101
|
Cesaro S, Ljungman P, Mikulska M, Hirsch HH, von Lilienfeld-Toal M, Cordonnier C, Meylan S, Mehra V, Styczynski J, Marchesi F, Besson C, Baldanti F, Masculano RC, Beutel G, Einsele H, Azoulay E, Maertens J, de la Camara R, Pagano L. Recommendations for the management of COVID-19 in patients with haematological malignancies or haematopoietic cell transplantation, from the 2021 European Conference on Infections in Leukaemia (ECIL 9). Leukemia 2022; 36:1467-1480. [PMID: 35488021 PMCID: PMC9053562 DOI: 10.1038/s41375-022-01578-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a novel virus that spread worldwide from 2019 causing the Coronavirus disease 19 (COVID-19) pandemic. SARS-CoV-2 infection is characterised by an initial viral phase followed in some patients by a severe inflammatory phase. Importantly, immunocompromised patients may have a prolonged viral phase, shedding infectious viral particles for months, and absent or dysfunctional inflammatory phase. Among haematological patients, COVID-19 has been associated with high mortality rate in acute leukaemia, high risk-myelodysplastic syndromes, and after haematopoietic cell transplant and chimeric-antigen-receptor-T therapies. The clinical symptoms and signs were similar to that reported for the overall population, but the severity and outcome were worse. The deferral of immunodepleting cellular therapy treatments is recommended for SARS-CoV-2 positive patient, while in the other at-risk cases, the haematological treatment decisions must be weighed between individual risks and benefits. The gold standard for the diagnosis is the detection of viral RNA by nucleic acid testing on nasopharyngeal-swabbed sample, which provides high sensitivity and specificity; while rapid antigen tests have a lower sensitivity, especially in asymptomatic patients. The prevention of SARS-CoV-2 infection is based on strict infection control measures recommended for aerosol-droplet-and-contact transmission. Vaccinations against SARS-CoV-2 has shown high efficacy in reducing community transmission, hospitalisation and deaths due to severe COVID-19 disease in the general population, but immunosuppressed/haematology patients may have lower sero-responsiveness to vaccinations. Moreover, the recent emergence of new variants may require vaccine modifications and strategies to improve efficacy in these vulnerable patients. Beyond supportive care, the specific treatment is directed at viral replication control (antivirals, anti-spike monoclonal antibodies) and, in patients who need it, to the control of inflammation (dexamethasone, anti-Il-6 agents, and others). However, the benefit of all these various prophylactic and therapeutic treatments in haematology patients deserves further studies.
Collapse
Affiliation(s)
- Simone Cesaro
- Paediatric Haematology Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata, Verona, Italy.
| | - Per Ljungman
- Division of Haematology, Department of Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Malgorzata Mikulska
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genoa, and Ospedale Policlinico San Martino, Genoa, Italy
| | - Hans H Hirsch
- Transplantation and Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Marie von Lilienfeld-Toal
- Klinik fur Innere Medizin II (Haematologie/Oncologie), Universitatsklinikum Jena, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | | | - Sylvain Meylan
- Infectious Diseases Service, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Varun Mehra
- Department of Haematology, King's College Hospital NHS Foundation Trust, London, UK
| | - Jan Styczynski
- Department of Paediatric Haematology and Oncology, Jurasz University Hospital, Nicolaus Copernicus University Torun, Collegium Medicum, Bydgoszcz, Poland
| | - Francesco Marchesi
- Haematology Unit, Department of Research and Clinical Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Caroline Besson
- Service d'Hematologie Oncologie, Centre Hospitalier de Versailles, Le Chesnay, Villejuif, France
| | - Fausto Baldanti
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Gernot Beutel
- Department for Haematology, Haemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hanover, Germany
| | - Herman Einsele
- Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
| | - Elie Azoulay
- Critical Care Department, Saint-Louis Hospital, Paris, France
| | - Johan Maertens
- Haematology Department, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | | | - Livio Pagano
- Institute of Haematology, Faculty of Medicine and Surgery, "Sacro Cuore" Catholic University, Rome, Italy
| |
Collapse
|
102
|
Horsley AR, Pearmain L, Knight S, Schindler N, Wang R, Bennett M, Robey RC, Davies JC, Djukanović R, Heaney LG, Hussell T, Marciniak SJ, McGarvey LP, Porter J, Wilkinson T, Brightling C, Ho LP. Large scale clinical trials: lessons from the COVID-19 pandemic. BMJ Open Respir Res 2022; 9:9/1/e001226. [PMID: 35701071 PMCID: PMC9198385 DOI: 10.1136/bmjresp-2022-001226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/14/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic has presented substantial new challenges to clinical and research teams. Our objective was to analyse the experience of investigators and research delivery staff regarding the research response to COVID-19 in order to identify these challenges as well as solutions for future pandemic planning. METHODS We conducted a survey of diverse research staff involved in delivery of COVID-19 clinical trials across the UK. This was delivered online across centres linked to the NIHR Respiratory Translational Research Collaboration. Responses were analysed using a formal thematic analysis approach to identify common themes and recommendations. RESULTS 83 survey participants from ten teaching hospitals provided 922 individual question responses. Respondents were involved in a range of research delivery roles but the largest cohort (60%) was study investigators. A wide range of research experiences were captured, including early and late phase trials. Responses were coded into overarching themes. Among common observations, complex protocols without adaptation to a pandemic were noted to have hampered recruitment. Recommendations included the need to develop and test pandemic-specific protocols, and make use of innovations in information technology. Research competition needs to be avoided and drug selection processes should be explicitly transparent. CONCLUSIONS Delivery of clinical trials, particularly earlier phase trials, in a pandemic clinical environment is highly challenging, and was reactive rather than anticipatory. Future pandemic studies should be designed and tested in advance, making use of pragmatic study designs as far as possible and planning for integration between early and later phase trials and regulatory frameworks.
Collapse
Affiliation(s)
- Alex R Horsley
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester Faculty of Medical and Human Sciences, Manchester, UK
| | - Laurence Pearmain
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester Faculty of Medical and Human Sciences, Manchester, UK.,Division of Diabetes, Endocrinology and Gastroenterology, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| | - Sean Knight
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester Faculty of Medical and Human Sciences, Manchester, UK.,Department of Respiratory Medicine, Salford Royal NHS Foundation Trust, Salford, UK
| | - Nick Schindler
- Institute of Continuing Education, University of Cambridge, Cambridge, UK.,Department of Paediatrics, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Ran Wang
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester Faculty of Medical and Human Sciences, Manchester, UK
| | - Miriam Bennett
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester Faculty of Medical and Human Sciences, Manchester, UK
| | - Rebecca C Robey
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester Faculty of Medical and Human Sciences, Manchester, UK
| | - Jane C Davies
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Ratko Djukanović
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton School of Medicine, Southampton, UK
| | - Liam G Heaney
- Centre of Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Tracy Hussell
- Manchester Centre for Infection and Inflammation Research, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.,Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Lorcan P McGarvey
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Joanna Porter
- Centre for Inflammation & Tissue Repair, University College London Division of Medicine, London, UK.,Interstitial Lung Disease Service, University College London Hospitals NHS Foundation Trust, London, UK
| | - Tom Wilkinson
- Clinical and Experimental Medicine, University of Southampton School of Medicine, Southampton, UK
| | - Chris Brightling
- Institute of Lung Health, University of Leicester, Leicester, UK
| | - Ling-Pei Ho
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford, UK.,Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford, UK
| |
Collapse
|
103
|
Su S, Chen R, Zhang S, Shu H, Luo J. Immune system changes in those with hypertension when infected with SARS-CoV-2. Cell Immunol 2022; 378:104562. [PMID: 35901625 PMCID: PMC9183242 DOI: 10.1016/j.cellimm.2022.104562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) outbreak has become an evolving global health crisis. With an increasing incidence of primary hypertension, there is greater awareness of the relationship between primary hypertension and the immune system [including CD4+, CD8+ T cells, interleukin-17 (IL-17)/T regulatory cells (Treg) balance, macrophages, natural killer (NK) cells, neutrophils, B cells, and cytokines]. Hypertension is associated with an increased risk of various infections, post-infection complications, and increased mortality from severe infections. Despite ongoing reports on the epidemiological and clinical features of COVID-19, no articles have systematically addressed the role of primary hypertension in COVID-19 or how COVID-19 affects hypertension or specific treatment in these high-risk groups. Here, we synthesize recent advances in understanding the relationship between primary hypertension and COVID-19 and its underlying mechanisms and provide specific treatment guidelines for these high-risk groups.
Collapse
|
104
|
Manry J, Bastard P, Gervais A, Le Voyer T, Rosain J, Philippot Q, Michailidis E, Hoffmann HH, Eto S, Garcia-Prat M, Bizien L, Parra-Martínez A, Yang R, Haljasmägi L, Migaud M, Särekannu K, Maslovskaja J, de Prost N, Tandjaoui-Lambiotte Y, Luyt CE, Amador-Borrero B, Gaudet A, Poissy J, Morel P, Richard P, Cognasse F, Troya J, Trouillet-Assant S, Belot A, Saker K, Garçon P, Rivière JG, Lagier JC, Gentile S, Rosen LB, Shaw E, Morio T, Tanaka J, Dalmau D, Tharaux PL, Sene D, Stepanian A, Mégarbane B, Triantafyllia V, Fekkar A, Heath JR, Franco JL, Anaya JM, Solé-Violán J, Imberti L, Biondi A, Bonfanti P, Castagnoli R, Delmonte OM, Zhang Y, Snow AL, Holland SM, Biggs CM, Moncada-Vélez M, Arias AA, Lorenzo L, Boucherit S, Anglicheau D, Planas AM, Haerynck F, Duvlis S, Ozcelik T, Keles S, Bousfiha AA, El Bakkouri J, Ramirez-Santana C, Paul S, Pan-Hammarström Q, Hammarström L, Dupont A, Kurolap A, Metz CN, Aiuti A, Casari G, Lampasona V, Ciceri F, Barreiros LA, Dominguez-Garrido E, Vidigal M, Zatz M, van de Beek D, Sahanic S, Tancevski I, Stepanovskyy Y, Boyarchuk O, Nukui Y, Tsumura M, Vidaur L, Tangye SG, Burrel S, Duffy D, Quintana-Murci L, Klocperk A, Kann NY, Shcherbina A, Lau YL, Leung D, Coulongeat M, Marlet J, Koning R, Reyes LF, Chauvineau-Grenier A, Venet F, Monneret G, Nussenzweig MC, Arrestier R, Boudhabhay I, Baris-Feldman H, Hagin D, Wauters J, Meyts I, Dyer AH, Kennelly SP, Bourke NM, Halwani R, Sharif-Askari FS, Dorgham K, Sallette J, Sedkaoui SM, AlKhater S, Rigo-Bonnin R, Morandeira F, Roussel L, Vinh DC, Erikstrup C, Condino-Neto A, Prando C, Bondarenko A, Spaan AN, Gilardin L, Fellay J, Lyonnet S, Bilguvar K, Lifton RP, Mane S, Anderson MS, Boisson B, Béziat V, Zhang SY, Andreakos E, Hermine O, Pujol A, Peterson P, Mogensen TH, Rowen L, Mond J, Debette S, de Lamballerie X, Burdet C, Bouadma L, Zins M, Soler-Palacin P, Colobran R, Gorochov G, Solanich X, Susen S, Martinez-Picado J, Raoult D, Vasse M, Gregersen PK, Piemonti L, Rodríguez-Gallego C, Notarangelo LD, Su HC, Kisand K, Okada S, Puel A, Jouanguy E, Rice CM, Tiberghien P, Zhang Q, Casanova JL, Abel L, Cobat A. The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proc Natl Acad Sci U S A 2022; 119:e2200413119. [PMID: 35576468 PMCID: PMC9173764 DOI: 10.1073/pnas.2200413119] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/17/2022] [Indexed: 01/25/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) doubles with every 5 y of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-β are found in ∼20% of deceased patients across age groups, and in ∼1% of individuals aged <70 y and in >4% of those >70 y old in the general population. With a sample of 1,261 unvaccinated deceased patients and 34,159 individuals of the general population sampled before the pandemic, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to noncarriers. The RRD associated with any combination of autoantibodies was higher in subjects under 70 y old. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRDs were 17.0 (95% CI: 11.7 to 24.7) and 5.8 (4.5 to 7.4) for individuals <70 y and ≥70 y old, respectively, whereas, for autoantibodies neutralizing both molecules, the RRDs were 188.3 (44.8 to 774.4) and 7.2 (5.0 to 10.3), respectively. In contrast, IFRs increased with age, ranging from 0.17% (0.12 to 0.31) for individuals <40 y old to 26.7% (20.3 to 35.2) for those ≥80 y old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84% (0.31 to 8.28) to 40.5% (27.82 to 61.20) for autoantibodies neutralizing both. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, especially when neutralizing both IFN-α2 and IFN-ω. Remarkably, IFRs increase with age, whereas RRDs decrease with age. Autoimmunity to type I IFNs is a strong and common predictor of COVID-19 death.
Collapse
Affiliation(s)
- Jérémy Manry
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | | | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065
| | - Shohei Eto
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Marina Garcia-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | - Alba Parra-Martínez
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Liis Haljasmägi
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | - Karita Särekannu
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Julia Maslovskaja
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Nicolas de Prost
- Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, 94010 Créteil, France
- Groupe de Recherche Clinique Cardiovascular and Respiratory Manifestations of Acute Lung Injury and Sepsis (CARMAS), Faculté de santé de Créteil, Université Paris Est Créteil, 94010 Créteil Cedex, France
| | - Yacine Tandjaoui-Lambiotte
- Hypoxia and Lung, INSERM U1272, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris, 93022 Bobigny, France
| | - Charles-Edouard Luyt
- Sorbonne Université, Hôpital Pitié Salpêtrière, Médecine Intensive Réanimation, Assistance Publique-Hôpitaux de Paris, 75013 Paris, France
- INSERM, UMRS 1166-iCAN, Institute of Cardiometabolism and Nutrition, 75013 Paris, France
| | - Blanca Amador-Borrero
- Internal Medicine Department, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, 75010 Paris, France
| | - Alexandre Gaudet
- INSERM U1019–CNRS UMR9017, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, University of Lille, 59000 Lille, France
- Centre Hospitalier Universitaire, de Lille, Pôle de Réanimation, Hôpital Roger Salengro Lille, 59000 Lille, France
| | - Julien Poissy
- INSERM U1019–CNRS UMR9017, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, University of Lille, 59000 Lille, France
- Centre Hospitalier Universitaire, de Lille, Pôle de Réanimation, Hôpital Roger Salengro Lille, 59000 Lille, France
| | - Pascal Morel
- Etablissement Français du Sang, 93218 La Plaine Saint-Denis, France
- Interactions Hôte-Greffon-Tumeur et Ingénierie Cellulaire et Génique (RIGHT), INSERM, Etablissement Français du Sang, Université de Franche-Comté, 25000 Besançon, France
| | - Pascale Richard
- Etablissement Français du Sang, 93218 La Plaine Saint-Denis, France
| | - Fabrice Cognasse
- Santé Ingéniérie Biologie St-Etienne (SAINBIOSE), INSERM U1059, University of Lyon, Université Jean Monnet Saint-Etienne, 42000 Saint-Étienne, France
- Etablissement Français du Sang, Auvergne-Rhône-Alpes, 42000 Saint-Étienne, France
| | - Jesús Troya
- Department of Internal Medicine, Infanta Leonor University Hospital, 28031 Madrid, Spain
| | - Sophie Trouillet-Assant
- Hospices Civils de Lyon, 69002 Lyon, France
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, Ecole Nationale Supérieure, Université Claude Bernard Lyon 1 (UCBL), 69365 Lyon, France
- Joint Research Unit, Hospices Civils de Lyon-BioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, 69495 Pierre-Bénite, France
| | - Alexandre Belot
- Hospices Civils de Lyon, 69002 Lyon, France
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, Ecole Nationale Supérieure, Université Claude Bernard Lyon 1 (UCBL), 69365 Lyon, France
- National Referee Centre for Rheumatic, and Autoimmune and Systemic Diseases in Children, 69000 Lyon, France
- Immunopathology Federation Lyon Immunopathology Federation (LIFE), Hospices Civils de Lyon, 69002 Lyon, France
| | - Kahina Saker
- Hospices Civils de Lyon, 69002 Lyon, France
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, Ecole Nationale Supérieure, Université Claude Bernard Lyon 1 (UCBL), 69365 Lyon, France
| | - Pierre Garçon
- Intensive Care Unit, Grand Hôpital de l’Est Francilien Site de Marne-La-Vallée, 77600 Jossigny, France
| | - Jacques G. Rivière
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Jean-Christophe Lagier
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Institut Hospitalo-Universitaire Méditerranée Infection, Institut de Recherche pour le Développement, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, 13005 Marseille, France
| | - Stéphanie Gentile
- Service d’Evaluation Médicale, Hôpitaux Universitaires de Marseille Assistance Publique Hôpitaux de Marseille, 13005 Marseille, France
- Aix-Marseille University, School of Medicine, EA 3279, Centre d'Études et de Recherche sur les Services de Santé et la Qualité de vie (CEReSS)–Health Service Research and Quality of Life Center, 13385 Marseille, France
| | - Lindsey B. Rosen
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892
| | - Elana Shaw
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - David Dalmau
- Hospital Universitari MútuaTerrassa, Universitat de Barcelona, 08193 Barcelona, Spain
- Fundació Docència i Recerca Mutua Terrassa, 08221 Terrassa, Spain
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Center (PARCC), INSERM, Université de Paris, 75015 Paris, France
| | - Damien Sene
- Internal Medicine Department, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, 75010 Paris, France
| | - Alain Stepanian
- Service d’Hématologie Biologique, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75010 Paris, France
- EA3518, Institut Universitaire d’Hématologie-Hôpital Saint Louis, Université de Paris, 75010 Paris, France
| | - Bruno Mégarbane
- Réanimation Médicale et Toxicologique, Hôpital Lariboisière Assistance Publique-Hôpitaux de Paris, Université de Paris, INSERM, UMRS-1144, 75010 Paris, France
| | - Vasiliki Triantafyllia
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Arnaud Fekkar
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Service de Parasitologie-Mycologie, Groupe Hospitalier Pitié Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris, France
| | | | - José Luis Franco
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, 050010 Medellín, Colombia
| | - Juan-Manuel Anaya
- Center for Autoimmune Disease Research, School of Medicine and Health Sciences, Universidad del Rosario, 110111 Bogotá, Colombia
| | - Jordi Solé-Violán
- Intensive Care Medicine, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, 35010 Las Palmas de Gran Canaria, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Clinical Sciences, Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| | - Luisa Imberti
- CHemato-oncology Research Laboratory of Associazione italiana contro le leucemie-linfomi e mieloma, Diagnostic Departement, Azienda Socio Sanitaria Territoriale, Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Andrea Biondi
- Pediatric Department and Centro Tettamanti-European Reference Network PaedCan, EuroBloodNet, European Reference Network for Rare Hereditary Metabolic Disorders (MetabERN), University of Milano Bicocca, Fondazione Monza Brianza Bambino Mamma (MBBM), Ospedale San Gerardo, 20900 Monza, Italy
| | - Paolo Bonfanti
- Department of Infectious Diseases, San Gerardo Hospital, University of Milano Bicocca, 20900 Monza, Italy
| | - Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892
- Pediatric Clinic, Fondazione Istituto di Ricovero e Cura a carattere scientifico (IRCCS) Policlinico San Matteo, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892
- National Institute of Allergy and Infectious Diseases (NIAID) Clinical Genomics Program, NIH, Bethesda, MD 20892
| | - Andrew L. Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892
| | - Catherine M. Biggs
- Department of Pediatrics, British Columbia Children’s Hospital, University of British Columbia, Vancouver, BC V6H 0B3, Canada
| | - Marcela Moncada-Vélez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Andrés Augusto Arias
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- Primary Immunodeficiencies Group, University of Antioquia UdeA, 050010 Medellin, Colombia
- School of Microbiology, University of Antioquia UdeA, 050010 Medellin, Colombia
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | - Soraya Boucherit
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
| | - Dany Anglicheau
- Department of Nephrology and Transplantation, Necker University Hospital, Assistance Publique-Hôpitaux de Paris, 75743 Paris, France
- Institut Necker Enfants Malades, INSERM U1151–CNRS UMR 8253, Université de Paris, 75015 Paris, France
| | - Anna M. Planas
- Institute for Biomedical Research, Spanish National Research Council, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Filomeen Haerynck
- Department of Paediatric Immunology and Pulmonology, Center for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, 9000 Ghent, Belgium
| | - Sotirija Duvlis
- Faculty of Medical Sciences, University “Goce Delchev,” Štip 2000, Republic of North Macedonia
- Institute of Public Health of the Republic of North Macedonia, Skopje 1000, Republic of North Macedonia
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Bilkent University, 06800 Ankara, Turkey
| | - Sevgi Keles
- Meram Faculty of Medicine, Necmettin Erbakan University, 42080 Konya, Turkey
| | - Ahmed A. Bousfiha
- Clinical Immunology Unit, Department of Pediatric Infectious Disease, Centre Hospitalier-Universitaire Ibn Roucshd, 20360 Casablanca, Morocco
- Laboratoire d’Immunologie Clinique, Inflammation et Allergie (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, 20250 Casablanca, Morocco
| | - Jalila El Bakkouri
- Clinical Immunology Unit, Department of Pediatric Infectious Disease, Centre Hospitalier-Universitaire Ibn Roucshd, 20360 Casablanca, Morocco
- Laboratoire d’Immunologie Clinique, Inflammation et Allergie (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, 20250 Casablanca, Morocco
| | - Carolina Ramirez-Santana
- Center for Autoimmune Disease Research, School of Medicine and Health Sciences, Universidad del Rosario, 111211 Bogotá, Colombia
| | - Stéphane Paul
- Department of Immunology, CIC1408, Groupe sur l’Immunité des Muqueuses et des Agents Pathogènes (GIMAP) Centre International de Recherche en Infectiologie, INSERM U1111, University Hospital of Saint-Étienne, 42000 Saint-Étienne, France
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lennart Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Annabelle Dupont
- University of Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes (EGID), F-59000 Lille, France
| | - Alina Kurolap
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, 6423906 Tel Aviv, Israel
| | - Christine N. Metz
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Alessandro Aiuti
- Vita-Salute San Raffaele University, and Clinical Genomics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, 20132 Milan, Italy
| | - Giorgio Casari
- Vita-Salute San Raffaele University, and Clinical Genomics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, 20132 Milan, Italy
| | - Vito Lampasona
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele University Vita-Salute San Raffaele, 20132 Milano, Italy
| | - Lucila A. Barreiros
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, 05508-060 São Paulo, Brazil
| | | | | | - Mayana Zatz
- University of São Paulo, 05508-060 São Paulo, Brazil
| | - Diederik van de Beek
- Department of Neurology, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Sabina Sahanic
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Oksana Boyarchuk
- Department of Children’s Diseases and Pediatric Surgery, I. Horbachevsky Ternopil National Medical University, 46022 Ternopil, Ukraine
| | - Yoko Nukui
- Department of Infection Control and Prevention, Medical Hospital, Tokyo Medical and Dental University, Tokyo 113-8655, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Loreto Vidaur
- Intensive Care Medicine, Donostia University Hospital, Biodonostia Institute of Donostia, 20014 San Sebastián, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Sydney, NWS 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, NWS 2010, Australia
| | - Sonia Burrel
- Sorbonne Université, INSERM U1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié Salpêtrière, Service de Virologie, 75013 Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, CNRS UMR 2000, 75015 Paris, France
- Department of Human Genomics and Evolution, Collège de France, 75231 Paris, France
| | - Adam Klocperk
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, 150 06 Prague, Czech Republic
| | - Nelli Y. Kann
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia 117997
| | - Anna Shcherbina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia 117997
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Daniel Leung
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Matthieu Coulongeat
- Division of Geriatric Medicine, Tours University Medical Center, 37044 Tours, France
| | - Julien Marlet
- INSERM U1259, Morphogenèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours, 37044 Tours, France
- Service de Bactériologie, Virologie et Hygiène Hospitalière, Centre Hospitalier Universitaire de Tours, 37044 Tours, France
| | - Rutger Koning
- Department of Neurology, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Luis Felipe Reyes
- Department of Microbiology, Universidad de La Sabana, 250001 Chía, Colombia
- Department of Critical Care Medicine, Clínica Universidad de La Sabana, 250001 Chía, Colombia
| | | | - Fabienne Venet
- Laboratoire d’Immunologie, Hospices Civils de Lyon, Hôpital Edouard Herriot, 69437 Lyon, France
- Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69007 Lyon, France
- EA 7426, Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, BioMérieux, Hôpital Edouard Herriot, 69437 Lyon, France
| | - Guillaume Monneret
- Laboratoire d’Immunologie, Hospices Civils de Lyon, Hôpital Edouard Herriot, 69437 Lyon, France
- EA 7426, Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, BioMérieux, Hôpital Edouard Herriot, 69437 Lyon, France
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065
- HHMI, Rockefeller University, New York, NY 10065
| | - Romain Arrestier
- Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, 94010 Créteil, France
- Groupe de Recherche Clinique Cardiovascular and Respiratory Manifestations of Acute Lung Injury and Sepsis (CARMAS), Faculté de santé de Créteil, Université Paris Est Créteil, 94010 Créteil Cedex, France
| | - Idris Boudhabhay
- Department of Nephrology and Transplantation, Necker University Hospital, Assistance Publique-Hôpitaux de Paris, 75743 Paris, France
- Institut Necker Enfants Malades, INSERM U1151–CNRS UMR 8253, Université de Paris, 75015 Paris, France
| | - Hagit Baris-Feldman
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, 6423906 Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - David Hagin
- Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center, 6423906 Tel Aviv, Israel
| | - Joost Wauters
- Medical Intensive Care Unit, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Department of Pediatrics, Jeffrey Modell Diagnostic and Research Network Center, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Adam H. Dyer
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin D24 NR0A, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin D08 W9RT, Ireland
| | - Sean P. Kennelly
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin D24 NR0A, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin D08 W9RT, Ireland
| | - Nollaig M. Bourke
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin D08 W9RT, Ireland
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, 27272 Sharjah, United Arab Emirates
- Immunology Research Lab, College of Medicine, King Saud University, 11362 Riyadh, Saudi Arabia
| | - Fatemeh Saheb Sharif-Askari
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Karim Dorgham
- Sorbonne Université, INSERM, Centre d’Immunologie et des Maladies Infectieuses, 75013 Paris, France
| | | | | | - Suzan AlKhater
- Department of Pediatrics, King Fahad Hospital of the University, Al Khobar 34445, Saudi Arabia
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Raúl Rigo-Bonnin
- Department of Clinical Laboratory, Hospital Universitari de Bellvitge, The Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Francisco Morandeira
- Department of Immunology, Hospital Universitari de Bellvitge, The Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Lucie Roussel
- Department of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Infectious Disease Susceptibility Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Donald C. Vinh
- Department of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Infectious Disease Susceptibility Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, 05508-060 São Paulo, Brazil
| | - Carolina Prando
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, 80250-200 Curitiba, Brazil
| | | | - András N. Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Laurent Gilardin
- Service de Médecine Interne, Hôpital Universitaire Jean-Verdier, Assistance Publique-Hôpitaux de Paris, 93140 Bondy, France
- INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Stanislas Lyonnet
- Imagine Institute, Université de Paris, INSERM, UMR 1163, 75015 Paris, France
| | - Kaya Bilguvar
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06511
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510
- Department of Medical Genetics, Acibadem University School of Medicine, 34750 Istanbul, Turkey
| | - Richard P. Lifton
- Institute for Biomedical Research, Spanish National Research Council, 08036 Barcelona, Spain
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06511
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mark S. Anderson
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Olivier Hermine
- Imagine Institute, University of Paris, 75015 Paris, France
- Department of Paediatric Immunology and Pulmonology, Center for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, 9000 Ghent, Belgium
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, The Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER) U759, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Trine H. Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, 8000 Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Lee Rowen
- Institute for Systems Biology, Seattle, WA 98109
| | | | - Stéphanie Debette
- University of Bordeaux, INSERM, Bordeaux Population Health Center, UMR1219, F-33000 Bordeaux, France
- Department of Neurology, Institute of Neurodegenerative Diseases, Bordeaux University Hospital, F-33000 Bordeaux, France
| | - Xavier de Lamballerie
- Institut Hospitalo-Universitaire Méditerranée Infection, Unité des Virus Émergents, Aix-Marseille University, Institut pour la Recherche et le Développment (IRD) 190, INSERM 1207, 13005 Marseille, France
| | - Charles Burdet
- Epidémiologie clinique du Centre d’Investigation Clinique (CIC-EP), INSERM CIC 1425, Hôpital Bichat, 75018 Paris, France
- Université de Paris, Infection Antimicrobials Modelling Evolution (IAME), UMR 1137, INSERM, 75870 Paris, France
- Département Epidémiologie, Biostatistiques et Recherche Clinique, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, 75018 Paris, France
| | - Lila Bouadma
- Université de Paris, Infection Antimicrobials Modelling Evolution (IAME), UMR 1137, INSERM, 75870 Paris, France
- Service de Réanimation Médicale et des Maladies Infectieuses, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Nord Université de Paris, F-75018 Paris, France
| | - Marie Zins
- Cohorte Constances Groupe Hospitalier Universitaire centre, Assistance Publique-Hôpitaux de Paris, Université de Paris, 94800 Villejuif, France
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Roger Colobran
- Immunology Division, Genetics Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Guy Gorochov
- Sorbonne Université, INSERM, Centre d’Immunologie et des Maladies Infectieuses, 75013 Paris, France
- Département d’Immunologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpétrière, 75015 Paris, France
| | - Xavier Solanich
- Department of Internal Medicine, Hospital Universitari de Bellvitge, The Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Sophie Susen
- University of Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes (EGID), F-59000 Lille, France
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain
- Institute for Health Science Research Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
- Department of Infectious Diseases and Immunity, University of Vic-Central University of Catalonia, 08500 Vic, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Didier Raoult
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Institut Hospitalo-Universitaire Méditerranée Infection, Institut de Recherche pour le Développement, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, 13005 Marseille, France
| | - Marc Vasse
- Service de Biologie Clinique and UMR-S 1176, Hôpital Foch, 92150 Suresnes, France
| | - Peter K. Gregersen
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Lorenzo Piemonti
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Carlos Rodríguez-Gallego
- Department of Clinical Sciences, Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
- Department of Immunology, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, 35010 Las Palmas de Gran Canaria, Spain
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892
| | - Helen C. Su
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065
| | - Pierre Tiberghien
- Etablissement Français du Sang, 93218 La Plaine Saint-Denis, France
- Interactions Hôte-Greffon-Tumeur et Ingénierie Cellulaire et Génique (RIGHT), INSERM, Etablissement Français du Sang, Université de Franche-Comté, 25000 Besançon, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- HHMI, Rockefeller University, New York, NY 10065
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, University of Paris, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| |
Collapse
|
105
|
Kountz TS, Biyasheva A, Schleimer RP, Prakriya M. Extracellular Nucleotides and Histamine Suppress TLR3- and RIG-I-Mediated Release of Antiviral IFNs from Human Airway Epithelial Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2390-2402. [PMID: 35459743 PMCID: PMC9444327 DOI: 10.4049/jimmunol.2101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/03/2022] [Indexed: 05/17/2023]
Abstract
Respiratory viruses stimulate the release of antiviral IFNs from the airway epithelium. Previous studies have shown that asthmatic patients show diminished release of type I and type III IFNs from bronchial epithelia. However, the mechanism of this suppression is not understood. In this study, we report that extracellular nucleotides and histamine, which are elevated in asthmatic airways, strongly inhibit release of type I and type III IFNs from human bronchial airway epithelial cells (AECs). Specifically, ATP, UTP, and histamine all inhibited the release of type I and type III IFNs from AECs induced by activation of TLR3, retinoic acid-inducible gene I (RIG-I), or cyclic GMP-AMP synthase-STING. This inhibition was at least partly mediated by Gq signaling through purinergic P2Y2 and H1 receptors, but it did not involve store-operated calcium entry. Pharmacological blockade of protein kinase C partially reversed inhibition of IFN production. Conversely, direct activation of protein kinase C with phorbol esters strongly inhibited TLR3- and RIG-I-mediated IFN production. Inhibition of type I and type III IFNs by ATP, UTP, histamine, and the proteinase-activated receptor 2 (PAR2) receptor agonist SLIGKV also occurred in differentiated AECs grown at an air-liquid interface, indicating that the suppression is conserved following mucociliary differentiation. Importantly, histamine and, more strikingly, ATP inhibited type I IFN release from human airway cells infected with live influenza A virus or rhinovirus 1B. These results reveal an important role for extracellular nucleotides and histamine in attenuating the induction of type I and III IFNs from AECs and help explain the molecular basis of the suppression of IFN responses in asthmatic patients.
Collapse
Affiliation(s)
- Timothy S Kountz
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL; and
| | - Assel Biyasheva
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL; and
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
106
|
Bojkova D, Rothenburger T, Ciesek S, Wass MN, Michaelis M, Cinatl J. SARS-CoV-2 Omicron variant virus isolates are highly sensitive to interferon treatment. Cell Discov 2022; 8:42. [PMID: 35538050 PMCID: PMC9087166 DOI: 10.1038/s41421-022-00408-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Denisa Bojkova
- Institute for Medical Virology, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Tamara Rothenburger
- Institute for Medical Virology, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital, Goethe University, Frankfurt am Main, Germany
- German Center for Infection Research, DZIF, External partner site, Frankfurt am Main, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch Translational Medicine und Pharmacology, Frankfurt am Main, Germany
| | - Mark N Wass
- School of Biosciences, University of Kent, Canterbury, UK.
| | | | - Jindrich Cinatl
- Institute for Medical Virology, University Hospital, Goethe University, Frankfurt am Main, Germany.
- Dr. Petra Joh-Forschungshaus, Frankfurt am Main, Germany.
| |
Collapse
|
107
|
Ershov FI, Narovlyansky AN. [The problem of the use of interferons in the novel coronavirus disease COVID-19 (Coronaviridae: Coronavirinae: Betacoronavirus: Sarbecovirus)]. Vopr Virusol 2022; 67:115-125. [PMID: 35521984 DOI: 10.36233/0507-4088-103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 11/05/2022]
Abstract
By the end of 2021, about 200 studies on the effect of interferons (IFNs) on the incidence and course of the new coronavirus infection COVID-19 (Coronaviridae: Coronavirinae: Betacoronavirus: Sarbecovirus) have been reported worldwide, with the number of such studies steadily increasing. This review discusses the main issues of the use of IFN drugs in this disease. The literature search was carried out in the PubMed, Scopus, Cochrane Library, Web of Science, RSCI databases, as well as in the Google Scholar preprint database using the available search queries «MeSH for coronavirus», «SARS-CoV-2», «IFN drugs», and «COVID-19». Interferon therapy is indicated for early administration (within the first 5 days of patient admission) in cases of mild to moderate COVID-19 to take advantage of the narrow therapeutic window of IFNs action. Control and suppression of viral replication requires therapy with IFNs and other effective antiviral agents that inhibit the reproduction of SARS-CoV-2 and induce several interferon-stimulated genes (ISG). Type I IFNs (IFN-I) exhibit potent pro-inflammatory properties and activate a wide variety of different cell types that respond to IFNs stimulation and pathogen entry. IFN-III confer local mucosal antiviral immunity without inducing the strong systemic pro-inflammatory responses associated with IFN-I. The use of IFNs drugs in the therapy of new coronavirus infection requires a cautious and differentiated approach, because in severe cases they can aggravate viral pathogenesis by causing excessive intensity of inflammatory reactions. The unique biological properties of substances of this class allow us to consider them as therapeutic agents with significant potential for use in patients with COVID-19.
Collapse
Affiliation(s)
- F I Ershov
- FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia
| | - A N Narovlyansky
- FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia
| |
Collapse
|
108
|
Airway epithelial interferon response to SARS-CoV-2 is inferior to rhinovirus and heterologous rhinovirus infection suppresses SARS-CoV-2 replication. Sci Rep 2022; 12:6972. [PMID: 35484173 PMCID: PMC9048621 DOI: 10.1038/s41598-022-10763-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/12/2022] [Indexed: 12/20/2022] Open
Abstract
Common alphacoronaviruses and human rhinoviruses (HRV) induce type I and III interferon (IFN) responses important to limiting viral replication in the airway epithelium. In contrast, highly pathogenic betacoronaviruses including SARS-CoV-2 may evade or antagonize RNA-induced IFN I/III responses. In airway epithelial cells (AECs) from children and older adults we compared IFN I/III responses to SARS-CoV-2 and HRV-16, and assessed whether pre-infection with HRV-16, or pretreatment with recombinant IFN-β or IFN-λ, modified SARS-CoV-2 replication. Bronchial AECs from children (ages 6-18 years) and older adults (ages 60-75 years) were differentiated ex vivo to generate organotypic cultures. In a biosafety level 3 (BSL-3) facility, cultures were infected with SARS-CoV-2 or HRV-16, and RNA and protein was harvested from cell lysates 96 h. following infection and supernatant was collected 48 and 96 h. following infection. In additional experiments cultures were pre-infected with HRV-16, or pre-treated with recombinant IFN-β1 or IFN-λ2 before SARS-CoV-2 infection. In a subset of experiments a range of infectious concentrations of HRV-16, SARS-CoV-2 WA-01, SARS-CoV-2 Delta variant, and SARS-CoV-2 Omicron variant were studied. Despite significant between-donor heterogeneity SARS-CoV-2 replicated 100 times more efficiently than HRV-16. IFNB1, INFL2, and CXCL10 gene expression and protein production following HRV-16 infection was significantly greater than following SARS-CoV-2. IFN gene expression and protein production were inversely correlated with SARS-CoV-2 replication. Treatment of cultures with recombinant IFNβ1 or IFNλ2, or pre-infection of cultures with HRV-16, markedly reduced SARS-CoV-2 replication. In addition to marked between-donor heterogeneity in IFN responses and viral replication, SARS-CoV-2 (WA-01, Delta, and Omicron variants) elicits a less robust IFN response in primary AEC cultures than does rhinovirus, and heterologous rhinovirus infection, or treatment with recombinant IFN-β1 or IFN-λ2, reduces SARS-CoV-2 replication, although to a lesser degree for the Delta and Omicron variants.
Collapse
|
109
|
Jhuti D, Rawat A, Guo CM, Wilson LA, Mills EJ, Forrest JI. Interferon Treatments for SARS-CoV-2: Challenges and Opportunities. Infect Dis Ther 2022; 11:953-972. [PMID: 35445964 PMCID: PMC9022612 DOI: 10.1007/s40121-022-00633-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/31/2022] [Indexed: 12/24/2022] Open
Abstract
Interferon (IFN) therapies are used to treat a variety of infections and diseases and could be used to treat SARS-CoV-2. However, optimal use and timing of IFN therapy to treat SARS-CoV-2 is not well documented. We aimed to synthesize available evidence to understand whether interferon therapy should be recommended for treatment compared to a placebo or standard of care in adult patients. We reviewed literature comparing outcomes of randomized control trials that used IFN therapy for adults diagnosed with SARS-CoV-2 between 2019 and 2021. Data were extracted from 11 of 669 screened studies. Evidence of IFN effectiveness was mixed. Five studies reported that IFN was a better therapy than the control, four found no or minimal difference between IFN and the control, and two concluded that IFN led to worse patient outcomes than the control. Evidence was difficult to compare because of high variability in outcome measures, intervention types and administration, subtypes of IFNs used and timing of interventions. We recommend standardized indicators and reporting for IFN therapy for SARS-CoV-2 to improve evidence synthesis and generation. While IFN therapy has the potential to be a viable treatment for SARS-CoV-2, especially when combined with antivirals and early administration, the lack of comparable of study outcomes prevents evidence synthesis and uptake.
Collapse
Affiliation(s)
| | - Angeli Rawat
- University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada
| | | | - Lindsay A Wilson
- University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada.,Platform Life Sciences, Vancouver, Canada
| | - Edward J Mills
- McMaster University, Hamilton, Canada.,Platform Life Sciences, Vancouver, Canada
| | - Jamie I Forrest
- University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada. .,Platform Life Sciences, Vancouver, Canada.
| |
Collapse
|
110
|
Abstract
The emergence of SARS-CoV-2 triggering the COVID-19 pandemic ranks as arguably the greatest medical emergency of the last century. COVID-19 has highlighted health disparities both within and between countries and will leave a lasting impact on global society. Nonetheless, substantial investment in life sciences over recent decades has facilitated a rapid scientific response with innovations in viral characterization, testing, and sequencing. Perhaps most remarkably, this permitted the development of highly effective vaccines, which are being distributed globally at unprecedented speed. In contrast, drug treatments for the established disease have delivered limited benefits so far. Innovative and rapid approaches in the design and execution of large-scale clinical trials and repurposing of existing drugs have saved many lives; however, many more remain at risk. In this review we describe challenges and unmet needs, discuss existing therapeutics, and address future opportunities. Consideration is given to factors that have hindered drug development in order to support planning for the next pandemic challenge and to allow rapid and cost-effective development of new therapeutics with equitable delivery.
Collapse
|
111
|
Mesic A, Jackson EK, Lalika M, Koelle DM, Patel RC. Interferon-based agents for current and future viral respiratory infections: A scoping literature review of human studies. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000231. [PMID: 36962150 PMCID: PMC10022196 DOI: 10.1371/journal.pgph.0000231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/17/2022] [Indexed: 11/19/2022]
Abstract
The interferon (IFN) system is a potent line of defense against viral infections. IFN-based agents already tested may be of use in COVID-19 or future viral respiratory outbreaks. Here we review the comparative efficacy, safety/tolerability, and future potential of IFN-based therapeutics. We reviewed human studies in which IFN or IFN pathway-interacting agents were used for viral respiratory infections. We identified 977 articles, of which 194 were included for full-text review. Of these, we deemed 35 articles to be relevant. The use of IFN-based agents for pre-exposure prophylaxis (n = 19) and treatment (n = 15) were most common, with intranasal (n = 22) as the most common route. We found IFN-α (n = 23) was used most often, and rhinovirus (n = 14) was the most common causative agent. Studies demonstrated mixed efficacy but generally positive safety and tolerability. Host-directed therapies, such as IFN or IFN inducers, are worthy of additional research to target viral respiratory infections lacking direct-acting antivirals.
Collapse
Affiliation(s)
- Aldina Mesic
- Department of Global Health, The Strategic Analysis, Research & Training (START) Center, University of Washington, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| | - Emahlea K. Jackson
- Department of Global Health, The Strategic Analysis, Research & Training (START) Center, University of Washington, Seattle, WA, United States of America
- Department of Epidemiology, University of Washington, Seattle, WA, United States of America
| | - Mathias Lalika
- Department of Global Health, The Strategic Analysis, Research & Training (START) Center, University of Washington, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| | - David M. Koelle
- Department of Global Health, University of Washington, Seattle, WA, United States of America
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Benaroya Research Institute, Seattle, WA, United States of America
| | - Rena C. Patel
- Department of Global Health, The Strategic Analysis, Research & Training (START) Center, University of Washington, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
112
|
Sumida TS, Dulberg S, Schupp JC, Lincoln MR, Stillwell HA, Axisa PP, Comi M, Unterman A, Kaminski N, Madi A, Kuchroo VK, Hafler DA. Type I interferon transcriptional network regulates expression of coinhibitory receptors in human T cells. Nat Immunol 2022; 23:632-642. [PMID: 35301508 PMCID: PMC8989655 DOI: 10.1038/s41590-022-01152-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/03/2022] [Indexed: 12/15/2022]
Abstract
Although inhibition of T cell coinhibitory receptors has revolutionized cancer therapy, the mechanisms governing their expression on human T cells have not been elucidated. In the present study, we show that type 1 interferon (IFN-I) regulates coinhibitory receptor expression on human T cells, inducing PD-1/TIM-3/LAG-3 while inhibiting TIGIT expression. High-temporal-resolution mRNA profiling of IFN-I responses established the dynamic regulatory networks uncovering three temporal transcriptional waves. Perturbation of key transcription factors (TFs) and TF footprint analysis revealed two regulator modules with different temporal kinetics that control expression of coinhibitory receptors and IFN-I response genes, with SP140 highlighted as one of the key regulators that differentiates LAG-3 and TIGIT expression. Finally, we found that the dynamic IFN-I response in vitro closely mirrored T cell features in acute SARS-CoV-2 infection. The identification of unique TFs controlling coinhibitory receptor expression under IFN-I response may provide targets for enhancement of immunotherapy in cancer, infectious diseases and autoimmunity.
Collapse
Affiliation(s)
- Tomokazu S Sumida
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| | - Shai Dulberg
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jonas C Schupp
- Section of Pulmonary, Critical Care and Sleep Medicine Section, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease Hannover, German Lung Research Center, Hannover, Germany
| | - Matthew R Lincoln
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Helen A Stillwell
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Pierre-Paul Axisa
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Michela Comi
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Avraham Unterman
- Section of Pulmonary, Critical Care and Sleep Medicine Section, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Pulmonary Institute, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine Section, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Asaf Madi
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David A Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
113
|
Johansen-Leete J, Ullrich S, Fry SE, Frkic R, Bedding MJ, Aggarwal A, Ashhurst AS, Ekanayake KB, Mahawaththa MC, Sasi VM, Luedtke S, Ford DJ, O'Donoghue AJ, Passioura T, Larance M, Otting G, Turville S, Jackson CJ, Nitsche C, Payne RJ. Antiviral cyclic peptides targeting the main protease of SARS-CoV-2. Chem Sci 2022; 13:3826-3836. [PMID: 35432913 PMCID: PMC8966731 DOI: 10.1039/d1sc06750h] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
Antivirals that specifically target SARS-CoV-2 are needed to control the COVID-19 pandemic. The main protease (Mpro) is essential for SARS-CoV-2 replication and is an attractive target for antiviral development. Here we report the use of the Random nonstandard Peptide Integrated Discovery (RaPID) mRNA display on a chemically cross-linked SARS-CoV-2 Mpro dimer, which yielded several high-affinity thioether-linked cyclic peptide inhibitors of the protease. Structural analysis of Mpro complexed with a selenoether analogue of the highest-affinity peptide revealed key binding interactions, including glutamine and leucine residues in sites S1 and S2, respectively, and a binding epitope straddling both protein chains in the physiological dimer. Several of these Mpro peptide inhibitors possessed antiviral activity against SARS-CoV-2 in vitro with EC50 values in the low micromolar range. These cyclic peptides serve as a foundation for the development of much needed antivirals that specifically target SARS-CoV-2.
Collapse
Affiliation(s)
- Jason Johansen-Leete
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney Sydney NSW 2006 Australia
| | - Sven Ullrich
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
| | - Sarah E Fry
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney Sydney NSW 2006 Australia
| | - Rebecca Frkic
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University Canberra ACT 2601 Australia
| | - Max J Bedding
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney Sydney NSW 2006 Australia
| | | | - Anneliese S Ashhurst
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney Sydney NSW 2006 Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Kasuni B Ekanayake
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University Canberra ACT 2601 Australia
| | - Mithun C Mahawaththa
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University Canberra ACT 2601 Australia
| | - Vishnu M Sasi
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University Canberra ACT 2601 Australia
| | - Stephanie Luedtke
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
| | - Daniel J Ford
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney Sydney NSW 2006 Australia
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr. La Jolla CA 92093 USA
| | - Toby Passioura
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney Sydney NSW 2006 Australia
- School of Life and Environmental Sciences, The University of Sydney Sydney NSW 2006 Australia
- Sydney Analytical, The University of Sydney Sydney NSW 2006 Australia
| | - Mark Larance
- Sydney Analytical, The University of Sydney Sydney NSW 2006 Australia
- Charles Perkins Centre, The University of Sydney Sydney NSW 2006 Australia
| | - Gottfried Otting
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University Canberra ACT 2601 Australia
| | | | - Colin J Jackson
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University Canberra ACT 2601 Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
114
|
Beyer DK, Forero A. Mechanisms of Antiviral Immune Evasion of SARS-CoV-2. J Mol Biol 2022; 434:167265. [PMID: 34562466 PMCID: PMC8457632 DOI: 10.1016/j.jmb.2021.167265] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022]
Abstract
Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is characterized by a delayed interferon (IFN) response and high levels of proinflammatory cytokine expression. Type I and III IFNs serve as a first line of defense during acute viral infections and are readily antagonized by viruses to establish productive infection. A rapidly growing body of work has interrogated the mechanisms by which SARS-CoV-2 antagonizes both IFN induction and IFN signaling to establish productive infection. Here, we summarize these findings and discuss the molecular interactions that prevent viral RNA recognition, inhibit the induction of IFN gene expression, and block the response to IFN treatment. We also describe the mechanisms by which SARS-CoV-2 viral proteins promote host shutoff. A detailed understanding of the host-pathogen interactions that unbalance the IFN response is critical for the design and deployment of host-targeted therapeutics to manage COVID-19.
Collapse
Affiliation(s)
- Daniel K. Beyer
- Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Adriana Forero
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA,Corresponding author
| |
Collapse
|
115
|
Berillo D. Comparative Toxicity of Interferon Beta-1a Impurities of Heavy Metal Ions. Medicina (B Aires) 2022; 58:medicina58040463. [PMID: 35454302 PMCID: PMC9027684 DOI: 10.3390/medicina58040463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: Providing a proper quality control of drugs is essential for efficient treatment of various diseases minimizing the possible side effects of pharmaceutical active substances and potential impurities. Recent in vitro and in vivo studies have shown that certain heavy metalloids and metals interfere with protein folding of nascent proteins in cells and their biological function can be altered. It is unknown whether the drug impurities including heavy metals may affect the tertiary protein structure. Materials and Methods: ReciGen and Rebif are pharmaceutical interferon beta-1a (IFNβ-1a) contained in preparations that are used for parenteral administration. Heavy metal impurities of these samples have been studied by gel electrophoresis, Fourier-transform infrared spectroscopy (FTIR) and inductively coupled plasma mass spectrometry analysis (ICP MS). The concentration of heavy metals including mercury, arsenic, nickel, chromium, iron, and aluminum did not exceed permitted levels established by International Council for Harmonisation guideline for elemental impurities. Results: The ICP MS analysis revealed the presence of heavy metals, moreover zeta potential was significantly different for IFNβ-1a, which can be an indirect indication of the difference in composition of ReciGen and Rebif samples, respectively. FTIR analysis revealed very similar amide I and II bonds at 1654 and 1560 cm−1 attributed to the peptide absorption peaks of IFNβ-1a in Rebif and ReciGen. Conclusions: It was hypothesized that the IFNβ-1a complex binds heavy metals affecting the tertiary protein structure and may lead to some side effects of drug administration. Further testing of IFNβ-1a bioequivalence for parenteral application is necessary.
Collapse
Affiliation(s)
- Dmitriy Berillo
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan;
- Atchabarov Research Institute of Fundamental and Applied Medicine, Almaty 050000, Kazakhstan
| |
Collapse
|
116
|
Inhibition of the IFN-α JAK/STAT Pathway by MERS-CoV and SARS-CoV-1 Proteins in Human Epithelial Cells. Viruses 2022; 14:v14040667. [PMID: 35458397 PMCID: PMC9032603 DOI: 10.3390/v14040667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 12/10/2022] Open
Abstract
Coronaviruses (CoVs) have caused several global outbreaks with relatively high mortality rates, including Middle East Respiratory Syndrome coronavirus (MERS)-CoV, which emerged in 2012, and Severe Acute Respiratory Syndrome (SARS)-CoV-1, which appeared in 2002. The recent emergence of SARS-CoV-2 highlights the need for immediate and greater understanding of the immune evasion mechanisms used by CoVs. Interferon (IFN)-α is the body's natural antiviral agent, but its Janus kinase/signal transducer and activators of transcription (JAK/STAT) signalling pathway is often antagonized by viruses, thereby preventing the upregulation of essential IFN stimulated genes (ISGs). Therapeutic IFN-α has disappointingly weak clinical responses in MERS-CoV and SARS-CoV-1 infected patients, indicating that these CoVs inhibit the IFN-α JAK/STAT pathway. Here we show that in lung alveolar A549 epithelial cells expression of MERS-CoV-nsp2 and SARS-CoV-1-nsp14, but not MERS-CoV-nsp5, increased basal levels of total and phosphorylated STAT1 & STAT2 protein, but reduced IFN-α-mediated phosphorylation of STAT1-3 and induction of MxA. While MERS-CoV-nsp2 and SARS-CoV-1-nsp14 similarly increased basal levels of STAT1 and STAT2 in bronchial BEAS-2B epithelial cells, unlike in A549 cells, they did not enhance basal pSTAT1 nor pSTAT2. However, both viral proteins reduced IFN-α-mediated induction of pSTAT1-3 and ISGs (MxA, ISG15 and PKR) in BEAS-2B cells. Furthermore, even though IFN-α-mediated induction of pSTAT1-3 was not affected by MERS-CoV-nsp5 expression in BEAS-2B cells, downstream ISG induction was reduced, revealing that MERS-CoV-nsp5 may use an alternative mechanism to reduce antiviral ISG induction in this cell line. Indeed, we subsequently discovered that all three viral proteins inhibited STAT1 nuclear translocation in BEAS-2B cells, unveiling another layer of inhibition by which these viral proteins suppress responses to Type 1 IFNs. While these observations highlight cell line-specific differences in the immune evasion effects of MERS-CoV and SARS-CoV-1 proteins, they also demonstrate the broad spectrum of immune evasion strategies these deadly coronaviruses use to stunt antiviral responses to Type IFN.
Collapse
|
117
|
Eto S, Nukui Y, Tsumura M, Nakagama Y, Kashimada K, Mizoguchi Y, Utsumi T, Taniguchi M, Sakura F, Noma K, Yoshida Y, Ohshimo S, Nagashima S, Okamoto K, Endo A, Imai K, Kanegane H, Ohnishi H, Hirata S, Sugiyama E, Shime N, Ito M, Ohge H, Kido Y, Bastard P, Casanova JL, Tanaka J, Morio T, Okada S. Neutralizing Type I Interferon Autoantibodies in Japanese Patients With Severe COVID-19. RESEARCH SQUARE 2022:rs.3.rs-1430985. [PMID: 35291303 PMCID: PMC8923117 DOI: 10.21203/rs.3.rs-1430985/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Purpose Autoantibodies (aAbs) to type I interferons (IFNs) have been found in <1% of individuals under the age of 60 in the general population, with the prevalence increasing among those over 65. Neutralizing autoantibodies (naAbs) to type I IFNs have been found in at least 15% of patients with life-threatening COVID-19 pneumonia in several cohorts of primarily European descent. We aimed to define the prevalence of aAbs to IFN-α2 in 3,456 Japanese controls aged 20-91 and of aAbs and naAbs to IFN-α2 and IFN-ω in 627 Japanese COVID-19 patients aged 0-104, among whom were 170 critical, 235 severe, 112 moderate, 105 mild, and 5 asymptomatic infections. Methods ELISA and ISRE reporter assays were used to detect aAbs and naAbs using E. coli-produced IFNs. Results In an uninfected general Japanese population aged 20-91, we found aAbs in 0.087% of individuals. naAbs to type I IFNs (IFN-α2 and/or IFN-ω, 100 pg/mL) were detected in 10.6% of patients with critical infections, 2.6% of patients with severe infections, and ≤1% of patients with asymptomatic to mild infections. They were higher in COVID-19 patients over 50 (5.8%) than in younger patients (0%) and higher in men (5.5%) than in women (1.1%). A significant but not strong correlation between aAbs and naAbs to IFN-α2 existed (r=-0.307, p-value<0.0001), stressing the importance of measuring naAbs. Conclusion In the largest study focusing on a single ethnic and geographic group, we show that Japanese individuals with pre-existing naAbs have a much higher risk of life-threatening COVID-19 pneumonia.
Collapse
Affiliation(s)
- Shohei Eto
- Hiroshima University Graduate School of Biomedical and Health Science
| | - Yoko Nukui
- Kyoto Prefectural University of Medicine
| | - Miyuki Tsumura
- Hiroshima University Graduate School of Biomedical and Health Science
| | | | | | - Yoko Mizoguchi
- Hiroshima University Graduate School of Biomedical and Health Science
| | - Takanori Utsumi
- Hiroshima University Graduate School of Biomedical and Health Science
| | - Maki Taniguchi
- Hiroshima University Graduate School of Biomedical and Health Science
| | - Fumiaki Sakura
- Hiroshima University Graduate School of Biomedical and Health Science
| | - Kosuke Noma
- Hiroshima University Graduate School of Biomedical and Health Science
| | | | | | | | | | | | | | | | | | | | | | - Nobuaki Shime
- Hiroshima University Graduate School of Biomedical and Health Science
| | | | | | | | | | | | - Junko Tanaka
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | | | - Satoshi Okada
- Hiroshima University Graduate School of Biomedical and Health Sciences
| |
Collapse
|
118
|
Al-Hajeri H, Baroun F, Abutiban F, Al-Mutairi M, Ali Y, Alawadhi A, Albasri A, Aldei A, AlEnizi A, Alhadhood N, Al-Herz A, Alkadi A, Alkanderi W, Almathkoori A, Almutairi N, Alsayegh S, Alturki A, Bahbahani H, Dehrab A, Ghanem A, Haji Hasan E, Hayat S, Saleh K, Tarakmeh H. Therapeutic role of immunomodulators during the COVID-19 pandemic- a narrative review. Postgrad Med 2022; 134:160-179. [PMID: 35086413 PMCID: PMC8862162 DOI: 10.1080/00325481.2022.2033563] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
The emergency state caused by COVID-19 saw the use of immunomodulators despite the absence of robust research. To date, the results of relatively few randomized controlled trials have been published, and methodological approaches are riddled with bias and heterogeneity. Anti-SARS-CoV-2 antibodies, convalescent plasma and the JAK inhibitor baricitinib have gained Emergency Use Authorizations and tentative recommendations for their use in clinical practice alone or in combination with other therapies. Anti-SARS-CoV-2 antibodies are predominating the management of non-hospitalized patients, while the inpatient setting is seeing the use of convalescent plasma, baricitinib, tofacitinib, tocilizumab, sarilumab, and corticosteroids, as applicable. Available clinical data also suggest the potential clinical benefit of the early administration of blood-derived products (e.g. convalescent plasma, non-SARS-CoV-2-specific immunoglobins) and the blockade of factors implicated in the hyperinflammatory state of severe COVID-19 (Interleukin 1 and 6; Janus Kinase). Immune therapies seem to have a protective effect and using immunomodulators alone or in combination with viral replication inhibitors and other treatment modalities might prevent progression into severe COVID-19 disease, cytokine storm and death. Future trials should address existing gaps and reshape the landscape of COVID-19 management.
Collapse
Affiliation(s)
- Hebah Al-Hajeri
- Department of Rheumatology and Internal Medicine, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| | - Fatemah Baroun
- Department of Rheumatology and Internal Medicine, AlJahra Hospital, Al-Jahra, Kuwait
| | - Fatemah Abutiban
- Department of Rheumatology and Internal Medicine, Jaber Al-Ahmad Hospital, South Surra, Kuwait
| | | | - Yasser Ali
- Rheumatology Unit, Department of Internal Medicine, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| | - Adel Alawadhi
- Rheumatology Unit, Department of Internal Medicine, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Anwar Albasri
- Rheumatology Unit, Department of Internal Medicine, Jaber Al-Ahmad Hospital, South Surra, Kuwait
| | - Ali Aldei
- Rheumatology Unit, Department of Internal Medicine, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Ahmad AlEnizi
- Rheumatology Unit, Department of Internal Medicine, AlJahra Hospital, AlJahra, Kuwait
| | - Naser Alhadhood
- Rheumatology Unit, Department of Internal Medicine, Farwaneyah Hospital, AlFarwaniya, Kuwait
| | - Adeeba Al-Herz
- Rheumatology Unit, Department of Internal Medicine, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Amjad Alkadi
- Rheumatology Unit, Department of Internal Medicine, Al-Sabah Hospital, Alsabah, Kuwait
| | - Waleed Alkanderi
- Rheumatology Unit, Department of Internal Medicine, Farwaneyah Hospital, AlFarwaniya, Kuwait
| | - Ammar Almathkoori
- Rheumatology Unit, Department of Internal Medicine, Al-Adan Hospital, Hadiya, Kuwait
| | - Nora Almutairi
- Rheumatology Unit, Department of Internal Medicine, Al-Sabah Hospital, Alsabah, Kuwait
| | - Saud Alsayegh
- Rheumatology Unit, Department of Internal Medicine, Jaber Al-Ahmad Armed Forces, Kuwait City, Kuwait
| | - Ali Alturki
- Rheumatology Unit, Department of Internal Medicine, Al-Adan Hospital, Hadiya, Kuwait
| | - Husain Bahbahani
- Rheumatology Unit, Department of Internal Medicine, Farwaneyah Hospital, AlFarwaniya, Kuwait
| | - Ahmad Dehrab
- Rheumatology Unit, Department of Internal Medicine, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Aqeel Ghanem
- Rheumatology Unit, Department of Internal Medicine, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| | - Eman Haji Hasan
- Rheumatology Unit, Department of Internal Medicine, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Sawsan Hayat
- Rheumatology Unit, Department of Internal Medicine, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| | - Khuloud Saleh
- Rheumatology Unit, Department of Internal Medicine, Farwaneyah Hospital, AlFarwaniya, Kuwait
| | - Hoda Tarakmeh
- Rheumatology Unit, Department of Internal Medicine, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| |
Collapse
|
119
|
Jackson DJ, Gern JE. Rhinovirus Infections and Their Roles in Asthma: Etiology and Exacerbations. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:673-681. [PMID: 35074599 DOI: 10.1016/j.jaip.2022.01.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/17/2022]
Abstract
Rhinovirus infections can cause wheezing illnesses in all age groups. In preschool children, rhinovirus infections frequently initiate acute wheezing illnesses. Children who wheeze with rhinoviruses are at increased risk to go on to develop asthma. Once asthma is established, rhinovirus infections are potent triggers for acute airway obstruction and exacerbations in children and adults. Paradoxically, for most individuals, rhinovirus infections commonly cause cold symptoms with little or no involvement of the lower airways. This paradox has led investigators to identify specific risk factors and mechanisms for rhinovirus wheezing, and this review will outline progress in 3 main areas. First, the 3 species of rhinoviruses have different patterns of infection and virulence. Second, personal factors such as lung function and immunity influence lower respiratory outcomes of rhinovirus infection. The mucosal immune response is critical, and the quality of the interferon response and allergic inflammation interacts to determine the risk for rhinovirus wheezing. Finally, rhinovirus infections can promote pathogen-dominated airway microbiota that increase the risk for wheezing. Although specific antivirals for rhinovirus are still not available, identifying risk factors for wheezing illnesses has provided several other potential targets and strategies for reducing the risk of rhinovirus-induced wheezing and exacerbations of asthma.
Collapse
Affiliation(s)
- David J Jackson
- Guy's Severe Asthma Centre, Guy's & St Thomas' NHS Trust, London, United Kingdom; School of Immunology & Microbial Sciences, King's College London, London, United Kingdom.
| | - James E Gern
- Departments of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| |
Collapse
|
120
|
Aghamirza Moghim Aliabadi H, Eivazzadeh‐Keihan R, Beig Parikhani A, Fattahi Mehraban S, Maleki A, Fereshteh S, Bazaz M, Zolriasatein A, Bozorgnia B, Rahmati S, Saberi F, Yousefi Najafabadi Z, Damough S, Mohseni S, Salehzadeh H, Khakyzadeh V, Madanchi H, Kardar GA, Zarrintaj P, Saeb MR, Mozafari M. COVID-19: A systematic review and update on prevention, diagnosis, and treatment. MedComm (Beijing) 2022; 3:e115. [PMID: 35281790 PMCID: PMC8906461 DOI: 10.1002/mco2.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 01/09/2023] Open
Abstract
Since the rapid onset of the COVID-19 or SARS-CoV-2 pandemic in the world in 2019, extensive studies have been conducted to unveil the behavior and emission pattern of the virus in order to determine the best ways to diagnosis of virus and thereof formulate effective drugs or vaccines to combat the disease. The emergence of novel diagnostic and therapeutic techniques considering the multiplicity of reports from one side and contradictions in assessments from the other side necessitates instantaneous updates on the progress of clinical investigations. There is also growing public anxiety from time to time mutation of COVID-19, as reflected in considerable mortality and transmission, respectively, from delta and Omicron variants. We comprehensively review and summarize different aspects of prevention, diagnosis, and treatment of COVID-19. First, biological characteristics of COVID-19 were explained from diagnosis standpoint. Thereafter, the preclinical animal models of COVID-19 were discussed to frame the symptoms and clinical effects of COVID-19 from patient to patient with treatment strategies and in-silico/computational biology. Finally, the opportunities and challenges of nanoscience/nanotechnology in identification, diagnosis, and treatment of COVID-19 were discussed. This review covers almost all SARS-CoV-2-related topics extensively to deepen the understanding of the latest achievements (last updated on January 11, 2022).
Collapse
Affiliation(s)
- Hooman Aghamirza Moghim Aliabadi
- Protein Chemistry LaboratoryDepartment of Medical BiotechnologyBiotechnology Research CenterPasteur Institute of IranTehranIran
- Advance Chemical Studies LaboratoryFaculty of ChemistryK. N. Toosi UniversityTehranIran
| | | | - Arezoo Beig Parikhani
- Department of Medical BiotechnologyBiotechnology Research CenterPasteur InstituteTehranIran
| | | | - Ali Maleki
- Department of ChemistryIran University of Science and TechnologyTehranIran
| | | | - Masoume Bazaz
- Department of Medical BiotechnologyBiotechnology Research CenterPasteur InstituteTehranIran
| | | | | | - Saman Rahmati
- Department of Medical BiotechnologyBiotechnology Research CenterPasteur InstituteTehranIran
| | - Fatemeh Saberi
- Department of Medical BiotechnologySchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Zeinab Yousefi Najafabadi
- Department of Medical BiotechnologySchool of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
- ImmunologyAsthma & Allergy Research InstituteTehran University of Medical SciencesTehranIran
| | - Shadi Damough
- Department of Medical BiotechnologyBiotechnology Research CenterPasteur InstituteTehranIran
| | - Sara Mohseni
- Non‐metallic Materials Research GroupNiroo Research InstituteTehranIran
| | | | - Vahid Khakyzadeh
- Department of ChemistryK. N. Toosi University of TechnologyTehranIran
| | - Hamid Madanchi
- School of MedicineSemnan University of Medical SciencesSemnanIran
- Drug Design and Bioinformatics UnitDepartment of Medical BiotechnologyBiotechnology Research CenterPasteur Institute of IranTehranIran
| | - Gholam Ali Kardar
- Department of Medical BiotechnologySchool of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
- ImmunologyAsthma & Allergy Research InstituteTehran University of Medical SciencesTehranIran
| | - Payam Zarrintaj
- School of Chemical EngineeringOklahoma State UniversityStillwaterOklahomaUSA
| | - Mohammad Reza Saeb
- Department of Polymer TechnologyFaculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
121
|
Upadhya S, Rehman J, Malik AB, Chen S. Mechanisms of Lung Injury Induced by SARS-CoV-2 Infection. Physiology (Bethesda) 2022; 37:88-100. [PMID: 34698589 PMCID: PMC8873036 DOI: 10.1152/physiol.00033.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023] Open
Abstract
The lung is the major target organ of SARS-CoV-2 infection, which causes COVID-19. Here, we outline the multistep mechanisms of lung epithelial and endothelial injury induced by SARS-CoV-2: direct viral infection, chemokine/cytokine-mediated damage, and immune cell-mediated lung injury. Finally, we discuss the recent progress in terms of antiviral therapeutics as well as the development of anti-inflammatory or immunomodulatory therapeutic approaches. This review also provides a systematic overview of the models for studying SARS-CoV-2 infection and discusses how an understanding of mechanisms of lung injury will help identify potential targets for future drug development to mitigate lung injury.
Collapse
Affiliation(s)
- Samsara Upadhya
- Department of Surgery, Weill Cornell Medicine, New York, New York
| | - Jalees Rehman
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, Illinois
| | - Asrar B Malik
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, New York
| |
Collapse
|
122
|
TLR3-driven IFN-β antagonizes STAT5-activating cytokines and suppresses innate type 2 response in the lung. J Allergy Clin Immunol 2022; 149:1044-1059.e5. [PMID: 34428519 PMCID: PMC8859010 DOI: 10.1016/j.jaci.2021.07.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Group 2 innate lymphoid cells (ILC2s) are involved in type 2 immune responses in mucosal organs and are associated with various allergic diseases in humans. Studies are needed to understand the molecules and pathways that control ILC2s. OBJECTIVE The aims of this study were to develop a mouse model that limits the innate type 2 immune response in the lung and to investigate the immunologic mechanisms involved in regulation of lung ILC2s. METHODS Naive BALB/c mice were administered various Toll-like receptor agonists and exposed intranasally to the fungal allergen Alternaria alternata. The mechanisms were investigated using gene knockout mice as well as cultures of lung cells and isolated lung ILC2s. RESULTS Polyinosinic-polycytidylic acid, or poly (I:C), effectively inhibited innate type 2 response to A alternata. Poly (I:C) promoted production of IFNα, -β, and -γ, and its inhibitory effects were dependent on the IFN-α/β receptor pathway. IFN-β was 100 times more potent than IFN-α at inhibiting type 2 cytokine production by lung ILC2s. Signal transducer and activator of transcription 5 (STAT5)-activating cytokines, including IL-2, IL-7, and thymic stromal lymphopoietin, but not IL-33, promoted survival and proliferation of lung ILC2s in vitro, while IFN-β blocked these effects. Expression of the transcription factor GATA3, which is critical for differentiation and maintenance of ILC2s, was inhibited by IFN-β. CONCLUSIONS IFN-β blocks the effects of STAT5-activating cytokines on lung ILC2s and inhibits their survival and effector functions. Administration of IFN-β may provide a new strategy to treat diseases involving ILC2s.
Collapse
|
123
|
Differential interferon-α subtype induced immune signatures are associated with suppression of SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2022; 119:2111600119. [PMID: 35131898 PMCID: PMC8872780 DOI: 10.1073/pnas.2111600119] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Type I interferons (IFN-I) exhibit various biological effects during viral infections, and they have been successfully used for clinical treatment of viral diseases. Humans express 12 IFNα subtypes, which strongly differ in their antiviral responses against different viruses. Here we analyzed the antiviral activity of all human IFNα subtypes against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to identify the underlying immune signatures and explore their therapeutic potential. Our data provide a systemic pattern of antiviral host effector responses mediated by high antiviral IFN-I, which could help to identify key cellular effectors targeted in novel therapeutic approaches against SARS-CoV-2 infection. Type I interferons (IFN-I) exert pleiotropic biological effects during viral infections, balancing virus control versus immune-mediated pathologies, and have been successfully employed for the treatment of viral diseases. Humans express 12 IFN-alpha (α) subtypes, which activate downstream signaling cascades and result in distinct patterns of immune responses and differential antiviral responses. Inborn errors in IFN-I immunity and the presence of anti-IFN autoantibodies account for very severe courses of COVID-19; therefore, early administration of IFN-I may be protective against life-threatening disease. Here we comprehensively analyzed the antiviral activity of all IFNα subtypes against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to identify the underlying immune signatures and explore their therapeutic potential. Prophylaxis of primary human airway epithelial cells (hAEC) with different IFNα subtypes during SARS-CoV-2 infection uncovered distinct functional classes with high, intermediate, and low antiviral IFNs. In particular, IFNα5 showed superior antiviral activity against SARS-CoV-2 infection in vitro and in SARS-CoV-2–infected mice in vivo. Dose dependency studies further displayed additive effects upon coadministration with the broad antiviral drug remdesivir in cell culture. Transcriptomic analysis of IFN-treated hAEC revealed different transcriptional signatures, uncovering distinct, intersecting, and prototypical genes of individual IFNα subtypes. Global proteomic analyses systematically assessed the abundance of specific antiviral key effector molecules which are involved in IFN-I signaling pathways, negative regulation of viral processes, and immune effector processes for the potent antiviral IFNα5. Taken together, our data provide a systemic, multimodular definition of antiviral host responses mediated by defined IFN-I. This knowledge will support the development of novel therapeutic approaches against SARS-CoV-2.
Collapse
|
124
|
Brueggeman JM, Zhao J, Schank M, Yao ZQ, Moorman JP. Trained Immunity: An Overview and the Impact on COVID-19. Front Immunol 2022; 13:837524. [PMID: 35251030 PMCID: PMC8891531 DOI: 10.3389/fimmu.2022.837524] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/28/2022] [Indexed: 01/13/2023] Open
Abstract
Effectively treating infectious diseases often requires a multi-step approach to target different components involved in disease pathogenesis. Similarly, the COVID-19 pandemic has become a global health crisis that requires a comprehensive understanding of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) infection to develop effective therapeutics. One potential strategy to instill greater immune protection against COVID-19 is boosting the innate immune system. This boosting, termed trained immunity, employs immune system modulators to train innate immune cells to produce an enhanced, non-specific immune response upon reactivation following exposure to pathogens, a process that has been studied in the context of in vitro and in vivo clinical studies prior to the COVID-19 pandemic. Evaluation of the underlying pathways that are essential to inducing protective trained immunity will provide insight into identifying potential therapeutic targets that may alleviate the COVID-19 crisis. Here we review multiple immune training agents, including Bacillus Calmette-Guérin (BCG), β-glucan, and lipopolysaccharide (LPS), and the two most popular cell types involved in trained immunity, monocytes and natural killer (NK) cells, and compare the signaling pathways involved in innate immunity. Additionally, we discuss COVID-19 trained immunity clinical trials, emphasizing the potential of trained immunity to fight SARS-CoV-2 infection. Understanding the mechanisms by which training agents activate innate immune cells to reprogram immune responses may prove beneficial in developing preventive and therapeutic targets against COVID-19.
Collapse
Affiliation(s)
- Justin M. Brueggeman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States,Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, United States
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States,Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, United States,*Correspondence: Jonathan P. Moorman,
| |
Collapse
|
125
|
Burke H, Freeman A, O'Regan P, Wysocki O, Freitas A, Dushianthan A, Celinski M, Batchelor J, Phan H, Borca F, Sheard N, Williams S, Watson A, Fitzpatrick P, Landers D, Wilkinson T. Biomarker identification using dynamic time warping analysis: a longitudinal cohort study of patients with COVID-19 in a UK tertiary hospital. BMJ Open 2022; 12:e050331. [PMID: 35168965 PMCID: PMC8852240 DOI: 10.1136/bmjopen-2021-050331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 01/27/2022] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES COVID-19 is a heterogeneous disease, and many reports have described variations in demographic, biochemical and clinical features at presentation influencing overall hospital mortality. However, there is little information regarding longitudinal changes in laboratory prognostic variables in relation to disease progression in hospitalised patients with COVID-19. DESIGN AND SETTING This retrospective observational report describes disease progression from symptom onset, to admission to hospital, clinical response and discharge/death among patients with COVID-19 at a tertiary centre in South East England. PARTICIPANTS Six hundred and fifty-one patients treated for SARS-CoV-2 between March and September 2020 were included in this analysis. Ethical approval was obtained from the HRA Specific Review Board (REC 20/HRA/2986) for waiver of informed consent. RESULTS The majority of patients presented within 1 week of symptom onset. The lowest risk patients had low mortality (1/45, 2%), and most were discharged within 1 week after admission (30/45, 67%). The highest risk patients, as determined by the 4C mortality score predictor, had high mortality (27/29, 93%), with most dying within 1 week after admission (22/29, 76%). Consistent with previous reports, most patients presented with high levels of C reactive protein (CRP) (67% of patients >50 mg/L), D-dimer (98%>upper limit of normal (ULN)), ferritin (65%>ULN), lactate dehydrogenase (90%>ULN) and low lymphocyte counts (81% CONCLUSIONS Serial measurement of routine blood tests may be a useful prognostic tool for monitoring treatment response in hospitalised patients with COVID-19. Changes in other biochemical parameters often included in a 'COVID-19 bundle' did not show significant association with outcome, suggesting there may be limited clinical benefit of serial sampling. This may have direct clinical utility in the context of escalating healthcare costs of the pandemic.
Collapse
Affiliation(s)
- Hannah Burke
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Anna Freeman
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Paul O'Regan
- Digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Oskar Wysocki
- Digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Andre Freitas
- Digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | | | | | - James Batchelor
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Hang Phan
- Clinical Informatics Research Unit, University of Southampton Faculty of Medicine, Southampton, UK
- University of Southampton, Southampton, UK
| | - Florina Borca
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Natasha Sheard
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Sarah Williams
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Alastair Watson
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Paul Fitzpatrick
- University of Manchester, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, Manchester, UK
| | - Dónal Landers
- Digital Experimental Cancer Medicine Team, University of Manchester, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, Alderley Edge, Cheshire, UK
| | - Tom Wilkinson
- Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
126
|
Kazakov AS, Sofin AD, Avkhacheva NV, Deryusheva EI, Rastrygina VA, Permyakova ME, Uversky VN, Permyakov EA, Permyakov SE. Interferon-β Activity Is Affected by S100B Protein. Int J Mol Sci 2022; 23:ijms23041997. [PMID: 35216109 PMCID: PMC8877046 DOI: 10.3390/ijms23041997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Interferon-β (IFN-β) is a pleiotropic cytokine secreted in response to various pathological conditions and is clinically used for therapy of multiple sclerosis. Its application for treatment of cancer, infections and pulmonary diseases is limited by incomplete understanding of regulatory mechanisms of its functioning. Recently, we reported that IFN-β activity is affected by interactions with S100A1, S100A4, S100A6, and S100P proteins, which are members of the S100 protein family of multifunctional Ca2+-binding proteins possessing cytokine-like activities (Int J Mol Sci. 2020;21(24):9473). Here we show that IFN-β interacts with one more representative of the S100 protein family, the S100B protein, involved in numerous oncological and neurological diseases. The use of chemical crosslinking, intrinsic fluorescence, and surface plasmon resonance spectroscopy revealed IFN-β binding to Ca2+-loaded dimeric and monomeric forms of the S100B protein. Calcium depletion blocks the S100B–IFN-β interaction. S100B monomerization increases its affinity to IFN-β by 2.7 orders of magnitude (equilibrium dissociation constant of the complex reaches 47 pM). Crystal violet assay demonstrated that combined application of IFN-β and S100B (5–25 nM) eliminates their inhibitory effects on MCF-7 cell viability. Bioinformatics analysis showed that the direct modulation of IFN-β activity by the S100B protein described here could be relevant to progression of multiple oncological and neurological diseases.
Collapse
Affiliation(s)
- Alexey S. Kazakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Alexander D. Sofin
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Nadezhda V. Avkhacheva
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Victoria A. Rastrygina
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Maria E. Permyakova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: (V.N.U.); (S.E.P.); Tel.: +7-(495)-143-7741 (S.E.P.); Fax: +7-(4967)-33-05-22 (S.E.P.)
| | - Eugene A. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
- Correspondence: (V.N.U.); (S.E.P.); Tel.: +7-(495)-143-7741 (S.E.P.); Fax: +7-(4967)-33-05-22 (S.E.P.)
| |
Collapse
|
127
|
Hauptstein N, Meinel L, Lühmann T. Bioconjugation strategies and clinical implications of Interferon-bioconjugates. Eur J Pharm Biopharm 2022; 172:157-167. [PMID: 35149191 DOI: 10.1016/j.ejpb.2022.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/24/2022] [Accepted: 02/05/2022] [Indexed: 02/08/2023]
Abstract
Interferons (IFN) are immunomodulating, antiviral and antiproliferative cytokines for treatment of multiple indications, including cancer, hepatitis, and autoimmune disease. The first IFNs were discovered in 1957, first approved in 1986, and are nowadays listed in the WHO model list of essential Medicines. Three classes of IFNs are known; IFN-α2a and IFN-β belonging to type-I IFNs, IFN-γ a type-II IFN approved for some hereditary diseases and IFN-λs, which form the newest class of type-III IFNs. IFN-λs were discovered in the last decade with fascinating yet under discovered pharmaceutical potential. This article reviews available IFN drugs, their field and route of application, while also outlining available and future strategies for bioconjugation to further optimize pharmaceutical and clinical performances of all three available IFN classes.
Collapse
Affiliation(s)
- Niklas Hauptstein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074, Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074, Würzburg, Germany; Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), DE-97080 Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074, Würzburg, Germany.
| |
Collapse
|
128
|
Plaçais L, Richier Q, Noël N, Lacombe K, Mariette X, Hermine O. Immune interventions in COVID-19: a matter of time? Mucosal Immunol 2022; 15:198-210. [PMID: 34711920 PMCID: PMC8552618 DOI: 10.1038/s41385-021-00464-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 02/04/2023]
Abstract
As the COVID-19 pandemic is still ongoing, and considering the lack of efficacy of antiviral strategies to this date, and the reactive hyperinflammation leading to tissue lesions and pneumonia, effective treatments targeting the dysregulated immune response are more than ever required. Immunomodulatory and immunosuppressive drugs have been repurposed in severe COVID-19 with contrasting results. The heterogeneity in the timing of treatments administrations could be accountable for these discrepancies. Indeed, many studies included patients at different timepoints of infection, potentially hiding the beneficial effects of a time-adapted intervention. We aim to review the available data on the kinetics of the immune response in beta-coronaviruses infections, from animal models and longitudinal human studies, and propose a four-step model of severe COVID-19 timeline. Then, we discuss the results of the clinical trials of immune interventions with regards to the timing of administration, and finally suggest a time frame in order to delineate the best timepoint for each treatment.
Collapse
Affiliation(s)
- Léo Plaçais
- Service de Médecine Interne et Immunologie Clinique, Hôpital Bicêtre, Assistance publique des hôpitaux de Paris, GHU Paris-Saclay, Le Kremlin Bicêtre, France.
- Université Paris-Saclay, Inserm, CEA, Centre de recherche en Immunologie des infections virales et des maladies auto-immunes ImVA, UMR Inserm U1184, 94270, Le Kremlin Bicêtre, France.
| | - Quentin Richier
- Service de maladies infectieuses, Hôpital Saint Antoine, Assistance publique des hôpitaux de Paris, Paris, France.
- Université de Paris, Paris, France.
| | - Nicolas Noël
- Service de Médecine Interne et Immunologie Clinique, Hôpital Bicêtre, Assistance publique des hôpitaux de Paris, GHU Paris-Saclay, Le Kremlin Bicêtre, France
- Université Paris-Saclay, Inserm, CEA, Centre de recherche en Immunologie des infections virales et des maladies auto-immunes ImVA, UMR Inserm U1184, 94270, Le Kremlin Bicêtre, France
| | - Karine Lacombe
- Service de maladies infectieuses, Hôpital Saint Antoine, Assistance publique des hôpitaux de Paris, Paris, France
- Sorbonne Université, Inserm IPLESP, Paris, France
| | - Xavier Mariette
- Service de rhumatologie, Hôpital Bicêtre, Assistance publique des hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Olivier Hermine
- Université de Paris, Paris, France
- Service d'hématologie, Hôpital Necker, Assistance publique des hôpitaux de Paris, Paris, France
- Institut Imagine, INSERM U1163, Paris, France
| |
Collapse
|
129
|
Aricò E, Bracci L, Castiello L, Urbani F, Casanova JL, Belardelli F. Exploiting natural antiviral immunity for the control of pandemics: Lessons from Covid-19. Cytokine Growth Factor Rev 2022; 63:23-33. [PMID: 34955389 PMCID: PMC8675148 DOI: 10.1016/j.cytogfr.2021.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19), triggered by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the disruptive global consequences in terms of mortality and social and economic crises, have taught lessons that may help define strategies to better face future pandemics. Innate and intrinsic immunity form the front-line natural antiviral defense. They involve both tissue-resident and circulating cells, which can produce anti-viral molecules shortly after viral infection. Prototypes of these factors are type I interferons (IFN), antiviral cytokines with a long record of clinical use. During the last two years, there has been an impressive progress in understanding the mechanisms of both SARS-CoV-2 infection and the cellular and soluble antiviral responses occurring early after viral exposure. However, this information was not sufficiently translated into therapeutic approaches. Insufficient type I IFN activity probably accounts for disease progression in many patients. This results from both the multiple interfering mechanisms developed by SARS-CoV-2 to decrease type I IFN response and various pre-existing human deficits of type I IFN activity, inherited or auto-immune. Emerging data suggest that IFN-I-mediated boosting of patients' immunity, achieved directly through the exogenous administration of IFN-β early post viral infection, or indirectly following inoculation of heterologous vaccines (e.g., Bacillus Calmette Guerin), might play a role against SARS-CoV-2. We review how recent insights on the viral and human determinants of critical COVID-19 pneumonia can foster clinical studies of IFN therapy. We also discuss how early therapeutic use of IFN-β and prophylactic campaigns with live attenuated vaccines might prevent a first wave of new pandemic viruses.
Collapse
Affiliation(s)
- Eleonora Aricò
- FaBioCell, Core Facilities, Istituto Superiore di Sanità, Rome, Italy.
| | - Laura Bracci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Luciano Castiello
- FaBioCell, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Urbani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy; Medical Biotechnology and Translational Medicine PhD School, II University of Rome "Tor Vergata", Italy
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; Howard Hughes Medical Institute, New York, NY, USA
| | - Filippo Belardelli
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
130
|
Salto-Alejandre S, Palacios-Baena ZR, Arribas JR, Berenguer J, Carratalà J, Jarrín I, Ryan P, Miguel-Montero MD, Rodríguez-Baño J, Pachón J. Impact of early interferon-β treatment on the prognosis of patients with COVID-19 in the first wave: A post hoc analysis from a multicenter cohort. Biomed Pharmacother 2022; 146:112572. [PMID: 34954640 PMCID: PMC8692085 DOI: 10.1016/j.biopha.2021.112572] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Interferon-β is an attractive drug for repurposing and use in the treatment of COVID-19, based on its in vitro antiviral activity and the encouraging results from clinical trials. The aim of this study was to analyze the impact of early interferon-β treatment in patients admitted with COVID-19 during the first wave of the pandemic. METHODS This post hoc analysis of a COVID-19@Spain multicenter cohort included 3808 consecutive adult patients hospitalized with COVID-19 from 1 January to 17 March 2020. The primary endpoint was 30-day all-cause mortality, and the main exposure of interest was subcutaneous administration of interferon-β, defined as early if started ≤ 3 days from admission. Multivariate logistic and Cox regression analyses were conducted to identify the associations of different variables with receiving early interferon-β therapy and to assess its impact on 30-day mortality. A propensity score was calculated and used to both control for confounders and perform a matched cohort analysis. RESULTS Overall, 683 patients (17.9%) received early interferon-β therapy. These patients were more severely ill. Adjusted HR for mortality with early interferon-β was 1.03 (95% CI, 0.82-1.30) in the overall cohort, 0.96 (0.82-1.13) in the PS-matched subcohort, and 0.89 (0.60-1.32) when interferon-β treatment was analyzed as a time-dependent variable. CONCLUSIONS In this multicenter cohort of admitted COVID-19 patients, receiving early interferon-β therapy after hospital admission did not show an association with lower mortality. Whether interferon-β might be useful in the earlier stages of the disease or specific subgroups of patients requires further research.
Collapse
Affiliation(s)
- Sonsoles Salto-Alejandre
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain,Institute of Biomedicine of Seville, Virgen del Rocío and Virgen Macarena University Hospitals/CSIC/University of Seville, Seville, Spain
| | - Zaira R. Palacios-Baena
- Institute of Biomedicine of Seville, Virgen del Rocío and Virgen Macarena University Hospitals/CSIC/University of Seville, Seville, Spain,Unit of Infectious Diseases and Microbiology, University Hospital Virgen Macarena, Seville, Spain,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - José Ramón Arribas
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain,Unit of Infectious Diseases, Service of Internal Medicine, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain,Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - Juan Berenguer
- Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain,Service of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Jordi Carratalà
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain,Service of Infectious Diseases, Hospital Universitario de Bellvitge, Barcelona, Spain,Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain,Universitat de Barcelona, Barcelona, Spain
| | - Inmaculada Jarrín
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain,Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Ryan
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain,Service of Internal Medicine, Hospital Universitario Infanta Leonor, Madrid, Spain,Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Jesús Rodríguez-Baño
- Institute of Biomedicine of Seville, Virgen del Rocío and Virgen Macarena University Hospitals/CSIC/University of Seville, Seville, Spain; Unit of Infectious Diseases and Microbiology, University Hospital Virgen Macarena, Seville, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, Universidad de Sevilla, Seville, Spain.
| | - Jerónimo Pachón
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain; Institute of Biomedicine of Seville, Virgen del Rocío and Virgen Macarena University Hospitals/CSIC/University of Seville, Seville, Spain; Department of Medicine, Universidad de Sevilla, Seville, Spain.
| | | |
Collapse
|
131
|
Salasc F, Lahlali T, Laurent E, Rosa-Calatrava M, Pizzorno A. Treatments for COVID-19: Lessons from 2020 and new therapeutic options. Curr Opin Pharmacol 2022; 62:43-59. [PMID: 34915400 PMCID: PMC8598952 DOI: 10.1016/j.coph.2021.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 01/10/2023]
Abstract
To face the COVID-19 pandemic, prophylactic vaccines have been developed in record time, but vaccine coverage is still limited, accessibility is not equitable worldwide, and the vaccines are not fully effective against emerging variants. Therefore, therapeutic treatments are urgently needed to control the pandemic and treat vulnerable populations, but despite all efforts made, options remain scarce. However, the knowledge gained during 2020 constitutes an invaluable platform from which to build future therapies. In this review, we highlight the main drug repurposing strategies and achievements made over the first 18 months of the pandemic, but also discuss the antivirals, immunomodulators and drug combinations that could be used in the near future to cure COVID-19.
Collapse
Affiliation(s)
- Fanny Salasc
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France; International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, QC, G1V 4G2, Québec, Canada
| | - Thomas Lahlali
- Signia Therapeutics, 60 Avenue Rockefeller, 69008, Lyon, France
| | - Emilie Laurent
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France; International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, QC, G1V 4G2, Québec, Canada
| | - Manuel Rosa-Calatrava
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France; International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, QC, G1V 4G2, Québec, Canada.
| | - Andrés Pizzorno
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, QC, G1V 4G2, Québec, Canada.
| |
Collapse
|
132
|
Pelletier AN, Sekaly RP, Tomalka JA. Translating known drivers of COVID-19 disease severity to design better SARS-CoV-2 vaccines. Curr Opin Virol 2022; 52:89-101. [PMID: 34902803 PMCID: PMC8664555 DOI: 10.1016/j.coviro.2021.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 01/17/2023]
Abstract
The SARS-CoV-2 pandemic has highlighted how an emergent disease can spread globally and how vaccines are once again the most important public health policy to combat infectious disease. Despite promising initial protection, the rise of new viral variants calls into question how effective current SARS-CoV-2 vaccines will be moving forward. Improving on vaccine platforms represents an opportunity to stay ahead of SARS-CoV-2 and keep the human population protected. Many researchers focus on modifying delivery platforms or altering the antigen(s) presented to improve the efficacy of the vaccines. Identifying mechanisms of natural immunity that result in the control of infection and prevent poor clinical outcomes provides an alternative approach to the development of efficacious vaccines. Early and current evidence shows that SARS-CoV-2 infection is marked by potent lung inflammation and relatively diminished antiviral signaling which leads to impaired immune recognition and viral clearance, essentially making SARS-CoV-2 'too hot to handle'.
Collapse
Affiliation(s)
| | - Rafick P Sekaly
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeffrey A Tomalka
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
133
|
Wirusanti NI, Baldridge MT, Harris VC. Microbiota regulation of viral infections through interferon signaling. Trends Microbiol 2022; 30:778-792. [PMID: 35135717 PMCID: PMC9344482 DOI: 10.1016/j.tim.2022.01.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/22/2022]
Abstract
The interferon (IFN) response is the major early innate immune response against invading viral pathogens and is even capable of mediating sterilizing antiviral immunity without the support of the adaptive immune system. Cumulative evidence suggests that the gut microbiota can modulate IFN responses, indirectly determining virological outcomes. This review outlines our current knowledge of the interactions between the gut microbiota and IFN responses and dissects the different mechanisms by which the gut microbiota may alter IFN expression to diverse viral infections. This knowledge offers a basis for translating experimental evidence from animal studies into the human context and identifies avenues for leveraging the gut microbiota–IFN–virus axis to improve control of viral infections and performance of viral vaccines.
Collapse
|
134
|
Dowling JW, Forero A. Beyond Good and Evil: Molecular Mechanisms of Type I and III IFN Functions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:247-256. [PMID: 35017214 DOI: 10.4049/jimmunol.2100707] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022]
Abstract
IFNs are comprised of three families of cytokines that confer protection against pathogen infection and uncontrolled cellular proliferation. The broad role IFNs play in innate and adaptive immune regulation has placed them under heavy scrutiny to position them as "friend" or "foe" across pathologies. Genetic lesions in genes involving IFN synthesis and signaling underscore the disparate outcomes of aberrant IFN signaling. Abrogation of the response leads to susceptibility to microbial infections whereas unabated IFN induction underlies a variety of inflammatory diseases and tumor immune evasion. Type I and III IFNs have overlapping roles in antiviral protection, yet the mechanisms by which they are induced and promote the expression of IFN-stimulated genes and inflammation can distinguish their biological functions. In this review, we examine the molecular factors that shape the shared and distinct roles of type I and III IFNs in immunity.
Collapse
Affiliation(s)
- Jack W Dowling
- Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210; and.,Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Adriana Forero
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
135
|
Manry J, Bastard P, Gervais A, Le Voyer T, Rosain J, Philippot Q, Michailidis E, Hoffmann HH, Eto S, Garcia-Prat M, Bizien L, Parra-Martínez A, Yang R, Haljasmägi L, Migaud M, Särekannu K, Maslovskaja J, de Prost N, Tandjaoui-Lambiotte Y, Luyt CE, Amador-Borrero B, Gaudet A, Poissy J, Morel P, Richard P, Cognasse F, Troya J, Trouillet-Assant S, Belot A, Saker K, Garçon P, Rivière JG, Lagier JC, Gentile S, Rosen L, Shaw E, Morio T, Tanaka J, Dalmau D, Tharaux PL, Sene D, Stepanian A, Mégarbane B, Triantafyllia V, Fekkar A, Heath J, Franco J, Anaya JM, Solé-Violán J, Imberti L, Biondi A, Bonfanti P, Castagnoli R, Delmonte O, Zhang Y, Snow A, Holland S, Biggs C, Moncada-Vélez M, Arias A, Lorenzo L, Boucherit S, Anglicheau D, Planas A, Haerynck F, Duvlis S, Nussbaum R, Ozcelik T, Keles S, Bousfiha A, El Bakkouri J, Ramirez-Santana C, Paul S, Pan-Hammarstrom Q, Hammarstrom L, Dupont A, Kurolap A, Metz C, Aiuti A, Casari G, Lampasona V, Ciceri F, Barreiros L, Dominguez-Garrido E, Vidigal M, Zatz M, van de Beek D, Sahanic S, Tancevski I, Stepanovskyy Y, Boyarchuk O, Nukui Y, Tsumura M, Vidaur L, Tangye S, Burrel S, Duffy D, Quintana-Murci L, Klocperk A, Kann N, Shcherbina A, Lau YL, Leung D, Coulongeat M, Marlet J, Koning R, Reyes L, Chauvineau-Grenier A, Venet F, Monneret G, Nussenzweig M, Arrestier R, Boudhabhay I, Baris-Feldman H, Hagin D, Wauters J, Meyts I, Dyer A, Kennelly S, Bourke N, Halwani R, Sharif-Askari F, Dorgham K, Sallette J, Mehlal-Sedkaoui S, AlKhater S, Rigo-Bonnin R, Morandeira F, Roussel L, Vinh D, Erikstrup C, Condino-Neto A, Prando C, Bondarenko A, Spaan A, Gilardin L, Fellay J, Lyonnet S, Bilguvar K, Lifton R, Mane S, Anderson M, Boisson B, Béziat V, Zhang SY, Andreakos E, Hermine O, Pujol A, Peterson P, Mogensen TH, Rowen L, Mond J, Debette S, deLamballerie X, Burdet C, Bouadma L, Zins M, Soler-Palacin P, Colobran R, Gorochov G, Solanich X, Susen S, Martinez-Picado J, Raoult D, Vasse M, Gregersen P, Rodríguez-Gallego C, Piemonti L, Notarangelo L, Su H, Kisand K, Okada S, Puel A, Jouanguy E, Rice C, Tiberghien P, Zhang Q, Casanova JL, Abel L, Cobat A. The risk of COVID-19 death is much greater and age-dependent with type I IFN autoantibodies. RESEARCH SQUARE 2022:rs.3.rs-1225906. [PMID: 35043109 PMCID: PMC8764723 DOI: 10.21203/rs.3.rs-1225906/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SARS-CoV-2 infection fatality rate (IFR) doubles with every five years of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-β are found in ~20% of deceased patients across age groups. In the general population, they are found in ~1% of individuals aged 20-70 years and in >4% of those >70 years old. With a sample of 1,261 deceased patients and 34,159 uninfected individuals, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to non-carriers. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRD was 17.0[95% CI:11.7-24.7] for individuals under 70 years old and 5.8[4.5-7.4] for individuals aged 70 and over, whereas, for autoantibodies neutralizing both molecules, the RRD was 188.3[44.8-774.4] and 7.2[5.0-10.3], respectively. IFRs increased with age, from 0.17%[0.12-0.31] for individuals <40 years old to 26.7%[20.3-35.2] for those ≥80 years old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84%[0.31-8.28] to 40.5%[27.82-61.20] for the same two age groups, for autoantibodies neutralizing both molecules. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, particularly those neutralizing both IFN-α2 and -ω. Remarkably, IFR increases with age, whereas RRD decreases with age. Autoimmunity to type I IFNs appears to be second only to age among common predictors of COVID-19 death.
Collapse
Affiliation(s)
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163
| | | | | | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM
| | | | | | | | - Shohei Eto
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Marina Garcia-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute
| | | | - Alba Parra-Martínez
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University
| | | | | | - Karita Särekannu
- Institute of Biomedicine and Translational Medicine, University of Tartu
| | - Julia Maslovskaja
- Institute of Biomedicine and Translational Medicine, University of Tartu
| | | | | | - Charles-Edouard Luyt
- Hôpital Pitié-Salpêtrière, Service de Médecine Intensive Réanimation, Institut de Cardiologie
| | | | - Alexandre Gaudet
- University of Lille, U1019-UMR9017, Center for Infection and Immunity of Lille
| | - Julien Poissy
- University of Lille, U1019-UMR9017, Center for Infection and Immunity of Lille
| | | | | | | | - Jesus Troya
- Department of Internal Medicine, Infanta Leonor University Hospital
| | | | | | | | - Pierre Garçon
- Intensive Care Unit, Grand Hôpital de l'Est Francilien Site de Marne-La-Vallée
| | | | | | - Stéphanie Gentile
- Service d'Evaluation Médicale, Hôpitaux Universitaires de Marseille APHM
| | | | - Elana Shaw
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | | | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima Universit
| | - David Dalmau
- Hospital Universitari MútuaTerrassa; Fundació Docència i Recerca MutuaTerrassa, Terrasa; Universitat de Barcelona
| | | | - Damien Sene
- Internal Medicine Department, Lariboisière Hospital AP-HP, Paris University
| | - Alain Stepanian
- Service d'Hématologie Biologique, Hôpital Lariboisière, AP-HP and EA3518, Institut Universitaire d'Hématologie-Hôpital Saint Louis, Université Paris
| | - Bruno Mégarbane
- Réanimation Médicale et Toxicologique, Hôpital Lariboisière (AP-HP), Université Paris-Diderot, INSERM Unité Mixte de Recherche Scientifique (UMRS) 1144
| | - Vasiliki Triantafyllia
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens
| | | | | | | | | | - Jordi Solé-Violán
- Intensive Care Medicine, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System
| | - Luisa Imberti
- CREA Laboratory (AIL Center for Hemato-Oncologic Research), Diagnostic Department, ASST Spedali Civili di Brescia
| | | | - Paolo Bonfanti
- Department of Infectious Diseases, San Gerardo Hospital, University of Milano Bicocca
| | - Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Ottavia Delmonte
- Immune Deficiency Genetics Section, Laboratory of Host Defenses, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | | | - Andrew Snow
- Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Steve Holland
- Division of Intramural Research (HNM2), National Institute of Allergy and Infectious Diseases
| | - Catherine Biggs
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia
| | - Marcela Moncada-Vélez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University
| | - Andrés Arias
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University
| | | | | | | | | | | | - Sotirija Duvlis
- Faculty of Medical Sciences, University "Goce Delchev," Štip, Republic of Northern Macedonia
| | | | | | - Sevgi Keles
- Necmettin Erbakan University, Meram Medical Faculty
| | | | - Jalila El Bakkouri
- Clinical Immunology Unit, Department of Pediatric Infectious Disease, CHU Ibn Rushd and LICIA, Laboratoire d'Immunologie Clinique, Inflammation et Allergie, Faculty of Medicine and Pharmacy
| | - Carolina Ramirez-Santana
- Center for Autoimmune Disease Research, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Stéphane Paul
- Centre International de Recherche en Infectiologie Lyon
| | | | | | - Annabelle Dupont
- Université de Lille, INSERM, CHU de Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Alina Kurolap
- Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | | | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan
| | - Giorgio Casari
- Vita-Salute San Raffaele University, and Clinical Genomics, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Lucila Barreiros
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Sabina Sahanic
- Department of Internal Medicine II, Medical University Innsbruck
| | | | | | - Oksana Boyarchuk
- Department of Children's Diseases and Pediatric Surgery, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Yoko Nukui
- Department of Infection Control and Prevention, Medical Hospital, TMDU, Tokyo, Japan
| | | | - Loreto Vidaur
- Intensive Care Medicine, Donostia University Hospital, Biodonostia Institute of Donostia, San Sebastián, Spain
| | | | | | | | | | - Adam Klocperk
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, 15006 Prague
| | - Nelli Kann
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Shcherbina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | - Daniel Leung
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong, China
| | - Matthieu Coulongeat
- Division of Geriatric Medicine, Tours University Medical Center, Tours, France
| | - Julien Marlet
- INSERM U1259, MAVIVH, Université de Tours, Tours, France
| | - Rutger Koning
- Department of Neurology, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Luis Reyes
- Department of Microbiology, Universidad de La Sabana, Chía, Colombia
| | | | | | | | | | - Romain Arrestier
- Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Idris Boudhabhay
- Department of Nephrology and Transplantation, Necker University Hospital, APHP, Paris, France. 58INEM, INSERM U1151-CNRS UMR 8253, Paris University, Paris, France
| | - Hagit Baris-Feldman
- Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - David Hagin
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv
| | - Joost Wauters
- Medical Intensive Care Unit, UZ Gasthuisberg & Laboratory for Clinical Infectious and Inflammatory Disorders, Depart-ment of Microbiology, Immunology and Transplantation, KU Leuven
| | | | - Adam Dyer
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
| | - Sean Kennelly
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
| | - Nollaig Bourke
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Fatemeh Sharif-Askari
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Karim Dorgham
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMIParis UMRS 1135)
| | | | | | - Suzan AlKhater
- Department of Pediatrics, King Fahad Hospital of the University, Al Khobar, Saudi Arabia
| | - Raúl Rigo-Bonnin
- Department of Clinical Laboratory, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Francisco Morandeira
- Department of Immunology, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Lucie Roussel
- Department of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, QC, Canada
| | - Donald Vinh
- The Research Institute of the McGill University Health Centre
| | | | | | - Carolina Prando
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | | | - András Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Laurent Gilardin
- Service de Médecine Interne, Hôpital universitaire Jean-Verdier AP-HP, Bondy, France
| | | | | | | | - Richard Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University
| | | | - Mark Anderson
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | - Olivier Hermine
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche (UMR) 1163
| | | | - Pärt Peterson
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu
| | | | - Lee Rowen
- Institute for Systems Biology, Seattle, WA, USA
| | | | - Stéphanie Debette
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219
| | | | | | - Lila Bouadma
- APHP- Hôpital Bichat - Médecine Intensive et Réanimation des Maladies
| | - Marie Zins
- Université de Paris, Université Paris-Saclay, UVSQ, INSERM UMS11, Villejuif, France
| | | | | | | | - Xavier Solanich
- Department of Internal Medicine, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Sophie Susen
- Université de Lille, INSERM, CHU de Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | | | - Didier Raoult
- Aix Marseille Université; IHU Méditerranée Infection-MEPHI
| | - Marc Vasse
- Service de Biologie Clinique and UMR-S 1176, Hôpital Foch, Suresnes, France
| | - Peter Gregersen
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Carlos Rodríguez-Gallego
- Department of Immunology, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Lorenzo Piemonti
- IRCCS Ospedale San Raffaele, San Raffaele Diabetes Research Institute, Via Olgettina 60, 20132 Milan
| | | | | | | | - Satoshi Okada
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | | | | | | | | | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | | | | | | |
Collapse
|
136
|
Esneau C, Duff AC, Bartlett NW. Understanding Rhinovirus Circulation and Impact on Illness. Viruses 2022; 14:141. [PMID: 35062345 PMCID: PMC8778310 DOI: 10.3390/v14010141] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Rhinoviruses (RVs) have been reported as one of the main viral causes for severe respiratory illnesses that may require hospitalization, competing with the burden of other respiratory viruses such as influenza and RSV in terms of severity, economic cost, and resource utilization. With three species and 169 subtypes, RV presents the greatest diversity within the Enterovirus genus, and despite the efforts of the research community to identify clinically relevant subtypes to target therapeutic strategies, the role of species and subtype in the clinical outcomes of RV infection remains unclear. This review aims to collect and organize data relevant to RV illness in order to find patterns and links with species and/or subtype, with a specific focus on species and subtype diversity in clinical studies typing of respiratory samples.
Collapse
Affiliation(s)
| | | | - Nathan W. Bartlett
- Hunter Medical Research Institute, College of Health Medicine and Wellbeing, University of Newcastle, New Lambton Heights, NSW 2305, Australia; (C.E.); (A.C.D.)
| |
Collapse
|
137
|
Wang Z, Xiang L, Lin F, Cai Z, Ruan H, Wang J, Liang J, Wang F, Lu M, Cui W. Inhaled ACE2-engineered microfluidic microsphere for intratracheal neutralization of COVID-19 and calming of the cytokine storm. MATTER 2022; 5:336-362. [PMID: 34693277 PMCID: PMC8524658 DOI: 10.1016/j.matt.2021.09.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/10/2021] [Accepted: 09/23/2021] [Indexed: 05/03/2023]
Abstract
The SARS-CoV-2 pandemic spread worldwide unabated. However, achieving protection from the virus in the whole respiratory tract, avoiding blood dissemination, and calming the subsequent cytokine storm remains a major challenge. Here, we develop an inhaled microfluidic microsphere using dual camouflaged methacrylate hyaluronic acid hydrogel microspheres with a genetically engineered membrane from angiotensin-converting enzyme II (ACE2) receptor-overexpressing cells and macrophages. By timely competing with the virus for ACE2 binding, the inhaled microspheres significantly reduce SARS-CoV-2 infective effectiveness over the whole course of the respiratory system in vitro and in vivo. Moreover, the inhaled microspheres efficiently neutralize proinflammatory cytokines, cause an alternative landscape of lung-infiltrated immune cells, and alleviate hyperinflammation of lymph nodes and spleen. In an acute pneumonia model, the inhaled microspheres show significant therapeutic efficacy by regulation of the multisystem inflammatory syndrome and reduce acute mortality, suggesting a powerful synergic strategy for the treatment of patients with severe COVID-19 via non-invasive administration.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Feng Lin
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huitong Ruan
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Liang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
138
|
Sinha S, Rosin NL, Arora R, Labit E, Jaffer A, Cao L, Farias R, Nguyen AP, de Almeida LGN, Dufour A, Bromley A, McDonald B, Gillrie MR, Fritzler MJ, Yipp BG, Biernaskie J. Dexamethasone modulates immature neutrophils and interferon programming in severe COVID-19. Nat Med 2022; 28:201-211. [PMID: 34782790 PMCID: PMC8799469 DOI: 10.1038/s41591-021-01576-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022]
Abstract
Although critical for host defense, innate immune cells are also pathologic drivers of acute respiratory distress syndrome (ARDS). Innate immune dynamics during Coronavirus Disease 2019 (COVID-19) ARDS, compared to ARDS from other respiratory pathogens, is unclear. Moreover, mechanisms underlying the beneficial effects of dexamethasone during severe COVID-19 remain elusive. Using single-cell RNA sequencing and plasma proteomics, we discovered that, compared to bacterial ARDS, COVID-19 was associated with expansion of distinct neutrophil states characterized by interferon (IFN) and prostaglandin signaling. Dexamethasone during severe COVID-19 affected circulating neutrophils, altered IFNactive neutrophils, downregulated interferon-stimulated genes and activated IL-1R2+ neutrophils. Dexamethasone also expanded immunosuppressive immature neutrophils and remodeled cellular interactions by changing neutrophils from information receivers into information providers. Male patients had higher proportions of IFNactive neutrophils and preferential steroid-induced immature neutrophil expansion, potentially affecting outcomes. Our single-cell atlas (see 'Data availability' section) defines COVID-19-enriched neutrophil states and molecular mechanisms of dexamethasone action to develop targeted immunotherapies for severe COVID-19.
Collapse
Affiliation(s)
- Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nicole L Rosin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| | - Rohit Arora
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Elodie Labit
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Arzina Jaffer
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Leslie Cao
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Raquel Farias
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Angela P Nguyen
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Luiz G N de Almeida
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Antoine Dufour
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Amy Bromley
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Braedon McDonald
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark R Gillrie
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marvin J Fritzler
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bryan G Yipp
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
139
|
Ehtezazi T. The Potential Use of Cyclosporine Ultrafine Solution Pressurised Metered- Dose Inhaler in the Treatment of COVID-19 Patients. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:3-15. [PMID: 34809553 DOI: 10.2174/2772574x12666211122113318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Serious COVID-19 respiratory problems start when the virus reaches the alveolar level, where type II cells get infected and die. Therefore, virus inhibition at the alveolar level would help preventing these respiratory complications. METHOD A literature search was conducted to collect physicochemical properties of small molecule compounds that could be used for the COVID-19 treatment. Compounds with low melting points were selected along with those soluble in ethanol, hydrogen-bond donors, and acceptors. RESULTS There are severe acute respiratory syndrome coronavirus inhibitors with physicochemical properties suitable for the formulation as an ultrafine pressurised metered-dose inhaler (pMDI). Mycophenolic acid, Debio 025, and cyclosporine A are prime candidates among these compounds. Cyclosporine A (hereafter cyclosporine) is a potent SARS-CoV-2 inhibitor, and it has been used for the treatment of COVID-19 patients, demonstrating an improved survival rate. Also, inhalation therapy of nebulised cyclosporine was tolerated, which was used for patients with lung transplants. Finally, cyclosporine has been formulated as a solution ultrafine pMDI. Although vaccine therapy has started in most countries, inhalation therapies with non-immunological activities could minimise the spread of the disease and be used in vaccine-hesitant individuals. CONCLUSION Ultrafine pMDI formulation of cyclosporine or Debio 025 should be investigated for the inhalation therapy of COVID-19.
Collapse
Affiliation(s)
- Touraj Ehtezazi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
140
|
Rea IM, Alexander HD. Triple jeopardy in ageing: COVID-19, co-morbidities and inflamm-ageing. Ageing Res Rev 2022; 73:101494. [PMID: 34688926 PMCID: PMC8530779 DOI: 10.1016/j.arr.2021.101494] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023]
Abstract
Covid-19 endangers lives, has disrupted normal life, changed the way medicine is practised and is likely to alter our world for the foreseeable future. Almost two years on since the presumptive first diagnosis of COVID-19 in China, more than two hundred and fifty million cases have been confirmed and more than five million people have died globally, with the figures rising daily. One of the most striking aspects of COVID-19 illness is the marked difference in individuals' experiences of the disease. Some, most often younger groups, are asymptomatic, whereas others become severely ill with acute respiratory distress syndrome (ARDS), pneumonia or proceed to fatal organ disease. The highest death rates are in the older and oldest age groups and in people with co-morbidities such as diabetes, heart disease and obesity. Three major questions seem important to consider. What do we understand about changes in the immune system that might contribute to the older person's risk of developing severe COVID-19? What factors contribute to the higher morbidity and mortality in older people with COVID-19? How could immunocompetence in the older and the frailest individuals and populations be supported and enhanced to give protection from serious COVID-19 illness?
Collapse
Affiliation(s)
- Irene Maeve Rea
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, United Kingdom; Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom; Meadowlands Ambulatory Care Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom.
| | - H Denis Alexander
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom
| |
Collapse
|
141
|
Naseri A, Seyedi Sahebari S, Hosseini MS. Pharmacotherapy of COVID-19: Considerations for Pregnancy and Breastfeeding. JOURNAL OF OBSTETRICS, GYNECOLOGY AND CANCER RESEARCH 2022. [DOI: 10.30699/jogcr.7.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
142
|
Allegretti M, Cesta MC, Zippoli M, Beccari A, Talarico C, Mantelli F, Bucci EM, Scorzolini L, Nicastri E. Repurposing the estrogen receptor modulator raloxifene to treat SARS-CoV-2 infection. Cell Death Differ 2022; 29:156-166. [PMID: 34404919 PMCID: PMC8370058 DOI: 10.1038/s41418-021-00844-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/09/2021] [Accepted: 07/25/2021] [Indexed: 12/15/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates strategies to identify prophylactic and therapeutic drug candidates to enter rapid clinical development. This is particularly true, given the uncertainty about the endurance of the immune memory induced by both previous infections or vaccines, and given the fact that the eradication of SARS-CoV-2 might be challenging to reach, given the attack rate of the virus, which would require unusually high protection by a vaccine. Here, we show how raloxifene, a selective estrogen receptor modulator with anti-inflammatory and antiviral properties, emerges as an attractive candidate entering clinical trials to test its efficacy in early-stage treatment COVID-19 patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Enrico M Bucci
- Sbarro Health Research Organization, Biology Department CFT, Temple University, Philadelphia, PA, USA
| | - Laura Scorzolini
- Lazzaro Spallanzani National Institute for Infectious Diseases, IRCCS, Rome, Italy
| | - Emanuele Nicastri
- Lazzaro Spallanzani National Institute for Infectious Diseases, IRCCS, Rome, Italy
| |
Collapse
|
143
|
Freeman A, Watson A, O'Regan P, Wysocki O, Burke H, Freitas A, Livingstone R, Dushianthan A, Celinski M, Batchelor J, Phan H, Borca F, Fitzpatrick P, Landers D, Wilkinson TM. Wave comparisons of clinical characteristics and outcomes of COVID-19 admissions - Exploring the impact of treatment and strain dynamics. J Clin Virol 2022; 146:105031. [PMID: 34844145 PMCID: PMC8608665 DOI: 10.1016/j.jcv.2021.105031] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/11/2021] [Accepted: 11/21/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Dexamethasone has now been incorporated into the standard of care for COVID-19 hospital patients. However, larger intensive care unit studies have failed to show discernible improvements in mortality in the recent wave. We aimed to investigate the impacts of these factors on disease outcomes in a UK hospital study. METHODS This retrospective observational study reports patient characteristics, interventions and outcomes in COVID-19 patients from a UK teaching hospital; cohort 1, pre 16th June-2020 (pre-dexamethasone); cohort 2, 17th June to 30th November-2020 (post-dexamethasone, pre-VOC 202,012/01 as dominant strain); cohort 3, 1st December-2020 to 3rd March-2021 (during establishment of VOC202012/01 as the dominant strain). RESULTS Dexamethasone treatment was more common in cohorts 2 and 3 (42.7% and 51.6%) compared with cohort 1 (2.5%). After adjusting for risk, odds of death within 28 days were 2-fold lower in cohort 2 vs 1 (OR:0.47,[0.27,0.79],p = 0.006). Mortality was higher cohort 3 vs 2 (20% vs 14%); but not significantly different to cohort 1 (OR: 0.86,[0.64, 1.15],p = 0.308). CONCLUSIONS The real world finding of lower mortality following dexamethasone supports the published trial evidence and highlights ongoing need for research with introduction of new treatments and ongoing concern over new COVID-19 variants.
Collapse
Affiliation(s)
- Anna Freeman
- Faculty of Medicine, University of Southampton, United Kingdom; University Hospitals Southampton NHS Foundation Trust, United Kingdom.
| | - Alastair Watson
- Faculty of Medicine, University of Southampton, United Kingdom; University Hospitals Southampton NHS Foundation Trust, United Kingdom
| | - Paul O'Regan
- Digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, The University of Manchester, United Kingdom
| | - Oskar Wysocki
- Digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, The University of Manchester, United Kingdom; Department of Computer Science, The University of Manchester, United Kingdom
| | - Hannah Burke
- Faculty of Medicine, University of Southampton, United Kingdom; University Hospitals Southampton NHS Foundation Trust, United Kingdom
| | - Andre Freitas
- Digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, The University of Manchester, United Kingdom; Department of Computer Science, The University of Manchester, United Kingdom; Idiap Research Institute, Switzerland
| | - Robert Livingstone
- Faculty of Medicine, University of Southampton, United Kingdom; University Hospitals Southampton NHS Foundation Trust, United Kingdom
| | - Ahilanadan Dushianthan
- Faculty of Medicine, University of Southampton, United Kingdom; University Hospitals Southampton NHS Foundation Trust, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Michael Celinski
- Faculty of Medicine, University of Southampton, United Kingdom; University Hospitals Southampton NHS Foundation Trust, United Kingdom
| | - James Batchelor
- Faculty of Medicine, University of Southampton, United Kingdom; University Hospitals Southampton NHS Foundation Trust, United Kingdom; Institute for Life Sciences, University of Southampton, United Kingdom; Clinical Informatics Research Unit Faculty of Medicine, University of Southampton,United Kingdom
| | - Hang Phan
- Faculty of Medicine, University of Southampton, United Kingdom; Clinical Informatics Research Unit Faculty of Medicine, University of Southampton,United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Florina Borca
- Faculty of Medicine, University of Southampton, United Kingdom; University Hospitals Southampton NHS Foundation Trust, United Kingdom; Clinical Informatics Research Unit Faculty of Medicine, University of Southampton,United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Paul Fitzpatrick
- Digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, The University of Manchester, United Kingdom
| | - Donal Landers
- Digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, The University of Manchester, United Kingdom
| | - Tom Ma Wilkinson
- Faculty of Medicine, University of Southampton, United Kingdom; University Hospitals Southampton NHS Foundation Trust, United Kingdom
| |
Collapse
|
144
|
Wu B, Ramaiah A, Garcia G, Hasiakos S, Arumugaswami V, Srikanth S. ORAI1 Limits SARS-CoV-2 Infection by Regulating Tonic Type I IFN Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:74-84. [PMID: 34819389 PMCID: PMC8702473 DOI: 10.4049/jimmunol.2100742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023]
Abstract
ORAI1 and stromal interaction molecule 1 (STIM1) are the critical mediators of store-operated Ca2+ entry by acting as the pore subunit and an endoplasmic reticulum-resident signaling molecule, respectively. In addition to Ca2+ signaling, STIM1 is also involved in regulation of the type I IFN (IFN-I) response. To examine their potential role in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, we generated ORAI1 and STIM1 knockout human HEK293-angiotensin-converting enzyme 2 cells and checked their responses. STIM1 knockout cells showed strong resistance to SARS-CoV-2 infection as a result of enhanced IFN-I response. On the contrary, ORAI1 deletion induced high susceptibility to SARS-CoV-2 infection. Mechanistically, ORAI1 knockout cells showed reduced homeostatic cytoplasmic Ca2+ concentration and severe impairment in tonic IFN-I signaling. Transcriptome analysis showed downregulation of multiple antiviral signaling pathways in ORAI1 knockout cells, likely because of reduced expression of the Ca2+-dependent transcription factors of the AP-1 family and MEF2C Accordingly, modulation of homeostatic Ca2+ concentration by pretreatment with ORAI1 blocker or agonist could influence baseline IFNB expression and resistance to SARS-CoV-2 infection in a human lung epithelial cell line. Our results identify a novel role of ORAI1-mediated Ca2+ signaling in regulating the tonic IFN-I levels, which determine host resistance to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Beibei Wu
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Arunachalam Ramaiah
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA,Tata Institute for Genetics and Society, Center at inStem, Bangalore, KA, 560065, India
| | - Gustavo Garcia
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Spyridon Hasiakos
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA,Division of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA,California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA,Senior authors,Address correspondence to: Dr. Sonal Srikanth, Department of Physiology, David Geffen School of Medicine, 53-266 CHS, 10833 Le Conte Avenue, Los Angeles, CA 90095, Tel: 310-794-2003; FAX: 310-206-5661, , or, Dr. Vaithilingaraja Arumugaswami, B2-049A CHS, Box 956948, University of California, Los Angeles, CA 90095, Tel: 310 – 794-9568,
| | - Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA,Senior authors,Address correspondence to: Dr. Sonal Srikanth, Department of Physiology, David Geffen School of Medicine, 53-266 CHS, 10833 Le Conte Avenue, Los Angeles, CA 90095, Tel: 310-794-2003; FAX: 310-206-5661, , or, Dr. Vaithilingaraja Arumugaswami, B2-049A CHS, Box 956948, University of California, Los Angeles, CA 90095, Tel: 310 – 794-9568,
| |
Collapse
|
145
|
Portaccio E, Fonderico M, Hemmer B, Derfuss T, Stankoff B, Selmaj K, Tintorè M, Amato MP. Impact of COVID-19 on multiple sclerosis care and management: Results from the European Committee for Treatment and Research in Multiple Sclerosis survey. Mult Scler 2022; 28:132-138. [PMID: 33764197 PMCID: PMC8689421 DOI: 10.1177/13524585211005339] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 02/24/2021] [Accepted: 03/07/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND The spread of Coronavirus disease-19 (COVID-19) poses unique challenges in the management of people with multiple sclerosis (PwMS). OBJECTIVES To collect data about the impact of COVID-19 emergency on access to care for PwMS and on MS treatment practices. METHODS Between March and July 2020, the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) promoted an online survey covering patient access to care, management of relapses and visits, disease-modifying therapy (DMT) and experience with COVID-19. RESULTS Three-hundred and sixty neurologists from 52 countries (68% from Europe) completed the survey. 98% reported COVID-19-related restrictions. Telemedicine was adopted to overcome the limited access to care and was newly activated (73%) or widely implemented (17%). 70% reported changes in DMT management. Interferons and glatiramer were considered safe. Dimethyl fumarate, teriflunomide and fingolimod were considered safe except for patients developing lymphopenia. No modifications were considered for natalizumab in 64%, cladribine in 24%, anti-CD20 in 22% and alemtuzumab in 17%; 18% (for alemtuzumab and cladribine) and 43% (for anti-CD20) considered postponing treatment. CONCLUSION The ECTRIMS survey highlighted the challenges in keeping standards of care in clinical practice. Telemedicine clearly needs to be implemented. Gathering data on DMT safety will remain crucial to inform treatment decisions.
Collapse
Affiliation(s)
| | - Mattia Fonderico
- Department of Neurofarba, University of Florence, Florence, Italy
| | - Bernhard Hemmer
- Neurology Department, Klinikum rechts der Isar TU München, Münich, Germany/Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Tobias Derfuss
- Departments of Neurology and Biomedicine, University Hospital of Basel, Basel, Switzerland
| | - Bruno Stankoff
- Department of Neurology, ICM, Hôpital Pitié Salpêtrière, Paris, France
| | - Krzysztof Selmaj
- Department of Neurology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Mar Tintorè
- Department of the Neurology/Neuroimmunology and Research Institute Barcelona, Multiple Sclerosis Centre of Catalonia (Cemcat), Barcelona, Spain
| | - Maria Pia Amato
- Department of Neurofarba, University of Florence, Florence, Italy/IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| |
Collapse
|
146
|
Crichton ML, Goeminne PC, Tuand K, Vandendriessche T, Tonia T, Roche N, Chalmers JD. The impact of therapeutics on mortality in hospitalised patients with COVID-19: systematic review and meta-analyses informing the European Respiratory Society living guideline. Eur Respir Rev 2021; 30:210171. [PMID: 34911695 PMCID: PMC8796659 DOI: 10.1183/16000617.0171-2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
Hospitalised patients with coronavirus disease 2019 (COVID-19) have a high mortality rate. There are an increasing number of published randomised controlled trials for anti-inflammatory, anti-viral and other treatments. The European Respiratory Society Living Guidelines for the Management of Hospitalised Adults with COVID-19 were published recently, providing recommendations on appropriate pharmacotherapy.Patient, Intervention, Comparator and Outcomes questions for key interventions were identified by an international panel and systematic reviews were conducted to identify randomised controlled trials meeting the inclusion criteria. The importance of end-points were rated, and mortality was identified as the key "critical" outcome for all interventions. Random-effects meta-analysis was used to pool studies and provide effect estimates for the impact of treatments on mortality.Corticosteroids, hydroxychloroquine, azithromycin, remdesivir, anti-interleukin (IL)-6 monoclonal antibodies, colchicine, lopinavir/ritonavir and interferon-β have been reviewed.Our results found further evidence in support of the use of corticosteroids, particularly dexamethasone, and anti-IL-6 receptor monoclonal antibody therapy. These data support the need to identify additional therapies with beneficial effects on mortality.
Collapse
Affiliation(s)
| | | | - Krizia Tuand
- KU Leuven Libraries - 2Bergen - Learning Centre Désiré Collen, Leuven, Belgium
| | | | - Thomy Tonia
- Institute of Social and Preventive Medicine, University Bern, Bern, Switzerland
| | - Nicolas Roche
- Respiratory Medicine, Cochin Hospital, APHP Centre-University of Paris, Cochin Institute (INSERM UMR1016), Paris, France
| | | |
Collapse
|
147
|
Nieto-Fontarigo JJ, Tillgren S, Cerps S, Sverrild A, Hvidtfeldt M, Ramu S, Menzel M, Sander AF, Porsbjerg C, Uller L. Imiquimod Boosts Interferon Response, and Decreases ACE2 and Pro-Inflammatory Response of Human Bronchial Epithelium in Asthma. Front Immunol 2021; 12:743890. [PMID: 34950134 PMCID: PMC8688760 DOI: 10.3389/fimmu.2021.743890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Background Both anti-viral and anti-inflammatory bronchial effects are warranted to treat viral infections in asthma. We sought to investigate if imiquimod, a TLR7 agonist, exhibits such dual actions in ex vivo cultured human bronchial epithelial cells (HBECs), targets for SARS-CoV-2 infectivity. Objective To investigate bronchial epithelial effects of imiquimod of potential importance for anti-viral treatment in asthmatic patients. Methods Effects of imiquimod alone were examined in HBECs from healthy (N=4) and asthmatic (N=18) donors. Mimicking SARS-CoV-2 infection, HBECs were stimulated with poly(I:C), a dsRNA analogue, or SARS-CoV-2 spike-protein 1 (SP1; receptor binding) with and without imiquimod treatment. Expression of SARS-CoV-2 receptor (ACE2), pro-inflammatory and anti-viral cytokines were analyzed by RT-qPCR, multiplex ELISA, western blot, and Nanostring and proteomic analyses. Results Imiquimod reduced ACE2 expression at baseline and after poly(I:C) stimulation. Imiquimod also reduced poly(I:C)-induced pro-inflammatory cytokines including IL-1β, IL-6, IL-8, and IL-33. Furthermore, imiquimod increased IFN-β expression, an effect potentiated in presence of poly(I:C) or SP1. Multiplex mRNA analysis verified enrichment in type-I IFN signaling concomitant with suppression of cytokine signaling pathways induced by imiquimod in presence of poly(I:C). Exploratory proteomic analyses revealed potentially protective effects of imiquimod on infections. Conclusion Imiquimod triggers viral resistance mechanisms in HBECs by decreasing ACE2 and increasing IFN-β expression. Additionally, imiquimod improves viral infection tolerance by reducing viral stimulus-induced epithelial cytokines involved in severe COVID-19 infection. Our imiquimod data highlight feasibility of producing pluripotent drugs potentially suited for anti-viral treatment in asthmatic subjects.
Collapse
Affiliation(s)
| | - Sofia Tillgren
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Samuel Cerps
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Asger Sverrild
- Department of Respiratory Medicine, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Morten Hvidtfeldt
- Department of Respiratory Medicine, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Sangeetha Ramu
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Mandy Menzel
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Adam Frederik Sander
- Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Disease, Copenhagen University Hospital, Copenhagen, Denmark
| | - Celeste Porsbjerg
- Department of Respiratory Medicine, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Lena Uller
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
148
|
White JM, Schiffer JT, Bender Ignacio RA, Xu S, Kainov D, Ianevski A, Aittokallio T, Frieman M, Olinger GG, Polyak SJ. Drug Combinations as a First Line of Defense against Coronaviruses and Other Emerging Viruses. mBio 2021; 12:e0334721. [PMID: 34933447 PMCID: PMC8689562 DOI: 10.1128/mbio.03347-21] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The world was unprepared for coronavirus disease 2019 (COVID-19) and remains ill-equipped for future pandemics. While unprecedented strides have been made developing vaccines and treatments for COVID-19, there remains a need for highly effective and widely available regimens for ambulatory use for novel coronaviruses and other viral pathogens. We posit that a priority is to develop pan-family drug cocktails to enhance potency, limit toxicity, and avoid drug resistance. We urge cocktail development for all viruses with pandemic potential both in the short term (<1 to 2 years) and longer term with pairs of drugs in advanced clinical testing or repurposed agents approved for other indications. While significant efforts were launched against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in vitro and in the clinic, many studies employed solo drugs and had disappointing results. Here, we review drug combination studies against SARS-CoV-2 and other viruses and introduce a model-driven approach to assess drug pairs with the highest likelihood of clinical efficacy. Where component agents lack sufficient potency, we advocate for synergistic combinations to achieve therapeutic levels. We also discuss issues that stymied therapeutic progress against COVID-19, including testing of agents with low likelihood of efficacy late in clinical disease and lack of focus on developing virologic surrogate endpoints. There is a need to expedite efficient clinical trials testing drug combinations that could be taken at home by recently infected individuals and exposed contacts as early as possible during the next pandemic, whether caused by a coronavirus or another viral pathogen. The approach herein represents a proactive plan for global viral pandemic preparedness.
Collapse
Affiliation(s)
- Judith M. White
- University of Virginia, Department of Cell Biology, Charlottesville, Virginia, USA
- University of Virginia, Department of Microbiology, Charlottesville, Virginia, USA
| | - Joshua T. Schiffer
- University of Washington, Division of Allergy and Infectious Diseases, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Rachel A. Bender Ignacio
- University of Washington, Division of Allergy and Infectious Diseases, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Shuang Xu
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Institute of Technology, University of Tartu, Tartu, Estonia
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
- Oslo Centre for Biostatistics and Epidemiology (OCBE), University of Oslo, Oslo, Norway
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Matthew Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Stephen J. Polyak
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
149
|
Rando HM, Wellhausen N, Ghosh S, Lee AJ, Dattoli AA, Hu F, Byrd JB, Rafizadeh DN, Lordan R, Qi Y, Sun Y, Brueffer C, Field JM, Ben Guebila M, Jadavji NM, Skelly AN, Ramsundar B, Wang J, Goel RR, Park Y, Boca SM, Gitter A, Greene CS. Identification and Development of Therapeutics for COVID-19. mSystems 2021; 6:e0023321. [PMID: 34726496 PMCID: PMC8562484 DOI: 10.1128/msystems.00233-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
After emerging in China in late 2019, the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread worldwide, and as of mid-2021, it remains a significant threat globally. Only a few coronaviruses are known to infect humans, and only two cause infections similar in severity to SARS-CoV-2: Severe acute respiratory syndrome-related coronavirus, a species closely related to SARS-CoV-2 that emerged in 2002, and Middle East respiratory syndrome-related coronavirus, which emerged in 2012. Unlike the current pandemic, previous epidemics were controlled rapidly through public health measures, but the body of research investigating severe acute respiratory syndrome and Middle East respiratory syndrome has proven valuable for identifying approaches to treating and preventing novel coronavirus disease 2019 (COVID-19). Building on this research, the medical and scientific communities have responded rapidly to the COVID-19 crisis and identified many candidate therapeutics. The approaches used to identify candidates fall into four main categories: adaptation of clinical approaches to diseases with related pathologies, adaptation based on virological properties, adaptation based on host response, and data-driven identification (ID) of candidates based on physical properties or on pharmacological compendia. To date, a small number of therapeutics have already been authorized by regulatory agencies such as the Food and Drug Administration (FDA), while most remain under investigation. The scale of the COVID-19 crisis offers a rare opportunity to collect data on the effects of candidate therapeutics. This information provides insight not only into the management of coronavirus diseases but also into the relative success of different approaches to identifying candidate therapeutics against an emerging disease. IMPORTANCE The COVID-19 pandemic is a rapidly evolving crisis. With the worldwide scientific community shifting focus onto the SARS-CoV-2 virus and COVID-19, a large number of possible pharmaceutical approaches for treatment and prevention have been proposed. What was known about each of these potential interventions evolved rapidly throughout 2020 and 2021. This fast-paced area of research provides important insight into how the ongoing pandemic can be managed and also demonstrates the power of interdisciplinary collaboration to rapidly understand a virus and match its characteristics with existing or novel pharmaceuticals. As illustrated by the continued threat of viral epidemics during the current millennium, a rapid and strategic response to emerging viral threats can save lives. In this review, we explore how different modes of identifying candidate therapeutics have borne out during COVID-19.
Collapse
Affiliation(s)
- Halie M. Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Nils Wellhausen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Soumita Ghosh
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexandra J. Lee
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna Ada Dattoli
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fengling Hu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James Brian Byrd
- University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Diane N. Rafizadeh
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yanjun Qi
- Department of Computer Science, University of Virginia, Charlottesville, Virginia, USA
| | - Yuchen Sun
- Department of Computer Science, University of Virginia, Charlottesville, Virginia, USA
| | | | - Jeffrey M. Field
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marouen Ben Guebila
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Nafisa M. Jadavji
- Biomedical Science, Midwestern University, Glendale, Arizona, USA
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Ashwin N. Skelly
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Jinhui Wang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rishi Raj Goel
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - YoSon Park
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - COVID-19 Review Consortium
BansalVikasBartonJohn P.BocaSimina M.BoerckelJoel D.BruefferChristianByrdJames BrianCaponeStephenDasShiktaDattoliAnna AdaDziakJohn J.FieldJeffrey M.GhoshSoumitaGitterAnthonyGoelRishi RajGreeneCasey S.GuebilaMarouen BenHimmelsteinDaniel S.HuFenglingJadavjiNafisa M.KamilJeremy P.KnyazevSergeyKollaLikhithaLeeAlexandra J.LordanRonanLubianaTiagoLukanTemitayoMacLeanAdam L.MaiDavidMangulSergheiManheimDavidMcGowanLucy D’AgostinoNaikAmrutaParkYoSonPerrinDimitriQiYanjunRafizadehDiane N.RamsundarBharathRandoHalie M.RaySandipanRobsonMichael P.RubinettiVincentSellElizabethShinholsterLamonicaSkellyAshwin N.SunYuchenSunYushaSzetoGregory L.VelazquezRyanWangJinhuiWellhausenNils
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Computer Science, University of Virginia, Charlottesville, Virginia, USA
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
- Biomedical Science, Midwestern University, Glendale, Arizona, USA
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- The DeepChem Project
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA
- Early Biometrics & Statistical Innovation, Data Science & Artificial Intelligence, R & D, AstraZeneca, Gaithersburg, Maryland, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| | - Simina M. Boca
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA
- Early Biometrics & Statistical Innovation, Data Science & Artificial Intelligence, R & D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Casey S. Greene
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| |
Collapse
|
150
|
Abstract
The development of effective antiviral therapy for COVID-19 is critical for those awaiting vaccination, as well as for those who do not respond robustly to vaccination. This review summarizes 1 year of progress in the race to develop antiviral therapies for COVID-19, including research spanning preclinical and clinical drug development efforts, with an emphasis on antiviral compounds that are in clinical development or that are high priorities for clinical development. The review is divided into sections on compounds that inhibit SARS-CoV-2 enzymes, including its polymerase and proteases; compounds that inhibit virus entry, including monoclonal antibodies; interferons; and repurposed drugs that inhibit host processes required for SARS-CoV-2 replication. The review concludes with a summary of the lessons to be learned from SARS-CoV-2 drug development efforts and the challenges to continued progress.
Collapse
Affiliation(s)
- Kaiming Tao
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Philip L. Tzou
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Janin Nouhin
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Hector Bonilla
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Prasanna Jagannathan
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Robert W. Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|