101
|
Gupta N, Arthos J, Khazanie P, Steenbeke TD, Censoplano NM, Chung EA, Cruz CC, Chaikin MA, Daucher M, Kottilil S, Mavilio D, Schuck P, Sun PD, Rabin RL, Radaev S, Van Ryk D, Cicala C, Fauci AS. Targeted lysis of HIV-infected cells by natural killer cells armed and triggered by a recombinant immunoglobulin fusion protein: implications for immunotherapy. Virology 2005; 332:491-7. [PMID: 15680414 DOI: 10.1016/j.virol.2004.12.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 09/15/2004] [Accepted: 12/13/2004] [Indexed: 11/25/2022]
Abstract
Natural killer (NK) cells play an important role in both innate and adaptive antiviral immune responses. The adaptive response typically requires that virus-specific antibodies decorate infected cells which then direct NK cell lysis through a CD16 mediated process termed antibody-dependent cellular cytotoxicity (ADCC). In this report, we employ a highly polymerized chimeric IgG1/IgA immunoglobulin (Ig) fusion protein that, by virtue of its capacity to extensively crosslink CD16, activates NK cells while directing the lysis of infected target cells. We employ HIV as a model system, and demonstrate that freshly isolated NK cells preloaded with an HIV gp120-specific chimeric IgG1/IgA fusion protein efficiently lyse HIV-infected target cells at picomolar concentrations. NK cells pre-armed in this manner retain the capacity to kill targets over an extended period of time. This strategy may have application to other disease states including various viral infections and cancers.
Collapse
Affiliation(s)
- Neil Gupta
- Laboratory of Immunoregulation, NIAID, NIH Bldg. #10 6A08, 9000 Rockville Pike, Bethesda MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Roy J, Martin G, Giguère JF, Bélanger D, Pétrin M, Tremblay MJ. HIV Type 1 Can Act as an APC upon Acquisition from the Host Cell of Peptide-Loaded HLA-DR and CD86 Molecules. THE JOURNAL OF IMMUNOLOGY 2005; 174:4779-88. [PMID: 15814703 DOI: 10.4049/jimmunol.174.8.4779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is well documented that a wide range of host-derived cell surface constituents is inserted within HIV type 1 (HIV-1) and located on the exterior of the virion. Although no virus-associated protein of host origin has been shown to be absolutely required for virus replication, studies have revealed that many of these proteins are functional and can affect several steps of the virus life cycle. In this study, we found that HIV-1 acquires peptide-loaded class II MHC (MHC-II) and the costimulatory CD86 molecules from the host cell. Moreover, we present evidence that virions bearing such peptide-loaded MHC-II and CD86 proteins can lead to activation of the transcription factors NF-kappa B and NF-AT in an Ag-specific human T cell line. A linear correlation was found between activation of NF-kappa B and the amount of peptide-loaded MHC-II molecules inserted within HIV-1. Finally, transcription of unintegrated and integrated HIV-1 DNA was promoted upon exposure of peptide-specific human T cells to viruses bearing both peptide-loaded MHC-II and CD86 proteins. These data suggest that HIV-1 can operate as an APC depending on the nature of virus-anchored host cell membrane components. It can be proposed that HIV-1 can manipulate one of its primary targets through the process of incorporation of host-derived proteins.
Collapse
Affiliation(s)
- Jocelyn Roy
- Research Center in Infectious Diseases, Centre Hospitalier de l'Université Laval Research Center, and Faculty of Medicine, Laval University, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
103
|
Yi Y, Shaheen F, Collman RG. Preferential use of CXCR4 by R5X4 human immunodeficiency virus type 1 isolates for infection of primary lymphocytes. J Virol 2005; 79:1480-6. [PMID: 15650174 PMCID: PMC544090 DOI: 10.1128/jvi.79.3.1480-1486.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coreceptor specificity of human immunodeficiency virus type 1 (HIV-1) strains is generally defined in vitro in cell lines expressing CCR5 or CXCR4, but lymphocytes and macrophages are the principal targets in vivo. CCR5-using (R5) variants dominate early in infection, but strains that use CXCR4 emerge later in a substantial minority of subjects. Many or most CXCR4-using variants can use both CXCR4 and CCR5 (R5X4), but the pathways that are actually used to cause infection in primary cells and in vivo are unknown. We examined several R5X4 prototype and primary isolates and found that they all were largely or completely restricted to CXCR4-mediated entry in primary lymphocytes, even though lymphocytes are permissive for CCR5-mediated entry by R5 strains. In contrast, in primary macrophages R5X4 isolates used both CCR5 and CXCR4. The R5X4 strains were also more sensitive than R5 strains to CCR5 blocking, suggesting that interactions between the R5X4 strains and CCR5 are less efficient. These results indicate that coreceptor phenotyping in transformed cells does not necessarily predict utilization in primary cells, that variability exists among HIV-1 isolates in the ability to use CCR5 expressed on lymphocytes, and that many or most strains characterized as R5X4 are functionally X4 in primary lymphocytes. Less efficient interactions between R5X4 strains and CCR5 may be responsible for the inability to use CCR5 on lymphocytes, which express relatively low CCR5 levels. Since isolates that acquire CXCR4 utilization retain the capacity to use CCR5 on macrophages despite their inability to use it on lymphocytes, these results also raise the possibility that a CCR5-mediated macrophage reservoir is required for sustained infection in vivo.
Collapse
Affiliation(s)
- Yanjie Yi
- Department of Medicine, University of Pennsylvania School of Medicine, 36th & Hamilton Walk, 522 Johnson Pavilion, Philadelphia, PA 19104-6060, USA
| | | | | |
Collapse
|
104
|
Balabanian K, Harriague J, Décrion C, Lagane B, Shorte S, Baleux F, Virelizier JL, Arenzana-Seisdedos F, Chakrabarti LA. CXCR4-tropic HIV-1 envelope glycoprotein functions as a viral chemokine in unstimulated primary CD4+ T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2005; 173:7150-60. [PMID: 15585836 DOI: 10.4049/jimmunol.173.12.7150] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Interaction of HIV-1 envelope glycoprotein gp120 with the chemokine receptor CXCR4 triggers not only viral entry but also an array of signal transduction cascades. Whether gp120 induces an incomplete or aberrant set of signals, or whether it can function as a full CXCR4 agonist, remains unclear. We report that, in unstimulated human primary CD4(+) T cells, the spectrum of signaling responses induced by gp120 through CXCR4 paralleled that induced by the natural ligand stromal cell-derived factor 1/CXCL12. gp120 activated heterotrimeric G proteins and the major G protein-dependent pathways, including calcium mobilization, phosphoinositide-3 kinase, and Erk-1/2 MAPK activation. Interestingly, gp120 caused rapid actin cytoskeleton rearrangements and profuse membrane ruffling, as evidenced by dynamic confocal imaging. This coordinated set of events resulted in a bona fide chemotactic response. Inactivated HIV-1 virions that harbored conformationally intact envelope glycoproteins also caused actin polymerization and chemotaxis, while similar virions devoid of envelope glycoproteins did not. Thus gp120, in monomeric as well as oligomeric, virion-associated form, elicited a complex cellular response that mimicked the effects of a chemokine. HIV-1 has therefore the capacity to dysregulate the vast CD4(+) T cell population that expresses CXCR4. In addition, HIV-1 may exploit its chemotactic properties to retain potential target cells and locally perturb their cytoskeleton, thereby facilitating viral transmission.
Collapse
|
105
|
Speth C, Dierich MP, Sopper S. HIV-infection of the central nervous system: the tightrope walk of innate immunity. Mol Immunol 2005; 42:213-28. [PMID: 15488609 DOI: 10.1016/j.molimm.2004.06.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infection of the central nervous system (CNS) by HIV is a frequent and sometimes very early event in the course of HIV pathogenesis. Possible consequences are diverse symptoms of neurological dysfunction, but also the establishment of a lifelong latent viral reservoir in the brain. Whereas in the periphery innate and adaptive immunity are equal partners, the blood-brain barrier (BBB) with its restricted access of peripheral immune effectors shifts this balance in favour of the local innate immunity. Four main elements of cerebral innate immunity are discussed in the present article, including two cell types with immunological functions and two soluble immune systems: (1) the stimulation of microglial cells as the predominant brain-resident immune cell and the main local reservoir for the virus; (2) the reaction of astrocytes in response to viral infection; (3) the activation of the local complement system as important soluble immune cascade; and (4) the role of chemokines and cytokines which help to conduct and cross-link the interplay between the different immune elements. These components of the cerebral innate immunity do not act separately from each other but form a functional immunity network. A dual role of these components with both harmful and protective effects further enhances the complexity of the mutual interactions.
Collapse
Affiliation(s)
- Cornelia Speth
- Institute of Hygiene and Social Medicine, Medical University Innsbruck and Ludwig-Boltzmann-Institute for AIDS Research, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria.
| | | | | |
Collapse
|
106
|
Bower JF, Green TD, Ross TM. DNA vaccines expressing soluble CD4-envelope proteins fused to C3d elicit cross-reactive neutralizing antibodies to HIV-1. Virology 2004; 328:292-300. [PMID: 15464849 DOI: 10.1016/j.virol.2004.07.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 02/26/2004] [Accepted: 07/19/2004] [Indexed: 10/26/2022]
Abstract
DNA vaccines expressing the envelope (Env) of the human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies in a variety of animal models. In this study, DNA vaccines were constructed to express a fusion protein of the soluble human CD4 (sCD4) and the gp120 subunit of the HIV-1 envelope. To enhance the immunogenicity of the expressed fusion protein, three copies of the murine C3d (mC3d3) were added to the carboxyl terminus of the complex. Monoclonal antibodies that recognize CD4-induced epitopes on gp120 efficiently bound to sCD4-gp120 or sCD4-gp120-mC3d3. In addition, both sCD4-gp120 and sCD4-gp120-mC3d3 bound to cells expressing appropriate coreceptors in the absence of cell surface hCD4. Mice (BALB/c) vaccinated with DNA vaccines expressing either gp120-mC3d3 or sCD4-gp120-mC3d3 elicited antibodies that neutralized homologous virus infection. However, the use of sCD4-gp120-mC3d3-DNA elicited the highest titers of neutralizing antibodies that persisted after depletion of anti-hCD4 antibodies. Interestingly, only mice vaccinated with DNA expressing sCD4-gp120-mC3d3 had antibodies that elicited cross-protective neutralizing antibodies. The fusion of sCD4 to the HIV-1 envelope exposes neutralizing epitopes that elicit broad protective immunity when the fusion complex is coupled with the molecular adjuvant, C3d.
Collapse
Affiliation(s)
- Joseph F Bower
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
107
|
Mueller A, Strange PG. CCL3, acting via the chemokine receptor CCR5, leads to independent activation of Janus kinase 2 (JAK2) and Gi proteins. FEBS Lett 2004; 570:126-32. [PMID: 15251452 DOI: 10.1016/j.febslet.2004.04.100] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Accepted: 04/27/2004] [Indexed: 10/26/2022]
Abstract
The interaction of the chemokine receptor, CCR5, expressed in recombinant cells, with different G proteins was investigated and CCR5 was found to interact with Gi, Go and Gq species. Interaction with Gi leads to G protein activation, whereas Gq does not seem to be activated. Additionally, CCR5 activation also leads to phosphorylation of Janus kinase 2 (JAK2). Activation of JAK2 is independent of Gi or Gq activation. Gi protein activation was not prevented by inhibition of JAK, showing that heterotrimeric G protein activation and activation of the JAK/signal transducer and activator of transcription (STAT) pathway are independent of each other.
Collapse
Affiliation(s)
- Anja Mueller
- School of Animal and Microbial Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK
| | | |
Collapse
|
108
|
Klasse PJ, Moore JP. Is there enough gp120 in the body fluids of HIV-1-infected individuals to have biologically significant effects? Virology 2004; 323:1-8. [PMID: 15165814 DOI: 10.1016/j.virol.2004.03.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 02/17/2004] [Accepted: 03/02/2004] [Indexed: 02/04/2023]
Affiliation(s)
- P J Klasse
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York 10021, USA
| | | |
Collapse
|
109
|
Ahr B, Robert-Hebmann V, Devaux C, Biard-Piechaczyk M. Apoptosis of uninfected cells induced by HIV envelope glycoproteins. Retrovirology 2004; 1:12. [PMID: 15214962 PMCID: PMC446229 DOI: 10.1186/1742-4690-1-12] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Accepted: 06/23/2004] [Indexed: 02/02/2023] Open
Abstract
Apoptosis, or programmed cell death, is a key event in biologic homeostasis but is also involved in the pathogenesis of many human diseases including human immunodeficiency virus (HIV) infection. Although multiple mechanisms contribute to the gradual T cell decline that occurs in HIV-infected patients, programmed cell death of uninfected bystander T lymphocytes, including CD4+ and CD8+ T cells, is an important event leading to immunodeficiency. The HIV envelope glycoproteins (Env) play a crucial role in transducing this apoptotic signal after binding to its receptors, the CD4 molecule and a coreceptor, essentially CCR5 and CXCR4. Depending on Env presentation, the receptor involved and the complexity of target cell contact, apoptosis induction is related to death receptor and/or mitochondria-dependent pathways. This review summarizes current knowledge of Env-mediated cell death leading to T cell depletion and clinical complications and covers the sometimes conflicting studies that address the possible mechanisms of T cell death.
Collapse
Affiliation(s)
- Barbara Ahr
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire, CNRS UMR 5121-UM1, Institut de Biologie, 4, Bd Henri IV, CS 89508, 34960 Montpellier Cedex 2, France
| | - Véronique Robert-Hebmann
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire, CNRS UMR 5121-UM1, Institut de Biologie, 4, Bd Henri IV, CS 89508, 34960 Montpellier Cedex 2, France
| | - Christian Devaux
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire, CNRS UMR 5121-UM1, Institut de Biologie, 4, Bd Henri IV, CS 89508, 34960 Montpellier Cedex 2, France
| | - Martine Biard-Piechaczyk
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire, CNRS UMR 5121-UM1, Institut de Biologie, 4, Bd Henri IV, CS 89508, 34960 Montpellier Cedex 2, France
| |
Collapse
|
110
|
Yi Y, Lee C, Liu QH, Freedman BD, Collman RG. Chemokine receptor utilization and macrophage signaling by human immunodeficiency virus type 1 gp120: Implications for neuropathogenesis. J Neurovirol 2004; 10 Suppl 1:91-6. [PMID: 14982745 DOI: 10.1080/753312758] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) uses the chemokine receptors CCR5 and CXCR4 for entry. Macrophages and microglia (M/M) are the principal productively infected brain cells in HIV encephalopathy (HIVE), and neuronal injury is believed to result both from direct effects of viral proteins and indirect effects mediated by macrophage activation and secretion of neurotoxic products. In vitro, direct injury by the viral envelope glycoprotein gp120 can be mediated by neuronal CXCR4, but most HIV-1 isolates from the central nervous system (CNS) studied to date use CCR5 (R5 strains) rather than CXCR4 (X4 or R5X4 strains). Additionally, it remains unknown how HIV induces M/M activation and neurotoxin secretion. To address these issues, the authors analyzed a CNS-derived primary isolate, TYBE, and showed that it uses CXCR4 only and replicates efficiently in macrophages through CXCR4-mediated entry. The authors also showed that both R5 and X4 gp120 activate intracellular signals in macrophages through CCR5 and CXCR4, including calcium elevations; K+, Cl- and nonselective cation channel activation; phosphorylation of the nonreceptor tyrosine kinase Pyk2; and activation of p38 and SAPK/JNK mitogen-activated protein kinases (MAPKs). Finally, the authors showed that macrophages stimulated with gp120 produce soluble factors through MAPK-dependent pathways, including beta-chemokines implicated in HIVE pathogenesis. The findings emphasize that both X4 and R5 HIV-1 isolates may contribute to HIVE pathogenesis, and that gp120/chemokine receptor interactions in M/M trigger specific signal transduction pathways that may affect M/M function and provide a mechanism underlying CNS injury.
Collapse
Affiliation(s)
- Yanjie Yi
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
111
|
Freedman BD, Liu QH, Del Corno M, Collman RG. HIV-1 gp120 chemokine receptor-mediated signaling in human macrophages. Immunol Res 2004; 27:261-76. [PMID: 12857973 DOI: 10.1385/ir:27:2-3:261] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The chemokine receptors CCR5 and CXCR4 serve as the cellular receptors in conjunction with CD4 for HIV-1 entry and infection of target cells. Although the virus has subverted these molecules for its own use, their natural function is to respond to activation and migration signals delivered by extracellular chemokines. A principal research objective of our laboratory is to understand the consequences of virus-chemokine receptor interactions for cellular function, as well as for entry and infection. We hypothesized that CXCR4-using (X4) and CCR5-using (R5) HIV-1 strains might elicit signals through the chemokine receptors that result in aberrant function and/or regulate virus entry or postentry steps of infection. We have focused on primary human macrophages, which express both CXCR4 and CCR5, because macrophages are a principal target for HIV-1 in vivo, inappropriate macrophage activation appears to play a major role in the pathogenesis of certain sequelae of AIDS, such as HIV encephalopathy, and macrophage infection is regulated at several steps subsequent to entry in ways that are linked to envelope- receptor interactions. This review summarizes our recent findings regarding the mechanisms of chemokine-receptor signaling in macrophages, the role of viral envelope glycoproteins in eliciting macrophage signals, and how these activation pathways may participate in macrophage infection and affect cell functions apart from infection.
Collapse
Affiliation(s)
- Bruce D Freedman
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, PA 19104, USA.
| | | | | | | |
Collapse
|
112
|
Bachis A, Mocchetti I. The chemokine receptor CXCR4 and not the N-methyl-D-aspartate receptor mediates gp120 neurotoxicity in cerebellar granule cells. J Neurosci Res 2004; 75:75-82. [PMID: 14689450 DOI: 10.1002/jnr.10826] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The human immunodeficiency virus type 1 (HIV-1) glycoprotein gp120 causes neuronal cell death; however, the molecular mechanisms of the neurotoxic effect remain largely unresolved. It has been suggested that gp120 evokes cell death by inducing the release of neurotoxins, including glutamate. The objective of this work was to examine the role of glutamate in gp120-mediated neurotoxicity. We used as an experimental tool cerebellar granule cells prepared from 8-day-old rat cerebella, in which both glutamate and gp120 cause cell death. Cerebellar granule neurons were exposed to gp120 or glutamate alone or in combination with the glutamate receptor antagonist MK801 as well as other antiglutamatergic compounds. Cell viability was measured at various times by using several markers of cell death and apoptosis. MK801, at a concentration that blocked glutamate-induced neuronal cell death, failed to prevent gp120-mediated apoptotic cell death. Moreover, interleukin-10, which has previously been shown to block glutamate toxicity in these neurons, was not neuroprotective against gp120. Because gp120 toxicity is mediated by activation of the chemokine receptor CXCR4, neurons were incubated with the CXCR4 inhibitor AMD3100. This compound prevented gp120- but not glutamate-mediated cell death. These findings suggest that gp120 is toxic to neurons even in the absence of the virus and that the toxic mechanism involves primarily activation of CXCR4 receptor. Therefore, antagonists to the CXCR4 receptor may be more suitable compounds for inhibiting HIV-1 neurotoxicity.
Collapse
Affiliation(s)
- Alessia Bachis
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | | |
Collapse
|
113
|
Lynch EA, Heijens CAW, Horst NF, Center DM, Cruikshank WW. Cutting edge: IL-16/CD4 preferentially induces Th1 cell migration: requirement of CCR5. THE JOURNAL OF IMMUNOLOGY 2004; 171:4965-8. [PMID: 14607889 DOI: 10.4049/jimmunol.171.10.4965] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
IL-16 binds to CD4 and induces a migratory response in CD4(+) T cells. Although it has been assumed that CD4 is the sole receptor and that IL-16 induces a comparable migratory response in all CD4(+) T cells, this has not been investigated. In this study, we determined that IL-16 preferentially induces a migratory response in Th1 cells. Because chemokine receptor CCR5 is expressed predominantly in Th1 cells and is physically associated with CD4, we investigated whether IL-16/CD4 stimulation was enhanced in the presence of CCR5. Using T cells from CCR5(null) mice, we determined that IL-16-induced migration was significantly greater in the presence of CCR5. The presence of CCR5 significantly increased IL-16 binding vs CD4 alone; however, IL-16 could not bind to CCR5 alone. Because CD4(+)CCR5(+) cells are prevalent at sites of inflammation, this intimate functional relationship likely plays a pivotal role for the recruitment and activation of Th1 cells.
Collapse
MESH Headings
- Adjuvants, Immunologic/deficiency
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/physiology
- Animals
- CD4 Antigens/biosynthesis
- CD4 Antigens/genetics
- CD4 Antigens/pharmacology
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Adhesion/genetics
- Cell Adhesion/immunology
- Cell Line
- Cells, Cultured
- Chemotaxis, Leukocyte/genetics
- Chemotaxis, Leukocyte/immunology
- Interleukin-16/metabolism
- Interleukin-16/pharmacology
- Lymphocyte Activation/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Protein Binding/genetics
- Protein Binding/immunology
- Receptors, CCR5/deficiency
- Receptors, CCR5/genetics
- Receptors, CCR5/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Th1 Cells/cytology
- Th1 Cells/immunology
- Th1 Cells/metabolism
Collapse
Affiliation(s)
- Elizabeth A Lynch
- Boston University Medical Center, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
114
|
Persidsky Y, Gendelman HE. Mononuclear phagocyte immunity and the neuropathogenesis of HIV-1 infection. J Leukoc Biol 2004; 74:691-701. [PMID: 14595004 DOI: 10.1189/jlb.0503205] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1)-associated dementia is a neuroinflammatory brain disorder that is fueled by viral infection and immune activation of brain mononuclear phagocytes (MP; macrophages and microglia). MP serve as a reservoir for persistent viral infection, a vehicle for viral dissemination throughout the brain, and a major source of neurotoxic products that when produced in abundance, affect neuronal function. Such neurotoxic substances secreted by MP lead to clinical neurological impairment (cognitive, behavior, and motor abnormalities), which occurs usually years after the initial viral infection. How HIV-1 evades the immune function characteristic for MP as a first line of defense, including phagocytosis and intracellular killing, is not well understood despite more than two decades of study. In this report, we review the complex role(s) played by MP in the neuropathogenesis of HIV-1 infection. The clinical manifestations, pathology and pathogenesis, and treatment options are discussed in relationship to innate and adaptive immunity. Particular emphasis is given to the diversity of MP functions and how it may affect the disease process and manifestations. New insights into disease mechanisms are provided by advances in enhanced magnetic resonance imaging and proteomics to identify cell movement and genetic profiles of disease. New therapeutic strategies are discussed based on current knowledge of HIV-1-associated dementia pathogenesis.
Collapse
Affiliation(s)
- Yuri Persidsky
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5215, USA.
| | | |
Collapse
|
115
|
Abstract
Chemotaxis is an important cellular response common in biology. In many chemotaxing cells the signal that regulates movement is initiated by G protein-coupled receptors on the cell surface that bind specific chemoattractants. These receptors share important structural similarities with other G protein-coupled receptors, including rhodopsin, which currently serves as the best starting point for modeling their structures. However, the chemotaxis receptors also share a number of relatively unique structural features that are less common in other GPCRs. The chemoattractant ligands of chemotaxis receptors exhibit a broad variety of sizes and chemical properties, ranging from small molecules and peptides to protein ligands. As a result, different chemotaxis receptors have evolved specialized mechanisms for the early steps of ligand binding and receptor activation. The mechanism of transmembrane signaling is currently under intensive study and several alternate mechanisms proposing different conformational rearrangements of the transmembrane helices have been proposed. Some chemotaxis receptors are proposed to form dimers, and in certain cases dimer formation is proposed to play a role in transmembrane signaling. In principle the structural and dynamical changes that occur during transmembrane signaling could be specialized for different receptors, or could be broadly conserved. Extensive mutagenesis studies have been carried out, and have begun to identify critical residues involved in ligand binding, receptor activation, and transmembrane signaling.
Collapse
Affiliation(s)
- Aaron F Miller
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | | |
Collapse
|
116
|
Janardhan A, Swigut T, Hill B, Myers MP, Skowronski J. HIV-1 Nef binds the DOCK2-ELMO1 complex to activate rac and inhibit lymphocyte chemotaxis. PLoS Biol 2004; 2:E6. [PMID: 14737186 PMCID: PMC314466 DOI: 10.1371/journal.pbio.0020006] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Accepted: 10/28/2003] [Indexed: 11/29/2022] Open
Abstract
The infectious cycle of primate lentiviruses is intimately linked to interactions between cells of the immune system. Nef, a potent virulence factor, alters cellular environments to increase lentiviral replication in the host, yet the mechanisms underlying these effects have remained elusive. Since Nef likely functions as an adaptor protein, we exploited a proteomic approach to directly identify molecules that Nef targets to subvert the signaling machinery in T cells. We purified to near homogeneity a major Nef-associated protein complex from T cells and identified by mass spectroscopy its subunits as DOCK2-ELMO1, a key activator of Rac in antigen- and chemokine-initiated signaling pathways, and Rac. We show that Nef activates Rac in T cell lines and in primary T cells following infection with HIV-1 in the absence of antigenic stimuli. Nef activates Rac by binding the DOCK2-ELMO1 complex, and this interaction is linked to the abilities of Nef to inhibit chemotaxis and promote T cell activation. Our data indicate that Nef targets a critical switch that regulates Rac GTPases downstream of chemokine- and antigen-initiated signaling pathways. This interaction enables Nef to influence multiple aspects of T cell function and thus provides an important mechanism by which Nef impacts pathogenesis by primate lentiviruses.
Collapse
Affiliation(s)
- Ajit Janardhan
- 1Cold Spring Harbor Laboratory, Cold Spring HarborNew YorkUnited States of America
- 2Program in Genetics and Medical Scientist Training Program, Stony Brook UniversityStony Brook, New YorkUnited States of America
| | - Tomek Swigut
- 1Cold Spring Harbor Laboratory, Cold Spring HarborNew YorkUnited States of America
| | - Brian Hill
- 1Cold Spring Harbor Laboratory, Cold Spring HarborNew YorkUnited States of America
- 2Program in Genetics and Medical Scientist Training Program, Stony Brook UniversityStony Brook, New YorkUnited States of America
| | - Michael P Myers
- 1Cold Spring Harbor Laboratory, Cold Spring HarborNew YorkUnited States of America
| | - Jacek Skowronski
- 1Cold Spring Harbor Laboratory, Cold Spring HarborNew YorkUnited States of America
- 2Program in Genetics and Medical Scientist Training Program, Stony Brook UniversityStony Brook, New YorkUnited States of America
| |
Collapse
|
117
|
|
118
|
Lee C, Liu QH, Tomkowicz B, Yi Y, Freedman BD, Collman RG. Macrophage activation through CCR5- and CXCR4-mediated gp120-elicited signaling pathways. J Leukoc Biol 2003; 74:676-82. [PMID: 12960231 DOI: 10.1189/jlb.0503206] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Macrophages are major targets for infection by human immunodeficiency virus type 1 (HIV-1). In addition to their role as productive viral reservoirs, inappropriate activation of infected and uninfected macrophages appears to contribute to pathogenesis. HIV-1 infection requires initial interactions between the viral envelope surface glycoprotein gp120, the cell-surface protein CD4, and a chemokine receptor CCR5 or CXCR4. Besides their role in HIV-1 entry, CCR5 and CXCR4 are G protein-coupled receptors that can activate multiple intracellular signaling pathways. HIV-1 gp120 has been shown to activate signaling pathways through the chemokine receptors in several cell types including lymphocytes, neurons, and astrocytes. In some cell types, these consequences may cause cellular injury. In this review, we highlight our data demonstrating diverse signaling events that occur in primary human macrophages in response to gp120/chemokine receptor interactions. These responses include K+, Cl-, and nonselective cation currents, intracellular Ca2+ increases, and activation of several kinases including the focal adhesion-related tyrosine kinase Pyk2, mitogen-activated protein kinases (MAPK), and phosphoinositol-3 kinase. Activation of the MAPK leads to gp120-induced expression of chemokines such as monocyte chemoattractant protein-1 and macrophage-inflammatory protein-1beta and the proinflammatory cytokine tumor necrosis factor alpha. These responses establish a complex cytokine network, which may enhance or suppress HIV-1 replication. In addition, dysregulation of macrophage function by gp120/chemokine receptor signaling may contribute to local inflammation and injury and further recruit additional inflammatory and/or target cells. Targeting these cellular signaling pathways may have benefit in controlling inflammatory sequelae of HIV infection such as in neurological disease.
Collapse
Affiliation(s)
- ChuHee Lee
- Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
119
|
Alvarez Arias D, Navenot JM, Zhang WB, Broach J, Peiper SC. Constitutive activation of CCR5 and CCR2 induced by conformational changes in the conserved TXP motif in transmembrane helix 2. J Biol Chem 2003; 278:36513-21. [PMID: 12837756 DOI: 10.1074/jbc.m303739200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CCR5 is a G protein-coupled receptor for RANTES, MIP-1alpha, MIP-1beta, and MCP-2 that functions as the front line coreceptor for human immunodeficiency virus type 1 infection. To elucidate the mechanism for CCR5 activation, this coreceptor was expressed in yeast coupled to the pheromone response pathway and a constitutively active mutant (CAM) was derived by random mutagenesis. Conversion of Thr-82 in the highly conserved TXP motif in transmembrane helix 2 to Pro, His, Tyr, Arg, or Lys conferred autonomous signaling activity in yeast and mammalian cells. This substitution also imparted constitutive signaling to CCR2 in yeast and mammalian cells, but not CCR1, CCR3, CCR4, CXCR2, or CXCR4. The CCR5-CAM, but not the CCR2-CAM had a reduction in ligand binding affinity. Whereas the amplitude of calcium mobilization induced by RANTES stimulation was lower in the CCR5-CAM than the wild-type (WT) receptor, MCP-1 induced a higher signal in the CCR2-CAM than in CCR2-WT. The chemotactic response of CCR5-CAM(T82P) to RANTES was similar to that of CCR5-WT, but CCR5-CAM(T82K) was dramatically decreased. The chemotactic response of CCR2-WT and CCR2-CAM(T94K) were similar. These findings extend insight into the role of the TXP motif in the mechanism for CCR5 signaling. CCR2, the receptor most closely genetically related to CCR5, shared a similar signaling mechanism, but other receptors containing the TXP motif did not. The expression of CCR5 and CCR2 in yeast and the availability of variants with autonomous signaling represent critical tools for characterizing receptor antagonists and developing approaches to block their role in human diseases.
Collapse
Affiliation(s)
- Diana Alvarez Arias
- Department of Pathology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
120
|
Abstract
Recently a number of viruses, including a poxvirus, herpesvirus, retrovirus and two paramyxoviruses, have been shown to activate cells via Toll-like receptor family members. Here we postulate that although activation via Toll-like receptor molecules can lead to anti-viral innate immune responses, in some cases viruses may use these responses to ameliorate infection.
Collapse
Affiliation(s)
- John C Rassa
- Department of Microbiology/Cancer Center, University of Pennsylvania, 313 BRBII/III, 421, Curie Boulevard Philadelphia, PA 19104-6142, USA
| | | |
Collapse
|
121
|
Azevedo-Pereira JM, Santos-Costa Q, Mansinho K, Moniz-Pereira J. Identification and characterization of HIV-2 strains obtained from asymptomatic patients that do not use CCR5 or CXCR4 coreceptors. Virology 2003; 313:136-46. [PMID: 12951028 DOI: 10.1016/s0042-6822(03)00343-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In vivo, human immunodeficiency virus type 2 (HIV-2) infection reveals several unique characteristics when compared to HIV-1 infection, the most remarkable of which is the extraordinarily long asymptomatic period. Here we describe two HIV-2 primary isolates, obtained from asymptomatic individuals, which do not infect any coreceptor-expressing cell lines tested. In those cells, we show that the absence of replication is directly related to cell entry events. Furthermore, productive infection observed in peripheral blood mononuclear cells (PBMC) was not inhibited by natural ligands and monoclonal antibodies directed to CCR5 and CXCR4. Finally, viral entry efficiency and viral progeny production of these viruses are markedly impaired in PBMC, indicating a reduced replicative fitness of both viruses. In conclusion, our data suggest that in some HIV-2 asymptomatic individuals, the circulating viruses are unable to use the major coreceptors to infect PBMC. This fact should have important implications in HIV-2 pathogenesis and transmission.
Collapse
Affiliation(s)
- J M Azevedo-Pereira
- Unidade dos Retrovírus e Infecções Associadas, Centro de Patogénese Molecular, Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal.
| | | | | | | |
Collapse
|
122
|
Brain-derived neurotrophic factor inhibits human immunodeficiency virus-1/gp120-mediated cerebellar granule cell death by preventing gp120 internalization. J Neurosci 2003. [PMID: 12843275 DOI: 10.1523/jneurosci.23-13-05715.2003] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) envelope protein gp120 has been implicated in the pathogenesis of HIV-1 dementia. Thus, inhibition of gp120 activity could reduce HIV toxicity in the brain. We have used primary cultures of rat cerebellar granule cells to examine mechanisms whereby gp120 causes cell death and to characterize neuroprotective agents. gp120 induced a time- and concentration-dependent apoptotic cell death, which was caspase-3-mediated but caspase-1 independent, and was totally blocked by the irreversible caspase-3-like protease inhibitor N-acetyl-Asp-Glu-Val-Asp-chloromethylketone. Caspase-3 activation was observed only in neurons that internalize gp120, indicating that internalization is key to gp120 toxicity. Because brain-derived neurotrophic factor (BDNF) prevents caspase-3-mediated neuronal cell death, we examined whether BDNF could prevent gp120-mediated apoptosis. Preincubation of neurons with BDNF before the addition of gp120 reduced caspase-3 activation, and consequently rescued 80% of neurons from apoptosis. Most importantly, BDNF reduced the levels of CXC chemokine receptor-4 (CXCR4), a receptor that mediates HIV-1 gp120-induced apoptosis. This effect correlated with the ability of BDNF to reduce gp120 internalization and apoptosis. Moreover, BDNF blocked the neurotoxic effect of stromal-derived factor-1alpha, a natural ligand for CXCR4, further establishing a correlation between neuroprotection and downregulation of CXCR4. We propose that BDNF may be a valid therapy to slow down the progression of HIV/gp120-mediated neurotoxicity.
Collapse
|
123
|
Venkatesan S, Rose JJ, Lodge R, Murphy PM, Foley JF. Distinct mechanisms of agonist-induced endocytosis for human chemokine receptors CCR5 and CXCR4. Mol Biol Cell 2003; 14:3305-24. [PMID: 12925765 PMCID: PMC181569 DOI: 10.1091/mbc.e02-11-0714] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Desensitization of the chemokine receptors, a large class of G protein-coupled receptors, is mediated in part by agonist-driven receptor endocytosis. However, the exact pathways have not been fully defined. Here we demonstrate that the rate of ligand-induced endocytosis of CCR5 in leukocytes and expression systems is significantly slower than that of CXCR4 and requires prolonged agonist treatment, suggesting that these two receptors use distinct mechanisms. We show that the C-terminal domain of CCR5 is the determinant of its slow endocytosis phenotype. When the C-tail of CXCR4 was exchanged for that of CCR5, the resulting CXCR4-CCR5 (X4-R5) chimera displayed a CCR5-like trafficking phenotype. We found that the palmitoylated cysteine residues in this domain anchor CCR5 to plasma membrane rafts. CXCR4 and a C-terminally truncated CCR5 mutant (CCR5-KRFX) lacking these cysteines are not raft associated and are endocytosed by a clathrin-dependent pathway. Genetic inhibition of clathrin-mediated endocytosis demonstrated that a significant fraction of ligand-occupied CCR5 trafficked by clathrin-independent routes into caveolin-containing vesicular structures. Thus, the palmitoylated C-tail of CCR5 is the major determinant of its raft association and endocytic itineraries, differentiating it from CXCR4 and other chemokine receptors. This novel feature of CCR5 may modulate its signaling potential and could explain its preferential use by HIV for person-to-person transmission of disease.
Collapse
Affiliation(s)
- Sundararajan Venkatesan
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
124
|
Kazmierski W, Bifulco N, Yang H, Boone L, DeAnda F, Watson C, Kenakin T. Recent progress in discovery of small-molecule CCR5 chemokine receptor ligands as HIV-1 inhibitors. Bioorg Med Chem 2003; 11:2663-76. [PMID: 12788340 DOI: 10.1016/s0968-0896(03)00161-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This review addresses key pharmacology and virology issues relevant in discovery and development of CCR5 antagonists as anti-HIV drugs, such as target validation, receptor internalization, allosterism, viral resistance and tropism. Recent progress in the discovery and development of CCR5 antagonists, SAR and clinical status are reviewed. Finally, modeling-based structure of CCR5 is discussed in the context of a small-molecule antagonism of the CCR5 receptor.
Collapse
Affiliation(s)
- Wieslaw Kazmierski
- Department of Medicinal Chemistry, GlaxoSmithKline Research and Development, Five Moore Drive, Research Triangle Park, NC 27709-3398, USA.
| | | | | | | | | | | | | |
Collapse
|
125
|
Bodner A, Toth PT, Oh SB, Lu M, Tran PB, Chin RK, Ren D, Miller RJ. CD4 dependence of gp120IIIB-CXCR4 interaction is cell-type specific. J Neuroimmunol 2003; 140:1-12. [PMID: 12864967 DOI: 10.1016/s0165-5728(03)00162-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The HIV-1 envelope protein gp120IIIB is selective for the CXCR4 chemokine receptor and has been shown to induce apoptosis in neurons both in vivo and in vitro. We examined the ability of gp120IIIB to signal through the rat CXCR4 (rCXCR4) receptor and its dependence on the presence of the human CD4 (hCD4) protein in a number of cell systems. SDF-1alpha potently inhibited N-type Ca channels in cultured HEK293 cells expressing both the Ca channel subunits and rCXCR4 receptors. However, gp120IIIB was ineffective in producing either Ca channel inhibition or in blocking the effects of SDF-1alpha. However, when hCD4 was coexpressed with rCXCR4 and Ca channel subunits, gp120IIIB also produced Ca channel inhibition. Similarly, in PC12 cells transfected with the rCXCR4, SDF-1alpha produced mobilization of intracellular Ca, while gp120IIIB was only effective when hCD4 was coexpressed. SDF-1alpha induced endocytosis of Yellow Fluorescent Protein (YFP)-tagged rCXCR4 expressed in PC12 cells, as did gp120IIIB, an effect which was enhanced by hCD4 coexpression. When tagged rCXCR4 was expressed in F-11 cells or in rat DRG neurons, SDF-1alpha produced extensive receptor endocytosis. However, the ability of gp120IIIB to produce endocytosis was dependent on the coexpression of hCD4. Our results demonstrate that the degree of hCD4 dependence of the agonist effects of gp120IIIB at the rCXCR4 receptor is cell-type specific.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Apoptosis/immunology
- CD4 Antigens/physiology
- Cell Line
- Cells, Cultured
- Endocytosis/genetics
- Endocytosis/immunology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/immunology
- Ganglia, Spinal/metabolism
- HIV Envelope Protein gp120/genetics
- HIV Envelope Protein gp120/metabolism
- HIV Envelope Protein gp120/physiology
- Humans
- Immunity, Cellular/genetics
- Neurons/cytology
- Neurons/immunology
- Neurons/metabolism
- PC12 Cells
- Rats
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Receptors, CXCR4/physiology
- Receptors, Chemokine
- Signal Transduction/genetics
- Signal Transduction/immunology
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Amos Bodner
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Fan H, Palmarini M, DeMartini JC. Transformation and oncogenesis by jaagsiekte sheep retrovirus. Curr Top Microbiol Immunol 2003; 275:139-77. [PMID: 12596898 DOI: 10.1007/978-3-642-55638-8_6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Jaagsiekte sheep retrovirus (JSRV) is an exogenous retrovirus of sheep that induces a contagious lung cancer, ovine pulmonary adenocarcinoma (OPA). JSRV is a potent carcinogen in the experimental setting, inducing end-stage tumors at around 6 weeks of age when newborn lambs are inoculated intratracheally. Despite this rapid oncogenesis, inspection of the JSRV genome sequence does not reveal any obvious viral oncogenes. In this review, recent advances in studies of JSRV oncogenic transformation are described. Molecular cloning of an infectious and oncogenic JSRV provirus was instrumental in the studies. DNA transfection of JSRV proviral DNA into mouse NIH3T3 cells results in morphological transformation, indicating that the JSRV genome carries an oncogene. Further experiments identified the JSRV envelope protein as the transforming gene, and a PI3 kinase docking site in the cytoplasmic tail of the transmembrane (TM) protein was shown to be necessary for transformation. Avian DF-1 cells infected with an avian retroviral vector (RCAS) expressing the JSRV envelope protein also undergo tumorigenic transformation. Possible mechanisms of transformation are discussed, and a cooperating role for insertional activation of proto-oncogenes in tumorigenesis is also considered. The transforming potential of the JSRV envelope protein may be necessary for JSRV infection and replication in vivo.
Collapse
Affiliation(s)
- H Fan
- Department of Molecular Biology and Biochemistry, Cancer Research Institute, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
127
|
Abstract
The events preceding human immunodeficiency virus fusion and entry are influenced by the concentration and distribution of receptor and coreceptor molecules on the cell surface. However, the extent to which these proteins colocalize with one another in the cell membrane remains unclear. Using high-resolution deconvolution fluorescent microscopy of living cells, we found that both CD4 and CCR5 accumulate in protruding membrane structures containing actin and ezrin. Although CD4 and CCR5 extensively colocalize in these structures, they do not exist in a stable complex.
Collapse
Affiliation(s)
- Carolyn M Steffens
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | |
Collapse
|
128
|
Kinter AL, Umscheid CA, Arthos J, Cicala C, Lin Y, Jackson R, Donoghue E, Ehler L, Adelsberger J, Rabin RL, Fauci AS. HIV envelope induces virus expression from resting CD4+ T cells isolated from HIV-infected individuals in the absence of markers of cellular activation or apoptosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:2449-55. [PMID: 12594269 DOI: 10.4049/jimmunol.170.5.2449] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Resting CD4(+) T cells containing integrated HIV provirus constitute one of the long-lived cellular reservoirs of HIV in vivo. This cellular reservoir of HIV had been thought to be quiescent with regard to virus replication based on the premise that HIV production in T cells is inexorably linked to cellular activation as determined by classical activation markers. The transition of T cells within this HIV reservoir from a resting state to an activated HIV-producing state is believed to be associated with a shorten life span due to susceptibility to activation-associated apoptosis. Evidence is mounting, however, that HIV production may occur in T cells that have not undergone classic T cell activation. HIV encodes several proteins, including envelope and Nef, which trigger a variety of signaling pathways associated with cellular activation, thereby facilitating HIV replication in nondividing cells. The present study demonstrates that production of infectious virus from resting CD4(+) T cells isolated from HIV-infected individuals can be induced following exposure of these cells to HIV-1 recombinant (oligomeric gp140) envelope protein. Envelope-mediated induction of HIV expression occurs in the presence of reverse transcriptase inhibitors and is not associated with markers of classic T cell activation, proliferation, or apoptosis. The ability of HIV envelope to induce virus replication in HIV-infected resting CD4(+) T cells without triggering apoptosis provides a mechanism for the virus itself to directly participate in the maintenance of HIV production from this cellular reservoir.
Collapse
Affiliation(s)
- Audrey L Kinter
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Amara A, Vidy A, Boulla G, Mollier K, Garcia-Perez J, Alcamí J, Blanpain C, Parmentier M, Virelizier JL, Charneau P, Arenzana-Seisdedos F. G protein-dependent CCR5 signaling is not required for efficient infection of primary T lymphocytes and macrophages by R5 human immunodeficiency virus type 1 isolates. J Virol 2003; 77:2550-8. [PMID: 12551993 PMCID: PMC141084 DOI: 10.1128/jvi.77.4.2550-2558.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The requirement of human immunodeficiency virus (HIV)-induced CCR5 activation for infection by R5 HIV type 1 (HIV-1) strains remains controversial. Ectopic CCR5 expression in CD4(+)-transformed cells or pharmacological inhibition of G(alpha)i proteins coupled to CCR5 left unsolved whether CCR5-dependent cell activation is necessary for the HIV life cycle. In this study, we investigated the role played by HIV-induced CCR5-dependent cell signaling during infection of primary CD4-expressing leukocytes. Using lentiviral vectors, we restored CCR5 expression in T lymphocytes and macrophages from individuals carrying the homozygous 32-bp deletion of the CCR5 gene (ccr5 Delta32/Delta32). Expression of wild-type (wt) CCR5 in ccr5 Delta32/Delta32 cells permitted infection by R5 HIV isolates. We assessed the capacity of a CCR5 derivative carrying a mutated DRY motif (CCR5-R126N) in the second intracellular loop to work as an HIV-1 coreceptor. The R126N mutation is known to disable G protein coupling and agonist-induced signal transduction through CCR5 and other G protein-coupled receptors. Despite its inability to promote either intracellular calcium mobilization or cell chemotaxis, the inactive CCR5-R126N mutant provided full coreceptor function to several R5 HIV-1 isolates in primary cells as efficiently as wt CCR5. We conclude that in a primary, CCR5-reconstituted CD4(+) cell environment, G protein signaling is dispensable for R5 HIV-1 isolates to actively infect primary CD4(+) T lymphocytes or macrophages.
Collapse
Affiliation(s)
- Ali Amara
- Unité d'Immunologie Virale, Institut Pasteur, F-75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Naranatt PP, Akula SM, Zien CA, Krishnan HH, Chandran B. Kaposi's sarcoma-associated herpesvirus induces the phosphatidylinositol 3-kinase-PKC-zeta-MEK-ERK signaling pathway in target cells early during infection: implications for infectivity. J Virol 2003; 77:1524-39. [PMID: 12502866 PMCID: PMC140802 DOI: 10.1128/jvi.77.2.1524-1539.2003] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 8 (HHV-8) is implicated in the pathogenesis of Kaposi's sarcoma. HHV-8 envelope glycoprotein B (gB) possesses the RGD motif known to interact with integrin molecules, and HHV-8 infectivity was inhibited by RGD peptides, by antibodies against alpha3 and beta1 integrins, and by soluble alpha3beta1 integrin (S. M. Akula, N. P. Pramod, F.-Z. Wang, and B. Chandran, Cell 108:407-419, 2002). Anti-gB antibodies immunoprecipitated the virus alpha3 and beta1 complexes, and virus-binding studies suggest a role for alpha3beta1 in HHV-8 entry. HHV-8 infection induced the integrin-mediated activation of focal adhesion kinase (FAK), implicating a role for integrin and the associated signaling pathways in HHV-8 entry into the target cells. Immediately after infection, target cells exhibited morphological changes and cytoskeletal rearrangements, suggesting the induction of signal pathways. As early as 5 min postinfection, HHV-8 activated the MEK-ERK1/2 pathway. The focal adhesion components phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C-zeta (PKC-zeta) were recruited as upstream mediators of the HHV-8-induced ERK pathway. Anti-HHV-8 gB-neutralizing antibodies and soluble alpha3beta1 integrin inhibited the virus-induced signaling pathways. Early kinetics of the cellular signaling pathway and its activation by UV-inactivated HHV-8 suggest a role for virus binding and/or entry but not viral gene expression in this induction. Studies with human alpha3 integrin-transfected Chinese hamster ovary cells and FAK-negative mouse DU3 cells suggest that the alpha3beta1 integrin and FAK play roles in the HHV-8 mediated signal induction. Inhibitors specific for PI 3-kinase, PKC-zeta, MEK, and ERK significantly reduced the virus infectivity without affecting virus binding to the target cells. Examination of viral DNA entry suggests a role for PI 3-kinase in HHV-8 entry into the target cells and a role for PKC-zeta, MEK, and ERK at a post-viral entry stage of infection. These findings implicate a critical role for integrin-associated mitogenic signaling in HHV-8's infection of target cells and suggest that, by orchestrating the signal cascade, HHV-8 may create an appropriate intracellular environment to facilitate the infection.
Collapse
Affiliation(s)
- Pramod P Naranatt
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City 66160, USA
| | | | | | | | | |
Collapse
|
131
|
Abstract
The recognition that CD8(+) T-cell mediated Th1 immune responses were necessary to produce immunity to intracellular and transformed self pathogens led to intense interest in the delivery of nucleic acids, DNA, or RNA encoding candidate antigens, as vaccines. Antigen presenting cells (APC) encounter most protein and vaccine immunogens as extracellular proteins and, thus, present them on major histocompatibility complex (MHC) class II molecules leading to the activation of CD4(+) T cells. Protein antigens encoded by nucleic acids delivered to dendritic cell (DC) are produced inside the cell and, thus, can stimulate MHC class I mediated activation of CD8(+) T-cell immune responses. Unfortunately, DCs are not readily transfected with DNA (Akbari et al., 1999) resulting in the requirement for high concentrations of DNA and repeated immunizations to achieved immune responses. RNA, on the other hand, is readily taken up and expressed by DC, making it an alternative vaccine candidate. In this article, we will discuss immune responses developed, interactions between APC and RNA that activate and dictate DC activation, and preliminary studies using RNA in vivo and in vitro to develop protective immunity.
Collapse
Affiliation(s)
- Georgetta Cannon
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
132
|
Lin YL, Mettling C, Portales P, Reynes J, Clot J, Corbeau P. Cell surface CCR5 density determines the postentry efficiency of R5 HIV-1 infection. Proc Natl Acad Sci U S A 2002; 99:15590-5. [PMID: 12434015 PMCID: PMC137761 DOI: 10.1073/pnas.242134499] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We have recently reported that the mean number of CCR5 coreceptors at the surface of CD4(+) T cells (CCR5 density) correlates with viral load and disease progression in HIV-1-infected persons. Here, we definitively establish that CCR5 density determines the level of virus production and identify the stages of HIV-1 replicative cycle modulated by this effect. We show, by transducing the CCR5 gene into CCR5(+) cells, that CCR5 overexpression resulted in an HIV-1 overinfectability. We sorted HOS-CD4(+)-CCR5(+) cells into two subpopulations, HOS(high) and HOS(low), the former expressing seven times more cell surface CCR5 molecules than the latter. Virus production was 30-80 times higher in HOS(high) cells than in HOS(low) cells after a single round of infection. In contrast, only twice as many viral particles entered the cytosol of HOS(high) cells as compared with the cytosol of HOS(low) cells. Yet, seven times as many early, and 24 times as many late, reverse transcription products were found in HOS(high) cells as compared with HOS(low) cells. Moreover, a 24- to 30-fold difference in the number of copies of integrated HIV-1 DNA was observed. No difference in HIV-1 LTR activation between the two cell lines was evident. Finally, we show that the higher virus production observed in HOS(high) cells is inhibited by pertussis toxin, a Galphai protein inhibitor. Thus, CCR5 density mainly modulates postentry steps of the virus life cycle, particularly the reverse transcription. These data explain why CCR5 density influences HIV-1 disease progression and underline the therapeutic interest of lowering CCR5 expression.
Collapse
Affiliation(s)
- Yea-Lih Lin
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Unité Propre de Recherche 1142, Laboratoire d'Immunologie de l'Hôpital Saint Eloi, France
| | | | | | | | | | | |
Collapse
|
133
|
Vlahakis SR, Villasis-Keever A, Gomez T, Vanegas M, Vlahakis N, Paya CV. G protein-coupled chemokine receptors induce both survival and apoptotic signaling pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5546-54. [PMID: 12421931 DOI: 10.4049/jimmunol.169.10.5546] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chemokine receptors are essential for triggering chemotaxis to immune cells; however, a number of them can also mediate death when engaged by nonchemokine ligands. When the chemokine receptor CXCR4 is engaged by stromal cell-derived factor (SDF1)alpha, it triggers cells to chemotax, and in some cell types such as neurons, causes cell death. To elucidate this dual and opposing receptor function, we have investigated whether CXCR4 activation by its chemokine SDF1alpha could lead to the simultaneous activation of both anti- and proapoptotic signaling pathways; the balance ultimately influencing cell survival. CXCR4 activation in CD4 T cells by SDF1alpha led to the activation of the prosurvival second messengers, Akt and extracellular signal-regulated protein kinase. Selective inhibition of each signal demonstrated that extracellular signal-regulated protein kinase is essential for mediating SDF1alpha-triggered chemotaxis but does not confer an antiapoptotic state. In contrast, Akt activation through CXCR4 by SDF1alpha interactions is necessary to confer resistance to apoptosis. The proapoptotic signaling pathway triggered by SDF1alpha-CXCR4 interaction involves the G(ialpha) protein-independent activation of the proapoptotic MAPK (p38). Furthermore, other chemokines and chemokine receptors also signal chemotaxis and proapoptotic effects via similar pathways. Thus, G(ialpha) protein-coupled chemokine receptors can function as death prone receptors and the balance between the above signaling pathways will ultimately mandate the fate of the activated cell.
Collapse
Affiliation(s)
- Stacey R Vlahakis
- Division of Infectious Diseases, Department of Immunology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
134
|
Vicenzi E, Panina‐Bodignon P, Vallanti G, Di Lucia P, Poli G. Restricted replication of primary HIV‐1 isolates using both CCR5 and CXCR4 in Th2 but not in Th1 CD4
+
T cells. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.5.913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Elisa Vicenzi
- AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, Milano, Italy; and
| | | | - Giuliana Vallanti
- AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, Milano, Italy; and
| | | | - Guido Poli
- AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, Milano, Italy; and
| |
Collapse
|
135
|
Kinet S, Bernard F, Mongellaz C, Perreau M, Goldman FD, Taylor N. gp120-mediated induction of the MAPK cascade is dependent on the activation state of CD4(+) lymphocytes. Blood 2002; 100:2546-53. [PMID: 12239168 DOI: 10.1182/blood-2002-03-0819] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capacity of the HIV-1 envelope glycoprotein gp120 to induce intracellular signals is thought to contribute to HIV-1 pathogenesis. Here, we report that gp120 binding resulted in activation of the mitogen-activated protein kinase (MAPK) in CD4(+) lymphocytes prestimulated through their T-cell receptor (TCR). However, gp120 did not activate this pathway in either freshly isolated quiescent T cells or nonproliferating CD4(+) lymphocytes prestimulated with the interleukin-7 (IL-7) cytokine. This response was not solely dependent on proliferation per se because proliferating IL-7-prestimulated umbilical cord (UC)-derived T lymphocytes did not exhibit significant MAPK activation upon gp120 binding. Nevertheless, like peripheral blood lymphocytes, MAPK recruitment was induced by gp120 in UC T cells following TCR prestimulation. The lack of a gp120-mediated signaling response was not due to decreased gp120 receptor levels; CD4 expression was modified neither by IL-7 nor by TCR engagement, and high levels of functional CXCR4 were present on IL-7-treated lymphocytes. In addition to CD4 and CXCR4, recent evidence suggests that glycosphingolipids in raft microdomains serve as cofactors for HIV-1 fusion. The ganglioside GM1, a marker of rafts, was augmented in TCR-stimulated but not IL-7-stimulated T lymphocytes, and disruption of rafts inhibited gp120-induced signaling. Thus, stimulation of a mitogenic pathway by gp120 appears to require receptor binding in the context of membrane microdomains. These studies reveal a mechanism via which gp120 may differentially modulate the fate of activated and quiescent T cells in vivo.
Collapse
Affiliation(s)
- Sandrina Kinet
- Institut de Génétique Moléculaire de Montpellier, Centre National de Recherche Scientifique (CNRS) UMR 5535/IFR 22, Montpellier, France
| | | | | | | | | | | |
Collapse
|
136
|
Mahalingam S, Meanger J, Foster PS, Lidbury BA. The viral manipulation of the host cellular and immune environments to enhance propagation and survival: a focus on RNA viruses. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.3.429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Surendran Mahalingam
- Division of Molecular Biosciences, The John Curtin School of Medical Research, The Australian National University, Canberra
| | - Jayesh Meanger
- Macfarlane Burnet Institute for Medical Research and Public Health, Fairfield, Victoria, Australia; and
| | - Paul S. Foster
- Division of Molecular Biosciences, The John Curtin School of Medical Research, The Australian National University, Canberra
| | - Brett A. Lidbury
- Gadi Research Centre, Division of Science and Design, University of Canberra, Australia
| |
Collapse
|
137
|
Aquaro S, Caliò R, Balzarini J, Bellocchi MC, Garaci E, Perno CF. Macrophages and HIV infection: therapeutical approaches toward this strategic virus reservoir. Antiviral Res 2002; 55:209-25. [PMID: 12103427 DOI: 10.1016/s0166-3542(02)00052-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cells of macrophage lineage represent a key target of human immunodeficiency virus (HIV) in addition to CD4-lymphocytes. The absolute number of infected macrophages in the body is relatively low compared to CD4-lymphocytes. Nevertheless, the peculiar dynamics of HIV replication in macrophages, their long-term survival after HIV infection, and their ability to spread virus particles to bystander CD4-lymphocytes, make evident their substantial contribution to the pathogenesis of HIV infection. In addition, infected macrophages are able to recruit and activate CD4-lymphocytes through the production of both chemokines and virus proteins (such as nef). In addition, the activation of the oxidative pathway in HIV-infected macrophages may lead to apoptotic death of bystander, not-infected cells. Finally, macrophages are the most important target of HIV in the central nervous system. The alteration of neuronal metabolism induced by infected macrophages plays a crucial role in the pathogenesis of HIV-related encephalopathy. Taken together, these results strongly support the clinical relevance of therapeutic strategies able to interfere with HIV replication in macrophages. In vitro data show the potent efficacy of all nucleoside analogues inhibitors of HIV-reverse transcriptase in macrophages. Nevertheless, the limited penetration of some of these compounds in sequestered districts, coupled with the scarce phosphorylation ability of macrophages, suggests that nucleoside analogues carrying preformed phosphate groups may have a potential role against HIV replication in macrophages. This hypothesis is supported by the great anti-HIV activity of tenofovir and other acyclic nucleoside phosphonates in macrophages that may provide a rationale for the remarkable efficacy of tenofovir in HIV-infected patients. Non-nucleoside reverse transcriptase inhibitors (NNRTI) do not affect HIV-DNA chain termination, and for this reason their antiviral activity in macrophages is similar to that found in CD4-lymphocytes. Interestingly, protease inhibitors (PIs), acting at post-integrational stages of virus replication, are the only drugs able to interfere with virus production and release from macrophages with established and persistent HIV infection (chronically-infected cells). Since this effect is achieved at concentrations and doses higher than those effective in de-novo infected CD4-lymphocytes, it is possible that lack of adherence to therapy, and/or suboptimal dosage leading to insufficient concentrations of PIs may cause a resumption of virus replication from chronically-infected macrophages, ultimately resulting in therapeutic failure. For all these reasons, therapeutic strategies aimed to achieve the greatest and longest control of HIV replication should inhibit HIV not only in CD4-lymphocytes, but also in macrophages. Testing new and promising antiviral compounds in such cells may provide crucial hints about their efficacy in patients infected by HIV.
Collapse
Affiliation(s)
- Stefano Aquaro
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
138
|
Clapham PR, McKnight Á. Cell surface receptors, virus entry and tropism of primate lentiviruses. J Gen Virol 2002; 83:1809-1829. [PMID: 12124446 DOI: 10.1099/0022-1317-83-8-1809] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Human immunodeficiency virus (HIV) exploits cell surface receptors to attach to and gain entry into cells. The HIV envelope spike glycoprotein on the surface of virus particles binds both CD4 and a seven-transmembrane coreceptor. These interactions trigger conformational changes in the envelope spike that induce fusion of viral and cellular membranes and entry of the viral core into the cell cytoplasm. Other cell surface receptors also interact with gp120 and aid attachment of virus particles. This review describes these receptors, their roles in HIV entry and their influence on cell tropism.
Collapse
Affiliation(s)
- Paul R Clapham
- Center for AIDS Research, Program in Molecular Medicine, Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Biotech II, 373, Plantation Street, Worcester. MA 01605, USA1
| | - Áine McKnight
- The Wohl Virion Center, Department of Immunology and Molecular Pathology, The Windeyer Institute for Medical Sciences, University College London, 46 Cleveland Street, London W1P 6DB, UK2
| |
Collapse
|
139
|
Algeciras-Schimnich A, Vlahakis SR, Villasis-Keever A, Gomez T, Heppelmann CJ, Bou G, Paya CV. CCR5 mediates Fas- and caspase-8 dependent apoptosis of both uninfected and HIV infected primary human CD4 T cells. AIDS 2002; 16:1467-78. [PMID: 12131184 DOI: 10.1097/00002030-200207260-00003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DESIGN HIV Env interaction with the corresponding chemokine receptor dictates the molecular mechanism of death of both HIV-infected and uninfected primary CD4 T cells. CXCR4/T tropic HIV virus (X4) triggers CD4 T cell death through a caspase independent mechanism, whereas CCR5/M tropic HIV virus (R5) HIV triggers a caspase dependent death. In the present study, we have investigated the pathway whereby R5 Env-CR5 interactions lead to a caspase dependent cell death. METHODS CD4 T cells were infected with X4 or R5 HIV strains, or were mock infected. After infection, cells were treated with caspase inhibitors or decoys of death receptor signaling pathways and cell viability was analyzed. The role of R5 HIV Env in induction of cell death of uninfected T cells was analyzed by co-culturing uninfected CD4 T cells with R5 Env expressing cells in the absence or presence of various inhibitors of death receptor signaling. RESULTS Infection of CD4 T cells with R5, but not with X4 HIV strains results in the activation of caspase-8 and cell death that is reversed by a decoy of the Fas receptor. Isolated activation of CCR5 by membrane-bound, or soluble R5 Env causes a Fas- and caspase-8 dependent death also of uninfected CD4 T cells. Additional studies demonstrate that isolated CCR5 activation by R5 Env leads to both de novo expression of FasL and induction of susceptibility to Fas-mediated apoptosis in resting primary CD4 T cells. CONCLUSIONS These results ascribe to CCR5 a novel role in activating the Fas pathway and caspase-8 as well as triggering FasL production when activated by R5 Env, ultimately causing CD4 T cell death.
Collapse
|
140
|
Cicala C, Arthos J, Selig SM, Dennis G, Hosack DA, Van Ryk D, Spangler ML, Steenbeke TD, Khazanie P, Gupta N, Yang J, Daucher M, Lempicki RA, Fauci AS. HIV envelope induces a cascade of cell signals in non-proliferating target cells that favor virus replication. Proc Natl Acad Sci U S A 2002; 99:9380-5. [PMID: 12089333 PMCID: PMC123149 DOI: 10.1073/pnas.142287999] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Certain HIV-encoded proteins modify host-cell gene expression in a manner that facilitates viral replication. These activities may contribute to low-level viral replication in nonproliferating cells. Through the use of oligonucleotide microarrays and high-throughput Western blotting we demonstrate that one of these proteins, gp120, induces the expression of cytokines, chemokines, kinases, and transcription factors associated with antigen-specific T cell activation in the absence of cellular proliferation. Examination of transcriptional changes induced by gp120 in freshly isolated peripheral blood mononuclear cells and monocyte-derived-macrophages reveals a broad and complex transcriptional program conducive to productive infection with HIV. Observations include the induction of nuclear factor of activated T cells, components of the RNA polymerase II complex including TFII D, proteins localized to the plasma membrane, including several syntaxins, and members of the Rho protein family, including Cdc 42. These observations provide evidence that envelope-mediated signaling contributes to the productive infection of HIV in suboptimally activated T cells.
Collapse
Affiliation(s)
- Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Steele AD, Szabo I, Bednar F, Rogers TJ. Interactions between opioid and chemokine receptors: heterologous desensitization. Cytokine Growth Factor Rev 2002; 13:209-22. [PMID: 12486875 DOI: 10.1016/s1359-6101(02)00007-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The opioid and chemokine receptors are both members of the seven transmembrane G protein-coupled receptor (GPCR) superfamily. Desensitization is believed to be a major element of the regulation of the function of these receptors, and recent findings suggest that both agonist-dependent (homologous) desensitization and heterologous desensitization can control receptor activity. The cross-desensitization between opioid and chemokine receptors has significant implications for our understanding of both the regulation of leukocyte trafficking, as well as the regulation of chemokine receptor function in inflammatory disease states. We also review findings which suggest that pro-inflammatory chemokine receptor-induced heterologous desensitization of opioid receptors has important implications for the regulation of opioid receptor function in the nervous system.
Collapse
Affiliation(s)
- Amber D Steele
- Department of Microbiology and Immunology, Fels Institute for Cancer Research and Molecular Biology, Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | |
Collapse
|
142
|
Keppler OT, Welte FJ, Ngo TA, Chin PS, Patton KS, Tsou CL, Abbey NW, Sharkey ME, Grant RM, You Y, Scarborough JD, Ellmeier W, Littman DR, Stevenson M, Charo IF, Herndier BG, Speck RF, Goldsmith MA. Progress toward a human CD4/CCR5 transgenic rat model for de novo infection by human immunodeficiency virus type 1. J Exp Med 2002; 195:719-36. [PMID: 11901198 PMCID: PMC2193739 DOI: 10.1084/jem.20011549] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The development of a permissive small animal model for the study of human immunodeficiency virus type (HIV)-1 pathogenesis and the testing of antiviral strategies has been hampered by the inability of HIV-1 to infect primary rodent cells productively. In this study, we explored transgenic rats expressing the HIV-1 receptor complex as a susceptible host. Rats transgenic for human CD4 (hCD4) and the human chemokine receptor CCR5 (hCCR5) were generated that express the transgenes in CD4(+) T lymphocytes, macrophages, and microglia. In ex vivo cultures, CD4(+) T lymphocytes, macrophages, and microglia from hCD4/hCCR5 transgenic rats were highly susceptible to infection by HIV-1 R5 viruses leading to expression of abundant levels of early HIV-1 gene products comparable to those found in human reference cultures. Primary rat macrophages and microglia, but not lymphocytes, from double-transgenic rats could be productively infected by various recombinant and primary R5 strains of HIV-1. Moreover, after systemic challenge with HIV-1, lymphatic organs from hCD4/hCCR5 transgenic rats contained episomal 2-long terminal repeat (LTR) circles, integrated provirus, and early viral gene products, demonstrating susceptibility to HIV-1 in vivo. Transgenic rats also displayed a low-level plasma viremia early in infection. Thus, transgenic rats expressing the appropriate human receptor complex are promising candidates for a small animal model of HIV-1 infection.
Collapse
Affiliation(s)
- Oliver T Keppler
- Gladstone Institute of Virology and Immunology, School of Medicine, University of California at San Francisco, San Francisco, CA 94141, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Merat R, Amara A, Lebbe C, de The H, Morel P, Saib A. HIV-1 infection of primary effusion lymphoma cell line triggers Kaposi's sarcoma-associated herpesvirus (KSHV) reactivation. Int J Cancer 2002; 97:791-5. [PMID: 11857356 DOI: 10.1002/ijc.10086] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus etiologically linked to primary effusion lymphoma (PEL), to a subset of multicentric Castleman's disease and to Kaposi's sarcoma (KS), the most common neoplasm associated with AIDS. Among KSHV-infected individuals, the risk of KS is much higher in those with human immunodeficiency-1 (HIV-1) infection than among those with other types of immunosuppression, suggesting a direct action of HIV-1 on KSHV replication. We show in our report that BC-3 cells, a chronically KSHV-infected B-cell line of a PEL origin, are permissive to HIV-1, offering a new tool for studying the interactions between these 2 viruses. In these cells, HIV-1 infection leads to reactivation of latent KSHV genomes, as demonstrated by the expression of KSHV lytic viral mRNAs. Although recombinant HIV-1 gp120 fails to enhance herpesvirus expression, transient transfection of the HIV-1 trans-activator Tat suffices to reactivate latent KSHV. By showing that HIV-1 infection directly reactivates latent KSHV, our results suggest a direct role of HIV-1 in the onset of KS in coinfected individuals.
Collapse
MESH Headings
- Bacterial Proteins
- Blotting, Northern
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Products, tat/genetics
- Gene Products, tat/metabolism
- HIV Envelope Protein gp120/genetics
- HIV Envelope Protein gp120/metabolism
- HIV-1/physiology
- Heat-Shock Proteins/genetics
- Heat-Shock Proteins/metabolism
- Herpesvirus 8, Human/growth & development
- Humans
- Lymphoma, B-Cell/virology
- Polymerase Chain Reaction
- RNA, Messenger/metabolism
- RNA, Viral/metabolism
- Sarcoma, Kaposi/virology
- Tumor Cells, Cultured
- Viral Proteins/metabolism
- Virus Activation
- Virus Replication
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Rastine Merat
- Policlinique de Dermatologie, Hôpital Saint-Louis, Paris, France.
| | | | | | | | | | | |
Collapse
|
144
|
Burudi EM, Fox HS. Simian immunodeficiency virus model of HIV-induced central nervous system dysfunction. Adv Virus Res 2002; 56:435-68. [PMID: 11450309 DOI: 10.1016/s0065-3527(01)56035-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- E M Burudi
- Department of Neuropharmacology, Scripps Research Institute, CVN-8, La Jolla, California 92037, USA
| | | |
Collapse
|
145
|
Arthos J, Cicala C, Selig SM, White AA, Ravindranath HM, Van Ryk D, Steenbeke TD, Machado E, Khazanie P, Hanback MS, Hanback DB, Rabin RL, Fauci AS. The role of the CD4 receptor versus HIV coreceptors in envelope-mediated apoptosis in peripheral blood mononuclear cells. Virology 2002; 292:98-106. [PMID: 11878912 DOI: 10.1006/viro.2001.1266] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the role of CD4, CXCR4, and CCR5 in HIV envelope-mediated apoptosis by measuring the response of activated PBMCs to recombinant envelope proteins derived from CXCR4- and CCR5-utilizing viruses. Apoptosis of T cells was assessed by annexin-V staining and TdT-mediated dUTP-biotin nick-end labeling. Treatment of CCR5Delta32 homozygote PBMCs with a CCR5-specific envelope induced apoptosis in T cells, demonstrating that envelope--CD4 interactions are sufficient to induce apoptosis. However, a CXCR4-specific envelope induced higher levels of apoptosis than a CCR5-specific envelope, suggesting that envelope-mediated apoptosis can be enhanced by envelope--CXCR4 interactions. We conclude that envelope can induce apoptosis in T cells independently of the coreceptor specificity of a given envelope, or the expression profile of CXCR4 or CCR5 on a target cell. However, envelope--coreceptor interactions, and in particular, envelope--CXCR4 interactions, can contribute to this process.
Collapse
Affiliation(s)
- James Arthos
- Laboratory of Immunoregulation, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Wang J, Guan E, Roderiquez G, Calvert V, Alvarez R, Norcross MA. Role of tyrosine phosphorylation in ligand-independent sequestration of CXCR4 in human primary monocytes-macrophages. J Biol Chem 2001; 276:49236-43. [PMID: 11668182 DOI: 10.1074/jbc.m108523200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chemokine stromal cell-derived factor (SDF)-1 and its receptor, CXCR4, play important roles in human immunodeficiency virus type 1 (HIV-1) pathophysiology, leukocyte trafficking, inflammation, hematopoiesis, embryogenesis, angiogenesis, and cancer metastasis. The effects of cytokines on the regulation of CXCR4 function were investigated in human primary monocytes-macrophages. The expression of functional CXCR4 on the cell surface was demonstrated by the detection of ligand-induced Ca(2+) mobilization, chemotaxis, and ligand-induced receptor endocytosis. Surface CXCR4 expression was down-regulated by cytokines interleukin-4 (IL-4), IL-13, and granulocyte-macrophage colony-stimulating factor (GM-CSF) and up-regulated by IL-10 and transforming growth factor-beta 1. Down-regulation was mediated post-translationally, in the absence of protein degradation, through an endocytotic mechanism. In contrast to SDF-1 alpha-induced CXCR4 endocytosis, cytokine-induced endocytosis of this receptor was independent of actin filament polymerization. GM-CSF increased the expression of G protein-coupled receptor kinase 3 (GRK3), beta-arrestin-1, Pyk2, and focal adhesion kinase (FAK). Cytokine treatment also increased the total and tyrosine-specific phosphorylation of CXCR4 as well as the phosphorylation of FAK on tyrosine 397. It also induced the formation of GRK3.CXCR4 or FAK.CXCR4 complexes. Infection of macrophages by primary R5X4 and X4 isolates of HIV-1 was inhibited by IL-4, IL-13, and GM-CSF, an effect that was associated with down-regulation of surface CXCR4 expression. These data indicate that ligand-dependent and ligand-independent endocytoses of CXCR4 are mediated by different mechanisms. Cytokine-induced endocytosis of chemokine receptors may be of therapeutic value in HIV-1 infection, inflammation, tumor metastasis, and defective hematopoiesis.
Collapse
Affiliation(s)
- J Wang
- Laboratory of Gene Regulation, Division of Therapeutic Proteins, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
147
|
Del Corno M, Liu QH, Schols D, de Clercq E, Gessani S, Freedman BD, Collman RG. HIV-1 gp120 and chemokine activation of Pyk2 and mitogen-activated protein kinases in primary macrophages mediated by calcium-dependent, pertussis toxin-insensitive chemokine receptor signaling. Blood 2001; 98:2909-16. [PMID: 11698270 DOI: 10.1182/blood.v98.10.2909] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) uses the chemokine receptors CCR5 and CXCR4 as coreceptors for entry. It was recently demonstrated that HIV-1 glycoprotein 120 (gp120) elevated calcium and activated several ionic signaling responses in primary human macrophages, which are important targets for HIV-1 in vivo. This study shows that chemokine receptor engagement by both CCR5-dependent (R5) and CXCR4-dependent (X4) gp120 led to rapid phosphorylation of the focal adhesion-related tyrosine kinase Pyk2 in macrophages. Pyk2 phosphorylation was also induced by macrophage inflammatory protein-1beta (MIP-1beta) and stromal cell-derived factor-1alpha, chemokine ligands for CCR5 and CXCR4. Activation was blocked by EGTA and by a potent blocker of calcium release-activated Ca++ (CRAC) channels, but was insensitive to pertussis toxin (PTX), implicating CRAC-mediated extracellular Ca++ influx but not Galpha(i) protein-dependent mechanisms. Coreceptor engagement by gp120 and chemokines also activated 2 members of the mitogen-activated protein kinase (MAPK) superfamily, c-Jun amino-terminal kinase/stress-activated protein kinase and p38 MAPK. Furthermore, gp120-stimulated macrophages secreted the chemokines monocyte chemotactic protein-1 and MIP-1beta in a manner that was dependent on MAPK activation. Thus, the gp120 signaling cascade in macrophages includes coreceptor binding, PTX-insensitive signal transduction, ionic signaling including Ca++ influx, and activation of Pyk2 and MAPK pathways, and leads to secretion of inflammatory mediators. HIV-1 Env signaling through these pathways may contribute to dysregulation of uninfected macrophage functions, new target cell recruitment, or modulation of macrophage infection.
Collapse
Affiliation(s)
- M Del Corno
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
148
|
Finnegan CM, Berg W, Lewis GK, DeVico AL. Antigenic properties of the human immunodeficiency virus envelope during cell-cell fusion. J Virol 2001; 75:11096-105. [PMID: 11602749 PMCID: PMC114689 DOI: 10.1128/jvi.75.22.11096-11105.2001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) fusion and entry involves sequential interactions between the viral envelope protein, gp120, cell surface CD4, and a G-protein-coupled coreceptor. Each interaction creates an intermediate gp120 structure predicted to display distinct antigenic features, including key functional domains for viral entry. In this study, we examined the disposition of these features during the fusion of HeLa cells expressing either HIV(HXB2) envelope (Env cells) or CXCR4 and CD4 (target cells). Cell-cell fusion, indicated by cytoplasmic dye transfer, was allowed to progress for various times and then arrested. The cells were then examined for reactivity with antibodies directed against receptor-induced epitopes on gp120. Analyses of cells arrested by cooling to 4( degrees )C revealed that antibodies against the CD4-induced coreceptor-binding domain, i.e., 17b, 48d, and CG10, faintly react with Env cells even in the absence of target cell or soluble CD4 (sCD4) interactions. Such reactivity increased after exposure to sCD4 but remained unchanged during fusion with target cells and was not intensified at the Env-target cell interface. Notably, the antibodies did not react with Env cells when treated with a covalent cross-linker either alone or during fusion with target cells. Immunoreactivity could not be promoted or otherwise altered on either temperature arrested or cross-linked cells by preventing coreceptor interactions or by using a 17b Fab. In comparison, two other gp120-CD4 complex-dependent antibodies against epitopes outside the coreceptor domain, 8F101 and A32, exhibited a different pattern of reactivity. These antibodies reacted with the Env-target cell interface only after 30 min of cocultivation, concurrent with the first visible transfer of cytoplasmic dye from Env to target cells. At later times, the staining surrounded entire syncytia. Such binding was entirely dependent on the formation of gp120-CD4-CXCR4 tricomplexes since staining was absent with SDF-treated or coreceptor-negative target cells. Overall, these studies show that access to the CD4-induced coreceptor-binding domain on gp120 is largely blocked at the fusing cell interface and is unlikely to represent a target for neutralizing antibodies. However, new epitopes are presented on intermediate gp120 structures formed as a result of coreceptor interactions. Such findings have important implications for HIV vaccine approaches based on conformational alterations in envelope structures.
Collapse
Affiliation(s)
- C M Finnegan
- Institute of Human Virology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
149
|
Gp120-induced Bob/GPR15 activation: a possible cause of human immunodeficiency virus enteropathy. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 159:1933-9. [PMID: 11696454 PMCID: PMC1867054 DOI: 10.1016/s0002-9440(10)63040-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus (HIV)-infected patients often develop malabsorption and increased intestinal permeability with diarrhea, called HIV enteropathy, even without enteric opportunistic infections. HIV gp120-induced calcium signaling, microtubule loss, and physiological changes resembling HIV enteropathy were previously found in the HT-29 intestinal cell line. How gp120 caused these changes was unclear. We show that the HIV co-receptor Bob/GPR15, unlike CCR5 and CXCR4, is abundant at the basal surface of small intestinal epithelium. The gp120-induced effects on HT-29 cells were inhibited by anti-Bob neutralizing antibodies, the selective G protein inhibitor pertussis toxin, and the phospholipase inhibitor U73122, but not neutralizing antibodies to CXCR4. Gp120 strains that induced signaling in HT-29 cells also induced calcium fluxes in Bob-transfected Ghost (3) cells, whereas gp120 strains not activating HT-29 cells also did not activate Bob-transfected cells. Bob is the first HIV co-receptor shown to be abundantly expressed on the basolateral surface of intestinal epithelium. Although Bob is an inefficient infection-inducing co-receptor, it mediates viral strain-specific gp120-induced calcium signaling at low, physiologically reasonable gp120 concentrations, up to 10,000-fold lower gp120 concentrations than the principal co-receptors. Gp120-induced Bob activation is a plausible cause of HIV enteropathy.
Collapse
|
150
|
Baribaud F, Pöhlmann S, Sparwasser T, Kimata MT, Choi YK, Haggarty BS, Ahmad N, Macfarlan T, Edwards TG, Leslie GJ, Arnason J, Reinhart TA, Kimata JT, Littman DR, Hoxie JA, Doms RW. Functional and antigenic characterization of human, rhesus macaque, pigtailed macaque, and murine DC-SIGN. J Virol 2001; 75:10281-9. [PMID: 11581396 PMCID: PMC114602 DOI: 10.1128/jvi.75.21.10281-10289.2001] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DC-SIGN, a type II membrane protein with a C-type lectin binding domain that is highly expressed on mucosal dendritic cells (DCs) and certain macrophages in vivo, binds to ICAM-3, ICAM-2, and human and simian immunodeficiency viruses (HIV and SIV). Virus captured by DC-SIGN can be presented to T cells, resulting in efficient virus infection, perhaps representing a mechanism by which virus can be ferried via normal DC trafficking from mucosal tissues to lymphoid organs in vivo. To develop reagents needed to characterize the expression and in vivo functions of DC-SIGN, we cloned, expressed, and analyzed rhesus macaque, pigtailed macaque, and murine DC-SIGN and made a panel of monoclonal antibodies (MAbs) to human DC-SIGN. Rhesus and pigtailed macaque DC-SIGN proteins were highly similar to human DC-SIGN and bound and transmitted HIV type 1 (HIV-1), HIV-2, and SIV to receptor-positive cells. In contrast, while competent to bind virus, murine DC-SIGN did not transmit virus to receptor-positive cells under the conditions tested. Thus, mere binding of virus to a C-type lectin does not necessarily mean that transmission will occur. The murine and macaque DC-SIGN molecules all bound ICAM-3. We mapped the determinants recognized by a panel of 16 MAbs to the repeat region, the lectin binding domain, and the extreme C terminus of DC-SIGN. One MAb was specific for DC-SIGN, failing to cross-react with DC-SIGNR. Most MAbs cross-reacted with rhesus and pigtailed macaque DC-SIGN, although none recognized murine DC-SIGN. Fifteen of the MAbs recognized DC-SIGN on DCs, with MAbs to the repeat region generally reacting most strongly. We conclude that rhesus and pigtailed macaque DC-SIGN proteins are structurally and functionally similar to human DC-SIGN and that the reagents that we have developed will make it possible to study the expression and function of this molecule in vivo.
Collapse
Affiliation(s)
- F Baribaud
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|