101
|
Proença C, Ribeiro D, Freitas M, Carvalho F, Fernandes E. A comprehensive review on the antidiabetic activity of flavonoids targeting PTP1B and DPP-4: a structure-activity relationship analysis. Crit Rev Food Sci Nutr 2021; 62:4095-4151. [PMID: 33554619 DOI: 10.1080/10408398.2021.1872483] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Type 2 diabetes (T2D) is an expanding global health problem, resulting from defects in insulin secretion and/or insulin resistance. In the past few years, both protein tyrosine phosphatase 1B (PTP1B) and dipeptidyl peptidase-4 (DPP-4), as well as their role in T2D, have attracted the attention of the scientific community. PTP1B plays an important role in insulin resistance and is currently one of the most promising targets for the treatment of T2D, since no available PTP1B inhibitors were still approved. DPP-4 inhibitors are among the most recent agents used in the treatment of T2D (although its use has been associated with possible cardiovascular adverse events). The antidiabetic properties of flavonoids are well-recognized, and include inhibitory effects on the above enzymes, although hitherto not therapeutically explored. In the present study, a comprehensive review of the literature of both synthetic and natural isolated flavonoids as inhibitors of PTP1B and DPP-4 activities is made, including their type of inhibition and experimental conditions, and structure-activity relationship, covering a total of 351 compounds. We intend to provide the most favorable chemical features of flavonoids for the inhibition of PTP1B and DPP-4, gathering information for the future development of compounds with improved potential as T2D therapeutic agents.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
102
|
Abstract
Aging is characterized by a progressive loss of physiological function leading to increase in the vulnerability to death. This deterioration process occurs in all living organisms and is the primary risk factor for pathological conditions including obesity, type 2 diabetes mellitus, Alzheimer's disease and cardiovascular diseases. Most of the age-related diseases have been associated with impairment of action of an important hormone, namely insulin. It is well-known that this hormone is a critical mediator of metabolism, growth, proliferation and differentiation. Insulin action depends on two processes that determine its circulating levels, insulin secretion and clearance, and insulin sensitivity in its target tissues. Aging has deleterious effects on these three mechanisms, impairing insulin action, thereby increasing the risk for diseases and death. Thus, improving insulin action may be an important strategy to have a healthier and longer life.
Collapse
|
103
|
Complexin-2 redistributes to the membrane of muscle cells in response to insulin and contributes to GLUT4 translocation. Biochem J 2021; 478:407-422. [DOI: 10.1042/bcj20200542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/11/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022]
Abstract
Insulin stimulates glucose uptake in muscle cells by rapidly redistributing vesicles containing GLUT4 glucose transporters from intracellular compartments to the plasma membrane (PM). GLUT4 vesicle fusion requires the formation of SNARE complexes between vesicular VAMP and PM syntaxin4 and SNAP23. SNARE accessory proteins usually regulate vesicle fusion processes. Complexins aide in neuro-secretory vesicle-membrane fusion by stabilizing trans-SNARE complexes but their participation in GLUT4 vesicle fusion is unknown. We report that complexin-2 is expressed and homogeneously distributed in L6 rat skeletal muscle cells. Upon insulin stimulation, a cohort of complexin-2 redistributes to the PM. Complexin-2 knockdown markedly inhibited GLUT4 translocation without affecting proximal insulin signalling of Akt/PKB phosphorylation and actin fiber remodelling. Similarly, complexin-2 overexpression decreased maximal GLUT4 translocation suggesting that the concentration of complexin-2 is finely tuned to vesicle fusion. These findings reveal an insulin-dependent regulation of GLUT4 insertion into the PM involving complexin-2.
Collapse
|
104
|
Rahimi R, Malek I, Lerrer-Goldshtein T, Elkis Y, Shoval I, Jacob A, Shpungin S, Nir U. TMF1 is upregulated by insulin and is required for a sustained glucose homeostasis. FASEB J 2021; 35:e21295. [PMID: 33475194 DOI: 10.1096/fj.202001995r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/20/2020] [Accepted: 12/07/2020] [Indexed: 01/14/2023]
Abstract
Insulin-regulated glucose homeostasis is a critical and intricate physiological process, of which not all regulatory components have been deciphered. One of the key players in modulating glucose uptake by cells is the glucose transporter-GLUT4. In this study, we aimed to explore the regulatory role of the trans-Golgi-associated protein-TATA Element Modulatory Factor (TMF1) in the GLUT4 mediated, insulin-directed glucose uptake. By establishing and using TMF1-/- myoblasts and mice, we examined the effect of TMF1 absence on the insulin driven functioning of GLUT4. We show that TMF1 is upregulated by insulin in myoblasts, and is essential for the formation of insulin responsive, glucose transporter GLUT4-containing vesicles. Absence of TMF1 leads to the retention of GLUT4 in perinuclear compartments, and to severe impairment of insulin-stimulated GLUT4 trafficking throughout the cytoplasm and to the cell plasma membrane. Accordingly, glucose uptake is impaired in TMF1-/- cells, and TMF1-/- mice are hyperglycemic. This is reflected by the mice impaired blood glucose clearance and increased blood glucose level. Correspondingly, TMF1-/- animals are leaner than their normal littermates. Thus, TMF1 is a novel effector of insulin-regulated glucose homeostasis, and dys-functioning of this protein may contribute to the onset of a diabetes-like disorder.
Collapse
Affiliation(s)
- Roni Rahimi
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Israel Malek
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Tali Lerrer-Goldshtein
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Yoav Elkis
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Irit Shoval
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Avi Jacob
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Sally Shpungin
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Uri Nir
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
105
|
Niu D, Chen X, Wang T, Wang F, Zhang Q, Xue X, Kang J. Protective Effects of Iridoid Glycoside from Corni Fructus on Type 2 Diabetes with Nonalcoholic Fatty Liver in Mice. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3642463. [PMID: 33542919 PMCID: PMC7840271 DOI: 10.1155/2021/3642463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/02/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a common chronic metabolic disease. Accumulating evidence has demonstrated that nonalcoholic fatty liver disease (NAFLD) shares common typical features with T2DM, and they affect each other extensively. Thus, NAFLD has emerged as a novel target for T2DM prevention and care. Although Corni Fructus (CF) and its extracts have a therapeutic effect on T2DM, its effects and mechanisms on T2DM with NAFLD are far from elucidated. In this study, a mouse model of T2DM with NAFLD complication was established in ICR mice by feeding a high-fat, high-sugar (HFHS) diet and intraperitoneally injecting with a low dose of streptozotocin (STZ). Then, the effects of iridoid glycosides (IG) extracted from CF on this mouse model were investigated. We found that 4-week IG administration remarkably alleviated hyperglycemia and insulin resistance and significantly reduced inflammation, oxidative stress, and fat accumulation in the liver of T2DM with NAFLD mice. Further studies showed that IG inhibited the NF-κB but enhanced the PI3K-AKT signaling pathway. In summary, these results indicated that the IG from CF has potential therapeutic effects on T2DM with NAFLD.
Collapse
Affiliation(s)
- Dou Niu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xue Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Ting Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Fuxing Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Qiusheng Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaochang Xue
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Jiefang Kang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
106
|
Teodoro JS, Machado IF, Castela AC, Rolo AP, Palmeira CM. Mitochondria as a target for safety and toxicity evaluation of nutraceuticals. NUTRACEUTICALS 2021:463-483. [DOI: 10.1016/b978-0-12-821038-3.00030-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
107
|
Fujimoto BA, Young M, Nakamura N, Ha H, Carter L, Pitts MW, Torres D, Noh HL, Suk S, Kim JK, Polgar N. Disrupted glucose homeostasis and skeletal-muscle-specific glucose uptake in an exocyst knockout mouse model. J Biol Chem 2021; 296:100482. [PMID: 33647317 PMCID: PMC8027262 DOI: 10.1016/j.jbc.2021.100482] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle is responsible for the majority of glucose disposal following meals, and this is achieved by insulin-mediated trafficking of glucose transporter type 4 (GLUT4) to the cell membrane. The eight-protein exocyst trafficking complex facilitates targeted docking of membrane-bound vesicles, a process underlying the regulated delivery of fuel transporters. We previously demonstrated the role of exocyst subunit EXOC5 in insulin-stimulated GLUT4 exocytosis and glucose uptake in cultured rat skeletal myoblasts. However, the in vivo role of EXOC5 in skeletal muscle remains unclear. Using mice with inducible, skeletal-muscle-specific knockout of exocyst subunit EXOC5 (Exoc5-SMKO), we examined how muscle-specific disruption of the exocyst would affect glucose homeostasis in vivo. We found that both male and female Exoc5-SMKO mice displayed elevated fasting glucose levels. Additionally, male Exoc5-SMKO mice had impaired glucose tolerance and lower serum insulin levels. Using indirect calorimetry, we observed that male Exoc5-SMKO mice have a reduced respiratory exchange ratio during the light period and lower energy expenditure. Using the hyperinsulinemic-euglycemic clamp method, we further showed that insulin-stimulated skeletal muscle glucose uptake is reduced in Exoc5-SMKO males compared with wild-type controls. Overall, our findings indicate that EXOC5 and the exocyst are necessary for insulin-stimulated glucose uptake in skeletal muscle and regulate glucose homeostasis in vivo.
Collapse
Affiliation(s)
- Brent A Fujimoto
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Madison Young
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Nicole Nakamura
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Herena Ha
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Lamar Carter
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Matthew W Pitts
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Daniel Torres
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Hye-Lim Noh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Sujin Suk
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Noemi Polgar
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA.
| |
Collapse
|
108
|
Homma Y, Hiragi S, Fukuda M. Rab family of small GTPases: an updated view on their regulation and functions. FEBS J 2021; 288:36-55. [PMID: 32542850 PMCID: PMC7818423 DOI: 10.1111/febs.15453] [Citation(s) in RCA: 283] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
The Rab family of small GTPases regulates intracellular membrane trafficking by orchestrating the biogenesis, transport, tethering, and fusion of membrane-bound organelles and vesicles. Like other small GTPases, Rabs cycle between two states, an active (GTP-loaded) state and an inactive (GDP-loaded) state, and their cycling is catalyzed by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Because an active form of each Rab localizes on a specific organelle (or vesicle) and recruits various effector proteins to facilitate each step of membrane trafficking, knowing when and where Rabs are activated and what effectors Rabs recruit is crucial to understand their functions. Since the discovery of Rabs, they have been regarded as one of the central hubs for membrane trafficking, and numerous biochemical and genetic studies have revealed the mechanisms of Rab functions in recent years. The results of these studies have included the identification and characterization of novel GEFs, GAPs, and effectors, as well as post-translational modifications, for example, phosphorylation, of Rabs. Rab functions beyond the simple effector-recruiting model are also emerging. Furthermore, the recently developed CRISPR/Cas technology has enabled acceleration of knockout analyses in both animals and cultured cells and revealed previously unknown physiological roles of many Rabs. In this review article, we provide the most up-to-date and comprehensive lists of GEFs, GAPs, effectors, and knockout phenotypes of mammalian Rabs and discuss recent findings in regard to their regulation and functions.
Collapse
Affiliation(s)
- Yuta Homma
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Shu Hiragi
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
109
|
Ortiz-Huidobro RI, Velasco M, Larqué C, Escalona R, Hiriart M. Molecular Insulin Actions Are Sexually Dimorphic in Lipid Metabolism. Front Endocrinol (Lausanne) 2021; 12:690484. [PMID: 34220716 PMCID: PMC8251559 DOI: 10.3389/fendo.2021.690484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022] Open
Abstract
The increment in energy-dense food and low physical activity has contributed to the current obesity pandemic, which is more prevalent in women than in men. Insulin is an anabolic hormone that regulates the metabolism of lipids, carbohydrates, and proteins in adipose tissue, liver, and skeletal muscle. During obesity, nutrient storage capacity is dysregulated due to a reduced insulin action on its target organs, producing insulin resistance, an early marker of metabolic dysfunction. Insulin resistance in adipose tissue is central in metabolic diseases due to the critical role that this tissue plays in energy homeostasis. We focused on sexual dimorphism on the molecular mechanisms of insulin actions and their relationship with the physiology and pathophysiology of adipose tissue. Until recently, most of the physiological and pharmacological studies were done in males without considering sexual dimorphism, which is relevant. There is ample clinical and epidemiological evidence of its contribution to the establishment and progression of metabolic diseases. Sexual dimorphism is a critical and often overlooked factor that should be considered in design of sex-targeted therapeutic strategies and public health policies to address obesity and diabetes.
Collapse
Affiliation(s)
- Rosa Isela Ortiz-Huidobro
- Neurosciences Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Myrian Velasco
- Neurosciences Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Carlos Larqué
- Department of Embryology and Genetics, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Rene Escalona
- Department of Embryology and Genetics, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Marcia Hiriart
- Neurosciences Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- *Correspondence: Marcia Hiriart,
| |
Collapse
|
110
|
Romani P, Valcarcel-Jimenez L, Frezza C, Dupont S. Crosstalk between mechanotransduction and metabolism. Nat Rev Mol Cell Biol 2021; 22:22-38. [PMID: 33188273 DOI: 10.1038/s41580-020-00306-w] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 12/22/2022]
Abstract
Mechanical forces shape cells and tissues during development and adult homeostasis. In addition, they also signal to cells via mechanotransduction pathways to control cell proliferation, differentiation and death. These processes require metabolism of nutrients for both energy generation and biosynthesis of macromolecules. However, how cellular mechanics and metabolism are connected is still poorly understood. Here, we discuss recent evidence indicating how the mechanical cues exerted by the extracellular matrix (ECM), cell-ECM and cell-cell adhesion complexes influence metabolic pathways. Moreover, we explore the energy and metabolic requirements associated with cell mechanics and ECM remodelling, implicating a reciprocal crosstalk between cell mechanics and metabolism.
Collapse
Affiliation(s)
- Patrizia Romani
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy
| | | | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK.
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy.
| |
Collapse
|
111
|
Giacometti J, Muhvić D, Grubić-Kezele T, Nikolić M, Šoić-Vranić T, Bajek S. Olive Leaf Polyphenols (OLPs) Stimulate GLUT4 Expression and Translocation in the Skeletal Muscle of Diabetic Rats. Int J Mol Sci 2020; 21:ijms21238981. [PMID: 33256066 PMCID: PMC7729747 DOI: 10.3390/ijms21238981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscles are high-insulin tissues responsible for disposing of glucose via the highly regulated process of facilitated glucose transporter 4 (GLUT4). Impaired insulin action in diabetes, as well as disorders of GLUT4 vesicle trafficking in the muscle, are involved in defects in insulin-stimulated GLUT4 translocation. Since the Rab GTPases are the main regulators of vesicular membrane transport in exo- and endo-cytosis, in the present work, we studied the effect of olive leaf polyphenols (OLPs) on Rab8A, Rab13, and Rab14 proteins of the rat soleus muscle in a model of streptozotocin (SZT)-induced diabetes (DM) in a dose-dependent manner. Glucose, cholesterol, and triglyceride levels were determined in the blood, morphological changes of the muscle tissue were captured by hematoxylin and eosin histological staining, and expression of GLUT4, Rab8A, Rab13, and Rab14 proteins were analyzed in the rat soleus muscle by the immunofluorescence staining and immunoblotting. OLPs significantly reduced blood glucose level in all treated groups. Furthermore, significantly reduced blood triglycerides were found in the groups with the lowest and highest OLPs treatment. The dynamics of activation of Rab8A, Rab13, and Rab14 was OLPs dose-dependent and more effective at higher OLP doses. Thus, these results indicate a beneficial role of phenolic compounds from the olive leaf in the regulation of glucose homeostasis in the skeletal muscle.
Collapse
Affiliation(s)
- Jasminka Giacometti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
- Correspondence: ; Tel.: +385-51-584-557
| | - Damir Muhvić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (D.M.); (T.G.-K.)
| | - Tanja Grubić-Kezele
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (D.M.); (T.G.-K.)
- Clinical Department for Clinical Microbiology, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| | - Marina Nikolić
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (M.N.); (T.Š.-V.); (S.B.)
| | - Tamara Šoić-Vranić
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (M.N.); (T.Š.-V.); (S.B.)
| | - Snježana Bajek
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (M.N.); (T.Š.-V.); (S.B.)
| |
Collapse
|
112
|
Yue Y, Zhang C, Zhao X, Liu S, Lv X, Zhang S, Yang J, Chen L, Duan H, Zhang Y, Yao Z, Niu W. Tiam1 mediates Rac1 activation and contraction-induced glucose uptake in skeletal muscle cells. FASEB J 2020; 35:e21210. [PMID: 33225507 DOI: 10.1096/fj.202001312r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/26/2020] [Accepted: 11/04/2020] [Indexed: 12/31/2022]
Abstract
Contraction-stimulated glucose uptake in skeletal muscle requires Rac1, but the molecular mechanism of its activation is not fully understood. Treadmill running was applied to induce C57BL/6 mouse hind limb skeletal muscle contraction in vivo and electrical pulse stimulation contracted C2C12 myotube cultures in vitro. The protein levels or activities of AMPK or the Rac1-specific GEF, Tiam1, were manipulated by activators, inhibitors, siRNA-mediated knockdown, and adenovirus-mediated expression. Activated Rac1 was detected by a pull-down assay and immunoblotting. Glucose uptake was measured using the 2-NBD-glucose fluorescent analog. Electrical pulse stimulated contraction or treadmill exercise upregulated the expression of Tiam1 in skeletal muscle in an AMPK-dependent manner. Axin1 siRNA-mediated knockdown diminished AMPK activation and upregulation of Tiam1 protein expression by contraction. Tiam1 siRNA-mediated knockdown diminished contraction-induced Rac1 activation, GLUT4 translocation, and glucose uptake. Contraction increased Tiam1 gene expression and serine phosphorylation of Tiam1 protein via AMPK. These findings suggest Tiam1 is part of an AMPK-Tiam1-Rac1 signaling pathway that mediates contraction-stimulated glucose uptake in skeletal muscle cells and tissue.
Collapse
Affiliation(s)
- Yingying Yue
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Chang Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaoyun Zhao
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Sasa Liu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaoting Lv
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China.,Clinical Laboratory, Cangzhou People's Hospital, Cangzhou, China
| | - Shitian Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Jianming Yang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Liming Chen
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Hongquan Duan
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Youyi Zhang
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Zhi Yao
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Wenyan Niu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
113
|
Vav2 catalysis-dependent pathways contribute to skeletal muscle growth and metabolic homeostasis. Nat Commun 2020; 11:5808. [PMID: 33199701 PMCID: PMC7669868 DOI: 10.1038/s41467-020-19489-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle promotes metabolic balance by regulating glucose uptake and the stimulation of multiple interorgan crosstalk. We show here that the catalytic activity of Vav2, a Rho GTPase activator, modulates the signaling output of the IGF1- and insulin-stimulated phosphatidylinositol 3-kinase pathway in that tissue. Consistent with this, mice bearing a Vav2 protein with decreased catalytic activity exhibit reduced muscle mass, lack of proper insulin responsiveness and, at much later times, a metabolic syndrome-like condition. Conversely, mice expressing a catalytically hyperactive Vav2 develop muscle hypertrophy and increased insulin responsiveness. Of note, while hypoactive Vav2 predisposes to, hyperactive Vav2 protects against high fat diet-induced metabolic imbalance. These data unveil a regulatory layer affecting the signaling output of insulin family factors in muscle. Skeletal muscle plays a key role in regulating systemic glucose and metabolic homeostasis. Here, the authors show that the catalytic activity of Vav2, an activator of Rho GTPases, modulates those processes by favoring the responsiveness of this tissue to insulin and related factors.
Collapse
|
114
|
Das PR, Park MJ, Lee CM, Nam SH, Kim YM, Kim DI, Eun JB. Aqueous green tea infusion extracted by ultra-sonication method, but not by conventional method, facilitates GLUT4 membrane translocation in adipocytes which potently ameliorates high-fat diet-induced obesity. J Food Biochem 2020; 45:e13561. [PMID: 33179282 DOI: 10.1111/jfbc.13561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 10/18/2020] [Accepted: 10/25/2020] [Indexed: 01/06/2023]
Abstract
Green tea contains bioactive compounds, such as polyphenols, responsible for its health-promoting effects, including antiobesity and antidiabetic effects. We previously reported that ultra-sonication extraction (UE) could efficiently increase the extraction yield of green tea compounds. In the present study, we found that the extract obtained using UE contained higher phenolic and flavonoid contents than that obtained using the conventional method. We therefore considered the extract as a bioactive metabolite-rich functional green tea extract (BMF-GTE), and tested its glucose-lowering effect by generating an adipocyte cell line stably expressing 7myc-GLUT4-GFP. We found that BMF-GTE treatment increased GLUT4 translocation to the plasma membrane. Moreover, BMF-GTE administration attenuated weight gain in mice fed a high-fat diet (HFD). Importantly, HFD-induced glucose tolerance was ameliorated in the mice receiving BMF-GTE. Therefore, we conclude that BMF-GTE worked against obesity and diabetes, at least partially, by enhancing GLUT4 translocation in adipocytes. PRACTICAL APPLICATIONS: As green tea is one of the most consumed beverages worldwide, its health effects have been widely tested. In our previous studies, we found that ultra-sonication extraction (UE) has the potential to increase the aqueous extraction yield of green tea compounds compared to conventional extraction techniques. In this study, we examined the biological effect of bioactive metabolite-rich functional green tea extract (BMF-GTE) obtained using UE; we observed that administering BMF-GTE lowered the body weight and increased insulin sensitivity in mice fed a high-fat diet, potentially by facilitating the membrane translocation of GLUT4 in adipocytes. Therefore, this study suggests that the extract obtained with UE had antiobesity and antidiabetic properties, indicative of a potential application of UE in maximizing the beneficial effects of green tea on human health.
Collapse
Affiliation(s)
- Protiva Rani Das
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Korea.,Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA, USA
| | - Min-Jung Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Chang-Min Lee
- Department of Veterinary Laboratory Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Seung-Hee Nam
- Institute of Agricultural Science and Technology, Chonnam National University, Gwangju, Korea
| | - Young-Min Kim
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Korea
| | - Dong-Il Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Korea
| |
Collapse
|
115
|
Benninghoff T, Espelage L, Eickelschulte S, Zeinert I, Sinowenka I, Müller F, Schöndeling C, Batchelor H, Cames S, Zhou Z, Kotzka J, Chadt A, Al-Hasani H. The RabGAPs TBC1D1 and TBC1D4 Control Uptake of Long-Chain Fatty Acids Into Skeletal Muscle via Fatty Acid Transporter SLC27A4/FATP4. Diabetes 2020; 69:2281-2293. [PMID: 32868338 DOI: 10.2337/db20-0180] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022]
Abstract
The two closely related RabGTPase-activating proteins (RabGAPs) TBC1D1 and TBC1D4 play a crucial role in the regulation of GLUT4 translocation in response to insulin and contraction in skeletal muscle. In mice, deficiency in one or both RabGAPs leads to reduced insulin- and contraction-stimulated glucose uptake and to elevated fatty acid (FA) uptake and oxidation in both glycolytic and oxidative muscle fibers without altering mitochondrial copy number and the abundance of proteins for oxidative phosphorylation. Here we present evidence for a novel mechanism of skeletal muscle lipid utilization involving the two RabGAPs and the FA transporter SLC27A4/FATP4. Both RabGAPs control the uptake of saturated and unsaturated long-chain FAs (LCFAs) into skeletal muscle and knockdown (Kd) of a subset of RabGAP substrates, Rab8, Rab10, or Rab14, decreased LCFA uptake into these cells. In skeletal muscle from Tbc1d1 and Tbc1d4 knockout animals, SLC27A4/FATP4 abundance was increased and depletion of SLC27A4/FATP4 but not FAT/CD36 completely abrogated the enhanced FA oxidation in RabGAP-deficient skeletal muscle and cultivated C2C12 myotubes. Collectively, our data demonstrate that RabGAP-mediated control of skeletal muscle lipid metabolism converges with glucose metabolism at the level of downstream RabGTPases and involves regulated transport of LCFAs via SLC27A4/FATP4.
Collapse
Affiliation(s)
- Tim Benninghoff
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Lena Espelage
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Samaneh Eickelschulte
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Isabel Zeinert
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Isabelle Sinowenka
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Frank Müller
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Christina Schöndeling
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Hannah Batchelor
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Sandra Cames
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Zhou Zhou
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Jörg Kotzka
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| |
Collapse
|
116
|
Totani Y, Nakai J, Hatakeyama D, Ito E. Memory-enhancing effects of short-term fasting. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1827053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Y. Totani
- Department of Biology, Waseda University, Tokyo, Japan
| | - J. Nakai
- Department of Biology, Waseda University, Tokyo, Japan
| | - D. Hatakeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - E. Ito
- Department of Biology, Waseda University, Tokyo, Japan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
117
|
Reijrink M, de Boer SA, Antunes IF, Spoor DS, Heerspink HJL, Lodewijk ME, Mastik MF, Boellaard R, Greuter MJW, Benjamens S, Borra RJH, Slart RHJA, Hillebrands JL, Mulder DJ. [ 18F]FDG Uptake in Adipose Tissue Is Not Related to Inflammation in Type 2 Diabetes Mellitus. Mol Imaging Biol 2020; 23:117-126. [PMID: 32886301 PMCID: PMC7782394 DOI: 10.1007/s11307-020-01538-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 02/03/2023]
Abstract
Purpose 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) uptake is a marker of metabolic activity and is therefore used to measure the inflammatory state of several tissues. This radionuclide marker is transported through the cell membrane via glucose transport proteins (GLUTs). The aim of this study is to investigate whether insulin resistance (IR) or inflammation plays a role in [18F]FDG uptake in adipose tissue (AT). Procedures This study consisted of an in vivo clinical part and an ex vivo mechanistic part. In the clinical part, [18F]FDG uptake in abdominal visceral AT (VAT) and subcutaneous AT (SAT) was determined using PET/CT imaging in 44 patients with early type 2 diabetes mellitus (T2DM) (age 63 [54–66] years, HbA1c [6.3 ± 0.4 %], HOMA-IR 5.1[3.1–8.5]). Plasma levels were measured with ELISA. In the mechanistic part, AT biopsies obtained from 8 patients were ex vivo incubated with [18F]FDG followed by autoradiography. Next, a qRT-PCR analysis was performed to determine GLUT and cytokine mRNA expression levels. Immunohistochemistry was performed to determine CD68+ macrophage infiltration and GLUT4 protein expression in AT. Results In vivo VAT [18F]FDG uptake in patients with T2DM was inversely correlated with HOMA-IR (r = − 0.32, p = 0.034), and positively related to adiponectin plasma levels (r = 0.43, p = 0.003). Ex vivo [18F]FDG uptake in VAT was not related to CD68+ macrophage infiltration, and IL-1ß and IL-6 mRNA expression levels. Ex vivo VAT [18F]FDG uptake was positively related to GLUT4 (r = 0.83, p = 0.042), inversely to GLUT3 (r = − 0.83, p = 0.042) and not related to GLUT1 mRNA expression levels. Conclusions In vivo [18F]FDG uptake in VAT from patients with T2DM is positively correlated with adiponectin levels and inversely with IR. Ex vivo [18F]FDG uptake in AT is associated with GLUT4 expression but not with pro-inflammatory markers. The effect of IR should be taken into account when interpreting data of [18F]FDG uptake as a marker for AT inflammation. Electronic supplementary material The online version of this article (10.1007/s11307-020-01538-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melanie Reijrink
- Department of Vascular Medicine, University of Groningen, University Medical Center Groningen, HP AA41, Hanzeplein 1, 9700RB, Groningen, The Netherlands.
| | - Stefanie A de Boer
- Department of Vascular Medicine, University of Groningen, University Medical Center Groningen, HP AA41, Hanzeplein 1, 9700RB, Groningen, The Netherlands
| | - Ines F Antunes
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Daan S Spoor
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Monique E Lodewijk
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mirjam F Mastik
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center-VU Medical Center, Amsterdam, the Netherlands
| | - Marcel J W Greuter
- Department of Robotics and Mechatronics Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, the Netherlands.,Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Stan Benjamens
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ronald J H Borra
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Diagnostic Radiology, Medical Imaging Centre of Southwest Finland, University of Turku, Turku University Hospital, Turku, Finland
| | - Riemer H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Douwe J Mulder
- Department of Vascular Medicine, University of Groningen, University Medical Center Groningen, HP AA41, Hanzeplein 1, 9700RB, Groningen, The Netherlands
| |
Collapse
|
118
|
Mert S, Bulutoglu B, Chu C, Dylewski M, Lin FM, Yu YM, Yarmush ML, Sheridan RL, Uygun K. Multiorgan Metabolomics and Lipidomics Provide New Insights Into Fat Infiltration in the Liver, Muscle Wasting, and Liver-Muscle Crosstalk Following Burn Injury. J Burn Care Res 2020; 42:269-287. [PMID: 32877506 DOI: 10.1093/jbcr/iraa145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Burn injury mediated hypermetabolic syndrome leads to increased mortality among severe burn victims, due to liver failure and muscle wasting. Metabolic changes may persist up to 2 years following the injury. Thus, understanding the underlying mechanisms of the pathology is crucially important to develop appropriate therapeutic approaches. We present detailed metabolomic and lipidomic analyses of the liver and muscle tissues in a rat model with a 30% body surface area burn injury located at the dorsal skin. Three hundred and thirty-eight of 1587 detected metabolites and lipids in the liver and 119 of 1504 in the muscle tissue exhibited statistically significant alterations. We observed excessive accumulation of triacylglycerols, decreased levels of S-adenosylmethionine, increased levels of glutamine and xenobiotics in the liver tissue. Additionally, the levels of gluconeogenesis, glycolysis, and tricarboxylic acid cycle metabolites are generally decreased in the liver. On the other hand, burn injury muscle tissue exhibits increased levels of acyl-carnitines, alpha-hydroxyisovalerate, ophthalmate, alpha-hydroxybutyrate, and decreased levels of reduced glutathione. The results of this preliminary study provide compelling observations that liver and muscle tissues undergo distinctly different changes during hypermetabolism, possibly reflecting liver-muscle crosstalk. The liver and muscle tissues might be exacerbating each other's metabolic pathologies, via excessive utilization of certain metabolites produced by each other.
Collapse
Affiliation(s)
- Safak Mert
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Beyza Bulutoglu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Christopher Chu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Maggie Dylewski
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Florence M Lin
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Yong-Ming Yu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Martin L Yarmush
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Robert L Sheridan
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Korkut Uygun
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
119
|
Camus SM, Camus MD, Figueras-Novoa C, Boncompain G, Sadacca LA, Esk C, Bigot A, Gould GW, Kioumourtzoglou D, Perez F, Bryant NJ, Mukherjee S, Brodsky FM. CHC22 clathrin mediates traffic from early secretory compartments for human GLUT4 pathway biogenesis. J Cell Biol 2020; 219:133472. [PMID: 31863584 PMCID: PMC7039200 DOI: 10.1083/jcb.201812135] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 08/02/2019] [Accepted: 10/09/2019] [Indexed: 12/29/2022] Open
Abstract
Blood glucose clearance relies on insulin-stimulated exocytosis of glucose transporter 4 (GLUT4) from sites of sequestration in muscle and fat. This work demonstrates that, in humans, CHC22 clathrin controls GLUT4 traffic from the ER-to-Golgi intermediate compartment to sites of sequestration during GLUT4 pathway biogenesis. Glucose transporter 4 (GLUT4) is sequestered inside muscle and fat and then released by vesicle traffic to the cell surface in response to postprandial insulin for blood glucose clearance. Here, we map the biogenesis of this GLUT4 traffic pathway in humans, which involves clathrin isoform CHC22. We observe that GLUT4 transits through the early secretory pathway more slowly than the constitutively secreted GLUT1 transporter and localize CHC22 to the ER-to-Golgi intermediate compartment (ERGIC). CHC22 functions in transport from the ERGIC, as demonstrated by an essential role in forming the replication vacuole of Legionella pneumophila bacteria, which requires ERGIC-derived membrane. CHC22 complexes with ERGIC tether p115, GLUT4, and sortilin, and downregulation of either p115 or CHC22, but not GM130 or sortilin, abrogates insulin-responsive GLUT4 release. This indicates that CHC22 traffic initiates human GLUT4 sequestration from the ERGIC and defines a role for CHC22 in addition to retrograde sorting of GLUT4 after endocytic recapture, enhancing pathways for GLUT4 sequestration in humans relative to mice, which lack CHC22.
Collapse
Affiliation(s)
- Stéphane M Camus
- Department of Bioengineering and Therapeutic Sciences and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA.,Department of Microbiology and Immunology and the G.W. Hooper Foundation, University of California, San Francisco, San Francisco, CA.,Division of Biosciences, University College London, London, UK
| | - Marine D Camus
- Department of Bioengineering and Therapeutic Sciences and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA.,Department of Microbiology and Immunology and the G.W. Hooper Foundation, University of California, San Francisco, San Francisco, CA.,Division of Biosciences, University College London, London, UK
| | | | - Gaelle Boncompain
- Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | | | - Christopher Esk
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Anne Bigot
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, UMR S974 Centre for Research in Myology, Paris, France
| | - Gwyn W Gould
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Dimitrios Kioumourtzoglou
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Department of Biology and York Biomedical Research Institute, University of York, York, UK
| | - Franck Perez
- Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Nia J Bryant
- Department of Biology and York Biomedical Research Institute, University of York, York, UK
| | - Shaeri Mukherjee
- Department of Microbiology and Immunology and the G.W. Hooper Foundation, University of California, San Francisco, San Francisco, CA
| | - Frances M Brodsky
- Department of Bioengineering and Therapeutic Sciences and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA.,Department of Microbiology and Immunology and the G.W. Hooper Foundation, University of California, San Francisco, San Francisco, CA.,Division of Biosciences, University College London, London, UK
| |
Collapse
|
120
|
Alshafie W, Francis V, Bednarz K, Pan YE, Stroh T, McPherson PS. Regulated resurfacing of a somatostatin receptor storage compartment fine-tunes pituitary secretion. J Cell Biol 2020; 219:132745. [PMID: 31825461 PMCID: PMC7039187 DOI: 10.1083/jcb.201904054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/26/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
Abstract
In pituitary cells, internalized somatostatin receptor is held in a GLUT4-like storage compartment. The receptor rapidly resurfaces in response to selective signaling pathways in a process that fine-tunes pituitary hormone release. The surfacing of the glucose transporter GLUT4 driven by insulin receptor activation provides the prototypic example of a homeostasis response dependent on mobilization of an intracellular storage compartment. Here, we generalize this concept to a G protein–coupled receptor, somatostatin receptor subtype 2 (SSTR2), in pituitary cells. Following internalization in corticotropes, SSTR2 moves to a juxtanuclear syntaxin-6–positive compartment, where it remains until the corticotropes are stimulated with corticotropin releasing factor (CRF), whereupon SSTR2 exits the compartment on syntaxin-6–positive vesicular/tubular carriers that depend on Rab10 for their fusion with the plasma membrane. As SSTR2 activation antagonizes CRF-mediated hormone release, this storage/resurfacing mechanism may allow for a physiological homeostatic feedback system. In fact, we find that SSTR2 moves from an intracellular compartment to the cell surface in pituitary gland somatotropes, concomitant with increasing levels of serum growth hormone (GH) during natural GH cycles. Our data thus provide a mechanism by which signaling-mediated plasma membrane resurfacing of SSTR2 can fine-tune pituitary hormone release.
Collapse
Affiliation(s)
- Walaa Alshafie
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Vincent Francis
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Klaudia Bednarz
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Yingzhou Edward Pan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Thomas Stroh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
121
|
D'Alessandro R, Meldolesi J. News about non-secretory exocytosis: mechanisms, properties, and functions. J Mol Cell Biol 2020; 11:736-746. [PMID: 30605539 PMCID: PMC6821209 DOI: 10.1093/jmcb/mjy084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/14/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
Abstract
The fusion by exocytosis of many vesicles to the plasma membrane induces the discharge to the extracellular space of their abundant luminal cargoes. Other exocytic vesicles, however, do not contain cargoes, and thus, their fusion is not followed by secretion. Therefore, two distinct processes of exocytosis exist, one secretory and the other non-secretory. The present review deals with the knowledge of non-secretory exocytosis developed during recent years. Among such developments are the dual generation of the exocytic vesicles, initially released either from the trans-Golgi network or by endocytosis; their traffic with activation of receptors, channels, pumps, and transporters; the identification of their tethering and soluble N-ethylmaleimide-sensitive factor attachment protein receptor complexes that govern membrane fusions; the growth of axons and the membrane repair. Examples of potential relevance of these processes for pathology and medicine are also reported. The developments presented here offer interesting chances for future progress in the field.
Collapse
Affiliation(s)
| | - Jacopo Meldolesi
- Scientific Institute San Raffaele and Vita Salute San Raffaele University, Via Olgettina 58, Milan, Italy
| |
Collapse
|
122
|
Wang X, Xu M, Peng Y, Naren Q, Xu Y, Wang X, Yang G, Shi X, Li X. Triptolide enhances lipolysis of adipocytes by enhancing ATGL transcription via upregulation of p53. Phytother Res 2020; 34:3298-3310. [PMID: 32614500 DOI: 10.1002/ptr.6779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/17/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022]
Abstract
Lipolysis is an essential physiological activity of adipocytes. The Patatin Like Phospholipase Domain Containing 2 (PNPLA2) gene encodes the enzyme adipose triglyceride lipase (ATGL) responsible for triglyceride hydrolysis, the first step in lipolysis. In this study, we investigated the potential of triptolide (TP), a natural plant extract, to induce weight loss by examining its effect on ATGL expression. We found that long- and short-term TP administration reduced body weight and fat weight and increased heat production in brown adipose tissue in wild-type C57BL/6 mice. In 3T3-L1 fibroblasts and porcine adipocytes, TP treatment reduced the number of lipid droplets as determined by Oil Red O and BODIPY staining, with concomitant increases in free fatty acid and triglyceride levels in the culture medium. Combined treatment with TP and p53 inhibitor reversed these lipolytic effects. We next amplified the ATGL promoter region and identified conserved p53 binding sites in the sequence by in silico analysis. The results of the dual-luciferase reporter assay using a construct containing the ATGL promoter harboring the p53 binding site showed that p53 induces ATGL promoter activity and consequently, ATGL transcription. These results demonstrate that TP has therapeutic value as an anti-obesity agent and acts by promoting lipolysis via upregulation of p53 and ATGL transcription.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Meixue Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Ying Peng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Qimuge Naren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Yanting Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Xin Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Xin'E Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Xiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| |
Collapse
|
123
|
Dual Function of PI(4,5)P2 in Insulin-Regulated Exocytic Trafficking of GLUT4 in Adipocytes. J Mol Biol 2020; 432:4341-4357. [DOI: 10.1016/j.jmb.2020.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 11/17/2022]
|
124
|
Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflugers Arch 2020; 472:1273-1298. [PMID: 32591906 PMCID: PMC7462924 DOI: 10.1007/s00424-020-02417-x] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022]
Abstract
A family of facilitative glucose transporters (GLUTs) is involved in regulating tissue-specific glucose uptake and metabolism in the liver, skeletal muscle, and adipose tissue to ensure homeostatic control of blood glucose levels. Reduced glucose transport activity results in aberrant use of energy substrates and is associated with insulin resistance and type 2 diabetes. It is well established that GLUT2, the main regulator of hepatic hexose flux, and GLUT4, the workhorse in insulin- and contraction-stimulated glucose uptake in skeletal muscle, are critical contributors in the control of whole-body glycemia. However, the molecular mechanism how insulin controls glucose transport across membranes and its relation to impaired glycemic control in type 2 diabetes remains not sufficiently understood. An array of circulating metabolites and hormone-like molecules and potential supplementary glucose transporters play roles in fine-tuning glucose flux between the different organs in response to an altered energy demand.
Collapse
|
125
|
Lim KE, Hoggatt AM, Bullock WA, Horan DJ, Yokota H, Pavalko FM, Robling AG. Pten deletion in Dmp1-expressing cells does not rescue the osteopenic effects of Wnt/β-catenin suppression. J Cell Physiol 2020; 235:9785-9794. [PMID: 32529635 DOI: 10.1002/jcp.29792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 11/06/2022]
Abstract
Skeletal homeostasis is sensitive to perturbations in Wnt signaling. Beyond its role in the bone, Wnt is a major target for pharmaceutical inhibition in a wide range of diseases, most notably cancers. Numerous clinical trials for Wnt-based candidates are currently underway, and Wnt inhibitors will likely soon be approved for clinical use. Given the bone-suppressive effects accompanying Wnt inhibition, there is a need to expose alternate pathways/molecules that can be targeted to counter the deleterious effects of Wnt inhibition on bone properties. Activation of the Pi3k/Akt pathway via Pten deletion is one possible osteoanabolic pathway to exploit. We investigated whether the osteopenic effects of β-catenin deletion from bone cells could be rescued by Pten deletion in the same cells. Mice carrying floxed alleles for Pten and β-catenin were bred to Dmp1-Cre mice to delete Pten alone, β-catenin alone, or both genes from the late-stage osteoblast/osteocyte population. The mice were assessed for bone mass, density, strength, and formation parameters to evaluate the potential rescue effect of Pten deletion in Wnt-impaired mice. Pten deletion resulted in high bone mass and β-catenin deletion resulted in low bone mass. Compound mutants had bone properties similar to β-catenin mutant mice, or surprisingly in some assays, were further compromised beyond β-catenin mutants. Pten inhibition, or one of its downstream nodes, is unlikely to protect against the bone-wasting effects of Wnt/βcat inhibition. Other avenues for preserving bone mass in the presence of Wnt inhibition should be explored to alleviate the skeletal side effects of Wnt inhibitor-based therapies.
Collapse
Affiliation(s)
- Kyung-Eun Lim
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - April M Hoggatt
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Whitney A Bullock
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Daniel J Horan
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hiroki Yokota
- Indiana Center for Musculoskeletal Health, Indianapolis, Indiana.,Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana
| | - Frederick M Pavalko
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Center for Musculoskeletal Health, Indianapolis, Indiana
| | - Alexander G Robling
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Center for Musculoskeletal Health, Indianapolis, Indiana.,Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana.,Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
126
|
Petridi S, Middleton CA, Ugbode C, Fellgett A, Covill L, Elliott CJH. In Vivo Visual Screen for Dopaminergic Rab ↔ LRRK2-G2019S Interactions in Drosophila Discriminates Rab10 from Rab3. G3 (BETHESDA, MD.) 2020; 10:1903-1914. [PMID: 32321836 PMCID: PMC7263684 DOI: 10.1534/g3.120.401289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
LRRK2 mutations cause Parkinson's, but the molecular link from increased kinase activity to pathological neurodegeneration remains undetermined. Previous in vitro assays indicate that LRRK2 substrates include at least 8 Rab GTPases. We have now examined this hypothesis in vivo in a functional, electroretinogram screen, expressing each Rab with/without LRRK2-G2019S in selected Drosophila dopaminergic neurons. Our screen discriminated Rab10 from Rab3. The strongest Rab/LRRK2-G2019S interaction is with Rab10; the weakest with Rab3. Rab10 is expressed in a different set of dopaminergic neurons from Rab3. Thus, anatomical and physiological patterns of Rab10 are related. We conclude that Rab10 is a valid substrate of LRRK2 in dopaminergic neurons in vivo We propose that variations in Rab expression contribute to differences in the rate of neurodegeneration recorded in different dopaminergic nuclei in Parkinson's.
Collapse
Affiliation(s)
- Stavroula Petridi
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| | - C Adam Middleton
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| | - Chris Ugbode
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| | - Alison Fellgett
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| | - Laura Covill
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| | - Christopher J H Elliott
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| |
Collapse
|
127
|
Geraets IME, Glatz JFC, Luiken JJFP, Nabben M. Pivotal role of membrane substrate transporters on the metabolic alterations in the pressure-overloaded heart. Cardiovasc Res 2020; 115:1000-1012. [PMID: 30938418 DOI: 10.1093/cvr/cvz060] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/04/2019] [Accepted: 03/07/2019] [Indexed: 12/16/2022] Open
Abstract
Cardiac pressure overload (PO), such as caused by aortic stenosis and systemic hypertension, commonly results in cardiac hypertrophy and may lead to the development of heart failure. PO-induced heart failure is among the leading causes of death worldwide, but its pathological origin remains poorly understood. Metabolic alterations are proposed to be an important contributor to PO-induced cardiac hypertrophy and failure. While the healthy adult heart mainly uses long-chain fatty acids (FAs) and glucose as substrates for energy metabolism and to a lesser extent alternative substrates, i.e. lactate, ketone bodies, and amino acids (AAs), the pressure-overloaded heart is characterized by a shift in energy metabolism towards a greater reliance on glycolysis and alternative substrates. A key-governing kinetic step of both FA and glucose fluxes is at the level of their substrate-specific membrane transporters. The relative presence of these transporters in the sarcolemma determines the cardiac substrate preference. Whether the cardiac utilization of alternative substrates is also governed by membrane transporters is not yet known. In this review, we discuss current insight into the role of membrane substrate transporters in the metabolic alterations occurring in the pressure-overloaded heart. Given the increasing evidence of a role for alternative substrates in these metabolic alterations, there is an urgent need to disclose the key-governing kinetic steps in their utilization as well. Taken together, membrane substrate transporters emerge as novel targets for metabolic interventions to prevent or treat PO-induced heart failure.
Collapse
Affiliation(s)
- Ilvy M E Geraets
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, MD Maastricht, The Netherlands
| | - Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, MD Maastricht, The Netherlands
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, MD Maastricht, The Netherlands
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, MD Maastricht, The Netherlands
| |
Collapse
|
128
|
Ashrafizadeh M, Javanmardi S, Moradi-Ozarlou M, Mohammadinejad R, Farkhondeh T, Samarghandian S, Garg M. Natural products and phytochemical nanoformulations targeting mitochondria in oncotherapy: an updated review on resveratrol. Biosci Rep 2020; 40:BSR20200257. [PMID: 32163546 PMCID: PMC7133519 DOI: 10.1042/bsr20200257] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are intracellular organelles with two distinct membranes, known as an outer mitochondrial membrane and inner cell membrane. Originally, mitochondria have been derived from bacteria. The main function of mitochondria is the production of ATP. However, this important organelle indirectly protects cells by consuming oxygen in the route of energy generation. It has been found that mitochondria are actively involved in the induction of the intrinsic pathways of apoptosis. So, there have been efforts to sustain mitochondrial homeostasis and inhibit its dysfunction. Notably, due to the potential role of mitochondria in the stimulation of apoptosis, this organelle is a promising target in cancer therapy. Resveratrol is a non-flavonoid polyphenol that exhibits significant pharmacological effects such as antioxidant, anti-diabetic, anti-inflammatory and anti-tumor. The anti-tumor activity of resveratrol may be a consequence of its effect on mitochondria. Multiple studies have investigated the relationship between resveratrol and mitochondria, and it has been demonstrated that resveratrol is able to significantly enhance the concentration of reactive oxygen species, leading to the mitochondrial dysfunction and consequently, apoptosis induction. A number of signaling pathways such as sirtuin and NF-κB may contribute to the mitochondrial-mediated apoptosis by resveratrol. Besides, resveratrol shifts cellular metabolism from glycolysis into mitochondrial respiration to induce cellular death in cancer cells. In the present review, we discuss the possible interactions between resveratrol and mitochondria, and its potential application in cancer therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sara Javanmardi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoumeh Moradi-Ozarlou
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh 201313, India
| |
Collapse
|
129
|
Knudsen JR, Steenberg DE, Hingst JR, Hodgson LR, Henriquez-Olguin C, Li Z, Kiens B, Richter EA, Wojtaszewski JFP, Verkade P, Jensen TE. Prior exercise in humans redistributes intramuscular GLUT4 and enhances insulin-stimulated sarcolemmal and endosomal GLUT4 translocation. Mol Metab 2020; 39:100998. [PMID: 32305516 PMCID: PMC7240215 DOI: 10.1016/j.molmet.2020.100998] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
Objective Exercise is a cornerstone in the management of skeletal muscle insulin-resistance. A well-established benefit of a single bout of exercise is increased insulin sensitivity for hours post-exercise in the previously exercised musculature. Although rodent studies suggest that the insulin-sensitization phenomenon involves enhanced insulin-stimulated GLUT4 cell surface translocation and might involve intramuscular redistribution of GLUT4, the conservation to humans is unknown. Methods Healthy young males underwent an insulin-sensitizing one-legged kicking exercise bout for 1 h followed by fatigue bouts to exhaustion. Muscle biopsies were obtained 4 h post-exercise before and after a 2-hour hyperinsulinemic-euglycemic clamp. Results A detailed microscopy-based analysis of GLUT4 distribution within seven different myocellular compartments revealed that prior exercise increased GLUT4 localization in insulin-responsive storage vesicles and T-tubuli. Furthermore, insulin-stimulated GLUT4 localization was augmented at the sarcolemma and in the endosomal compartments. Conclusions An intracellular redistribution of GLUT4 post-exercise is proposed as a molecular mechanism contributing to the insulin-sensitizing effect of prior exercise in human skeletal muscle. Intramyocellular GLUT4 is redistributed 4 h after exercise in humans. GLUT4 content is increased in GLUT4 storage vesicles and T-tubuli post-exercise. Prior exercise + insulin increases sarcolemmal and endosomal GLUT4. GLUT4 redistribution may thus contribute to post-exercise muscle insulin-sensitization.
Collapse
Affiliation(s)
- Jonas R Knudsen
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark; Laboratory of Microsystems 2, Institute of Microengineering, Ecole Polytechnique Fédérale de Lausanne, Batiment BM, 1015, Lausanne, Switzerland
| | - Dorte E Steenberg
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark
| | - Janne R Hingst
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark
| | - Lorna R Hodgson
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, BS8 1TD, Bristol, United Kingdom
| | - Carlos Henriquez-Olguin
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark
| | - Zhencheng Li
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark
| | - Bente Kiens
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark
| | - Erik A Richter
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark
| | - Jørgen F P Wojtaszewski
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, BS8 1TD, Bristol, United Kingdom
| | - Thomas E Jensen
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark.
| |
Collapse
|
130
|
Luiken JJFP, Nabben M, Neumann D, Glatz JFC. Understanding the distinct subcellular trafficking of CD36 and GLUT4 during the development of myocardial insulin resistance. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165775. [PMID: 32209364 DOI: 10.1016/j.bbadis.2020.165775] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 01/06/2023]
Abstract
CD36 and GLUT4 are the main cardiac trans-sarcolemmal transporters for long-chain fatty acids and glucose, respectively. Together they secure the majority of cardiac energy demands. Moreover, these transporters each represent key governing kinetic steps in cardiac fatty acid and glucose fluxes, thereby offering major sites of regulation. The underlying mechanism of this regulation involves a perpetual vesicle-mediated trafficking (recycling) of both transporters between intracellular stores (endosomes) and the cell surface. In the healthy heart, CD36 and GLUT4 translocation to the cell surface is under short-term control of the same physiological stimuli, most notably increased contraction and insulin secretion. However, under chronic lipid overload, a condition that accompanies a Western lifestyle, CD36 and GLUT4 recycling are affected distinctly, with CD36 being expelled to the sarcolemma while GLUT4 is imprisoned within the endosomes. Moreover, the increased CD36 translocation towards the cell surface is a key early step, setting the heart on a route towards insulin resistance and subsequent contractile dysfunction. Therefore, the proteins making up the trafficking machinery of CD36 need to be identified with special focus to the differences with the protein composition of the GLUT4 trafficking machinery. These proteins that are uniquely dedicated to either CD36 or GLUT4 traffic may offer targets to rectify aberrant substrate uptake seen in the lipid-overloaded heart. Specifically, CD36-dedicated trafficking regulators should be inhibited, whereas such GLUT4-dedicated proteins would need to be activated. Recent advances in the identification of CD36-dedicated trafficking proteins have disclosed the involvement of vacuolar-type H+-ATPase and of specific vesicle-associated membrane proteins (VAMPs). In this review, we summarize these recent findings and sketch a roadmap of CD36 and GLUT4 trafficking compatible with experimental findings.
Collapse
Affiliation(s)
- Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Clinical Genetics, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6211 LK Maastricht, the Netherlands
| | - Dietbert Neumann
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6211 LK Maastricht, the Netherlands
| | - Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Clinical Genetics, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6211 LK Maastricht, the Netherlands
| |
Collapse
|
131
|
Bryant NJ, Gould GW. Insulin stimulated GLUT4 translocation - Size is not everything! Curr Opin Cell Biol 2020; 65:28-34. [PMID: 32182545 DOI: 10.1016/j.ceb.2020.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/03/2020] [Accepted: 02/15/2020] [Indexed: 12/21/2022]
Abstract
Insulin-regulated trafficking of the facilitative glucose transporter GLUT4 has been studied in many cell types. The translocation of GLUT4 from intracellular membranes to the cell surface is often described as a highly specialised form of membrane traffic restricted to certain cell types such as fat and muscle, which are the major storage depots for insulin-stimulated glucose uptake. Here, we discuss evidence that favours the argument that rather than being restricted to specialised cell types, the machinery through which insulin regulates GLUT4 traffic is present in all cell types. This is an important point as it provides confidence in the use of experimentally tractable model systems to interrogate the trafficking itinerary of GLUT4.
Collapse
Affiliation(s)
- Nia J Bryant
- Department of Biology and York Biomedical Research Institute, University of York, York, YO10 5DD, UK.
| | - Gwyn W Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
132
|
Kotzé-Hörstmann LM, Sadie-Van Gijsen H. Modulation of Glucose Metabolism by Leaf Tea Constituents: A Systematic Review of Recent Clinical and Pre-clinical Findings. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2973-3005. [PMID: 32105058 DOI: 10.1021/acs.jafc.9b07852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Leaf teas are widely used as a purported treatment for dysregulated glucose homeostasis. The objective of this study was to systematically evaluate the clinical and cellular-metabolic evidence, published between January 2013 and May 2019, and indexed on PubMed, ScienceDirect, and Web of Science, supporting the use of leaf teas for this purpose. Fourteen randomized controlled trials (RCTs) (13 on Camellia sinensis teas) were included, with mixed results, and providing scant mechanistic information. In contrast, 74 animal and cell culture studies focusing on the pancreas, liver, muscle, and adipose tissue yielded mostly positive results and highlighted enhanced insulin signaling as a recurring target associated with the effects of teas on glucose metabolism. We conclude that more studies, including RCTs and pre-clinical studies examining teas from a wider variety of species beyond C. sinensis, are required to establish a stronger evidence base on the use of leaf teas to normalize glucose metabolism.
Collapse
Affiliation(s)
- Liske M Kotzé-Hörstmann
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, Parow 7505, South Africa
| | - Hanél Sadie-Van Gijsen
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, Parow 7505, South Africa
| |
Collapse
|
133
|
Morris S, Geoghegan ND, Sadler JBA, Koester AM, Black HL, Laub M, Miller L, Heffernan L, Simpson JC, Mastick CC, Cooper J, Gadegaard N, Bryant NJ, Gould GW. Characterisation of GLUT4 trafficking in HeLa cells: comparable kinetics and orthologous trafficking mechanisms to 3T3-L1 adipocytes. PeerJ 2020; 8:e8751. [PMID: 32185116 PMCID: PMC7060922 DOI: 10.7717/peerj.8751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
Insulin-stimulated glucose transport is a characteristic property of adipocytes and muscle cells and involves the regulated delivery of glucose transporter (GLUT4)-containing vesicles from intracellular stores to the cell surface. Fusion of these vesicles results in increased numbers of GLUT4 molecules at the cell surface. In an attempt to overcome some of the limitations associated with both primary and cultured adipocytes, we expressed an epitope- and GFP-tagged version of GLUT4 (HA–GLUT4–GFP) in HeLa cells. Here we report the characterisation of this system compared to 3T3-L1 adipocytes. We show that insulin promotes translocation of HA–GLUT4–GFP to the surface of both cell types with similar kinetics using orthologous trafficking machinery. While the magnitude of the insulin-stimulated translocation of GLUT4 is smaller than mouse 3T3-L1 adipocytes, HeLa cells offer a useful, experimentally tractable, human model system. Here, we exemplify their utility through a small-scale siRNA screen to identify GOSR1 and YKT6 as potential novel regulators of GLUT4 trafficking in human cells.
Collapse
Affiliation(s)
- Silke Morris
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | | | - Jessica B A Sadler
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Anna M Koester
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | | | - Marco Laub
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Lucy Miller
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Linda Heffernan
- School of Biology & Environmental Science, University College Dublin, Dublin, Ireland
| | - Jeremy C Simpson
- School of Biology & Environmental Science, University College Dublin, Dublin, Ireland
| | | | - Jon Cooper
- School of Engineering, University of Glasgow, Glasgow, UK
| | | | - Nia J Bryant
- Department of Biology, University of York, York, UK
| | - Gwyn W Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
134
|
Role of Akt Activation in PARP Inhibitor Resistance in Cancer. Cancers (Basel) 2020; 12:cancers12030532. [PMID: 32106627 PMCID: PMC7139751 DOI: 10.3390/cancers12030532] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have recently been introduced in the therapy of several types of cancers not responding to conventional treatments. However, de novo and acquired PARP inhibitor resistance is a significant limiting factor in the clinical therapy, and the underlying mechanisms are not fully understood. Activity of the cytoprotective phosphatidylinositol-3 kinase (PI3K)-Akt pathway is often increased in human cancer that could result from mutation, expressional change, or amplification of upstream growth-related factor signaling elements or elements of the Akt pathway itself. However, PARP-inhibitor-induced activation of the cytoprotective PI3K-Akt pathway is overlooked, although it likely contributes to the development of PARP inhibitor resistance. Here, we briefly summarize the biological role of the PI3K-Akt pathway. Next, we overview the significance of the PARP-Akt interplay in shock, inflammation, cardiac and cerebral reperfusion, and cancer. We also discuss a recently discovered molecular mechanism that explains how PARP inhibition induces Akt activation and may account for apoptosis resistance and mitochondrial protection in oxidative stress and in cancer.
Collapse
|
135
|
Takahashi N, Kimura AP, Ohmura K, Naito S, Yoshida M, Ieko M. Knockdown of long noncoding RNA dreh facilitates cell surface GLUT4 expression and glucose uptake through the involvement of vimentin in 3T3-L1 adipocytes. Gene 2020; 735:144404. [PMID: 32018013 DOI: 10.1016/j.gene.2020.144404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/27/2020] [Indexed: 01/16/2023]
Abstract
Glucose uptake in adipocytes is crucial for regulating systemic metabolism. Long noncoding RNAs (lncRNAs), defined as being transcripts with lengths exceeding 200 nucleotides that are not translated, are recently identified regulators of cellular functions. Previously, we have shown that an lncRNA, "down-regulated expression by hepatitis B virus X" (dreh), is involved in glucose transport in skeletal muscle cells. Here, we aimed to examine the involvement of dreh in glucose transport in 3T3-L1 adipocytes. Expression analysis showed that dreh was expressed in 3T3-L1 fibroblasts and adipocytes. Knockdown of dreh expression using its specific siRNAs lowered the glucose concentration of the medium and facilitated [3H]-2-deoxyglucose transport in adipocytes. Additionally, dreh silencing enhanced the protein expression of glucose transporter (GLUT4) in the plasma membrane of adipocytes. Treatment with siRNA against vimentin attenuated the glucose-lowering effect of dreh depletion. These results suggest that the repression of dreh facilitates glucose transport via increased GLUT4 expression in the plasma membrane through the involvement of vimentin in 3T3-L1 adipocytes. In conclusion, dreh is the first observed lncRNA that regulates glucose transport in adipocytes and could serve as a novel therapeutic target for diabetes by modulating adipocyte function. Considering the new function of dreh, we propose that dreh be renamed "down-regulated expression-related hexose/glucose transport enhancer."
Collapse
Affiliation(s)
- Nobuhiko Takahashi
- Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0023, Japan.
| | - Atsushi P Kimura
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Kazumasa Ohmura
- Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0023, Japan
| | - Sumiyoshi Naito
- Division of Clinical Laboratory, Health Sciences University of Hokkaido Hospital, 2-5 Ainosato, Kita-ku, Sapporo, Hokkaido 002-8072, Japan
| | - Mika Yoshida
- Division of Clinical Laboratory, Health Sciences University of Hokkaido Hospital, 2-5 Ainosato, Kita-ku, Sapporo, Hokkaido 002-8072, Japan
| | - Masahiro Ieko
- Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0023, Japan
| |
Collapse
|
136
|
Sun YN, Huang JQ, Chen ZZ, Du M, Ren FZ, Luo J, Fang B. Amyotrophy Induced by a High-Fat Diet Is Closely Related to Inflammation and Protein Degradation Determined by Quantitative Phosphoproteomic Analysis in Skeletal Muscle of C57BL/6 J Mice. J Nutr 2020; 150:294-302. [PMID: 31618431 DOI: 10.1093/jn/nxz236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/29/2019] [Accepted: 09/05/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Ectopic fat accumulation in skeletal muscle results in dysfunction and atrophy, but the underlying molecular mechanisms remain unclear. OBJECTIVE The aim of this study was to investigate the effects of a high-fat diet (HFD) in modulating the structure and energy metabolism of skeletal muscle and the underlying mechanisms in mice. METHODS Four-week-old male C57BL/6 J mice (n = 30) were allowed 1 wk for acclimatization. After 6 mice with low body weight were removed from the study, the remaining 24 mice were fed with a normal-fat diet (NFD; 10% energy from fat, n = 12) or an HFD (60% energy from fat, n = 12) for 24 wk. At the end of the experiment, serum glucose and lipid concentrations were measured, and skeletal muscle was collected for atrophy analysis, inflammation measurements, and phosphoproteomic analysis. RESULTS Compared with the NFD, the HFD increased (P < 0.05) body weight (35.8%), serum glucose (64.5%), and lipid (27.3%) concentrations, along with elevated (P < 0.05) expressions of the atrophy-related proteins muscle ring finger 1 (MURF1; 27.6%) and muscle atrophy F-box (MAFBX; 44.5%) in skeletal muscle. Phosphoproteomic analysis illustrated 64 proteins with differential degrees of phosphorylation between the HFD and NFD groups. These proteins were mainly involved in modulating cytoskeleton [adenylyl cyclase-associated protein 2 (CAP2) and actin-α skeletal muscle (ACTA1)], inflammation [NF-κB-activating protein (NKAP) and serine/threonine-protein kinase RIO3 (RIOK3)], glucose metabolism [Cdc42-interacting protein 4 (TRIP10); protein kinase C, and casein kinase II substrate protein 3 (PACSIN3)], and protein degradation [heat shock protein 90 kDa (HSP90AA1)]. The HFD-induced inhibitions of the insulin signaling pathway and activations of inflammation in skeletal muscle were verified by Western blot analysis. CONCLUSIONS Quantitative phosphoproteomic analysis in C57BL/6 J mice fed an NFD or HFD for 24 wk revealed that the phosphorylation of inflammatory proteins and proteins associated with glucose metabolism at specific serine residues may play critical roles in the regulation of skeletal muscle atrophy induced by an HFD. This work provides information regarding underlying molecular mechanisms for inflammation-induced dysfunction and atrophy in skeletal muscle.
Collapse
Affiliation(s)
- Ya-Nan Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jia-Qiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhong-Zhou Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Fa-Zheng Ren
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China.,Beijing Laboratory of Food Quality and Safety, Beijing University of Agriculture, Beijing, China
| | - Jie Luo
- Beijing Laboratory of Food Quality and Safety, Beijing University of Agriculture, Beijing, China.,College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Bing Fang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
137
|
Berg ME, Naams JB, Hautala LC, Tolvanen TA, Ahonen JP, Lehtonen S, Wähälä K. Novel Sulfonanilide Inhibitors of SHIP2 Enhance Glucose Uptake into Cultured Myotubes. ACS OMEGA 2020; 5:1430-1438. [PMID: 32010815 PMCID: PMC6990439 DOI: 10.1021/acsomega.9b02944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/30/2019] [Indexed: 05/14/2023]
Abstract
A series of substituted sulfonanilide analogs were prepared and evaluated as novel potent inhibitors of SH2 domain-containing inositol polyphosphate 5'-phosphatase 2 (SHIP2). SHIP2 has been shown to be a new attractive target for the treatment of insulin resistance in type 2 diabetes mellitus (T2D), which can lead to life-threatening diabetic kidney disease (DKD). Amongst the synthesized compounds, the two most promising candidates, 10 and 11, inhibited SHIP2 significantly. Additionally, these compounds induced Akt activation in a dose-dependent manner, increased the presence of glucose transporter 4 at the plasma membrane, and enhanced glucose uptake in cultured myotubes in vitro at lower concentrations than metformin, the most widely used antidiabetic drug. These results show that the novel SHIP2 inhibitors have insulin sensitizing capacity and provide prototypes for further drug development for T2D and DKD.
Collapse
Affiliation(s)
- Mika E.
A. Berg
- Department
of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Jette-Britt Naams
- Research
Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, Helsinki, 00014 Finland
| | - Laura C. Hautala
- Research
Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, Helsinki, 00014 Finland
| | - Tuomas A. Tolvanen
- Department
of Pathology, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland
| | - Jari P. Ahonen
- Department
of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Sanna Lehtonen
- Research
Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, Helsinki, 00014 Finland
- Department
of Pathology, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland
| | - Kristiina Wähälä
- Department
of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
- Department
of Biochemistry and Developmental Biology, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland
- E-mail: . Phone: +358504487502
| |
Collapse
|
138
|
Minami S, Yokota N, Kawahara H. BAG6 contributes to glucose uptake by supporting the cell surface translocation of the glucose transporter GLUT4. Biol Open 2020; 9:bio.047324. [PMID: 31911483 PMCID: PMC6994957 DOI: 10.1242/bio.047324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Defective translocation of glucose transporter 4 (GLUT4) to the cell surface is a key feature of insulin resistance in type 2 diabetes. Therefore, elucidating the mechanism of GLUT4 translocation is of primary importance. The mammalian Bag6/Bat3 gene has been suggested to be linked with potential obesity- and diabetes-associated loci, while its function in the control of glucose incorporation into the cytoplasm has not been investigated. In this study, we established a series of cell lines that stably expressed GLUT4 with three tandem repeats of the antigenic peptide inserted into its 1st extracellular loop. With these cell lines, we found that the depletion of endogenous BAG6 downregulated the cell surface expression of GLUT4, concomitant with the reduced incorporation of a glucose analog into the cells. Defective intracellular translocation of GLUT4 in BAG6-depleted cells is similar to the case observed for the depletion of Rab8a, an essential regulator of insulin-stimulated GLUT4 translocation. In addition, we observed that the assembly of syntaxin 6 into the endoplasmic reticulum membrane was slightly disturbed under BAG6 depletion. Given that Rab8a and syntaxin 6 are critical for GLUT4 translocation, we suggest that BAG6 may play multiple roles in the trafficking of glucose transporters to the cell surface. This article has an associated First Person interview with the first author of the paper. Summary: BAG6 is critical for the insulin-stimulated translocation of GLUT4 from its peri-nuclear storage compartments to the cell surface.
Collapse
Affiliation(s)
- Setsuya Minami
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Naoto Yokota
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Hiroyuki Kawahara
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
139
|
Belete TM. A Recent Achievement In the Discovery and Development of Novel Targets for the Treatment of Type-2 Diabetes Mellitus. J Exp Pharmacol 2020; 12:1-15. [PMID: 32021494 PMCID: PMC6959499 DOI: 10.2147/jep.s226113] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes (T2DM) is a chronic metabolic disorder. Impaired insulin secretion, enhanced hepatic glucose production, and suppressed peripheral glucose use are the main defects responsible for developing the disease. Besides, the pathophysiology of T2DM also includes enhanced glucagon secretion, decreased incretin secretion, increased renal glucose reabsorption, and adipocyte, and brain insulin resistance. The increasing prevalence of T2DM in the world beseeches an urgent need for better treatment options. The antidiabetic drugs focus on control of blood glucose concentration, but the future treatment goal is to delay disease progression and treatment failure, which causes poorer glycemic regulation. Recent treatment approaches target on several novel pathophysiological defects present in T2DM. Some of the promising novel targets being under clinical development include those that increase insulin sensitization (antagonists of glucocorticoids receptor), decreasing hepatic glucose production (glucagon receptor antagonist, inhibitors of glycogen phosphorylase and fructose-1,6-biphosphatase). This review summarizes studies that are available on novel targets being studied to treat T2DM with an emphasis on the small molecule drug design. The experience gathered from earlier studies and knowledge of T2DM pathways can guide the anti-diabetic drug development toward the discovery of drugs essential to treat T2DM.
Collapse
Affiliation(s)
- Tafere Mulaw Belete
- Department of Pharmacology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
140
|
Lehtonen S. SHIPping out diabetes-Metformin, an old friend among new SHIP2 inhibitors. Acta Physiol (Oxf) 2020; 228:e13349. [PMID: 31342643 PMCID: PMC6916339 DOI: 10.1111/apha.13349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023]
Abstract
SHIP2 (Src homology 2 domain‐containing inositol 5′‐phosphatase 2) belongs to the family of 5′‐phosphatases. It regulates the phosphoinositide 3‐kinase (PI3K)‐mediated insulin signalling cascade by dephosphorylating the 5′‐position of PtdIns(3,4,5)P3 to generate PtdIns(3,4)P2, suppressing the activity of the pathway. SHIP2 mouse models and genetic studies in human propose that increased expression or activity of SHIP2 contributes to the pathogenesis of the metabolic syndrome, hypertension and type 2 diabetes. This has raised great interest to identify SHIP2 inhibitors that could be used to design new treatments for metabolic diseases. This review summarizes the central mechanisms associated with the development of diabetic kidney disease, including the role of insulin resistance, and then moves on to describe the function of SHIP2 as a regulator of metabolism in mouse models. Finally, the identification of SHIP2 inhibitors and their effects on metabolic processes in vitro and in vivo are outlined. One of the newly identified SHIP2 inhibitors is metformin, the first‐line medication prescribed to patients with type 2 diabetes, further boosting the attraction of SHIP2 as a treatment target to ameliorate metabolic disorders.
Collapse
Affiliation(s)
- Sanna Lehtonen
- Department of Pathology and Research Program for Clinical and Molecular Metabolism, Faculty of Medicine University of Helsinki Helsinki Finland
| |
Collapse
|
141
|
Narrow-Leafed Lupin ( Lupinus angustifolius L.) Seeds Gamma-Conglutin is an Anti-Inflammatory Protein Promoting Insulin Resistance Improvement and Oxidative Stress Amelioration in PANC-1 Pancreatic Cell-Line. Antioxidants (Basel) 2019; 9:antiox9010012. [PMID: 31877933 PMCID: PMC7023629 DOI: 10.3390/antiox9010012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 01/01/2023] Open
Abstract
(1) Background: Inflammation molecular cues and insulin resistance development are some of the main contributors for the development and advance of the pathogenesis of inflammatory-related diseases; (2) Methods: We isolated and purified γ-conglutin protein from narrow-leafed lupin (NLL or blue lupin) mature seeds using affinity-chromatography to evaluate its anti-inflammatory activities at molecular level using both, a bacterial lipopolysaccharide (LPS)-induced inflammation and an insulin resistance pancreatic cell models; (3) Results: NLL γ-conglutin achieved a plethora of functional effects as the strong reduction of cell oxidative stress induced by inflammation through decreasing proteins carbonylation, nitric oxide synthesis and inducible nitric oxide synthase (iNOS) transcriptional levels, and raising glutathione (GSH) levels and modulation of superoxide dismutase (SOD) and catalase enzymes activities. γ-conglutin induced up-regulated transcriptomic and protein levels of insulin signalling pathway IRS-1, Glut-4, and PI3K, improving glucose uptake, while decreasing pro-inflammatory mediators as iNOs, TNFα, IL-1β, INFγ, IL-6, IL-12, IL-17, and IL-27; (4) Conclusion: These results suggest a promising use of NLL γ-conglutin protein in functional foods, which could also be implemented in alternative diagnosis and therapeutic molecular tools helping to prevent and treat inflammatory-related diseases.
Collapse
|
142
|
Jeevanandam J, Chan YS, Danquah MK, Law MC. Cytotoxicity Analysis of Morphologically Different Sol-Gel-Synthesized MgO Nanoparticles and Their In Vitro Insulin Resistance Reversal Ability in Adipose cells. Appl Biochem Biotechnol 2019; 190:1385-1410. [PMID: 31776944 DOI: 10.1007/s12010-019-03166-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
Insulin resistance is one of the major factors that leads to type 2 diabetes. Although insulin therapies have been shown to overcome insulin resistance, overweight and hypoglycemia are still observed in most cases. The disadvantages of insulin therapies have driven the interest in developing novel curative agents with enhanced insulin resistance reversibility. Magnesium deficiency has also been recognized as a common problem which leads to insulin resistance in both type 1 and 2 diabetes. Oxide nanoparticles demonstrate highly tunable physicochemical properties that can be exploited by engineers to develop unique oxide nanoparticles for tailored applications. Magnesium supplements for diabetic cells have been reported to increase the insulin resistance reversibility. Hence, it is hypothesized that magnesium oxide (MgO) nanoparticles could be molecularly engineered to offer enhanced therapeutic efficacy in reversing insulin resistance. In the present work, morphologically different MgO nanoparticles were synthesized and evaluated for biophysical characteristics, biocompatibility, cytotoxicity, and insulin resistance reversibility. MTT assay revealed that hexagonally shaped MgO nanoparticles are less toxic to 3T3-L1 adipose cells (diabetic) compared with spherically and rod-shaped MgO nanoparticles. MTT assays using VERO cells (normal, non-diabetic) showed that 400 μg/ml of hexagonal MgO nanoparticles were less toxic to both diabetic and non-diabetic cells. DNS glucose assay and western blot showed that hexagonally shaped MgO nanoparticles had reversed 29.5% of insulin resistance whilst fluorescence microscopy studies indicated that the insulin resistance reversal is due to the activation of intracellular enzymes. The probable mechanism for MgO nanoparticles to induce cytotoxic effect and insulin resistance reversal is discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Yen San Chan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia.
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN, 37403, USA
| | - Ming Chiat Law
- Department of Mechanical Engineering, Faculty of Engineering and Science, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia
| |
Collapse
|
143
|
Astaxanthin: A Potential Mitochondrial-Targeted Antioxidant Treatment in Diseases and with Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3849692. [PMID: 31814873 PMCID: PMC6878783 DOI: 10.1155/2019/3849692] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/30/2019] [Indexed: 12/23/2022]
Abstract
Oxidative stress is characterized by an imbalance between prooxidant and antioxidant species, leading to macromolecular damage and disruption of redox signaling and cellular control. It is a hallmark of various diseases including metabolic syndrome, chronic fatigue syndrome, neurodegenerative, cardiovascular, inflammatory, and age-related diseases. Several mitochondrial defects have been considered to contribute to the development of oxidative stress and known as the major mediators of the aging process and subsequent age-associated diseases. Thus, mitochondrial-targeted antioxidants should prevent or slow down these processes and prolong longevity. This is the reason why antioxidant treatments are extensively studied and newer and newer compounds with such an effect appear. Astaxanthin, a xanthophyll carotenoid, is the most abundant carotenoid in marine organisms and is one of the most powerful natural compounds with remarkable antioxidant activity. Here, we summarize its antioxidant targets, effects, and benefits in diseases and with aging.
Collapse
|
144
|
Zhang Y, Jiang X, Deng Q, Gao Z, Tang X, Fu R, Hu J, Li Y, Li L, Gao N. Downregulation of MYO1C mediated by cepharanthine inhibits autophagosome-lysosome fusion through blockade of the F-actin network. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:457. [PMID: 31699152 PMCID: PMC6836678 DOI: 10.1186/s13046-019-1449-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/15/2019] [Indexed: 01/10/2023]
Abstract
Background MYO1C, an actin-based motor protein, is involved in the late stages of autophagosome maturation and fusion with the lysosome. The molecular mechanism by which MYO1C regulates autophagosome-lysosome fusion remains largely unclear. Methods Western blotting was used to determine the expression of autophagy-related proteins. Transmission electron microscopy (TEM) was used to observe the ultrastructural changes. An immunoprecipitation assay was utilized to detect protein-protein interactions. Immunofluorescence analysis was used to detect autophagosome-lysosome fusion and colocalization of autophagy-related molecules. An overexpression plasmid or siRNA against MYO1C were sequentially introduced into human breast cancer MDA-MB-231 cells. Results We show here that cepharanthine (CEP), a novel autophagy inhibitor, inhibited autophagy/mitophagy through blockage of autophagosome-lysosome fusion in human breast cancer cells. Mechanistically, we found for the first time that MYO1C was downregulated by CEP treatment. Furthermore, the interaction/colocalization of MYO1C and F-actin with either LC3 or LAMP1 was inhibited by CEP treatment. Knockdown of MYO1C further decreased the interaction/colocalization of MYO1C and F-actin with either LC3 or LAMP1 inhibited by CEP treatment, leading to blockade of autophagosome-lysosome fusion. In contrast, overexpression of MYO1C significantly restored the interaction/colocalization of MYO1C and F-actin with either LC3 or LAMP1 inhibited by CEP treatment. Conclusion These findings highlight a key role of MYO1C in the regulation of autophagosome-lysosome fusion through F-actin remodeling. Our findings also suggest that CEP could potentially be further developed as a novel autophagy/mitophagy inhibitor, and a combination of CEP with classic chemotherapeutic drugs could become a promising treatment for breast cancer.
Collapse
Affiliation(s)
- Yanhao Zhang
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xiuxing Jiang
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Qin Deng
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Ziyi Gao
- Greater Philadelphia Pharmacy, Philadelphia, USA
| | - Xiangyu Tang
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China
| | - Ruoqiu Fu
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Jinjiao Hu
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yunong Li
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Lirong Li
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Ning Gao
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China. .,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
145
|
The SNAP-25 Protein Family. Neuroscience 2019; 420:50-71. [DOI: 10.1016/j.neuroscience.2018.09.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
|
146
|
Patel BM, Goyal RK. Liver and insulin resistance: New wine in old bottle!!! Eur J Pharmacol 2019; 862:172657. [DOI: 10.1016/j.ejphar.2019.172657] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
|
147
|
Diallinas G, Martzoukou O. Transporter membrane traffic and function: lessons from a mould. FEBS J 2019; 286:4861-4875. [DOI: 10.1111/febs.15078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/26/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022]
Affiliation(s)
- George Diallinas
- Department of Biology National and Kapodistrian University of Athens Greece
| | - Olga Martzoukou
- Department of Biology National and Kapodistrian University of Athens Greece
| |
Collapse
|
148
|
Regulation of Skeletal Muscle Glucose Transport and Glucose Metabolism by Exercise Training. Nutrients 2019; 11:nu11102432. [PMID: 31614762 PMCID: PMC6835691 DOI: 10.3390/nu11102432] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Aerobic exercise training and resistance exercise training are both well-known for their ability to improve human health; especially in individuals with type 2 diabetes. However, there are critical differences between these two main forms of exercise training and the adaptations that they induce in the body that may account for their beneficial effects. This article reviews the literature and highlights key gaps in our current understanding of the effects of aerobic and resistance exercise training on the regulation of systemic glucose homeostasis, skeletal muscle glucose transport and skeletal muscle glucose metabolism.
Collapse
|
149
|
Dreh, a long noncoding RNA repressed by metformin, regulates glucose transport in C2C12 skeletal muscle cells. Life Sci 2019; 236:116906. [PMID: 31614147 DOI: 10.1016/j.lfs.2019.116906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/13/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022]
Abstract
AIMS The anti-hyperglycemic action of metformin on skeletal muscles is presently unclear. Long noncoding RNAs (lncRNAs) are implicated in multiple cellular functions. This study aims to explore the role of lncRNAs in the glucometabolic action of metformin on skeletal muscle cells. MAIN METHODS Metformin accumulation was assessed using [14C]-metformin. A lncRNA array was used to investigate metformin-regulated lncRNAs in C2C12 skeletal muscle cells. Knockdown studies were applied to evaluate the function of lncRNA Dreh. A colorimetric assay was used for the measurement of medium glucose concentration; glucose transport was assessed using [3H]-2-deoxyglucose; real-time PCR was used for RNA expression analysis, and western blotting was used to assess protein expression in myotubes. A Dreh overexpression plasmid was transfected into the cells. KEY FINDINGS Metformin accumulated in C2C12 myotubes. Metformin reduced medium glucose concentration and repressed lncRNA Dreh expression in the myotubes. Knockdown of Dreh in the myotubes resulted in reduced glucose concentration in the culture medium, increased glucose transport, and increased levels of GLUT4 protein in the plasma membrane. Overexpression of Dreh attenuated the glucose-lowering effect of metformin in myotubes. SIGNIFICANCE The glucoregulatory actions of metformin are mediated in part by a lncRNA, Dreh, in the skeletal muscle cells. Dreh is a novel regulator for glucose transport and could be a therapeutic target for diabetes.
Collapse
|
150
|
Li DT, Habtemichael EN, Julca O, Sales CI, Westergaard XO, DeVries SG, Ruiz D, Sayal B, Bogan JS. GLUT4 Storage Vesicles: Specialized Organelles for Regulated Trafficking. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:453-470. [PMID: 31543708 PMCID: PMC6747935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Fat and muscle cells contain a specialized, intracellular organelle known as the GLUT4 storage vesicle (GSV). Insulin stimulation mobilizes GSVs, so that these vesicles fuse at the cell surface and insert GLUT4 glucose transporters into the plasma membrane. This example is likely one instance of a broader paradigm for regulated, non-secretory exocytosis, in which intracellular vesicles are translocated in response to diverse extracellular stimuli. GSVs have been studied extensively, yet these vesicles remain enigmatic. Data support the view that in unstimulated cells, GSVs are present as a pool of preformed small vesicles, which are distinct from endosomes and other membrane-bound organelles. In adipocytes, GSVs contain specific cargoes including GLUT4, IRAP, LRP1, and sortilin. They are formed by membrane budding, involving sortilin and probably CHC22 clathrin in humans, but the donor compartment from which these vesicles form remains uncertain. In unstimulated cells, GSVs are trapped by TUG proteins near the endoplasmic reticulum - Golgi intermediate compartment (ERGIC). Insulin signals through two main pathways to mobilize these vesicles. Signaling by the Akt kinase modulates Rab GTPases to target the GSVs to the cell surface. Signaling by the Rho-family GTPase TC10α stimulates Usp25m-mediated TUG cleavage to liberate the vesicles from the Golgi. Cleavage produces a ubiquitin-like protein modifier, TUGUL, that links the GSVs to KIF5B kinesin motors to promote their movement to the cell surface. In obesity, attenuation of these processes results in insulin resistance and contributes to type 2 diabetes and may simultaneously contribute to hypertension and dyslipidemia in the metabolic syndrome.
Collapse
Affiliation(s)
- Don T. Li
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT,Department of Cell Biology, Yale University School of Medicine, Yale University, New Haven, CT
| | - Estifanos N. Habtemichael
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Omar Julca
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Chloe I. Sales
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Xavier O. Westergaard
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Stephen G. DeVries
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Diana Ruiz
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Bhavesh Sayal
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Jonathan S. Bogan
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT,Department of Cell Biology, Yale University School of Medicine, Yale University, New Haven, CT,To whom all correspondence should be addressed: Jonathan S. Bogan, Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, P.O. Box 208020, New Haven, CT 06520-8020; Tel: 203-785-6319; Fax: 203-785-6462;
| |
Collapse
|