101
|
Sabadini G, Mellado M, Morales C, Mella J. Arylamines QSAR-Based Design and Molecular Dynamics of New Phenylthiophene and Benzimidazole Derivatives with Affinity for the C111, Y268, and H73 Sites of SARS-CoV-2 PLpro Enzyme. Pharmaceuticals (Basel) 2024; 17:606. [PMID: 38794177 PMCID: PMC11124164 DOI: 10.3390/ph17050606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
A non-structural SARS-CoV-2 protein, PLpro, is involved in post-translational modifications in cells, allowing the evasion of antiviral immune response mechanisms. In this study, potential PLpro inhibitory drugs were designed using QSAR, molecular docking, and molecular dynamics. A combined QSAR equation with physicochemical and Free-Wilson descriptors was formulated. The r2, q2, and r2test values were 0.833, 0.770, and 0.721, respectively. From the equation, it was found that the presence of an aromatic ring and a basic nitrogen atom is crucial for obtaining good antiviral activity. Then, a series of structures for the binding sites of C111, Y268, and H73 of PLpro were created. The best compounds were found to exhibit pIC50 values of 9.124 and docking scoring values of -14 kcal/mol. The stability of the compounds in the cavities was confirmed by molecular dynamics studies. A high number of stable contacts and good interactions over time were exhibited by the aryl-thiophenes Pred14 and Pred15, making them potential antiviral candidates.
Collapse
Affiliation(s)
- Gianfranco Sabadini
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile;
| | - Marco Mellado
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
| | - César Morales
- Laboratorio de Materiales Funcionales, Centro Integrativo de Biología y Química Aplicada (CIBQA), Facultad de Ciencias de la Salud, Universidad Bernardo OHiggins, General Gana 1702, Santiago 8320000, Chile;
| | - Jaime Mella
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile;
- Centro de Investigación, Desarrollo e Innovación de Productos Bioactivos (CInBIO), Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile
| |
Collapse
|
102
|
Du K, Wang X, Bai Y, Zhang X, Xue J, Li S, Xie Y, Sang Z, Tang Y, Wang X. Development of benzimidazole-based compounds as novel capsid assembly modulators for the treatment of HBV infection. Eur J Med Chem 2024; 271:116402. [PMID: 38636128 DOI: 10.1016/j.ejmech.2024.116402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
Hepatitis B virus (HBV) capsid assembly modulators (CAMs) represent a promising therapeutic approach for the treatment of HBV infection. In this study, the hit compound CDI (IC50 = 2.46 ± 0.33 μM) was identified by screening of an in-house compound library. And then novel potent benzimidazole derivatives were designed and synthesized as core assembly modulators, and their antiviral effects were evaluated in vitro and in vivo biological experiments. The results indicated that compound 26f displayed the most optimized modulator of HBV capsid assembly (IC50 = 0.51 ± 0.20 μM, EC50 = 2.24 ± 0.43 μM, CC50 = 84.29 μM) and high selectivity index. Moreover, treatment with compound 26f for 14 days significantly decreased serum levels of HBV DNA levels in the Hydrodynamic-Injection (HDI) mouse model. Therefore, compound 26f could be considered as a promising candidate drug for further development of novel HBV CAMs with the desired potency and safety.
Collapse
Affiliation(s)
- Kaixin Du
- Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Xianyang Wang
- Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yuxin Bai
- Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xue Zhang
- Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Jie Xue
- Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Shanshan Li
- Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhipei Sang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| | - Yu Tang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China.
| | - Xin Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| |
Collapse
|
103
|
Zhu XD, Corona A, Maloccu S, Tramontano E, Wang S, Pannecouque C, De Clercq E, Meng G, Chen FE. Structure-Based Design of Novel Thiazolone[3,2- a]pyrimidine Derivatives as Potent RNase H Inhibitors for HIV Therapy. Molecules 2024; 29:2120. [PMID: 38731613 PMCID: PMC11085872 DOI: 10.3390/molecules29092120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Ribonuclease H (RNase H) was identified as an important target for HIV therapy. Currently, no RNase H inhibitors have reached clinical status. Herein, a series of novel thiazolone[3,2-a]pyrimidine-containing RNase H inhibitors were developed, based on the hit compound 10i, identified from screening our in-house compound library. Some of these derivatives exhibited low micromolar inhibitory activity. Among them, compound 12b was identified as the most potent inhibitor of RNase H (IC50 = 2.98 μM). The experiment of magnesium ion coordination was performed to verify that this ligand could coordinate with magnesium ions, indicating its binding ability to the catalytic site of RNase H. Docking studies revealed the main interactions of this ligand with RNase H. A quantitative structure activity relationship (QSAR) was also conducted to disclose several predictive mathematic models. A molecular dynamics simulation was also conducted to determine the stability of the complex. Taken together, thiazolone[3,2-a]pyrimidine can be regarded as a potential scaffold for the further development of RNase H inhibitors.
Collapse
Affiliation(s)
- Xuan-De Zhu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (X.-D.Z.); (S.W.)
| | - Angela Corona
- Department of Life and Environmental Sciences, Department of Applied Science Biosyst, University of Cagliari, 09042 Cagliari, Italy; (A.C.); (S.M.); (E.T.)
| | - Stefania Maloccu
- Department of Life and Environmental Sciences, Department of Applied Science Biosyst, University of Cagliari, 09042 Cagliari, Italy; (A.C.); (S.M.); (E.T.)
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, Department of Applied Science Biosyst, University of Cagliari, 09042 Cagliari, Italy; (A.C.); (S.M.); (E.T.)
| | - Shuai Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (X.-D.Z.); (S.W.)
| | - Christophe Pannecouque
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium; (C.P.); (E.D.C.)
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium; (C.P.); (E.D.C.)
| | - Ge Meng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (X.-D.Z.); (S.W.)
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (X.-D.Z.); (S.W.)
| |
Collapse
|
104
|
Bai Y, Xi Y, He X, Twumasi G, Ma S, Tao Q, Xu M, Jiang S, Zhang T, Lu Y, Han X, Qi J, Li L, Bai L, Liu H. Genome-wide characterization and comparison of endogenous retroviruses among 3 duck reference genomes. Poult Sci 2024; 103:103543. [PMID: 38447307 PMCID: PMC11067759 DOI: 10.1016/j.psj.2024.103543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
Endogenous retroviruses (ERV) are viral genomes integrated into the host genome and can be stably inherited. Although ERV sequences have been reported in some avian species' genome, the duck endogenous retroviruses (DERV) genome has yet to be quantified. This study aimed to identify ERV sequences and characterize genes near ERVs in the duck genome by utilizing LTRhavest and LTRdigest tools to forecast the duck genome and analyze the distribution of ERV copies. The results revealed 1,607, 2,031, and 1,908 full-length ERV copies in the Pekin duck (ZJU1.0), Mallard (CAU_wild_1.0), and Shaoxing duck (CAU_laying_1.0) genomes, respectively, with average lengths of 7,046, 7,027, and 6,945 bp. ERVs are mainly distributed on the 1, 2, and sex chromosomes. Phylogenetic analysis demonstrated the presence of Betaretrovirus in 3 duck genomes, whereas Alpharetrovirus was exclusively identified in the Shaoxing duck genome. Through screening, 596, 315, and 343 genes adjacent to ERV were identified in 3 duck genomes, respectively, and their functions of ERV neighboring genes were predicted. Functional enrichment analysis of ERV-adjacent genes revealed enrichment for Focal adhesion, Calcium signaling pathway, and Adherens junction in 3 duck genomes. The overlapped genes were highly expressed in 8 tissues (brain, fat, heart, kidney, liver, lung, skin, and spleen) of 8-wk-old Mallard, revealing their important expression in different tissues. Our study provides a new perspective for understanding the quantity and function of DERVs, and may also provide important clues for regulating nearby genes and affecting the traits of organisms.
Collapse
Affiliation(s)
- Yuan Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. Chengdu 613000, China
| | - Yang Xi
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. Chengdu 613000, China
| | - Xinxin He
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. Chengdu 613000, China
| | - Grace Twumasi
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. Chengdu 613000, China
| | - Shengchao Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. Chengdu 613000, China
| | - Qiuyu Tao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. Chengdu 613000, China
| | - Mengru Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. Chengdu 613000, China
| | - Shuaixue Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. Chengdu 613000, China
| | - Tao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. Chengdu 613000, China
| | - Yinjuan Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. Chengdu 613000, China
| | - Xu Han
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. Chengdu 613000, China
| | - Jingjing Qi
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. Chengdu 613000, China
| | - Liang Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. Chengdu 613000, China
| | - Lili Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. Chengdu 613000, China
| | - Hehe Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, P. R. Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. Chengdu 613000, China.
| |
Collapse
|
105
|
Kaggiah A, Maina CN, Kinuthia J, Barthold D, Hauber B, Tran J, Simoni JM, Graham SM. Key informant views on potential acceptability and feasibility of long-acting antiretroviral treatment for HIV in Kenya. BMC Infect Dis 2024; 24:415. [PMID: 38641565 PMCID: PMC11027348 DOI: 10.1186/s12879-024-09309-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/09/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND In 2020, 14% of diagnosed persons living with HIV (PLWH) in Kenya were not taking antiretroviral therapy (ART), and 19% of those on ART had unsuppressed viral loads. Long-acting antiretroviral therapy (LA-ART) may increase viral suppression by promoting ART uptake and adherence. We conducted key informant (KI) interviews with HIV experts in Kenya to identify product and delivery attributes related to the acceptability and feasibility of providing LA-ART to PLWH in Kenya. METHODS Interviews were conducted via Zoom on potential LA-ART options including intra-muscular (IM) injections, subcutaneous (SC) injections, implants, and LA oral pills. KI were asked to discuss the products they were most and least excited about, as well as barriers and facilitators to LA-ART roll-out. In addition, they were asked about potential delivery locations for LA-ART products such as homes, pharmacies, and clinics. Interviews were recorded and transcribed, and data were analyzed using a combination of inductive and deductive coding. RESULTS Twelve KI (5 women, 7 men) participated between December 2021 and February 2022. Overall, participants reported that LA-ART would be acceptable and preferable to PLWH because of fatigue with daily oral pills. They viewed IM injections and LA oral pills as the most exciting options to ease pill burden and improve adherence. KI felt that populations who could benefit most were adolescents in boarding schools and stigmatized populations such as sex workers. SC injections and implants were less favored, as they would require new training initiatives for patients or healthcare workers on administration. In addition, SC injections would require refrigeration and needle disposal after use. Some KI thought patients, especially men, might worry that IM injections and implants would impact fertility, given their role in family planning. Pharmacies were perceived by most KI as suboptimal delivery locations; however, given ongoing work in Kenya to include pharmacies in antiretroviral delivery, they recommended asking patients their views. CONCLUSION There is interest and support for LA-ART in Kenya, especially IM injections and LA oral pills. Identifying patient preferences for modes and delivery locations and addressing misconceptions about specific products as they become available will be important before wide-scale implementation.
Collapse
Affiliation(s)
- Anne Kaggiah
- Research and Programs Department, Kenyatta National Hospital, Nairobi, Kenya.
| | - Catherine N Maina
- Research and Programs Department, Kenyatta National Hospital, Nairobi, Kenya
| | - John Kinuthia
- Research and Programs Department, Kenyatta National Hospital, Nairobi, Kenya
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Douglas Barthold
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, University of Washington, Seattle, WA, USA
| | - Brett Hauber
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, University of Washington, Seattle, WA, USA
- Worldwide Medical and Safety, Pfizer, Inc, New York, NY, USA
| | - Jacinda Tran
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, University of Washington, Seattle, WA, USA
| | - Jane M Simoni
- Office of Behavioral and Social Sciences Research, Bethesda, MD, USA
| | - Susan M Graham
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
106
|
Zou C. A novel activation function based on DNA enzyme-free hybridization reaction and its implementation on nonlinear molecular learning systems. Phys Chem Chem Phys 2024; 26:11854-11866. [PMID: 38567416 DOI: 10.1039/d3cp02811a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
With the advent of the post-Moore's Law era, the development of traditional silicon-based computers has reached its limit, and there is an urgent need to develop new computing technologies to meet the needs of science, technology, and daily life. Due to its super-strong parallel computing capability and outstanding data storage capacity, DNA computing has become an important branch and hot research topic of new computer technology. DNA enzyme-free hybridization reaction technology is widely used in DNA computing, showing excellent performance in computing power and information processing. Studies have shown that DNA molecules not only have the computing function of electronic devices, but also exhibit certain human brain-like functions. In the field of artificial intelligence, activation functions play an important role as they enable artificial intelligence systems to fit and predict non-linear and complex variable relationships. Due to the difficulty of implementing activation functions in DNA computing, DNA circuits cannot easily achieve all the functions of artificial intelligence. DNA circuits need to rely on electronic computers to complete the training and learning process. Based on the parallel computing characteristics of DNA computing and the kinetic features of DNA molecule displacement reactions, this paper proposes a new activation function. This activation function can not only be easily implemented by DNA enzyme-free hybridization reaction reactions, but also has good nesting properties in DNA circuits, and can be cascaded with other DNA reactions to form a complete DNA circuit. This paper not only provides the mathematical analysis of the proposed activation function, but also provides a detailed analysis of its kinetic features. The activation function is then nested into a nonlinear neural network for DNA computing. This system is capable of fitting and predicting a certain nonlinear function.
Collapse
Affiliation(s)
- Chengye Zou
- College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
107
|
van der Post J, Guerra TEJ, van den Hof M, Vaz FM, Pajkrt D, van Genderen JG. Plasma Lipidomic Profiles in cART-Treated Adolescents with Perinatally Acquired HIV Compared to Matched Controls. Viruses 2024; 16:580. [PMID: 38675922 PMCID: PMC11053976 DOI: 10.3390/v16040580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Children with perinatally acquired human immunodeficiency virus (PHIV) are growing into adulthood with HIV and treatment-associated comorbidities, such as dyslipidemia and insulin resistance. HIV is identified as independent risk factor for cardiovascular disease (CVD). The hypothesis behind increased CVD risk associated with HIV includes vascular inflammation, dyslipidemia and combination antiretroviral therapy (cART) metabolomic toxicity. To investigate differences in lipid profiles and pathophysiological mechanisms of CVD risk in adolescents with PHIV, we compared the plasma lipidome of PHIV adolescents and HIV-negative controls. We additionally investigated the influence of current cART regimens and increased lipoprotein(a) (Lp(a)) levels on the plasma lipidome. We included 20 PHIV-infected adolescents and 20 HIV-negative controls matched for age, sex, ethnic origin and socio-economic status. Plasma lipidome was measured using Thermo Scientific Ultimate 3000 binary high-performance liquid chromatography (HPLC)-mass spectrometry. We evaluated the plasma lipidome in PHIV adolescents using different cART regimens (including those known to be associated with lipid alterations). The median age was 17.5 years (15.5-20.7) and 16.5 years (15.7-19.8) for PHIV adolescents and controls, respectively. Of PHIV adolescents, 45% used a non-nucleotide reverse transcriptase inhibitor (NNRTI)-based (25%) or protease inhibitor (PI)-based (20%) cART regimen. In this pilot study, we observed no significant differences between lipidomic profiles between PHIV adolescents and controls. We observed no differences in the plasma lipidome in participants with increased versus normal Lp(a) levels. Different cART regimens appear to influence chain length differences in the plasma lipidome of PHIV adolescents; however, the significance and causality of this observation remains undetermined. Further research on the influence of cART on lipid composition could further identify these alterations.
Collapse
Affiliation(s)
- Julie van der Post
- Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Thiara E. J. Guerra
- Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, The Netherlands
| | - Malon van den Hof
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Public Health, Ageing & Later Life, Health Behaviors and Chronic Diseases, Amsterdam, The Netherlands
| | - Frédéric M. Vaz
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children’s Hospital, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC, Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Dasja Pajkrt
- Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
- Amsterdam Infectious Diseases and Immunology Research Institute, Amsterdam, The Netherlands
| | - Jason G. van Genderen
- Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
108
|
Wang F, Liu D, Gao D, Yuan J, Zhao J, Yuan S, Cen Y, Lin GQ, Zhao J, Tian P. Discovery of natural catechol derivatives as covalent SARS-CoV-2 3CL pro inhibitors. Int J Biol Macromol 2024; 264:130377. [PMID: 38395279 DOI: 10.1016/j.ijbiomac.2024.130377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 continues to pose a threat to public health, and extensive research by scientists worldwide has also prompted the development of antiviral therapies. The 3C-like protease (3CLpro) is critical for SARS-CoV-2 replication and acts as an effective target for drug development. To date, numerous of natural products have been reported to exhibit inhibitory effects on 3CLpro, which encourages us to identify other novel inhibitors and elucidate their mechanism of action. In this study, we first screened an in-house compound library of 101 natural products using FRET assay, and found that oleuropein showed good inhibitory activity against SARS CoV-2 3CLpro with an IC50 value of 4.18 μM. Further studies revealed that the catechol core is essential for activity and can covalently bind to SARS-CoV-2 3CLpro. Among other 45 catechol derivatives, wedelolactone, capsazepine and brazilin showed better SARS-CoV-2 3CLpro inhibitory activities with IC50 values of 1.35 μM, 1.95 μM and 1.18 μM, respectively. These catechol derivatives were verified to be irreversible covalent inhibitors by time-dependent experiments, enzymatic kinetic studies, dilution and dialysis assays. It also exhibited good selectivity towards different cysteine proteases (SARS-CoV-2 PLpro, cathepsin B and cathepsin L). Subsequently, the binding affinity between brazilin and SARS-CoV-2 3CLpro was determined by SPR assay with KD value of 0.80 μM. Molecular dynamic (MD) simulations study showed the binding mode of brazilin in the target protein. In particular, brazilin displayed good anti-SARS-CoV-2 activity in A549-hACE2-TMPRSS2 cells with EC50 values of 7.85 ± 0.20 μM and 5.24 ± 0.21 μM for full time and post-infection treatments, respectively. This study provides a promising lead compound for the development of novel anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Feng Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Donglan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong 510320, China
| | - Dingding Gao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jinwei Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Shuai Yuan
- Health and Quarantine Laboratory, Guangzhou Customs District Technology Center, Guangzhou 510700, China
| | - Yixin Cen
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong 510320, China; Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
109
|
Sever B, Otsuka M, Fujita M, Ciftci H. A Review of FDA-Approved Anti-HIV-1 Drugs, Anti-Gag Compounds, and Potential Strategies for HIV-1 Eradication. Int J Mol Sci 2024; 25:3659. [PMID: 38612471 PMCID: PMC11012182 DOI: 10.3390/ijms25073659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) is an enormous global health threat stemming from human immunodeficiency virus (HIV-1) infection. Up to now, the tremendous advances in combination antiretroviral therapy (cART) have shifted HIV-1 infection from a fatal illness into a manageable chronic disorder. However, the presence of latent reservoirs, the multifaceted nature of HIV-1, drug resistance, severe off-target effects, poor adherence, and high cost restrict the efficacy of current cART targeting the distinct stages of the virus life cycle. Therefore, there is an unmet need for the discovery of new therapeutics that not only bypass the limitations of the current therapy but also protect the body's health at the same time. The main goal for complete HIV-1 eradication is purging latently infected cells from patients' bodies. A potential strategy called "lock-in and apoptosis" targets the budding phase of the life cycle of the virus and leads to susceptibility to apoptosis of HIV-1 infected cells for the elimination of HIV-1 reservoirs and, ultimately, for complete eradication. The current work intends to present the main advantages and disadvantages of United States Food and Drug Administration (FDA)-approved anti-HIV-1 drugs as well as plausible strategies for the design and development of more anti-HIV-1 compounds with better potency, favorable pharmacokinetic profiles, and improved safety issues.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Türkiye;
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Halilibrahim Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
- Department of Bioengineering Sciences, Izmir Katip Celebi University, Izmir 35620, Türkiye
| |
Collapse
|
110
|
Mahajan PS, Smith SJ, Li M, Craigie R, Hughes SH, Zhao XZ, Burke TR. N-Substituted Bicyclic Carbamoyl Pyridones: Integrase Strand Transfer Inhibitors that Potently Inhibit Drug-Resistant HIV-1 Integrase Mutants. ACS Infect Dis 2024; 10:917-927. [PMID: 38346249 PMCID: PMC10928719 DOI: 10.1021/acsinfecdis.3c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 03/09/2024]
Abstract
HIV-1 integrase (IN) is an important molecular target for the development of anti-AIDS drugs. A recently FDA-approved second-generation integrase strand transfer inhibitor (INSTI) cabotegravir (CAB, 2021) is being marketed for use in long-duration antiviral formulations. However, missed doses during extended therapy can potentially result in persistent low levels of CAB that could select for resistant mutant forms of IN, leading to virological failure. We report a series of N-substituted bicyclic carbamoyl pyridones (BiCAPs) that are simplified analogs of CAB. Several of these potently inhibit wild-type HIV-1 in single-round infection assays in cultured cells and retain high inhibitory potencies against a panel of viral constructs carrying resistant mutant forms of IN. Our lead compound, 7c, proved to be more potent than CAB against the therapeutically important resistant double mutants E138K/Q148K (>12-fold relative to CAB) and G140S/Q148R (>36-fold relative to CAB). A significant number of the BiCAPs also potently inhibit the drug-resistant IN mutant R263K, which has proven to be problematic for the FDA-approved second-generation INSTIs.
Collapse
Affiliation(s)
- Pankaj S Mahajan
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Steven J Smith
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Min Li
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Robert Craigie
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Stephen H Hughes
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
111
|
Du S, Hu X, Menéndez-Arias L, Zhan P, Liu X. Target-based drug design strategies to overcome resistance to antiviral agents: opportunities and challenges. Drug Resist Updat 2024; 73:101053. [PMID: 38301487 DOI: 10.1016/j.drup.2024.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
Viral infections have a major impact in human health. Ongoing viral transmission and escalating selective pressure have the potential to favor the emergence of vaccine- and antiviral drug-resistant viruses. Target-based approaches for the design of antiviral drugs can play a pivotal role in combating drug-resistant challenges. Drug design computational tools facilitate the discovery of novel drugs. This review provides a comprehensive overview of current drug design strategies employed in the field of antiviral drug resistance, illustrated through the description of a series of successful applications. These strategies include technologies that enhance compound-target affinity while minimizing interactions with mutated binding pockets. Furthermore, emerging approaches such as virtual screening, targeted protein/RNA degradation, and resistance analysis during drug design have been harnessed to curtail the emergence of drug resistance. Additionally, host targeting antiviral drugs offer a promising avenue for circumventing viral mutation. The widespread adoption of these refined drug design strategies will effectively address the prevailing challenge posed by antiviral drug resistance.
Collapse
Affiliation(s)
- Shaoqing Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xueping Hu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, PR China
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| |
Collapse
|
112
|
Wong XK, Ng CS, Yeong KY. Shaping the future of antiviral Treatment: Spotlight on Nucleobase-Containing drugs and their revolutionary impact. Bioorg Chem 2024; 144:107150. [PMID: 38309002 DOI: 10.1016/j.bioorg.2024.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Nucleobases serve as essential molecular frameworks present in both natural and synthetic compounds that exhibit notable antiviral activity. Through molecular modifications, novel nucleobase-containing drugs (NCDs) have been developed, exhibiting enhanced antiviral activity against a wide range of viruses, including the recently emerged SARS‑CoV‑2. This article provides a detailed examination of the significant advancements in NCDs from 2015 till current, encompassing various aspects concerning their mechanisms of action, pharmacology and antiviral properties. Additionally, the article discusses antiviral prodrugs relevant to the scope of this review. It fills in the knowledge gap by examining the structure-activity relationship and trend of NCDs as therapeutics against a diverse range of viral diseases, either as approved drugs, clinical candidates or as early-stage development prospects. Moreover, the article highlights on the status of this field of study and addresses the prevailing limitations encountered.
Collapse
Affiliation(s)
- Xi Khai Wong
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Chen Seng Ng
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
113
|
Payra S, Manjhi PK, Singh S, Kumar R, Singh SK, Kumar A, Maharshi V. HIV cure: Are we going to make history? HIV Med 2024; 25:322-331. [PMID: 37821095 DOI: 10.1111/hiv.13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND At present, combination antiretroviral therapy (cART) is the mainstay for the treatment of people living with HIV/AIDS. cART can suppress the viral load to a minimal level; however, the possibility of the emergence of full-blown AIDS is always there. In the latter part of the first decade of the 21st century, an HIV-positive person received stem cell transplantation (SCT) for treatment of his haematological malignancy. The patient was able to achieve remission of the haematological condition as well as of HIV following SCT. Thorough investigations of various samples including blood and biopsy could not detect the virus in the person's body. The person was declared to be the first cured case of HIV. LITERATURE SEARCH Over the next decade, a few more similar cases were observed and have recently been declared cured of the infection. A comprehensive search was performed in PubMed, Cochrane library and Google Scholar. Four such additional cases were found in literature. DESCRIPTION & DISCUSSION These cases all share a common proposed mechanism for the HIV cure, that is, transplantation of stem cells from donors carrying a homozygous mutation in a gene encoding for CCR5 (receptor utilized by HIV for entry into the host cell), denoted as CCR5△32. This mutation makes the host immune cells devoid of CCR5, causing the host to acquire resistance against HIV. To the best of our knowledge, this is the first review to look at relevant and updated information of all cured cases of HIV as well as the related landmarks in history and discusses the underlying mechanism(s).
Collapse
Affiliation(s)
- Shuvasree Payra
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, India
| | - Pramod Kumar Manjhi
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, India
| | - Shruti Singh
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, India
| | - Rajesh Kumar
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, India
| | - Sunil Kumar Singh
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, India
| | - Alok Kumar
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, India
| | - Vikas Maharshi
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, India
| |
Collapse
|
114
|
Wang J, Yuan X, Wang Y, Zhang Y, Han M, Lu H, Liu S, Zhang Y, Ge F, Liu Y, Cheng J. PreS1BP mediates inhibition of Hepatitis B virus replication by promoting HBx protein degradation. Virus Res 2024; 341:199326. [PMID: 38253259 PMCID: PMC10846407 DOI: 10.1016/j.virusres.2024.199326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND PreS1-binding protein (PreS1BP), recognized as a nucleolar protein and tumor suppressor, influences the replication of various viruses, including vesicular stomatitis virus (VSV) and herpes simplex virus type 1 (HSV-1). Its role in hepatitis B virus (HBV) replication and the underlying mechanisms, however, remain elusive. METHODS We investigated PreS1BP expression levels in an HBV-replicating cell and animal model and analyzed the impact of its overexpression on viral replication metrics. HBV DNA, covalently closed circular DNA (cccDNA), hepatitis B surface antigen (HBsAg), hepatitis B core antigen (HBcAg), and HBV RNA levels were assessed in HBV-expressing stable cell lines under varying PreS1BP conditions. Furthermore, co-immunoprecipitation and ubiquitination assays were used to detect PreS1BP- hepatitis B virus X protein (HBx) interactions and HBx stability modulated by PreS1BP. RESULTS Our study revealed a marked decrease in PreS1BP expression in the presence of active HBV replication. Functional assays showed that PreS1BP overexpression significantly inhibited HBV replication and transcription, evidenced by the reduction in HBV DNA, cccDNA, HBsAg, HBcAg, and HBV RNA levels. At the molecular level, PreS1BP facilitated the degradation of HBx in a dose-dependent fashion, whereas siRNA-mediated knockdown of PreS1BP led to an increase in HBx levels. Subsequent investigations uncovered that PreS1BP accelerated HBx protein degradation via K63-linked ubiquitination in a ubiquitin-proteasome system-dependent manner. Co-immunoprecipitation assays further established that PreS1BP enhances the recruitment of the proteasome 20S subunit alpha 3 (PSMA3) for interaction with HBx, thereby fostering its degradation. CONCLUSIONS These findings unveil a previously unidentified mechanism wherein PreS1BP mediates HBx protein degradation through the ubiquitin-proteasome system, consequentially inhibiting HBV replication. This insight positions PreS1BP as a promising therapeutic target for future HBV interventions. Further studies are warranted to explore the clinical applicability of modulating PreS1BP in HBV therapy.
Collapse
Affiliation(s)
- Jun Wang
- Peking University Ditan Teaching Hospital, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xiaoxue Yuan
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; The Division of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yun Wang
- The Division of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yu Zhang
- The Division of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ming Han
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; The Division of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Hongping Lu
- Hebei Utu Pharmaceutical Company Ltd, Shijiazhuang, Hebei Province 052165, China
| | - Shunai Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; The Division of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yang Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Feilin Ge
- Department of Chinese Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yan Liu
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China.
| | - Jun Cheng
- Peking University Ditan Teaching Hospital, Beijing 100015, China; Hebei Utu Pharmaceutical Company Ltd, Shijiazhuang, Hebei Province 052165, China.
| |
Collapse
|
115
|
Wolstenholme AJ, Andersen EC, Choudhary S, Ebner F, Hartmann S, Holden-Dye L, Kashyap SS, Krücken J, Martin RJ, Midha A, Nejsum P, Neveu C, Robertson AP, von Samson-Himmelstjerna G, Walker R, Wang J, Whitehead BJ, Williams PDE. Getting around the roundworms: Identifying knowledge gaps and research priorities for the ascarids. ADVANCES IN PARASITOLOGY 2024; 123:51-123. [PMID: 38448148 PMCID: PMC11143470 DOI: 10.1016/bs.apar.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The ascarids are a large group of parasitic nematodes that infect a wide range of animal species. In humans, they cause neglected diseases of poverty; many animal parasites also cause zoonotic infections in people. Control measures include hygiene and anthelmintic treatments, but they are not always appropriate or effective and this creates a continuing need to search for better ways to reduce the human, welfare and economic costs of these infections. To this end, Le Studium Institute of Advanced Studies organized a two-day conference to identify major gaps in our understanding of ascarid parasites with a view to setting research priorities that would allow for improved control. The participants identified several key areas for future focus, comprising of advances in genomic analysis and the use of model organisms, especially Caenorhabditis elegans, a more thorough appreciation of the complexity of host-parasite (and parasite-parasite) communications, a search for novel anthelmintic drugs and the development of effective vaccines. The participants agreed to try and maintain informal links in the future that could form the basis for collaborative projects, and to co-operate to organize future meetings and workshops to promote ascarid research.
Collapse
Affiliation(s)
- Adrian J Wolstenholme
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, ISP, Nouzilly, France.
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Shivani Choudhary
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Friederike Ebner
- Department of Molecular Life Sciences, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Susanne Hartmann
- Institute for Immunology, Freie Universität Berlin, Berlin, Germany
| | - Lindy Holden-Dye
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Sudhanva S Kashyap
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Richard J Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Ankur Midha
- Institute for Immunology, Freie Universität Berlin, Berlin, Germany
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Cedric Neveu
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, ISP, Nouzilly, France
| | - Alan P Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | | | - Robert Walker
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jianbin Wang
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | | | - Paul D E Williams
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
116
|
Citarella A, Vittorio S, Dank C, Ielo L. Syntheses, reactivity, and biological applications of coumarins. Front Chem 2024; 12:1362992. [PMID: 38440776 PMCID: PMC10909861 DOI: 10.3389/fchem.2024.1362992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
This comprehensive review, covering 2021-2023, explores the multifaceted chemical and pharmacological potential of coumarins, emphasizing their significance as versatile natural derivatives in medicinal chemistry. The synthesis and functionalization of coumarins have advanced with innovative strategies. This enabled the incorporation of diverse functional fragments or the construction of supplementary cyclic architectures, thereby the biological and physico-chemical properties of the compounds obtained were enhanced. The unique chemical structure of coumarine facilitates binding to various targets through hydrophobic interactions pi-stacking, hydrogen bonding, and dipole-dipole interactions. Therefore, this important scaffold exhibits promising applications in uncountable fields of medicinal chemistry (e.g., neurodegenerative diseases, cancer, inflammation).
Collapse
Affiliation(s)
- Andrea Citarella
- Dipartimento di Chimica, Università degli Studi di Milano, Milano, Italy
| | - Serena Vittorio
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Christian Dank
- Institute of Organic Chemistry, University of Vienna, Vienna, Austria
| | - Laura Ielo
- Department of Chemistry, University of Turin, Turin, Italy
| |
Collapse
|
117
|
Comia IR, Manuel L, Miambo RD, Carimo AA, Manjate PDF, Maholela AE, Banze LR, Buene TP, Nhancupe N, Sousa IM, Benson CA, Schooley RT, Sacarlal J, Noormahomed EV. A Cross Sectional Study on the Bidirectional Interactions Between Leptospirosis and HIV Infection Among Patients from Maputo Central Hospital, Mozambique. Res Rep Trop Med 2024; 15:1-11. [PMID: 38371361 PMCID: PMC10871144 DOI: 10.2147/rrtm.s445878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction This study aims to determine the baseline seroprevalence of leptospirosis, a zoonotic and neglected disease, in people living with HIV (PWH) in Maputo, Mozambique, and to evaluate the relationship between selected HIV-related factors that might influence risk of coinfection with leptospirosis, such as degree of immunosuppression, as assessed by CD4 cell count, World Health Organization (WHO) HIV/AIDS clinical stage and antiretroviral therapy (ART) intake. Methods This was a descriptive cross-sectional analysis of 157 PWH, aged over 18 years old, admitted to the Maputo Central Hospital, in Maputo, Mozambique, between March 2020 and October 2021. The study participants were recruited as a convenience sample regardless of the reasons for their admission. We collected sociodemographic and clinical data, including ART and WHO HIV/AIDS clinical stage, and blood for CD4 cell count and detection of Leptospira IgG antibodies using a commercial Kit ab247199 Leptospira IgG ELISA (www.abcam.com/ab247199) with sensitivity and specificity of 100% and 97.3%, respectively. Laboratory testing was performed at the Faculty of Medicine, Eduardo Mondlane University and Laboratory of Clinical Analysis, in Maputo. Results Participants were aged 18 to 72 years (median age 39 years; SD ± 10.5), the majority were female 100 (63.7%), from urban areas 138 (87.9%), with secondary-level education 80 (51%). The overall seroprevalence of Leptospira IgG antibodies was 40.1%. The median CD4 cell count was 385 cells/µl (02 to 2297; SD ± 378.47). Higher seroprevalence of Leptospira antibodies was found among participants with CD4 cell counts <250 cells/µl (54.8%), WHO HIV/AIDS stage IV (70.2%) and those on ART (92%), though there were no statistically significant differences between groups with and without Leptospira antibodies. Conclusion Our study confirmed that Leptospira antibodies are highly prevalent in PWH in Maputo; however, Leptospira infection was not associated with the degree of immunosuppression, WHO HIV/AIDS clinical stage, or the use of ART. Our data support the need for routine screening for leptospirosis in PWH in Mozambique. Future studies are warranted to characterize the incidence and outcomes of symptomatic leptospirosis in this patient population and to identify circulating serovars and species in the country and region, as well as the implicated reservoirs.
Collapse
Grants
- D43 TW010568 FIC NIH HHS
- R25 TW011216 FIC NIH HHS
- research work and student fellowship
- the National Institutes of Health
- Fogarty International Center
- titled Enhanced Advanced Biomedical Training in Mozambique
- Additionally, RTS and EVN received support from the above-mentioned grant to support their efforts as PI and co-PI, respectively. RDM, IMS, LB, and TB received support from the above grant as mentors. NN, AC, PFM, AM, CAB, RTS, JS, and EVN received support from the grant number R25TW011216 also from NIH-FIC and PEPFAR. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funders
Collapse
Affiliation(s)
- Isac Rodrigues Comia
- Department of Research and Extension, Faculty of Health Sciences, Lúrio University, Nampula, Mozambique
- Department of Microbiology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
- Mozambique Institute for Health Education and Research (MIHER), Maputo, Mozambique
| | - Leonardo Manuel
- Department of Research and Extension, Faculty of Health Sciences, Lúrio University, Nampula, Mozambique
- Department of Microbiology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
- Mozambique Institute for Health Education and Research (MIHER), Maputo, Mozambique
| | - Regina Daniel Miambo
- Mozambique Institute for Health Education and Research (MIHER), Maputo, Mozambique
- Department of Para-Clinics, Faculty of Veterinary, Eduardo Mondlane University, Maputo, Mozambique
| | - Awa Abdul Carimo
- Mozambique Institute for Health Education and Research (MIHER), Maputo, Mozambique
- Department of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Percílio da Floca Manjate
- Mozambique Institute for Health Education and Research (MIHER), Maputo, Mozambique
- Department of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Ana Edith Maholela
- Mozambique Institute for Health Education and Research (MIHER), Maputo, Mozambique
- Department of Medicine, Maputo Central Hospital, Maputo, Mozambique
| | - Lucas Raimundo Banze
- Department of Microbiology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
- Mozambique Institute for Health Education and Research (MIHER), Maputo, Mozambique
| | - Titos Paulo Buene
- Department of Microbiology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
- Mozambique Institute for Health Education and Research (MIHER), Maputo, Mozambique
| | - Noémia Nhancupe
- Department of Microbiology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
- Mozambique Institute for Health Education and Research (MIHER), Maputo, Mozambique
| | - Irina M Sousa
- Mozambique Institute for Health Education and Research (MIHER), Maputo, Mozambique
- Department of Biological Sciences, Faculty of Sciences, Eduardo Mondlane University, Maputo, Mozambique
| | - Constance A Benson
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, CA, USA
| | - Robert T Schooley
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego, CA, USA
| | - Jahit Sacarlal
- Department of Microbiology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Emília Virgínia Noormahomed
- Department of Microbiology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
- Mozambique Institute for Health Education and Research (MIHER), Maputo, Mozambique
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego, CA, USA
| |
Collapse
|
118
|
Ye L, Lam SZ, Yang L, Suzuki K, Zou Y, Lin Q, Zhang Y, Clark P, Peng L, Chen S. AAV-mediated delivery of a Sleeping Beauty transposon and an mRNA-encoded transposase for the engineering of therapeutic immune cells. Nat Biomed Eng 2024; 8:132-148. [PMID: 37430157 PMCID: PMC11320892 DOI: 10.1038/s41551-023-01058-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/18/2023] [Indexed: 07/12/2023]
Abstract
Engineering cells for adoptive therapy requires overcoming limitations in cell viability and, in the efficiency of transgene delivery, the duration of transgene expression and the stability of genomic integration. Here we report a gene-delivery system consisting of a Sleeping Beauty (SB) transposase encoded into a messenger RNA delivered by an adeno-associated virus (AAV) encoding an SB transposon that includes the desired transgene, for mediating the permanent integration of the transgene. Compared with lentiviral vectors and with the electroporation of plasmids of transposon DNA or minicircle DNA, the gene-delivery system, which we named MAJESTIC (for 'mRNA AAV-SB joint engineering of stable therapeutic immune cells'), offers prolonged transgene expression, as well as higher transgene expression, therapeutic-cell yield and cell viability. MAJESTIC can deliver chimeric antigen receptors (CARs) into T cells (which we show lead to strong anti-tumour activity in vivo) and also transduce natural killer cells, myeloid cells and induced pluripotent stem cells with bi-specific CARs, kill-switch CARs and synthetic T-cell receptors.
Collapse
Affiliation(s)
- Lupeng Ye
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Institute of Modern Biology, Nanjing University, Nanjing, China
| | - Stanley Z Lam
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Kazushi Suzuki
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Yongji Zou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Qianqian Lin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Yueqi Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Paul Clark
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
119
|
Moso MA, Lim CK, Williams E, Marshall C, McCarthy J, Williamson DA. Prevention and post-exposure management of occupational exposure to Ebola virus. THE LANCET. INFECTIOUS DISEASES 2024; 24:e93-e105. [PMID: 37722397 DOI: 10.1016/s1473-3099(23)00376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 09/20/2023]
Abstract
There have been significant advances in the prevention and management of Ebola virus disease (EVD) caused by Zaire Ebola virus (ZEBOV), including the development of two effective vaccines, rVSV-ZEBOV and Ad26.ZEBOV/MVA-BN-Filo. In addition, ZEBOV monoclonal antibodies have become first-line therapy for EVD. However, the 2022-23 outbreak of Sudan Ebola virus (SUDV) in Uganda has highlighted the gap in current therapies and vaccines, whose efficacy is uncertain against non-ZEBOV species. Health-care and laboratory staff working in EVD treatment centres or Ebola virus diagnostic and research laboratories face unique risks relating to potential occupational exposure to Ebola viruses. Given the substantial morbidity and mortality associated with EVD, facilities should have strategies in place to manage occupational exposures, including consideration of post-exposure therapies. In this Review, we discuss currently available evidence for prevention and post-exposure prophylaxis of EVD, including therapies currently under evaluation for SUDV.
Collapse
Affiliation(s)
- Michael A Moso
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| | - Chuan K Lim
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Eloise Williams
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Caroline Marshall
- Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - James McCarthy
- Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Deborah A Williamson
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
120
|
Gillespie SW, Reddy AS, Burris DM, Naqvi SH, Byrareddy SN, Lorson CL, Singh K. Islatravir: evaluation of clinical development for HIV and HBV. Expert Opin Investig Drugs 2024; 33:85-93. [PMID: 38235744 DOI: 10.1080/13543784.2024.2305130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
INTRODUCTION Islatravir (ISL) is a nucleoside reverse transcriptase translocation inhibitor (NRTTI) that inhibits HIV RT through multiple mechanisms. Contrary to all approved NtRTIs, islatravir retains a 3'OH group. In vitro and clinical data show that ISL is an ultrapotent investigational drug with high tolerability. AREAS COVERED The historical development of islatravir and its mechanisms of HIV and HBV inhibition and resistance are covered. Additionally, the outcomes of Phase I and Phase II clinical trials are discussed. EXPERT OPINION Current first-line antiretroviral therapy, preexposure, and postexposure prophylactic interventions are highly effective in maintaining low or undetectable viral load. Despite these measures, an unusually high rate of new infections every year warrants developing novel antivirals that can suppress drug-resistant HIV and improve compliance. ISL, an NRTTI once deemed a long-acting drug, was placed on a clinical hold. The outcome of ongoing clinical trials with a reduced ISL dose will decide its future clinical application. Additionally, MK-8527, which inhibits HIV via same mechanism as that of ISL may supersede ISL. Data on ISL inhibition of HBV are scarce, and preclinical data show dramatically lower ISL efficacy against HBV than currently preferred nucleos(t)ide drugs, indicating that ISL may not be a potent anti-HBV drug.
Collapse
Affiliation(s)
| | - Athreya S Reddy
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Dana M Burris
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - S Hasan Naqvi
- Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Christian L Lorson
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Kamal Singh
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
121
|
Sawant‐Basak A, Bergman AJ, Mancuso J, Tripathy S, Gosset JR, Mendes da Costa L, Esler WP, Calle RA. Investigation of pharmacokinetic drug interaction between clesacostat and DGAT2 inhibitor ervogastat in healthy adult participants. Clin Transl Sci 2024; 17:e13687. [PMID: 38362827 PMCID: PMC10870243 DOI: 10.1111/cts.13687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 02/17/2024] Open
Abstract
Co-administration of clesacostat (acetyl-CoA carboxylase inhibitor, PF-05221304) and ervogastat (diacylglycerol O-acyltransferase inhibitor, PF-06865571) in laboratory models improved non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) end points and mitigated clesacostat-induced elevations in circulating triglycerides. Clesacostat is cleared via organic anion-transporting polypeptide-mediated hepatic uptake and cytochrome P450 family 3A (CYP3A); in vitro clesacostat is identified as a potential CYP3A time-dependent inactivator. In vitro ervogastat is identified as a substrate and potential inducer of CYP3A. Prior to longer-term efficacy trials in participants with NAFLD, safety and pharmacokinetics (PK) were evaluated in a phase I, non-randomized, open-label, fixed-sequence trial in healthy participants. In Cohort 1, participants (n = 7) received clesacostat 15 mg twice daily (b.i.d.) alone (Days 1-7) and co-administered with ervogastat 300 mg b.i.d. (Days 8-14). Mean systemic clesacostat exposures, when co-administered with ervogastat, decreased by 12% and 19%, based on maximum plasma drug concentration and area under the plasma drug concentration-time curve during the dosing interval, respectively. In Cohort 2, participants (n = 9) received ervogastat 300 mg b.i.d. alone (Days 1-7) and co-administered with clesacostat 15 mg b.i.d. (Days 8-14). There were no meaningful differences in systemic ervogastat exposures when administered alone or with clesacostat. Clesacostat 15 mg b.i.d. and ervogastat 300 mg b.i.d. co-administration was overall safe and well tolerated in healthy participants. Cumulative safety and no clinically meaningful PK drug interactions observed in this study supported co-administration of these two novel agents in additional studies exploring efficacy and safety in the management of NAFLD.
Collapse
Affiliation(s)
- Aarti Sawant‐Basak
- Clinical Pharmacology, Early Clinical DevelopmentWorldwide Research, Development and Medical, Pfizer Inc.CambridgeMassachusettsUSA
| | - Arthur J. Bergman
- Clinical Pharmacology, Early Clinical DevelopmentWorldwide Research, Development and Medical, Pfizer Inc.CambridgeMassachusettsUSA
| | - Jessica Mancuso
- Statistics, Early Clinical DevelopmentWorldwide Research, Development and Medical, Pfizer Inc.CambridgeMassachusettsUSA
| | - Sakambari Tripathy
- Clinical Assay GroupGlobal Product Development, Pfizer Inc.GrotonConnecticutUSA
| | - James R. Gosset
- Pharmacokinetics, Dynamics and Metabolism, Medicine DesignWorldwide Research, Development and Medical, Pfizer Inc.CambridgeMassachusettsUSA
| | | | - William P. Esler
- Internal Medicine Research UnitWorldwide Research, Development and Medical, Pfizer Inc.CambridgeMassachusettsUSA
| | - Roberto A. Calle
- Internal Medicine Research UnitWorldwide Research, Development and Medical, Pfizer Inc.CambridgeMassachusettsUSA
| |
Collapse
|
122
|
Džidić-Krivić A, Sher EK, Kusturica J, Farhat EK, Nawaz A, Sher F. Unveiling drug induced nephrotoxicity using novel biomarkers and cutting-edge preventive strategies. Chem Biol Interact 2024; 388:110838. [PMID: 38104745 DOI: 10.1016/j.cbi.2023.110838] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Drug-induced nephrotoxicity is still a significant obstacle in pharmacotherapy of various diseases and it accounts for around 25 % of serious side-effects reported after drug administration. Furthermore, some groups of drugs such as nonsteroidal anti-inflammatory drugs, antibiotics, antiviral drugs, antifungal drugs, immunosuppressants, and chemotherapeutic drugs have the "preference" for damaging the kidney and are often referred to as the kidney's "silent killer". Clinically, the onset of acute kidney injury associated with drug administration is registered in approximately 20 % of patients and many of them develop chronic kidney disease vulnerability. However, current knowledge about the mechanisms underlying this dangerous phenomenon is still insufficient with many unknowns. Hence, the valuable use of these drugs in clinical practice is significantly limited. The main aim of this study is to draw attention to commonly prescribed nephrotoxic drugs by clinicians or drugs bought over the counter. In addition, the complex relationship between immunological, vascular and inflammatory events that promote kidney damage is discussed. The practical use of this knowledge could be implemented in the engineering of novel biomarkers for early detection of drug-associated kidney damage such as Kidney Injury Molecule (KIM-1), lipocalin associated with neutrophil gelatinase (NGAL) and various microRNAs. In addition, the utilization of artificial intelligence (AI) for the development of computer algorithms that could detect kidney damage at an early stage should be further explored. Therefore, this comprehensive review provides a new outlook on drug nephrotoxicity that opens the door for further clinical research of novel potential drugs or natural products for the prevention of drug-induced nephrotoxicity and accessible education.
Collapse
Affiliation(s)
- Amina Džidić-Krivić
- Department of Neurology, Cantonal Hospital Zenica, Zenica, 72000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Emina K Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| | - Jasna Kusturica
- Faculty of Medicine,Univerisity of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina
| | - Esma K Farhat
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Food and Nutrition Research, Faculty of Food Technology, Juraj Strossmayer University of Osijek, Osijek, 31000, Croatia
| | - Asma Nawaz
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Biochemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| |
Collapse
|
123
|
Chen X, Wang X. The HIV-1 gag p6: a promising target for therapeutic intervention. Retrovirology 2024; 21:1. [PMID: 38263239 PMCID: PMC10807055 DOI: 10.1186/s12977-024-00633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024] Open
Abstract
The p6 domain of the Gag precursors (Gag p6) in human immunodeficiency virus type 1 (HIV-1) plays multifunctional roles in the viral life cycle. It utilizes the endosomal sorting complex required for transport (ESCRT) system to facilitate viral budding and release from the plasma membrane through the interactions with the ESCRT-I component tumor susceptibility gene 101 (TSG101) and with the ALG-2 interacting protein X (ALIX). Moreover, Gag p6 contributes to viral replication by a range of posttranslational modifications such as SUMOylation, ubiquitination and phosphorylation. Additionally, Gag p6 also mediates the incorporation of the accessory protein Vpr into virions, thereby promoting Vpr-induced viral replication. However, less attention is focused on Gag p6 as therapeutic intervention. This review focuses on the structures and diverse functions of Gag p6 in viral replication, host cells, and pathogenesis. Additionally, several challenges were also discussed in studying the structure of Gag p6 and its interactions with partners. Consequently, it concludes that the Gag p6 represents an attractive target for the development of antiretroviral drugs, and efforts to develop p6-targeted antiretrovirals are expected to undergo significant growth in the forthcoming years.
Collapse
Affiliation(s)
- Xiaowei Chen
- School of Basic Medical Sciences, Binzhou Medical University, 264003, Yantai, China
- Medicine & Pharmacy Research Center, Binzhou Medical University, 264003, Yantai, China
| | - Xiao Wang
- School of Basic Medical Sciences, Binzhou Medical University, 264003, Yantai, China.
| |
Collapse
|
124
|
Khalifa HO, Al Ramahi YM. After the Hurricane: Anti-COVID-19 Drugs Development, Molecular Mechanisms of Action and Future Perspectives. Int J Mol Sci 2024; 25:739. [PMID: 38255813 PMCID: PMC10815681 DOI: 10.3390/ijms25020739] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a new coronavirus in the Coronaviridae family. The COVID-19 pandemic, caused by SARS-CoV-2, has undoubtedly been the largest crisis of the twenty-first century, resulting in over 6.8 million deaths and 686 million confirmed cases, creating a global public health issue. Hundreds of notable articles have been published since the onset of this pandemic to justify the cause of viral spread, viable preventive measures, and future therapeutic approaches. As a result, this review was developed to provide a summary of the current anti-COVID-19 drugs, as well as their timeline, molecular mode of action, and efficacy. It also sheds light on potential future treatment options. Several medications, notably hydroxychloroquine and lopinavir/ritonavir, were initially claimed to be effective in the treatment of SARS-CoV-2 but eventually demonstrated inadequate activity, and the Food and Drug Administration (FDA) withdrew hydroxychloroquine. Clinical trials and investigations, on the other hand, have demonstrated the efficacy of remdesivir, convalescent plasma, and monoclonal antibodies, 6-Thioguanine, hepatitis C protease inhibitors, and molnupiravir. Other therapeutics, including inhaled medicines, flavonoids, and aptamers, could pave the way for the creation of novel anti-COVID-19 therapies. As future pandemics are unavoidable, this article urges immediate action and extensive research efforts to develop potent specialized anti-COVID-19 medications.
Collapse
Affiliation(s)
- Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Yousef M. Al Ramahi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
| |
Collapse
|
125
|
Menéndez-Arias L, Gago F. Antiviral Agents: Structural Basis of Action and Rational Design. Subcell Biochem 2024; 105:745-784. [PMID: 39738962 DOI: 10.1007/978-3-031-65187-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
During the last forty years, significant progress has been made in the development of novel antiviral drugs, mainly crystallizing in the establishment of potent antiretroviral therapies and the approval of drugs eradicating hepatitis C virus infection. Although major targets of antiviral intervention involve intracellular processes required for the synthesis of viral proteins and nucleic acids, a number of inhibitors blocking virus assembly, budding, maturation, entry, or uncoating act on virions or viral capsids. In this review, we focus on the drug discovery process while presenting the currently used methodologies to identify novel antiviral drugs by means of computer-based approaches. We provide examples illustrating structure-based antiviral drug development, specifically neuraminidase inhibitors against influenza virus (e.g., oseltamivir and zanamivir) and human immunodeficiency virus type 1 protease inhibitors (i.e., the development of darunavir from early peptidomimetic compounds such as saquinavir). A number of drugs acting against hepatitis B virus and human immunodeficiency virus and their mechanism of action are presented to show how viral capsids can be exploited as targets of antiviral therapy. The recent approval of the antiretroviral drug lenacapavir illustrates the successful application of this knowledge.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain.
| | - Federico Gago
- Department of Biomedical Sciences, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
126
|
Barchielli G, Capperucci A, Tanini D. Therapeutic cysteine protease inhibitors: a patent review (2018-present). Expert Opin Ther Pat 2024; 34:17-49. [PMID: 38445468 DOI: 10.1080/13543776.2024.2327299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Cysteine proteases are involved in a broad range of biological functions, ranging from extracellular matrix turnover to immunity. Playing an important role in the onset and progression of several diseases, including cancer, immune-related and neurodegenerative disease, viral and parasitic infections, cysteine proteases represent an attractive drug target for the development of therapeutic tools. AREAS COVERED Recent scientific and patent literature focusing on the design and study of cysteine protease inhibitors with potential therapeutic application has been reviewed. EXPERT OPINION The discovery of a number of effective structurally diverse cysteine protease inhibitors opened up new challenges and opportunities for the development of therapeutic tools. Mechanistic studies and the availability of X-ray crystal structures of some proteases, alone and in complex with inhibitors, provide crucial information for the rational design and development of efficient and selective cysteine protease inhibitors as preclinical candidates for the treatment of different diseases.
Collapse
Affiliation(s)
- Giulia Barchielli
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino FI, Italy
| | - Antonella Capperucci
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino FI, Italy
| | | |
Collapse
|
127
|
Lembas A, Załęski A, Peller M, Mikuła T, Wiercińska-Drapało A. Human Immunodeficiency Virus as a Risk Factor for Cardiovascular Disease. Cardiovasc Toxicol 2024; 24:1-14. [PMID: 37982976 PMCID: PMC10838226 DOI: 10.1007/s12012-023-09815-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The developments in HIV treatments have increased the life expectancy of people living with HIV (PLWH), a situation that makes cardiovascular disease (CVD) in that population as relevant as ever. PLWH are at increased risk of CVD, and our understanding of the underlying mechanisms is continually increasing. HIV infection is associated with elevated levels of multiple proinflammatory molecules, including IL-6, IL-1β, VCAM-1, ICAM-1, TNF-α, TGF-β, osteopontin, sCD14, hs-CRP, and D-dimer. Other currently examined mechanisms include CD4 + lymphocyte depletion, increased intestinal permeability, microbial translocation, and altered cholesterol metabolism. Antiretroviral therapy (ART) leads to decreases in the concentrations of the majority of proinflammatory molecules, although most remain higher than in the general population. Moreover, adverse effects of ART also play an important role in increased CVD risk, especially in the era of rapid advancement of new therapeutical options. Nevertheless, it is currently believed that HIV plays a more significant role in the development of metabolic syndromes than treatment-associated factors. PLWH being more prone to develop CVD is also due to the higher prevalence of smoking and chronic coinfections with viruses such as HCV and HBV. For these reasons, it is crucial to consider HIV a possible causal factor in CVD occurrence, especially among young patients or individuals without common CVD risk factors.
Collapse
Affiliation(s)
- Agnieszka Lembas
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland
- Hospital for Infectious Diseases, Warsaw, Poland
| | - Andrzej Załęski
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland.
- Hospital for Infectious Diseases, Warsaw, Poland.
| | - Michał Peller
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Mikuła
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland
- Hospital for Infectious Diseases, Warsaw, Poland
| | - Alicja Wiercińska-Drapało
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland
- Hospital for Infectious Diseases, Warsaw, Poland
| |
Collapse
|
128
|
Comley-White N, Ntsiea V, Potterton J. Physical functioning in adolescents with perinatal HIV. AIDS Care 2024; 36:60-69. [PMID: 37229771 DOI: 10.1080/09540121.2023.2214862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Perinatal HIV impacts on growth and development in childhood, with physical impairments such as growth limitations, decreased physical activity, reduced exercise tolerance and cardiopulmonary dysfunction continuing into adolescence. There is limited data on other physical functioning domains in perinatally HIV-infected adolescents (PHIVA) thus the aim of this study was to establish the physical sequelae of perinatal HIV in adolescents. This South African cross-sectional study compared PHIVA with HIV-negative adolescents, assessing anthropometry, muscle strength, endurance and motor performance. All ethical considerations were adhered to. The study included 147 PHIVA and 102 HIV-negative adolescents, aged 10-16 years. The majority (87.1%) of PHIVA were virally suppressed however, they still showed significant deficits in height (p < 0.001), weight (p < 0.001) and BMI (p = 0.004). Both groups performed poorly in muscle strength and endurance but did not differ significantly. In motor performance, the PHIVA scored significantly lower for manual dexterity and balance, with significantly more PHIVA with motor difficulty. A regression analysis showed that viral suppression predicted muscle strength (p = 0.032) and age positively predicted endurance (p = 0.044) and negatively predicated aiming and catching (p = 0.009). In conclusion, PHIVA face growth deficits and challenges with motor performance, especially with manual dexterity and balance.
Collapse
Affiliation(s)
- Nicolette Comley-White
- Department of Physiotherapy, University of the Witwatersrand, Johannesburg, South Africa
| | - Veronica Ntsiea
- Department of Physiotherapy, University of the Witwatersrand, Johannesburg, South Africa
| | - Joanne Potterton
- Department of Physiotherapy, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
129
|
Kishimoto N, Misumi S. From Glycolysis to Viral Defense: The Multifaceted Impact of Glycolytic Enzymes on Human Immunodeficiency Virus Type 1 Replication. Biol Pharm Bull 2024; 47:905-911. [PMID: 38692867 DOI: 10.1248/bpb.b23-00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Viruses require host cells to replicate and proliferate, which indicates that viruses hijack the cellular machinery. Human immunodeficiency virus type 1 (HIV-1) primarily infects CD4-positive T cells, and efficiently uses cellular proteins to replicate. Cells already have proteins that inhibit the replication of the foreign HIV-1, but their function is suppressed by viral proteins. Intriguingly, HIV-1 infection also changes the cellular metabolism to aerobic glycolysis. This phenomenon has been interpreted as a cellular response to maintain homeostasis during viral infection, yet HIV-1 efficiently replicates even in this environment. In this review, we discuss the regulatory role of glycolytic enzymes in viral replication and the impact of aerobic glycolysis on viral infection by introducing various host proteins involved in viral replication. Furthermore, we would like to propose a "glyceraldehyde-3-phosphate dehydrogenase-induced shock (G-shock) and kill strategy" that maximizes the antiviral effect of the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) to eliminate latently HIV-1-infected cells.
Collapse
Affiliation(s)
- Naoki Kishimoto
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University
| | - Shogo Misumi
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
130
|
Sun W, Zhang N, Ren X, Wu D, Jia Y, Wei Q, Ju H. Nano-matrixes propped self-enhanced electrochemiluminescence biosensor for microRNA detection. Biosens Bioelectron 2023; 242:115750. [PMID: 37844387 DOI: 10.1016/j.bios.2023.115750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
MicroRNAs (miRNA) are the potential biomarker for breast cancer, a biosensor for detecting miRNA-21 was successfully prepared by covalently linking carbohydrazide (CON4H6) and tris (4,4 '- dicarboxylic acid-2,2' - bipyridyl) ruthenium dichloride (Ru (dcbpy)32+) as a self-enhanced emitter (Ru-CON4H6). The biosensor was prepared by coating the electrode with mesoporous silica encapsulated Ru-CON4H6 as luminophores (RMSNs) to covalently link a couple of DNA strands (Q1-H2). The RMSNs coated electrode exhibited strong ECL emission due to the intramolecular electron transfer between the electrochemically oxidized Ru (dcbpy)32+ and co-reactant CON4H6. In the presence of target miRNA-21 and an assistant hairpin H1, H2 could be released from the surface through a strand displacement reaction (SDR), and the reserved Q1 could form G-quadruplex upon the addition of K+. The formed G-quadruplex then interacted with Q2-Fc in the presence of Mg2+ to form a DNA complex on the biosensor surface, which quenched the nano-matrixes propped self-enhanced ECL emission through the electron exchange between Fc and electrode or oxidized ECL intermediates. Under optimal conditions, the ECL decrease showed a correlation with target concentration, leading to a biosensing method for sensitive detection of miRNA-21. The proposed ECL method demonstrated a detectable concentration range from 0.1 fM to 1 nM along with a detection limit of 0.03 fM, good accuracy, and acceptable reproducibility, showing that the self-enhanced ECL biosensing strategy supported by nano-matrix provided a new way for the ultrasensitive detection of miRNA, and promoted the development of breast cancer diagnosis.
Collapse
Affiliation(s)
- Weijia Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yue Jia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China; Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China; State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
131
|
Xu S, Sun L, Barnett M, Zhang X, Ding D, Gattu A, Shi D, Taka JRH, Shen W, Jiang X, Cocklin S, De Clercq E, Pannecouque C, Goldstone DC, Liu X, Dick A, Zhan P. Discovery, Crystallographic Studies, and Mechanistic Investigations of Novel Phenylalanine Derivatives Bearing a Quinazolin-4-one Scaffold as Potent HIV Capsid Modulators. J Med Chem 2023; 66:16303-16329. [PMID: 38054267 PMCID: PMC10790229 DOI: 10.1021/acs.jmedchem.3c01647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Optimization of compound 11L led to the identification of novel HIV capsid modulators, quinazolin-4-one-bearing phenylalanine derivatives, displaying potent antiviral activities against both HIV-1 and HIV-2. Notably, derivatives 12a2 and 21a2 showed significant improvements, with 2.5-fold over 11L and 7.3-fold over PF74 for HIV-1, and approximately 40-fold over PF74 for HIV-2. The X-ray co-crystal structures confirmed the multiple pocket occupation of 12a2 and 21a2 in the binding site. Mechanistic studies revealed a dual-stage inhibition profile, where the compounds disrupted capsid-host factor interactions at the early stage and promoted capsid misassembly at the late stage. Remarkably, 12a2 and 21a2 significantly promoted capsid misassembly, outperforming 11L, PF74, and LEN. The substitution of easily metabolized amide bond with quinolin-4-one marginally enhanced the stability of 12a2 in human liver microsomes compared to controls. Overall, 12a2 and 21a2 highlight their potential as potent HIV capsid modulators, paving the way for future advancements in anti-HIV drug design.
Collapse
Affiliation(s)
- Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Michael Barnett
- School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland 1010, New Zealand
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Dang Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Anushka Gattu
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Dazhou Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Jamie R H Taka
- School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland 1010, New Zealand
| | - Wenli Shen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Simon Cocklin
- Specifica Inc., The Santa Fe Railyard, 1607 Alcaldesa Street, Santa Fe, New Mexico 87501, United States
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - David C Goldstone
- School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland 1010, New Zealand
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Alexej Dick
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| |
Collapse
|
132
|
Colomer-Castell S, Gregori J, Garcia-Cehic D, Riveiro-Barciela M, Buti M, Rando-Segura A, Vico-Romero J, Campos C, Ibañez-Lligoña M, Adombi CM, Cortese MF, Tabernero D, Esteban JI, Rodriguez-Frias F, Quer J. In-Host HEV Quasispecies Evolution Shows the Limits of Mutagenic Antiviral Treatments. Int J Mol Sci 2023; 24:17185. [PMID: 38139013 PMCID: PMC10743355 DOI: 10.3390/ijms242417185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Here, we report the in-host hepatitis E virus (HEV) quasispecies evolution in a chronically infected patient who was treated with three different regimens of ribavirin (RBV) for nearly 6 years. Sequential plasma samples were collected at different time points and subjected to RNA extraction and deep sequencing using the MiSeq Illumina platforms. Specifically, we RT-PCR amplified a single amplicon from the core region located in the open-reading frame 2 (ORF2). At the nucleotide level (genotype), our analysis showed an increase in the number of rare haplotypes and a drastic reduction in the frequency of the master (most represented) sequence during the period when the virus was found to be insensitive to RBV treatment. Contrarily, at the amino acid level (phenotype), our study revealed conservation of the amino acids, which is represented by a high prevalence of the master sequence. Our findings suggest that using mutagenic antivirals concomitant with high viral loads can lead to the selection and proliferation of a rich set of synonymous haplotypes that express the same phenotype. This can also lead to the selection and proliferation of conservative substitutions that express fitness-enhanced phenotypes. These results have important clinical implications, as they suggest that using mutagenic agents as a monotherapy treatment regimen in the absence of sufficiently effective viral inhibitors can result in diversification and proliferation of a highly diverse quasispecies resistant to further treatment. Therefore, such approaches should be avoided whenever possible.
Collapse
Affiliation(s)
- Sergi Colomer-Castell
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.C.-C.); (D.G.-C.); (M.R.-B.); (M.B.); (J.V.-R.); (C.C.); (M.I.-L.); (C.M.A.); (J.I.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (A.R.-S.); (M.F.C.); (D.T.); (F.R.-F.)
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| | - Josep Gregori
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.C.-C.); (D.G.-C.); (M.R.-B.); (M.B.); (J.V.-R.); (C.C.); (M.I.-L.); (C.M.A.); (J.I.E.)
| | - Damir Garcia-Cehic
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.C.-C.); (D.G.-C.); (M.R.-B.); (M.B.); (J.V.-R.); (C.C.); (M.I.-L.); (C.M.A.); (J.I.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (A.R.-S.); (M.F.C.); (D.T.); (F.R.-F.)
| | - Mar Riveiro-Barciela
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.C.-C.); (D.G.-C.); (M.R.-B.); (M.B.); (J.V.-R.); (C.C.); (M.I.-L.); (C.M.A.); (J.I.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (A.R.-S.); (M.F.C.); (D.T.); (F.R.-F.)
- Medicine Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| | - Maria Buti
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.C.-C.); (D.G.-C.); (M.R.-B.); (M.B.); (J.V.-R.); (C.C.); (M.I.-L.); (C.M.A.); (J.I.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (A.R.-S.); (M.F.C.); (D.T.); (F.R.-F.)
- Medicine Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| | - Ariadna Rando-Segura
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (A.R.-S.); (M.F.C.); (D.T.); (F.R.-F.)
- Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Judit Vico-Romero
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.C.-C.); (D.G.-C.); (M.R.-B.); (M.B.); (J.V.-R.); (C.C.); (M.I.-L.); (C.M.A.); (J.I.E.)
| | - Carolina Campos
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.C.-C.); (D.G.-C.); (M.R.-B.); (M.B.); (J.V.-R.); (C.C.); (M.I.-L.); (C.M.A.); (J.I.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (A.R.-S.); (M.F.C.); (D.T.); (F.R.-F.)
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| | - Marta Ibañez-Lligoña
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.C.-C.); (D.G.-C.); (M.R.-B.); (M.B.); (J.V.-R.); (C.C.); (M.I.-L.); (C.M.A.); (J.I.E.)
- Medicine Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| | - Caroline Melanie Adombi
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.C.-C.); (D.G.-C.); (M.R.-B.); (M.B.); (J.V.-R.); (C.C.); (M.I.-L.); (C.M.A.); (J.I.E.)
- Institute of Agropastoral Management, University Peleforo Gon Coulibaly, Korhogo BP 1328, Côte d’Ivoire
| | - Maria Francesca Cortese
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (A.R.-S.); (M.F.C.); (D.T.); (F.R.-F.)
- Biochemistry Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - David Tabernero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (A.R.-S.); (M.F.C.); (D.T.); (F.R.-F.)
- Biochemistry Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Juan Ignacio Esteban
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.C.-C.); (D.G.-C.); (M.R.-B.); (M.B.); (J.V.-R.); (C.C.); (M.I.-L.); (C.M.A.); (J.I.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (A.R.-S.); (M.F.C.); (D.T.); (F.R.-F.)
- Medicine Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| | - Francisco Rodriguez-Frias
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (A.R.-S.); (M.F.C.); (D.T.); (F.R.-F.)
- Biochemistry Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Josep Quer
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.C.-C.); (D.G.-C.); (M.R.-B.); (M.B.); (J.V.-R.); (C.C.); (M.I.-L.); (C.M.A.); (J.I.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (A.R.-S.); (M.F.C.); (D.T.); (F.R.-F.)
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| |
Collapse
|
133
|
Liu C, Zhang Y, Li P, Jia H, Ju H, Zhang J, Ferreira da Silva-Júnior E, Samanta S, Kar P, Huang B, Liu X, Zhan P. Development of chalcone-like derivatives and their biological and mechanistic investigations as novel influenza nuclear export inhibitors. Eur J Med Chem 2023; 261:115845. [PMID: 37804770 DOI: 10.1016/j.ejmech.2023.115845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Concerning the emergence of resistance to current anti-influenza drugs, our previous phenotypic-based screening study identified the compound A9 as a promising lead compound. This chalcone analog, containing a 2,6-dimethoxyphenyl moiety, exhibited significant inhibitory activity against oseltamivir-resistant strains (H1N1 pdm09), with an EC50 value of 1.34 μM. However, it also displayed notable cytotoxicity, with a CC50 value of 41.46 μM. Therefore, compound A9 was selected as a prototype structure for further structural optimization in this study. Initially, it was confirmed that the substituting the α,β-unsaturated ketone with pent-1,4-diene-3-one as a linker group significantly reduced the cytotoxicity of the final compounds. Subsequently, the penta-1,4-dien-3-one group was utilized as a privileged fragment for further structural optimization. Following two subsequent rounds of optimizations, we identified compound IIB-2, which contains a 2,6-dimethoxyphenyl- and 1,4-pentadiene-3-one moieties. This compound exhibited inhibitory effects on oseltamivir-resistant strains comparable to its precursor (compound A9), while demonstrating reduced toxicity (CC50 > 100 μM). Furthermore, we investigated its mechanism of action against anti-influenza virus through immunofluorescence, Western blot, and surface plasmon resonance (SPR) experiments. The results revealed that compound IIB-2 can impede virus proliferation by blocking the export of influenza virus nucleoprotein. Thusly, our findings further emphasize influenza nuclear export as a viable target for designing novel chalcone-like derivatives with potential inhibitory properties that could be explored in future lead optimization studies.
Collapse
Affiliation(s)
- Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; Suzhou Research Institute of Shandong University, Room607, Building B of NUSP, NO.388 Ruoshui Road, SIP, Suzhou, Jiangsu, 215123, PR China
| | - Ying Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Ping Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Huinan Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Han Ju
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Jiwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Edeildo Ferreira da Silva-Júnior
- Research Group of Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - Sunanda Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India.
| | - Bing Huang
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
134
|
Lan Q, Yan Y, Zhang G, Xia S, Zhou J, Lu L, Jiang S. Clinical development of antivirals against SARS-CoV-2 and its variants. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 6:100208. [PMID: 38149085 PMCID: PMC10750039 DOI: 10.1016/j.crmicr.2023.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
The unceasing global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) calls for the development of novel therapeutics. Although many newly developed antivirals and repurposed antivirals have been applied to the treatment of coronavirus disease 2019 (COVID-19), antivirals showing satisfactory clinical efficacy are few in number. In addition, the loss of sensitivity to variants of concern (VOCs) and lack of oral bioavailability have also limited the clinical application of some antivirals. These facts remind us to develop more potent and broad-spectrum antivirals with better pharmacokinetic/pharmacodynamic properties to fight against infections from SARS-CoV-2, its variants, and other human coronaviruses (HCoVs). In this review, we summarize the latest advancements in the clinical development of antivirals against infections by SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Qiaoshuai Lan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Yan Yan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Guangxu Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Jie Zhou
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| |
Collapse
|
135
|
Ferrer P, Ramos V, Puente MI, Afani A. Preliminary report of transmitted drug resistance to integrase strand chain transfer inhibitors in treatment-naïve HIV infected patients. Diagn Microbiol Infect Dis 2023; 107:116083. [PMID: 37778156 DOI: 10.1016/j.diagmicrobio.2023.116083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023]
Abstract
Transmitted Resistance exists in a newly diagnosed person who has not yet started their treatment. Our objective was to obtain a profile of HIV-1 resistance to integrase inhibitors in newly diagnosed treatment-naïve patients. Fifty people newly diagnosed with HIV-1 infection who had never received antiretroviral treatment were recruited. The complete integrase gene was amplified by nested RTPCR and the sequences obtained were analyzed with the ReCall and HIVdb v9.0. The overall prevalence transmitted due to mutations with some impact on integrase strand transfer inhibitors (INSTI) activity during the study period was 8%. The major E138K mutation was detected in only 1 patient and the secondary G163R mutation was detected in the other 3. The transmitted resistance for the first generation INSTI was 8% and for the second generation it was 0%. In Chile the resistance transmitted to INSTI is low and it is in according values detect in other part of the world.
Collapse
Affiliation(s)
- Pablo Ferrer
- Laboratorio de Medicina Molecular, Hospital Clínico Universidad de Chile, Santiago, Chile.
| | - Verónica Ramos
- Laboratorio de Medicina Molecular, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Maria Ignacia Puente
- Laboratorio de Medicina Molecular, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Alejandro Afani
- Laboratorio de Medicina Molecular, Hospital Clínico Universidad de Chile, Santiago, Chile
| |
Collapse
|
136
|
Liu C, Hu L, Dong G, Zhang Y, Ferreira da Silva-Júnior E, Liu X, Menéndez-Arias L, Zhan P. Emerging drug design strategies in anti-influenza drug discovery. Acta Pharm Sin B 2023; 13:4715-4732. [PMID: 38045039 PMCID: PMC10692392 DOI: 10.1016/j.apsb.2023.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/12/2023] [Accepted: 08/03/2023] [Indexed: 12/05/2023] Open
Abstract
Influenza is an acute respiratory infection caused by influenza viruses (IFV), According to the World Health Organization (WHO), seasonal IFV epidemics result in approximately 3-5 million cases of severe illness, leading to about half a million deaths worldwide, along with severe economic losses and social burdens. Unfortunately, frequent mutations in IFV lead to a certain lag in vaccine development as well as resistance to existing antiviral drugs. Therefore, it is of great importance to develop anti-IFV drugs with high efficiency against wild-type and resistant strains, needed in the fight against current and future outbreaks caused by different IFV strains. In this review, we summarize general strategies used for the discovery and development of antiviral agents targeting multiple IFV strains (including those resistant to available drugs). Structure-based drug design, mechanism-based drug design, multivalent interaction-based drug design and drug repurposing are amongst the most relevant strategies that provide a framework for the development of antiviral drugs targeting IFV.
Collapse
Affiliation(s)
- Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Lide Hu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Guanyu Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Ying Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Edeildo Ferreira da Silva-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid 28049, Spain
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
137
|
Lamichhane P, Koutentakis M, Rathi S, Ode AD, Trivedi H, Zafar S, Lamichhane P, Gupta P, Ghimire R. Antiretroviral drug use and the risk of falls in people living with HIV: a systematic review and meta-analysis. Ann Med Surg (Lond) 2023; 85:6105-6114. [PMID: 38098550 PMCID: PMC10718400 DOI: 10.1097/ms9.0000000000001411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/09/2023] [Indexed: 12/17/2023] Open
Abstract
Objective The risk of falls in people living with HIV (PLHIVs) on antiretroviral therapy (ART) has received little attention in the literature. The aim of the meta-analysis is to quantify the association between fall risk and various categories of drugs used in ART. Material and Methods PubMed, Google Scholar, Embase, and the Cochrane Central Register of Controlled Trials were systematically searched from inception to January 2023. Any observational study or controlled trial that reported on the relationship of at least one antiretroviral drug with falls in PLHIVs was included. Data on the frequency of single fallers, multiple fallers (≥2 falls), and non-fallers were extracted and studied for each drug and drug category. The pooled results were reported as an odds ratio (OR) with a 95% confidence interval (CI). Results A total of five observational studies (51 675 participants) were included out of 414 articles obtained through a literature review. Stavudine use was found to be associated with an increased risk of single falls in PLHIVs (OR: 1.69, 95% CI: 1.08-2.66, P=0.02). However, efavirenz (OR: 0.82, 95% CI=0.76-0.89, P<0.001) and zidovudine (OR: 0.82, 95% CI=0.77-0.92, P<0.001) were found protective against the single falls. Didanosine had no significant association with fall risk (OR: 1.23, 95% CI: 0.78-1.93, P=0.37). Likewise, protease inhibitors, integrase inhibitors, nucleoside reverse transcriptase inhibitors, and non-nucleoside reverse transcriptase inhibitors were discovered to have no significant association with fall risk. Conclusion Most drug categories of ART have no significant association with the risk of falls in PLHIVs. However, certain drugs, such as didanosine and stavudine, which have the inherent effect of causing balance deficits and neuropathy, should be used cautiously.
Collapse
Affiliation(s)
| | | | - Sushma Rathi
- Dow University of Health Sciences, Karachi, Pakistan
| | | | - Hirak Trivedi
- Washington University of Health and Science, San Pedro, Belize
| | | | | | - Prahlad Gupta
- Maharajgunj Medical Campus, Institute of Medicine, Kathmandu, Nepal
| | - Rakesh Ghimire
- Department of Clinical Pharmacology, Maharajgunj Medical Campus, Institute of Medicine, Kathmandu, Nepal
| |
Collapse
|
138
|
Zhou Z, Jiang Y, Zhong X, Yang J, Yang G. Characteristics and mechanisms of latency-reversing agents in the activation of the human immunodeficiency virus 1 reservoir. Arch Virol 2023; 168:301. [PMID: 38019293 DOI: 10.1007/s00705-023-05931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023]
Abstract
The "Shock and Kill" method is being considered as a potential treatment for eradicating HIV-1 and achieving a functional cure for acquired immunodeficiency syndrome (AIDS). This approach involves using latency-reversing agents (LRAs) to activate human immunodeficiency virus (HIV-1) transcription in latent cells, followed by treatment with antiviral drugs to kill these cells. Although LRAs have shown promise in HIV-1 patient research, their widespread clinical use is hindered by side effects and limitations. In this review, we categorize and explain the mechanisms of these agonists in activating HIV-1 in vivo and discuss their advantages and disadvantages. In the future, combining different HIV-1 LRAs may overcome their respective shortcomings and facilitate a functional cure for HIV-1.
Collapse
Affiliation(s)
- Zhujiao Zhou
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310013, China
| | - Yashuang Jiang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Xinyu Zhong
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310013, China
| | - Jingyi Yang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Geng Yang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310013, China.
| |
Collapse
|
139
|
Ito Y, Lu H, Kitajima M, Ishikawa H, Nakata Y, Iwatani Y, Hoshino T. Sticklac-Derived Natural Compounds Inhibiting RNase H Activity of HIV-1 Reverse Transcriptase. JOURNAL OF NATURAL PRODUCTS 2023; 86:2487-2495. [PMID: 37874155 DOI: 10.1021/acs.jnatprod.3c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The emergence of drug-resistant viruses is a serious concern in current chemotherapy for human immunodeficiency virus type-1 (HIV-1) infectious diseases. Hence, antiviral drugs aiming at targets that are different from those of approved drugs are still required, and the RNase H activity of HIV-1 reverse transcriptase is a suitable target. In this study, a search of a series of natural compounds was performed to identify the RNase H inhibitors. Three compounds were found to block the RNase H enzymatic activity. A laccaic acid skeleton was observed in all three natural compounds. A hydroxy phenyl group is connected to an anthraquinone backbone in the skeleton. An acetamido-ethyl, amino-carboxy-ethyl, and amino-ethyl are bound to the phenyl in laccaic acids A, C, and E, respectively. Laccaic acid C showed a 50% inhibitory concentration at 8.1 μM. Laccaic acid C also showed inhibitory activity in a cell-based viral proliferation assay. Binding structures of these three laccaic acids were determined by X-ray crystallographic analysis using a recombinant protein composed of the HIV-1 RNase H domain. Two divalent metal ions were located at the catalytic center in which one carbonyl and two hydroxy groups on the anthraquinone backbone chelated two metal ions. Molecular dynamics simulations were performed to examine the stabilities of the binding structures. Laccaic acid C showed the strongest binding to the catalytic site. These findings will be helpful for the design of potent inhibitors with modification of laccaic acids to enhance the binding affinity.
Collapse
Affiliation(s)
- Yuma Ito
- Laboratory of Molecular Design, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Huiyan Lu
- Laboratory of Molecular Design, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Mariko Kitajima
- Laboratory of Middle Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Hayato Ishikawa
- Laboratory of Middle Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yoshihiro Nakata
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, 4-1-1 Sannomaru, Naka-ku, Nagoya, Aichi 460-0001, Japan
| | - Yasumasa Iwatani
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, 4-1-1 Sannomaru, Naka-ku, Nagoya, Aichi 460-0001, Japan
- Department of AIDS Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Tyuji Hoshino
- Laboratory of Molecular Design, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
140
|
Molina MA, Vink M, Berkhout B, Herrera-Carrillo E. In-house ELISA protocols for capsid p24 detection of diverse HIV isolates. Virol J 2023; 20:269. [PMID: 37978551 PMCID: PMC10656996 DOI: 10.1186/s12985-023-02242-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The capsid p24 (CA-p24) antigen is a component of the viral capsid of human immunodeficiency virus (HIV) that has been commonly used for clinical diagnosis and monitoring of HIV infections in Enzyme-linked Immunosorbent Assays (ELISAs). Commercial CA-p24 ELISAs are widely used in research settings, but these kits are costly and have limited breadth for detecting diverse HIV isolates. METHODS Commercial CA-p24 antibodies were used as capture and detection antibodies. Specific CA-p24 ELISAs were established with these antibodies and tested for the detection of HIV-1 isolates with the aim of developing in-house protocols to recognize HIV-1 infections in vitro for research purposes. RESULTS Here we present four protocols for in-house ELISAs to detect HIV CA-p24 using commercial antibodies. The assays were able to detect the CA-p24 antigen of different HIV-1 isolates tested. Comparison between the protocols showed that these in-house ELISAs exhibit high specificity, sensitivity, and reproducibility for CA-p24 quantitation but their reactivity varied per HIV-1 isolate and subtype. CONCLUSIONS These optimized ELISA protocols represent valuable tools to investigate HIV-1 infections in research facilities at a lower price than commercial CA-p24 kits.
Collapse
Affiliation(s)
- Mariano A Molina
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam UMC, AMC Location, University of Amsterdam, Amsterdam, The Netherlands
| | - Monique Vink
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam UMC, AMC Location, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Berkhout
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam UMC, AMC Location, University of Amsterdam, Amsterdam, The Netherlands
| | - Elena Herrera-Carrillo
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam UMC, AMC Location, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
141
|
Zhao JH, Wang YW, Yang J, Tong ZJ, Wu JZ, Wang YB, Wang QX, Li QQ, Yu YC, Leng XJ, Chang L, Xue X, Sun SL, Li HM, Ding N, Duan JA, Li NG, Shi ZH. Natural products as potential lead compounds to develop new antiviral drugs over the past decade. Eur J Med Chem 2023; 260:115726. [PMID: 37597436 DOI: 10.1016/j.ejmech.2023.115726] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
Virus infection has been one of the main causes of human death since the ancient times. Even though more and more antiviral drugs have been approved in clinic, long-term use can easily lead to the emergence of drug resistance and side effects. Fortunately, there are many kinds of metabolites which were produced by plants, marine organisms and microorganisms in nature with rich structural skeletons, and they are natural treasure house for people to find antiviral active substances. Aiming at many types of viruses that had caused serious harm to human health in recent years, this review summarizes the natural products with antiviral activity that had been reported for the first time in the past ten years, we also sort out the source, chemical structure and safety indicators in order to provide potential lead compounds for the research and development of new antiviral drugs.
Collapse
Affiliation(s)
- Jing-Han Zhao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yue-Wei Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jia-Zhen Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yi-Bo Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Qing-Xin Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Liang Chang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - He-Min Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
142
|
Fernandes LDR, Lopes JR, Bonjorno AF, Prates JLB, Scarim CB, Dos Santos JL. The Application of Prodrugs as a Tool to Enhance the Properties of Nucleoside Reverse Transcriptase Inhibitors. Viruses 2023; 15:2234. [PMID: 38005911 PMCID: PMC10675571 DOI: 10.3390/v15112234] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Antiretroviral Therapy (ART) is an effective treatment for human immunodeficiency virus (HIV) which has transformed the highly lethal disease, acquired immunodeficiency syndrome (AIDS), into a chronic and manageable condition. However, better methods need to be developed for enhancing patient access and adherence to therapy and for improving treatment in the long term to reduce adverse effects. From the perspective of drug discovery, one promising strategy is the development of anti-HIV prodrugs. This approach aims to enhance the efficacy and safety of treatment, promoting the development of more appropriate and convenient systems for patients. In this review, we discussed the use of the prodrug approach for HIV antiviral agents and emphasized nucleoside reverse transcriptase inhibitors. We comprehensively described various strategies that are used to enhance factors such as water solubility, bioavailability, pharmacokinetic parameters, permeability across biological membranes, chemical stability, drug delivery to specific sites/organs, and tolerability. These strategies might help researchers conduct better studies in this field. We also reported successful examples from the primary therapeutic classes while discussing the advantages and limitations. In this review, we highlighted the key trends in the application of the prodrug approach for treating HIV/AIDS.
Collapse
Affiliation(s)
| | | | | | | | | | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (L.d.R.F.); (J.R.L.); (A.F.B.); (J.L.B.P.); (C.B.S.)
| |
Collapse
|
143
|
Jiang R, Song Z, Liu L, Mei X, Sun J, Qi T, Wang Z, Song W, Tang Y, Yang J, Xu S, Zhao B, Shen Y, Zhang R, Chen J. Survival and prognostic factors of progressive multifocal leukoencephalopathy in people living with HIV in modern ART era. Front Cell Infect Microbiol 2023; 13:1208155. [PMID: 38029233 PMCID: PMC10663249 DOI: 10.3389/fcimb.2023.1208155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Background The incidence of progressive multifocal leukoencephalopathy (PML) in people living with HIV (PLWH) is 2%-4%. Currently, there is no effective therapeutic strategy for the treatment of PML in PLWH, resulting in a mortality of up to 50%. This study aimed to identify risk factors of death and prognostic markers in people living with HIV with PML. Methods A retrospective cohort study of AIDS-related PML individuals was conducted from January 1, 2015, to October 1, 2022, in Shanghai, China. PLWH who were diagnosed with PML for the first time were included. Kaplan-Meier curve and Cox regression were used to analyze the survival and its predictors. Levels of inflammatory markers and immune checkpoint inhibitors in blood and cerebrospinal fluid (CSF) were measured in the prestored samples using bead-based multiplex assay Indolamine 2,3-dioxygenase was determined using ELISA. Results Twenty of 71 subjects had initiated antiretroviral therapy (ART) before PML onset and no patients discontinued ART during this period. In total, 34 patients (47.9%) had opportunistic infections (OIs), the median CD4+ T cell count was 73.0 (33.0-149.0) cells/μL. The estimated probability of survival at six months was 78% (95% confidential intervals [CIs]:0.63-0.85). OIs, low CD4+ T cell count were associated with lower estimated six-month survival (hazard ratio 8.01, 95% CIs: 1.80-35.00, P=0.006 and 5.01, 95% CIs:1.57-16.03, p=0.007). Indolamine 2,3-dioxygenase activity in CSF of non-survivors group were higher than survivors group (p<0.05). Conclusions The survival rate of AIDS-related PML in the modern ART era was higher than the survival rate a decade ago. Low CD4+T cell count, OIs, were all associated with death of individuals with AIDS-related PML. The role of IDO in AIDS-related PML warrant further investigation.
Collapse
Affiliation(s)
- Rui Jiang
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zichen Song
- Scientifc Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Li Liu
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xue Mei
- Department of Liver Intensive Care Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianjun Sun
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tangkai Qi
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhenyan Wang
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wei Song
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yang Tang
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Junyang Yang
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuibao Xu
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bihe Zhao
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yinzhong Shen
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Renfang Zhang
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Chen
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
144
|
Wang X, Hao G, Zhou M, Chen M, Ling H, Shang Y. Secondary metabolites of Bacillus subtilis L2 show antiviral activity against pseudorabies virus. Front Microbiol 2023; 14:1277782. [PMID: 37965547 PMCID: PMC10642297 DOI: 10.3389/fmicb.2023.1277782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Bacillus subtilis (B. subtilis) is a commercially important probiotic known to produce secondary metabolites with antibacterial, antifungal and anti-inflammatory activities. However, the potential ability of B. subtilis to combat viruses, especially DNA viruses, has not been extensively investigated. In this study, we identified two distinct B. subtilis strains and examined the efficiency of their secondary metabolites against pseudorabies virus (PRV), a swine herpesvirus resulting in economic losses worldwide. We found that treatment with the secondary metabolites of B. subtilis L2, but not the metabolites of B. subtilis V11, significantly inhibited PRV replication in multiple cells. Notably, the antiviral activity of the metabolites of B. subtilis L2 was thermal stable, resistant to protease digestion. Moreover, these metabolites effectively impeded PRV binding, entry and replication. Importantly, oral administration of the metabolites of B. subtilis L2 protected mice from lethal PRV infection, rescuing weight loss and reducing the viral load in vivo. In summary, our results reveal that the metabolites of B. subtilis L2 exhibit anti-PRV activity both in vitro and in vivo, providing a potential candidate for novel antiviral drugs.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Guijuan Hao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Meng Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Meng Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | | | - Yingli Shang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
- Institute of Immunology, Shandong Agricultural University, Taian, China
| |
Collapse
|
145
|
Jagtap AD, Geraghty RJ, Wang Z. Inhibiting HCMV pUL89-C Endonuclease with Metal-Binding Compounds. J Med Chem 2023; 66:13874-13887. [PMID: 37827528 PMCID: PMC11793932 DOI: 10.1021/acs.jmedchem.3c01280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Human cytomegalovirus (HCMV) infects individuals of all ages and establishes a lifelong latency. Current antiviral drugs are suboptimal in efficacy and safety and ineffective against resistant/refractory HCMV. Therefore, there is an unmet clinical need for efficacious, safe, and mechanistically novel HCMV drugs. The recent Food and Drug Administration (FDA) approval of letermovir (LTV) validated the HCMV terminase complex as a new target for antiviral development. LTV targets terminase subunit pUL56 but not the main endonuclease enzymatic function housed in the C terminus of subunit pUL89 (pUL89-C). Structurally and mechanistically, pUL89-C is an RNase H-like viral endonuclease entailing two divalent metal ions at the active site. In recent years, numerous studies have extensively explored pUL89-C inhibition using metal-chelating chemotypes, an approach previously used for inhibiting HIV ribonuclease H (RNase H) and integrase strand transfer (INST). Collectively, the work summarized herein validates the use of metal-binding scaffolds for designing potent and specific pUL89-C inhibitors.
Collapse
Affiliation(s)
- Ajit Dhananjay Jagtap
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert J. Geraghty
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
146
|
Borgelt L, Wu P. Targeting Ribonucleases with Small Molecules and Bifunctional Molecules. ACS Chem Biol 2023; 18:2101-2113. [PMID: 37382390 PMCID: PMC10594538 DOI: 10.1021/acschembio.3c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023]
Abstract
Ribonucleases (RNases) cleave and process RNAs, thereby regulating the biogenesis, metabolism, and degradation of coding and noncoding RNAs. Thus, small molecules targeting RNases have the potential to perturb RNA biology, and RNases have been studied as therapeutic targets of antibiotics, antivirals, and agents for autoimmune diseases and cancers. Additionally, the recent advances in chemically induced proximity approaches have led to the discovery of bifunctional molecules that target RNases to achieve RNA degradation or inhibit RNA processing. Here, we summarize the efforts that have been made to discover small-molecule inhibitors and activators targeting bacterial, viral, and human RNases. We also highlight the emerging examples of RNase-targeting bifunctional molecules and discuss the trends in developing such molecules for both biological and therapeutic applications.
Collapse
Affiliation(s)
- Lydia Borgelt
- Chemical Genomics Centre, Max
Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, Dortmund 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, Dortmund 44227, Germany
| | | |
Collapse
|
147
|
Sanada T, Oda Y, Ohashi C, Isotani K, Goh Y, Kohara M. Hybrid large hepatitis B surface protein composed of two viral genotypes C and D induces strongly cross-neutralizing antibodies. Vaccine 2023; 41:6514-6521. [PMID: 37739886 DOI: 10.1016/j.vaccine.2023.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Hepatitis B virus (HBV) vaccination is known to effectively decrease the risk of HBV infection. However, several issues need to be addressed in order to develop an improved HBV vaccine. Although the HBV vaccine has been shown to be effective, this vaccine needs to be more efficacious in defined groups, including non-responders (i.e., individuals who do not develop a protective response even after vaccination) and in health care workers and travelers who require rapid protection. Furthermore, it has been reported that universal HBV vaccination has accelerated the appearance of vaccine-escape mutants resulting from the accumulation of mutations altering the "a" determinant of the hepatitis B surface (HBs) protein. To address these problems, we have been focusing on the large HBs (LHBs) protein, which consists of three domains: pre-S1, pre-S2, and S (in N- to C-terminal order). To enhance the immunogenicity of LHBs, we developed a yeast-derived hybrid LHBs (hy-LHBs) antigen composed of the LHBs proteins from two distinct genotypes (Genotypes C and D). The levels of antibodies induced by hy-LHBs immunization were high not only against S, but also against the pre-S1 and pre-S2 domains. Additionally, hy-LHBs immunization induced significantly more strongly cross-reactive neutralizing antibodies than did small HBs (SHBs) or LHBs of any genotype alone. These findings suggested that hy-LHBs might serve as a candidate antigen for use in an improved prophylactic HBV vaccine.
Collapse
Affiliation(s)
- Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Yasunori Oda
- Kyoto Research Laboratory, Beacle, Inc., 14-1 Yoshida-Kawaracho, Sakyo-ku, Kyoto 606-8305, Japan
| | - Chinatsu Ohashi
- Kyoto Research Laboratory, Beacle, Inc., 14-1 Yoshida-Kawaracho, Sakyo-ku, Kyoto 606-8305, Japan
| | - Kentaro Isotani
- Kyoto Research Laboratory, Beacle, Inc., 14-1 Yoshida-Kawaracho, Sakyo-ku, Kyoto 606-8305, Japan
| | - Yasumasa Goh
- Kyoto Research Laboratory, Beacle, Inc., 14-1 Yoshida-Kawaracho, Sakyo-ku, Kyoto 606-8305, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
148
|
Yazdani AN, Abdi A, Velpuri P, Patel P, DeMarco N, Agrawal DK, Rai V. A Review of Hematological Complications and Treatment in COVID-19. Hematol Rep 2023; 15:562-577. [PMID: 37873794 PMCID: PMC10594461 DOI: 10.3390/hematolrep15040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/30/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2, and its variants have spread rapidly across the globe in the past few years, resulting in millions of deaths worldwide. Hematological diseases and complications associated with COVID-19 severely impact the mortality and morbidity rates of patients; therefore, there is a need for oversight on what pharmaceutical therapies are prescribed to hematologically at-risk patients. Thrombocytopenia, hemoglobinemia, leukopenia, and leukocytosis are all seen at increased rates in patients infected with COVID-19 and become more prominent in patients with severe COVID-19. Further, COVID-19 therapeutics may be associated with hematological complications, and this became more important in immunocompromised patients with hematological conditions as they are at higher risk of hematological complications after treatment. Thus, it is important to understand and treat COVID-19 patients with underlying hematological conditions with caution. Hematological changes during COVID-19 infection and treatment are important because they may serve as biomarkers as well as to evaluate the treatment response, which will help in changing treatment strategies. In this literature review, we discuss the hematological complications associated with COVID-19, the mechanisms, treatment groups, and adverse effects of commonly used COVID-19 therapies, followed by the hematological adverse events that could arise due to therapeutic agents used in COVID-19.
Collapse
Affiliation(s)
- Armand N. Yazdani
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Arian Abdi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Prathosh Velpuri
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Parth Patel
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Nathaniel DeMarco
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Devendra K. Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
149
|
Malik M, Kumar D, Lotana H, Shah K, Kumar D. Design, synthesis and anticancer activity of N-aryl indolylsulfoximines: Identification of potent and selective anticancer agents. Bioorg Med Chem 2023; 93:117459. [PMID: 37659217 PMCID: PMC10728769 DOI: 10.1016/j.bmc.2023.117459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
A facile and efficient approach utilizing copper-mediated cross-coupling reaction of N-boc-3-indolylsulfoximines with aryl iodides was developed to synthesize a diverse range of N-arylated indolylsulfoximines 11a-m in excellent yields (up to 91%). The key precursors, free NH sulfoximines 9 were readily prepared by the treatment of N-boc-3-methylthioindoles 8 with a combination of IBD and ammonium carbamate. Under similar conditions NH-free indolylsulfoximine 9a was successfully prepared in gram-scale quantities. The reaction is highly chemoselective and tolerant of a wide range of functional groups. The process is environmentally friendly and is amenable to scale-up. Among the prepared N-arylated indolylsulfoximines 11a-m, compounds 11i-j (2.68-2.76 μM), 11f-g (1.9-3.7 μM) and 11k (1.28 μM) showed potent and selective cytotoxicity against 22Rv1, C4-2 and MCF7 cells, respectively. Indolylsulfoximine derivative 11l displayed a broad spectrum of activity (1.7-8.2 μM) against the tested cancer cell lines. These compounds were found to be non-cytotoxic to normal HEK293 cells, indicating their potential selectivity for cancer cells. We analysed the impact of 11l on various cellular assays to uncover its mechanism of action. Cellular assay shows that 11l increases the endogenous level of ROS, leading to the increased level of p-53 and c-jun inducing apoptosis. 11l also induced mitochondrial dysfunction, further promoting apoptotic pathways. Besides, 11l also restricts cell invasiveness, indicating that it could serve as an effective anti-metastatic agent. As oxidative stress severe F actin causing tubulin depolymerization, we examined the impact of 11l on tubulin dynamics. Accordingly, 11l treatment decreased the levels of polymerized tubulin in 22Rv1 and C4-2 cells. Although future studies are needed to determine their exact molecular target(s), our data shows that N-aryl indolylsulfoximines could serve as effective anti-cancer agents.
Collapse
Affiliation(s)
- Monika Malik
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, India; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Dinesh Kumar
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Humphrey Lotana
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Kavita Shah
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, India.
| |
Collapse
|
150
|
Shiau AL, Lee KH, Cho HY, Chuang TH, Yu MC, Wu CL, Wu SN. Molnupiravir, a ribonucleoside antiviral prodrug against SARS-CoV-2, alters the voltage-gated sodium current and causes adverse events. Virology 2023; 587:109865. [PMID: 37572519 DOI: 10.1016/j.virol.2023.109865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
Molnupiravir (MOL) is a ribonucleoside prodrug for oral treatment of COVID-19. Common adverse effects of MOL are headache, diarrhea, and nausea, which may be associated with altered sodium channel function. Here, we investigated the effect of MOL on voltage-gated Na+ current (INa) in pituitary GH3 cells. We show that MOL had distinct effects on transient and late INa, in combination with decreased time constant in the slow component of INa inactivation. The 50% inhibitory concentration (IC50) values of MOL for suppressing transient and late INa were 26.1 and 6.3 μM, respectively. The overall steady-state current-voltage relationship of INa remained unchanged upon MOL exposure. MOL-induced alteration of INa may lead to changes in physiological function through sodium channels. Apart from its effect on inhibiting RNA virus replication, MOL exerts inhibitory effects on plasmalemma INa, which might constitute an additional yet crucial underlying mechanism of its pharmacological activity or adverse events.
Collapse
Affiliation(s)
- Ai-Li Shiau
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, 60002, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Kuan-Hsien Lee
- Department of Emergency Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, 60002, Taiwan
| | - Hsin-Yen Cho
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tzu-Hsien Chuang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Meng-Cheng Yu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chao-Liang Wu
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, 60002, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|