101
|
Abulikemu M, Booker EP, E.A. Tabrizi B, Jabbour GE. Fast and Effective Deactivation of Human Coronavirus with Copper Oxide Suspensions. ACS APPLIED BIO MATERIALS 2022; 5:3734-3740. [PMID: 35830575 PMCID: PMC9305719 DOI: 10.1021/acsabm.2c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022]
Abstract
The COVID-19 pandemic has demonstrated the need for versatile and robust countermeasures against viral threats. A wide range of viruses, including SARS-CoV-2, the virus that causes COVID-19, can be deactivated by metal and metal-oxide surface coatings. However, such coatings are expensive and cannot easily be retrofitted to existing infrastructure. Low-cost materials to halt the propagation of a variety of viruses must be produced with minimal quantities of expensive precursors. In this regard, we show that commercially available copper oxide nanoparticle suspensions can deactivate more than 99.55% of the human coronavirus 229E in 30 min, confirming the particles' efficiency as a fast antiviral material.
Collapse
Affiliation(s)
- Mutalifu Abulikemu
- School of Electrical Engineering and Computer Science,
University of Ottawa, 800 King Edward Avenue, Ottawa, Ontarip
K1N 6N5, Canada
| | - Edward P. Booker
- School of Electrical Engineering and Computer Science,
University of Ottawa, 800 King Edward Avenue, Ottawa, Ontarip
K1N 6N5, Canada
| | - Bita E.A. Tabrizi
- School of Electrical Engineering and Computer Science,
University of Ottawa, 800 King Edward Avenue, Ottawa, Ontarip
K1N 6N5, Canada
| | - Ghassan E. Jabbour
- School of Electrical Engineering and Computer Science,
University of Ottawa, 800 King Edward Avenue, Ottawa, Ontarip
K1N 6N5, Canada
| |
Collapse
|
102
|
Naikoo GA, Arshad F, Almas M, Hassan IU, Pedram MZ, Aljabali AA, Mishra V, Serrano-Aroca Á, Birkett M, Charbe NB, Goyal R, Negi P, El-Tanani M, Tambuwala MM. 2D materials, synthesis, characterization and toxicity: A critical review. Chem Biol Interact 2022; 365:110081. [PMID: 35948135 DOI: 10.1016/j.cbi.2022.110081] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
|
103
|
Marković D, Zille A, Ribeiro AI, Mikučioniene D, Simončič B, Tomšič B, Radetić M. Antibacterial Bio-Nanocomposite Textile Material Produced from Natural Resources. NANOMATERIALS 2022; 12:nano12152539. [PMID: 35893507 PMCID: PMC9331264 DOI: 10.3390/nano12152539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/05/2022]
Abstract
Growing demand for sustainable and green technologies has turned industries and research toward the more efficient utilization of natural and renewable resources. In an effort to tackle this issue, we developed an antibacterial textile nanocomposite material based on cotton and peat fibers with immobilized Cu-based nanostructures. In order to overcome poor wettability and affinity for Cu2+-ions, the substrate was activated by corona discharge and coated with the biopolymer chitosan before the in situ synthesis of nanostructures. Field emission scanning electron microscopy (FESEM) images show that the application of gallic or ascorbic acid as green reducing agents resulted in the formation of Cu-based nanosheets and mostly spherical nanoparticles, respectively. X-ray photoelectron spectroscopy (XPS) analysis revealed that the formed nanostructures consisted of Cu2O and CuO. A higher-concentration precursor solution led to higher copper content in the nanocomposites, independent of the reducing agent and chitosan deacetylation degree. Most of the synthesized nanocomposites provided maximum reduction of the bacteria Escherichia coli and Staphylococcus aureus. A combined modification using chitosan with a higher deacetylation degree, a 1 mM solution of CuSO4 solution, and gallic acid resulted in an optimal textile nanocomposite with strong antibacterial activity and moderate Cu2+-ion release in physiological solutions. Finally, the Cu-based nanostructures partially suppressed the biodegradation of the textile nanocomposite in soil.
Collapse
Affiliation(s)
- Darka Marković
- Innovation Centre of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
- Correspondence: ; Tel.: +381-1-133-036-13
| | - Andrea Zille
- Centro de Ciência e Tecnologia Têxtil (2C2T), Universidade do Minho, 4800-058 Guimarães, Portugal; (A.Z.); (A.I.R.)
| | - Ana Isabel Ribeiro
- Centro de Ciência e Tecnologia Têxtil (2C2T), Universidade do Minho, 4800-058 Guimarães, Portugal; (A.Z.); (A.I.R.)
| | - Daiva Mikučioniene
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Str. 56-249, LT-51424 Kaunas, Lithuania;
| | - Barbara Simončič
- Faculty of Natural Sciences and Engineering Ljubljana, University of Ljubljana, Aškerčeva cesta 12, 1000 Ljubljana, Slovenia; (B.S.); (B.T.)
| | - Brigita Tomšič
- Faculty of Natural Sciences and Engineering Ljubljana, University of Ljubljana, Aškerčeva cesta 12, 1000 Ljubljana, Slovenia; (B.S.); (B.T.)
| | - Maja Radetić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia;
| |
Collapse
|
104
|
Li D, Aubertin K, Onidas D, Nizard P, Félidj N, Gazeau F, Mangeney C, Luo Y. Recent advances in non-plasmonic surface-enhanced Raman spectroscopy nanostructures for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1795. [PMID: 35362261 DOI: 10.1002/wnan.1795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is an emerging powerful vibrational technique offering unprecedented opportunities in biomedical science for the sensitive detection of biomarkers and the imaging and tracking of biological samples. Conventional SERS detection is based on the use of plasmonic substrates (e.g., Au and Ag nanostructures), which exhibit very high enhancement factors (EF = 1010 -1011 ) but suffers from serious limitations, including light-induced local heating effect due to ohmic loss and expensive price. These drawbacks may limit detection accuracy and large-scaled practical applications. In this review, we focus on alternative approaches based on plasmon-free SERS detection on low-cost nanostructures, such as carbons, oxides, chalcogenides, polymers, silicons, and so forth. The mechanism of non-plasmonic SERS detection has been attributed to interfacial charge transfer between the substrate and the adsorbed molecules, with no photothermal side-effects but usually less EF compared with plasmonic nanostructures. The strategies to improve Raman signal detection, through the tailoring of substrate composition, structure, and surface chemistry, is reviewed and discussed. The biomedical applications, for example, SERS cell characterization, biosensing, and bioimaging are also presented, highlighting the importance of substrate surface functionalization to achieve sensitive, accurate analysis, and excellent biocompatibility. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > Biosensing Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Da Li
- LCBPT, CNRS UMR 8601, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| | - Kelly Aubertin
- MSC, CNRS UMR 7057, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| | - Delphine Onidas
- LCBPT, CNRS UMR 8601, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| | - Philippe Nizard
- LCBPT, CNRS UMR 8601, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| | - Nordin Félidj
- ITODYS, CNRS UMR 7086, Université Paris Cité, 15, rue Jean Antoine de Baïf, Paris, France
| | - Florence Gazeau
- MSC, CNRS UMR 7057, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| | - Claire Mangeney
- LCBPT, CNRS UMR 8601, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| | - Yun Luo
- LCBPT, CNRS UMR 8601, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| |
Collapse
|
105
|
Luo J, Yan Q, Yang G, Wang Y. Impact of the Arbuscular Mycorrhizal Fungus Funneliformis mosseae on the Physiological and Defence Responses of Canna indica to Copper Oxide Nanoparticles Stress. J Fungi (Basel) 2022; 8:513. [PMID: 35628768 PMCID: PMC9146287 DOI: 10.3390/jof8050513] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 02/04/2023] Open
Abstract
Copper oxide nanoparticles (nano-CuO) are recognized as an emerging pollutant. Arbuscular mycorrhizal fungi (AMF) can mitigate the adverse impacts of various pollutants on host plants. However, AMF's mechanism for alleviating nano-CuO phytotoxicity remains unclear. The goal of this study was to evaluate how AMF inoculations affect the physiological features of Canna indica seedlings exposed to nano-CuO stress. Compared with the non-AMF inoculated treatment, AMF inoculations noticeably improved plant biomass, mycorrhizal colonization, leaf chlorophyll contents, and the photosynthetic parameters of C. indica under nano-CuO treatments. Moreover, AMF inoculation was able to significantly mitigate nano-CuO stress by enhancing antioxidant enzyme activities and decreasing ROS levels in the leaves and roots of C. indica, thus increasing the expression of genes involved in the antioxidant response. In addition, AMF inoculation reduced the level of Cu in seedlings and was associated with an increased expression of Cu transport genes and metallothionein genes. Furthermore, AMF inoculations increased the expression levels of organic acid metabolism-associated genes while facilitating organic acid secretion, thus reducing the accumulation of Cu. The data demonstrate that AMF-plant symbiosis is a feasible biocontrol approach to remediate nano-CuO pollution.
Collapse
Affiliation(s)
- Jie Luo
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China;
- School of Yuanpei, Shaoxing University, Shaoxing 312000, China;
| | - Qiuxia Yan
- School of Yuanpei, Shaoxing University, Shaoxing 312000, China;
| | - Guo Yang
- School of Life Science, Shaoxing University, Shaoxing 312000, China
| | - Youbao Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China;
| |
Collapse
|
106
|
Singh R, Sharma A, Saji J, Umapathi A, Kumar S, Daima HK. Smart nanomaterials for cancer diagnosis and treatment. NANO CONVERGENCE 2022; 9:21. [PMID: 35569081 PMCID: PMC9108129 DOI: 10.1186/s40580-022-00313-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/26/2022] [Indexed: 05/14/2023]
Abstract
Innovations in nanomedicine has guided the improved outcomes for cancer diagnosis and therapy. However, frequent use of nanomaterials remains challenging due to specific limitations like non-targeted distribution causing low signal-to-noise ratio for diagnostics, complex fabrication, reduced-biocompatibility, decreased photostability, and systemic toxicity of nanomaterials within the body. Thus, better nanomaterial-systems with controlled physicochemical and biological properties, form the need of the hour. In this context, smart nanomaterials serve as promising solution, as they can be activated under specific exogenous or endogenous stimuli such as pH, temperature, enzymes, or a particular biological molecule. The properties of smart nanomaterials make them ideal candidates for various applications like biosensors, controlled drug release, and treatment of various diseases. Recently, smart nanomaterial-based cancer theranostic approaches have been developed, and they are displaying better selectivity and sensitivity with reduced side-effects in comparison to conventional methods. In cancer therapy, the smart nanomaterials-system only activates in response to tumor microenvironment (TME) and remains in deactivated state in normal cells, which further reduces the side-effects and systemic toxicities. Thus, the present review aims to describe the stimulus-based classification of smart nanomaterials, tumor microenvironment-responsive behaviour, and their up-to-date applications in cancer theranostics. Besides, present review addresses the development of various smart nanomaterials and their advantages for diagnosing and treating cancer. Here, we also discuss about the drug targeting and sustained drug release from nanocarriers, and different types of nanomaterials which have been engineered for this intent. Additionally, the present challenges and prospects of nanomaterials in effective cancer diagnosis and therapeutics have been discussed.
Collapse
Affiliation(s)
- Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Ayush Sharma
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Joel Saji
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Akhela Umapathi
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Hemant Kumar Daima
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India.
| |
Collapse
|
107
|
Shokrani H, Shokrani A, Jouyandeh M, Seidi F, Gholami F, Kar S, Munir MT, Kowalkowska-Zedler D, Zarrintaj P, Rabiee N, Saeb MR. Green Polymer Nanocomposites for Skin Tissue Engineering. ACS APPLIED BIO MATERIALS 2022; 5:2107-2121. [PMID: 35504039 DOI: 10.1021/acsabm.2c00313] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fabrication of an appropriate skin scaffold needs to meet several standards related to the mechanical and biological properties. Fully natural/green scaffolds with acceptable biodegradability, biocompatibility, and physiological properties quite often suffer from poor mechanical properties. Therefore, for appropriate skin tissue engineering and to mimic the real functions, we need to use synthetic polymers and/or additives as complements to green polymers. Green nanocomposites (either nanoscale natural macromolecules or biopolymers containing nanoparticles) are a class of scaffolds with acceptable biomedical properties window (drug delivery and cardiac, nerve, bone, cartilage as well as skin tissue engineering), enabling one to achieve the required level of skin regeneration and wound healing. In this review, we have collected, summarized, screened, analyzed, and interpreted the properties of green nanocomposites used in skin tissue engineering and wound dressing. We particularly emphasize the mechanical and biological properties that skin cells need to meet when seeded on the scaffold. In this regard, the latest state of the art studies directed at fabrication of skin tissue and bionanocomposites as well as their mechanistic features are discussed, whereas some unspoken complexities and challenges for future developments are highlighted.
Collapse
Affiliation(s)
- Hanieh Shokrani
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, 11155-9567 Tehran, Iran
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, 11155-4563 Tehran, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - Fatemeh Gholami
- New Technologies - Research Centre, University of West Bohemia, Veleslavínova 42, 301 00 Plzeň, Czech Republic
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Muhammad Tajammal Munir
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Daria Kowalkowska-Zedler
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Payam Zarrintaj
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, United States
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran 145888-9694, Iran.,School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
108
|
Tulinska J, Mikusova ML, Liskova A, Busova M, Masanova V, Uhnakova I, Rollerova E, Alacova R, Krivosikova Z, Wsolova L, Dusinska M, Horvathova M, Szabova M, Lukan N, Stuchlikova M, Kuba D, Vecera Z, Coufalik P, Krumal K, Alexa L, Vrlikova L, Buchtova M, Dumkova J, Piler P, Thon V, Mikuska P. Copper Oxide Nanoparticles Stimulate the Immune Response and Decrease Antioxidant Defense in Mice After Six-Week Inhalation. Front Immunol 2022; 13:874253. [PMID: 35547729 PMCID: PMC9082266 DOI: 10.3389/fimmu.2022.874253] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Copper oxide nanoparticles (CuO NPs) are increasingly used in various industry sectors. Moreover, medical application of CuO NPs as antimicrobials also contributes to human exposure. Their toxicity, including toxicity to the immune system and blood, raises concerns, while information on their immunotoxicity is still very limited. The aim of our work was to evaluate the effects of CuO NPs (number concentration 1.40×106 particles/cm3, geometric mean diameter 20.4 nm) on immune/inflammatory response and antioxidant defense in mice exposed to 32.5 µg CuO/m3 continuously for 6 weeks. After six weeks of CuO NP inhalation, the content of copper in lungs and liver was significantly increased, while in kidneys, spleen, brain, and blood it was similar in exposed and control mice. Inhalation of CuO NPs caused a significant increase in proliferative response of T-lymphocytes after mitogenic stimulation and basal proliferative activity of splenocytes. CuO NPs significantly induced the production of IL-12p70, Th1-cytokine IFN-γ and Th2-cytokines IL-4, IL-5. Levels of TNF-α and IL-6 remained unchanged. Immune assays showed significantly suppressed phagocytic activity of granulocytes and slightly decreased respiratory burst. No significant differences in phagocytosis of monocytes were recorded. The percentage of CD3+, CD3+CD4+, CD3+CD8+, and CD3-CD19+ cell subsets in spleen, thymus, and lymph nodes did not differ between exposed and control animals. No changes in hematological parameters were found between the CuO NP exposed and control groups. The overall antioxidant protection status of the organism was expressed by evaluation of GSH and GSSG concentrations in blood samples. The experimental group exposed to CuO NPs showed a significant decrease in GSH concentration in comparison to the control group. In summary, our results indicate that sub-chronic inhalation of CuO NPs can cause undesired modulation of the immune response. Stimulation of adaptive immunity was indicated by activation of proliferation and secretion functions of lymphocytes. CuO NPs elicited pro-activation state of Th1 and Th2 lymphocytes in exposed mice. Innate immunity was affected by impaired phagocytic activity of granulocytes. Reduced glutathione was significantly decreased in mice exposed to CuO NPs.
Collapse
Affiliation(s)
- Jana Tulinska
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | | | - Aurelia Liskova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Milena Busova
- Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Vlasta Masanova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Iveta Uhnakova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Eva Rollerova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Radka Alacova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Zora Krivosikova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Ladislava Wsolova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Maria Dusinska
- Health Effects Laboratory, Norwegian Institute for Air Research, Kjeller, Norway
| | - Mira Horvathova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Michaela Szabova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Norbert Lukan
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | | | - Daniel Kuba
- National Transplant Organization, Bratislava, Slovakia
| | - Zbynek Vecera
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Pavel Coufalik
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Kamil Krumal
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Lukas Alexa
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Lucie Vrlikova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Marcela Buchtova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Jana Dumkova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vojtech Thon
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Pavel Mikuska
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
109
|
Forest V. Experimental and Computational Nanotoxicology-Complementary Approaches for Nanomaterial Hazard Assessment. NANOMATERIALS 2022; 12:nano12081346. [PMID: 35458054 PMCID: PMC9031966 DOI: 10.3390/nano12081346] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/25/2022]
Abstract
The growing development and applications of nanomaterials lead to an increasing release of these materials in the environment. The adverse effects they may elicit on ecosystems or human health are not always fully characterized. Such potential toxicity must be carefully assessed with the underlying mechanisms elucidated. To that purpose, different approaches can be used. First, experimental toxicology consisting of conducting in vitro or in vivo experiments (including clinical studies) can be used to evaluate the nanomaterial hazard. It can rely on variable models (more or less complex), allowing the investigation of different biological endpoints. The respective advantages and limitations of in vitro and in vivo models are discussed as well as some issues associated with experimental nanotoxicology. Perspectives of future developments in the field are also proposed. Second, computational nanotoxicology, i.e., in silico approaches, can be used to predict nanomaterial toxicity. In this context, we describe the general principles, advantages, and limitations especially of quantitative structure–activity relationship (QSAR) models and grouping/read-across approaches. The aim of this review is to provide an overview of these different approaches based on examples and highlight their complementarity.
Collapse
Affiliation(s)
- Valérie Forest
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, Etablissement Français du Sang, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| |
Collapse
|
110
|
Al-Ruwaili M, Jarrar B, Jarrar Q, Al-Doaiss A, Alshehri M, Melhem W. Renal ultrastructural damage induced by chronic exposure to copper oxide nanomaterials: Electron microscopy study. Toxicol Ind Health 2022; 38:80-91. [PMID: 35209751 DOI: 10.1177/07482337211062674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Copper oxide nanomaterials are used in many biomedical, agricultural, environmental, and industrial sectors with potential risk to human health and the environment. The present study was conducted to determine the renal ultrastructural damage caused by 25 nm CuO nanoparticles in renal tissues. Adult healthy male Wister Albino rats (Rattus norvegicus) were administered 35 intraperitoneal injections of CuO nanoparticles (2 mg/kg). Ultrastructural changes were evaluated using transmission electron microscopy techniques. The renal tissues of rats with subchronic exposure to CuO nanoparticles demonstrated glomerular alterations that included hypertrophic endothelial cells, dilated capillaries and occlusions, podocyte hypertrophy, pedicle disorganization, mesangial cell hyperplasia, and crystalloid precipitation. Moreover, the treated renal cells exhibited mitochondrial swelling and crystolysis, cytoplasmic vacoulization, lysosomal hypertrophy, apoptotic activity, endoplasmic reticulum dilatation, nuclear deformity, chromatin dissolution, and basement membrane thickening. In addition, disruption and disorganization of the renal cells microvilli together with cystolic inclusions were also detected. It was concluded from the present findings that CuO nanoparticles could interact with the components of the renal tissues in ways that could cause ultrastructural injury, suggesting renal tissue pathophysiology. Additional studies are suggested for a better understanding the nanotoxicity of CuO nanomaterials.
Collapse
Affiliation(s)
- Meshref Al-Ruwaili
- College of Applied Medical Sciences, 248389Aljouf University, Saudi Arabia
| | - Bashir Jarrar
- Nanobiolgy Unit, College of Applied Medical Sciences, 123295Jerash University, Jordan
| | - Qais Jarrar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, 108568Isra University, Amman, Jordan
| | - Amin Al-Doaiss
- Department of Biology, College of Science, 48144King Khalid University, Abha, Saudi Arabia
| | - Mohammed Alshehri
- Department of Biology, College of Science, 48144King Khalid University, Abha, Saudi Arabia
| | - Walid Melhem
- Electron Microscopy Unit, College of Medicine, 114800King Faisal University, Al-Hasa, Saudi Arabia
| |
Collapse
|
111
|
Tohamy HG, El Okle OS, Goma AA, Abdel-Daim MM, Shukry M. Hepatorenal protective effect of nano-curcumin against nano‑copper oxide-mediated toxicity in rats: Behavioral performance, antioxidant, anti-inflammatory, apoptosis, and histopathology. Life Sci 2022; 292:120296. [PMID: 35045342 DOI: 10.1016/j.lfs.2021.120296] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Metal oxide nanoparticles (NPs) induce oxidative stress that can cause cellular toxicity. A natural antioxidant that can be used to protect tissues from oxidative stress is curcumin. PURPOSE In the present study, we evaluated the protective effect of curcumin nanoparticles (curcumin-NPs) against copper oxide nanoparticles (CuO-NPs)-mediated hepatorenal effects on behavioral performance, biochemical markers, antioxidants, inflammation, apoptosis, and histopathology in rats. STUDY DESIGN Twenty Wistar adult male rats were randomly divided into four groups (n = 5); Group Ι served as a control, group ΙΙ was orally gavaged with curcumin-NPs (100 mg/Kg), group ΙΙI orally received CuO-NPs (100 mg/kg), and group ΙV received both CuO-NPs and curcumin-NPs orally for 14 days. METHODS Behavioral performance, biochemical markers, antioxidants, inflammatory mediators, and apoptotic gene expression were evaluated in addition to histopathological and immunohistochemical examination. RESULTS The results revealed that rats exposed to CuO-NPs suffered from behavioral alterations and hepatic and renal damages, which indicated by a marked elevation of serum biochemical parameters, including alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase, urea, uric acid, and creatinine and a decline of total protein. Moreover, there was a significant downregulation in the expression of antioxidants genes, whereas inflammatory mediators expression were upregulated. The histopathological and immunohistochemical examination also corroborated these findings. In contrast, rats co-treated with curcumin-NPs exhibited better behavioral performance, biochemical profile, gene expression, histological architecture, and immunohistochemical staining results. CONCLUSION These findings strongly indicated that curcumin-NPs exert significant protection against the behavioral and hepatorenal disorders induced by CuO-NPs toxicity by modulating oxidative stress regulators and gene expression.
Collapse
Affiliation(s)
- Hossam G Tohamy
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Osama S El Okle
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Amira A Goma
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Mohamed M Abdel-Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt; Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt.
| |
Collapse
|
112
|
Rius-Rocabert S, Arranz-Herrero J, Fernández-Valdés A, Marciello M, Moreno S, Llinares-Pinel F, Presa J, Hernandez-Alcoceba R, López-Píriz R, Torrecillas R, García A, Brun A, Filice M, Moya JS, Cabal B, Nistal-Villan E. Broad virus inactivation using inorganic micro/nano-particulate materials. Mater Today Bio 2022; 13:100191. [PMID: 35024597 PMCID: PMC8733340 DOI: 10.1016/j.mtbio.2021.100191] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/23/2022]
Abstract
Inorganic materials can provide a set of tools to decontaminate solid, liquid or air containing viral particles. The use of disinfectants can be limited or not practical in scenarios where continuous cleaning is not feasible. Physicochemical differences between viruses raise the need for effective formulations for all kind of viruses. In the present work we describe two types of antimicrobial inorganic materials: i) a novel soda-lime glass (G3), and ii) kaolin containing metals nanoparticles (Ag or CuO), as materials to disable virus infectivity. Strong antiviral properties can be observed in G3 glass, and kaolin-containing nanoparticle materials showing a reduction of viral infectivity close to 99%. in the first 10 min of contact of vesicular stomatitis virus (VSV). A potent virucidal activity is also present in G3 and kaolin containing Ag or CuO nanoparticles against all kinds of viruses tested, reducing more than 99% the amount of HSV-1, Adenovirus, VSV, Influenza virus and SARS-CoV-2 exposed to them. Virucidal properties could be explained by a direct interaction of materials with viruses as well as inactivation by the presence of virucidal elements in the material lixiviates. Kaolin-based materials guarantee a controlled release of active nanoparticles with antiviral activity. Current coronavirus crisis highlights the need for new strategies to remove viruses from contaminated areas. We propose these low-cost inorganic materials as useful disinfecting antivirals in the actual or future pandemic threats.
Collapse
Affiliation(s)
- Sergio Rius-Rocabert
- Microbiology Section, Dpto. CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, 28668, Madrid, Spain.,Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, 28668, Madrid, Spain.,CEMBIO (Centre for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad San Pablo-CEU, 28668, Madrid, Spain
| | - Javier Arranz-Herrero
- Microbiology Section, Dpto. CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, 28668, Madrid, Spain.,Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, 28668, Madrid, Spain
| | - Adolfo Fernández-Valdés
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Avda de la Vega 4-6, El Entrego, 33940, Spain
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040, Madrid, Spain
| | - Sandra Moreno
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Centro Superior de Investigaciones Científicas (INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Francisco Llinares-Pinel
- Microbiology Section, Dpto. CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, 28668, Madrid, Spain
| | | | - Rubén Hernandez-Alcoceba
- Gene Therapy Program. University of Navarra-CIMA, Navarra Institute of Health Research, Av. Pio XII 55, 31008, Pamplona, Navarra, Spain
| | - Roberto López-Píriz
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Avda de la Vega 4-6, El Entrego, 33940, Spain
| | - Ramón Torrecillas
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Avda de la Vega 4-6, El Entrego, 33940, Spain
| | - Antonia García
- CEMBIO (Centre for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad San Pablo-CEU, 28668, Madrid, Spain
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Centro Superior de Investigaciones Científicas (INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Marco Filice
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040, Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
| | - José S Moya
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Avda de la Vega 4-6, El Entrego, 33940, Spain
| | - Belen Cabal
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Avda de la Vega 4-6, El Entrego, 33940, Spain
| | - Estanislao Nistal-Villan
- Microbiology Section, Dpto. CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, 28668, Madrid, Spain.,Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, 28668, Madrid, Spain
| |
Collapse
|
113
|
Zhang S, Lu J, Wang Y, Verstraete W, Yuan Z, Guo J. Insights of metallic nanoparticles and ions in accelerating the bacterial uptake of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126728. [PMID: 34339990 DOI: 10.1016/j.jhazmat.2021.126728] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The increasing release of nanomaterials has attracted significant concerns for human and environmental health. Similarly, the dissemination of antimicrobial resistance (AMR) is a global health crisis affecting approximately 700,000 people a year. However, a knowledge gap persists between the spread of AMR and nanomaterials. This study aims to fill this gap by investigating whether and how nanomaterials could directly facilitate the dissemination of AMR through horizontal gene transfer. Our results show that commonly-used nanoparticles (NPs) (Ag, CuO and ZnO NPs) and their ion forms (Ag+, Cu2+ and Zn2+) at realistic concentrations within aquatic environments can significantly promote the transformation of extracellular antibiotic resistance genes in Acinetobacter baylyi ADP1 by a factor of 11.0-folds, which is comparable to the effects of antibiotics. The enhanced transformation by Ag NPs/Ag+ and CuO NPs/Cu2+ was primarily associated with the overproduction of reactive oxygen species and cell membrane damage. ZnO NPs/Zn2+ might increase the natural transformation rate by stimulating the stress response and ATP synthesis. All tested NPs/ions resulted in upregulating the competence and SOS response-associated genes. These findings highlight a new concern that nanomaterials can speed up the spread of AMR, which should not be ignored when assessing the holistic risk of nanomaterials.
Collapse
Affiliation(s)
- Shuai Zhang
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science &Technology, Nanjing 210044, China
| | - Ji Lu
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Yue Wang
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Willy Verstraete
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Zhiguo Yuan
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
114
|
Kumaravel TS, Sathya TN, Balaje R, Pradeepa P, Yogaraj D, Murali MR, Navaneethakrishnan KR, Murugan S, Jha AN. Genotoxicity evaluation of medical devices: A regulatory perspective. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108407. [PMID: 35690410 DOI: 10.1016/j.mrrev.2021.108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 06/15/2023]
Abstract
This review critically evaluates our current regulatory understanding of genotoxicity testing and risk assessment of medical devices. Genotoxicity risk assessment of these devices begins with the evaluation of materials of construction, manufacturing additives and all residual materials for potential to induce DNA damage. This is followed by extractable and/or leachable (E&L) studies to understand the worst case and/or clinical exposures, coupled with risk assessment of extractables or leachables. The TTC (Threshold of Toxicological Concern) approach is used to define acceptable levels of genotoxic chemicals, when identified. Where appropriate, in silico predictions may be used to evaluate the genotoxic potentials of identifiable chemicals with limited toxicological data and above the levels defined by TTC. Devices that could not be supported by E&L studies are evaluated by in vitro genotoxicity studies conducted in accordance with ISO10993-3 and 33. Certain endpoints such as 'site of contact genotoxicity' that are specific for certain classes of medical devices are currently not addressed in the current standards. The review also illustrates the potential uses of recent advances to achieve the goal of robust genotoxicity assessment of medical devices which are being increasingly used for health benefits. The review also highlights the gaps for genotoxicity risk assessment of medical devices and suggests possible approaches to address them taking into consideration the recent advances in genotoxicity testing including their potential uses in biocompatibility assessment.
Collapse
Affiliation(s)
- Tirukalikundram S Kumaravel
- GLR Laboratories (Europe) Pvt. Ltd., Sharnbrook, MK44 1LZ, United Kingdom; GLR Laboratories Pvt Ltd, Chennai, 600068, India.
| | | | | | | | | | | | | | - Sivasubramanian Murugan
- GLR Laboratories (Europe) Pvt. Ltd., Sharnbrook, MK44 1LZ, United Kingdom; GLR Laboratories Pvt Ltd, Chennai, 600068, India
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, United Kingdom
| |
Collapse
|
115
|
Cuong HN, Pansambal S, Ghotekar S, Oza R, Thanh Hai NT, Viet NM, Nguyen VH. New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. ENVIRONMENTAL RESEARCH 2022; 203:111858. [PMID: 34389352 DOI: 10.1016/j.envres.2021.111858] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 05/22/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) are one of the most widely used nanomaterials nowadays. CuO NPs have numerous applications in biological processes, medicine, energy devices, environmental remediation, and industrial fields from nanotechnology. With the increasing concern about the energy crisis and the challenges of chemical and physical approaches for preparing metal NPs, attempts to develop modern alternative chemistry have gotten much attention. Biological approaches that do not produce toxic waste and therefore do not require purification processes have been the subject of numerous studies. Plants may be extremely useful in the study of biogenic metal NP synthesis. This review aims to shed more light on the interactions between plant extracts and CuO NP synthesis. The use of living plants for CuO NPs biosynthesis is a cost-effective and environmentally friendly process. To date, the findings have revealed many aspects of plant physiology and their relationships to the synthesis of NPs. The current state of the art and potential challenges in the green synthesis of CuO NPs are described in this paper. This study found a recent increase in the green synthesis of CuO NPs using various plant extracts. As a result, a thorough explanation of green synthesis and stabilizing agents for CuO NPs made from these green sources is given. Additionally, the multifunctional applications of CuO NPs synthesized with various plant extracts in environmental remediation, sensing, catalytic reduction, photocatalysis, diverse biological activities, energy storage, and several organic transformations such as reduction, coupling, and multicomponent reactions were carefully reviewed. We expect that this review could serve as a useful guide for readers with a general interest in the plant extract mediated biosynthesis of CuO NPs and their potential applications.
Collapse
Affiliation(s)
- Hoang Ngoc Cuong
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam
| | - Shreyas Pansambal
- Department of Chemistry, Shri Saibaba College Shirdi, 423 109, Savitribai Phule Pune University, Maharashtra, India.
| | - Suresh Ghotekar
- Department of Chemistry, Smt. Devkiba Mohansinhji Chauhan College of Commerce and Science, University of Mumbai, Silvassa, 396 230, Dadra and Nagar Haveli (UT), India; Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Savitribai Phule Pune University, Sangamner, Maharashtra, 422 605, India.
| | - Rajeshwari Oza
- Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Savitribai Phule Pune University, Sangamner, Maharashtra, 422 605, India
| | - Nguyen Thi Thanh Hai
- Institute of Environmental Technology (IET), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Street, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Nguyen Minh Viet
- VNU-Key Laboratory of Advanced Materials for Green Growth, Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, Viet Nam
| | - Van-Huy Nguyen
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam
| |
Collapse
|
116
|
Tulinska J, Mikusova ML, Liskova A, Busova M, Masanova V, Uhnakova I, Rollerova E, Alacova R, Krivosikova Z, Wsolova L, Dusinska M, Horvathova M, Szabova M, Lukan N, Stuchlikova M, Kuba D, Vecera Z, Coufalik P, Krumal K, Alexa L, Vrlikova L, Buchtova M, Dumkova J, Piler P, Thon V, Mikuska P. Copper Oxide Nanoparticles Stimulate the Immune Response and Decrease Antioxidant Defense in Mice After Six-Week Inhalation. Front Immunol 2022. [PMID: 35547729 DOI: 10.3389/2022.874253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
Copper oxide nanoparticles (CuO NPs) are increasingly used in various industry sectors. Moreover, medical application of CuO NPs as antimicrobials also contributes to human exposure. Their toxicity, including toxicity to the immune system and blood, raises concerns, while information on their immunotoxicity is still very limited. The aim of our work was to evaluate the effects of CuO NPs (number concentration 1.40×106 particles/cm3, geometric mean diameter 20.4 nm) on immune/inflammatory response and antioxidant defense in mice exposed to 32.5 µg CuO/m3 continuously for 6 weeks. After six weeks of CuO NP inhalation, the content of copper in lungs and liver was significantly increased, while in kidneys, spleen, brain, and blood it was similar in exposed and control mice. Inhalation of CuO NPs caused a significant increase in proliferative response of T-lymphocytes after mitogenic stimulation and basal proliferative activity of splenocytes. CuO NPs significantly induced the production of IL-12p70, Th1-cytokine IFN-γ and Th2-cytokines IL-4, IL-5. Levels of TNF-α and IL-6 remained unchanged. Immune assays showed significantly suppressed phagocytic activity of granulocytes and slightly decreased respiratory burst. No significant differences in phagocytosis of monocytes were recorded. The percentage of CD3+, CD3+CD4+, CD3+CD8+, and CD3-CD19+ cell subsets in spleen, thymus, and lymph nodes did not differ between exposed and control animals. No changes in hematological parameters were found between the CuO NP exposed and control groups. The overall antioxidant protection status of the organism was expressed by evaluation of GSH and GSSG concentrations in blood samples. The experimental group exposed to CuO NPs showed a significant decrease in GSH concentration in comparison to the control group. In summary, our results indicate that sub-chronic inhalation of CuO NPs can cause undesired modulation of the immune response. Stimulation of adaptive immunity was indicated by activation of proliferation and secretion functions of lymphocytes. CuO NPs elicited pro-activation state of Th1 and Th2 lymphocytes in exposed mice. Innate immunity was affected by impaired phagocytic activity of granulocytes. Reduced glutathione was significantly decreased in mice exposed to CuO NPs.
Collapse
Affiliation(s)
- Jana Tulinska
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | | | - Aurelia Liskova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Milena Busova
- Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Vlasta Masanova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Iveta Uhnakova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Eva Rollerova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Radka Alacova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Zora Krivosikova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Ladislava Wsolova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Maria Dusinska
- Health Effects Laboratory, Norwegian Institute for Air Research, Kjeller, Norway
| | - Mira Horvathova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Michaela Szabova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Norbert Lukan
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | | | - Daniel Kuba
- National Transplant Organization, Bratislava, Slovakia
| | - Zbynek Vecera
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Pavel Coufalik
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Kamil Krumal
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Lukas Alexa
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Lucie Vrlikova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Marcela Buchtova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Jana Dumkova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vojtech Thon
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Pavel Mikuska
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
117
|
Synthesis, Characterization, In Vitro and In Vivo Toxicity of CuO Nanoparticles Fabricated Through Rhus punjabensis Leaf Extract. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00906-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
118
|
Fakhar-e-Alam M, Shafiq Z, Mahmood A, Atif M, Anwar H, Hanif A, Yaqub N, Farooq W, Fatehmulla A, Ahmad S, Abd Elgawad AEE, Alimgeer K, Gia TN, Ahmed H. Assessment of green and chemically synthesized copper oxide nanoparticles against hepatocellular carcinoma. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2021; 33:101669. [DOI: 10.1016/j.jksus.2021.101669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
119
|
Zhang Y, Mo Y, Yuan J, Zhang Y, Mo L, Zhang Q. MMP-3 activation is involved in copper oxide nanoparticle-induced epithelial-mesenchymal transition in human lung epithelial cells. Nanotoxicology 2021; 15:1380-1402. [PMID: 35108494 PMCID: PMC9484543 DOI: 10.1080/17435390.2022.2030822] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Copper oxide nanoparticles (Nano-CuO) are widely used in medical and industrial fields and our daily necessities. However, the biosafety assessment of Nano-CuO is far behind their rapid development. Here, we investigated the adverse effects of Nano-CuO on normal human bronchial epithelial BEAS-2B cells, especially determined whether Nano-CuO exposure would cause dysregulation of MMP-3, an important mediator in pulmonary fibrosis, and its potential role in epithelial-mesenchymal transition (EMT). Our results showed that exposure to Nano-CuO, but not Nano-TiO2, caused increased ROS generation, MAPKs activation, and MMP-3 upregulation. Nano-CuO-induced ROS generation was not observed in mitochondrial DNA-depleted BEAS-2B ρ0 cells, indicating that mitochondria may be the main source of Nano-CuO-induced ROS generation. Pretreatment of the cells with ROS scavengers or inhibitors or depleting mitochondrial DNA significantly attenuated Nano-CuO-induced MAPKs activation and MMP-3 upregulation, and pretreatment of cells with MAPKs inhibitors abolished Nano-CuO-induced MMP-3 upregulation, suggesting Nano-CuO-induced MMP-3 upregulation is through Nano-CuO-induced ROS generation and MAPKs activation. In addition, exposure of the cells to Nano-CuO for 48 h resulted in decreased E-cadherin expression and increased expression of vimentin, α-SMA, and fibronectin, which was ameliorated by MMP-3 siRNA transfection, suggesting an important role of MMP-3 in Nano-CuO-induced EMT. Taken together, our study demonstrated that Nano-CuO exposure caused mitochondrial ROS generation, MAPKs activation, and MMP-3 upregulation. Nano-CuO exposure also caused cells to undergo EMT, which was through Nano-CuO-induced dysregulation of ROS/MAPKs/MMP-3 pathway. Our findings will provide further understanding of the potential mechanisms involved in metal nanoparticle-induced various toxic effects including EMT and pulmonary fibrosis.
Collapse
Affiliation(s)
- Yuanbao Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Jiali Yuan
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yue Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Luke Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
120
|
Manuja A, Kumar B, Kumar R, Chhabra D, Ghosh M, Manuja M, Brar B, Pal Y, Tripathi B, Prasad M. Metal/metal oxide nanoparticles: Toxicity concerns associated with their physical state and remediation for biomedical applications. Toxicol Rep 2021; 8:1970-1978. [PMID: 34934635 PMCID: PMC8654697 DOI: 10.1016/j.toxrep.2021.11.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/27/2021] [Accepted: 11/27/2021] [Indexed: 12/19/2022] Open
Abstract
Metal/metal oxide nanoparticles show promise for various applications, including diagnosis, treatment, theranostics, sensors, cosmetics, etc. Their altered chemical, optical, magnetic, and structural properties have differential toxicity profiles. Depending upon their physical state, these NPs can also change their properties due to alteration in pH, interaction with proteins, lipids, blood cells, and genetic material. Metallic nanomaterials (comprised of a single metal element) tend to be relatively stable and do not readily undergo dissolution. Contrarily, metal oxide and metal alloy-based nanomaterials tend to exhibit a lower degree of stability and are more susceptible to dissolution and ion release when introduced to a biological milieu, leading to reactive oxygen species production and oxidative stress to cells. Since NPs have considerable mobility in various biological tissues, the investigation related to their adverse effects is a critical issue and required to be appropriately addressed before their biomedical applications. Short and long-term toxicity assessment of metal/metal oxide nanoparticles or their nano-formulations is of paramount importance to ensure the global biome's safety; otherwise, to face a fiasco. This article provides a comprehensive introspection regarding the effects of metal/metal oxides' physical state, their surface properties, the possible mechanism of actions along with the potential future strategy for remediation of their toxic effects.
Collapse
Affiliation(s)
- Anju Manuja
- ICAR-National Research Centre on Equines Sirsa Road, Hisar, Haryana, India
| | - Balvinder Kumar
- ICAR-National Research Centre on Equines Sirsa Road, Hisar, Haryana, India
| | - Rajesh Kumar
- Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Dharvi Chhabra
- ICAR-National Research Centre on Equines Sirsa Road, Hisar, Haryana, India
| | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, RGSC, Banaras Hindu University, Mirzapur, UP, 231001, India
| | - Mayank Manuja
- Birla Institute of Technology and Science, Pilani, Goa Campus, Goa, India
| | - Basanti Brar
- Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Yash Pal
- ICAR-National Research Centre on Equines Sirsa Road, Hisar, Haryana, India
| | - B.N. Tripathi
- ICAR-National Research Centre on Equines Sirsa Road, Hisar, Haryana, India
| | - Minakshi Prasad
- Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| |
Collapse
|
121
|
A Brief Review on Challenges in Design and Development of Nanorobots for Medical Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110385] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Robotics is a rapidly growing field, and the innovative idea to scale down the size of robots to the nanometer level has paved a new way of treating human health. Nanorobots have become the focus of many researchers aiming to explore their many potential applications in medicine. This paper focuses on manufacturing techniques involved in the fabrication of nanorobots and their associated challenges in terms of design architecture, sensors, actuators, powering, navigation, data transmission, followed by challenges in applications. In addition, an overview of various nanorobotic systems addresses different architectures of a nanorobot. Moreover, multiple medical applications, such as oncology, drug delivery, and surgery, are reviewed and summarized.
Collapse
|
122
|
Nithiyavathi R, John Sundaram S, Theophil Anand G, Raj Kumar D, Dhayal Raj A, Al Farraj DA, Aljowaie RM, AbdelGawwad MR, Samson Y, Kaviyarasu K. Gum mediated synthesis and characterization of CuO nanoparticles towards infectious disease-causing antimicrobial resistance microbial pathogens. J Infect Public Health 2021; 14:1893-1902. [PMID: 34782288 DOI: 10.1016/j.jiph.2021.10.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/14/2021] [Accepted: 10/24/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND In this work biologically active CuO nanoparticle were discussed. The literature suggests that CuO shows very good antibacterial activity on both Gram positive and Gram-negative bacterial strains. Further, it is used in antibacterial coatings on various substrates to prevent various kinds of medical equipment's. Here CuO NPs was prepared via greener approach and almond gum is used as a reducing agent. Almond gum is nontoxic and contains huge amount of polysaccharides. Hence, the gum mediated CuO NPs can be used to treat urinary tract infection (UTI). METHOD The CuO NPs were characterized using UV, FTIR, XRD and HESEM with EDX analysis. The antibacterial (both Gram positive and Gram negative) effects of CuO NPs were determined with agar well diffusion method. RESULTS The CuO NPs were characterized by X-ray diffraction pattern result indicates that the monoclinic structure with average crystallite size about 12.91 nm. Straight line model in Scherrer method results found to be crystallite size. The crystallite size and microstrain were estimated in W-H analysis. Lorentz polarization factor, size-strain plot (SSP), morphological index (M-I) and dislocation density were calculated based on x-ray diffraction data. The FTIR analysis confirms presence of Cu and O band. From the absorption spectrum of CuO NPs, it was found to be cutoff wavelength of 230 nm and direct bandgap was found to be 4.97 eV. Morphology analysis shows that the synthesized of CuO NPs reveals agglomerated and spherical in shape. It was found to be 16 nm-25 nm. Energy dispersive spectroscopy (EDX) result indicates percentages of Cu and O element present in the sample. Antimicrobial studies reveal zone of inhibition of CuO NPs. This was used in different pathogens such as gram-positive and Gram-negative bacteria. This study shows exhibit excellent antimicrobial effects of CuO NPs. CONCLUSION Hence, in this article the novel and cost-effective method to prepare CuO NPs was discussed. The prepared CuO NPs can be used as an antifungal and antibacterial reagent.
Collapse
Affiliation(s)
- R Nithiyavathi
- Department of Physics, Sacred Heart College (Autonomous), Tirupattur 635602, Tamil Nadu, India
| | - S John Sundaram
- Department of Physics, Sacred Heart College (Autonomous), Tirupattur 635602, Tamil Nadu, India.
| | - G Theophil Anand
- Department of Physics, Sacred Heart College (Autonomous), Tirupattur 635602, Tamil Nadu, India
| | - D Raj Kumar
- Department of Physics, Sacred Heart College (Autonomous), Tirupattur 635602, Tamil Nadu, India
| | - A Dhayal Raj
- Department of Physics, Sacred Heart College (Autonomous), Tirupattur 635602, Tamil Nadu, India
| | - Dunia A Al Farraj
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Reem M Aljowaie
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Mohamed Ragab AbdelGawwad
- Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, 71210 Sarajevo, Bosnia and Herzegovina
| | - Y Samson
- Department of Physics, Annai Velankanni College, Tholayavattam, 629157 Kanyakumari, Tamil Nadu, India
| | - K Kaviyarasu
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria, South Africa; Nanosciences African Network (NANOAFNET), Materials Research Group (MRG), iThemba LABS-National Research Foundation (NRF), 1 Old Faure Road, 7129, PO Box 722, Somerset West, Western Cape Province, South Africa.
| |
Collapse
|
123
|
Salehipour M, Rezaei S, Rezaei M, Yazdani M, Mogharabi-Manzari M. Opportunities and Challenges in Biomedical Applications of Metal–Organic Frameworks. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02118-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
124
|
Balasubramanian S, Perumal E. Integrated in silico analysis for the identification of key genes and signaling pathways in copper oxide nanoparticles toxicity. Toxicology 2021; 463:152984. [PMID: 34627989 DOI: 10.1016/j.tox.2021.152984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022]
Abstract
Copper oxide nanoparticles (CuO-NPs) are used in various industrial and commercial products due to their enhanced physicochemical properties. The vast consumption increases their exposure in the environment, thereby affecting the ecosystem. Even with the rise in research towards understanding their toxicity, the major signaling cascades and key genes involved in CuO-NPs remain elusive due to the various attributes involved (size, shape, charge, coating in terms of nanoparticles, and dose, duration, and species used in the experiment). The focus of the study is to identify the key signaling cascades and genes involved in CuO-NPs toxicity irrespective of these attributes. CuO-NPs related microarray expression profiles were screened from GEO database and were subjected to toxicogenomic analysis to elucidate the toxicity mechanism. In silico tools were used to obtain the DEGs, followed by GO and KEGG functional enrichment analysis. The identified DEGs were then analyzed to determine major signaling pathways and key genes. Module and centrality parameter analysis was performed to identify the key genes. Further, the miRNAs and transcription factors involved in regulating the genes were predicted, and their interactive pathways were constructed. A total of 44 DEGs were commonly present in all the analysed datasets and all of them were downregulated. GO analysis reveals that most of the genes were enriched in functions related to cell division and chemotaxis. Cell-cycle, chemokine, cytokine-cytokine receptor interaction, and p53 signaling pathways were the key pathways with Cdk1 as the major biomarker altered irrespective of the variables (dosage, duration, species used, and surface coating). Overall, our integrated toxicogenomic analysis reveal that Cdk1 regulated cell cycle and cytokine-cytokine signaling cascades might be responsible for CuO-NPs toxicity. These findings will help us in understanding the mechanisms involved in NPs toxicity.
Collapse
Affiliation(s)
- Satheeswaran Balasubramanian
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, India.
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, India.
| |
Collapse
|
125
|
Wardana AA, Kingwascharapong P, Tanaka F, Tanaka F. CuO nanoparticles/Indonesian cedarwood essential oil‐loaded chitosan coating film: characterisation and antifungal improvement against
Penicillium
spp. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Ata Aditya Wardana
- Graduate School of Bioresource and Bioenvironmental Sciences Kyushu University 744 Motooka, Nishi‐ku, Fukuoka‐shi Fukuoka 819‐0395 Japan
- Food Technology Department Faculty of Engineering Bina Nusantara University Jakarta 1148 Indonesia
| | - Passakorn Kingwascharapong
- Graduate School of Bioresource and Bioenvironmental Sciences Kyushu University 744 Motooka, Nishi‐ku, Fukuoka‐shi Fukuoka 819‐0395 Japan
- Department of International Professional in Culinary Art Faculty of International Hospitality Industry Dusit Thani College Bangkok 10250 Thailand
| | - Fumina Tanaka
- Laboratory of Postharvest Science Faculty of Agriculture Kyushu University 744 Motooka, Nishi‐ku, Fukuoka‐shi Fukuoka W5‐873819‐0395 Japan
| | - Fumihiko Tanaka
- Laboratory of Postharvest Science Faculty of Agriculture Kyushu University 744 Motooka, Nishi‐ku, Fukuoka‐shi Fukuoka W5‐873819‐0395 Japan
| |
Collapse
|
126
|
Toxicity of Nanoparticles in Biomedical Application: Nanotoxicology. J Toxicol 2021; 2021:9954443. [PMID: 34422042 PMCID: PMC8376461 DOI: 10.1155/2021/9954443] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
Nanoparticles are of great importance in development and research because of their application in industries and biomedicine. The development of nanoparticles requires proper knowledge of their fabrication, interaction, release, distribution, target, compatibility, and functions. This review presents a comprehensive update on nanoparticles' toxic effects, the factors underlying their toxicity, and the mechanisms by which toxicity is induced. Recent studies have found that nanoparticles may cause serious health effects when exposed to the body through ingestion, inhalation, and skin contact without caution. The extent to which toxicity is induced depends on some properties, including the nature and size of the nanoparticle, the surface area, shape, aspect ratio, surface coating, crystallinity, dissolution, and agglomeration. In all, the general mechanisms by which it causes toxicity lie on its capability to initiate the formation of reactive species, cytotoxicity, genotoxicity, and neurotoxicity, among others.
Collapse
|
127
|
Cascione M, De Matteis V, Pellegrino P, Albanese G, De Giorgi ML, Paladini F, Corsalini M, Rinaldi R. Improvement of PMMA Dental Matrix Performance by Addition of Titanium Dioxide Nanoparticles and Clay Nanotubes. NANOMATERIALS 2021; 11:nano11082027. [PMID: 34443858 PMCID: PMC8402145 DOI: 10.3390/nano11082027] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Over the last decades, several materials have been proposed for the fabrication of dental and mandibular prosthetic implants. Today, the poly(methyl-methacrylate) (PMMA) resin is the most spread material, due to its ease of processing, low cost, aesthetic properties, low weight, biocompatibility, and biostability in the oral cavity. However, the porous surface (which favors the adhesion of microorganisms) and the weak mechanical properties (which lead to wear or fracture) are the major concerns. The inclusion of engineered nanomaterials in the acrylic matrix could improve the performances of PMMA. In this study, we added two different kind of nanomaterials, namely titanium dioxide nanoparticles (TiO2NPs) and halloysite clay nanotubes (HNTs) at two concentrations (1% and 3% w/w) in PMMA. Then, we assessed the effect of nanomaterials inclusion by the evaluation of specific physical parameters: Young’s modulus, roughness, and wettability. In addition, we investigated the potential beneficial effects regarding the Candida albicans (C. albicans) colonization reduction, the most common yeast responsible of several infections in oral cavity. Our experimental results showed an improvement of PMMA performance, following the addition of TiO2NPs and HNTs, in a dose dependent manner. In particular, the presence of TiO2NPs in the methacrylate matrix induced a greater increase in PMMA stiffness respect to HNTs addition. On the other hand, HNTs reduced the rate of C. albicans colonization more significantly than TiO2NPs. The results obtained are of great interest for the improvement of PMMA physico-chemical properties, in view of its possible application in clinical dentistry.
Collapse
Affiliation(s)
- Mariafrancesca Cascione
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy; (P.P.); (M.L.D.G.); (F.P.); (R.R.)
- Correspondence: (Mf.C.); (V.D.M.)
| | - Valeria De Matteis
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy; (P.P.); (M.L.D.G.); (F.P.); (R.R.)
- Correspondence: (Mf.C.); (V.D.M.)
| | - Paolo Pellegrino
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy; (P.P.); (M.L.D.G.); (F.P.); (R.R.)
| | - Giovanni Albanese
- U.O.C. of Plastic Surgery and Burns Center, Department of Oral Hygiene Clinic, Hospital “A. Perrino”, 72100 Brindisi, Italy;
- Dental School, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Maria Luisa De Giorgi
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy; (P.P.); (M.L.D.G.); (F.P.); (R.R.)
| | - Fabio Paladini
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy; (P.P.); (M.L.D.G.); (F.P.); (R.R.)
| | - Massimo Corsalini
- Dental School, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Rosaria Rinaldi
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy; (P.P.); (M.L.D.G.); (F.P.); (R.R.)
| |
Collapse
|
128
|
Stepankov MS, Zemlyanova MA, Zaitseva NV, Ignatova AM, Nikolaeva AE. Features of Bioaccumulation and Toxic Effects of Copper (II) Oxide Nanoparticles Under Repeated Oral Exposure in Rats. Pharm Nanotechnol 2021; 9:288-297. [PMID: 34323205 DOI: 10.2174/2211738509666210728163901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Currently, the range of copper (II) oxide nanoparticles' (CuO NPs) applications is expanding and the global production of CuO NPs is increasing. In this regard, the risk of exposure of the population to this nanomaterial increases. OBJECTIVE The aim of the study is to investigate the patterns of bioaccumulation and toxic effects of CuO NPs after multiple oral exposures. METHODS The particle size was determined by scanning electron microscopy and dynamic laser light scattering. Specific surface area was measured by the method of Brunauer, Emmett, Teller. Total pore volume - by the method of Barrett, Joyner, Khalenda. Twenty-four hours after the final exposure, blood samples were taken for biochemical and hematological analysis, and internal organs were taken to determine their mass, copper concentration and histological analysis. The study was carried out in comparison with copper (II) oxide microparticles (CuO MPs). RESULTS In terms of size, surface area, and pore volume, the studied copper (II) oxide sample is a nanomaterial. The median lethal dose of CuO NPs was 13187.5 mg/kg of body weight. Bioaccumulation occurs in the stomach, blood, intestines, liver, lungs, kidneys and brain. Pathomorphological changes in the liver are manifested in the form of necrosis, degeneration, hepatitis; kidney - proliferation of mesangial cells, dystrophy; stomach - gastritis; small intestine - hyperplasia, enteritis; large intestine - colitis; lungs - hyperplasia, abscess, pneumonia, bronchitis, vasculitis. Clumps of brown pigment were detected in the kidneys, stomach and lungs. The mass of the stomach and intestines increased, the mass of the liver, kidneys and lungs decreased. Pathomorphological changes in organs are likely to cause an increase in the levels of activity of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase, amylase, malondialdehyde concentration and a decrease in plasma antioxidant activity. The proportion of segmented neutrophils, the number of leukocytes are raised, the proportion of lymphocytes is reduced. CONCLUSION The degree of bioaccumulation and toxicity of CuO NPs are more expressed in relation to CuO MPs.
Collapse
Affiliation(s)
- Mark Sergeevich Stepankov
- Federal Scientific Center for Medical and Preventive Health Risk Management Technologies Perm, Russian Federation
| | | | - Nina Vladimirovna Zaitseva
- Federal Scientific Center for Medical and Preventive Health Risk Management Technologies Perm, Russian Federation
| | - Anna Mikhailovna Ignatova
- Federal Scientific Center for Medical and Preventive Health Risk Management Technologies Perm, Russian Federation
| | - Alena Evgenievna Nikolaeva
- Federal Scientific Center for Medical and Preventive Health Risk Management Technologies Perm, Russian Federation
| |
Collapse
|
129
|
Mohamed Mowafy S, Awad Hegazy A, A Mandour D, Salah Abd El-Fatah S. Impact of copper oxide nanoparticles on the cerebral cortex of adult male albino rats and the potential protective role of crocin. Ultrastruct Pathol 2021; 45:307-318. [PMID: 34459708 DOI: 10.1080/01913123.2021.1970660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of copper oxide nanoparticles (CUONPs) on a large-scale application is a reason for many health problems and morbidities involving most body tissues, particularly those of the nervous system. Crocin is the chemical ingredient primarily responsible for the color of saffron. It has different pharmacological effects, such as antioxidant, anticancer, and memory-improving activities. This study was conducted to elaborate the effects of CUONP exposureon the cerebellar cortical tissues of rats and explore the potential protecting role of crocin through biochemical, light microscopic, and ultrastructural examinations. Twenty four adult male albino rats were randomly divided into four equal groups: Group I (negative control); Group II (crocin-treated group; 30mg/kg body weight (BW) intraperitoneal (IP) crocin daily); Group III (CUONP-treatedgroup; 0.5-mg/kg BW IP CUONP daily); and Group IV (CUONP/crocin-treated group). After 14 days of the experiment, venous blood samples were collected to determine red blood cell (RBC), white blood cell (WBC), and hemoglobin (Hb) levels. Besides, serum malondialdehyde (MDA), glutathione peroxidase (GPx), and total antioxidant capacity (TAC) were measured. Cerebellar tissue samples were examined under light and electron microscopy along with a histomorphological analysis. CUONPs induced oxidative/antioxidative imbalance as evidenced by a significant increase in serum MDA levels and decreased GPx and TAC activities. CUONPs caused a significant decrease in RBC and Hb levels and an increase in WBC count. Histopathological alterations in the cerebellar cortex were observed. The administration of crocin showed some protection against the toxic effects of CUONPs. Crocin is suggested to have a mitigating role on oxidative stress and structure alterations in the cerebellar tissues induced by CUONPs.
Collapse
Affiliation(s)
- Sarah Mohamed Mowafy
- Department of Anatomy and Embryology, Faculty of Medicine, PortSaid University, Egypt
| | - Abdelmonem Awad Hegazy
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Dalia A Mandour
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samaa Salah Abd El-Fatah
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
130
|
Elsayed AM, Sherif NM, Hassan NS, Althobaiti F, Hanafy NAN, Sahyon HA. Novel quercetin encapsulated chitosan functionalized copper oxide nanoparticles as anti-breast cancer agent via regulating p53 in rat model. Int J Biol Macromol 2021; 185:134-152. [PMID: 34147524 DOI: 10.1016/j.ijbiomac.2021.06.085] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/01/2021] [Accepted: 06/12/2021] [Indexed: 01/18/2023]
Abstract
This study was designed to present a new quercetin encapsulated chitosan functionalized copper oxide nanoparticle (CuO-ChNPs-Q) and assessed its anti-breast cancer activity both in vitro and in vivo. The CuO-ChNPs-Q may act as anti-proliferating agent against DMBA-induced mammary carcinoma in female rats. The CuONPs was functionalized with chitosan then quercetin was conjugated with them producing CuO-ChNPs-Q, then characterized. The in vitro anti-proliferating activity of the CuO-ChNPs-Q was evaluated against three human cell line. Then, the anti-breast cancer effect of the CuO-ChNPs-Q was assessed against DMBA-induction compared to both CuONPs and Q in female rat model. The in vitro results proved the potent anticancer activity of the CuO-ChNPs-Q compared to CuONPs and quercetin. The in vivo data showed significant reduction in breast tumors of DMBA-induced rats treated with CuO-ChNPs-Q compared to CuONPs and Q. The CuO-ChNPs-Q treatment had induced apoptosis via increased p53 gene, arrested the cell-cycle, and increased both cytochrome c and caspase-3 levels leading to mammary carcinoma cell death. Also, the CuO-ChNPs-Q treatment had suppressed the PCNA gene which decreased the proliferation of the mammary carcinoma cells. In conclusion, the CuO-ChNPs-Q might be a promising chemotherapeutic agent for treatment of breast cancer with a minimal toxicity on vital organs.
Collapse
Affiliation(s)
- Awny M Elsayed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Naglaa M Sherif
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nahla S Hassan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Fayez Althobaiti
- Department of Biotechnology, Collage of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Nemany A N Hanafy
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| | - Heba A Sahyon
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| |
Collapse
|
131
|
Tao X, Wan X, Wu D, Song E, Song Y. A tandem activation of NLRP3 inflammasome induced by copper oxide nanoparticles and dissolved copper ion in J774A.1 macrophage. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125134. [PMID: 33485222 DOI: 10.1016/j.jhazmat.2021.125134] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
For the first time, we reported that CuONPs exposure induced interleukin (IL)-1β-mediated inflammation via NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome in J774A.1 macrophage. Mechanistically, CuONPs activated NLRP3 inflammasome is a two-fold process. Firstly, CuONPs challenge caused lysosomal damage, along with the release of cathepsin B, which directly mediated the activation of NLRP3 inflammasomes. Interestingly, after the deposition in lysosomes, CuONPs may release copper ion due to the acidic environment of lysosomes. Consequently, the released copper ions significantly induced cellular oxidative stress and further mediated the activation of NLRP3 inflammasomes. Moreover, CuONPs exposure could prime J774A.1 macrophage to express pro-IL-1β through myeloid differentiation factor 88 (MyD88)-dependent Toll-like receptor 4 (TLR4) signal pathway subsequently activating nuclear transcription factor kappa B (NF-κB).
Collapse
Affiliation(s)
- Xiaoqi Tao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, Chongqing 400715, China
| | - Xulin Wan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, Chongqing 400715, China
| | - Di Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
132
|
Kulkarni MB, Goel S. Microfluidic devices for synthesizing nanomaterials—a review. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/abcca6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
133
|
Jarrar Y, Al-Doaiss A, Alfaifi M, Shati A, Al-Kahtani M, Jarrar B. The influence of five metallic nanoparticles on the expression of major drug-metabolizing enzyme genes with correlation of inflammation in mouse livers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103449. [PMID: 32593632 DOI: 10.1016/j.etap.2020.103449] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Metallic nanoparticles (NPs) are widely used in medical preparations. The present study aims to find out the influence of widely used five metallic NPs on the expression of major hepatic drug-metabolizing enzyme (DME) genes. Six groups of BALB/C mice, 7 mice each, were exposed to: Gold NPs, silver NPs, copper oxide NPs, silicon dioxide NPs and zinc oxide NPs, for 21 days. Liver biopsies from all mice were subjected to mouse cyp3a11, cyp2c29, ugt2b1 and interleukin-6 (il6) gene expression quantification using real-time polymerase chain reaction, in addition to inflammatory cell infiltration examination. All tested NPs caused a sharp and significant (ANOVA, p value <0.05) downregulation in the expression of DME genes, with the highest influence was observed in mice exposed to copper oxide NPs. Additionally, all NPs induced hepatic inflammation and upregulated the expression of il6 gene, which were inversely correlated with the expression of DMEs. It is concluded that all tested NPs downregulated the expression of DME genes, with the highest influence exhibited by copper oxide NPs, in correlation with inflammation and il6 gene induction in the liver. Further studies are needed to find out the effect of anti-inflammatory compounds against the alterations induced by metallic NPs exposure on hepatic DMEs.
Collapse
Affiliation(s)
- Yazun Jarrar
- Department of Pharmaceutical Science, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Jordan
| | - Amin Al-Doaiss
- Department of Biology, College of Science, King Khalid University, Saudi Arabia
| | - Mohammad Alfaifi
- Department of Biology, College of Science, King Khalid University, Saudi Arabia
| | - Ali Shati
- Department of Biology, College of Science, King Khalid University, Saudi Arabia
| | - Mohammed Al-Kahtani
- Department of Biology, College of Science, King Khalid University, Saudi Arabia
| | - Bashir Jarrar
- Nanobiology Unit, Department of Biological Sciences, College of Science, Jerash University, Jordan.
| |
Collapse
|
134
|
Kohl Y, Rundén-Pran E, Mariussen E, Hesler M, El Yamani N, Longhin EM, Dusinska M. Genotoxicity of Nanomaterials: Advanced In Vitro Models and High Throughput Methods for Human Hazard Assessment-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1911. [PMID: 32992722 PMCID: PMC7601632 DOI: 10.3390/nano10101911] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Changes in the genetic material can lead to serious human health defects, as mutations in somatic cells may cause cancer and can contribute to other chronic diseases. Genotoxic events can appear at both the DNA, chromosomal or (during mitosis) whole genome level. The study of mechanisms leading to genotoxicity is crucially important, as well as the detection of potentially genotoxic compounds. We consider the current state of the art and describe here the main endpoints applied in standard human in vitro models as well as new advanced 3D models that are closer to the in vivo situation. We performed a literature review of in vitro studies published from 2000-2020 (August) dedicated to the genotoxicity of nanomaterials (NMs) in new models. Methods suitable for detection of genotoxicity of NMs will be presented with a focus on advances in miniaturization, organ-on-a-chip and high throughput methods.
Collapse
Affiliation(s)
- Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany;
| | - Elise Rundén-Pran
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (E.M.); (N.E.Y.); (E.M.L.); (M.D.)
| | - Espen Mariussen
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (E.M.); (N.E.Y.); (E.M.L.); (M.D.)
| | - Michelle Hesler
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany;
| | - Naouale El Yamani
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (E.M.); (N.E.Y.); (E.M.L.); (M.D.)
| | - Eleonora Marta Longhin
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (E.M.); (N.E.Y.); (E.M.L.); (M.D.)
| | - Maria Dusinska
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (E.M.); (N.E.Y.); (E.M.L.); (M.D.)
| |
Collapse
|
135
|
Rehman RU, Khan B, Aziz T, Gul FZ, Nasreen S, Zia M. Postponement growth and antioxidative response of Brassica nigra on CuO and ZnO nanoparticles exposure under soil conditions. IET Nanobiotechnol 2020; 14:423-427. [PMID: 32691746 PMCID: PMC8676468 DOI: 10.1049/iet-nbt.2019.0357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 11/19/2022] Open
Abstract
Due to unique physiochemical properties, nanoparticles (NPs) have acquired substantial attention in the field of research. However, threats of ecotoxicity and phytotoxicity have limited their biological applications. In this study in vivo experiments were performed to determine the effect of CuO (12.5, 25 and 50 mg/kg) and ZnO (200, 400 and 600 mg/kg) NPs on growth, and antioxidant activities of Brassica nigra. The results showed that CuO NPs did not affect the seed germination while presence of ZnO NPs in the soil generated an inhibitory effect. Both CuO and ZnO NPs positively influenced the growth of stem and other physiological parameters i.e. stem height increased (23%) at 50 mg/kg CuO while root length decreased (up to 44%) with an increase in the concentration of NPs. Phytochemical screening of apical, middle and basal leaves showed elevated phenolic and flavonoid contents in the range of 15.3-59 μg Gallic Acid Equivalent (GAE)/mg Dry Weight (DW) and 10-35 μg Querceitin Equivalent (QE)/mg DW, respectively, in NPs-treated plants. Antioxidant activity was higher in CuO NPs-treated plants as compared to ZnO and control plants. Results conclude that CuO and ZnO NPs at low concentrations can be exploited as nanofertilisers in agriculture fields.
Collapse
Affiliation(s)
- Riaz Ur Rehman
- Institute of Floriculture and Horticulture, Government of Punjab, Rawalpindi, Pakistan
| | - Bakhtawar Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tehmina Aziz
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Faiza Zareen Gul
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Syeda Nasreen
- University Institute of Physical Therapy, University of Lahore, Islamabad, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
136
|
Zafar H, Aziz T, Khan B, Mannan A, Rehman RU, Zia M. CuO and ZnO Nanoparticle Application in Synthetic Soil Modulates Morphology, Nutritional Contents, and Metal Analysis of Brassica nigra. ACS OMEGA 2020; 5:13566-13577. [PMID: 32566821 PMCID: PMC7301370 DOI: 10.1021/acsomega.0c00030] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/21/2020] [Indexed: 05/02/2023]
Abstract
Black mustard (Brassica nigra) was grown in pots amended with 41 nm ZnO (200-600 mg/kg soil) and 47 nm CuO (12.5-50 mg/kg soil) nanoparticles (NPs) to analyze growth response and yield characteristics. B. nigra seed germination was not affected by CuO NPs, but significant toxicity was observed by ZnO NP treatment. Both NPs significantly increased the growth profile of B. nigra, i.e., the stem height, number of leaves, average leaf area, number of branches, and number of nodes per plant. Application of ZnO and CuO NPs brought a significant dose-dependent decrease in primary root length; however, the number of secondary roots increased in the presence of CuO NPs. The average number of flowers and pods per plant significantly increased in the presence of CuO NPs. The seed yield, average seed weight per plant, and seed diameter parameters were observed to be better in the presence of CuO NPs as compared with ZnO NPs. Total protein contents and glucosinolates increased in the seeds grown in the NP-amended soil, while total oil contents decreased. Oil analysis depicted that oleic acid and linolenic acid percentage decreased while erucic acid percentage increased in seeds in the presence of both NPs in the soil. An atomic absorption spectrophotometer showed accumulation of Cu and Zn in B. nigra in the following order: root > stem > leaves > seeds. The study concludes that CuO and ZnO NPs have detrimental effect on the B. nigra plant and yield. The release of NPs and type of metal in NPs might also have a positive effect on the plant; however, their concentration in the soil also matters.
Collapse
Affiliation(s)
- Hira Zafar
- Department
of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Tehmina Aziz
- Department
of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Bakhtawar Khan
- Department
of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Abdul Mannan
- Department
of Pharmacy, COMSATS Institute of Information
Technology, Abbottabad 22060, Pakistan
| | - Riaz ur Rehman
- Institute
of Floriculture and Horticulture, Government of Punjab, Rawalpindi 44000, Pakistan
| | - Muhammad Zia
- Department
of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
137
|
Reduction of Health Care-Associated Infections (HAIs) with Antimicrobial Inorganic Nanoparticles Incorporated in Medical Textiles: An Economic Assessment. NANOMATERIALS 2020; 10:nano10050999. [PMID: 32456213 PMCID: PMC7279532 DOI: 10.3390/nano10050999] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/08/2020] [Accepted: 05/21/2020] [Indexed: 01/27/2023]
Abstract
Health care-associated infections (HAIs) affect millions of patients annually with up to 80,000 affected in Europe on any given day. This represents a significant societal and economic burden. Staff training, hand hygiene, patient identification and isolation and controlled antibiotic use are some of the standard ways to reduce HAI incidence but this is time consuming and subject and subject to rigorous implementation. In addition, the lack of antimicrobial activity of some disinfectants against healthcare-associated pathogens may also affect the efficacy of disinfection practices. Textiles are an attractive substrate for pathogens because of contact with the human body with the attendant warmth and moisture. Textiles and surfaces coated with engineered nanomaterials (ENMs) have shown considerable promise in reducing the microbial burden on those surfaces. Studies have also shown that this antimicrobial affect can reduce the incidence of HAIs. For all of the promising research, there has been an absence of study on the economic effectiveness of ENM coated materials in a healthcare setting. This article examines the relative economic efficacy of ENM coated materials against an antiseptic approach. The goal is to establish the economic efficacy of the widespread usage of ENM coated materials in a healthcare setting. In the absence of detailed and segregated costs, benefits and control variables over at least cross sectional data or time series, an aggregated approach is warranted. This approach, while relying on some supposition allows for a comparison with similar data regarding standard treatment to reduce HAIs and provides a reasonable economic comparison. We find that while, relative to antiseptics, ENM coated textiles represent a significant clinical advantage, they can also offer considerable cost savings.
Collapse
|