101
|
Neuroendocrine Neoplasms: Identification of Novel Metabolic Circuits of Potential Diagnostic Utility. Cancers (Basel) 2021; 13:cancers13030374. [PMID: 33498434 PMCID: PMC7864182 DOI: 10.3390/cancers13030374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/01/2021] [Accepted: 01/14/2021] [Indexed: 01/14/2023] Open
Abstract
The incidence of neuroendocrine neoplasms (NEN) is increasing, but established biomarkers have poor diagnostic and prognostic accuracy. Here, we aim to define the systemic metabolic consequences of NEN and to establish the diagnostic utility of proton nuclear magnetic resonance spectroscopy (1H-NMR) for NEN in a prospective cohort of patients through a single-centre, prospective controlled observational study. Urine samples of 34 treatment-naïve NEN patients (median age: 59.3 years, range: 36-85): 18 had pancreatic (Pan) NEN, of which seven were functioning; 16 had small bowel (SB) NEN; 20 age- and sex-matched healthy control individuals were analysed using a 600 MHz Bruker 1H-NMR spectrometer. Orthogonal partial-least-squares-discriminant analysis models were able to discriminate both PanNEN and SBNEN patients from healthy control (Healthy vs. PanNEN: AUC = 0.90, Healthy vs. SBNEN: AUC = 0.90). Secondary metabolites of tryptophan, such as trigonelline and a niacin-related metabolite were also identified to be universally decreased in NEN patients, while upstream metabolites, such as kynurenine, were elevated in SBNEN. Hippurate, a gut-derived metabolite, was reduced in all patients, whereas other gut microbial co-metabolites, trimethylamine-N-oxide, 4-hydroxyphenylacetate and phenylacetylglutamine, were elevated in those with SBNEN. These findings suggest the existence of a new systems-based neuroendocrine circuit, regulated in part by cancer metabolism, neuroendocrine signalling molecules and gut microbial co-metabolism. Metabonomic profiling of NEN has diagnostic potential and could be used for discovering biomarkers for these tumours. These preliminary data require confirmation in a larger cohort.
Collapse
|
102
|
Micera A, Balzamino BO, Di Zazzo A, Dinice L, Bonini S, Coassin M. Biomarkers of Neurodegeneration and Precision Therapy in Retinal Disease. Front Pharmacol 2021; 11:601647. [PMID: 33584278 PMCID: PMC7873955 DOI: 10.3389/fphar.2020.601647] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Vision-threatening retinal diseases affect millions of people worldwide, representing an important public health issue (high social cost) for both technologically advanced and new-industrialized countries. Overall RD group comprises the retinitis pigmentosa, the age-related macular degeneration (AMD), the diabetic retinopathy (DR), and idiopathic epiretinal membrane formation. Endocrine, metabolic, and even lifestyles risk factors have been reported for these age-linked conditions that represent a "public priority" also in this COVID-19 emergency. Chronic inflammation and neurodegeneration characterize the disease evolution, with a consistent vitreoretinal interface impairment. As the vitreous chamber is significantly involved, the latest diagnostic technologies of imaging (retina) and biomarker detection (vitreous) have provided a huge input at both medical and surgical levels. Complement activation and immune cell recruitment/infiltration as well as detrimental intra/extracellular deposits occur in association with a reactive gliosis. The cell/tissue aging route shows a specific signal path and biomolecular profile characterized by the increased expression of several glial-derived mediators, including angiogenic/angiostatic, neurogenic, and stress-related factors (oxidative stress metabolites, inflammation, and even amyloid formation). The possibility to access vitreous chamber by collecting vitreous reflux during intravitreal injection or obtaining vitreous biopsy during a vitrectomy represents a step forward for an individualized therapy. As drug response and protein signature appear unique in each single patient, therapies should be individualized. This review addresses the current knowledge about biomarkers and pharmacological targets in these vitreoretinal diseases. As vitreous fluids might reflect the early stages of retinal sufferance and/or late stages of neurodegeneration, the possibility to modulate intravitreal levels of growth factors, in combination to anti-VEGF therapy, would open to a personalized therapy of retinal diseases.
Collapse
Affiliation(s)
- Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS - Fondazione Bietti, Rome, Italy
| | - Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS - Fondazione Bietti, Rome, Italy
| | - Antonio Di Zazzo
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Lucia Dinice
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS - Fondazione Bietti, Rome, Italy
| | - Stefano Bonini
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Marco Coassin
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
103
|
Tan AH, Chong CW, Lim SY, Yap IKS, Teh CSJ, Loke MF, Song SL, Tan JY, Ang BH, Tan YQ, Kho MT, Bowman J, Mahadeva S, Yong HS, Lang AE. Gut Microbial Ecosystem in Parkinson Disease: New Clinicobiological Insights from Multi-Omics. Ann Neurol 2021; 89:546-559. [PMID: 33274480 DOI: 10.1002/ana.25982] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Gut microbiome alterations in Parkinson disease (PD) have been reported repeatedly, but their functional relevance remains unclear. Fecal metabolomics, which provide a functional readout of microbial activity, have scarcely been investigated. We investigated fecal microbiome and metabolome alterations in PD, and their clinical relevance. METHODS Two hundred subjects (104 patients, 96 controls) underwent extensive clinical phenotyping. Stool samples were analyzed using 16S rRNA gene sequencing. Fecal metabolomics were performed using two platforms, nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry. RESULTS Fecal microbiome and metabolome composition in PD was significantly different from controls, with the largest effect size seen in NMR-based metabolome. Microbiome and NMR-based metabolome compositional differences remained significant after comprehensive confounder analyses. Differentially abundant fecal metabolite features and predicted functional changes in PD versus controls included bioactive molecules with putative neuroprotective effects (eg, short chain fatty acids [SCFAs], ubiquinones, and salicylate) and other compounds increasingly implicated in neurodegeneration (eg, ceramides, sphingosine, and trimethylamine N-oxide). In the PD group, cognitive impairment, low body mass index (BMI), frailty, constipation, and low physical activity were associated with fecal metabolome compositional differences. Notably, low SCFAs in PD were significantly associated with poorer cognition and low BMI. Lower butyrate levels correlated with worse postural instability-gait disorder scores. INTERPRETATION Gut microbial function is altered in PD, characterized by differentially abundant metabolic features that provide important biological insights into gut-brain pathophysiology. Their clinical relevance further supports a role for microbial metabolites as potential targets for the development of new biomarkers and therapies in PD. ANN NEUROL 2021;89:546-559.
Collapse
Affiliation(s)
- Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Mah Pooi Soo and Tan Chin Nam Center for Parkinson's and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chun Wie Chong
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia.,Center of Translational Research, Institute of Research, Development, and Innovation, International Medical University, Kuala Lumpur, Malaysia
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Mah Pooi Soo and Tan Chin Nam Center for Parkinson's and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mun Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sze-Looi Song
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia
| | - Jiun Yan Tan
- Mah Pooi Soo and Tan Chin Nam Center for Parkinson's and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ban Hong Ang
- Mah Pooi Soo and Tan Chin Nam Center for Parkinson's and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yong Qi Tan
- Mah Pooi Soo and Tan Chin Nam Center for Parkinson's and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mee Teck Kho
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Jeff Bowman
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, La Jolla, CA, USA.,Center for Microbiome Innovation, University of California, San Diego, San Diego, CA, USA
| | - Sanjiv Mahadeva
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Hoi Sen Yong
- Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
104
|
Baima G, Iaderosa G, Citterio F, Grossi S, Romano F, Berta GN, Buduneli N, Aimetti M. Salivary metabolomics for the diagnosis of periodontal diseases: a systematic review with methodological quality assessment. Metabolomics 2021; 17:1. [PMID: 33387070 DOI: 10.1007/s11306-020-01754-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Early diagnosis of periodontitis by means of a rapid, accurate and non-invasive method is highly desirable to reduce the individual and epidemiological burden of this largely prevalent disease. OBJECTIVES The aims of the present systematic review were to examine potential salivary metabolic biomarkers and pathways associated to periodontitis, and to assess the accuracy of salivary untargeted metabolomics for the diagnosis of periodontal diseases. METHODS Relevant studies identified from MEDLINE (PubMed), Embase and Scopus databases were systematically examined for analytical protocols, metabolic biomarkers and results from the multivariate analysis (MVA). Pathway analysis was performed using the MetaboAnalyst online software and quality assessment by means of a modified version of the QUADOMICS tool. RESULTS Twelve studies met the inclusion criteria, with sample sizes ranging from 19 to 130 subjects. Compared to periodontally healthy individuals, valine, phenylalanine, isoleucine, tyrosine and butyrate were found upregulated in periodontitis patients in most studies; while lactate, pyruvate and N-acetyl groups were the most significantly expressed in healthy individuals. Metabolic pathways that resulted dysregulated are mainly implicated in inflammation, oxidative stress, immune activation and bacterial energetic metabolism. The findings from MVA revealed that periodontitis is characterized by a specific metabolic signature in saliva, with coefficients of determination ranging from 0.52 to 0.99. CONCLUSIONS This systematic review summarizes candidate metabolic biomarkers and pathways related to periodontitis, which may provide opportunities for the validation of diagnostic or predictive models and the discovery of novel targets for monitoring and treating such a disease (PROSPERO CRD42020188482).
Collapse
Affiliation(s)
- Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy.
| | - Giovanni Iaderosa
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Filippo Citterio
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Silvia Grossi
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Federica Romano
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Giovanni N Berta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Nurcan Buduneli
- Department of Periodontology, School of Dentistry, Ege University, İzmir, Turkey
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| |
Collapse
|
105
|
Jutley GS, Sahota K, Sahbudin I, Filer A, Arayssi T, Young SP, Raza K. Relationship Between Inflammation and Metabolism in Patients With Newly Presenting Rheumatoid Arthritis. Front Immunol 2021; 12:676105. [PMID: 34650548 PMCID: PMC8507469 DOI: 10.3389/fimmu.2021.676105] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/04/2021] [Indexed: 12/29/2022] Open
Abstract
Background Systemic inflammation in rheumatoid arthritis (RA) is associated with metabolic changes. We used nuclear magnetic resonance (NMR) spectroscopy-based metabolomics to assess the relationship between an objective measure of systemic inflammation [C-reactive protein (CRP)] and both the serum and urinary metabolome in patients with newly presenting RA. Methods Serum (n=126) and urine (n=83) samples were collected at initial presentation from disease modifying anti-rheumatic drug naïve RA patients for metabolomic profile assessment using 1-dimensional 1H-NMR spectroscopy. Metabolomics data were analysed using partial least square regression (PLS-R) and orthogonal projections to latent structure discriminant analysis (OPLS-DA) with cross validation. Results Using PLS-R analysis, a relationship between the level of inflammation, as assessed by CRP, and the serum (p=0.001) and urinary (p<0.001) metabolome was detectable. Likewise, following categorisation of CRP into tertiles, patients in the lowest CRP tertile and the highest CRP tertile were statistically discriminated using OPLS-DA analysis of both serum (p=0.033) and urinary (p<0.001) metabolome. The most highly weighted metabolites for these models included glucose, amino acids, lactate, and citrate. These findings suggest increased glycolysis, perturbation in the citrate cycle, oxidative stress, protein catabolism and increased urea cycle activity are key characteristics of newly presenting RA patients with elevated CRP. Conclusions This study consolidates our understanding of a previously identified relationship between serum metabolite profile and inflammation and provides novel evidence that there is a relationship between urinary metabolite profile and inflammation as measured by CRP. Identification of these metabolic perturbations provides insights into the pathogenesis of RA and may help in the identification of therapeutic targets.
Collapse
Affiliation(s)
- Gurpreet Singh Jutley
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and Institute for Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Kalvin Sahota
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and Institute for Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Ilfita Sahbudin
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and Institute for Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Andrew Filer
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and Institute for Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Research Into Inflammatory Arthritis Centre, Versus Arthritis, University of Birmingham, Birmingham, United Kingdom
| | | | - Stephen P Young
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and Institute for Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Karim Raza
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and Institute for Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Research Into Inflammatory Arthritis Centre, Versus Arthritis, University of Birmingham, Birmingham, United Kingdom.,Department of Rheumatology, Sandwell and West Birmingham NHS Trust, Birmingham, United Kingdom
| |
Collapse
|
106
|
Saigusa D, Matsukawa N, Hishinuma E, Koshiba S. Identification of biomarkers to diagnose diseases and find adverse drug reactions by metabolomics. Drug Metab Pharmacokinet 2020; 37:100373. [PMID: 33631535 DOI: 10.1016/j.dmpk.2020.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Metabolomics has been widely used for investigating the biological functions of disease expression and has the potential to discover biomarkers in circulating biofluids or tissue extracts that reflect in phenotypic changes. Metabolic profiling has advantages because of the use of unbiased techniques, including multivariate analysis, and has been applied in pharmacological studies to predict therapeutic and adverse reactions of drugs, which is called pharmacometabolomics (PMx). Nuclear magnetic resonance (NMR)- and mass spectrometry (MS)-based metabolomics has contributed to the discovery of recent disease biomarkers; however, the optimal strategy for the study purpose must be selected from many established protocols, methodologies and analytical platforms. Additionally, information on molecular localization in tissue is essential for further functional analyses related to therapeutic and adverse effects of drugs in the process of drug development. MS imaging (MSI) is a promising technology that can visualize molecules on tissue surfaces without labeling and thus provide localized information. This review summarizes recent uses of MS-based global and wide-targeted metabolomics technologies and the advantages of the MSI approach for PMx and highlights the PMx technique for the biomarker discovery of adverse drug effects.
Collapse
Affiliation(s)
- Daisuke Saigusa
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Naomi Matsukawa
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Eiji Hishinuma
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan.
| | - Seizo Koshiba
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan.
| |
Collapse
|
107
|
Metabolomic Analysis to Elucidate Mechanisms of Sunitinib Resistance in Renal Cell Carcinoma. Metabolites 2020; 11:metabo11010001. [PMID: 33374949 PMCID: PMC7821950 DOI: 10.3390/metabo11010001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolomics analysis possibly identifies new therapeutic targets in treatment resistance by measuring changes in metabolites accompanying cancer progression. We previously conducted a global metabolomics (G-Met) study of renal cell carcinoma (RCC) and identified metabolites that may be involved in sunitinib resistance in RCC. Here, we aimed to elucidate possible mechanisms of sunitinib resistance in RCC through intracellular metabolites. We established sunitinib-resistant and control RCC cell lines from tumor tissues of RCC cell (786-O)-injected mice. We also quantified characteristic metabolites identified in our G-Met study to compare intracellular metabolism between the two cell lines using liquid chromatography-mass spectrometry. The established sunitinib-resistant RCC cell line demonstrated significantly desuppressed protein kinase B (Akt) and mesenchymal-to-epithelial transition (MET) phosphorylation compared with the control RCC cell line under sunitinib exposure. Among identified metabolites, glutamine, glutamic acid, and α-KG (involved in glutamine uptake into the tricarboxylic acid (TCA) cycle for energy metabolism); fructose 6-phosphate, D-sedoheptulose 7-phosphate, and glucose 1-phosphate (involved in increased glycolysis and its intermediate metabolites); and glutathione and myoinositol (antioxidant effects) were significantly increased in the sunitinib-resistant RCC cell line. Particularly, glutamine transporter (SLC1A5) expression was significantly increased in sunitinib-resistant RCC cells compared with control cells. In this study, we demonstrated energy metabolism with glutamine uptake and glycolysis upregulation, as well as antioxidant activity, was also associated with sunitinib resistance in RCC cells.
Collapse
|
108
|
Therapeutic drug monitoring of tranexamic acid in plasma and urine of renally impaired patients using solid phase microextraction. Talanta 2020; 225:121945. [PMID: 33592700 DOI: 10.1016/j.talanta.2020.121945] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 11/24/2022]
Abstract
The purpose of the research was to develop an improved solid phase microextraction (SPME)-based sampling protocol for the therapeutic drug monitoring of tranexamic acid (TXA) from plasma and urine of patients with chronic renal dysfunction (CRD) in order to correct the current dosing schedule to accommodate these patients. A 12-fold improvement in sampling efficiency (25 min for 96 samples -22 s per sample) was achieved with the use of hydrophilic-lipophilic balance (HLB)-coated SPME devices, thereby enabling high throughput profiling of TXA in the plasma and urine of 49 CRD patients undergoing cardiac surgery. A limit of quantification of 10 μg/mL and 25 μg/mL was obtained for plasma and urine respectively while a method accuracy of 103-105% and a precision of less than 8% was achieved. The results from this study were ultimately used by clinicians at the Toronto General Hospital to design a corrective pharmacokinetic dosing schedule for CRD patients. This green method further presents potential application in the clinical field for the fast high throughput monitoring of TXA not only in plasma but also in urine - a biological matrix seldom explored for the analysis of TXA - without the need for solvent-assisted extraction, extensive sample pre-treatment or clean-up, derivatization or excessive pH adjustment to improve amenability for analytical separation.
Collapse
|
109
|
Eveleens Maarse BC, Loh NY, Karpe F, Rosendaal FR, van Heemst D, Mook-Kanamori DO, Willems van Dijk K, Rensen PCN, Kooijman S, Christodoulides C, Noordam R. Associations between outdoor temperature and bright sunlight with metabolites in two population-based European cohorts. Nutr Metab Cardiovasc Dis 2020; 30:2252-2261. [PMID: 32912789 DOI: 10.1016/j.numecd.2020.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIMS Outdoor temperature and bright sunlight may directly and/or indirectly modulate systemic metabolism. We assessed the associations between outdoor temperature and bright sunlight duration with metabolomics. METHODS AND RESULTS Cross-sectional analyses were undertaken in non-diabetic individuals from the Oxford BioBank (OBB; N = 6368; mean age 47.0 years, males 44%) and the Netherlands Epidemiology of Obesity (NEO; N = 5916; mean age 55.6 years, males 43%) study. Data on mean outdoor bright sunlight and temperature were collected from local weather stations in the week prior to blood sampling. Fasting serum levels of 148 metabolites, including 14 lipoprotein subclasses, were measured using NMR spectroscopy. Linear regression analyses were performed to assess the associations between mean outdoor temperature and bright sunlight duration with metabolomics adjusted for age, sex, body mass index, season and either outdoor temperature or bright sunlight. A higher mean outdoor temperature was associated with increased serum concentrations of lipoprotein (sub)particles (β (SE) = 0.064 (0.018) SD per 5 °C, p = 5.03e-4) and certain amino acids such as phenylalanine (0.066 (0.016) SD, p = 6.44e-05) and leucine (0.111 (0.018) SD, p = 1.25e-09). In contrast, longer duration of bright sunlight was specifically associated with lower concentrations of very low-density lipoprotein (sub)particles (e.g., VLDL cholesterol (-0.024 (0.005) SD per 1-h bright sunlight, p = 8.06e-6)). The direction of effects was generally consistent between the OBB and NEO, although effect sizes were generally larger in the OBB. CONCLUSIONS Increased bright sunlight duration is associated with an improved metabolic profile whilst higher outdoor temperature may adversely impact cardiometabolic health.
Collapse
Affiliation(s)
- Boukje C Eveleens Maarse
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Nellie Y Loh
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Oxford, UK
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ko Willems van Dijk
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick C N Rensen
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Kooijman
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Constantinos Christodoulides
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
110
|
Southam AD, Pursell H, Frigerio G, Jankevics A, Weber RJM, Dunn WB. Characterization of Monophasic Solvent-Based Tissue Extractions for the Detection of Polar Metabolites and Lipids Applying Ultrahigh-Performance Liquid Chromatography-Mass Spectrometry Clinical Metabolic Phenotyping Assays. J Proteome Res 2020; 20:831-840. [PMID: 33236910 DOI: 10.1021/acs.jproteome.0c00660] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolic phenotyping of tissues uses metabolomics and lipidomics to measure the relative polar and nonpolar (lipid) metabolite levels in biological samples. This approach aims to understand disease biochemistry and identify biochemical markers of disease. Sample preparation methods must be reproducible, sensitive (high metabolite and lipid yield), and ideally rapid. We evaluated three biphasic methods for polar and nonpolar compound extraction (chloroform/methanol/water, dichloromethane/methanol/water, and methyl tert-butyl ether [MTBE]/methanol/water), a monophasic method for polar compound extraction (acetonitrile/methanol/water), and a monophasic method for nonpolar compound extraction (isopropanol/water). All methods were applied to mammalian heart, kidney, and liver tissues. Polar extracts were analyzed by hydrophilic interaction chromatography (HILIC) ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC-MS) and nonpolar extracts by C18 reversed-phase UHPLC-MS. Method reproducibility and yield were assessed using multiple annotated endogenous compounds (putatively and MS/MS annotated). Monophasic methods had the highest yield and high reproducibility for both polar (positive ion: median relative standard deviation (RSD) < 18%; negative ion: median RSD < 28%) and nonpolar (positive and negative ion: median RSD < 15%) extractions for heart, kidneys, and liver. The polar monophasic method extracted higher levels of lipid than biphasic polar extractions, and these lipids caused minimal detection suppression for other compounds during HILIC UHPLC-MS. The nonpolar monophasic method had similar or greater detection responses of all detected lipid classes compared to biphasic methods (including increased phosphatidylinositol, phosphatidylserine, and cardiolipin responses). Monophasic methods are quicker and simpler than biphasic methods and are therefore most suited for future automation.
Collapse
Affiliation(s)
- Andrew D Southam
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.,Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Harriet Pursell
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Gianfranco Frigerio
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan 20122, Italy
| | - Andris Jankevics
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.,Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Ralf J M Weber
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.,Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Warwick B Dunn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.,Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.,Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
111
|
van der Sijp MPL, Suchiman HED, Eijk M, Vojinovic D, Niggebrugge AHP, Blauw GJ, Achterberg WP, Slagboom PE. The Prognostic Value of Metabolic Profiling in Older Patients With a Proximal Femoral Fracture. Geriatr Orthop Surg Rehabil 2020; 11:2151459320960091. [PMID: 33194255 PMCID: PMC7607756 DOI: 10.1177/2151459320960091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction: High mortality rates of approximately 20% within 1 year after treatment are observed for patients with proximal femoral fractures. This preliminary study explores the prognostic value of a previously constructed mortality risk score based on a set of 14 metabolites for the survival and functional recovery in patients with proximal femoral fractures. Materials and Methods: A prospective observational cohort study was conducted including patients admitted with a proximal femoral fracture. The primary outcome was patient survival, and the recovery of independence in activities of daily living was included as a secondary outcome. The mortality risk score was constructed for each patient and its prognostic value was tested for the whole population. Results: Data was available form 136 patients. The mean age of all patients was 82.1 years, with a median follow-up of 6 months. Within this period, 19.0% of all patients died and 51.1% recovered to their prefracture level of independence. The mortality score was significantly associated with mortality (HR, 2.74; 95% CI, 1.61-4.66; P < 0.001), but showed only a fair prediction accuracy (AUC = 0.68) and a borderline significant comparison of the mortality score tertile groups in survival analyses (P = 0.049). No decisive associations were found in any of the analyses for the functional recovery of patients. Discussion: These findings support the previously determined prognostic value of the mortality risk score. However, the independent prognostic value when adjusted for potential confounding factors is yet to be assessed. Also, a risk score constructed for this specific patient population might achieve higher accuracies for the prediction of survival and functional recovery. Conclusions: A modest prediction accuracy was observed for the mortality risk score in this population. More elaborate studies are needed to validate these findings and develop a tailored model for clinical purposes in this patient population.
Collapse
Affiliation(s)
| | - H Eka D Suchiman
- Leiden Universitair Medisch Centrum, Leiden, South Holland, Netherlands
| | - Monica Eijk
- Leiden Universitair Medisch Centrum, Leiden, South Holland, Netherlands
| | - Dina Vojinovic
- Leiden Universitair Medisch Centrum, Leiden, South Holland, Netherlands
| | | | - Gerard J Blauw
- Leiden Universitair Medisch Centrum, Leiden, South Holland, Netherlands
| | | | - P Eline Slagboom
- Leiden Universitair Medisch Centrum, Leiden, South Holland, Netherlands
| |
Collapse
|
112
|
Loo RL, Lodge S, Kimhofer T, Bong SH, Begum S, Whiley L, Gray N, Lindon JC, Nitschke P, Lawler NG, Schäfer H, Spraul M, Richards T, Nicholson JK, Holmes E. Quantitative In-Vitro Diagnostic NMR Spectroscopy for Lipoprotein and Metabolite Measurements in Plasma and Serum: Recommendations for Analytical Artifact Minimization with Special Reference to COVID-19/SARS-CoV-2 Samples. J Proteome Res 2020; 19:4428-4441. [PMID: 32852212 PMCID: PMC7640974 DOI: 10.1021/acs.jproteome.0c00537] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 12/14/2022]
Abstract
Quantitative nuclear magnetic resonance (NMR) spectroscopy of blood plasma is widely used to investigate perturbed metabolic processes in human diseases. The reliability of biochemical data derived from these measurements is dependent on the quality of the sample collection and exact preparation and analysis protocols. Here, we describe systematically, the impact of variations in sample collection and preparation on information recovery from quantitative proton (1H) NMR spectroscopy of human blood plasma and serum. The effects of variation of blood collection tube sizes and preservatives, successive freeze-thaw cycles, sample storage at -80 °C, and short-term storage at 4 and 20 °C on the quantitative lipoprotein and metabolite patterns were investigated. Storage of plasma samples at 4 °C for up to 48 h, freezing at -80 °C and blood sample collection tube choice have few and minor effects on quantitative lipoprotein profiles, and even storage at 4 °C for up to 168 h caused little information loss. In contrast, the impact of heat-treatment (56 °C for 30 min), which has been used for inactivation of SARS-CoV-2 and other viruses, that may be required prior to analytical measurements in low level biosecurity facilities induced marked changes in both lipoprotein and low molecular weight metabolite profiles. It was conclusively demonstrated that this heat inactivation procedure degrades lipoproteins and changes metabolic information in complex ways. Plasma from control individuals and SARS-CoV-2 infected patients are differentially altered resulting in the creation of artifactual pseudo-biomarkers and destruction of real biomarkers to the extent that data from heat-treated samples are largely uninterpretable. We also present several simple blood sample handling recommendations for optimal NMR-based biomarker discovery investigations in SARS CoV-2 studies and general clinical biomarker research.
Collapse
Affiliation(s)
- Ruey Leng Loo
- Australian
National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
- Center
for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Murdoch, Perth, WA 6150, Australia
| | - Samantha Lodge
- Australian
National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
- Center
for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Murdoch, Perth, WA 6150, Australia
| | - Torben Kimhofer
- Australian
National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
- Center
for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Murdoch, Perth, WA 6150, Australia
| | - Sze-How Bong
- Australian
National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Sofina Begum
- Section
for Nutrition Research, Imperial College
London, Sir Alexander Fleming Building, South Kensington, London SW72AZ, U.K.
| | - Luke Whiley
- Australian
National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
- Center
for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Murdoch, Perth, WA 6150, Australia
- Perron
Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Nicola Gray
- Australian
National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
- Center
for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Murdoch, Perth, WA 6150, Australia
| | - John C. Lindon
- Center
for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Murdoch, Perth, WA 6150, Australia
- Department
of Metabolism, Nutrition and Reproduction, Imperial College London, Sir Alexander Fleming Building, London SW72AZ, U.K.
| | - Philipp Nitschke
- Australian
National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
- Center
for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Murdoch, Perth, WA 6150, Australia
| | - Nathan G. Lawler
- Australian
National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
- Center
for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Murdoch, Perth, WA 6150, Australia
| | | | - Manfred Spraul
- Biospin
GmbH, Silberstreifen, 76287 Rheinstetten, Germany
| | - Toby Richards
- Division
of Surgery, Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Harry Perkins Building, Robert Warren Drive, Murdoch, Perth, WA 6150, Australia
- Department
of Endocrinology and Diabetes, Fiona Stanley
Hospital, Harry Perkins
Building, Murdoch, Perth, WA 6150, Australia
| | - Jeremy K. Nicholson
- Australian
National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
- Center
for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Murdoch, Perth, WA 6150, Australia
- Division
of Surgery, Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Harry Perkins Building, Robert Warren Drive, Murdoch, Perth, WA 6150, Australia
- Institute
of Global Health Innovation, Imperial College
London, Level 1, Faculty Building, South Kensington Campus, London SW72NA, U.K.
| | - Elaine Holmes
- Australian
National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
- Center
for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Murdoch, Perth, WA 6150, Australia
- Section
for Nutrition Research, Imperial College
London, Sir Alexander Fleming Building, South Kensington, London SW72AZ, U.K.
| |
Collapse
|
113
|
Yu M, Li Z, Wang G, Cui Y, Rong T, Tian Z, Liu Z, Li J, Chen W, Ma X. Dietary supplementation with citrus extract alters the plasma parameters, circulating amino acid profiles and gene expression of small intestinal nutrient transporters in Chinese yellow-feathered broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5126-5135. [PMID: 32469078 DOI: 10.1002/jsfa.10525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/11/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND This study evaluated the effects of citrus extract (CE) on growth performance, plasma amino acid (AA) profiles, intestinal development and small intestine AA and peptide transporter expression levels in broilers. A total of 540 one-day-old yellow-feathered broilers were fed a basal diet without any antibiotic (control group), or a basal diet containing 10 mg kg-1 zinc bacitracin (antibiotic group), or a basal diet supplemented with 10 mg kg-1 CE (CE group). After 63 days of feeding, two broilers per pen were slaughtered to collect tissues for further analysis. RESULTS Results showed that CE increased (P < 0.05) the final body weight and average daily gain from day 1 to 63, and decreased (P < 0.05) the feed/gain ratio from day 1 to 63. Dietary CE supplementation increased (P < 0.05) plasma total protein, albumin and glucose concentration, and decreased (P < 0.05) urea concentration. CE supplementation increased (P < 0.05) the villus height in the ileum and the villus height/crypt depth in the jejunum and ileum, but decreased (P < 0.05) the crypt depth in the jejunum and ileum. CE supplementation increased (P < 0.05) most plasma essential AA concentrations. Additionally, CE supplementation upregulated (P < 0.05) ASCT1, b0,+ AT, B0 AT1, EAAT3, rBAT, y+ LAT2 and PepT1 expression in the jejunum, and b0,+ AT, EAAT3, rBAT, y+ LAT2, CAT1 and PepT1 in the ileum. CONCLUSIONS Collectively, our results indicated that CE supplementation promotes intestinal physiological absorption of AAs by upregulating gene expression of small intestinal key AA and peptide transporters, thereby enhancing the growth performance of broilers. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Miao Yu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhenming Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Gang Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yiyan Cui
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ting Rong
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhimei Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhichang Liu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiazhou Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Weidong Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences; State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Guangdong Engineering Technology Research Center of animal Meat quality and Safety Control and Evaluation; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
114
|
1H NMR serum metabolomic profiling of patients at risk of cardiovascular diseases performing stress test. Sci Rep 2020; 10:17838. [PMID: 33082494 PMCID: PMC7575600 DOI: 10.1038/s41598-020-74880-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/07/2020] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide. Changes in lifestyle and/or pharmacological treatment are able to reduce the burden of coronary artery diseases (CAD) and early diagnosis is crucial for the timely and optimal management of the disease. Stress testing is a good method to measure the burden of CAD but it is time consuming and pharmacological testing may not fully mimic exercise test. The objectives of the present project were to characterize the metabolic profile of the population undergoing pharmacological and exercise stress testing to evaluate possible differences between them, and to assess the capacity of 1H NMR spectroscopy to predict positive stress testing. Pattern recognition was applied to 1H NMR spectra from serum of patients undergoing stress test and metabolites were quantified. The effects of the stress test, confounding variables and the ability to predict ischemia were evaluated using OPLS-DA. There was an increase in lactate and alanine concentrations in post-test samples in patients undergoing exercise test, but not in those submitted to pharmacological testing. However, when considering only pharmacological patients, those with a positive test result, showed increased serum lactate, that was masked by the much larger amount of lactate associated to exercise testing. In conclusion, we have established that pharmacological stress test does not reproduce the dynamic changes observed in exercise stress. Although there is promising evidence suggesting that 1H NMR based metabolomics could predict stress test results, further studies with much larger populations will be required in order to obtain a definitive answer.
Collapse
|
115
|
Tremblay-Franco M, Poupin N, Amiel A, Canlet C, Rémond D, Debrauwer L, Dardevet D, Jourdan F, Savary-Auzeloux I, Polakof S. Postprandial NMR-Based Metabolic Exchanges Reflect Impaired Phenotypic Flexibility across Splanchnic Organs in the Obese Yucatan Mini-Pig. Nutrients 2020; 12:nu12082442. [PMID: 32823827 PMCID: PMC7468879 DOI: 10.3390/nu12082442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
The postprandial period represents one of the most challenging phenomena in whole-body metabolism, and it can be used as a unique window to evaluate the phenotypic flexibility of an individual in response to a given meal, which can be done by measuring the resilience of the metabolome. However, this exploration of the metabolism has never been applied to the arteriovenous (AV) exploration of organs metabolism. Here, we applied an AV metabolomics strategy to evaluate the postprandial flexibility across the liver and the intestine of mini-pigs subjected to a high fat–high sucrose (HFHS) diet for 2 months. We identified for the first time a postprandial signature associated to the insulin resistance and obesity outcomes, and we showed that the splanchnic postprandial metabolome was considerably affected by the meal and the obesity condition. Most of the changes induced by obesity were observed in the exchanges across the liver, where the metabolism was reorganized to maintain whole body glucose homeostasis by routing glucose formed de novo from a large variety of substrates into glycogen. Furthermore, metabolites related to lipid handling and energy metabolism showed a blunted postprandial response in the obese animals across organs. Finally, some of our results reflect a loss of flexibility in response to the HFHS meal challenge in unsuspected metabolic pathways that must be further explored as potential new events involved in early obesity and the onset of insulin resistance.
Collapse
Affiliation(s)
- Marie Tremblay-Franco
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, 31300 Toulouse, France; (M.T.-F.); (N.P.); (A.A.); (C.C.); (L.D.); (F.J.)
- Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, 31300 Toulouse, France
| | - Nathalie Poupin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, 31300 Toulouse, France; (M.T.-F.); (N.P.); (A.A.); (C.C.); (L.D.); (F.J.)
| | - Aurélien Amiel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, 31300 Toulouse, France; (M.T.-F.); (N.P.); (A.A.); (C.C.); (L.D.); (F.J.)
- Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, 31300 Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, 31300 Toulouse, France; (M.T.-F.); (N.P.); (A.A.); (C.C.); (L.D.); (F.J.)
- Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, 31300 Toulouse, France
| | - Didier Rémond
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (D.R.); (D.D.); (I.S.-A.)
| | - Laurent Debrauwer
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, 31300 Toulouse, France; (M.T.-F.); (N.P.); (A.A.); (C.C.); (L.D.); (F.J.)
- Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, 31300 Toulouse, France
| | - Dominique Dardevet
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (D.R.); (D.D.); (I.S.-A.)
| | - Fabien Jourdan
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, 31300 Toulouse, France; (M.T.-F.); (N.P.); (A.A.); (C.C.); (L.D.); (F.J.)
| | - Isabelle Savary-Auzeloux
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (D.R.); (D.D.); (I.S.-A.)
| | - Sergio Polakof
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (D.R.); (D.D.); (I.S.-A.)
- Correspondence: ; Tel.: +33-(0)4-7362-4895; Fax: 33-(0)4-7362-4638
| |
Collapse
|
116
|
Urinary 1H-NMR Metabolic Signature in Subjects Undergoing Colonoscopy for Colon Cancer Diagnosis. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10165401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metabolomics represents a promising non-invasive approach that can be applied to identify biochemical changes in colorectal cancer patients (CRC) and is potentially useful for diagnosis and follow-up. Despite the literature regarding metabolomics CRC-specific profiles, discrimination between metabolic changes specifically related to CRC and intra-individual variability is still a problem to be solved. This was a preliminary case-control study, in which 1H-NMR spectroscopy combined with multivariate statistical analysis was used to profile urine metabolites in subjects undergoing colonoscopy for colon cancer diagnosis. To reduce intra-individual variability, metabolic profiles were evaluated in participants’ urine samples, collected just before the colonoscopy and after a short-term dietary regimen required for the endoscopy procedure. Data obtained highlighted different urinary metabolic profiles between CRC and unaffected subjects (C). The metabolites altered in the CRC urine (acetoacetate, creatine, creatinine, histamine, phenylacetylglycine, and tryptophan) significantly correlated with colon cancer and discriminated with accuracy CRC patients from C patients (receiver operator characteristic (ROC) curve with an area under the curve (AUC) of 0.875; 95% CI: 0.667–1). These results confirm that urinary metabolomic analysis can be a valid tool to improve CRC diagnosis, prognosis, and response to therapy, representing a noninvasive approach that could precede more invasive tests.
Collapse
|
117
|
Precision Medicine for Lysosomal Disorders. Biomolecules 2020; 10:biom10081110. [PMID: 32722587 PMCID: PMC7463721 DOI: 10.3390/biom10081110] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
Precision medicine (PM) is an emerging approach for disease treatment and prevention that accounts for the individual variability in the genes, environment, and lifestyle of each person. Lysosomal diseases (LDs) are a group of genetic metabolic disorders that include approximately 70 monogenic conditions caused by a defect in lysosomal function. LDs may result from primary lysosomal enzyme deficiencies or impairments in membrane-associated proteins, lysosomal enzyme activators, or modifiers that affect lysosomal function. LDs are heterogeneous disorders, and the phenotype of the affected individual depends on the type of substrate and where it accumulates, which may be impacted by the type of genetic change and residual enzymatic activity. LDs are individually rare, with a combined incidence of approximately 1:4000 individuals. Specific therapies are already available for several LDs, and many more are in development. Early identification may enable disease course prediction and a specific intervention, which is very important for clinical outcome. Driven by advances in omics technology, PM aims to provide the most appropriate management for each patient based on the disease susceptibility or treatment response predictions for specific subgroups. In this review, we focused on the emerging diagnostic technologies that may help to optimize the management of each LD patient and the therapeutic options available, as well as in clinical developments that enable customized approaches to be selected for each subject, according to the principles of PM.
Collapse
|
118
|
Tan B, Zhang Y, Zhang T, He J, Luo X, Bian X, Wu J, Zou C, Wang Y, Fu L. Identifying potential serum biomarkers of breast cancer through targeted free fatty acid profiles screening based on a GC-MS platform. Biomed Chromatogr 2020; 34:e4922. [PMID: 32537761 DOI: 10.1002/bmc.4922] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/07/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022]
Abstract
Recent advances suggest that abnormal fatty acid metabolism highly correlates with breast cancer, which provide clues to discover potential biomarkers of breast cancer. This study aims to identify serum free fatty acid (FFA) metabolic profiles and screen potential biomarkers for breast cancer diagnosis. Gas chromatography-mass spectrometry and our in-house fatty acid methyl ester standard substances library were combined to accurately identify FFA profiles in serum samples of breast cancer patients and breast adenosis patients (as controls). Potential biomarkers were screened by applying statistical analysis. A total of 18 FFAs were accurately identified in serum sample. Two groups of patients were correctly discriminated by the orthogonal partial least squares-discriminant analysis model based on FFA profiles. Seven FFA levels were significantly higher in serum from breast cancer patients than that in controls, and exhibited positive correlation with malignant degrees of disease. Furthermore, five candidates (palmitic acid, oleic acid, cis-8,11,14-eicosatrienoic acid, docosanoic acid and the ratio of oleic acid to stearic acid) were selected as potential serum biomarkers for differential diagnosis of breast cancer. Our study will help to reveal the metabolic signature of FFAs in breast cancer patients, and provides valuable information for facilitating clinical noninvasive diagnosis.
Collapse
Affiliation(s)
- Binbin Tan
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| | - Ying Zhang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| | - Tiantian Zhang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| | - Jinsong He
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xueying Luo
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiqing Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Jianlin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Chang Zou
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University, Shenzhen People's Hospital, Shenzhen, China
| | - Yangzhi Wang
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Li Fu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
119
|
Jiang S, Yang J, Fang D. Effects of 9,10-phenanthrenequione on antioxidant indices and metabolite profiles in Takifugu obscurus plasma. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191356. [PMID: 32874598 PMCID: PMC7428283 DOI: 10.1098/rsos.191356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Derived from polycyclic aromatic hydrocarbons (PAHs), oxygenated-PAHs (oxy-PAHs) may pose hazards to aquatic organisms, which remain largely unknown. Takifugu obscurus is an important anadromous fish species of high economic and ecological values. In the present study, T. obscurus was acutely exposed to 44.29 µg l-1 9,10-phenanthrenequione (9,10-PQ) for 96 h. Changes of antioxidant indices and metabolite profiles in plasma were compared between 9,10-PQ treatment and the control. The results showed that 9,10-PQ treatment significantly increased malondialdehyde (MDA) content during 6 to 96 h, increased superoxide dismutase (SOD) and catalase (CAT) activities at 6 h, but decreased them at 96 h. These results indicated that 9,10-PQ induced oxidative stress to fish. Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) analysis revealed that four metabolic pathways were influenced in response to treatment with 9,10-PQ, including glycerophospholipid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, purine metabolism and sulfur metabolism. These pathways are associated with antioxidant mechanisms, biosynthesis of neurotransmitters and innate immune functions. Thus, the as-obtained results confirmed that 9,10-PQ induced oxidative stress and raised concerns of neurotoxicity and immunotoxicity to fish. Overall, the present study posed a high environmental risk of oxy-PAHs to aquatic ecosystems.
Collapse
Affiliation(s)
- Shulun Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, People's Republic of China
| | - Jian Yang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, People's Republic of China
| | - Dian Fang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, People's Republic of China
| |
Collapse
|
120
|
Koundouros N, Karali E, Tripp A, Valle A, Inglese P, Perry NJS, Magee DJ, Anjomani Virmouni S, Elder GA, Tyson AL, Dória ML, van Weverwijk A, Soares RF, Isacke CM, Nicholson JK, Glen RC, Takats Z, Poulogiannis G. Metabolic Fingerprinting Links Oncogenic PIK3CA with Enhanced Arachidonic Acid-Derived Eicosanoids. Cell 2020; 181:1596-1611.e27. [PMID: 32559461 PMCID: PMC7339148 DOI: 10.1016/j.cell.2020.05.053] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/07/2020] [Accepted: 05/28/2020] [Indexed: 01/02/2023]
Abstract
Oncogenic transformation is associated with profound changes in cellular metabolism, but whether tracking these can improve disease stratification or influence therapy decision-making is largely unknown. Using the iKnife to sample the aerosol of cauterized specimens, we demonstrate a new mode of real-time diagnosis, coupling metabolic phenotype to mutant PIK3CA genotype. Oncogenic PIK3CA results in an increase in arachidonic acid and a concomitant overproduction of eicosanoids, acting to promote cell proliferation beyond a cell-autonomous manner. Mechanistically, mutant PIK3CA drives a multimodal signaling network involving mTORC2-PKCζ-mediated activation of the calcium-dependent phospholipase A2 (cPLA2). Notably, inhibiting cPLA2 synergizes with fatty acid-free diet to restore immunogenicity and selectively reduce mutant PIK3CA-induced tumorigenicity. Besides highlighting the potential for metabolic phenotyping in stratified medicine, this study reveals an important role for activated PI3K signaling in regulating arachidonic acid metabolism, uncovering a targetable metabolic vulnerability that largely depends on dietary fat restriction. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Nikos Koundouros
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; Division of Systems Medicine, Department of Metabolism Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Evdoxia Karali
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Aurelien Tripp
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Adamo Valle
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; Energy Metabolism and Nutrition, Research Institute of Health Sciences (IUNICS), University of Balearic Islands, 07122 Palma de Mallorca, Spain; Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands, 07120 Palma de Mallorca, Spain; Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBERobn CB06/03/0043), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paolo Inglese
- Division of Systems Medicine, Department of Metabolism Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Nicholas J S Perry
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - David J Magee
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; Pain Medicine Department, The Royal Marsden Hospital, London, UK
| | - Sara Anjomani Virmouni
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - George A Elder
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Adam L Tyson
- Flow Cytometry and Light Microscopy Core Facility, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK
| | - Maria Luisa Dória
- Division of Systems Medicine, Department of Metabolism Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Antoinette van Weverwijk
- Breast Cancer Now Research Centre, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; Division of Tumor Biology and Immunology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Renata F Soares
- Division of Systems Medicine, Department of Metabolism Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Clare M Isacke
- Breast Cancer Now Research Centre, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Jeremy K Nicholson
- Division of Systems Medicine, Department of Metabolism Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK; The Australian National Phenome Centre, Health Futures Institute, Murdoch University, Perth WA6150, WA, Australia
| | - Robert C Glen
- Division of Systems Medicine, Department of Metabolism Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK; Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Zoltan Takats
- Division of Systems Medicine, Department of Metabolism Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK.
| | - George Poulogiannis
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; Division of Systems Medicine, Department of Metabolism Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
121
|
Posma JM, Garcia-Perez I, Frost G, Aljuraiban GS, Chan Q, Van Horn L, Daviglus M, Stamler J, Holmes E, Elliott P, Nicholson JK. Nutriome-metabolome relationships provide insights into dietary intake and metabolism. ACTA ACUST UNITED AC 2020; 1:426-436. [PMID: 32954362 PMCID: PMC7497842 DOI: 10.1038/s43016-020-0093-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dietary assessment traditionally relies on self-reported data which are often inaccurate and may result in erroneous diet-disease risk associations. We illustrate how urinary metabolic phenotyping can be used as alternative approach for obtaining information on dietary patterns. We used two multi-pass 24-hr dietary recalls, obtained on two occasions on average three weeks apart, paired with two 24-hr urine collections from 1,848 U.S. individuals; 67 nutrients influenced the urinary metabotype measured with 1H-NMR spectroscopy characterized by 46 structurally identified metabolites. We investigated the stability of each metabolite over time and showed that the urinary metabolic profile is more stable within individuals than reported dietary patterns. The 46 metabolites accurately predicted healthy and unhealthy dietary patterns in a free-living U.S. cohort and replicated in an independent U.K. cohort. We mapped these metabolites into a host-microbial metabolic network to identify key pathways and functions. These data can be used in future studies to evaluate how this set of diet-derived, stable, measurable bioanalytical markers are associated with disease risk. This knowledge may give new insights into biological pathways that characterize the shift from a healthy to unhealthy metabolic phenotype and hence give entry points for prevention and intervention strategies.
Collapse
Affiliation(s)
- Joram M Posma
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, South Kensington Campus, Imperial College London, SW7 2AZ, U.K.,Health Data Research UK-London, U.K
| | - Isabel Garcia-Perez
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Campus, Imperial College London, W12 0NN, U.K
| | - Gary Frost
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Campus, Imperial College London, W12 0NN, U.K
| | - Ghadeer S Aljuraiban
- The Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.,Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, St. Mary's Campus, Imperial College London, W2 1PG, U.K
| | - Queenie Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, St. Mary's Campus, Imperial College London, W2 1PG, U.K.,MRC Centre for Environment and Health, School of Public Health, Faculty of Medicine, St. Mary's Campus, Imperial College London, W2 1PG, U.K
| | - Linda Van Horn
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, U.S.A
| | - Martha Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL 60612
| | - Jeremiah Stamler
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, U.S.A
| | - Elaine Holmes
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Campus, Imperial College London, W12 0NN, U.K.,UK Dementia Research Institute, Faculty of Medicine, Hammersmith Campus, Imperial College London, W12 0NN, U.K.,Division of Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia.,The Australian National Phenome Center, Harry Perkins Institute, Murdoch University, WA 6150, Australia
| | - Paul Elliott
- Health Data Research UK-London, U.K.,Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, St. Mary's Campus, Imperial College London, W2 1PG, U.K.,MRC Centre for Environment and Health, School of Public Health, Faculty of Medicine, St. Mary's Campus, Imperial College London, W2 1PG, U.K.,UK Dementia Research Institute, Faculty of Medicine, Hammersmith Campus, Imperial College London, W12 0NN, U.K.,National Institute for Health Research Imperial Biomedical Research Centre, St. Mary's Campus, Imperial College London, W2 1PG, U.K.,British Heart Foundation Centre of Research Excellence at Imperial, Imperial College London, W2 1PG, U.K
| | - Jeremy K Nicholson
- Division of Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia.,The Australian National Phenome Center, Harry Perkins Institute, Murdoch University, WA 6150, Australia
| |
Collapse
|
122
|
Pereira GE, Padhi EMT, Girardello RC, Medina-Plaza C, Tseng D, Bruce RC, Erdmann JN, Kurtural SK, Slupsky CM, Oberholster A. Trunk Girdling Increased Stomatal Conductance in Cabernet Sauvignon Grapevines, Reduced Glutamine, and Increased Malvidin-3-Glucoside and Quercetin-3-Glucoside Concentrations in Skins and Pulp at Harvest. FRONTIERS IN PLANT SCIENCE 2020; 11:707. [PMID: 32595661 PMCID: PMC7301964 DOI: 10.3389/fpls.2020.00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Girdling is a traditional horticultural practice applied at fruit set or other phenological stages, and is used mostly as a vine management. In grapevines, it is used primarily for table grapes to improve berry weight, sugar content, color, and to promote early harvest. The objective of this study was to evaluate the effect of trunk girdling applied at veraison, in 'Cabernet Sauvignon' wine grapes (Vitis vinifera L.), on agronomical and physiological parameters during vine development from the onset of ripening (veraison) to harvest, and additionally to quantify the effect of girdling on primary and secondary metabolism. Girdling was applied 146 days after pruning (dap) at veraison, when berry sampling for metabolomics and agronomical evaluations commenced, with a further three sampling dates until harvest, at 156 dap (30% maturation, 10 days after girdling-dag), 181 dap (70% maturation, 35 dag), and 223 dap (commercial harvest, 77 dag). Skin/pulp and seed tissues were extracted separately and metabolomics was performed using one-dimensional proton nuclear magnetic resonance (1D 1H NMR) spectroscopy and high performance liquid chromatography (HPLC-DAD). At harvest, girdling significantly increased stomatal conductance (gs) in vines, decreased glutamine concentrations, and increased anthocyanin and flavonol concentrations in the skin/pulp tissues of grape berries. Berry weight was reduced by 27% from 181 dap to harvest, and was significantly higher in grapes from girdled vines at 181 dap. Sugars, organic acids, and other amino acids in skin/pulp or seeds were not significantly different, possibly due to extra-fascicular phloem vessels transporting metabolites from leaves to the roots. Using a metabolomics approach, differences between skin/pulp and seeds tissues were meaningful, and a greater number of secondary metabolites in skin/pulp was affected by girdling than in seeds. Girdling is a simple technique that could easily be applied commercially on vine management to improve berry color and other phenolics in 'Cabernet Sauvignon' grapes.
Collapse
Affiliation(s)
- Giuliano E. Pereira
- Brazilian Agricultural Research Corporation-Embrapa Grape & Wine, Bento Goncalves, Brazil
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Emily M. T. Padhi
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Raul C. Girardello
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Cristina Medina-Plaza
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Dave Tseng
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Robert C. Bruce
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Jesse N. Erdmann
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Sahap K. Kurtural
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Carolyn M. Slupsky
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Anita Oberholster
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
123
|
Wawro N, Pestoni G, Riedl A, Breuninger TA, Peters A, Rathmann W, Koenig W, Huth C, Meisinger C, Rohrmann S, Linseisen J. Association of Dietary Patterns and Type-2 Diabetes Mellitus in Metabolically Homogeneous Subgroups in the KORA FF4 Study. Nutrients 2020; 12:nu12061684. [PMID: 32516903 PMCID: PMC7352280 DOI: 10.3390/nu12061684] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
There is evidence that a change in lifestyle, especially physical activity and diet, can reduce the risk of developing type-2 diabetes mellitus (T2DM). However, the response to dietary changes varies among individuals due to differences in metabolic characteristics. Therefore, we investigated the association between dietary patterns and T2DM while taking into account these differences. For 1287 participants of the population-based KORA FF4 study (Cooperative Health Research in the Region of Augsburg), we identified three metabolically-homogenous subgroups (metabotypes) using 16 clinical markers. Based on usual dietary intake data, two diet quality scores, the Mediterranean Diet Score (MDS) and the Alternate Healthy Eating Index (AHEI), were calculated. We explored the associations between T2DM and diet quality scores. Multi-variable adjusted models, including metabotype subgroup, were fitted. In addition, analyses stratified by metabotype were carried out. We found significant interaction effects between metabotype and both diet quality scores (p < 0.05). In the analysis stratified by metabotype, significant negative associations between T2DM and both diet quality scores were detected only in the metabolically-unfavorable homogenous subgroup (Odds Ratio (OR) = 0.62, 95% confidence interval (CI) = 0.39-0.90 for AHEI and OR = 0.60, 95% CI = 0.40-0.96 for MDS). Prospective studies taking metabotype into account are needed to confirm our results, which allow for the tailoring of dietary recommendations in the prevention of T2DM.
Collapse
Affiliation(s)
- Nina Wawro
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; (G.P.); (A.R.); (T.A.B.); (C.M.); (J.L.)
- Chair of Epidemiology, Ludwig-Maximilians-Universität München at UNIKA-T (Universitäres Zentrum für Gesundheitswissenschaften am Klinikum Augsburg), Neusässer Str. 47, 86156 Augsburg, Germany
- Correspondence:
| | - Giulia Pestoni
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; (G.P.); (A.R.); (T.A.B.); (C.M.); (J.L.)
- Division of Chronic Disease Epidemiology, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Hirschengraben 84, CH-8001 Zurich, Switzerland;
| | - Anna Riedl
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; (G.P.); (A.R.); (T.A.B.); (C.M.); (J.L.)
| | - Taylor A. Breuninger
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; (G.P.); (A.R.); (T.A.B.); (C.M.); (J.L.)
- Chair of Epidemiology, Ludwig-Maximilians-Universität München at UNIKA-T (Universitäres Zentrum für Gesundheitswissenschaften am Klinikum Augsburg), Neusässer Str. 47, 86156 Augsburg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; (A.P.); (C.H.)
- German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstr. 1, 85764 München-Neuherberg, Germany;
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstr. 1, 85764 München-Neuherberg, Germany;
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany
| | - Wolfgang Koenig
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Pettenkoferstr. 8a & 9, 80336 Munich, Germany;
- Deutsches Herzzentrum München, Technische Universität München, Lazarettstr. 36, 80636 Munich
- Institute of Epidemiology and Medical Biometry, University of Ulm, Helmholtzstr. 22, 89081 Ulm, Germany
| | - Cornelia Huth
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; (A.P.); (C.H.)
- German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstr. 1, 85764 München-Neuherberg, Germany;
| | - Christa Meisinger
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; (G.P.); (A.R.); (T.A.B.); (C.M.); (J.L.)
- Chair of Epidemiology, Ludwig-Maximilians-Universität München at UNIKA-T (Universitäres Zentrum für Gesundheitswissenschaften am Klinikum Augsburg), Neusässer Str. 47, 86156 Augsburg, Germany
| | - Sabine Rohrmann
- Division of Chronic Disease Epidemiology, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Hirschengraben 84, CH-8001 Zurich, Switzerland;
| | - Jakob Linseisen
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; (G.P.); (A.R.); (T.A.B.); (C.M.); (J.L.)
- Chair of Epidemiology, Ludwig-Maximilians-Universität München at UNIKA-T (Universitäres Zentrum für Gesundheitswissenschaften am Klinikum Augsburg), Neusässer Str. 47, 86156 Augsburg, Germany
| |
Collapse
|
124
|
Yu M, Li Z, Chen W, Rong T, Wang G, Wang F, Ma X. Evaluation of full-fat Hermetia illucens larvae meal as a fishmeal replacement for weanling piglets: Effects on the growth performance, apparent nutrient digestibility, blood parameters and gut morphology. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
125
|
Mocan T, Simão AL, Castro RE, Rodrigues CMP, Słomka A, Wang B, Strassburg C, Wöhler A, Willms AG, Kornek M. Liquid Biopsies in Hepatocellular Carcinoma: Are We Winning? J Clin Med 2020; 9:jcm9051541. [PMID: 32443747 PMCID: PMC7291267 DOI: 10.3390/jcm9051541] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/18/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents the sixth most common cancer worldwide and the third most common cause of cancer-related death. One of the major problems faced by researchers and clinicians in this area is the lack of reliable disease biomarkers, which would allow for an earlier diagnosis, follow-up or prediction of treatment response, among others. In this regard, the “HCC circulome”, defined as the pool of circulating molecules in the bloodstream derived from the primary tumor, represents an appealing target, the so called liquid biopsy. Such molecules encompass circulating tumor proteins, circulating tumor cells (CTCs), extracellular vesicles (EVs), tumor-educated platelets (TEPs), and circulating tumor nucleic acids, namely circulating tumor DNA (ctDNA) and circulating tumor RNA (ctRNA). In this article, we summarize recent findings highlighting the promising role of liquid biopsies as novel potential biomarkers in HCC, emphasizing on its clinical performance.
Collapse
Affiliation(s)
- Tudor Mocan
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania;
| | - André L. Simão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.L.S.); (R.E.C.); (C.M.P.R.)
| | - Rui E. Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.L.S.); (R.E.C.); (C.M.P.R.)
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.L.S.); (R.E.C.); (C.M.P.R.)
| | - Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 85-094 Bydgoszcz, Poland;
| | - Bingduo Wang
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (C.S.)
| | - Christian Strassburg
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (C.S.)
| | - Aliona Wöhler
- Department of General, Visceral and Thoracic Surgery, German Armed Forces Central Hospital Koblenz, 56072 Koblenz, Germany; (A.W.); (A.G.W.)
| | - Arnulf G. Willms
- Department of General, Visceral and Thoracic Surgery, German Armed Forces Central Hospital Koblenz, 56072 Koblenz, Germany; (A.W.); (A.G.W.)
| | - Miroslaw Kornek
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (C.S.)
- Correspondence:
| |
Collapse
|
126
|
After another decade: LC-MS/MS became routine in clinical diagnostics. Clin Biochem 2020; 82:2-11. [PMID: 32188572 DOI: 10.1016/j.clinbiochem.2020.03.004] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 01/01/2023]
Abstract
Tandem mass spectrometry - especially in combination with liquid chromatography (LC-MS/MS) - is applied in a multitude of important diagnostic niches of laboratory medicine. It is unquestioned in its routine use and is often unreplaceable by alternative technologies. This overview illustrates the development in the past decade (2009-2019) and intends to provide insight into the current standing and future directions of the field. The instrumentation matured significantly, the applications are well understood, and the in vitro diagnostics (IVD) industry is shaping the market by providing assay kits, certified instruments, and the first laboratory automated LC-MS/MS instruments as an analytical core. In many settings the application of LC-MS/MS is still burdensome with locally lab developed test (LDT) designs relying on highly specialized staff. The current routine applications cover a wide range of analytes in therapeutic drug monitoring, endocrinology including newborn screening, and toxicology. The tasks that remain to be mastered are, for example, the quantification of proteins by means of LC-MS/MS and the transition from targeted to untargeted omics approaches relying on pattern recognition/pattern discrimination as a key technology for the establishment of diagnostic decisions.
Collapse
|
127
|
Paul A, Srivastava S, Roy R, Anand A, Gaurav K, Husain N, Jain S, Sonkar AA. Malignancy prediction among tissues from Oral SCC patients including neck invasions: a 1H HRMAS NMR based metabolomic study. Metabolomics 2020; 16:38. [PMID: 32162079 DOI: 10.1007/s11306-020-01660-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 03/05/2020] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Oral cancer is a sixth commonly occurring cancer globally. The use of tobacco and alcohol consumption are being considered as the major risk factors for oral cancer. The metabolic profiling of tissue specimens for developing carcinogenic perturbations will allow better prognosis. OBJECTIVES To profile and generate precise 1H HRMAS NMR spectral and quantitative statistical models of oral squamous cell carcinoma (OSCC) in tissue specimens including tumor, bed, margin and facial muscles. To apply the model in blinded prediction of malignancy among oral and neck tissues in an unknown set of patients suffering from OSCC along with neck invasion. METHODS Statistical models of 1H HRMAS NMR spectral data on 180 tissues comprising tumor, margin and bed from 43 OSCC patients were performed. The combined metabolites, lipids spectral intensity and concentration-based malignancy prediction models were proposed. Further, 64 tissue specimens from twelve patients, including neck invasions, were tested for malignancy in a blinded manner. RESULTS Forty-eight metabolites including lipids have been quantified in tumor and adjacent tissues. All metabolites other than lipids were found to be upregulated in malignant tissues except for ambiguous glucose. All of three prediction models have successfully identified malignancy status among blinded set of 64 tissues from 12 OSCC patients with an accuracy of above 90%. CONCLUSION The efficiency of the models in malignancy prediction based on tumor induced metabolic perturbations supported by histopathological validation may revolutionize the OSCC assessment. Further, the results may enable machine learning to trace tumor induced altered metabolic pathways for better pattern recognition. Thus, it complements the newly developed REIMS-MS iKnife real time precession during surgery.
Collapse
Affiliation(s)
- Anup Paul
- Centre of Biomedical Research, Formerly Centre of Biomedical Magnetic Resonance (CBMR), Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Rae Bareli Road, Lucknow, 226014, India
- Department of Chemistry, University of Lucknow, University Road, Lucknow, 226007, India
| | - Shatakshi Srivastava
- Centre of Biomedical Research, Formerly Centre of Biomedical Magnetic Resonance (CBMR), Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Rae Bareli Road, Lucknow, 226014, India
- Apeejay Stya University, Sohna, Gurugram, 122103, Haryana, India
| | - Raja Roy
- Centre of Biomedical Research, Formerly Centre of Biomedical Magnetic Resonance (CBMR), Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Rae Bareli Road, Lucknow, 226014, India.
| | - Akshay Anand
- Department of General Surgery, Kings George's Medical (KGMU), Lucknow, 226003, India
| | - Kushagra Gaurav
- Department of General Surgery, Kings George's Medical (KGMU), Lucknow, 226003, India
| | - Nuzhat Husain
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Science, Lucknow, 226010, India
| | - Sudha Jain
- Department of Chemistry, University of Lucknow, University Road, Lucknow, 226007, India
| | - Abhinav A Sonkar
- Department of General Surgery, Kings George's Medical (KGMU), Lucknow, 226003, India.
- Department of General Surgery, King Georges Medical College (KGMU), Lucknow, 226001, India.
| |
Collapse
|
128
|
Han G, Wei P, He M, Teng H. Glucose Metabolic Characterization of Human Aqueous Humor in Relation to Wet Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2020; 61:49. [PMID: 32232346 PMCID: PMC7401462 DOI: 10.1167/iovs.61.3.49] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Energy compromise underpins wet age-related macular degeneration (wAMD) pathogenesis, but the relationship between glucose metabolism and the disease remains unclear. Here, we characterized aqueous humor (AH) to elucidate glucose-related metabolic signatures in patients with wAMD. Methods In total, 25 eyes of 25 patients with wAMD were divided into phakic (15 eyes), pseudophakic (10 eyes), and intravitreal injections of ranibizumab (13 eyes) wAMD groups. Twenty patients with cataract (21 eyes) served as controls. Ultrahigh-performance liquid chromatography tandem mass spectrometry was used to quantitatively characterize AH. Results Twenty-one metabolites related to glucose metabolism were identified in AH from 45 patients. Tricarboxylic acid (TCA)-related metabolic substrates, including citrate, were detected in AH and were significantly increased in AMD (P < 0.01) and AMD pseudophakic groups (P < 0.05). In contrast, α-ketoglutarate levels were decreased in the AMD group (P < 0.05). The α-ketoglutarate/citrate ratio was significantly decreased, corresponding to 71.71% and 93.6% decreases in the AMD (phakic and pseudophakic) groups as compared with controls (P < 0.001), revealing a significant positive correlation with glutamine. A lower mean glutamine and higher glutamate level were detected in AMD cases compared with controls. No significant differences were observed for lactic acid or other Krebs cycle metabolites. Intravitreal injection significantly alleviated mean central foveal thickness but did not significantly alter metabolites. Conclusions Compromised glucose TCA cycle and altered glutamine metabolism are implicated in the AH metabolism in wAMD. These findings highlight potential treatments for alleviating wAMD from a metabolic perspective.
Collapse
|
129
|
Souto-Carneiro M, Tóth L, Behnisch R, Urbach K, Klika KD, Carvalho RA, Lorenz HM. Differences in the serum metabolome and lipidome identify potential biomarkers for seronegative rheumatoid arthritis versus psoriatic arthritis. Ann Rheum Dis 2020; 79:499-506. [PMID: 32079570 PMCID: PMC7147174 DOI: 10.1136/annrheumdis-2019-216374] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/04/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Objectives The differential diagnosis of seronegative rheumatoid arthritis (negRA) and psoriasis arthritis (PsA) is often difficult due to the similarity of symptoms and the unavailability of reliable clinical markers. Since chronic inflammation induces major changes in the serum metabolome and lipidome, we tested whether differences in serum metabolites and lipids could aid in improving the differential diagnosis of these diseases. Methods Sera from negRA and PsA patients with established diagnosis were collected to build a biomarker-discovery cohort and a blinded validation cohort. Samples were analysed by proton nuclear magnetic resonance. Metabolite concentrations were calculated from the spectra and used to select the variables to build a multivariate diagnostic model. Results Univariate analysis demonstrated differences in serological concentrations of amino acids: alanine, threonine, leucine, phenylalanine and valine; organic compounds: acetate, creatine, lactate and choline; and lipid ratios L3/L1, L5/L1 and L6/L1, but yielded area under the curve (AUC) values lower than 70%, indicating poor specificity and sensitivity. A multivariate diagnostic model that included age, gender, the concentrations of alanine, succinate and creatine phosphate and the lipid ratios L2/L1, L5/L1 and L6/L1 improved the sensitivity and specificity of the diagnosis with an AUC of 84.5%. Using this biomarker model, 71% of patients from a blinded validation cohort were correctly classified. Conclusions PsA and negRA have distinct serum metabolomic and lipidomic signatures that can be used as biomarkers to discriminate between them. After validation in larger multiethnic cohorts this diagnostic model may become a valuable tool for a definite diagnosis of negRA or PsA patients.
Collapse
Affiliation(s)
- Margarida Souto-Carneiro
- Medizin 5, Hämatologie, Onkologie und Rheumatologie, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Lilla Tóth
- Medizin 5, Hämatologie, Onkologie und Rheumatologie, UniversitätsKlinikum Heidelberg, Heidelberg, Germany.,Internal Medicine, Semmelweis University of Medicine, Budapest, Hungary
| | - Rouven Behnisch
- Institute of Medical Biometry and Informatics, Heidelberg University, Heidelberg, Germany
| | - Konstantin Urbach
- Medizin 5, Hämatologie, Onkologie und Rheumatologie, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Karel D Klika
- Department of Molecular and Structural Biology, German Cancer Research Centre, Heidelberg, Germany
| | - Rui A Carvalho
- Medizin 5, Hämatologie, Onkologie und Rheumatologie, UniversitätsKlinikum Heidelberg, Heidelberg, Germany.,Department of Life Sciences, University of Coimbra Faculty of Sciences and Technology, Coimbra, Portugal
| | - Hanns-Martin Lorenz
- Medizin 5, Hämatologie, Onkologie und Rheumatologie, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| |
Collapse
|
130
|
Riedl A, Hillesheim E, Wawro N, Meisinger C, Peters A, Roden M, Kronenberg F, Herder C, Rathmann W, Völzke H, Reincke M, Koenig W, Wallaschofski H, Daniel H, Hauner H, Brennan L, Linseisen J. Evaluation of the Metabotype Concept Identified in an Irish Population in the German KORA Cohort Study. Mol Nutr Food Res 2020; 64:e1900918. [PMID: 32048458 DOI: 10.1002/mnfr.201900918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/13/2020] [Indexed: 11/11/2022]
Abstract
SCOPE Previous work identified three metabolically homogeneous subgroups of individuals ("metabotypes") using k-means cluster analysis based on fasting serum levels of triacylglycerol, total cholesterol, HDL cholesterol, and glucose. The aim is to reproduce these findings and describe metabotype groups by dietary habits and by incident disease occurrence. METHODS AND RESULTS 1744 participants from the KORA F4 study and 2221 participants from the KORA FF4 study are assigned to the three metabotype clusters previously identified by minimizing the Euclidean distances. In both KORA studies, the assignment of participants results in three metabolically distinct clusters, with cluster 3 representing the group of participants with the most unfavorable metabolic characteristics. Individuals of cluster 3 are further characterized by the highest incident disease occurrence during follow-up; they also reveal the most unfavorable diet with significantly lowest intakes of vegetables, dairy products, and fibers, and highest intakes of total, red, and processed meat. CONCLUSION The three metabotypes originally identified in an Irish population are successfully reproduced. In addition to this validation approach, the observed differences in disease incidence across metabotypes represent an important new finding that strongly supports the metabotyping approach as a tool for risk stratification.
Collapse
Affiliation(s)
- Anna Riedl
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Chair of Epidemiology, Ludwig-Maximilians-Universität München, at UNIKA-T, Neusässer Str. 47, 86156, Augsburg, Germany
| | - Elaine Hillesheim
- Institute of Food and Health, UCD School of Agriculture and Food Science, UCD, Stillorgan Rd, Belfield, Dublin, 4, Ireland
| | - Nina Wawro
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Chair of Epidemiology, Ludwig-Maximilians-Universität München, at UNIKA-T, Neusässer Str. 47, 86156, Augsburg, Germany
| | - Christa Meisinger
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Chair of Epidemiology, Ludwig-Maximilians-Universität München, at UNIKA-T, Neusässer Str. 47, 86156, Augsburg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Schöpfstr. 41, 6020, Innsbruck, Austria
| | - Christian Herder
- German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
| | - Henry Völzke
- German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Pettenkoferstr. 8a & 9, 80336, Munich, Germany.,Institute for Community Medicine, University Medicine Greifswald, Walther-Rathenau-Str. 48, 17475, Greifswald, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Ziemssenstr. 1, 80336, Munich, Germany
| | - Wolfgang Koenig
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Pettenkoferstr. 8a & 9, 80336, Munich, Germany.,Deutsches Herzzentrum München, Technische Universität München, Lazarettstr. 36, 80636, Munich, Germany.,Institute of Epidemiology and Medical Biometry, University of Ulm, Helmholtzstr. 22, 89081, Ulm, Germany
| | - Henri Wallaschofski
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17489, Greifswald, Germany
| | - Hannelore Daniel
- Chair of Nutritional Physiology, Technical University of Munich, Gregor-Mendel-Str. 2, 85354, Freising-Weihenstephan, Germany
| | - Hans Hauner
- Else Kröner-Fresenius Centre for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354, Freising-Weihenstephan, Germany.,ZIEL - Institute for Food and Health, Technical University of Munich, Weihenstephaner Berg 1, 85354, Freising, Germany.,Institute of Nutritional Medicine, Klinikum rechts der Isar, Technical University of Munich, Georg-Brauchle-Ring 62, 80992, Munich, Germany
| | - Lorraine Brennan
- Institute of Food and Health, UCD School of Agriculture and Food Science, UCD, Stillorgan Rd, Belfield, Dublin, 4, Ireland
| | - Jakob Linseisen
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Chair of Epidemiology, Ludwig-Maximilians-Universität München, at UNIKA-T, Neusässer Str. 47, 86156, Augsburg, Germany.,ZIEL - Institute for Food and Health, Technical University of Munich, Weihenstephaner Berg 1, 85354, Freising, Germany
| |
Collapse
|
131
|
Lu L, Li H, Wu X, Rao J, Zhou J, Fan S, Shen Q. HJC0152 suppresses human non-small-cell lung cancer by inhibiting STAT3 and modulating metabolism. Cell Prolif 2020; 53:e12777. [PMID: 32022328 PMCID: PMC7106968 DOI: 10.1111/cpr.12777] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/18/2019] [Accepted: 01/18/2020] [Indexed: 12/23/2022] Open
Abstract
Objectives Signal transducer and activator of transcription 3 (STAT3) is constitutively activated and overexpressed in many cancers, including non–small‐cell lung cancer (NSCLC). We recently developed HJC0152 as an orally active STAT3 inhibitor. This study focused on investigating HJC0152's effect and mechanism of action in NSCLC. Materials and methods We analysed cell proliferation by MTT assays, cell migration by wound healing and transwell assays, protein levels by Western blot, and apoptosis and reactive oxygen species (ROS) level by flow cytometry. A nude mouse tumorigenesis model was established for in vivo experiment. UHPLC‐QTOF/MS was used for untargeted metabolomic relative quantitation analysis. Results We found that HJC0152 exhibited activity against human NSCLC cells in vitro and NSCLC xenograft tumours in vivo via regulating STAT3 signalling and metabolism. HJC0152 efficiently reduced NSCLC cell proliferation, promoted ROS generation, induced apoptosis, triggered DNA damage and reduced motility in A549 and H460 NSCLC cells. Moreover, HJC0152 significantly inhibited the growth of A549 xenograft tumours in vivo. HJC0152 also affected metabolism, significantly decreasing and perturbating levels of several metabolites in the purine, glutathione and pyrimidine metabolism pathways. Conclusions HJC0152 reduces cellular capacity to scavenge free radicals, leading to ROS generation and accumulation and apoptosis. This study provides a rationale for further developing HJC0152 as a potential therapy for NSCLC and provides insights into the mechanisms by which HJC0152 exerts its anti‐cancer effects.
Collapse
Affiliation(s)
- Lu Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xin Wu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jun Rao
- Jiangxi Cancer Hospital, Nanchang, China
| | - Jia Zhou
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qiang Shen
- Department of Genetics, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA, USA
| |
Collapse
|
132
|
Viswan A, Singh C, Kayastha AM, Azim A, Sinha N. An NMR based panorama of the heterogeneous biology of acute respiratory distress syndrome (ARDS) from the standpoint of metabolic biomarkers. NMR IN BIOMEDICINE 2020; 33:e4192. [PMID: 31733128 DOI: 10.1002/nbm.4192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/16/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Acute respiratory distress syndrome (ARDS), manifested by intricate etiology and pathophysiology, demands careful clinical surveillance due to its high mortality and imminent life support measures. NMR based metabolomics provides an approach for ARDS which culminates from a wide spectrum of illness thereby confounding early manifestation and prognosis predictors. 1 H NMR with its manifold applications in critical disease settings can unravel the biomarker of ARDS thus holding potent implications by providing surrogate endpoints of clinical utility. NMR metabolomics which is the current apogee platform of omics trilogy is contributing towards the possible panacea of ARDS by subsequent validation of biomarker credential on larger datasets. In the present review, the physiological derangements that jeopardize the whole metabolic functioning in ARDS are exploited and the biomarkers involved in progression are addressed and substantiated. The following sections of the review also outline the clinical spectrum of ARDS from the standpoint of NMR based metabolomics which is an emerging element of systems biology. ARDS is the main premise of intensivists textbook, which has been thoroughly reviewed along with its incidence, progressive stages of severity, new proposed diagnostic definition, and the preventive measures and the current pitfalls of clinical management. The advent of new therapies, the need for biomarkers, the methodology and the contemporary promising approaches needed to improve survival and address heterogeneity have also been evaluated. The review has been stepwise illustrated with potent biometrics employed to selectively pool out differential metabolites as diagnostic markers and outcome predictors. The following sections have been drafted with an objective to better understand ARDS mechanisms with predictive and precise biomarkers detected so far on the basis of underlying physiological parameters having close proximity to diseased phenotype. The aim of this review is to stimulate interest in conducting more studies to help resolve the complex heterogeneity of ARDS with biomarkers of clinical utility and relevance.
Collapse
Affiliation(s)
- Akhila Viswan
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS) - Campus, Lucknow, Uttar Pradesh, India
- Faculty of Engineering and Technology, Dr. A. P. J Abdul Kalam Technical University, Lucknow, India
| | - Chandan Singh
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS) - Campus, Lucknow, Uttar Pradesh, India
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Afzal Azim
- Critical Care Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Neeraj Sinha
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS) - Campus, Lucknow, Uttar Pradesh, India
| |
Collapse
|
133
|
Deng Y, Liang Y, Lin S, Wen L, Li J, Zhou Y, Shen M, Zheng J, Feng K, Sun Y, Robert KW, Qu J, Lu F. Design and baseline data of a population-based metabonomics study of eye diseases in eastern China: the Yueqing Ocular Diseases Investigation. EYE AND VISION 2020; 7:8. [PMID: 31988968 PMCID: PMC6969972 DOI: 10.1186/s40662-019-0170-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/23/2019] [Indexed: 01/20/2023]
Abstract
Background China is undergoing a massive transition toward an urban and industrial economy. These changes will restructure the demographics and economy which will eventually influence the future patterns of disease. The risk factors of vision-impairing eye diseases remain ambiguous and poorly understood. Metabolomics is an ideal tool to understand and shed light on the ocular disease mechanisms for earlier treatment. This article aims to describe the design, methodology and baseline data of the Yueqing Ocular Diseases Investigation (YODI), a developed county population-based study to determine the prevalence and primary causes of visual impairment; also with metabonomics analysis we aimed to identify, predict and suggest some preventive biomarkers that cause blindness. Methods A population-based, cross-sectional study. Randomized clustering sampling was used to identify adults aged 50 years and older in Xiangyang Town, Yueqing county-level City. The interviews covered demographic, behavioral, ocular risk factors and mental health state. The ocular examination included visual acuity, autorefraction, intraocular pressure, anterior and posterior segment examinations, fundus photography, retinal tomography and angiography, and visual field testing. Anthropometric measurements included height and weight, waist and hip circumference, blood pressure, pulse rate, electrocardiogram, and abdominal ultrasound scan. A venous blood sample was collected for laboratory tests and metabonomics studies. Results Of the 5319 individuals recruited for the YODI, 4769 (89.7%) subjects were enrolled for analyses. The median age was 62.0 years, and 45.6% were male. The educational level of illiteracy or semi-illiteracy, primary, middle and high school or above was 29.8%, 45.5%, 20.1%, and 3.3%, respectively. Majority of the participants were female, younger, and less educated when compared with nonparticipants. The average body mass index and waist-hip ratios were 24.4 ± 3.4 kg/m2 and 0.9 ± 0.1 respectively. Blood sample collection reached a sample size of 1909 (479 from subjects with self-reported diabetes and 1430 from one-third of the 4290 subjects without self-reported diabetes). Conclusions The YODI provides population-based data with a high response rate (89.7%) on the prevalence and primary causes of major vision-impairing eye diseases in developed county areas in eastern China. Metabonomics analysis from YODI will provide further association of metabolic characteristics with the visual impairment eye diseases. The risk prediction model could be created and has the potential to be generalized to developed eastern areas in China for prevention.
Collapse
Affiliation(s)
- Yuxuan Deng
- 1Clinical and Epidemiological Research Center, Eye Hospital of Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027 Zhejiang China.,2School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027 Zhejiang China.,3Qingdao Municipal Hospital, 5 Donghai Middle Road, Qingdao, 266071 Shandong China
| | - Yuanbo Liang
- 1Clinical and Epidemiological Research Center, Eye Hospital of Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027 Zhejiang China.,2School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027 Zhejiang China
| | - Sigeng Lin
- 1Clinical and Epidemiological Research Center, Eye Hospital of Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027 Zhejiang China.,2School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027 Zhejiang China.,Wuhu First People's Hospital, 1 Chizhushandong Road, Wuhu, 241000 Anhui China
| | - Liang Wen
- Eye Hospital of Fushun City, 1 Hupo Road, Fushun, 113006 Liaoning China
| | - Jin Li
- 2School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027 Zhejiang China
| | - Yue Zhou
- 2School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027 Zhejiang China
| | - Meixiao Shen
- 2School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027 Zhejiang China
| | - Jingwei Zheng
- 1Clinical and Epidemiological Research Center, Eye Hospital of Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027 Zhejiang China
| | - Kemi Feng
- 1Clinical and Epidemiological Research Center, Eye Hospital of Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027 Zhejiang China
| | - Yanting Sun
- 6Qilu Hospital of Shandong University (Qingdao), 758 Hefei Road, Qingdao, 266035 Shandong China
| | - Kwapong Willaim Robert
- 2School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027 Zhejiang China
| | - Jia Qu
- 2School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027 Zhejiang China
| | - Fan Lu
- 2School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027 Zhejiang China
| |
Collapse
|
134
|
Systems and Precision Medicine in Necrotizing Soft Tissue Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1294:187-207. [PMID: 33079370 DOI: 10.1007/978-3-030-57616-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Necrotizing soft tissue infections (NSTI) are multifactorial and characterized by dysfunctional, time dependent, highly varying hyper- to hypo-inflammatory host responses contributing to disease severity. Furthermore, host-pathogen interactions are diverse and difficult to identify and characterize, due to the many different disease endotypes. There is a need for both refined bedside diagnostics as well as novel targeted treatment options to improve outcome in NSTI. In order to achieve clinically relevant results and to guide preclinical and clinical research the vast amount of fragmented clinical and experimental datasets, which often include omics data at different levels (transcriptomics, proteomics, metabolomics, etc.), need to be organized, harmonized, integrated, and analyzed taking into account the Big Data nature of these datasets. In this chapter, we address these matters from a systems perspective and yet personalized approach. The chapter provides an overview on the increasingly more frequent use of Big Data and Artificial Intelligence (AI) to aggregate and generate knowledge from burgeoning clinical and biochemical information, addresses the challenges to manage this information, and summarizes current efforts to develop robust computer-aided clinical decision support systems so to tackle the serious challenges in NSTI diagnosis, stratification, and optimized tailored therapy.
Collapse
|
135
|
Southam AD, Haglington LD, Najdekr L, Jankevics A, Weber RJM, Dunn WB. Assessment of human plasma and urine sample preparation for reproducible and high-throughput UHPLC-MS clinical metabolic phenotyping. Analyst 2020; 145:6511-6523. [DOI: 10.1039/d0an01319f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this study we assess multiple sample preparation methods for UHPLC-MS metabolic phenotyping analysis of human urine and plasma. All methods are discussed in terms of metabolite and lipid coverage and reproducibility.
Collapse
Affiliation(s)
- Andrew D. Southam
- School of Biosciences
- University of Birmingham
- Birmingham
- UK
- Phenome Centre Birmingham
| | | | - Lukáš Najdekr
- School of Biosciences
- University of Birmingham
- Birmingham
- UK
- Phenome Centre Birmingham
| | - Andris Jankevics
- School of Biosciences
- University of Birmingham
- Birmingham
- UK
- Phenome Centre Birmingham
| | - Ralf J. M. Weber
- School of Biosciences
- University of Birmingham
- Birmingham
- UK
- Phenome Centre Birmingham
| | - Warwick B. Dunn
- School of Biosciences
- University of Birmingham
- Birmingham
- UK
- Phenome Centre Birmingham
| |
Collapse
|
136
|
Ritler D, Rufener R, Li JV, Kämpfer U, Müller J, Bühr C, Schürch S, Lundström-Stadelmann B. In vitro metabolomic footprint of the Echinococcus multilocularis metacestode. Sci Rep 2019; 9:19438. [PMID: 31857639 PMCID: PMC6923418 DOI: 10.1038/s41598-019-56073-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022] Open
Abstract
Alveolar echinococcosis (AE) is a zoonotic disease that is deadly if left untreated. AE is caused by the larval metacestode stage of the cestode Echinococcus multilocularis. Better knowledge on the host-parasite interface could yield novel targets for improvement of the treatment against AE. We analyzed culture media incubated with in vitro grown E. multilocularis metacestodes by 1H nuclear magnetic resonance spectroscopy to identify the unknown metabolic footprint of the parasite. Moreover, we quantitatively analyzed all amino acids, acetate, glucose, lactate, and succinate in time-course experiments using liquid chromatography and enzymatic assays. The E. multilocularis metacestodes consumed glucose and, surprisingly, threonine and produced succinate, acetate, and alanine as major fermentation products. The metabolic composition of vesicle fluid (VF) from in vitro grown E. multilocularis metacestodes was different from parasite-incubated culture medium with respect to the abundance, but not the spectrum, of metabolites, and some metabolites, in particular amino acids, accumulated in the VF. Overall, this study presents the first characterization of the in vitro metabolic footprint of E. multilocularis metacestodes and VF composition, and it provides the basis for analyses of potentially targetable pathways for future drug development.
Collapse
Affiliation(s)
- Dominic Ritler
- Institute of Parasitology, Department of Infectious Disease and Pathobiology, Vetsuisse Bern, University of Bern, Bern, Switzerland
| | - Reto Rufener
- Institute of Parasitology, Department of Infectious Disease and Pathobiology, Vetsuisse Bern, University of Bern, Bern, Switzerland
| | - Jia V Li
- Division of Systems and Digestive Medicine, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Urs Kämpfer
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Disease and Pathobiology, Vetsuisse Bern, University of Bern, Bern, Switzerland
| | - Claudia Bühr
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Stefan Schürch
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Britta Lundström-Stadelmann
- Institute of Parasitology, Department of Infectious Disease and Pathobiology, Vetsuisse Bern, University of Bern, Bern, Switzerland.
| |
Collapse
|
137
|
Sands CJ, Wolfer AM, Correia GDS, Sadawi N, Ahmed A, Jiménez B, Lewis MR, Glen RC, Nicholson JK, Pearce JTM. The nPYc-Toolbox, a Python module for the pre-processing, quality-control and analysis of metabolic profiling datasets. Bioinformatics 2019; 35:5359-5360. [PMID: 31350543 PMCID: PMC6954639 DOI: 10.1093/bioinformatics/btz566] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/18/2019] [Accepted: 07/19/2019] [Indexed: 12/24/2022] Open
Abstract
SUMMARY As large-scale metabolic phenotyping studies become increasingly common, the need for systemic methods for pre-processing and quality control (QC) of analytical data prior to statistical analysis has become increasingly important, both within a study, and to allow meaningful inter-study comparisons. The nPYc-Toolbox provides software for the import, pre-processing, QC and visualization of metabolic phenotyping datasets, either interactively, or in automated pipelines. AVAILABILITY AND IMPLEMENTATION The nPYc-Toolbox is implemented in Python, and is freely available from the Python package index https://pypi.org/project/nPYc/, source is available at https://github.com/phenomecentre/nPYc-Toolbox. Full documentation can be found at http://npyc-toolbox.readthedocs.io/ and exemplar datasets and tutorials at https://github.com/phenomecentre/nPYc-toolbox-tutorials.
Collapse
Affiliation(s)
- Caroline J Sands
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Arnaud M Wolfer
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Gonçalo D S Correia
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Noureddin Sadawi
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery & Cancer, Imperial College London, South Kensington, London, UK
| | - Arfan Ahmed
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Beatriz Jiménez
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Department of Surgery & Cancer, Imperial College London, London, UK
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery & Cancer, Imperial College London, South Kensington, London, UK
| | - Matthew R Lewis
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Department of Surgery & Cancer, Imperial College London, London, UK
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery & Cancer, Imperial College London, South Kensington, London, UK
| | - Robert C Glen
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery & Cancer, Imperial College London, South Kensington, London, UK
| | - Jeremy K Nicholson
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Department of Surgery & Cancer, Imperial College London, London, UK
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery & Cancer, Imperial College London, South Kensington, London, UK
| | - Jake T M Pearce
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Department of Surgery & Cancer, Imperial College London, London, UK
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery & Cancer, Imperial College London, South Kensington, London, UK
| |
Collapse
|
138
|
Liu X, Zhou L, Shi X, Xu G. New advances in analytical methods for mass spectrometry-based large-scale metabolomics study. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115665] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
139
|
van der Velpen V, Teav T, Gallart-Ayala H, Mehl F, Konz I, Clark C, Oikonomidi A, Peyratout G, Henry H, Delorenzi M, Ivanisevic J, Popp J. Systemic and central nervous system metabolic alterations in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2019; 11:93. [PMID: 31779690 PMCID: PMC6883620 DOI: 10.1186/s13195-019-0551-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Background Metabolic alterations, related to cerebral glucose metabolism, brain insulin resistance, and age-induced mitochondrial dysfunction, play an important role in Alzheimer’s disease (AD) on both the systemic and central nervous system level. To study the extent and significance of these alterations in AD, quantitative metabolomics was applied to plasma and cerebrospinal fluid (CSF) from clinically well-characterized AD patients and cognitively healthy control subjects. The observed metabolic alterations were associated with core pathological processes of AD to investigate their relation with amyloid pathology and tau-related neurodegeneration. Methods In a case-control study of clinical and biomarker-confirmed AD patients (n = 40) and cognitively healthy controls without cerebral AD pathology (n = 34) with paired plasma and CSF samples, we performed metabolic profiling, i.e., untargeted metabolomics and targeted quantification. Targeted quantification focused on identified deregulated pathways highlighted in the untargeted assay, i.e. the TCA cycle, and its anaplerotic pathways, as well as the neuroactive tryptophan and kynurenine pathway. Results Concentrations of several TCA cycle and beta-oxidation intermediates were higher in plasma of AD patients, whilst amino acid concentrations were significantly lower. Similar alterations in these energy metabolism intermediates were observed in CSF, together with higher concentrations of creatinine, which were strongly correlated with blood-brain barrier permeability. Alterations of several amino acids were associated with CSF Amyloidβ1–42. The tryptophan catabolites, kynurenic acid and quinolinic acid, showed significantly higher concentrations in CSF of AD patients, which, together with other tryptophan pathway intermediates, were correlated with either CSF Amyloidβ1–42, or tau and phosphorylated Tau-181. Conclusions This study revealed AD-associated systemic dysregulation of nutrient sensing and oxidation and CNS-specific alterations in the neuroactive tryptophan pathway and (phospho)creatine degradation. The specific association of amino acids and tryptophan catabolites with AD CSF biomarkers suggests a close relationship with core AD pathology. Our findings warrant validation in independent, larger cohort studies as well as further investigation of factors such as gender and APOE genotype, as well as of other groups, such as preclinical AD, to identify metabolic alterations as potential intervention targets.
Collapse
Affiliation(s)
- Vera van der Velpen
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Tony Teav
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Héctor Gallart-Ayala
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Florence Mehl
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ioana Konz
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - Aikaterini Oikonomidi
- Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausane, Switzerland
| | - Gwendoline Peyratout
- Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausane, Switzerland
| | - Hugues Henry
- Clinical Chemistry Laboratory, Department of Biomedicine, Lausanne University Hospital, Lausane, Switzerland
| | - Mauro Delorenzi
- Translational Bioinformatics and Statistics, Department of Oncology, Swiss Cancer Center Leman (SCCL), University of Lausanne, Lausanne, Switzerland.,Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Julius Popp
- Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausane, Switzerland. .,Department of Psychiatry, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
140
|
Azad RK, Shulaev V. Metabolomics technology and bioinformatics for precision medicine. Brief Bioinform 2019; 20:1957-1971. [PMID: 29304189 PMCID: PMC6954408 DOI: 10.1093/bib/bbx170] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/29/2017] [Indexed: 12/14/2022] Open
Abstract
Precision medicine is rapidly emerging as a strategy to tailor medical treatment to a small group or even individual patients based on their genetics, environment and lifestyle. Precision medicine relies heavily on developments in systems biology and omics disciplines, including metabolomics. Combination of metabolomics with sophisticated bioinformatics analysis and mathematical modeling has an extreme power to provide a metabolic snapshot of the patient over the course of disease and treatment or classifying patients into subpopulations and subgroups requiring individual medical treatment. Although a powerful approach, metabolomics have certain limitations in technology and bioinformatics. We will review various aspects of metabolomics technology and bioinformatics, from data generation, bioinformatics analysis, data fusion and mathematical modeling to data management, in the context of precision medicine.
Collapse
Affiliation(s)
| | - Vladimir Shulaev
- Corresponding author: Vladimir Shulaev, Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX 76210, USA. Tel.: 940-369-5368; Fax: 940-565-3821; E-mail:
| |
Collapse
|
141
|
Frick MA, Barba I, Fenoy-Alejandre M, López-López P, Baquero-Artigao F, Rodríguez-Molino P, Noguera-Julian A, Nicolás-López M, de la Fuente-Juárez A, Codina-Grau MG, Esperalba Esquerra J, Linde-Sillo Á, Soler-Palacín P. 1H-NMR Urinary Metabolic Profile, A Promising Tool for the Management of Infants with Human Cytomegalovirus-Infection. Metabolites 2019; 9:metabo9120288. [PMID: 31775291 PMCID: PMC6949898 DOI: 10.3390/metabo9120288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/14/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023] Open
Abstract
Congenital human cytomegalovirus (HCMV) infection is the most common mother-to-child transmitted infection in the developed world. Certain aspects of its management remain a challenge. Urinary metabolic profiling is a promising tool for use in pediatric conditions. The aim of this study was to investigate the urinary metabolic profile in HCMV-infected infants and controls during acute care hospitalization. Urine samples were collected from 53 patients at five hospitals participating in the Spanish congenital HCMV registry. Thirty-one cases of HCMV infection and 22 uninfected controls were included. Proton nuclear magnetic resonance (1H-NMR) spectra were obtained using NOESYPR1D pulse sequence. The dataset underwent orthogonal projection on latent structures discriminant analysis to identify candidate variables affecting the urinary metabolome: HCMV infection, type of infection, sex, chronological age, gestational age, type of delivery, twins, and diet. Statistically significant discriminative models were obtained only for HCMV infection (p = 0.03) and chronological age (p < 0.01). No significant differences in the metabolomic profile were found between congenital and postnatal HCMV infection. When the HCMV-infected group was analyzed according to chronological age, a statistically significant model was obtained only in the neonatal group (p = 0.01), with the differentiating metabolites being betaine, glycine, alanine, and dimethylamine. Despite the considerable variation in urinary metabolic profiles in a real-life setting, clinical application of metabolomics to the study of HCMV infection seems feasible.
Collapse
Affiliation(s)
- Marie Antoinette Frick
- Pediatric Infectious Diseases and Primary Immunodeficiencies Unit, Pediatrics Department, Children’s Hospital, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | | | - Marina Fenoy-Alejandre
- Pediatric Infectious Diseases and Primary Immunodeficiencies Unit, Pediatrics Department, Children’s Hospital, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Primary Immunodeficiencies Unit, Pediatrics Department, Children’s Hospital, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| |
Collapse
|
142
|
Onida S, Tan MKH, Kafeza M, Bergner RT, Shalhoub J, Holmes E, Davies AH. Metabolic Phenotyping in Venous Disease: The Need for Standardization. J Proteome Res 2019; 18:3809-3820. [PMID: 31617359 DOI: 10.1021/acs.jproteome.9b00460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Venous thromboembolism (VTE), chronic venous disease (CVD), and venous leg ulceration (VLU) are clinical manifestations of a poorly functioning venous system. Though common, much is unknown of the pathophysiology and progression of these conditions. Metabolic phenotyping has been employed to explore mechanistic pathways involved in venous disease. A systematic literature review was performed: full text, primary research articles on the applications of nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) in human participants and animals were included for qualitative synthesis. Seventeen studies applying metabolic phenotyping to venous disease were identified: six on CVD, two on VLU, and nine on VTE; both animal (n = 6) and human (n = 10) experimental designs were reported, with one study including both. NMR, MS, and MS imaging were employed to characterize serum, plasma, urine, wound fluid, and tissue. Metabolites found to be upregulated in CVD included lipids, branched chain amino acids (BCAA), glutamate, taurine, lactate, and myo-inositol identified in vein tissue. Upregulated metabolites in VLU included lactate, BCAA, lysine, 3-hydroxybutyrate, and glutamate identified in wound fluid and ulcer biopsies. VTE cases were associated with reduced carnitine levels, upregulated aromatic amino acids, 3-hydroxybutyrate, BCAA, and lipids in plasma, serum, thrombus, and vein wall; kynurenine and tricarboxylic acid pathway dysfunction were reported. Future research should focus on targeted studies with internal and external validation.
Collapse
Affiliation(s)
- Sarah Onida
- Academic Section of Vascular Surgery, Department of Surgery and Cancer , Imperial College London , Floor 4 East, Charing Cross Hospital, Fulham Palace Road , London W6 8RF , U.K
| | - Matthew K H Tan
- Academic Section of Vascular Surgery, Department of Surgery and Cancer , Imperial College London , Floor 4 East, Charing Cross Hospital, Fulham Palace Road , London W6 8RF , U.K
| | - Marina Kafeza
- Academic Section of Vascular Surgery, Department of Surgery and Cancer , Imperial College London , Floor 4 East, Charing Cross Hospital, Fulham Palace Road , London W6 8RF , U.K
| | - Richmond T Bergner
- Section of Computational and Systems Medicine, Department of Surgery and Cancer , Imperial College London , Sir Alexander Fleming Building, Prince Consort Road , Kensington, London SW7 2BB , U.K
| | - Joseph Shalhoub
- Academic Section of Vascular Surgery, Department of Surgery and Cancer , Imperial College London , Floor 4 East, Charing Cross Hospital, Fulham Palace Road , London W6 8RF , U.K
| | - Elaine Holmes
- Section of Computational and Systems Medicine, Department of Surgery and Cancer , Imperial College London , Sir Alexander Fleming Building, Prince Consort Road , Kensington, London SW7 2BB , U.K.,Health Futures Institute , Murdoch University , Discovery Way , Perth , WA 6150 , Australia
| | - Alun H Davies
- Academic Section of Vascular Surgery, Department of Surgery and Cancer , Imperial College London , Floor 4 East, Charing Cross Hospital, Fulham Palace Road , London W6 8RF , U.K
| |
Collapse
|
143
|
Manzi M, Riquelme G, Zabalegui N, Monge ME. Improving diagnosis of genitourinary cancers: Biomarker discovery strategies through mass spectrometry-based metabolomics. J Pharm Biomed Anal 2019; 178:112905. [PMID: 31707200 DOI: 10.1016/j.jpba.2019.112905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022]
Abstract
The genitourinary oncology field needs integration of results from basic science, epidemiological studies, clinical and translational research to improve the current methods for diagnosis. MS-based metabolomics can be transformative for disease diagnosis and contribute to global health parity. Metabolite panels are promising to translate metabolomic findings into the clinics, changing the current diagnosis paradigm based on single biomarker analysis. This review article describes capabilities of the MS-based oncometabolomics field for improving kidney, prostate, and bladder cancer detection, early diagnosis, risk stratification, and outcome. Published works are critically discussed based on the study design; type and number of samples analyzed; data quality assessment through quality assurance and quality control practices; data analysis workflows; confidence levels reported for identified metabolites; validation attempts; the overlap of discriminant metabolites for the different genitourinary cancers; and the translation capability of findings into clinical settings. Ongoing challenges are discussed, and future directions are delineated.
Collapse
Affiliation(s)
- Malena Manzi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Ciudad de Buenos Aires, Argentina
| | - Gabriel Riquelme
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina; Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - Nicolás Zabalegui
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina; Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
144
|
Austdal M, Silva GB, Bowe S, Thomsen LCV, Tangerås LH, Bjørge L, Bathen TF, Iversen AC. Metabolomics Identifies Placental Dysfunction and Confirms Flt-1 (FMS-Like Tyrosine Kinase Receptor 1) Biomarker Specificity. Hypertension 2019; 74:1136-1143. [PMID: 31495279 DOI: 10.1161/hypertensionaha.119.13184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Clinical end-stage parameters define the pregnancy disorders preeclampsia and fetal growth restriction while classification of the underlying placental dysfunction is missing and urgently needed. Flt-1 (FMS-like tyrosine kinase receptor 1) is the most promising placenta-derived predictive biomarker for preeclampsia. We aimed to classify placental dysfunction in preeclampsia and fetal growth restriction at delivery by metabolic profiling and authenticate the biomarker Flt-1 for placental dysfunction. We studied 143 pregnancies with or without preeclampsia and/or fetal growth restriction delivered by cesarean section. Metabolic placenta profiles were created by high-resolution magic angle spinning nuclear magnetic resonance spectroscopy and the resulting placental phenotypes obtained by hierarchical clustering. Placental Flt-1 expression (membrane-bound and soluble isoforms combined) and maternal serum Flt-1 expression (soluble isoforms) were analyzed by immunohistochemistry and ELISA, respectively. We identified 3 distinct placenta groups by 21 metabolites and diagnostic outcome parameters; normal placentas, moderate placental dysfunction, and severe placental dysfunction. Increased placental Flt-1 was associated with severe placental dysfunction, and increased serum Flt-1 was associated with moderate and severe placental dysfunction. The preeclamptic pregnancies with and without placental dysfunction could be distinguished by 5 metabolites and placental Flt-1. Placental Flt-1 alone could separate normal pregnancies with and without placental dysfunction. In conclusion, metabolomics could classify placental dysfunction and provide information not identified by traditional diagnostics and metabolites with biomarker potential were identified. Flt-1 was confirmed as precision biomarker for placental dysfunction, substantiating its usefulness for identification of high-risk pregnancies for preeclampsia and fetal growth restriction with placental involvement.
Collapse
Affiliation(s)
- Marie Austdal
- From the Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU) (M.A., G.B.S., L.C.V.T., L.H.T., A.-C.I.), Trondheim University Hospital, Norway.,Department of Circulation and Medical Imaging, NTNU (M.A., T.F.B.), Trondheim University Hospital, Norway.,Department of Research, Stavanger University Hospital, Norway (M.A.)
| | - Gabriela Brettas Silva
- From the Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU) (M.A., G.B.S., L.C.V.T., L.H.T., A.-C.I.), Trondheim University Hospital, Norway.,Department of Gynecology and Obstetrics, St. Olavs Hospital, Trondheim University Hospital, Norway (G.B.S., S.B., L.H.T.)
| | - Sophie Bowe
- Department of Gynecology and Obstetrics, St. Olavs Hospital, Trondheim University Hospital, Norway (G.B.S., S.B., L.H.T.)
| | - Liv Cecilie Vestrheim Thomsen
- From the Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU) (M.A., G.B.S., L.C.V.T., L.H.T., A.-C.I.), Trondheim University Hospital, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital and Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Norway (L.C.V.T., L.B.)
| | - Line Haugstad Tangerås
- From the Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU) (M.A., G.B.S., L.C.V.T., L.H.T., A.-C.I.), Trondheim University Hospital, Norway.,Department of Gynecology and Obstetrics, St. Olavs Hospital, Trondheim University Hospital, Norway (G.B.S., S.B., L.H.T.)
| | - Line Bjørge
- Department of Gynecology and Obstetrics, Haukeland University Hospital and Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Norway (L.C.V.T., L.B.)
| | - Tone Frost Bathen
- Department of Circulation and Medical Imaging, NTNU (M.A., T.F.B.), Trondheim University Hospital, Norway
| | - Ann-Charlotte Iversen
- From the Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU) (M.A., G.B.S., L.C.V.T., L.H.T., A.-C.I.), Trondheim University Hospital, Norway
| |
Collapse
|
145
|
Martins AMA, Garcia JHP, Eberlin MN. Mass Spectrometry as a Clinical Integrative Tool to Evaluate Hepatocellular Carcinoma: Moving to the Mainstream. Expert Rev Gastroenterol Hepatol 2019; 13:821-825. [PMID: 31382786 DOI: 10.1080/17474124.2019.1651643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Since the pioneering work of J. J. Thomson on magnetic deflection of charged particles, mass spectrometry (MS) has become the most progressive clinical tool by continuously providing new applications in medical research. In hepatocellular carcinoma (HCC), MS can be used from surveillance in early stages of the disease to constant evaluation of effective treatments. Areas covered: This Special Report highlights the groundbreaking possibilities of mass spectrometry clinical application in the mainstream to evaluate HCC development and progression. Expert opinon: MS has been employed to understand a myriad of liver diseases, such as the identification of early biomarkers in cirrhosis and HVB and HVC, as well as metabolic alterations of lipidic imbalance in HCC due to fatty liver disease. In an integrative point-of-view, researchers worldwide are looking for molecular signatures that may represent more faithfully the complex scenario of the onset and progression of HCC. Following the steps of MELD score (Model of End-stage Liver Disease), which evaluates biochemical dysfunction of end-stage liver diseases, the necessity to use innovative attempts to pursue a molecular-MEaLD (mMEaLD - molecular Model for Early Liver Disease), shifting MS to the upstream and from the lab facilities into the mainstream, inside the surgery room.
Collapse
Affiliation(s)
- Aline M A Martins
- Translational Medicine Molecular Pathology, Medicine College, Universidade de Brasilia , Brasilia , Brazil.,Department of Surgery, Universidade Federal do Ceara , Fortaleza , Brazil
| | - J Huygens P Garcia
- Department of Surgery, Universidade Federal do Ceara , Fortaleza , Brazil
| | | |
Collapse
|
146
|
Poupin N, Tremblay-Franco M, Amiel A, Canlet C, Rémond D, Debrauwer L, Dardevet D, Thiele I, Aurich MK, Jourdan F, Savary-Auzeloux I, Polakof S. Arterio-venous metabolomics exploration reveals major changes across liver and intestine in the obese Yucatan minipig. Sci Rep 2019; 9:12527. [PMID: 31467335 PMCID: PMC6715693 DOI: 10.1038/s41598-019-48997-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
Blood circulation mainly aims at distributing the nutrients required for tissue metabolism and collecting safely the by-products of all tissues to be further metabolized or eliminated. The simultaneous study of arterial (A) and venous (V) specific metabolites therefore has appeared to be a more relevant approach to understand and study the metabolism of a given organ. We propose to implement this approach by applying a metabolomics (NMR) strategy on paired AV blood across the intestine and liver on high fat/high sugar (HFHS)-fed minipigs. Our objective was to unravel kinetically and sequentially the metabolic adaptations to early obesity/insulin resistance onset specifically on these two tissues. After two months of HFHS feeding our study of AV ratios of the metabolome highlighted three major features. First, the hepatic metabolism switched from carbohydrate to lipid utilization. Second, the energy demand of the intestine increased, resulting in an enhanced uptake of glutamine, glutamate, and the recruitment of novel energy substrates (choline and creatine). Third, the uptake of methionine and threonine was considered to be driven by an increased intestine turnover to cope with the new high-density diet. Finally, the unique combination of experimental data and modelling predictions suggested that HFHS feeding was associated with changes in tryptophan metabolism and fatty acid β-oxidation, which may play an important role in lipid hepatic accumulation and insulin sensitivity.
Collapse
Affiliation(s)
- Nathalie Poupin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Marie Tremblay-Franco
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.,Axiom platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Aurélien Amiel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.,Axiom platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.,Axiom platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Didier Rémond
- Université Clermont Auvergne, INRA, Unité de Nutrition Humaine, UMR1019, Clermont-Ferrand, France
| | - Laurent Debrauwer
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.,Axiom platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Dominique Dardevet
- Université Clermont Auvergne, INRA, Unité de Nutrition Humaine, UMR1019, Clermont-Ferrand, France
| | - Ines Thiele
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, Esch-sur-Alzette, Luxembourg.,School of Medicine, National University of Ireland, University Road, Galway, Ireland.,Discipline of Microbiology, School of Natural Sciences, National University of Ireland, University Road, Galway, Ireland
| | - Maike K Aurich
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, Esch-sur-Alzette, Luxembourg
| | - Fabien Jourdan
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Isabelle Savary-Auzeloux
- Université Clermont Auvergne, INRA, Unité de Nutrition Humaine, UMR1019, Clermont-Ferrand, France
| | - Sergio Polakof
- Université Clermont Auvergne, INRA, Unité de Nutrition Humaine, UMR1019, Clermont-Ferrand, France.
| |
Collapse
|
147
|
Han J, Han ML, Xing H, Li ZL, Yuan DY, Wu H, Zhang H, Wang MD, Li C, Liang L, Song YY, Xu AJ, Wu MC, Shen F, Xie Y, Yang T. Tissue and serum metabolomic phenotyping for diagnosis and prognosis of hepatocellular carcinoma. Int J Cancer 2019; 146:1741-1753. [PMID: 31361910 DOI: 10.1002/ijc.32599] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/27/2019] [Accepted: 07/16/2019] [Indexed: 12/24/2022]
Abstract
More than two-thirds of patients with hepatocellular carcinoma (HCC) cannot receive curative therapy and have poor survival due to late diagnosis and few prognostic directions. In our study, nontargeted and targeted metabolomics analyses were conducted by liquid chromatography-mass spectrometry to characterize metabolic features of HCC and identify diagnostic and prognostic biomarker candidate incorporating liver tissue and serum metabolites. A total of 552 subjects, including 432 with liver tissue and 120 with serum specimens, were recruited in China. In the discovery cohort, a series of 138 metabolites were identified to discriminate HCC tissues from matched nontumor tissues. Retinol presented with the highest area under the curve (AUC) of 0.991 and associated with Edmondson grade. In the validation cohort, all metabolites in retinol metabolism pathway were examined and the levels of retinol and retinal in tumor tissue and serum decreased in the order of normal to cirrhosis to HCC of Edmondson Grades I to IV. Retinol and retinal levels could also differentiate between HCC and cirrhosis, with AUCs of 0.996 and 0.994, respectively, in tissue and 0.812 and 0.744, respectively, in serum. The AUC of the combined retinol and retinal panel in serum was 0.852. Univariate and multivariate Cox regression identified this panel as an independent predictor for HCC and showed that low expression of retinol and retinal correlated with decreased survival time. In conclusion, the retinol metabolic signature had considerable diagnostic and prognostic value for identifying HCC patients who would benefit from prompt therapy and optimal prognostic direction.
Collapse
Affiliation(s)
- Jun Han
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing, China
| | - Min-Lu Han
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Xing
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zhen-Li Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Dao-Yi Yuan
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Wu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Han Zhang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ming-da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Chao Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Lei Liang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yan-Yan Song
- Department of Pharmacology and Biostatistics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ai-Jing Xu
- Department of Infectious Disease, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Meng-Chao Wu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ying Xie
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian Yang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
148
|
Wang XJ, Ren JL, Zhang AH, Sun H, Yan GL, Han Y, Liu L. Novel applications of mass spectrometry-based metabolomics in herbal medicines and its active ingredients: Current evidence. MASS SPECTROMETRY REVIEWS 2019; 38:380-402. [PMID: 30817039 DOI: 10.1002/mas.21589] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Current evidence shows that herbal medicines could be beneficial for the treatment of various diseases. However, the complexities present in chemical compositions of herbal medicines are currently an obstacle for the progression of herbal medicines, which involve unclear bioactive compounds, mechanisms of action, undetermined targets for therapy, non-specific features for drug metabolism, etc. To overcome those issues, metabolomics can be a great to improve and understand herbal medicines from the small-molecule metabolism level. Metabolomics could solve scientific difficulties with herbal medicines from a metabolic perspective, and promote drug discovery and development. In recent years, mass spectrometry-based metabolomics was widely applied for the analysis of herbal constituents in vivo and in vitro. In this review, we highlight the value of mass spectrometry-based metabolomics and metabolism to address the complexity of herbal medicines in systems pharmacology, and to enhance their biomedical value in biomedicine, to shed light on the aid that mass spectrometry-based metabolomics can offer to the investigation of its active ingredients, especially, to link phytochemical analysis with the assessment of pharmacological effect and therapeutic potential. © 2019 Wiley Periodicals, Inc. Mass Spec Rev.
Collapse
Affiliation(s)
- Xi-Jun Wang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning Guangxi, China
| | - Jun-Ling Ren
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guang-Li Yan
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| |
Collapse
|
149
|
Laíns I, Chung W, Kelly RS, Gil J, Marques M, Barreto P, Murta JN, Kim IK, Vavvas DG, Miller JB, Silva R, Lasky-Su J, Liang L, Miller JW, Husain D. Human Plasma Metabolomics in Age-Related Macular Degeneration: Meta-Analysis of Two Cohorts. Metabolites 2019; 9:E127. [PMID: 31269701 PMCID: PMC6680405 DOI: 10.3390/metabo9070127] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 01/01/2023] Open
Abstract
The pathogenesis of age-related macular degeneration (AMD), a leading cause of blindness worldwide, remains only partially understood. This has led to the current lack of accessible and reliable biofluid biomarkers for diagnosis and prognosis, and absence of treatments for dry AMD. This study aimed to assess the plasma metabolomic profiles of AMD and its severity stages with the ultimate goal of contributing to addressing these needs. We recruited two cohorts: Boston, United States (n = 196) and Coimbra, Portugal (n = 295). Fasting blood samples were analyzed using ultra-high performance liquid chromatography mass spectrometry. For each cohort, we compared plasma metabolites of AMD patients versus controls (logistic regression), and across disease stages (permutation-based cumulative logistic regression considering both eyes). Meta-analyses were then used to combine results from the two cohorts. Our results revealed that 28 metabolites differed significantly between AMD patients versus controls (false discovery rate (FDR) q-value: 4.1 × 10-2-1.8 × 10-5), and 67 across disease stages (FDR q-value: 4.5 × 10-2-1.7 × 10-4). Pathway analysis showed significant enrichment of glycerophospholipid, purine, taurine and hypotaurine, and nitrogen metabolism (p-value ≤ 0.04). In conclusion, our findings support that AMD patients present distinct plasma metabolomic profiles, which vary with disease severity. This work contributes to the understanding of AMD pathophysiology, and can be the basis of future biomarkers and precision medicine for this blinding condition.
Collapse
Affiliation(s)
- Inês Laíns
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Faculty of Medicine, University of Coimbra, 3000 Coimbra, Portugal
- Centro Hospitalar e Universitário de Coimbra, 3000 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, 3000 Coimbra, Portugal
| | - Wonil Chung
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Rachel S Kelly
- Systems Genetics and Genomics Unit, Channing Division of Network Medicine Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - João Gil
- Faculty of Medicine, University of Coimbra, 3000 Coimbra, Portugal
| | - Marco Marques
- Faculty of Medicine, University of Coimbra, 3000 Coimbra, Portugal
| | - Patrícia Barreto
- Association for Innovation and Biomedical Research on Light and Image, 3000 Coimbra, Portugal
| | - Joaquim N Murta
- Faculty of Medicine, University of Coimbra, 3000 Coimbra, Portugal
- Centro Hospitalar e Universitário de Coimbra, 3000 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, 3000 Coimbra, Portugal
| | - Ivana K Kim
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Demetrios G Vavvas
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - John B Miller
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Rufino Silva
- Faculty of Medicine, University of Coimbra, 3000 Coimbra, Portugal
- Centro Hospitalar e Universitário de Coimbra, 3000 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, 3000 Coimbra, Portugal
| | - Jessica Lasky-Su
- Systems Genetics and Genomics Unit, Channing Division of Network Medicine Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Liming Liang
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Joan W Miller
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Deeba Husain
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
150
|
Eshima J, Ong S, Davis TJ, Miranda C, Krishnamurthy D, Nachtsheim A, Stufken J, Plaisier C, Fricks J, Bean HD, Smith BS. Monitoring changes in the healthy female metabolome across the menstrual cycle using GC × GC-TOFMS. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1121:48-57. [DOI: 10.1016/j.jchromb.2019.04.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 01/22/2023]
|