101
|
Markarian NM, Galli G, Patel D, Hemmings M, Nagpal P, Berghuis AM, Abrahamyan L, Vidal SM. Identifying Markers of Emerging SARS-CoV-2 Variants in Patients With Secondary Immunodeficiency. Front Microbiol 2022; 13:933983. [PMID: 35847101 PMCID: PMC9283111 DOI: 10.3389/fmicb.2022.933983] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/31/2022] [Indexed: 12/03/2022] Open
Abstract
Since the end of 2019, the world has been challenged by the coronavirus disease 2019 (COVID-19) pandemic. With COVID-19 cases rising globally, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, resulting in the emergence of variants of interest (VOI) and of concern (VOC). Of the hundreds of millions infected, immunodeficient patients are one of the vulnerable cohorts that are most susceptible to this virus. These individuals include those with preexisting health conditions and/or those undergoing immunosuppressive treatment (secondary immunodeficiency). In these cases, several researchers have reported chronic infections in the presence of anti-COVID-19 treatments that may potentially lead to the evolution of the virus within the host. Such variations occurred in a variety of viral proteins, including key structural ones involved in pathogenesis such as spike proteins. Tracking and comparing such mutations with those arisen in the general population may provide information about functional sites within the SARS-CoV-2 genome. In this study, we reviewed the current literature regarding the specific features of SARS-CoV-2 evolution in immunocompromised patients and identified recurrent de novo amino acid changes in virus isolates of these patients that can potentially play an important role in SARS-CoV-2 pathogenesis and evolution.
Collapse
Affiliation(s)
- Nathan M. Markarian
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- McGill University Research Centre on Complex Traits, Montréal, QC, Canada
- Swine and Poultry Infectious Diseases Research Center and Research Group on Infectious Diseases in Production Animals, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Gaël Galli
- McGill University Research Centre on Complex Traits, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- CNRS, ImmunoConcEpT, UMR 5164, Université de Bordeaux, Bordeaux, France
- CHU de Bordeaux, FHU ACRONIM, Centre National de Référence des Maladies Auto-Immunes et Systémiques Rares Est/Sud-Ouest, Bordeaux, France
| | - Dhanesh Patel
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- McGill University Research Centre on Complex Traits, Montréal, QC, Canada
| | - Mark Hemmings
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Priya Nagpal
- Department of Pharmacology, McGill University, Montréal, QC, Canada
| | | | - Levon Abrahamyan
- Swine and Poultry Infectious Diseases Research Center and Research Group on Infectious Diseases in Production Animals, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Silvia M. Vidal
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- McGill University Research Centre on Complex Traits, Montréal, QC, Canada
| |
Collapse
|
102
|
Wertheim JO, Wang JC, Leelawong M, Martin DP, Havens JL, Chowdhury MA, Pekar JE, Amin H, Arroyo A, Awandare GA, Chow HY, Gonzalez E, Luoma E, Morang'a CM, Nekrutenko A, Shank SD, Silver S, Quashie PK, Rakeman JL, Ruiz V, Torian LV, Vasylyeva TI, Kosakovsky Pond SL, Hughes S. Detection of SARS-CoV-2 intra-host recombination during superinfection with Alpha and Epsilon variants in New York City. Nat Commun 2022; 13:3645. [PMID: 35752633 PMCID: PMC9233664 DOI: 10.1038/s41467-022-31247-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/08/2022] [Indexed: 01/26/2023] Open
Abstract
Recombination is an evolutionary process by which many pathogens generate diversity and acquire novel functions. Although a common occurrence during coronavirus replication, detection of recombination is only feasible when genetically distinct viruses contemporaneously infect the same host. Here, we identify an instance of SARS-CoV-2 superinfection, whereby an individual was infected with two distinct viral variants: Alpha (B.1.1.7) and Epsilon (B.1.429). This superinfection was first noted when an Alpha genome sequence failed to exhibit the classic S gene target failure behavior used to track this variant. Full genome sequencing from four independent extracts reveals that Alpha variant alleles comprise around 75% of the genomes, whereas the Epsilon variant alleles comprise around 20% of the sample. Further investigation reveals the presence of numerous recombinant haplotypes spanning the genome, specifically in the spike, nucleocapsid, and ORF 8 coding regions. These findings support the potential for recombination to reshape SARS-CoV-2 genetic diversity.
Collapse
Affiliation(s)
- Joel O Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Jade C Wang
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA.
| | - Mindy Leelawong
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Darren P Martin
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Jennifer L Havens
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Moinuddin A Chowdhury
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Jonathan E Pekar
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Helly Amin
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Anthony Arroyo
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Hoi Yan Chow
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Edimarlyn Gonzalez
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Elizabeth Luoma
- Bureau of the Communicable Diseases, New York City Department of Health and Mental Hygiene, Long Island City, NY, USA
| | - Collins M Morang'a
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Anton Nekrutenko
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA, USA
| | - Stephen D Shank
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Stefan Silver
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Peter K Quashie
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Jennifer L Rakeman
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Victoria Ruiz
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Lucia V Torian
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Tetyana I Vasylyeva
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Scott Hughes
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| |
Collapse
|
103
|
Rojas Chávez RA, Fili M, Han C, Rahman SA, Bicar IGL, Gregory S, Hu G, Das J, Brown GD, Haim H. Mutability Patterns Across the Spike Glycoprotein Reveal the Diverging and Lineage-specific Evolutionary Space of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.01.478697. [PMID: 35132415 PMCID: PMC8820662 DOI: 10.1101/2022.02.01.478697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mutations in the spike glycoprotein of SARS-CoV-2 allow the virus to probe the sequence space in search of higher-fitness states. New sublineages of SARS-CoV-2 variants-of-concern (VOCs) continuously emerge with such mutations. Interestingly, the sites of mutation in these sublineages vary between the VOCs. Whether such differences reflect the random nature of mutation appearance or distinct evolutionary spaces of spike in the VOCs is unclear. Here we show that each position of spike has a lineage-specific likelihood for mutations to appear and dominate descendent sublineages. This likelihood can be accurately estimated from the lineage-specific mutational profile of spike at a protein-wide level. The mutability environment of each position, including adjacent sites on the protein structure and neighboring sites on the network of comutability, accurately forecast changes in descendent sublineages. Mapping of imminent changes within the VOCs can contribute to the design of immunogens and therapeutics that address future forms of SARS-CoV-2.
Collapse
|
104
|
Nchioua R, Schundner A, Kmiec D, Prelli Bozzo C, Zech F, Koepke L, Graf A, Krebs S, Blum H, Frick M, Sparrer KMJ, Kirchhoff F. SARS-CoV-2 Variants of Concern Hijack IFITM2 for Efficient Replication in Human Lung Cells. J Virol 2022; 96:e0059422. [PMID: 35543509 PMCID: PMC9175628 DOI: 10.1128/jvi.00594-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
It has recently been shown that an early SARS-CoV-2 isolate (NL-02-2020) hijacks interferon-induced transmembrane proteins (IFITMs) for efficient replication in human lung cells, cardiomyocytes, and gut organoids. To date, several "variants of concern" (VOCs) showing increased infectivity and resistance to neutralization have emerged and globally replaced the early viral strains. Here, we determined whether the five current SARS-CoV-2 VOCs (Alpha, Beta, Gamma, Delta, and Omicron) maintained the dependency on IFITM proteins for efficient replication. We found that depletion of IFITM2 strongly reduces viral RNA production by all VOCs in the human epithelial lung cancer cell line Calu-3. Silencing of IFITM1 had modest effects, while knockdown of IFITM3 resulted in an intermediate phenotype. Strikingly, depletion of IFITM2 generally reduced infectious virus production by more than 4 orders of magnitude. In addition, an antibody directed against the N terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in induced pluripotent stem cell (iPSC)-derived alveolar epithelial type II cells, thought to represent major viral target cells in the lung. In conclusion, endogenously expressed IFITM proteins (especially IFITM2) are critical cofactors for efficient replication of genuine SARS-CoV-2 VOCs, including the currently dominant Omicron variant. IMPORTANCE Recent data indicate that SARS-CoV-2 requires endogenously expressed IFITM proteins for efficient infection. However, the results were obtained with an early SARS-CoV-2 isolate. Thus, it remained to be determined whether IFITMs are also important cofactors for infection of emerging SARS-CoV-2 VOCs that outcompeted the original strains in the meantime. This includes the Omicron VOC, which currently dominates the pandemic. Here, we show that depletion of endogenous IFITM2 expression almost entirely prevents productive infection of Alpha, Beta, Gamma, Delta, and Omicron SARS-CoV-2 VOCs in human lung cells. In addition, an antibody targeting the N terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in iPSC-derived alveolar epithelial type II cells. Our results show that SARS-CoV-2 VOCs, including the currently dominant Omicron variant, are strongly dependent on IFITM2 for efficient replication, suggesting a key proviral role of IFITMs in viral transmission and pathogenicity.
Collapse
Affiliation(s)
- Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Annika Schundner
- Institute of General Physiology, Ulm University Medical Center, Ulm, Germany
| | - Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University Medical Center, Ulm, Germany
| | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
105
|
Bar-Or I, Indenbaum V, Weil M, Elul M, Levi N, Aguvaev I, Cohen Z, Levy V, Azar R, Mannasse B, Shirazi R, Bucris E, Mor O, Sela Brown A, Sofer D, Zuckerman NS, Mendelson E, Erster O. National Scale Real-Time Surveillance of SARS-CoV-2 Variants Dynamics by Wastewater Monitoring in Israel. Viruses 2022; 14:1229. [PMID: 35746700 PMCID: PMC9227326 DOI: 10.3390/v14061229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
In this report, we describe a national-scale monitoring of the SARS-CoV-2 (SC-2) variant dynamics in Israel, using multiple-time sampling of 13 wastewater treatment plants. We used a combination of inclusive and selective quantitative PCR assays that specifically identify variants A19/A20 or B.1.1.7 and tested each sample for the presence and relative viral RNA load of each variant. We show that between December 2020 and March 2021, a complete shift in the SC-2 variant circulation was observed, where the B.1.1.7 replaced the A19 in all examined test points. We further show that the normalized viral load (NVL) values and the average new cases per week reached a peak in January 2021 and then decreased gradually in almost all test points, in parallel with the progression of the national vaccination campaign, during February-March 2021. This study demonstrates the importance of monitoring SC-2 variant by using a combination of inclusive and selective PCR tests on a national scale through wastewater sampling, which is far more amendable for high-throughput monitoring compared with sequencing. This approach may be useful for real-time dynamics surveillance of current and future variants, such as the Omicron (BA.1, BA.2) and other variants.
Collapse
Affiliation(s)
- Itay Bar-Or
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Victoria Indenbaum
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Merav Weil
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Michal Elul
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Nofar Levi
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Irina Aguvaev
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Zvi Cohen
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Virginia Levy
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Roberto Azar
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Batya Mannasse
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Rachel Shirazi
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Efrat Bucris
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Orna Mor
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
- Sackler Faculty of Medicine, School of Public Health, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Alin Sela Brown
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Danit Sofer
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Neta S. Zuckerman
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Ella Mendelson
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
- Sackler Faculty of Medicine, School of Public Health, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Oran Erster
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| |
Collapse
|
106
|
Gregory DA, Trujillo M, Rushford C, Flury A, Kannoly S, San KM, Lyfoung D, Wiseman RW, Bromert K, Zhou MY, Kesler E, Bivens N, Hoskins J, Lin CH, O'Connor DH, Wieberg C, Wenzel J, Kantor RS, Dennehy JJ, Johnson MC. Genetic Diversity and Evolutionary Convergence of Cryptic SARS-CoV-2 Lineages Detected Via Wastewater Sequencing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.06.03.22275961. [PMID: 35677072 PMCID: PMC9176656 DOI: 10.1101/2022.06.03.22275961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Wastewater-based epidemiology (WBE) is an effective way of tracking the appearance and spread of SARS-COV-2 lineages through communities. Beginning in early 2021, we implemented a targeted approach to amplify and sequence the receptor binding domain (RBD) of SARS-COV-2 to characterize viral lineages present in sewersheds. Over the course of 2021, we reproducibly detected multiple SARS-COV-2 RBD lineages that have never been observed in patient samples in 9 sewersheds located in 3 states in the USA. These cryptic lineages contained between 4 to 24 amino acid substitutions in the RBD and were observed intermittently in the sewersheds in which they were found for as long as 14 months. Many of the amino acid substitutions in these lineages occurred at residues also mutated in the Omicron variant of concern (VOC), often with the same substitution. One of the sewersheds contained a lineage that appeared to be derived from the Alpha VOC, but the majority of the lineages appeared to be derived from pre-VOC SARS-COV-2 lineages. Specifically, several of the cryptic lineages from New York City appeared to be derived from a common ancestor that most likely diverged in early 2020. While the source of these cryptic lineages has not been resolved, it seems increasingly likely that they were derived from immunocompromised patients or animal reservoirs. Our findings demonstrate that SARS-COV-2 genetic diversity is greater than what is commonly observed through routine SARS-CoV-2 surveillance. Wastewater sampling may more fully capture SARS-CoV-2 genetic diversity than patient sampling and could reveal new VOCs before they emerge in the wider human population. Author Summary During the COVID-19 pandemic, wastewater-based epidemiology has become an effective public health tool. Because many infected individuals shed SARS-CoV-2 in feces, wastewater has been monitored to reveal infection trends in the sewersheds from which the samples were derived. Here we report novel SARS-CoV-2 lineages in wastewater samples obtained from 3 different states in the USA. These lineages appeared in specific sewersheds intermittently over periods of up to 14 months, but generally have not been detected beyond the sewersheds in which they were initially found. Many of these lineages may have diverged in early 2020. Although these lineages share considerable overlap with each other, they have never been observed in patients anywhere in the world. While the wastewater lineages have similarities with lineages observed in long-term infections of immunocompromised patients, animal reservoirs cannot be ruled out as a potential source.
Collapse
Affiliation(s)
- Devon A Gregory
- Department of Molecular Microbiology and Immunology, University of Missouri-School of Medicine, Columbia, MO, USA
| | - Monica Trujillo
- Department of Biological Sciences and Geology, Queensborough Community College of The City University of New York, Queens, NY, USA
| | - Clayton Rushford
- Department of Molecular Microbiology and Immunology, University of Missouri-School of Medicine, Columbia, MO, USA
| | - Anna Flury
- Biology Doctoral Program, The Graduate Center of The City University of New York, NYC, NY, USA
| | - Sherin Kannoly
- Biology Department, Queens College of The City University of New York, Queens, NY, USA 11367
| | - Kaung Myat San
- Biology Department, Queens College of The City University of New York, Queens, NY, USA 11367
| | - Dustin Lyfoung
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Roger W Wiseman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Karen Bromert
- Genomics Technology Core, University of Missouri, Columbia, MO, USA
| | - Ming-Yi Zhou
- Genomics Technology Core, University of Missouri, Columbia, MO, USA
| | - Ellen Kesler
- Genomics Technology Core, University of Missouri, Columbia, MO, USA
| | - Nathan Bivens
- Genomics Technology Core, University of Missouri, Columbia, MO, USA
| | - Jay Hoskins
- Environmental Compliance Division, Engineering Department, Metropolitan St. Louis Sewer District, St. Louis, MO, USA 63103
| | - Chung-Ho Lin
- Center of Agroforestry, School of Natural Resources, University of Missouri, Columbia, MO, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Chris Wieberg
- Water Protection Program, Missouri Department of Natural Resources, Jefferson City, MO, USA
| | - Jeff Wenzel
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Rose S Kantor
- Department of Civil and Environmental Engineering, University of California, Berkeley, 663 Davis Hall, Berkeley, CA, USA 94720
| | - John J Dennehy
- Biology Doctoral Program, The Graduate Center of The City University of New York, NYC, NY, USA
- Biology Department, Queens College of The City University of New York, Queens, NY, USA 11367
| | - Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri-School of Medicine, Columbia, MO, USA
| |
Collapse
|
107
|
Alisoltani A, Jaroszewski L, Iyer M, Iranzadeh A, Godzik A. Increased Frequency of Indels in Hypervariable Regions of SARS-CoV-2 Proteins—A Possible Signature of Adaptive Selection. Front Genet 2022; 13:875406. [PMID: 35719386 PMCID: PMC9201826 DOI: 10.3389/fgene.2022.875406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022] Open
Abstract
Most attention in the surveillance of evolving SARS-CoV-2 genome has been centered on nucleotide substitutions in the spike glycoprotein. We show that, as the pandemic extends into its second year, the numbers and ratio of genomes with in-frame insertions and deletions (indels) increases significantly, especially among the variants of concern (VOCs). Monitoring of the SARS-CoV-2 genome evolution shows that co-occurrence (i.e., highly correlated presence) of indels, especially deletions on spike N-terminal domain and non-structural protein 6 (NSP6) is a shared feature in several VOCs such as Alpha, Beta, Delta, and Omicron. Indels distribution is correlated with spike mutations associated with immune escape and growth in the number of genomes with indels coincides with the increasing population resistance due to vaccination and previous infections. Indels occur most frequently in the spike, but also in other proteins, especially those involved in interactions with the host immune system. We also showed that indels concentrate in regions of individual SARS-CoV-2 proteins known as hypervariable regions (HVRs) that are mostly located in specific loop regions. Structural analysis suggests that indels remodel viral proteins’ surfaces at common epitopes and interaction interfaces, affecting the virus’ interactions with host proteins. We hypothesize that the increased frequency of indels, the non-random distribution of them and their independent co-occurrence in several VOCs is another mechanism of response to elevated global population immunity.
Collapse
Affiliation(s)
- Arghavan Alisoltani
- Biosciences Division, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Lukasz Jaroszewski
- Biosciences Division, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Mallika Iyer
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Arash Iranzadeh
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Adam Godzik
- Biosciences Division, School of Medicine, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Adam Godzik,
| |
Collapse
|
108
|
Abstract
Our understanding of the still unfolding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic would have been extremely limited without the study of the genetics and evolution of this new human coronavirus. Large-scale genome-sequencing efforts have provided close to real-time tracking of the global spread and diversification of SARS-CoV-2 since its entry into the human population in late 2019. These data have underpinned analysis of its origins, epidemiology, and adaptations to the human population: principally immune evasion and increasing transmissibility. SARS-CoV-2, despite being a new human pathogen, was highly capable of human-to-human transmission. During its rapid spread in humans, SARS-CoV-2 has evolved independent new forms, the so-called "variants of concern," that are better optimized for human-to-human transmission. The most important adaptation of the bat coronavirus progenitor of both SARS-CoV-1 and SARS-CoV-2 for human infection (and other mammals) is the use of the angiotensin-converting enzyme 2 (ACE2) receptor. Relaxed structural constraints provide plasticity to SARS-related coronavirus spike protein permitting it to accommodate significant amino acid replacements of antigenic consequence without compromising the ability to bind to ACE2. Although the bulk of research has justifiably concentrated on the viral spike protein as the main determinant of antigenic evolution and changes in transmissibility, there is accumulating evidence for the contribution of other regions of the viral proteome to virus-host interaction. Whereas levels of community transmission of recombinants compromising genetically distinct variants are at present low, when divergent variants cocirculate, recombination between SARS-CoV-2 clades is being detected, increasing the risk that viruses with new properties emerge. Applying computational and machine learning methods to genome sequence data sets to generate experimentally verifiable predictions will serve as an early warning system for novel variant surveillance and will be important in future vaccine planning. Omicron, the latest SARS-CoV-2 variant of concern, has focused attention on step change antigenic events, "shift," as opposed to incremental "drift" changes in antigenicity. Both an increase in transmissibility and antigenic shift in Omicron led to it readily causing infections in the fully vaccinated and/or previously infected. Omicron's virulence, while reduced relative to the variant of concern it replaced, Delta, is very much premised on the past immune exposure of individuals with a clear signal that boosted vaccination protects from severe disease. Currently, SARS-CoV-2 has proven itself to be a dangerous new human respiratory pathogen with an unpredictable evolutionary capacity, leading to a risk of future variants too great not to ensure all regions of the world are screened by viral genome sequencing, protected through available and affordable vaccines, and have non-punitive strategies in place for detecting and responding to novel variants of concern.
Collapse
Affiliation(s)
- Amalio Telenti
- Vir Biotechnology, San Francisco, California 94158, USA
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, USA
| | - Emma B Hodcroft
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
109
|
Zahradník J, Nunvar J, Schreiber G. Perspectives: SARS-CoV-2 Spike Convergent Evolution as a Guide to Explore Adaptive Advantage. Front Cell Infect Microbiol 2022; 12:748948. [PMID: 35711666 PMCID: PMC9197234 DOI: 10.3389/fcimb.2022.748948] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 04/19/2022] [Indexed: 01/22/2023] Open
Abstract
Viruses rapidly co-evolve with their hosts. The 9 million sequenced SARS-CoV-2 genomes by March 2022 provide a detailed account of viral evolution, showing that all amino acids have been mutated many times. However, only a few became prominent in the viral population. Here, we investigated the emergence of the same mutations in unrelated parallel lineages and the extent of such convergent evolution on the molecular level in the spike (S) protein. We found that during the first phase of the pandemic (until mid 2021, before mass vaccination) 31 mutations evolved independently ≥3-times within separated lineages. These included all the key mutations in SARS-CoV-2 variants of concern (VOC) at that time, indicating their fundamental adaptive advantage. The omicron added many more mutations not frequently seen before, which can be attributed to the synergistic nature of these mutations, which is more difficult to evolve. The great majority (24/31) of S-protein mutations under convergent evolution tightly cluster in three functional domains; N-terminal domain, receptor-binding domain, and Furin cleavage site. Furthermore, among the S-protein receptor-binding motif mutations, ACE2 affinity-improving substitutions are favoured. Next, we determined the mutation space in the S protein that has been covered by SARS-CoV-2. We found that all amino acids that are reachable by single nucleotide changes have been probed multiple times in early 2021. The substitutions requiring two nucleotide changes have recently (late 2021) gained momentum and their numbers are increasing rapidly. These provide a large mutation landscape for SARS-CoV-2 future evolution, on which research should focus now.
Collapse
Affiliation(s)
- Jiri Zahradník
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jaroslav Nunvar
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec, Czechia
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
110
|
Nunes DR, Braconi CT, Ludwig-Begall LF, Arns CW, Durães-Carvalho R. Deep phylogenetic-based clustering analysis uncovers new and shared mutations in SARS-CoV-2 variants as a result of directional and convergent evolution. PLoS One 2022; 17:e0268389. [PMID: 35609034 PMCID: PMC9129020 DOI: 10.1371/journal.pone.0268389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Nearly two decades after the last epidemic caused by a severe acute respiratory syndrome coronavirus (SARS-CoV), newly emerged SARS-CoV-2 quickly spread in 2020 and precipitated an ongoing global public health crisis. Both the continuous accumulation of point mutations, owed to the naturally imposed genomic plasticity of SARS-CoV-2 evolutionary processes, as well as viral spread over time, allow this RNA virus to gain new genetic identities, spawn novel variants and enhance its potential for immune evasion. Here, through an in-depth phylogenetic clustering analysis of upwards of 200,000 whole-genome sequences, we reveal the presence of previously unreported and hitherto unidentified mutations and recombination breakpoints in Variants of Concern (VOC) and Variants of Interest (VOI) from Brazil, India (Beta, Eta and Kappa) and the USA (Beta, Eta and Lambda). Additionally, we identify sites with shared mutations under directional evolution in the SARS-CoV-2 Spike-encoding protein of VOC and VOI, tracing a heretofore-undescribed correlation with viral spread in South America, India and the USA. Our evidence-based analysis provides well-supported evidence of similar pathways of evolution for such mutations in all SARS-CoV-2 variants and sub-lineages. This raises two pivotal points: (i) the co-circulation of variants and sub-lineages in close evolutionary environments, which sheds light onto their trajectories into convergent and directional evolution, and (ii) a linear perspective into the prospective vaccine efficacy against different SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Danilo Rosa Nunes
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Carla Torres Braconi
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
- * E-mail: (CTB); (RDC)
| | - Louisa F. Ludwig-Begall
- Department of Infectious and Parasitic Diseases, Veterinary Virology and Animal Viral Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Clarice Weis Arns
- Laboratory of Virology, University of Campinas, Campinas, SP, Brazil
| | - Ricardo Durães-Carvalho
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
- * E-mail: (CTB); (RDC)
| |
Collapse
|
111
|
Isaeva OI, Ketelaars SLC, Kvistborg P. In Silico Analysis Predicts a Limited Impact of SARS-CoV-2 Variants on CD8 T Cell Recognition. Front Immunol 2022; 13:891524. [PMID: 35572563 PMCID: PMC9094405 DOI: 10.3389/fimmu.2022.891524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Since the start of the COVID-19 pandemic, mutations have led to the emergence of new SARS-CoV-2 variants, and some of these have become prominent or dominant variants of concern. This natural course of development can have an impact on how protective the previously naturally or vaccine induced immunity is. Therefore, it is crucial to understand whether and how variant specific mutations influence host immunity. To address this, we have investigated how mutations in the recent SARS-CoV-2 variants of interest and concern influence epitope sequence similarity, predicted binding affinity to HLA, and immunogenicity of previously reported SARS-CoV-2 CD8 T cell epitopes. Our data suggests that the vast majority of SARS-CoV-2 CD8 T cell recognized epitopes are not altered by variant specific mutations. Interestingly, for the CD8 T cell epitopes that are altered due to variant specific mutations, our analyses show there is a high degree of sequence similarity between mutated and reference SARS-CoV-2 CD8 T cell epitopes. However, mutated epitopes, primarily derived from the spike protein, in SARS-CoV-2 variants Delta, AY.4.2 and Mu display reduced predicted binding affinity to their restriction element. These findings indicate that the recent SARS-CoV-2 variants of interest and concern have limited ability to escape memory CD8 T cell responses raised by vaccination or prior infection with SARS-CoV-2 early in the pandemic. The overall low impact of the mutations on CD8 T cell cross-recognition is in accordance with the notion that mutations in SARS-CoV-2 are primarily the result of receptor binding affinity and antibody selection pressures exerted on the spike protein, unrelated to T cell immunity.
Collapse
Affiliation(s)
- Olga I Isaeva
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Steven L C Ketelaars
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Pia Kvistborg
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
112
|
Quadrivalent mosaic HexaPro-bearing nanoparticle vaccine protects against infection of SARS-CoV-2 variants. Nat Commun 2022; 13:2674. [PMID: 35562337 PMCID: PMC9106700 DOI: 10.1038/s41467-022-30222-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/21/2022] [Indexed: 01/07/2023] Open
Abstract
Emerging SARS-CoV-2 variants of concern (VOCs) harboring multiple mutations in the spike protein raise concerns on effectiveness of current vaccines that rely on the ancestral spike protein. Here, we design a quadrivalent mosaic nanoparticle vaccine displaying spike proteins from the SARS-CoV-2 prototype and 3 different VOCs. The mosaic nanoparticle elicits equivalent or superior neutralizing antibodies against variant strains in mice and non-human primates with only small reduction in neutralization titers against the ancestral strain. Notably, it provides protection against infection with prototype and B.1.351 strains in mice. These results provide a proof of principle for the development of multivalent vaccines against pandemic and potential pre-emergent SARS-CoV-2 variants. Emerging SARS-CoV-2 variants with multiple mutations raise concerns on vaccine effectiveness. Here, Kang et al. report that a quadrivalent mosaic nanoparticle vaccine displaying spike proteins from the SARS-CoV-2 prototype and three different VOCs confer protection against SARS-CoV-2 variants in mice.
Collapse
|
113
|
Hufsky F, Beslic D, Boeckaerts D, Duchene S, González-Tortuero E, Gruber AJ, Guo J, Jansen D, Juma J, Kongkitimanon K, Luque A, Ritsch M, Lencioni Lovate G, Nishimura L, Pas C, Domingo E, Hodcroft E, Lemey P, Sullivan MB, Weber F, González-Candelas F, Krautwurst S, Pérez-Cataluña A, Randazzo W, Sánchez G, Marz M. The International Virus Bioinformatics Meeting 2022. Viruses 2022; 14:973. [PMID: 35632715 PMCID: PMC9144528 DOI: 10.3390/v14050973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022] Open
Abstract
The International Virus Bioinformatics Meeting 2022 took place online, on 23-25 March 2022, and has attracted about 380 participants from all over the world. The goal of the meeting was to provide a meaningful and interactive scientific environment to promote discussion and collaboration and to inspire and suggest new research directions and questions. The participants created a highly interactive scientific environment even without physical face-to-face interactions. This meeting is a focal point to gain an insight into the state-of-the-art of the virus bioinformatics research landscape and to interact with researchers in the forefront as well as aspiring young scientists. The meeting featured eight invited and 18 contributed talks in eight sessions on three days, as well as 52 posters, which were presented during three virtual poster sessions. The main topics were: SARS-CoV-2, viral emergence and surveillance, virus-host interactions, viral sequence analysis, virus identification and annotation, phages, and viral diversity. This report summarizes the main research findings and highlights presented at the meeting.
Collapse
Affiliation(s)
- Franziska Hufsky
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Denis Beslic
- Methodology and Research Infrastructure, MF1 Bioinformatics, Robert Koch Institute, 13353 Berlin, Germany;
| | - Dimitri Boeckaerts
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; (D.B.); (C.P.)
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, 9000 Ghent, Belgium
| | - Sebastian Duchene
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia;
| | - Enrique González-Tortuero
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- School of Science, Engineering and Environment (SEE), University of Salford, Salford M5 4WT, UK
| | - Andreas J. Gruber
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Jiarong Guo
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Departments of Microbiology, and Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA
| | - Daan Jansen
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, KU Leuven, 3000 Leuven, Belgium
| | - John Juma
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya;
- South African National Bioinformatics Institute, South African MRC Bioinformatics Unit, Cape Town 7530, South Africa
| | - Kunaphas Kongkitimanon
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Methodology and Research Infrastructure, MF1 Bioinformatics, Robert Koch Institute, 13353 Berlin, Germany;
| | - Antoni Luque
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Viral Information Institute, San Diego State University, San Diego, CA 92116, USA
- Computational Science Research Center, San Diego State University, San Diego, CA 92116, USA
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92116, USA
| | - Muriel Ritsch
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Gabriel Lencioni Lovate
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- JRG Analytical MicroBioinformatics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Luca Nishimura
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Célia Pas
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; (D.B.); (C.P.)
| | - Esteban Domingo
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Emma Hodcroft
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Philippe Lemey
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Matthew B. Sullivan
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Departments of Microbiology, and Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA
| | - Friedemann Weber
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Institute for Virology, Veterinary Medicine, Justus-Liebig University, 35390 Gießen, Germany
| | - Fernando González-Candelas
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Joint Research Unit “Infection and Public Health” FISABIO, University of Valencia, 46010 Valencia, Spain
- Institute for Integrative Systems Biology (I2SysBio), CSIC, University of Valencia, 46010 Valencia, Spain
| | - Sarah Krautwurst
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Alba Pérez-Cataluña
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, 46980 Valencia, Spain
| | - Walter Randazzo
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, 46980 Valencia, Spain
| | - Gloria Sánchez
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, 46980 Valencia, Spain
| | - Manja Marz
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| |
Collapse
|
114
|
Chen Y, Li S, Wu W, Geng S, Mao M. Distinct mutations and lineages of SARS-CoV-2 virus in the early phase of COVID-19 pandemic and subsequent 1-year global expansion. J Med Virol 2022; 94:2035-2049. [PMID: 35001392 PMCID: PMC9015543 DOI: 10.1002/jmv.27580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022]
Abstract
A novel coronavirus, SARS-CoV-2, has caused over 274 million cases and over 5.3 million deaths worldwide since it occurred in December 2019 in Wuhan, China. Here we conceptualized the temporospatial evolutionary and expansion dynamics of SARS-CoV-2 by taking a series of the cross-sectional view of viral genomes from early outbreak in January 2020 in Wuhan to the early phase of global ignition in early April, and finally to the subsequent global expansion by late December 2020. Based on the phylogenetic analysis of the early patients in Wuhan, Wuhan/WH04/2020 is supposed to be a more appropriate reference genome of SARS-CoV-2, instead of the first sequenced genome Wuhan-Hu-1. By scrutinizing the cases from the very early outbreak, we found a viral genotype from the Seafood Market in Wuhan featured with two concurrent mutations (i.e., M type) had become the overwhelmingly dominant genotype (95.3%) of the pandemic 1 year later. By analyzing 4013 SARS-CoV-2 genomes from different continents by early April, we were able to interrogate the viral genomic composition dynamics of the initial phase of global ignition over a time span of 14 weeks. Eleven major viral genotypes with unique geographic distributions were also identified. WE1 type, a descendant of M and predominantly witnessed in western Europe, consisted of half of all the cases (50.2%) at the time. The mutations of major genotypes at the same hierarchical level were mutually exclusive, which implies that various genotypes bearing the specific mutations were propagated during human-to-human transmission, not by accumulating hot-spot mutations during the replication of individual viral genomes. As the pandemic was unfolding, we also used the same approach to analyze 261 323 SARS-CoV-2 genomes from the world since the outbreak in Wuhan (i.e., including all the publicly available viral genomes) to recapitulate our findings over 1-year time span. By December 25, 2020, 95.3% of global cases were M type and 93.0% of M-type cases were WE1. In fact, at present all the five variants of concern (VOC) are the descendants of WE1 type. This study demonstrates that viral genotypes can be utilized as molecular barcodes in combination with epidemiologic data to monitor the spreading routes of the pandemic and evaluate the effectiveness of control measures. Moreover, the dynamics of viral mutational spectrum in the study may help the early identification of new strains in patients to reduce further spread of infection, guide the development of molecular diagnosis and vaccines against COVID-19, and help assess their accuracy and efficacy in real world at real time.
Collapse
Affiliation(s)
- Yan Chen
- Research & DevelopmentSeekIn Inc.ShenzhenChina
| | - Shiyong Li
- Research & DevelopmentSeekIn Inc.ShenzhenChina
| | - Wei Wu
- Research & DevelopmentSeekIn Inc.ShenzhenChina
| | | | - Mao Mao
- Research & DevelopmentSeekIn Inc.ShenzhenChina
- Yonsei Song‐Dang Institute for Cancer ResearchYonsei UniversitySeoulKorea
| |
Collapse
|
115
|
Sokhansanj BA, Rosen GL. Mapping Data to Deep Understanding: Making the Most of the Deluge of SARS-CoV-2 Genome Sequences. mSystems 2022; 7:e0003522. [PMID: 35311562 PMCID: PMC9040592 DOI: 10.1128/msystems.00035-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2022] [Indexed: 12/22/2022] Open
Abstract
Next-generation sequencing has been essential to the global response to the COVID-19 pandemic. As of January 2022, nearly 7 million severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences are available to researchers in public databases. Sequence databases are an abundant resource from which to extract biologically relevant and clinically actionable information. As the pandemic has gone on, SARS-CoV-2 has rapidly evolved, involving complex genomic changes that challenge current approaches to classifying SARS-CoV-2 variants. Deep sequence learning could be a potentially powerful way to build complex sequence-to-phenotype models. Unfortunately, while they can be predictive, deep learning typically produces "black box" models that cannot directly provide biological and clinical insight. Researchers should therefore consider implementing emerging methods for visualizing and interpreting deep sequence models. Finally, researchers should address important data limitations, including (i) global sequencing disparities, (ii) insufficient sequence metadata, and (iii) screening artifacts due to poor sequence quality control.
Collapse
Affiliation(s)
- Bahrad A. Sokhansanj
- Drexel University, Ecological and Evolutionary Signal-Processing and Informatics Laboratory, Department of Electrical & Computer Engineering, College of Engineering, Philadelphia, Pennsylvania, USA
| | - Gail L. Rosen
- Drexel University, Ecological and Evolutionary Signal-Processing and Informatics Laboratory, Department of Electrical & Computer Engineering, College of Engineering, Philadelphia, Pennsylvania, USA
| |
Collapse
|
116
|
Dumache R, Enache A, Macasoi I, Dehelean CA, Dumitrascu V, Mihailescu A, Popescu R, Vlad D, Vlad CS, Muresan C. SARS-CoV-2: An Overview of the Genetic Profile and Vaccine Effectiveness of the Five Variants of Concern. Pathogens 2022; 11:pathogens11050516. [PMID: 35631037 PMCID: PMC9144800 DOI: 10.3390/pathogens11050516] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
With the onset of the COVID-19 pandemic, enormous efforts have been made to understand the genus SARS-CoV-2. Due to the high rate of global transmission, mutations in the viral genome were inevitable. A full understanding of the viral genome and its possible changes represents one of the crucial aspects of pandemic management. Structural protein S plays an important role in the pathogenicity of SARS-CoV-2, mutations occurring at this level leading to viral forms with increased affinity for ACE2 receptors, higher transmissibility and infectivity, resistance to neutralizing antibodies and immune escape, increasing the risk of infection and disease severity. Thus, five variants of concern are currently being discussed, Alpha, Beta, Gamma, Delta and Omicron. In the present review, a comprehensive summary of the following critical aspects regarding SARS-CoV-2 has been made: (i) the genomic characteristics of SARS-CoV-2; (ii) the pathological mechanism of transmission, penetration into the cell and action on specific receptors; (iii) mutations in the SARS-CoV-2 genome; and (iv) possible implications of mutations in diagnosis, treatment, and vaccination.
Collapse
Affiliation(s)
- Raluca Dumache
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.D.); (A.E.); (A.M.); (C.M.)
| | - Alexandra Enache
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.D.); (A.E.); (A.M.); (C.M.)
| | - Ioana Macasoi
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Correspondence: (I.M.); (C.A.D.)
| | - Cristina Adriana Dehelean
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Correspondence: (I.M.); (C.A.D.)
| | - Victor Dumitrascu
- Department of Pharmacology and Biochemistry, Discipline of Pharmacology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (V.D.); (D.V.); (C.S.V.)
| | - Alexandra Mihailescu
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.D.); (A.E.); (A.M.); (C.M.)
- Genetics, Genomic Medicine Research Center, Department of Microscopic Morphology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Roxana Popescu
- Department of Microscopic Morphology, Discipline of Molecular and Cell Biology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Daliborca Vlad
- Department of Pharmacology and Biochemistry, Discipline of Pharmacology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (V.D.); (D.V.); (C.S.V.)
| | - Cristian Sebastian Vlad
- Department of Pharmacology and Biochemistry, Discipline of Pharmacology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (V.D.); (D.V.); (C.S.V.)
| | - Camelia Muresan
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.D.); (A.E.); (A.M.); (C.M.)
| |
Collapse
|
117
|
Kistler KE, Huddleston J, Bedford T. Rapid and parallel adaptive mutations in spike S1 drive clade success in SARS-CoV-2. Cell Host Microbe 2022; 30:545-555.e4. [PMID: 35364015 PMCID: PMC8938189 DOI: 10.1016/j.chom.2022.03.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/18/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
Abstract
The SARS-CoV-2 pandemic has resulted in numerous virus variants, some of which have altered receptor-binding or antigenic phenotypes. Here, we quantify the degree to which adaptive evolution is driving the accumulation of mutations across the genome. We correlate clade growth with mutation accumulation, compare rates of nonsynonymous to synonymous divergence, assess temporal clustering of mutations, and evaluate the evolutionary success of individual mutations. We find that spike S1 is the focus of adaptive evolution but also identify positively selected mutations in other proteins (notably Nsp6) that are sculpting the evolutionary trajectory of SARS-CoV-2. Adaptive changes in S1 accumulated rapidly, resulting in a remarkably high ratio of nonsynonymous to synonymous divergence that is 2.5× greater than that observed in influenza hemagglutinin HA1 at the beginning of the 2009 H1N1 pandemic. These findings uncover a high degree of adaptation in S1 and suggest that SARS-CoV-2 might undergo antigenic drift.
Collapse
Affiliation(s)
- Kathryn E Kistler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.
| | - John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
118
|
Martin DP, Lytras S, Lucaci AG, Maier W, Grüning B, Shank SD, Weaver S, MacLean OA, Orton RJ, Lemey P, Boni MF, Tegally H, Harkins GW, Scheepers C, Bhiman JN, Everatt J, Amoako DG, San JE, Giandhari J, Sigal A, Williamson C, Hsiao NY, von Gottberg A, De Klerk A, Shafer RW, Robertson DL, Wilkinson RJ, Sewell BT, Lessells R, Nekrutenko A, Greaney AJ, Starr TN, Bloom JD, Murrell B, Wilkinson E, Gupta RK, de Oliveira T, Kosakovsky Pond SL. Selection Analysis Identifies Clusters of Unusual Mutational Changes in Omicron Lineage BA.1 That Likely Impact Spike Function. Mol Biol Evol 2022; 39:msac061. [PMID: 35325204 PMCID: PMC9037384 DOI: 10.1093/molbev/msac061] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Among the 30 nonsynonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (1) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (2) interactions of Spike with ACE2 receptors, and (3) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any virus within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and, in combination with other mutations, adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron overall previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected.
Collapse
Affiliation(s)
- Darren P. Martin
- Institute of Infectious Diseases and Molecular Medicine, Division of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Spyros Lytras
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Alexander G. Lucaci
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA, USA
| | - Wolfgang Maier
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany, usegalaxy.eu
| | - Björn Grüning
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany, usegalaxy.eu
| | - Stephen D. Shank
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA, USA
| | - Steven Weaver
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA, USA
| | - Oscar A. MacLean
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Richard J. Orton
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Maciej F. Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Gordon W. Harkins
- South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Cathrine Scheepers
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jinal N. Bhiman
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Josie Everatt
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Daniel G. Amoako
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - James Emmanuel San
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Nei-yuan Hsiao
- Division of Medical Virology, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Arne De Klerk
- Institute of Infectious Diseases and Molecular Medicine, Division of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Robert W. Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - David L. Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Robert J. Wilkinson
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa
- Francis Crick Institute, London, United Kingdom
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - B. Trevor Sewell
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Richard Lessells
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anton Nekrutenko
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA, usegalaxy.org
| | - Allison J. Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Tyler N. Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Eduan Wilkinson
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science, Stellenbosch University, Stellenbosch, South Africa
| | - Ravindra K. Gupta
- Africa Health Research Institute, Durban, South Africa
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science, Stellenbosch University, Stellenbosch, South Africa
| | - Sergei L. Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
119
|
Zhou H, Ni WJ, Huang W, Wang Z, Cai M, Sun YC. Advances in Pathogenesis, Progression, Potential Targets and Targeted Therapeutic Strategies in SARS-CoV-2-Induced COVID-19. Front Immunol 2022; 13:834942. [PMID: 35450063 PMCID: PMC9016159 DOI: 10.3389/fimmu.2022.834942] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/07/2022] [Indexed: 01/18/2023] Open
Abstract
As the new year of 2020 approaches, an acute respiratory disease quietly caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as coronavirus disease 2019 (COVID-19) was reported in Wuhan, China. Subsequently, COVID-19 broke out on a global scale and formed a global public health emergency. To date, the destruction that has lasted for more than two years has not stopped and has caused the virus to continuously evolve new mutant strains. SARS-CoV-2 infection has been shown to cause multiple complications and lead to severe disability and death, which has dealt a heavy blow to global development, not only in the medical field but also in social security, economic development, global cooperation and communication. To date, studies on the epidemiology, pathogenic mechanism and pathological characteristics of SARS-CoV-2-induced COVID-19, as well as target confirmation, drug screening, and clinical intervention have achieved remarkable effects. With the continuous efforts of the WHO, governments of various countries, and scientific research and medical personnel, the public's awareness of COVID-19 is gradually deepening, a variety of prevention methods and detection methods have been implemented, and multiple vaccines and drugs have been developed and urgently marketed. However, these do not appear to have completely stopped the pandemic and ravages of this virus. Meanwhile, research on SARS-CoV-2-induced COVID-19 has also seen some twists and controversies, such as potential drugs and the role of vaccines. In view of the fact that research on SARS-CoV-2 and COVID-19 has been extensive and in depth, this review will systematically update the current understanding of the epidemiology, transmission mechanism, pathological features, potential targets, promising drugs and ongoing clinical trials, which will provide important references and new directions for SARS-CoV-2 and COVID-19 research.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei-Jian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Huang
- The Third People’s Hospital of Hefei, The Third Clinical College of Anhui Medical University, Hefei, China
| | - Zhen Wang
- Anhui Provincial Children’s Hospital, Children’s Hospital of Fudan University-Anhui Campus, Hefei, China
| | - Ming Cai
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yan-Cai Sun
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
120
|
Yang Z, Zhang S, Tang YP, Zhang S, Xu DQ, Yue SJ, Liu QL. Clinical Characteristics, Transmissibility, Pathogenicity, Susceptible Populations, and Re-infectivity of Prominent COVID-19 Variants. Aging Dis 2022; 13:402-422. [PMID: 35371608 PMCID: PMC8947836 DOI: 10.14336/ad.2021.1210] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
In addition to the rapid, global spread of SARS-CoV-2, new and comparatively more contagious variants are of considerable concern. These emerging mutations have become a threat to the global public health, creating COVID-19 surges in different countries. However, information on these emerging variants is limited and scattered. In this review, we discuss new variants that have emerged worldwide and identify several variants of concern, such as B.1.1.7, B.1.351, P.1, B.1.617.2 and B.1.1.529, and their basic characteristics. Other significant variants such as C.37, B.1.621, B.1.525, B.1.526, AZ.5, C.1.2, and B.1.617.1 are also discussed. This review highlights the clinical characteristics of these variants, including transmissibility, pathogenicity, susceptible population, and re-infectivity. It provides the latest information on the recent variants of SARS-CoV-2. The summary of this information will help researchers formulate reasonable strategies to curb the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Zhen Yang
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
- 2School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Shuo Zhang
- 3School of Clinical Medicine (Guang'anmen Hospital), Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Ping Tang
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Sai Zhang
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Ding-Qiao Xu
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Shi-Jun Yue
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Qi-Ling Liu
- 2School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
121
|
Nikolaidis M, Papakyriakou A, Chlichlia K, Markoulatos P, Oliver SG, Amoutzias GD. Comparative Analysis of SARS-CoV-2 Variants of Concern, Including Omicron, Highlights Their Common and Distinctive Amino Acid Substitution Patterns, Especially at the Spike ORF. Viruses 2022; 14:707. [PMID: 35458441 PMCID: PMC9025783 DOI: 10.3390/v14040707] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/13/2022] Open
Abstract
In order to gain a deeper understanding of the recently emerged and highly divergent Omicron variant of concern (VoC), a study of amino acid substitution (AAS) patterns was performed and compared with those of the other four successful variants of concern (Alpha, Beta, Gamma, Delta) and one closely related variant of interest (VoI-Lambda). The Spike ORF consistently emerges as an AAS hotspot in all six lineages, but in Omicron this enrichment is significantly higher. The progenitors of each of these VoC/VoI lineages underwent positive selection in the Spike ORF. However, once they were established, their Spike ORFs have been undergoing purifying selection, despite the application of global vaccination schemes from 2021 onwards. Our analyses reject the hypothesis that the heavily mutated receptor binding domain (RBD) of the Omicron Spike was introduced via recombination from another closely related Sarbecovirus. Thus, successive point mutations appear as the most parsimonious scenario. Intriguingly, in each of the six lineages, we observed a significant number of AAS wherein the new residue is not present at any homologous site among the other known Sarbecoviruses. Such AAS should be further investigated as potential adaptations to the human host. By studying the phylogenetic distribution of AAS shared between the six lineages, we observed that the Omicron (BA.1) lineage had the highest number (8/10) of recurrent mutations.
Collapse
Affiliation(s)
- Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Athanasios Papakyriakou
- Institute of Biosciences & Applications, National Centre for Scientific Research Demokritos, 15341 Agia Paraskevi, Greece;
| | - Katerina Chlichlia
- Laboratory of Molecular Immunology, Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100 Alexandroupolis, Greece;
| | - Panayotis Markoulatos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Stephen G. Oliver
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK;
| | - Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| |
Collapse
|
122
|
Wright DW, Harvey WT, Hughes J, Cox M, Peacock TP, Colquhoun R, Jackson B, Orton R, Nielsen M, Hsu NS, Harrison EM, de Silva TI, Rambaut A, Peacock SJ, Robertson DL, Carabelli AM. Tracking SARS-CoV-2 mutations and variants through the COG-UK-Mutation Explorer. Virus Evol 2022; 8:veac023. [PMID: 35502202 PMCID: PMC9037374 DOI: 10.1093/ve/veac023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
COG-UK Mutation Explorer (COG-UK-ME, https://sars2.cvr.gla.ac.uk/cog-uk/-last accessed date 16 March 2022) is a web resource that displays knowledge and analyses on SARS-CoV-2 virus genome mutations and variants circulating in the UK, with a focus on the observed amino acid replacements that have an antigenic role in the context of the human humoral and cellular immune response. This analysis is based on more than 2 million genome sequences (as of March 2022) for UK SARS-CoV-2 data held in the CLIMB-COVID centralised data environment. COG-UK-ME curates these data and displays analyses that are cross-referenced to experimental data collated from the primary literature. The aim is to track mutations of immunological importance that are accumulating in current variants of concern and variants of interest that could alter the neutralising activity of monoclonal antibodies (mAbs), convalescent sera, and vaccines. Changes in epitopes recognised by T cells, including those where reduced T cell binding has been demonstrated, are reported. Mutations that have been shown to confer SARS-CoV-2 resistance to antiviral drugs are also included. Using visualisation tools, COG-UK-ME also allows users to identify the emergence of variants carrying mutations that could decrease the neutralising activity of both mAbs present in therapeutic cocktails, e.g. Ronapreve. COG-UK-ME tracks changes in the frequency of combinations of mutations and brings together the curated literature on the impact of those mutations on various functional aspects of the virus and therapeutics. Given the unpredictable nature of SARS-CoV-2 as exemplified by yet another variant of concern, Omicron, continued surveillance of SARS-CoV-2 remains imperative to monitor virus evolution linked to the efficacy of therapeutics.
Collapse
Affiliation(s)
- Derek W Wright
- MRC-University of Glasgow Centre for Virus
Research, University of Glasgow, Garscube Campus, 464 Bearsden Road,
Glasgow G61 1QH, UK
| | | | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus
Research, University of Glasgow, Garscube Campus, 464 Bearsden Road,
Glasgow G61 1QH, UK
| | - MacGregor Cox
- Department of Medicine, University of
Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ,
UK
| | - Thomas P Peacock
- Department of Infectious Disease, St Mary’s
Medical School, Imperial College London, Praed Street, London,
Westminster W2 1NY, UK
| | - Rachel Colquhoun
- Institute of Evolutionary Biology, University of
Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
- MRC-University of Glasgow Centre for Virus
Research, University of Glasgow, Garscube Campus, 464 Bearsden Road,
Glasgow G61 1QH, UK
| | - Ben Jackson
- Institute of Evolutionary Biology, University of
Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Richard Orton
- MRC-University of Glasgow Centre for Virus
Research, University of Glasgow, Garscube Campus, 464 Bearsden Road,
Glasgow G61 1QH, UK
| | - Morten Nielsen
- Department of Health Technology, Technical
University of Denmark, Lyngby DK-2800, Denmark
| | - Nienyun Sharon Hsu
- The Florey Institute for Host-Pathogen
Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical
School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX,
UK
| | | | - Ewan M Harrison
- Department of Medicine, University of
Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ,
UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton
CB10 1SA, UK
- Department of Public Health and Primary Care,
University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK
| | - Thushan I de Silva
- The Florey Institute for Host-Pathogen
Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical
School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX,
UK
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of
Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Sharon J Peacock
- Department of Medicine, University of
Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ,
UK
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus
Research, University of Glasgow, Garscube Campus, 464 Bearsden Road,
Glasgow G61 1QH, UK
| | - Alessandro M Carabelli
- Department of Medicine, University of
Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ,
UK
| |
Collapse
|
123
|
Viana R, Moyo S, Amoako DG, Tegally H, Scheepers C, Althaus CL, Anyaneji UJ, Bester PA, Boni MF, Chand M, Choga WT, Colquhoun R, Davids M, Deforche K, Doolabh D, du Plessis L, Engelbrecht S, Everatt J, Giandhari J, Giovanetti M, Hardie D, Hill V, Hsiao NY, Iranzadeh A, Ismail A, Joseph C, Joseph R, Koopile L, Kosakovsky Pond SL, Kraemer MUG, Kuate-Lere L, Laguda-Akingba O, Lesetedi-Mafoko O, Lessells RJ, Lockman S, Lucaci AG, Maharaj A, Mahlangu B, Maponga T, Mahlakwane K, Makatini Z, Marais G, Maruapula D, Masupu K, Matshaba M, Mayaphi S, Mbhele N, Mbulawa MB, Mendes A, Mlisana K, Mnguni A, Mohale T, Moir M, Moruisi K, Mosepele M, Motsatsi G, Motswaledi MS, Mphoyakgosi T, Msomi N, Mwangi PN, Naidoo Y, Ntuli N, Nyaga M, Olubayo L, Pillay S, Radibe B, Ramphal Y, Ramphal U, San JE, Scott L, Shapiro R, Singh L, Smith-Lawrence P, Stevens W, Strydom A, Subramoney K, Tebeila N, Tshiabuila D, Tsui J, van Wyk S, Weaver S, Wibmer CK, Wilkinson E, Wolter N, Zarebski AE, Zuze B, Goedhals D, Preiser W, Treurnicht F, Venter M, Williamson C, Pybus OG, Bhiman J, Glass A, Martin DP, Rambaut A, Gaseitsiwe S, von Gottberg A, de Oliveira T. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 2022; 603:679-686. [PMID: 35042229 PMCID: PMC8942855 DOI: 10.1038/s41586-022-04411-y] [Citation(s) in RCA: 1033] [Impact Index Per Article: 516.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/07/2022] [Indexed: 01/02/2023]
Abstract
The SARS-CoV-2 epidemic in southern Africa has been characterized by three distinct waves. The first was associated with a mix of SARS-CoV-2 lineages, while the second and third waves were driven by the Beta (B.1.351) and Delta (B.1.617.2) variants, respectively1-3. In November 2021, genomic surveillance teams in South Africa and Botswana detected a new SARS-CoV-2 variant associated with a rapid resurgence of infections in Gauteng province, South Africa. Within three days of the first genome being uploaded, it was designated a variant of concern (Omicron, B.1.1.529) by the World Health Organization and, within three weeks, had been identified in 87 countries. The Omicron variant is exceptional for carrying over 30 mutations in the spike glycoprotein, which are predicted to influence antibody neutralization and spike function4. Here we describe the genomic profile and early transmission dynamics of Omicron, highlighting the rapid spread in regions with high levels of population immunity.
Collapse
Affiliation(s)
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Botswana Harvard HIV Reference Laboratory, Gaborone, Botswana
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Botswana Presidential COVID-19 Taskforce, Gaborone, Botswana
| | - Daniel G Amoako
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Cathrine Scheepers
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- South African Medical Research Council Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Christian L Althaus
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Ugochukwu J Anyaneji
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Phillip A Bester
- Division of Virology, National Health Laboratory Service, Bloemfontein, South Africa
- Division of Virology, University of the Free State, Bloemfontein, South Africa
| | - Maciej F Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | | | | | - Rachel Colquhoun
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Michaela Davids
- Zoonotic Arbo and Respiratory Virus Program, Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | | | - Deelan Doolabh
- Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Louis du Plessis
- Department of Zoology, University of Oxford, Oxford, UK
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Susan Engelbrecht
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Josie Everatt
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Marta Giovanetti
- Laboratorio de Flavivirus, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
- Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Diana Hardie
- Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Virology, NHLS Groote Schuur Laboratory, Cape Town, South Africa
| | - Verity Hill
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Nei-Yuan Hsiao
- Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Virology, NHLS Groote Schuur Laboratory, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Cape Town, South Africa
| | - Arash Iranzadeh
- Division of Computational Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Arshad Ismail
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | | | - Rageema Joseph
- Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Legodile Koopile
- Botswana Harvard AIDS Institute Partnership, Botswana Harvard HIV Reference Laboratory, Gaborone, Botswana
| | - Sergei L Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA, USA
| | | | - Lesego Kuate-Lere
- Health Services Management, Ministry of Health and Wellness, Gaborone, Botswana
| | - Oluwakemi Laguda-Akingba
- NHLS Port Elizabeth Laboratory, Port Elizabeth, South Africa
- Faculty of Health Sciences, Walter Sisulu University, Mthatha, South Africa
| | - Onalethatha Lesetedi-Mafoko
- Public Health Department, Integrated Disease Surveillance and Response, Ministry of Health and Wellness, Gaborone, Botswana
| | - Richard J Lessells
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Shahin Lockman
- Botswana Harvard AIDS Institute Partnership, Botswana Harvard HIV Reference Laboratory, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alexander G Lucaci
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA, USA
| | - Arisha Maharaj
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Boitshoko Mahlangu
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Tongai Maponga
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Kamela Mahlakwane
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
- NHLS Tygerberg Laboratory, Tygerberg Hospital, Cape Town, South Africa
| | - Zinhle Makatini
- Department of Virology, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Gert Marais
- Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Virology, NHLS Groote Schuur Laboratory, Cape Town, South Africa
| | - Dorcas Maruapula
- Botswana Harvard AIDS Institute Partnership, Botswana Harvard HIV Reference Laboratory, Gaborone, Botswana
| | - Kereng Masupu
- Botswana Presidential COVID-19 Taskforce, Gaborone, Botswana
| | - Mogomotsi Matshaba
- Botswana Presidential COVID-19 Taskforce, Gaborone, Botswana
- Botswana-Baylor Children's Clinical Centre of Excellence, Gaborone, Botswana
- Baylor College of Medicine, Houston, TX, USA
| | - Simnikiwe Mayaphi
- Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - Nokuzola Mbhele
- Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mpaphi B Mbulawa
- National Health Laboratory, Health Services Management, Ministry of Health and Wellness, Gaborone, Botswana
| | - Adriano Mendes
- Zoonotic Arbo and Respiratory Virus Program, Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - Koleka Mlisana
- National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Anele Mnguni
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Thabo Mohale
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Monika Moir
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Kgomotso Moruisi
- Health Services Management, Ministry of Health and Wellness, Gaborone, Botswana
| | - Mosepele Mosepele
- Botswana Presidential COVID-19 Taskforce, Gaborone, Botswana
- Department of Medicine, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | - Gerald Motsatsi
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Modisa S Motswaledi
- Botswana Presidential COVID-19 Taskforce, Gaborone, Botswana
- Department of Medical Laboratory Sciences, School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Thongbotho Mphoyakgosi
- National Health Laboratory, Health Services Management, Ministry of Health and Wellness, Gaborone, Botswana
| | - Nokukhanya Msomi
- Discipline of Virology, School of Laboratory Medicine and Medical Sciences and National Health Laboratory Service (NHLS), University of KwaZulu-Natal, Durban, South Africa
| | - Peter N Mwangi
- Division of Virology, University of the Free State, Bloemfontein, South Africa
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Yeshnee Naidoo
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Noxolo Ntuli
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Martin Nyaga
- Division of Virology, University of the Free State, Bloemfontein, South Africa
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Lucier Olubayo
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Cape Town, South Africa
- Division of Computational Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sureshnee Pillay
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Botshelo Radibe
- Botswana Harvard AIDS Institute Partnership, Botswana Harvard HIV Reference Laboratory, Gaborone, Botswana
| | - Yajna Ramphal
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Upasana Ramphal
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - James E San
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Lesley Scott
- Department of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa
| | - Roger Shapiro
- Botswana Harvard AIDS Institute Partnership, Botswana Harvard HIV Reference Laboratory, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lavanya Singh
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | - Wendy Stevens
- Department of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa
| | - Amy Strydom
- Zoonotic Arbo and Respiratory Virus Program, Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - Kathleen Subramoney
- Department of Virology, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Naume Tebeila
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Derek Tshiabuila
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Joseph Tsui
- Department of Zoology, University of Oxford, Oxford, UK
| | - Stephanie van Wyk
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Steven Weaver
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA, USA
| | - Constantinos K Wibmer
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Eduan Wilkinson
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Nicole Wolter
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Boitumelo Zuze
- Botswana Harvard AIDS Institute Partnership, Botswana Harvard HIV Reference Laboratory, Gaborone, Botswana
| | - Dominique Goedhals
- Division of Virology, University of the Free State, Bloemfontein, South Africa
- PathCare Vermaak, Pretoria, South Africa
| | - Wolfgang Preiser
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
- NHLS Tygerberg Laboratory, Tygerberg Hospital, Cape Town, South Africa
| | - Florette Treurnicht
- Department of Virology, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Marietje Venter
- Zoonotic Arbo and Respiratory Virus Program, Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - Carolyn Williamson
- Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Virology, NHLS Groote Schuur Laboratory, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Jinal Bhiman
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- South African Medical Research Council Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Allison Glass
- Lancet Laboratories, Johannesburg, South Africa
- Department of Molecular Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Darren P Martin
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Botswana Harvard HIV Reference Laboratory, Gaborone, Botswana
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Anne von Gottberg
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
124
|
Maher MC, Bartha I, Weaver S, di Iulio J, Ferri E, Soriaga L, Lempp FA, Hie BL, Bryson B, Berger B, Robertson DL, Snell G, Corti D, Virgin HW, Kosakovsky Pond SL, Telenti A. Predicting the mutational drivers of future SARS-CoV-2 variants of concern. Sci Transl Med 2022; 14:eabk3445. [PMID: 35014856 PMCID: PMC8939770 DOI: 10.1126/scitranslmed.abk3445] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/06/2022] [Indexed: 12/17/2022]
Abstract
SARS-CoV-2 evolution threatens vaccine- and natural infection-derived immunity as well as the efficacy of therapeutic antibodies. To improve public health preparedness, we sought to predict which existing amino acid mutations in SARS-CoV-2 might contribute to future variants of concern. We tested the predictive value of features comprising epidemiology, evolution, immunology, and neural network-based protein sequence modeling, and identified primary biological drivers of SARS-CoV-2 intra-pandemic evolution. We found evidence that ACE2-mediated transmissibility and resistance to population-level host immunity has waxed and waned as a primary driver of SARS-CoV-2 evolution over time. We retroactively identified with high accuracy (area under the receiver operator characteristic curve, AUROC=0.92-0.97) mutations that will spread, at up to four months in advance, across different phases of the pandemic. The behavior of the model was consistent with a plausible causal structure wherein epidemiological covariates combine the effects of diverse and shifting drivers of viral fitness. We applied our model to forecast mutations that will spread in the future and characterize how these mutations affect the binding of therapeutic antibodies. These findings demonstrate that it is possible to forecast the driver mutations that could appear in emerging SARS-CoV-2 variants of concern. We validate this result against Omicron, showing elevated predictive scores for its component mutations prior to emergence, and rapid score increase across daily forecasts during emergence. This modeling approach may be applied to any rapidly evolving pathogens with sufficiently dense genomic surveillance data, such as influenza, and unknown future pandemic viruses.
Collapse
Affiliation(s)
| | - Istvan Bartha
- Vir Biotechnology, San Francisco, California 94158, USA
| | - Steven Weaver
- Department of Biology Institute for Genomics and Evolutionary Medicine Temple University, Philadelphia, PA 19122
| | | | - Elena Ferri
- Vir Biotechnology, San Francisco, California 94158, USA
| | - Leah Soriaga
- Vir Biotechnology, San Francisco, California 94158, USA
| | | | - Brian L. Hie
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Bryan Bryson
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bonnie Berger
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Computer Science and Artificial Intelligence Laboratory. Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David L. Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow GS1 1QH, UK
| | - Gyorgy Snell
- Vir Biotechnology, San Francisco, California 94158, USA
| | - Davide Corti
- Vir Biotechnology, San Francisco, California 94158, USA
| | - Herbert W. Virgin
- Vir Biotechnology, San Francisco, California 94158, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sergei L. Kosakovsky Pond
- Department of Biology Institute for Genomics and Evolutionary Medicine Temple University, Philadelphia, PA 19122
| | | |
Collapse
|
125
|
Misidentification of the SARS-CoV-2 Mu variant using commercial mutation screening assays. Arch Virol 2022; 167:1141-1144. [PMID: 35194675 PMCID: PMC8863091 DOI: 10.1007/s00705-022-05395-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/31/2021] [Indexed: 12/01/2022]
Abstract
Detection of mutations by multiplex real-time RT-PCR is a widely used method for the screening of SARS-CoV-2 variants, but this method has several limitations. We describe three cases in which a Mu strain containing the mutation K417N was initially misclassified as the Beta variant. We recommend the detection of P681H to distinguish between these two variants. Our experience highlights the importance of keeping track of new variants and mutations in order to adapt the current workflows.
Collapse
|
126
|
Repurposing Antifungals for Host-Directed Antiviral Therapy? Pharmaceuticals (Basel) 2022; 15:ph15020212. [PMID: 35215323 PMCID: PMC8878022 DOI: 10.3390/ph15020212] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Because of their epidemic and pandemic potential, emerging viruses are a major threat to global healthcare systems. While vaccination is in general a straightforward approach to prevent viral infections, immunization can also cause escape mutants that hide from immune cell and antibody detection. Thus, other approaches than immunization are critical for the management and control of viral infections. Viruses are prone to mutations leading to the rapid emergence of resistant strains upon treatment with direct antivirals. In contrast to the direct interference with pathogen components, host-directed therapies aim to target host factors that are essential for the pathogenic replication cycle or to improve the host defense mechanisms, thus circumventing resistance. These relatively new approaches are often based on the repurposing of drugs which are already licensed for the treatment of other unrelated diseases. Here, we summarize what is known about the mechanisms and modes of action for a potential use of antifungals as repurposed host-directed anti-infectives for the therapeutic intervention to control viral infections.
Collapse
|
127
|
Tay JH, Porter AF, Wirth W, Duchene S. The Emergence of SARS-CoV-2 Variants of Concern Is Driven by Acceleration of the Substitution Rate. Mol Biol Evol 2022; 39:msac013. [PMID: 35038741 PMCID: PMC8807201 DOI: 10.1093/molbev/msac013] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ongoing SARS-CoV-2 pandemic has seen an unprecedented amount of rapidly generated genome data. These data have revealed the emergence of lineages with mutations associated to transmissibility and antigenicity, known as variants of concern (VOCs). A striking aspect of VOCs is that many of them involve an unusually large number of defining mutations. Current phylogenetic estimates of the substitution rate of SARS-CoV-2 suggest that its genome accrues around two mutations per month. However, VOCs can have 15 or more defining mutations and it is hypothesized that they emerged over the course of a few months, implying that they must have evolved faster for a period of time. We analyzed genome sequence data from the GISAID database to assess whether the emergence of VOCs can be attributed to changes in the substitution rate of the virus and whether this pattern can be detected at a phylogenetic level using genome data. We fit a range of molecular clock models and assessed their statistical performance. Our analyses indicate that the emergence of VOCs is driven by an episodic increase in the substitution rate of around 4-fold the background phylogenetic rate estimate that may have lasted several weeks or months. These results underscore the importance of monitoring the molecular evolution of the virus as a means of understanding the circumstances under which VOCs may emerge.
Collapse
Affiliation(s)
- John H Tay
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Ashleigh F Porter
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Wytamma Wirth
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Sebastian Duchene
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
128
|
Colson P, Fantini J, Yahi N, Delerce J, Levasseur A, Fournier PE, Lagier JC, Raoult D, La Scola B. Limited spread of a rare spike E484K-harboring SARS-CoV-2 in Marseille, France. Arch Virol 2022; 167:583-589. [PMID: 35083577 PMCID: PMC8791675 DOI: 10.1007/s00705-021-05331-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/05/2021] [Indexed: 01/01/2023]
Abstract
We detected SARS-CoV-2 of PANGO lineage R.1 with the spike substitution E484K in three patients. Eleven other sequences in France and 8,831 worldwide were available from GISAID, 92% originating from Japan. The three genome sequences from our institute were phylogenetically closest to another from Guinea-Conakry, where one of the patients had travelled. These viruses did not exhibit any unusual features in cell culture. Spike structural predictions indicated a 1.3-time higher transmissibility index than for the globally spread B.1.1.7 variant but also an affinity loss for gangliosides that might have slowed dissemination. The spread of new SARS-CoV-2 mutants/variants is still not well understood and therefore difficult to predict, and this hinders implementation of effective preventive measures, including adapted vaccines.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France.
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), MEPHI, 27 boulevard Jean Moulin, 13005, Marseille, France.
| | - Jacques Fantini
- Aix-Marseille Univ., INSERM U_1072, 13015, Marseille, France
| | - Nouara Yahi
- Aix-Marseille Univ., INSERM U_1072, 13015, Marseille, France
| | - Jeremy Delerce
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Anthony Levasseur
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), MEPHI, 27 boulevard Jean Moulin, 13005, Marseille, France
| | - Pierre-Edouard Fournier
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), MEPHI, 27 boulevard Jean Moulin, 13005, Marseille, France
| | - Jean-Christophe Lagier
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), MEPHI, 27 boulevard Jean Moulin, 13005, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), MEPHI, 27 boulevard Jean Moulin, 13005, Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), MEPHI, 27 boulevard Jean Moulin, 13005, Marseille, France
| |
Collapse
|
129
|
Colson P, Delerce J, Burel E, Beye M, Fournier PE, Levasseur A, Lagier JC, Raoult D. Occurrence of a substitution or deletion of SARS-CoV-2 spike amino acid 677 in various lineages in Marseille, France. Virus Genes 2022; 58:53-58. [PMID: 34839413 PMCID: PMC8627157 DOI: 10.1007/s11262-021-01877-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/21/2021] [Indexed: 12/01/2022]
Abstract
Great concerns have been raised about SARS-CoV-2 variants over the past six months. At the end of 2020, an increasing incidence of spike substitutions Q677H/P was described in the USA, which involved six independent lineages. We searched for changes to this amino acid in the sequence database of SARS-CoV-2 genomes obtained at the IHU Méditerranée Infection (Marseille, France) from 3634 patients sampled between February 2020 and April 2021. In seven genomes (0.2%), we found a deletion of five amino acids at spike positions 675-679 (QTQTN) including Q677, and in 76 genomes (2.3%) we found a Q677H substitution. The 83 genomes were classified in ten different Pangolin lineages. Genomes with a spike Q677 deletion were obtained from respiratory samples collected in six cases between 28 March 2020 and 12 October 2020 and in one case on 1 February 2021. The Q677H substitution was found in genomes all obtained from respiratory samples collected from 19 January 2021 and were classified in seven different lineages. Most of these genomes (41 cases) were of UK variant. Two others were classified in the B.1.160 Pangolin lineage (Marseille-4 variant) which was first detected in July 2020 in our institute but was devoid of this substitution until 19 January 2021. Also, eight genomes were classified in the A.27/Marseille-501 lineage which was first detected in our institute in January 2021 and which either harboured or did not harbour the Q677H substitution. Thus, the spike Q677H substitution should be considered as another example of convergent evolution, as it is the case of spike substitutions L18F, E484K, L452R, and N501Y which also independently appeared in various lineages.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), 27 boulevard Jean Moulin, 13005, Marseille, France
| | - Jeremy Delerce
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Emilie Burel
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Mamadou Beye
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Pierre-Edouard Fournier
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), 27 boulevard Jean Moulin, 13005, Marseille, France
| | - Anthony Levasseur
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), 27 boulevard Jean Moulin, 13005, Marseille, France
| | - Jean-Christophe Lagier
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), 27 boulevard Jean Moulin, 13005, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France.
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), 27 boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
130
|
Increasing the frequency of omicron variant mutations boosts the immune response and may reduce the virus virulence. Microb Pathog 2022; 164:105400. [PMID: 35077833 PMCID: PMC8783435 DOI: 10.1016/j.micpath.2022.105400] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 01/09/2023]
Abstract
The coronavirus has posed a serious threat to the world since its discovery in Wuhan in 2019. Beta, gamma, delta, and the final omicron variants have emerged as a result of several mutations in the virion structure. The Australian Omicron S protein variant contains 37 mutations out of a total of 67 mutations. According to preliminary data from South Africa, Omicron variant infection is not associated with any particular symptoms. The purpose of this research was to determine how changes in the structure of the S protein alter the protein's interaction with the ACE2 receptor. The Omicron variant stimulates the immune response more than the wild strain.
Collapse
|
131
|
Kistler KE, Huddleston J, Bedford T. Rapid and parallel adaptive mutations in spike S1 drive clade success in SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.09.11.459844. [PMID: 34545361 PMCID: PMC8452090 DOI: 10.1101/2021.09.11.459844] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Given the importance of variant SARS-CoV-2 viruses with altered receptor-binding or antigenic phenotypes, we sought to quantify the degree to which adaptive evolution is driving accumulation of mutations in the SARS-CoV-2 genome. Here we assessed adaptive evolution across genes in the SARS-CoV-2 genome by correlating clade growth with mutation accumulation as well as by comparing rates of nonsynonymous to synonymous divergence, clustering of mutations across the SARS-CoV-2 phylogeny and degree of convergent evolution of individual mutations. We find that spike S1 is the focus of adaptive evolution, but also identify positively-selected mutations in other genes that are sculpting the evolutionary trajectory of SARS-CoV-2. Adaptive changes in S1 accumulated rapidly, resulting in a remarkably high ratio of nonsynonymous to synonymous divergence that is 2.5X greater than that observed in HA1 at the beginning of the 2009 H1N1 pandemic.
Collapse
Affiliation(s)
- Kathryn E. Kistler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States
| | - John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States
- Howard Hughes Medical Institute, Seattle, WA, United States
| |
Collapse
|
132
|
Lucaci AG, Zehr JD, Shank SD, Bouvier D, Mei H, Nekrutenko A, Martin DP, Kosakovsky Pond SL. RASCL: Rapid Assessment Of SARS-CoV-2 Clades Through Molecular Sequence Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.15.476448. [PMID: 35075458 PMCID: PMC8786235 DOI: 10.1101/2022.01.15.476448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An important component of efforts to manage the ongoing COVID19 pandemic is the R apid A ssessment of how natural selection contributes to the emergence and proliferation of potentially dangerous S ARS-CoV-2 lineages and CL ades (RASCL). The RASCL pipeline enables continuous comparative phylogenetics-based selection analyses of rapidly growing clade-focused genome surveillance datasets, such as those produced following the initial detection of potentially dangerous variants. From such datasets RASCL automatically generates down-sampled codon alignments of individual genes/ORFs containing contextualizing background reference sequences, analyzes these with a battery of selection tests, and outputs results as both machine readable JSON files, and interactive notebook-based visualizations. AVAILABILITY RASCL is available from a dedicated repository at https://github.com/veg/RASCL and as a Galaxy workflow https://usegalaxy.eu/u/hyphy/w/rascl . Existing clade/variant analysis results are available here: https://observablehq.com/@aglucaci/rascl . CONTACT Dr. Sergei L Kosakovsky Pond ( spond@temple.edu ). SUPPLEMENTARY INFORMATION N/A.
Collapse
Affiliation(s)
- Alexander G Lucaci
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Jordan D Zehr
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Stephen D Shank
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Dave Bouvier
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Han Mei
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Anton Nekrutenko
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Darren P Martin
- Institute of Infectious Diseases and Molecular Medicine, Division Of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Sergei L Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
133
|
Martin DP, Lytras S, Lucaci AG, Maier W, Grüning B, Shank SD, Weaver S, MacLean OA, Orton RJ, Lemey P, Boni MF, Tegally H, Harkins G, Scheepers C, Bhiman JN, Everatt J, Amoako DG, San JE, Giandhari J, Sigal A, Williamson C, Hsiao NY, von Gottberg A, De Klerk A, Shafer RW, Robertson DL, Wilkinson RJ, Sewell BT, Lessells R, Nekrutenko A, Greaney AJ, Starr TN, Bloom JD, Murrell B, Wilkinson E, Gupta RK, de Oliveira T, Kosakovsky Pond SL. Selection analysis identifies unusual clustered mutational changes in Omicron lineage BA.1 that likely impact Spike function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.14.476382. [PMID: 35075456 PMCID: PMC8786225 DOI: 10.1101/2022.01.14.476382] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Among the 30 non-synonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (i) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (ii) interactions of Spike with ACE2 receptors, and (iii) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any genomes within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron over all previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected.
Collapse
Affiliation(s)
- Darren P Martin
- Institute of Infectious Diseases and Molecular Medicine, Division Of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Spyros Lytras
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | - Alexander G Lucaci
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Wolfgang Maier
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany, usegalaxy.eu
| | - Björn Grüning
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany, usegalaxy.eu
| | - Stephen D Shank
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Steven Weaver
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Oscar A MacLean
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | - Richard J Orton
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Maciej F Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Gordon Harkins
- South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Cathrine Scheepers
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jinal N Bhiman
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Josie Everatt
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Daniel G Amoako
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - James Emmanuel San
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, University of Cape Town and National Health Laboratory Service, Cape Town South Africa
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, South Africa
| | - Nei-Yuan Hsiao
- Division of Medical Virology, University of Cape Town and National Health Laboratory Service, Cape Town South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg
| | - Arne De Klerk
- Institute of Infectious Diseases and Molecular Medicine, Division Of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Robert W Shafer
- Division of Infectious Diseases, Department of medicine, Stanford university, Stanford, CA, USA
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | - Robert J Wilkinson
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, South Africa
- Francis Crick Institute, Midland Road, London NW1 1AT, UK
- Department of Infectious Diseases, Imperial College London, W12 0NN, UK
| | - B Trevor Sewell
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa
| | - Richard Lessells
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anton Nekrutenko
- Department Of Biochemistry and Molecular Biology, The Pennsylvania State University, usegalaxy.org
| | - Allison J Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA3
| | - Tyler N Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Eduan Wilkinson
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science, Stellenbosch University
| | - Ravindra K Gupta
- Africa Health Research Institute, Durban, South Africa
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science, Stellenbosch University
| | - Sergei L Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
134
|
Reynolds CJ, Gibbons JM, Pade C, Lin KM, Sandoval DM, Pieper F, Butler DK, Liu S, Otter AD, Joy G, Menacho K, Fontana M, Smit A, Kele B, Cutino-Moguel T, Maini MK, Noursadeghi M, Brooks T, Semper A, Manisty C, Treibel TA, Moon JC, McKnight Á, Altmann DM, Boyton RJ. Heterologous infection and vaccination shapes immunity against SARS-CoV-2 variants. Science 2022; 375:183-192. [PMID: 34855510 PMCID: PMC10186585 DOI: 10.1126/science.abm0811] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022]
Abstract
The impact of the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infecting strain on downstream immunity to heterologous variants of concern (VOCs) is unknown. Studying a longitudinal healthcare worker cohort, we found that after three antigen exposures (infection plus two vaccine doses), S1 antibody, memory B cells, and heterologous neutralization of B.1.351, P.1, and B.1.617.2 plateaued, whereas B.1.1.7 neutralization and spike T cell responses increased. Serology using the Wuhan Hu-1 spike receptor binding domain poorly predicted neutralizing immunity against VOCs. Neutralization potency against VOCs changed with heterologous virus encounter and number of antigen exposures. Neutralization potency fell differentially depending on targeted VOCs over the 5 months from the second vaccine dose. Heterologous combinations of spike encountered during infection and vaccination shape subsequent cross-protection against VOC, with implications for future-proof next-generation vaccines.
Collapse
Affiliation(s)
| | - Joseph M. Gibbons
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Corinna Pade
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kai-Min Lin
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Franziska Pieper
- Department of Infectious Disease, Imperial College London, London, UK
| | - David K. Butler
- Department of Infectious Disease, Imperial College London, London, UK
| | - Siyi Liu
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - George Joy
- St. Bartholomew’s Hospital, Barts Health NHS Trust, London, UK
| | - Katia Menacho
- St. Bartholomew’s Hospital, Barts Health NHS Trust, London, UK
| | | | | | - Beatrix Kele
- St. Bartholomew’s Hospital, Barts Health NHS Trust, London, UK
| | | | - Mala K. Maini
- Division of Infection and Immunity, University College London, London, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, UK
| | - COVIDsortium Immune Correlates Network‡
- Department of Infectious Disease, Imperial College London, London, UK
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- UK Health Security Agency, Porton Down, UK
- St. Bartholomew’s Hospital, Barts Health NHS Trust, London, UK
- Royal Free London NHS Foundation Trust, London, UK
- Division of Infection and Immunity, University College London, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
- Department of Immunology and Inflammation, Imperial College London, London, UK
- Lung Division, Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Tim Brooks
- UK Health Security Agency, Porton Down, UK
| | | | - Charlotte Manisty
- St. Bartholomew’s Hospital, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Thomas A. Treibel
- St. Bartholomew’s Hospital, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - James C. Moon
- St. Bartholomew’s Hospital, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - COVIDsortium Investigators‡
- Department of Infectious Disease, Imperial College London, London, UK
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- UK Health Security Agency, Porton Down, UK
- St. Bartholomew’s Hospital, Barts Health NHS Trust, London, UK
- Royal Free London NHS Foundation Trust, London, UK
- Division of Infection and Immunity, University College London, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
- Department of Immunology and Inflammation, Imperial College London, London, UK
- Lung Division, Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Áine McKnight
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Daniel M. Altmann
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Rosemary J. Boyton
- Department of Infectious Disease, Imperial College London, London, UK
- Lung Division, Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| |
Collapse
|
135
|
Durand M, Thibault P, Lévesque S, Brault A, Carignan A, Valiquette L, Martin P, Labbé S. Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its first variants in fourplex real-time quantitative reverse transcription-PCR assays. MICROBIAL CELL (GRAZ, AUSTRIA) 2022; 9:1-20. [PMID: 35083313 PMCID: PMC8717086 DOI: 10.15698/mic2022.01.767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022]
Abstract
The early diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is required to identify and isolate contagious patients to prevent further transmission of SARS-CoV-2. In this study, we present a multitarget real-time TaqMan reverse transcription PCR (rRT-PCR) assay for the quantitative detection of SARS-CoV-2 and some of its circulating variants harboring mutations that give the virus a selective advantage. Seven different primer-probe sets that included probes containing locked nucleic acid (LNA) nucleotides were designed to amplify specific wild-type and mutant sequences in Orf1ab, Envelope (E), Spike (S), and Nucleocapsid (N) genes. Furthermore, a newly developed primer-probe set targeted human β2-microglobulin (B2M) as a highly sensitive internal control for RT efficacy. All singleplex and fourplex assays detected ≤ 14 copies/reaction of quantified synthetic RNA transcripts, with a linear amplification range of nine logarithmic orders. Primer-probe sets for detection of SARS-CoV-2 exhibited no false-positive amplifications with other common respiratory pathogens, including human coronaviruses NL63, 229E, OC43, and HKU-1. Fourplex assays were evaluated using 160 clinical samples positive for SARS-CoV-2. Results showed that SARS-CoV-2 viral RNA was detected in all samples, including viral strains harboring mutations in the Spike coding sequence that became dominant in the pandemic. Given the emergence of SARS-CoV-2 variants and their rapid spread in some populations, fourplex rRT-PCR assay containing four primer-probe sets represents a reliable approach to allow quicker detection of circulating relevant variants in a single reaction.
Collapse
Affiliation(s)
- Mathieu Durand
- Plateforme RNomique et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Philippe Thibault
- Plateforme RNomique et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Lévesque
- Département de Microbiologie et d'Infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Laboratoire de Microbiologie, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Estrie, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Ariane Brault
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alex Carignan
- Département de Microbiologie et d'Infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Louis Valiquette
- Département de Microbiologie et d'Infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Philippe Martin
- Département de Microbiologie et d'Infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Labbé
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
136
|
Santoni D, Ghosh N, Saha I. An entropy-based study on mutational trajectory of SARS-CoV-2 in India. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 97:105154. [PMID: 34808395 PMCID: PMC8603812 DOI: 10.1016/j.meegid.2021.105154] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 01/20/2023]
Abstract
The pandemic of COVID-19 has been haunting us for almost the past two years. Although, the vaccination drive is in full swing throughout the world, different mutations of the SARS-CoV-2 virus are making it very difficult to put an end to the pandemic. The second wave in India, one of the worst sufferers of this pandemic, can be mainly attributed to the Delta variant i.e. B.1.617.2. Thus, it is very important to analyse and understand the mutational trajectory of SARS-CoV-2 through the study of the 26 virus proteins. In this regard, more than 17,000 protein sequences of Indian SARS-CoV-2 genomes are analysed using entropy-based approach in order to find the monthly mutational trajectory. Furthermore, Hellinger distance is also used to show the difference of the mutation events between the consecutive months for each of the 26 SARS-CoV-2 protein. The results show that the mutation rates and the mutation events of the viral proteins though changing in the initial months, start stabilizing later on for mainly the four structural proteins while the non-structural proteins mostly exhibit a more constant trend. As a consequence, it can be inferred that the evolution of the new mutative configurations will eventually reduce.
Collapse
Affiliation(s)
- Daniele Santoni
- Institute for System Analysis and Computer Science "Antonio Ruberti", National Research Council of Italy, Via dei Taurini 19, Rome 00185, Italy.
| | - Nimisha Ghosh
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland; Department of Computer Science and Information Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Indrajit Saha
- Department of Computer Science and Engineering, National Institute of Technical Teachers' Training and Research, Kolkata, West Bengal, India
| |
Collapse
|
137
|
Fertig TE, Chitoiu L, Terinte‐Balcan G, Peteu V, Marta D, Gherghiceanu M. The atomic portrait of SARS-CoV-2 as captured by cryo-electron microscopy. J Cell Mol Med 2022; 26:25-34. [PMID: 34904376 PMCID: PMC8742239 DOI: 10.1111/jcmm.17103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 01/18/2023] Open
Abstract
Transmission electron microscopy has historically been indispensable for virology research, as it offers unique insight into virus function. In the past decade, as cryo-electron microscopy (cryo-EM) has matured and become more accessible, we have been able to peer into the structure of viruses at the atomic level and understand how they interact with the host cell, with drugs or with antibodies. Perhaps, there was no time in recent history where cryo-EM was more needed, as SARS-CoV-2 has spread around the globe, causing millions of deaths and almost unquantifiable economic devastation. In this concise review, we aim to mark the most important contributions of cryo-EM to understanding the structure and function of SARS-CoV-2 proteins, from surface spikes to the virus core and from virus-receptor interactions to antibody binding.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/immunology
- Angiotensin-Converting Enzyme 2/metabolism
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/chemistry
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19/virology
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/biosynthesis
- COVID-19 Vaccines/chemistry
- Cryoelectron Microscopy
- Epitopes/chemistry
- Epitopes/immunology
- Epitopes/metabolism
- Humans
- Models, Molecular
- Protein Binding
- Protein Interaction Domains and Motifs
- Protein Structure, Secondary
- Receptors, Virus/chemistry
- Receptors, Virus/immunology
- Receptors, Virus/metabolism
- SARS-CoV-2/drug effects
- SARS-CoV-2/pathogenicity
- SARS-CoV-2/ultrastructure
- Serine Endopeptidases/chemistry
- Serine Endopeptidases/immunology
- Serine Endopeptidases/metabolism
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Virion/drug effects
- Virion/pathogenicity
- Virion/ultrastructure
Collapse
Affiliation(s)
- Tudor Emanuel Fertig
- Ultrastructural Pathology and Bioimaging LabVictor Babeș National Institute of PathologyBucharestRomania
- Carol Davila University of Medicine and PharmacyBucharestRomania
| | - Leona Chitoiu
- Ultrastructural Pathology and Bioimaging LabVictor Babeș National Institute of PathologyBucharestRomania
| | - George Terinte‐Balcan
- Ultrastructural Pathology and Bioimaging LabVictor Babeș National Institute of PathologyBucharestRomania
| | - Victor‐Eduard Peteu
- Ultrastructural Pathology and Bioimaging LabVictor Babeș National Institute of PathologyBucharestRomania
| | - Daciana Marta
- Ultrastructural Pathology and Bioimaging LabVictor Babeș National Institute of PathologyBucharestRomania
| | - Mihaela Gherghiceanu
- Ultrastructural Pathology and Bioimaging LabVictor Babeș National Institute of PathologyBucharestRomania
- Carol Davila University of Medicine and PharmacyBucharestRomania
| |
Collapse
|
138
|
Rowe LA, Beddingfield BJ, Goff K, Killeen SZ, Chirichella NR, Melton A, Roy CJ, Maness NJ. Intra-Host SARS-CoV-2 Evolution in the Gut of Mucosally-Infected Chlorocebus aethiops (African Green Monkeys). Viruses 2022; 14:77. [PMID: 35062281 PMCID: PMC8777858 DOI: 10.3390/v14010077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 02/04/2023] Open
Abstract
In recent months, several SARS-CoV-2 variants have emerged that enhance transmissibility and escape host humoral immunity. Hence, the tracking of viral evolutionary trajectories is clearly of great importance. Little is known about SARS-CoV-2 evolution in nonhuman primate models used to test vaccines and therapies and to model human disease. Viral RNA was sequenced from rectal swabs from Chlorocebus aethiops (African green monkeys) after experimental respiratory SARS-CoV-2 infection. Two distinct patterns of viral evolution were identified that were shared between all collected samples. First, mutations in the furin cleavage site that were initially present in the virus as a consequence of VeroE6 cell culture adaptation were not detected in viral RNA recovered in rectal swabs, confirming the necessity of this motif for viral infection in vivo. Three amino acid changes were also identified; ORF 1a S2103F, and spike D215G and H655Y, which were detected in rectal swabs from all sampled animals. These findings are demonstrative of intra-host SARS-CoV-2 evolution and may identify a host-adapted variant of SARS-CoV-2 that would be useful in future primate models involving SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lori A. Rowe
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
| | - Brandon J. Beddingfield
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
| | - Kelly Goff
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
| | - Stephanie Z. Killeen
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
| | - Nicole R. Chirichella
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
| | - Alexandra Melton
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
| | - Chad J. Roy
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Nicholas J. Maness
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
139
|
Lina B. [The different phases of molecular and antigenic evolution of SARS-CoV-2 viruses during the 20 months following its emergence]. BULLETIN DE L'ACADEMIE NATIONALE DE MEDECINE 2022; 206:87-99. [PMID: 34866635 PMCID: PMC8629187 DOI: 10.1016/j.banm.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/04/2021] [Indexed: 01/04/2023]
Abstract
From its emergence in December 2019 and until the end of the fourth pandemic wave in October 2021, SARS-CoV-2 circulation has been associated with significant molecular evolutions of the virus. These were linked to mutations that have led to new virus linages with replication advantages as a result of increased transmission, or partial immune escape in the context of progressively increasing global immunisation. The pandemic context with large scale epidemics massive outbreaks observed in highly populated areas has favoured this emergence of "variants". During the 20 months period, at least three evolutionary phases have been observed, leading to the situation observed in October 2021. For the first time, an unprecedented worldwide surveillance effort has been conducted to monitor the circulation of the emerging virus, with rapid data sharing. This molecular surveillance system has provided an accurate description of the circulating viruses, and their evolution. The implementation of these tools and skills able to provide SARS-CoV-2 molecular epidemiological data has upgraded the global capacity for surveillance worldwide, and may allow us to be better prepared for a future pandemic episode.
Collapse
Affiliation(s)
- B. Lina
- Laboratoire de virologie des HCL, institut des agents infectieux (IAI), CNR des virus à transmission respiratoire (dont la grippe), groupement hospitalier Nord, hôpital de la Croix Rousse, 103, grande rue de la Croix Rousse, 69317 Lyon cedex 04, France,Inserm U1111, laboratoire Virpath, CNRS UMR 5308, ENS de Lyon, UCBL, centre international de recherche en infectiologie (CIRI), université de Lyon, 7–11, rue Guillaume-Paradin, 69372 Lyon cedex 08, France
| |
Collapse
|
140
|
Seabra SG, Libin PJK, Theys K, Zhukova A, Potter BI, Nebenzahl-Guimaraes H, Gorbalenya AE, Sidorov IA, Pimentel V, Pingarilho M, de Vasconcelos ATR, Dellicour S, Khouri R, Gascuel O, Vandamme AM, Baele G, Cuypers L, Abecasis AB. OUP accepted manuscript. Virus Evol 2022; 8:veac029. [PMID: 35478717 PMCID: PMC9035895 DOI: 10.1093/ve/veac029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The Zika virus (ZIKV) disease caused a public health emergency of international concern that started in February 2016. The overall number of ZIKV-related cases increased until November 2016, after which it declined sharply. While the evaluation of the potential risk and impact of future arbovirus epidemics remains challenging, intensified surveillance efforts along with a scale-up of ZIKV whole-genome sequencing provide an opportunity to understand the patterns of genetic diversity, evolution, and spread of ZIKV. However, a classification system that reflects the true extent of ZIKV genetic variation is lacking. Our objective was to characterize ZIKV genetic diversity and phylodynamics, identify genomic footprints of differentiation patterns, and propose a dynamic classification system that reflects its divergence levels. We analysed a curated dataset of 762 publicly available sequences spanning the full-length coding region of ZIKV from across its geographical span and collected between 1947 and 2021. The definition of genetic groups was based on comprehensive evolutionary dynamics analyses, which included recombination and phylogenetic analyses, within- and between-group pairwise genetic distances comparison, detection of selective pressure, and clustering analyses. Evidence for potential recombination events was detected in a few sequences. However, we argue that these events are likely due to sequencing errors as proposed in previous studies. There was evidence of strong purifying selection, widespread across the genome, as also detected for other arboviruses. A total of 50 sites showed evidence of positive selection, and for a few of these sites, there was amino acid (AA) differentiation between genetic clusters. Two main genetic clusters were defined, ZA and ZB, which correspond to the already characterized ‘African’ and ‘Asian’ genotypes, respectively. Within ZB, two subgroups, ZB.1 and ZB.2, represent the Asiatic and the American (and Oceania) lineages, respectively. ZB.1 is further subdivided into ZB.1.0 (a basal Malaysia sequence sampled in the 1960s and a recent Indian sequence), ZB.1.1 (South-Eastern Asia, Southern Asia, and Micronesia sequences), and ZB.1.2 (very similar sequences from the outbreak in Singapore). ZB.2 is subdivided into ZB.2.0 (basal American sequences and the sequences from French Polynesia, the putative origin of South America introduction), ZB.2.1 (Central America), and ZB.2.2 (Caribbean and North America). This classification system does not use geographical references and is flexible to accommodate potential future lineages. It will be a helpful tool for studies that involve analyses of ZIKV genomic variation and its association with pathogenicity and serve as a starting point for the public health surveillance and response to on-going and future epidemics and to outbreaks that lead to the emergence of new variants.
Collapse
Affiliation(s)
| | | | | | - Anna Zhukova
- Institut Pasteur, Université Paris Cité, Unité Bioinformatique Evolutive, 25-28 rue du Dr Roux, Paris F-75015, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 25-28 rue du Dr Roux, Paris F-75015, France
| | | | - Hanna Nebenzahl-Guimaraes
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira 100, Lisboa 1349-008, Portugal
| | | | | | - Victor Pimentel
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira 100, Lisboa 1349-008, Portugal
| | - Marta Pingarilho
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira 100, Lisboa 1349-008, Portugal
| | | | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, KU Leuven, Herestraat 49 - box 1030, Leuven 3000, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP 264/3, 50 av. F.D. Roosevelt, Bruxelles B-1050, Belgium
| | | | | | | | | | - Lize Cuypers
- Department of Laboratory Medicine, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Ana B Abecasis
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira 100, Lisboa 1349-008, Portugal
| |
Collapse
|
141
|
Gao F, Huang J, Li T, Hu C, Shen M, Mu S, Luo F, Song S, Hao Y, Wang W, Han X, Qian C, Wang Y, Wu R, Li L, Li S, Jin A. A Highly Conserved Peptide Vaccine Candidate Activates Both Humoral and Cellular Immunity Against SARS-CoV-2 Variant Strains. Front Immunol 2021; 12:789905. [PMID: 34950151 PMCID: PMC8688401 DOI: 10.3389/fimmu.2021.789905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Facing the imminent need for vaccine candidates with cross-protection against globally circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutants, we present a conserved antigenic peptide RBD9.1 with both T-cell and B-cell epitopes. RBD9.1 can be recognized by coronavirus disease 2019 (COVID-19) convalescent serum, particularly for those with high neutralizing potency. Immunization with RBD9.1 can successfully induce the production of the receptor-binding domain (RBD)-specific antibodies in Balb/c mice. Importantly, the immunized sera exhibit sustained neutralizing efficacy against multiple dominant SARS-CoV-2 variant strains, including B.1.617.2 that carries a point mutation (SL452R) within the sequence of RBD9.1. Specifically, SY451 and SY454 are identified as the key amino acids for the binding of the induced RBD-specific antibodies to RBD9.1. Furthermore, we have confirmed that the RBD9.1 antigenic peptide can induce a S448-456 (NYNYLYRLF)-specific CD8+ T-cell response. Both RBD9.1-specific B cells and the S448-456-specific T cells can still be activated more than 3 months post the last immunization. This study provides a potential vaccine candidate that can generate long-term protective efficacy over SARS-CoV-2 variants, with the unique functional mechanism of activating both humoral and cellular immunity.
Collapse
Affiliation(s)
- Fengxia Gao
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Jingjing Huang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Tingting Li
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Chao Hu
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Meiying Shen
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song Mu
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Feiyang Luo
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Shuyi Song
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Yanan Hao
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Wang Wang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Xiaojian Han
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Chen Qian
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Yingming Wang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Ruixin Wu
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Luo Li
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Shenglong Li
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Aishun Jin
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
142
|
Dejnirattisai W, Huo J, Zhou D, Zahradník J, Supasa P, Liu C, Duyvesteyn HM, Ginn HM, Mentzer AJ, Tuekprakhon A, Nutalai R, Wang B, Dijokaite A, Khan S, Avinoam O, Bahar M, Skelly D, Adele S, Johnson SA, Amini A, Ritter T, Mason C, Dold C, Pan D, Assadi S, Bellass A, Omo-Dare N, Koeckerling D, Flaxman A, Jenkin D, Aley PK, Voysey M, Clemens SAC, Naveca FG, Nascimento V, Nascimento F, Fernandes da Costa C, Resende PC, Pauvolid-Correa A, Siqueira MM, Baillie V, Serafin N, Ditse Z, Da Silva K, Madhi S, Nunes MC, Malik T, Openshaw PJM, Baillie JK, Semple MG, Townsend AR, Huang KYA, Tan TK, Carroll MW, Klenerman P, Barnes E, Dunachie SJ, Constantinides B, Webster H, Crook D, Pollard AJ, Lambe T, Paterson NG, Williams MA, Hall DR, Fry EE, Mongkolsapaya J, Ren J, Schreiber G, Stuart DI, Screaton GR. Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.03.471045. [PMID: 34981049 PMCID: PMC8722586 DOI: 10.1101/2021.12.03.471045] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
On the 24 th November 2021 the sequence of a new SARS CoV-2 viral isolate spreading rapidly in Southern Africa was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titres of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic as well as Alpha, Beta, Gamma, Delta are substantially reduced or fail to neutralize. Titres against Omicron are boosted by third vaccine doses and are high in cases both vaccinated and infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of a large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses, combining mutations conferring tight binding to ACE2 to unleash evolution driven by immune escape, leading to a large number of mutations in the ACE2 binding site which rebalance receptor affinity to that of early pandemic viruses.
Collapse
Affiliation(s)
- Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jiandong Huo
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
| | - Daming Zhou
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Jiří Zahradník
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chang Liu
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Helen M.E. Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
| | - Helen M. Ginn
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Alexander J. Mentzer
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Aekkachai Tuekprakhon
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rungtiwa Nutalai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Beibei Wang
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Aiste Dijokaite
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Suman Khan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Avinoam
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Mohammad Bahar
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
| | - Donal Skelly
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Peter Medawar Building for Pathogen Research, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sandra Adele
- Peter Medawar Building for Pathogen Research, Oxford, UK
| | | | - Ali Amini
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Peter Medawar Building for Pathogen Research, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Thomas Ritter
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Chris Mason
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Christina Dold
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Daniel Pan
- Department of Infectious Diseases and HIV Medicine, University Hospitals of Leicester NHS Trust
- Department of Respiratory Sciences, University of Leicester
| | - Sara Assadi
- Department of Infectious Diseases and HIV Medicine, University Hospitals of Leicester NHS Trust
| | - Adam Bellass
- Department of Infectious Diseases and HIV Medicine, University Hospitals of Leicester NHS Trust
| | - Nikki Omo-Dare
- Department of Infectious Diseases and HIV Medicine, University Hospitals of Leicester NHS Trust
| | | | - Amy Flaxman
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel Jenkin
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Parvinder K Aley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Merryn Voysey
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Sue Ann Costa Clemens
- Institute of Global Health, University of Siena, Siena, Brazil; Department of Paediatrics, University of Oxford, Oxford, UK
| | - Felipe Gomes Naveca
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Amazonas, Brazil
| | - Valdinete Nascimento
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Amazonas, Brazil
| | - Fernanda Nascimento
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Amazonas, Brazil
| | | | | | - Alex Pauvolid-Correa
- Laboratorio de vírus respiratórios- IOC/FIOCRUZ, Rio de Janeiro, Brazil
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | | | - Vicky Baillie
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Technology/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Natali Serafin
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Technology/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zanele Ditse
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Technology/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kelly Da Silva
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Technology/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir Madhi
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Technology/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Marta C Nunes
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Technology/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tariq Malik
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, UK
| | | | - J Kenneth Baillie
- Genetics and Genomics, Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Malcolm G Semple
- NIHR Health Protection Research Unit, Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Alain R Townsend
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Kuan-Ying A. Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tiong Kit Tan
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Miles W. Carroll
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, UK
| | - Paul Klenerman
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Peter Medawar Building for Pathogen Research, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Eleanor Barnes
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Peter Medawar Building for Pathogen Research, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Susanna J. Dunachie
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Peter Medawar Building for Pathogen Research, Oxford, UK
- Centre For Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand, Department of Medicine, University of Oxford, Oxford, UK
| | | | - Hermione Webster
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Derrick Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew J Pollard
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Teresa Lambe
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | | | | | - Neil G. Paterson
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Mark A. Williams
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - David R. Hall
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Elizabeth E. Fry
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Siriraj Center of Research Excellence in Dengue & Emerging Pathogens, Dean Office for Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Jingshan Ren
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - David I. Stuart
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
- Instruct-ERIC, Oxford House, Parkway Court, John Smith Drive, Oxford, UK
| | - Gavin R Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| |
Collapse
|
143
|
Duerr R, Dimartino D, Marier C, Zappile P, Levine S, François F, Iturrate E, Wang G, Dittmann M, Lighter J, Elbel B, Troxel AB, Goldfeld KS, Heguy A. Clinical and genomic signatures of rising SARS-CoV-2 Delta breakthrough infections in New York. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.12.07.21267431. [PMID: 34909779 PMCID: PMC8669846 DOI: 10.1101/2021.12.07.21267431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In 2021, Delta has become the predominant SARS-CoV-2 variant worldwide. While vaccines effectively prevent COVID-19 hospitalization and death, vaccine breakthrough infections increasingly occur. The precise role of clinical and genomic determinants in Delta infections is not known, and whether they contribute to increased rates of breakthrough infections compared to unvaccinated controls. Here, we show a steep and near complete replacement of circulating variants with Delta between May and August 2021 in metropolitan New York. We observed an increase of the Delta sublineage AY.25, its spike mutation S112L, and nsp12 mutation F192V in breakthroughs. Delta infections were associated with younger age and lower hospitalization rates than Alpha. Delta breakthroughs increased significantly with time since vaccination, and, after adjusting for confounders, they rose at similar rates as in unvaccinated individuals. Our data indicate a limited impact of vaccine escape in favor of Delta's increased epidemic growth in times of waning vaccine protection.
Collapse
Affiliation(s)
- Ralf Duerr
- Department of Microbiology, NYU Grossman School of Medicine
| | - Dacia Dimartino
- Genome Technology Center, Office of Science and Research, NYU Langone Health
| | - Christian Marier
- Genome Technology Center, Office of Science and Research, NYU Langone Health
| | - Paul Zappile
- Genome Technology Center, Office of Science and Research, NYU Langone Health
| | | | | | | | - Guiqing Wang
- Department of Pathology, NYU Grossman School of Medicine
| | - Meike Dittmann
- Department of Microbiology, NYU Grossman School of Medicine
| | - Jennifer Lighter
- Department of Pediatric Infectious Diseases, NYU Grossman School of Medicine
| | - Brian Elbel
- Department of Population Health, NYU Grossman School of Medicine
- NYU Wagner Graduate School of Public Service
| | - Andrea B. Troxel
- Department of Population Health, NYU Grossman School of Medicine
| | | | - Adriana Heguy
- Genome Technology Center, Office of Science and Research, NYU Langone Health
- Department of Pathology, NYU Grossman School of Medicine
| |
Collapse
|
144
|
Khan M, Yoo SJ, Clijsters M, Backaert W, Vanstapel A, Speleman K, Lietaer C, Choi S, Hether TD, Marcelis L, Nam A, Pan L, Reeves JW, Van Bulck P, Zhou H, Bourgeois M, Debaveye Y, De Munter P, Gunst J, Jorissen M, Lagrou K, Lorent N, Neyrinck A, Peetermans M, Thal DR, Vandenbriele C, Wauters J, Mombaerts P, Van Gerven L. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell 2021; 184:5932-5949.e15. [PMID: 34798069 PMCID: PMC8564600 DOI: 10.1016/j.cell.2021.10.027] [Citation(s) in RCA: 239] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/01/2021] [Accepted: 10/25/2021] [Indexed: 12/28/2022]
Abstract
Anosmia, the loss of smell, is a common and often the sole symptom of COVID-19. The onset of the sequence of pathobiological events leading to olfactory dysfunction remains obscure. Here, we have developed a postmortem bedside surgical procedure to harvest endoscopically samples of respiratory and olfactory mucosae and whole olfactory bulbs. Our cohort of 85 cases included COVID-19 patients who died a few days after infection with SARS-CoV-2, enabling us to catch the virus while it was still replicating. We found that sustentacular cells are the major target cell type in the olfactory mucosa. We failed to find evidence for infection of olfactory sensory neurons, and the parenchyma of the olfactory bulb is spared as well. Thus, SARS-CoV-2 does not appear to be a neurotropic virus. We postulate that transient insufficient support from sustentacular cells triggers transient olfactory dysfunction in COVID-19. Olfactory sensory neurons would become affected without getting infected.
Collapse
Affiliation(s)
- Mona Khan
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Seung-Jun Yoo
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Marnick Clijsters
- Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research, KU Leuven, Leuven, Belgium
| | - Wout Backaert
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Unit, KU Leuven, Leuven, Belgium
| | - Arno Vanstapel
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Kato Speleman
- Department of Otorhinolaryngology, Head and Neck Surgery, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| | - Charlotte Lietaer
- Department of Otorhinolaryngology, Head and Neck Surgery, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| | - Sumin Choi
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | | | - Lukas Marcelis
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Andrew Nam
- NanoString Technologies Inc., Seattle, WA, USA
| | - Liuliu Pan
- NanoString Technologies Inc., Seattle, WA, USA
| | | | - Pauline Van Bulck
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Hai Zhou
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Marc Bourgeois
- Department of Anesthesiology and Intensive Care Medicine, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| | - Yves Debaveye
- Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Cellular and Molecular Medicine, Laboratory of Intensive Care Medicine, KU Leuven, Leuven, Belgium
| | - Paul De Munter
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, Leuven, Belgium
| | - Jan Gunst
- Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Cellular and Molecular Medicine, Laboratory of Intensive Care Medicine, KU Leuven, Leuven, Belgium
| | - Mark Jorissen
- Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research, KU Leuven, Leuven, Belgium; Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Laboratory Medicine and National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
| | - Natalie Lorent
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Arne Neyrinck
- Department of Anesthesia, University Hospitals Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Marijke Peetermans
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, Leuven, Belgium
| | - Dietmar Rudolf Thal
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium; Department of Imaging and Pathology, Laboratory of Neuropathology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Christophe Vandenbriele
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Joost Wauters
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, Leuven, Belgium
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany.
| | - Laura Van Gerven
- Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research, KU Leuven, Leuven, Belgium; Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Unit, KU Leuven, Leuven, Belgium.
| |
Collapse
|
145
|
de Silva TI, Liu G, Lindsey BB, Dong D, Moore SC, Hsu NS, Shah D, Wellington D, Mentzer AJ, Angyal A, Brown R, Parker MD, Ying Z, Yao X, Turtle L, Dunachie S, Maini MK, Ogg G, Knight JC, Peng Y, Rowland-Jones SL, Dong T. The impact of viral mutations on recognition by SARS-CoV-2 specific T cells. iScience 2021; 24:103353. [PMID: 34729465 PMCID: PMC8552693 DOI: 10.1016/j.isci.2021.103353] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/26/2021] [Accepted: 10/22/2021] [Indexed: 10/28/2022] Open
Abstract
We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.
Collapse
Affiliation(s)
- Thushan I. de Silva
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, UK
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, P.O. Box 273, Banjul, The Gambia
| | - Guihai Liu
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Benjamin B. Lindsey
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, UK
| | - Danning Dong
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
- CAMS Key Laboratory of Tumor Immunology and Radiation Therapy, Xinjiang Tumor Hospital, Xinjiang Medical University, China
| | - Shona C. Moore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool CH64 7TE, UK
| | - Nienyun Sharon Hsu
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, UK
- Sheffield Bioinformatics Core, The University of Sheffield, Sheffield, UK
| | - Dhruv Shah
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, UK
| | - Dannielle Wellington
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Alexander J. Mentzer
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Oxford OX3 7FZ, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Adrienn Angyal
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, UK
| | - Rebecca Brown
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, UK
| | - Matthew D. Parker
- Sheffield Bioinformatics Core, The University of Sheffield, Sheffield, UK
- Sheffield Biomedical Research Centre, The University of Sheffield, Sheffield S10 2JF, UK
| | - Zixi Ying
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Xuan Yao
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool CH64 7TE, UK
- Tropical & Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust (Member of Liverpool Health Partners), Liverpool L7 8XP, UK
| | - Susanna Dunachie
- Centre For Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7LG, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Mala K. Maini
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Graham Ogg
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Julian C. Knight
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Oxford OX3 7FZ, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Yanchun Peng
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Sarah L. Rowland-Jones
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, UK
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Oxford OX3 7FZ, UK
| | - Tao Dong
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Oxford OX3 7FZ, UK
| |
Collapse
|
146
|
Marques AD, Sherrill-Mix S, Everett J, Reddy S, Hokama P, Roche AM, Hwang Y, Glascock A, Whiteside SA, Graham-Wooten J, Khatib LA, Fitzgerald AS, Moustafa AM, Bianco C, Rajagopal S, Helton J, Deming R, Denu L, Ahmed A, Kitt E, Coffin SE, Newbern C, Mell JC, Planet PJ, Badjatia N, Richards B, Wang ZX, Cannuscio CC, Strelau KM, Jaskowiak-Barr A, Cressman L, Loughrey S, Ganguly A, Feldman MD, Collman RG, Rodino KG, Kelly BJ, Bushman FD. SARS-CoV-2 variants associated with vaccine breakthrough in the Delaware Valley through summer 2021. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.10.18.21264623. [PMID: 34704098 PMCID: PMC8547530 DOI: 10.1101/2021.10.18.21264623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The severe acute respiratory coronavirus-2 (SARS-CoV-2) is the cause of the global outbreak of COVID-19. Evidence suggests that the virus is evolving to allow efficient spread through the human population, including vaccinated individuals. Here we report a study of viral variants from surveillance of the Delaware Valley, including the city of Philadelphia, and variants infecting vaccinated subjects. We sequenced and analyzed complete viral genomes from 2621 surveillance samples from March 2020 to September 2021 and compared them to genome sequences from 159 vaccine breakthroughs. In the early spring of 2020, all detected variants were of the B.1 and closely related lineages. A mixture of lineages followed, notably including B.1.243 followed by B.1.1.7 (alpha), with other lineages present at lower levels. Later isolations were dominated by B.1.617.2 (delta) and other delta lineages; delta was the exclusive variant present by the last time sampled. To investigate whether any variants appeared preferentially in vaccine breakthroughs, we devised a model based on Bayesian autoregressive moving average logistic multinomial regression to allow rigorous comparison. This revealed that B.1.617.2 (delta) showed three-fold enrichment in vaccine breakthrough cases (odds ratio of 3; 95% credible interval 0.89-11). Viral point substitutions could also be associated with vaccine breakthroughs, notably the N501Y substitution found in the alpha, beta and gamma variants (odds ratio 2.04; 95% credible interval of 1.25-3.18). This study thus provides a detailed picture of viral evolution in the Delaware Valley and a geographically matched analysis of vaccine breakthroughs; it also introduces a rigorous statistical approach to interrogating enrichment of viral variants.
Collapse
Affiliation(s)
- Andrew D. Marques
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Scott Sherrill-Mix
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Shantan Reddy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Pascha Hokama
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Aoife M. Roche
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Young Hwang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Abigail Glascock
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Samantha A. Whiteside
- Pulmonary, Allergy and Critical Care Division; Department of Medicine; University of Pennsylvania Perelman School of Medicine; Philadelphia, PA
| | - Jevon Graham-Wooten
- Pulmonary, Allergy and Critical Care Division; Department of Medicine; University of Pennsylvania Perelman School of Medicine; Philadelphia, PA
| | - Layla A. Khatib
- Pulmonary, Allergy and Critical Care Division; Department of Medicine; University of Pennsylvania Perelman School of Medicine; Philadelphia, PA
| | - Ayannah S. Fitzgerald
- Pulmonary, Allergy and Critical Care Division; Department of Medicine; University of Pennsylvania Perelman School of Medicine; Philadelphia, PA
| | - Ahmed M. Moustafa
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA
- Division of Gastroenterology, Hepatology & Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Colleen Bianco
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Swetha Rajagopal
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Jenna Helton
- Division of COVID-19 Containment, Philadelphia Department of Public Health, Philadelphia, PA
| | - Regan Deming
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Lidiya Denu
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Azad Ahmed
- Department of Microbiology & Immunology, Center for Genomic Sciences, Drexel University College of Medicine. Philadelphia, PA
| | - Eimear Kitt
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Susan E. Coffin
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Claire Newbern
- Division of COVID-19 Containment, Philadelphia Department of Public Health, Philadelphia, PA
| | - Josh Chang Mell
- Department of Microbiology & Immunology, Center for Genomic Sciences, Drexel University College of Medicine. Philadelphia, PA
| | - Paul J. Planet
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY
| | - Nitika Badjatia
- Molecular & Genomic Pathology Laboratory, Thomas Jefferson University Hospital, Philadelphia, PA
| | - Bonnie Richards
- Jefferson Occupational Health Network for Employees and Students (JOHN), Thomas Jefferson University, Philadelphia, PA
| | - Zi-Xuan Wang
- Molecular & Genomic Pathology Laboratory, Thomas Jefferson University Hospital, Philadelphia, PA
- Department of Anatomy, Pathology, and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, PA
| | - Carolyn C. Cannuscio
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA
- Department of Family Medicine and Community Health, University of Pennsylvania, Philadelphia, PA
| | - Katherine M. Strelau
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA
- Department of Family Medicine and Community Health, University of Pennsylvania, Philadelphia, PA
| | - Anne Jaskowiak-Barr
- Division of Infectious Diseases; Department of Medicine & Department of Biostatistics, Epidemiology, and Informatics; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Leigh Cressman
- Division of Infectious Diseases; Department of Medicine & Department of Biostatistics, Epidemiology, and Informatics; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sean Loughrey
- Division of Infectious Diseases; Department of Medicine & Department of Biostatistics, Epidemiology, and Informatics; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Arupa Ganguly
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael D. Feldman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ronald G. Collman
- Pulmonary, Allergy and Critical Care Division; Department of Medicine; University of Pennsylvania Perelman School of Medicine; Philadelphia, PA
| | - Kyle G. Rodino
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Brendan J. Kelly
- Division of Infectious Diseases; Department of Medicine & Department of Biostatistics, Epidemiology, and Informatics; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
147
|
Sheward DJ, Mandolesi M, Urgard E, Kim C, Hanke L, Perez Vidakovics L, Pankow A, Smith NL, Castro Dopico X, McInerney GM, Coquet JM, Karlsson Hedestam GB, Murrell B. Beta RBD boost broadens antibody-mediated protection against SARS-CoV-2 variants in animal models. Cell Rep Med 2021; 2:100450. [PMID: 34723224 PMCID: PMC8536561 DOI: 10.1016/j.xcrm.2021.100450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/20/2021] [Accepted: 10/18/2021] [Indexed: 11/03/2022]
Abstract
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) with resistance to neutralizing antibodies are threatening to undermine vaccine efficacy. Vaccination and infection have led to widespread humoral immunity against the pandemic founder (Wu-Hu-1). Against this background, it is critical to assess the outcomes of subsequent immunization with variant antigens. It is not yet clear whether heterotypic boosts would be compromised by original antigenic sin, where pre-existing responses to a prior variant dampen responses to a new one, or whether the memory B cell repertoire would bridge the gap between Wu-Hu-1 and VOCs. We show, in macaques immunized with Wu-Hu-1 spike, that a single dose of adjuvanted beta variant receptor binding domain (RBD) protein broadens neutralizing antibody responses to heterologous VOCs. Passive transfer of plasma sampled after Wu-Hu-1 spike immunization only partially protects K18-hACE2 mice from lethal challenge with a beta variant isolate, whereas plasma sampled following heterotypic RBD boost protects completely against disease.
Collapse
Affiliation(s)
- Daniel J. Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Marco Mandolesi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Egon Urgard
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Perez Vidakovics
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alec Pankow
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Natalie L. Smith
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gerald M. McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan M. Coquet
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
148
|
Puligedda RD, Al-Saleem FH, Wirblich C, Kattala CD, Jović M, Geiszler L, Devabhaktuni H, Feuerstein GZ, Schnell MJ, Sack M, Livornese LL, Dessain SK. A Strategy to Detect Emerging Non-Delta SARS-CoV-2 Variants with a Monoclonal Antibody Specific for the N501 Spike Residue. Diagnostics (Basel) 2021; 11:2092. [PMID: 34829439 PMCID: PMC8625484 DOI: 10.3390/diagnostics11112092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022] Open
Abstract
Efforts to control SARS-CoV-2 have been challenged by the emergence of variant strains that have important implications for clinical and epidemiological decision making. Four variants of concern (VOCs) have been designated by the Centers for Disease Control and Prevention (CDC), namely, B.1.617.2 (delta), B.1.1.7 (alpha), B.1.351 (beta), and P.1 (gamma), although the last three have been downgraded to variants being monitored (VBMs). VOCs and VBMs have shown increased transmissibility and/or disease severity, resistance to convalescent SARS-CoV-2 immunity and antibody therapeutics, and the potential to evade diagnostic detection. Methods are needed for point-of-care (POC) testing to rapidly identify these variants, protect vulnerable populations, and improve surveillance. Antigen-detection rapid diagnostic tests (Ag-RDTs) are ideal for POC use, but Ag-RDTs that recognize specific variants have not yet been implemented. Here, we describe a mAb (2E8) that is specific for the SARS-CoV-2 spike protein N501 residue. The 2E8 mAb can distinguish the delta VOC from variants with the N501Y meta-signature, which is characterized by convergent mutations that contribute to increased virulence and evasion of host immunity. Among the N501Y-containing mutants formerly designated as VOCs (alpha, beta, and gamma), a previously described mAb, CB6, can distinguish beta from alpha and gamma. When used in a sandwich ELISA, these mAbs sort these important SARS-CoV-2 variants into three diagnostic categories, namely, (1) delta, (2) alpha or gamma, and (3) beta. As delta is currently the predominant variant globally, they will be useful for POC testing to identify N501Y meta-signature variants, protect individuals in high-risk settings, and help detect epidemiological shifts among SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Rama Devudu Puligedda
- Center for Human Antibody Technology, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA; (R.D.P.); (F.H.A.-S.); (C.D.K.); (H.D.)
| | - Fetweh H. Al-Saleem
- Center for Human Antibody Technology, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA; (R.D.P.); (F.H.A.-S.); (C.D.K.); (H.D.)
| | - Cristoph Wirblich
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (M.J.S.)
| | - Chandana Devi Kattala
- Center for Human Antibody Technology, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA; (R.D.P.); (F.H.A.-S.); (C.D.K.); (H.D.)
| | - Marko Jović
- Nicoya Lifesciences, Kitchener, ON N2G 2K4, Canada;
| | - Laura Geiszler
- Department of Internal Medicine, Lankenau Medical Center, Wynnewood, PA 19096, USA; (L.G.); (L.L.L.J.)
| | - Himani Devabhaktuni
- Center for Human Antibody Technology, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA; (R.D.P.); (F.H.A.-S.); (C.D.K.); (H.D.)
| | | | - Matthias J. Schnell
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (M.J.S.)
| | | | - Lawrence L. Livornese
- Department of Internal Medicine, Lankenau Medical Center, Wynnewood, PA 19096, USA; (L.G.); (L.L.L.J.)
| | - Scott K. Dessain
- Center for Human Antibody Technology, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA; (R.D.P.); (F.H.A.-S.); (C.D.K.); (H.D.)
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (M.J.S.)
| |
Collapse
|
149
|
Tsu BV, Fay EJ, Nguyen KT, Corley MR, Hosuru B, Dominguez VA, Daugherty MD. Running With Scissors: Evolutionary Conflicts Between Viral Proteases and the Host Immune System. Front Immunol 2021; 12:769543. [PMID: 34790204 PMCID: PMC8591160 DOI: 10.3389/fimmu.2021.769543] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/08/2021] [Indexed: 12/28/2022] Open
Abstract
Many pathogens encode proteases that serve to antagonize the host immune system. In particular, viruses with a positive-sense single-stranded RNA genome [(+)ssRNA], including picornaviruses, flaviviruses, and coronaviruses, encode proteases that are not only required for processing viral polyproteins into functional units but also manipulate crucial host cellular processes through their proteolytic activity. Because these proteases must cleave numerous polyprotein sites as well as diverse host targets, evolution of these viral proteases is expected to be highly constrained. However, despite this strong evolutionary constraint, mounting evidence suggests that viral proteases such as picornavirus 3C, flavivirus NS3, and coronavirus 3CL, are engaged in molecular 'arms races' with their targeted host factors, resulting in host- and virus-specific determinants of protease cleavage. In cases where protease-mediated cleavage results in host immune inactivation, recurrent host gene evolution can result in avoidance of cleavage by viral proteases. In other cases, such as recently described examples in NLRP1 and CARD8, hosts have evolved 'tripwire' sequences that mimic protease cleavage sites and activate an immune response upon cleavage. In both cases, host evolution may be responsible for driving viral protease evolution, helping explain why viral proteases and polyprotein sites are divergent among related viruses despite such strong evolutionary constraint. Importantly, these evolutionary conflicts result in diverse protease-host interactions even within closely related host and viral species, thereby contributing to host range, zoonotic potential, and pathogenicity of viral infection. Such examples highlight the importance of examining viral protease-host interactions through an evolutionary lens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Matthew D. Daugherty
- Division of Biological Sciences, University of California, San Diego, CA, United States
| |
Collapse
|
150
|
Kmiec D, Lista MJ, Ficarelli M, Swanson CM, Neil SJD. S-farnesylation is essential for antiviral activity of the long ZAP isoform against RNA viruses with diverse replication strategies. PLoS Pathog 2021; 17:e1009726. [PMID: 34695163 PMCID: PMC8568172 DOI: 10.1371/journal.ppat.1009726] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/04/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022] Open
Abstract
The zinc finger antiviral protein (ZAP) is a broad inhibitor of virus replication. Its best-characterized function is to bind CpG dinucleotides present in viral RNAs and, through the recruitment of TRIM25, KHNYN and other cofactors, target them for degradation or prevent their translation. The long and short isoforms of ZAP (ZAP-L and ZAP-S) have different intracellular localization and it is unclear how this regulates their antiviral activity against viruses with different sites of replication. Using ZAP-sensitive and ZAP-insensitive human immunodeficiency virus type I (HIV-1), which transcribe the viral RNA in the nucleus and assemble virions at the plasma membrane, we show that the catalytically inactive poly-ADP-ribose polymerase (PARP) domain in ZAP-L is essential for CpG-specific viral restriction. Mutation of a crucial cysteine in the C-terminal CaaX box that mediates S-farnesylation and, to a lesser extent, the residues in place of the catalytic site triad within the PARP domain, disrupted the activity of ZAP-L. Addition of the CaaX box to ZAP-S partly restored antiviral activity, explaining why ZAP-S lacks antiviral activity for CpG-enriched HIV-1 despite conservation of the RNA-binding domain. Confocal microscopy confirmed the CaaX motif mediated localization of ZAP-L to vesicular structures and enhanced physical association with intracellular membranes. Importantly, the PARP domain and CaaX box together jointly modulate the interaction between ZAP-L and its cofactors TRIM25 and KHNYN, implying that its proper subcellular localisation is required to establish an antiviral complex. The essential contribution of the PARP domain and CaaX box to ZAP-L antiviral activity was further confirmed by inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, which replicates in double-membrane vesicles derived from the endoplasmic reticulum. Thus, compartmentalization of ZAP-L on intracellular membranes provides an essential effector function in ZAP-L-mediated antiviral activity against divergent viruses with different subcellular replication sites.
Collapse
Affiliation(s)
- Dorota Kmiec
- Department of Infectious Diseases, King’s College London, London, United Kingdom
| | - María José Lista
- Department of Infectious Diseases, King’s College London, London, United Kingdom
| | - Mattia Ficarelli
- Department of Infectious Diseases, King’s College London, London, United Kingdom
| | - Chad M. Swanson
- Department of Infectious Diseases, King’s College London, London, United Kingdom
| | - Stuart J. D. Neil
- Department of Infectious Diseases, King’s College London, London, United Kingdom
| |
Collapse
|