 2 expression prediction for adverse prognosis in colorectal cancer. World J Gastroenterol 2018; 24:2181-2190. [PMID: 29853736 PMCID: PMC5974580 DOI: 10.3748/wjg.v24.i20.2181] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/21/2018] [Accepted: 04/15/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate indoleamine-2,3-dioxygenase 1/cyclooxygenase 2 (IDO1/COX2) expression as an independent prognostic biomarker for colorectal cancer (CRC) patients.
METHODS We retrospectively studied the medical records of 95 patients who received surgical resection from August 2008 to January 2010. All patients were randomly assigned to adjuvant treatment with or without celecoxib groups after surgery. We performed standard immunohistochemistry to assess the expression levels of IDO1/COX2 and evaluated the correlation of IDO1/COX2 with clinicopathological factors and overall survival (OS) outcomes.
RESULTS The expression of nuclear IDO1 was significantly correlated with body mass index (P < 0.001), and IDO1 expression displayed no association with sex, age, tumor differentiation, T stage, N stage, carcinoembryonic antigen, cancer antigen 19-9, CD3+ and CD8+ tumor infiltrating lymphocytes, and COX2. In univariate analysis, we found that nuclear IDO1 (P = 0.039), nuclear/cytoplasmic IDO1 [hazard ratio (HR) = 2.044, 95% confidence interval (CI): 0.871-4.798, P = 0.039], nuclear IDO1/COX2 (HR = 3.048, 95%CI: 0.868-10.7, P = 0.0049) and cytoplasmic IDO1/COX2 (HR = 2.109, 95%CI: 0.976-4.558, P = 0.022) all yielded significantly poor OS outcomes. Nuclear IDO1 (P = 0.041), nuclear/cytoplasmic IDO1 (HR = 3.023, 95%CI: 0.585-15.61, P = 0.041) and cytoplasmic IDO1/COX2 (HR = 2.740, 95%CI: 0.764-9.831, P = 0.038) have significantly poor OS outcomes for the CRC celecoxib subgroup. In our multivariate Cox model, high coexpression of cytoplasmic IDO1/COX2 was found to be an independent predictor of poor outcome in CRC (HR = 2.218, 95%CI: 1.011-4.48, P = 0.047) and celecoxib subgroup patients (HR = 3.210, 95%CI: 1.074-9.590, P = 0.037).
CONCLUSION Our results showed that cytoplasmic IDO1/COX2 coexpression could be used as an independent poor predictor for OS in CRC.
Collapse
Affiliation(s)
- Wen-Juan Ma
- State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, Guangdong Province, China
| | - Xing Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, Hubei Province, China
| | - Wen-Ting Yan
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, Hubei Province, China
| | - Zhong-Guo Zhou
- State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, Guangdong Province, China
- Department of Hepatobiliary Surgery, Cancer Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Zhi-Zhong Pan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, Guangdong Province, China
- Department of Colorectal Surgery, Cancer Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Gong Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, Guangdong Province, China
- Department of Colorectal Surgery, Cancer Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Rong-Xin Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, Guangdong Province, China
- Department of Colorectal Surgery, Cancer Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| |
Collapse
|
91
|
Xiong W, Chen Y, Kang X, Chen Z, Zheng P, Hsu YH, Jang JH, Qin L, Liu H, Dotti G, Liu D. Immunological Synapse Predicts Effectiveness of Chimeric Antigen Receptor Cells. Mol Ther 2018; 26:963-975. [PMID: 29503199 PMCID: PMC6080133 DOI: 10.1016/j.ymthe.2018.01.020] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR)-modified T cell therapy has the potential to improve the overall survival of patients with malignancies by enhancing the effectiveness of CAR T cells. Precisely predicting the effectiveness of various CAR T cells represents one of today’s key unsolved problems in immunotherapy. Here, we predict the effectiveness of CAR-modified cells by evaluating the quality of the CAR-mediated immunological synapse (IS) by quantitation of F-actin, clustering of tumor antigen, polarization of lytic granules (LGs), and distribution of key signaling molecules within the IS. Long-term killing capability, but not secretion of conventional cytokines or standard 4-hr cytotoxicity, correlates positively with the quality of the IS in two different CAR T cells that share identical antigen specificity. Xenograft model data confirm that the quality of the IS in vitro correlates positively with performance of CAR-modified immune cells in vivo. Therefore, we propose that the quality of the IS predicts the effectiveness of CAR-modified immune cells, which provides a novel strategy to guide CAR therapy.
Collapse
MESH Headings
- Animals
- Antigens, CD19/immunology
- Antigens, Neoplasm/immunology
- Biomarkers
- Cell Line
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- Disease Models, Animal
- Gene Expression
- Gene Order
- Genes, Reporter
- Genetic Vectors/genetics
- Humans
- Immunological Synapses/immunology
- Immunological Synapses/metabolism
- Immunotherapy, Adoptive/methods
- Mice
- Microscopy, Confocal
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Retroviridae/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transduction, Genetic
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Wei Xiong
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Yuhui Chen
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Xi Kang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Zhiying Chen
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Peilin Zheng
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Yi-Hsin Hsu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Joon Hee Jang
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Hao Liu
- Biostatistics Core of the Dan L. Duncan Cancer Center, Houston, TX 77030, USA
| | - Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Texas Children's Hospital, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dongfang Liu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
92
|
Yu W, Wang Y, Guo P. Notch signaling pathway dampens tumor-infiltrating CD8+ T cells activity in patients with colorectal carcinoma. Biomed Pharmacother 2018; 97:535-542. [DOI: 10.1016/j.biopha.2017.10.143] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 02/06/2023] Open
|
93
|
Abstract
A key point for maintenance of the immune system homeostasis is the balance between the capacity to recognize and fight exogenous molecules and the capacity to avoid auto reactivity. The disruption of this balance induces the progression of several immune diseases such as autoimmune diseases, allergies, infections or cancer. A promising therapeutic approach to treat these diseases is immunotherapy. In cancer, both active and passive immunotherapies have been tested with promising results, such as the blocking of immunological checkpoints like CTLA-4 and PD-1. These treatments, in the market since a few years ago, aim to redirect the patient's immunological response by inhibiting the induction of regulatory T cells, both in the priming and effector phases. This strategy sheds light on the immunological mechanisms that control the regulatory response mediated by T cells and opens new lines of research into other immunological diseases such as allergy, in which the induction of a regulatory response is necessary to avoid allergic progression and which is the main objective of allergen-specific immunotherapies available today.
Collapse
|
94
|
Mahe E, Pugh T, Kamel-Reid S. T cell clonality assessment: past, present and future. J Clin Pathol 2017; 71:195-200. [PMID: 29055897 PMCID: PMC5868531 DOI: 10.1136/jclinpath-2017-204761] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/24/2017] [Indexed: 01/15/2023]
Abstract
T cell clonality testing has important clinical and research value, providing a specific and reproducible assessment of clonal diversity in T cell proliferations. Here we review the conceptual foundations of T cell clonality assays, including T cell ontogeny and T cell receptor structure and function; we also provide an introduction to T cell receptor genomics and the concept of the T cell clonotype. This is followed by a review of historical and current methods by which T cell clonality may be assayed, including current assay limitations. Some of these assay limitations have been overcome by employing next-generation sequencing (NGS)-based technologies that are becoming a mainstay of modern molecular pathology. In this vein, we provide an introduction to NGS technologies, including a review of the preanalytical, analytical and postanalytical technologies relevant to T cell clonality NGS assays.
Collapse
Affiliation(s)
- Etienne Mahe
- Department of Pathology and Laboratory Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Tevor Pugh
- Department of Medical Biophysics, The University of Toronto, Toronto, Ontario, Canada
| | - Suzanne Kamel-Reid
- Department of Laboratory Medicine and Pathobiology, The University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
95
|
Dwarshuis NJ, Parratt K, Santiago-Miranda A, Roy K. Cells as advanced therapeutics: State-of-the-art, challenges, and opportunities in large scale biomanufacturing of high-quality cells for adoptive immunotherapies. Adv Drug Deliv Rev 2017. [PMID: 28625827 DOI: 10.1016/j.addr.2017.06.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Therapeutic cells hold tremendous promise in treating currently incurable, chronic diseases since they perform multiple, integrated, complex functions in vivo compared to traditional small-molecule drugs or biologics. However, they also pose significant challenges as therapeutic products because (a) their complex mechanisms of actions are difficult to understand and (b) low-cost bioprocesses for large-scale, reproducible manufacturing of cells have yet to be developed. Immunotherapies using T cells and dendritic cells (DCs) have already shown great promise in treating several types of cancers, and human mesenchymal stromal cells (hMSCs) are now extensively being evaluated in clinical trials as immune-modulatory cells. Despite these exciting developments, the full potential of cell-based therapeutics cannot be realized unless new engineering technologies enable cost-effective, consistent manufacturing of high-quality therapeutic cells at large-scale. Here we review cell-based immunotherapy concepts focused on the state-of-the-art in manufacturing processes including cell sourcing, isolation, expansion, modification, quality control (QC), and culture media requirements. We also offer insights into how current technologies could be significantly improved and augmented by new technologies, and how disciplines must converge to meet the long-term needs for large-scale production of cell-based immunotherapies.
Collapse
Affiliation(s)
- Nate J Dwarshuis
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, GA 30332-0313, United States; The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| | - Kirsten Parratt
- The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States; Department of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| | - Adriana Santiago-Miranda
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, GA 30332-0313, United States; The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| | - Krishnendu Roy
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, GA 30332-0313, United States; The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| |
Collapse
|
96
|
Dinh TN, Onea AS, Jazirehi AR. Combination of celecoxib (Celebrex ®) and CD19 CAR-redirected CTL immunotherapy for the treatment of B-cell non-Hodgkin's lymphomas. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2017; 6:27-42. [PMID: 28804691 PMCID: PMC5545683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/31/2017] [Indexed: 06/07/2023]
Abstract
The nonsteroidal anti-inflammatory drug (NSAID) Celecoxib (Celebrex®) received Food and Drug Administration (FDA) approval in 1998 for treatment of osteoarthritis and rheumatoid arthritis, and in recent years, its use has been extended to various types of malignancies, such as breast, colon, and urinary cancers. To maintain the survival of malignant B cells, non-Hodgkin's Lymphoma (NHL) is highly dependent on inflammatory microenvironment, and is inhibited by celecoxib. Celecoxib hinders tumor growth interacting with various apoptotic genes, such as cyclooxygenase-2 (Cox-2), B-cell lymphoma 2 (Bcl-2) family, phosphor-inositide-3 kinase/serine-threonine-specific protein kinase (PI3K/Akt), and inhibitors of apoptosis proteins (IAP) family. CD19-redirected chimeric antigen-receptor (CD19 CAR) T cell therapy has shown promise in the treatment of B cell malignancies. Considering its regulatory effect on apoptotic gene products in various tumor types, Celecoxib is a promising drug to be used in combination with CD19 CAR T cell therapy to optimize immunotherapy of NHL.
Collapse
Affiliation(s)
- Tam Nm Dinh
- Department of Surgery, Division of Surgical Oncology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles (UCLA)CA 90095, Los Angeles, USA
| | - Alexandra S Onea
- Department of Surgery, Division of Surgical Oncology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles (UCLA)CA 90095, Los Angeles, USA
| | - Ali R Jazirehi
- Department of Surgery, Division of Surgical Oncology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles (UCLA)CA 90095, Los Angeles, USA
| |
Collapse
|
97
|
Modelling and investigation of theCD4+T cells – Macrophages paradox in melanoma immunotherapies. J Theor Biol 2017; 420:82-104. [DOI: 10.1016/j.jtbi.2017.02.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 02/12/2017] [Accepted: 02/16/2017] [Indexed: 12/18/2022]
|
98
|
Dong X, Chu D, Wang Z. Leukocyte-mediated Delivery of Nanotherapeutics in Inflammatory and Tumor Sites. Theranostics 2017; 7:751-763. [PMID: 28255364 PMCID: PMC5327647 DOI: 10.7150/thno.18069] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/19/2016] [Indexed: 12/22/2022] Open
Abstract
Nanotechnology has become a powerful tool to potentially translate nanomedicine from bench to bedside. Nanotherapeutics are nanoparticles (NPs) loaded with drugs and possess the property of tissue targeting after surfaces of NPs are bio-functionalized. Designing smaller size of nanotherapeutics is presumed to increase tumor targeting based on the EPR (enhanced permeability and retention) effect. Since the immune systems possess a defence mechanism to fight diseases, there is an emerging concept that NPs selectively target immune cells to mediate the active delivery of drugs into sites of disease. In this review, we will focus on a key question of how nanotherapeutics specifically target immune cells and hijack them as a delivery vehicle to transport nanotherapeutics into disease tissues, thus possibly improving current therapies in inflammation, immune disorders and cancers. We will also discuss the challenges and opportunities for this new strategy of leukocyte-mediated delivery of nanotherapeutics.
Collapse
Affiliation(s)
| | | | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, USA 99202
| |
Collapse
|
99
|
Abstract
Harnessing the immune system to eradicate malignant cells is becoming a most powerful new approach to cancer therapy. FDA approval of the immunotherapy-based drugs, sipuleucel-T (Provenge), ipilimumab (Yervoy, anti-CTLA-4), and more recently, the programmed cell death (PD)-1 antibody (pembrolizumab, Keytruda), for the treatment of multiple types of cancer has greatly advanced research and clinical studies in the field of cancer immunotherapy. Furthermore, recent clinical trials, using NY-ESO-1-specific T cell receptor (TCR) or CD19-chimeric antigen receptor (CAR), have shown promising clinical results for patients with metastatic cancer. Current success of cancer immunotherapy is built upon the work of cancer antigens and co-inhibitory signaling molecules identified 20 years ago. Among the large numbers of target antigens, CD19 is the best target for CAR T cell therapy for blood cancer, but CAR-engineered T cell immunotherapy does not yet work in solid cancer. NY-ESO-1 is one of the best targets for TCR-based immunotherapy in solid cancer. Despite the great success of checkpoint blockade therapy, more than 50% of cancer patients fail to respond to blockade therapy. The advent of new technologies such as next-generation sequencing has enhanced our ability to search for new immune targets in onco-immunology and accelerated the development of immunotherapy with potentially broader coverage of cancer patients. In this review, we will discuss the recent progresses of cancer immunotherapy and novel strategies in the identification of new immune targets and mutation-derived antigens (neoantigens) for cancer immunotherapy and immunoprecision medicine.
Collapse
Affiliation(s)
- Rong-Fu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
- Institute of Biosciences and Technology, College of Medicine, Texas A & M University, Houston, Texas 77030, USA
| | - Helen Y Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
100
|
Fierz W. Conceptual Spaces of the Immune System. Front Immunol 2016; 7:551. [PMID: 28018339 PMCID: PMC5153402 DOI: 10.3389/fimmu.2016.00551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 11/17/2016] [Indexed: 01/05/2023] Open
Abstract
The immune system can be looked at as a cognitive system. This is often done in analogy to the neuro-psychological system. Here, it is demonstrated that the cognitive functions of the immune system can be properly described within a new theory of cognitive science. Gärdenfors’ geometrical framework of conceptual spaces is applied to immune cognition. Basic notions, like quality dimensions, natural properties and concepts, similarities, prototypes, saliences, etc., are related to cognitive phenomena of the immune system. Constraints derived from treating the immune system within a cognitive theory, like Gärdenfors’ conceptual spaces, might well prove to be instrumental for the design of vaccines, immunological diagnostic tests, and immunotherapy.
Collapse
Affiliation(s)
- Walter Fierz
- Labormedizinisches Zentrum Dr Risch , Schaan , Liechtenstein
| |
Collapse
|