101
|
Marangoni Júnior L, Vieira RP, Jamróz E, Anjos CAR. Furcellaran: An innovative biopolymer in the production of films and coatings. Carbohydr Polym 2021; 252:117221. [DOI: 10.1016/j.carbpol.2020.117221] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022]
|
102
|
Abd-Elazeem OM, Osman NA, El-Shenawy NS. Bioactive Compounds of Seaweeds and Their Effects on Certain Types of Cancer. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2020; 8:112-119. [DOI: 10.34172/ajmb.2020.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Cancer is considered as one of the major health problems worldwide. So far, no completely effective method has been found for cancer treatment. Therefore, the rise of using natural products has been proposed as an alternative therapy in this regard. For many years, the seaweed has been a source of many functional bioactive compounds including polysaccharides, polyphenols, pigments, terpenes, and many others. These compounds have shown many bioactivities including anticancer activity against different kinds of cancer. Bioactive compounds obtained from the seaweed have been demonstrated to cause apoptosis in cancer cells and trigger cell cycle arrest with low cytotoxicity against normal cells. In this review, it was attempted to shed light on the anticancer activity of some seaweed-derived bioactive compounds.
Collapse
Affiliation(s)
| | - Nehal A.H.k. Osman
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Nahla S. El-Shenawy
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
103
|
Xi M, Ove Dragsted L, Tullin M, Ernst M, Zaharudin N, La Barbera G. Discovery of Urinary Biomarkers of Seaweed Intake Using Untargeted LC-MS Metabolomics in a Three-Way Cross-Over Human Study. Metabolites 2020; 11:11. [PMID: 33379223 PMCID: PMC7823344 DOI: 10.3390/metabo11010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/28/2020] [Accepted: 12/23/2020] [Indexed: 11/17/2022] Open
Abstract
Seaweeds are a marine source rich in potentially bioactive components, and therefore have attracted attention since the middle of the twentieth century. Accurate and objective assessment of the intake of seaweeds to study their health effects is hampered by a lack of validated intake biomarkers. In this three-armed, randomized, cross-over study, an untargeted metabolomics approach was applied for discovering novel intake biomarkers. Twenty healthy participants (9 men and 11 women) were provided each of three test meals in a randomized order: 5 g of Laminaria digitate (LD), 5 g of Undaria pinnatifida (UP), or a control meal with energy-adjusted pea protein. Four urine samples and a 24 h pooled urine were collected along with blood samples at seven time-points. All samples were profiled by LC-ESI-QTOF-MS and the data were analyzed by univariate analysis and excretion kinetics to select putative intake biomarkers. In total, four intake biomarkers were selected from urine samples. They were identified as hydroxyl-dihydrocoumarin at Level III, loliolid glucuronide at level I, and isololiolid glucuronide at level II, while the last one remains unknown. Further identification and validation of these biomarkers by a cross-sectional study is essential to assess their specificity and robustness.
Collapse
Affiliation(s)
- Muyao Xi
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, 1958 Copenhagen, Denmark; (M.X.); (M.T.); (N.Z.); (G.L.B.)
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, 1958 Copenhagen, Denmark; (M.X.); (M.T.); (N.Z.); (G.L.B.)
| | - Mikkel Tullin
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, 1958 Copenhagen, Denmark; (M.X.); (M.T.); (N.Z.); (G.L.B.)
| | - Madeleine Ernst
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, 2300 Copenhagen, Denmark;
| | - Nazikussabah Zaharudin
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, 1958 Copenhagen, Denmark; (M.X.); (M.T.); (N.Z.); (G.L.B.)
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Gambang 26600, Malaysia
| | - Giorgia La Barbera
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, 1958 Copenhagen, Denmark; (M.X.); (M.T.); (N.Z.); (G.L.B.)
| |
Collapse
|
104
|
Rossi R, Vizzarri F, Ratti S, Palazzo M, Casamassima D, Corino C. Effects of Long-Term Supplementation with Brown Seaweeds and Polyphenols in Rabbit on Meat Quality Parameters. Animals (Basel) 2020; 10:ani10122443. [PMID: 33419317 PMCID: PMC7766534 DOI: 10.3390/ani10122443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022] Open
Abstract
The objective of the present study was to evaluate the effects of dam and offspring dietary supplementation with a natural feed additive on the growth performance and meat quality parameters of growing rabbits. The growing rabbits are selected from lactating does receiving a control diet (C) or diets supplemented with 0.3% (SP1) and 0.6% (SP2) of feed additive containing brown seaweeds (Laminaria spp.) and plant extracts. In the postweaning phase, the growing rabbits remained in the treatment group defined by their does and the trial lasted 42 days. The average daily feed intake and feed conversion ratio were improved in the rabbit fed 0.6% of the natural feed additive. The cholesterol content tended to be lower in Longissimus lumborum (LL) muscle and decrease in Semimembranosus (SM) muscle (in SP2 -41.36% than controls). The α tocopherol and retinol content were enhanced in both muscles of rabbit fed the natural mixture (SP1 and SP2 groups). An improvement of sensory attributes of texture was observed in both muscles from rabbit fed natural mixture. In conclusion, long term supplementation of both lactating does and offspring with the high dosage of brown seaweed and plant polyphenols improves growth performance and enhances meat nutritional and sensory parameters.
Collapse
Affiliation(s)
- Raffaella Rossi
- Dipartimento di Medicina Veterinaria, Università Degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (S.R.); (C.C.)
- Correspondence:
| | - Francesco Vizzarri
- Department of Agricultural and Environmental Science, Università di Bari Aldo Moro, Via G. Amendola 165/A, 70126 Bari, Italy;
| | - Sabrina Ratti
- Dipartimento di Medicina Veterinaria, Università Degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (S.R.); (C.C.)
| | - Marisa Palazzo
- Department of Agricultural, Environmental and Food Sciences, Università Degli Studi del Molise, Via F. De Sanctis 1, 86100 Campobasso, Italy; (M.P.); (D.C.)
| | - Donato Casamassima
- Department of Agricultural, Environmental and Food Sciences, Università Degli Studi del Molise, Via F. De Sanctis 1, 86100 Campobasso, Italy; (M.P.); (D.C.)
| | - Carlo Corino
- Dipartimento di Medicina Veterinaria, Università Degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (S.R.); (C.C.)
| |
Collapse
|
105
|
Barbosa M, Valentão P, Andrade PB. Polyphenols from Brown Seaweeds (Ochrophyta, Phaeophyceae): Phlorotannins in the Pursuit of Natural Alternatives to Tackle Neurodegeneration. Mar Drugs 2020; 18:E654. [PMID: 33353007 PMCID: PMC7766193 DOI: 10.3390/md18120654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Globally, the burden of neurodegenerative disorders continues to rise, and their multifactorial etiology has been regarded as among the most challenging medical issues. Bioprospecting for seaweed-derived multimodal acting products has earned increasing attention in the fight against neurodegenerative conditions. Phlorotannins (phloroglucinol-based polyphenols exclusively produced by brown seaweeds) are amongst the most promising nature-sourced compounds in terms of functionality, and though research on their neuroprotective properties is still in its infancy, phlorotannins have been found to modulate intricate events within the neuronal network. This review comprehensively covers the available literature on the neuroprotective potential of both isolated phlorotannins and phlorotannin-rich extracts/fractions, highlighting the main key findings and pointing to some potential directions for neuro research ramp-up processes on these marine-derived products.
Collapse
Affiliation(s)
| | | | - Paula B. Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313 Porto, Portugal; (M.B.); (P.V.)
| |
Collapse
|
106
|
Ratha SK, Renuka N, Rawat I, Bux F. Prospective options of algae-derived nutraceuticals as supplements to combat COVID-19 and human coronavirus diseases. Nutrition 2020; 83:111089. [PMID: 33412367 PMCID: PMC7680017 DOI: 10.1016/j.nut.2020.111089] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/29/2020] [Accepted: 11/13/2020] [Indexed: 01/15/2023]
Abstract
The outbreak of the coronavirus disease of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 that has created huge trepidation worldwide, has a mortality rate of 0.5% to 1% and is growing incessantly. There are currently no therapies and/or vaccines that may help abate this viral disease, but the use of masks and social distancing can limit the spread. Boosting immunity has been a simple way to resist viral infection and limit fatalities. In this context, the use of nutraceuticals appears to be a potential panacea. The ability of algae-based nutraceuticals, mainly Spirulina, to boost immunity against viral diseases has already been reported clinically. Spirulina-based nutraceuticals boost the adaptive and innate immunity, and bioactive compounds, such as angiotensin-converting enzyme (ACE) inhibitor peptides, phycobiliproteins, sulfated polysaccharides, and calcium-Spirulan, can serve as antiviral agents. The presence of these molecules indicates its potential role in resisting infection and COVID-19 disease progression. This review focuses on the potential role of algal nutraceuticals as immune boosters to combat the human coronavirus and other viral diseases. The potential use of Spirulina-based nutraceuticals for combating COVID-19, its mechanism, and future directions have also been discussed.
Collapse
Affiliation(s)
- Sachitra K Ratha
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Nirmal Renuka
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Ismail Rawat
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa.
| |
Collapse
|
107
|
Iodine Status and Thyroid Function in a Group of Seaweed Consumers in Norway. Nutrients 2020; 12:nu12113483. [PMID: 33202773 PMCID: PMC7697291 DOI: 10.3390/nu12113483] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Seaweeds, or macroalgae, may be a good dietary iodine source but also a source of excessive iodine intake. The main aim in this study was to describe the iodine status and thyroid function in a group of macroalgae consumers. Two urine samples were collected from each participant (n = 44) to measure urinary iodine concentration (UIC) after habitual consumption of seaweed. Serum thyroid stimulating hormone (TSH), free thyroxine (fT4), free triiodothyronine (fT3), and peroxidase autoantibody (TPOAb), were measured in a subgroup (n = 19). A food frequency questionnaire and an iodine-specific 24 h recall were used to assess iodine intake and macroalgae consumption. The median (p25–p75) UIC was 1200 (370–2850) μg/L. Median (p25–p75) estimated dietary iodine intake, excluding macroalgae, was 110 (78–680) μg/day, indicating that seaweed was the major contributor to the iodine intake. TSH levels were within the reference values, but higher than in other comparable population groups. One third of the participants used seaweeds daily, and sugar kelp, winged kelp, dulse and laver were the most common species. Labelling of iodine content was lacking for a large share of the products consumed. This study found excessive iodine status in macroalgae consumers after intake of dietary seaweeds. Including macroalgae in the diet may give excessive iodine exposure, and consumers should be made aware of the risk associated with inclusion of macroalgae in their diet.
Collapse
|
108
|
Mouritsen OG, Rhatigan P, Cornish ML, Critchley AT, Pérez-Lloréns JL. Saved by seaweeds: phyconomic contributions in times of crises. JOURNAL OF APPLIED PHYCOLOGY 2020; 33:443-458. [PMID: 33191980 PMCID: PMC7647873 DOI: 10.1007/s10811-020-02256-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 05/07/2023]
Abstract
Seaweeds (macroalgae) are, together with microalgae, main contributors to the Earth's production of organic matter and atmospheric oxygen as well as fixation of carbon dioxide. In addition, they contain a bounty of fibres and minerals, as well as macro- and micronutrients that can serve both technical and medicinal purposes, as well as be a healthy and nutritious food for humans and animals. It is therefore natural that seaweeds and humans have had a myriad of interwoven relationships both on evolutionary timescales as well as in recent millennia and centuries all the way into the Anthropocene. It is no wonder that seaweeds have also entered and served as a saviour for humankind around the globe in many periods of severe needs and crises. Indeed, they have sometimes been the last resort, be it during times of famine, warfare, outbreak of diseases, nuclear accidents, or as components of securing the fabric of social stability. The present topical review presents testimony from the history of human interaction with seaweeds to the way humankind has, over and over again, been 'saved by seaweeds'. It remains a historical fact that in extreme conditions, such as shortage and wars, humans have turned to seaweeds in times of 'needs must' and created new opportunities for their uses in order to mitigate disasters. Lessons to be learned from this history can be used as reminders and inspiration, and as a guide as how to turn to seaweeds in current and inevitable, future times of crises, not least for the present needs of how to deal with changing climates and the pressing challenges of sustainable and healthy eating.
Collapse
Affiliation(s)
- Ole G. Mouritsen
- Department of Food Science, Taste for Life, Design and Consumer Behaviour, University of Copenhagen, 26 Rolighedsvej, DK-1958 Frederiksberg, Denmark
| | - Prannie Rhatigan
- Irish Seaweed Kitchen, Streedagh House, Streedagh, Grange, Co., Sligo, Ireland
| | - M. Lynn Cornish
- James S. Craigie Research Centre, Acadian Seaplants Limited, Cornwallis, NS B0S1A0 Canada
| | - Alan T. Critchley
- Verschuren Centre for Sustainability in Energy and Environment, Cape Breton University, Sydney, Nova Scotia Canada
| | - José Lucas Pérez-Lloréns
- Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Av. República Saharaui s/n. 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
109
|
Vazirzadeh A, Marhamati A, Rabiee R, Faggio C. Immunomodulation, antioxidant enhancement and immune genes up-regulation in rainbow trout (Oncorhynchus mykiss) fed on seaweeds included diets. FISH & SHELLFISH IMMUNOLOGY 2020; 106:852-858. [PMID: 32871250 DOI: 10.1016/j.fsi.2020.08.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the stimulatory effects of dietary inclusion of Gracilariopsis persica (GP), Hypnea flagelliformis (HF) and Sargassum boveanum (SB) on immune indices, antioxidant capability and immune related genes expression of rainbow trout (Oncorhynchus mykiss). Seven iso-nitrogenous and iso-caloric diets with 0, 5 and 10% of each macroalgae were prepared and fed to rainbow trout juveniles for 83 days. Serum lysozyme (Lyz) and respiratory burst activity (NBT) along with activity of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) and expression of LyzII, TNFα and IL-1β genes in head kidney samples were determined by days 47 and 83. Our results revealed that dietary inclusion of seaweeds improved fish immune status. Long term feeding of fish on seaweed contained diets (except for GP10) improved serum Lyz activity in comparison to control group. Similarly, extended feeding on GP5 and HF10 and HF10 included diets improved SOD and POD levels, respectively. Genes expression studies revealed that seaweeds contained diets noticeably enhanced expression of LyzII, TNFα and IL-1β in comparison to control fish. However, results revealed that such stimulatory effects were more evident at lower dietary inclusion level and shorter feeding time. In conclusion, the results depicted that dietary inclusion of the seaweeds effectively improved serum immune indices and head kidney antioxidant status and immune related genes expression in a time and dose dependent manner.
Collapse
Affiliation(s)
- Arya Vazirzadeh
- Department of Natural Resources and Environmental Engineering, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran.
| | - Anahita Marhamati
- Department of Natural Resources and Environmental Engineering, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
| | - Reza Rabiee
- Agriculture and Natural Resources Education and Research Centre of Hormozgan, P.O. Box 79145-1577, Bandar Abbas, Iran
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| |
Collapse
|
110
|
|
111
|
Ho KKHY, Redan BW. Impact of thermal processing on the nutrients, phytochemicals, and metal contaminants in edible algae. Crit Rev Food Sci Nutr 2020; 62:508-526. [DOI: 10.1080/10408398.2020.1821598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kacie K. H. Y. Ho
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Benjamin W. Redan
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Bedford Park, Illinois, USA
| |
Collapse
|
112
|
Gabbia D, De Martin S. Brown Seaweeds for the Management of Metabolic Syndrome and Associated Diseases. Molecules 2020; 25:E4182. [PMID: 32932674 PMCID: PMC7570850 DOI: 10.3390/molecules25184182] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023] Open
Abstract
Metabolic syndrome is characterized by the coexistence of different metabolic disorders which increase the risk of developing type 2 diabetes mellitus and cardiovascular diseases. Therefore, metabolic syndrome leads to a reduction in patients' quality of life as well as to an increase in morbidity and mortality. In the last few decades, it has been demonstrated that seaweeds exert multiple beneficial effects by virtue of their micro- and macronutrient content, which could help in the management of cardiovascular and metabolic diseases. This review aims to provide an updated overview on the potential of brown seaweeds for the prevention and management of metabolic syndrome and its associated diseases, based on the most recent evidence obtained from in vitro and in vivo preclinical and clinical studies. Owing to their great potential for health benefits, brown seaweeds are successfully used in some nutraceuticals and functional foods for treating metabolic syndrome comorbidities. However, some issues still need to be tackled and deepened to improve the knowledge of their ADME/Tox profile in humans, in particular by finding validated indexes of their absorption and obtaining reliable information on their efficacy and long-term safety.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
113
|
Agatonovic-Kustrin S, Ramenskaya G, Kustrin E, Ortakand DB, Morton DW. A new integrated HPTLC - ATR/FTIR approach in marine algae bioprofiling. J Pharm Biomed Anal 2020; 189:113488. [PMID: 32745905 DOI: 10.1016/j.jpba.2020.113488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 01/01/2023]
Abstract
The aim of this study was to evaluate marine algae extracts in terms of their anti-inflammatory activity using a combination of chromatographic separation and chemical detection with subsequent infrared vibrational spectroscopy identification. Extraction parameters, chemical fingerprint, and the activity levels were considered for the method optimization. High-performance thin-layer chromatography (HPTLC) combined with microchemical derivatization, was used to separate and detect bioactive compounds with antioxidant activity and anti-inflammatory activities, and to detect different classes of terpenoids. Infrared attenuated total reflectance (ATR) spectral analysis of the bands with bioactive compounds, identified sulfated polysaccharides to be responsible for the anti-inflammatory activity in extracts of brown algae Carpoglossum confluens and Phyllospora comosa. Steroids as unique antioxidants with significant free radical scavenging activities were observed in extracts of brown algae Cystophora platylobium, Cystophora retorta, Carpoglossum confluens and Phyllospora comosa. HPTLC combined with biochemical assays and FTIR-ATR spectrometry was demonstrated to be a straightforward strategy for bioprofiling marine algae extracts.
Collapse
Affiliation(s)
- Snezana Agatonovic-Kustrin
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia; School of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia
| | - Galina Ramenskaya
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
| | - Ella Kustrin
- Department of Creative Arts and English, La Trobe University, Edwards Rd, Bendigo 3550, Australia
| | - Davoud Babazadeh Ortakand
- School of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia
| | - David W Morton
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia; School of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia.
| |
Collapse
|
114
|
He D, Yan L, Ma X, Cheng Y, Wu S, Zuo J, Park EJ, Liu J, Wu M, Choi JI, Tong H. Gamma-irradiation degraded sulfated polysaccharide from a new red algal strain Pyropia yezoensis Sookwawon 104 with in vitro antiproliferative activity. Oncol Lett 2020; 20:91. [PMID: 32831910 DOI: 10.3892/ol.2020.11952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 07/21/2020] [Indexed: 01/30/2023] Open
Abstract
Pyropia yezoensis Sookwawon 104 is a newly cultivated strain of red marine algae. The present study aimed to investigate the in vitro antiproliferative activity of sulfated polysaccharide extracted from P. yezoensis Sookwawon 104 (PYSP), as well as that of its low molecular weight (Mw) derivatives. PYSP is a heterogeneous sulfated polysaccharide mainly composed of galactose, glucose and fucose. PYSP was degraded by gamma-irradiation at doses of 20 and 100 kGy to produce two derivatives, named as PYSP-20 and PYSP-100, respectively. Comparison of PYSP, PYSP-20 and PYSP-100 revealed clear differences in their molecular weight (Mw) distributions, and distinct in vitro antiproliferative activities against Hep3B, MDA-MB-231 and HeLa cancer cell lines. PYSP-20 and PYSP-100 exhibited stronger antiproliferative effects than PYSP, suggesting that the reduction in Mw may have increased the in vitro antiproliferative activity. Furthermore, the mRNA expression levels of the antitumor gene P53 and cell cycle-associated genes P21, Cyclin B1 and cyclin dependent kinase 1 (Cdk1) were further analyzed by reverse transcription-quantitative PCR in PYSP-20 and PYSP-100-treated cancer cells. PYSP and its derivatives were shown to inhibit the proliferation of tumor cells by regulating the expression of P53, P21, Cyclin B1 and Cdk1. In conclusion, low-Mw polysaccharide derivatives prepared from P. yezoensis Sookwawon 104 by gamma-irradiation exhibit significant inhibition effects on cancer cell proliferation in vitro and may be a novel source of potential anticancer therapeutic agents.
Collapse
Affiliation(s)
- Dan He
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China.,Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Liping Yan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xiaojing Ma
- National Resource Center of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Yang Cheng
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Siya Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jihui Zuo
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Eun-Jeong Park
- Seaweed Research Center, National Institute of Fisheries Science, Haenam, South Jeolla 59002, Republic of Korea
| | - Jian Liu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China.,Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Mingjiang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
115
|
Carotenoid composition and antioxidant potential of Eucheuma denticulatum, Sargassum polycystum and Caulerpa lentillifera. Heliyon 2020; 6:e04654. [PMID: 32817893 PMCID: PMC7426577 DOI: 10.1016/j.heliyon.2020.e04654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/30/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Three species of Malaysian edible seaweed (Eucheuma denticulatum, Sargassum polycystum and Caulerpa lentillifera) were analyzed for their carotenoid composition using a combination of high-performance thin layer chromatography (HPTLC) and ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS), while the antioxidant capacities were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and oxygen radical absorbance capacity (ORAC) assays. The HPTLC analysis exhibited a distinct carotenoid pattern among the three seaweed groups. The UHPLC-ESI-MS/MS analysis showed fucoxanthin as the major carotenoid present in S. polycystum while lutein and zeaxanthin in E. denticulatum. For C. lentillifera, β-carotene and canthaxanthin were the major carotenoids. Some of the carotenoids, such as rubixanthin, dinoxanthin, diatoxanthin and antheraxanthin, were also tentatively detected in E. denticulatum and S. polycystum. For antioxidant activity, S. polycystum (20 %) and E. denticulatum (1128 μmol TE/g) showed the highest activity in the DPPH and ORAC assays, respectively. The findings suggest the three edible varieties of seaweeds may provide a good dietary source with a potential to reduce antioxidative stress.
Collapse
|
116
|
Murakami S, Kimura K, Kawasaki A, Ono A, Mizutani T, Sugiura A, Hirazawa C, Yada T, Sinki J, Ito T. The Edible Red Alga Egonori ( Campylaephora hypnaeoides J. Agardh) Alleviates Postprandial Blood Glucose Level and High Glucose-Induced Endothelial Dysfunction. J JPN SOC FOOD SCI 2020. [DOI: 10.3136/nskkk.67.257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shigeru Murakami
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University
| | - Koichi Kimura
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University
| | - Azusa Kawasaki
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University
| | - Ayuko Ono
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University
| | - Toshiki Mizutani
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University
| | - Ayaka Sugiura
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University
| | - Chihiro Hirazawa
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University
| | - Tomomi Yada
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University
| | | | - Takashi Ito
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University
| |
Collapse
|
117
|
Leandro A, Pacheco D, Cotas J, Marques JC, Pereira L, Gonçalves AMM. Seaweed's Bioactive Candidate Compounds to Food Industry and Global Food Security. Life (Basel) 2020; 10:E140. [PMID: 32781632 PMCID: PMC7459772 DOI: 10.3390/life10080140] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
The world population is continuously growing, so it is important to keep producing food in a sustainable way, especially in a way that is nutritious and in a sufficient quantity to overcome global needs. Seaweed grows, and can be cultivated, in seawater and generally does not compete for arable land and freshwater. Thus, the coastal areas of the planet are the most suitable for seaweed production, which can be an alternative to traditional agriculture and can thus contribute to a reduced carbon footprint. There are evolving studies that characterize seaweed's nutritional value and policies that recognize them as food, and identify the potential benefits and negative factors that may be produced or accumulated by seaweed, which are, or can be, dangerous for human health. Seaweeds have a high nutritional value along with a low caloric input and with the presence of fibers, proteins, omega 3 and 6 unsaturated fatty acids, vitamins, and minerals. Moreover, several seaweed sub-products have interesting features to the food industry. Therefore, the focus of this review is in the performance of seaweed as a potential alternative and as a safe food source. Here described is the nutritional value and concerns relating to seaweed consumption, and also how seaweed-derived compounds are already commercially explored and available in the food industry and the usage restrictions to safeguard them as safe food additives for human consumption.
Collapse
Affiliation(s)
- Adriana Leandro
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (A.L.); (D.P.); (J.C.); (J.C.M.); (L.P.)
| | - Diana Pacheco
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (A.L.); (D.P.); (J.C.); (J.C.M.); (L.P.)
| | - João Cotas
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (A.L.); (D.P.); (J.C.); (J.C.M.); (L.P.)
| | - João C. Marques
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (A.L.); (D.P.); (J.C.); (J.C.M.); (L.P.)
| | - Leonel Pereira
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (A.L.); (D.P.); (J.C.); (J.C.M.); (L.P.)
| | - Ana M. M. Gonçalves
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (A.L.); (D.P.); (J.C.); (J.C.M.); (L.P.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
118
|
Cox AJ, Cripps AW, Taylor PA, Fitton JH, West NP. Fucoidan Supplementation Restores Fecal Lysozyme Concentrations in High-Performance Athletes: A Pilot Study. Mar Drugs 2020; 18:md18080412. [PMID: 32759709 PMCID: PMC7460205 DOI: 10.3390/md18080412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/30/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
Nutritional strategies to help promote immune competence are of particular interest for a range of population groups. This study aimed to assess the potential impacts of fucoidan, a seaweed-derived bioactive polysaccharide, on gut markers of immunity and inflammation. A group of professional team-sport athletes were selected for inclusion in the study given the recognized potential for intense physical activity to induce alterations in immune function. A retrospective analysis was performed on stored fecal samples which had been collected from professional team-sport athletes (n = 22) and healthy adults (n = 11) before and after seven days of supplementation with fucoidan (Fucus vesiculosus/Undaria pinnatifida extract, 1 g/d). Fecal concentrations of calprotectin, secretory immunoglobulin A (sIgA) and lysozyme were determined using enzyme-linked immunosorbent assays. The supplement was well tolerated by participants with no adverse events reported. At baseline, fecal lysozyme concentrations were ~73% higher in the healthy adults compared to the professional athletes (p = 0.001). For the professional athletes, a significant (~45%) increase in fecal lysozyme was observed following the supplementation period (p = 0.001). These data suggest that fucoidan supplementation may have the potential to promote the secretion of antimicrobial peptides in specific population groups and contribute to the regulation of mucosal immune health.
Collapse
Affiliation(s)
- Amanda J. Cox
- School of Medical Science, Griffith University, Southport, QLD 4215, Australia;
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4215, Australia;
- Correspondence: ; Tel.: +61-7-5678-0898
| | - Allan W. Cripps
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4215, Australia;
- School of Medicine, Griffith University, Southport, QLD 4215, Australia
| | | | | | - Nicholas P. West
- School of Medical Science, Griffith University, Southport, QLD 4215, Australia;
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4215, Australia;
| |
Collapse
|
119
|
Zhang X, Liu Y, Chen XQ, Aweya JJ, Cheong KL. Catabolism of Saccharina japonica polysaccharides and oligosaccharides by human fecal microbiota. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109635] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
120
|
Minami Y, Kanemura S, Oikawa T, Suzuki S, Hasegawa Y, Nishino Y, Fujiya T, Miura K. Associations of Japanese food intake with survival of stomach and colorectal cancer: A prospective patient cohort study. Cancer Sci 2020; 111:2558-2569. [PMID: 32412140 PMCID: PMC7385343 DOI: 10.1111/cas.14459] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Dietary factors may affect the prognosis of digestive tract cancer, but evidence has been sparse. We investigated the association between pretreatment intake of 6 Japanese foods (including soy food, miso [soybean paste] soup and seaweed) and the risk of death among patients with histologically confirmed major digestive tract cancers (stomach, 1931; colon, 793; rectum, 510) diagnosed during 1997‐2013 at a single institution in Japan. Pretreatment dietary intake was assessed using a food frequency questionnaire, and the patients were followed until December 2016. The Cox proportional hazards model was used to estimate hazard ratios (HR) and 95% confidence intervals (CI). Among the patients with stomach cancer, frequent intake of soy food was inversely associated with the risk of all‐cause (Ptrend for four frequency groups = 0.01; HR = 0.72, 95% CI: 0.50‐1.04 for highest vs lowest group) and stomach cancer (Ptrend = 0.03; HR = 0.63, 95% CI: 0.40‐0.99) death. A similar inverse association was also found for intake of miso soup. In contrast, frequent seaweed intake was inversely associated with the risk of all‐cause death among the patients with colon cancer (Ptrend = 0.03). Rectal cancer patients who had frequently consumed seaweed tended to have a lower risk of rectal cancer death (Ptrend = 0.02). These findings indicate that pretreatment intake of Japanese foods such as soybean products and seaweed may have favorable effects on patient survival of stomach and colorectal cancer, although this needs to be confirmed by further research.
Collapse
Affiliation(s)
- Yuko Minami
- Department of Health Sciences, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Cancer Epidemiology and Prevention, Miyagi Cancer Center Research Institute, Natori, Japan.,Center for Preventive Medicine, Osaki Citizen Hospital, Osaki, Japan
| | - Seiki Kanemura
- Division of Cancer Epidemiology and Prevention, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Tomoyuki Oikawa
- Department of Gastroenterology, Miyagi Cancer Center Hospital, Natori, Japan
| | - Shinichi Suzuki
- Department of Gastroenterology, Miyagi Cancer Center Hospital, Natori, Japan
| | | | - Yoshikazu Nishino
- Department of Epidemiology and Public Health, Kanazawa Medical University, Kahoku, Japan
| | - Tsuneaki Fujiya
- Department of Surgery, Miyagi Cancer Center Hospital, Natori, Japan
| | - Koh Miura
- Department of Surgery, Miyagi Cancer Center Hospital, Natori, Japan
| |
Collapse
|
121
|
Nazzaro F, Fratianni F, De Feo V, Battistelli A, Da Cruz AG, Coppola R. Polyphenols, the new frontiers of prebiotics. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 94:35-89. [PMID: 32892838 DOI: 10.1016/bs.afnr.2020.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is a growing interest in the identification of molecules capable to promote health and with a concurrent potential for technological applications. Prebiotics are functional ingredients naturally occurring in some plant and animal foods that since many decades stimulated considerable attention from the pharmaceutical and food industries due to their positive health effects. Together the well-known biomolecules with ascertained prebiotic effect, in last year new molecules were finally recognized as prebiotics, so capable to improve the health of an organism, also through the positive effect exerted on host microbiota. Among the so-called prebiotics, a special mention should be given to polyphenols, probably the most important, or at least among the most important secondary metabolites produced by the vegetal kingdom. This short chapter wants to emphasize polyphenols and, after briefly describing the individual microbiome, to illustrate how polyphenols can, through their influence on the microbiome, have a positive effect on the health of the individual in general, and on some pathologies in particular, for which the role of a bad status of the individual microbiome has been definitively established.
Collapse
Affiliation(s)
| | | | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | | | - Adriano Gomes Da Cruz
- Food Department, Federal Institute of Education, Science and Technology of Rio de Janeiro, Brazil
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences, DiAAA-University of Molise, Campobasso, Italy
| |
Collapse
|
122
|
Couteau C, Coiffard L. Phycocosmetics and Other Marine Cosmetics, Specific Cosmetics Formulated Using Marine Resources. Mar Drugs 2020; 18:md18060322. [PMID: 32570957 PMCID: PMC7345487 DOI: 10.3390/md18060322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Marine resources exist in vast numbers and show enormous diversity. As a result, there are likely many possible applications for marine molecules of interest in the cosmetic industry, whether as excipients or additives, but especially as active substances. It is possible to obtain extracts from active substances; for example, quite a few algae species can be used in moisturizing or anti-ageing products. In the field of topical photoprotection, mycosporine-like amino acids and gadusol are important lines of enquiry that should not be overlooked. In the field of additives, the demonstration that certain seaweed (algae) extracts have antimicrobial properties suggests that they could provide alternatives to currently authorized preservatives. These promising leads must be explored, but it should be kept in mind that it is a long process to bring ingredients to market that are both effective and safe to use.
Collapse
|
123
|
Ding KX, Gao TL, Xu R, Cai J, Zhang HQ, Sun YY, Zhong F, Ma AG. Quantifying the Effect of Supplementation with Algae and Its Extracts on Glycolipid Metabolism: A Meta-Analysis of Randomized Controlled Trials. Nutrients 2020; 12:E1712. [PMID: 32521609 PMCID: PMC7352414 DOI: 10.3390/nu12061712] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/26/2020] [Accepted: 06/04/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS The effect of algae and its extract supplementation on glycolipid metabolism has not been finalized. Therefore, the purpose of the meta-analyses was to assess the effects of its supplementation on glycolipid metabolism concentration. METHODS We have systematically searched PubMed, Web of Science, the Cochrane Library and Embase to identify randomized controlled trials (RCTs) that investigated the impact of algae and its extracts supplementation on glycolipid metabolism. Effect size analysis was performed using weighted mean difference (WMD) and 95% CI between the methods of the experiment group and the control group. Subgroup analyses were performed to explore the possible influences of study characteristics. Publication bias and sensitivity analysis were also performed. RESULTS A total of 27 RCTs (31 trials) with 1221 participants were finally selected for the meta-analysis. The algae and its extract intervention significantly decreased glycosylated hemoglobin (HbA1c, WMD = -0.18%; 95% CI: -0.27 to -0.10; p < 0.001), high-density lipoprotein cholesterol (HDL-C, WMD = -0.22 mmol/L; 95% CI: -0.38 to -0.06; p = 0.008), and triglycerides (TC, WMD = -0.31 mmol/L; 95% CI: -0.37 to -0.25; p < 0.001) levels and increased insulin (WMD = 6.05 pmol/mL; 95% CI: 4.01 to 8.09; p < 0.001) levels. It did not significantly change the blood glucose, homeostasis model assessment-insulin resistance index (HOMA-IR), 2-h post-meal blood glucose (2hPBG) and other lipid profiles. Subgroup analyses based on the duration of intervention and subjects demonstrated that the intervention of algae and its extracts for 10 weeks or fewer and more than 40 subjects decreased TC levels (p < 0.05). Moreover, the intervention reduced TC and 2hPBG concentrations for East Asians (p < 0.05). CONCLUSIONS Our findings provided evidence that algae and its extract interventions were beneficial for the regulation of human glycolipid metabolism. More precise RCTs on subjects are recommended to further clarify the effect of algae, seaweed polysaccharide, seaweed polypeptide, algae polyphenol and its products intervention on glycolipid metabolism.
Collapse
Affiliation(s)
- Kun-xiang Ding
- School of Public Health, Qingdao University, Qingdao 266021, China; (K.-x.D.); (T.-l.G.); (R.X.); (J.C.); (H.-q.Z.); (Y.-y.S.); (A.-g.M.)
- Institute of nutrition and health, Qingdao University, Qingdao 266021, China
| | - Tian-lin Gao
- School of Public Health, Qingdao University, Qingdao 266021, China; (K.-x.D.); (T.-l.G.); (R.X.); (J.C.); (H.-q.Z.); (Y.-y.S.); (A.-g.M.)
- Institute of nutrition and health, Qingdao University, Qingdao 266021, China
| | - Rui Xu
- School of Public Health, Qingdao University, Qingdao 266021, China; (K.-x.D.); (T.-l.G.); (R.X.); (J.C.); (H.-q.Z.); (Y.-y.S.); (A.-g.M.)
- Institute of nutrition and health, Qingdao University, Qingdao 266021, China
| | - Jing Cai
- School of Public Health, Qingdao University, Qingdao 266021, China; (K.-x.D.); (T.-l.G.); (R.X.); (J.C.); (H.-q.Z.); (Y.-y.S.); (A.-g.M.)
- Institute of nutrition and health, Qingdao University, Qingdao 266021, China
| | - Hua-qi Zhang
- School of Public Health, Qingdao University, Qingdao 266021, China; (K.-x.D.); (T.-l.G.); (R.X.); (J.C.); (H.-q.Z.); (Y.-y.S.); (A.-g.M.)
- Institute of nutrition and health, Qingdao University, Qingdao 266021, China
| | - Yong-ye Sun
- School of Public Health, Qingdao University, Qingdao 266021, China; (K.-x.D.); (T.-l.G.); (R.X.); (J.C.); (H.-q.Z.); (Y.-y.S.); (A.-g.M.)
- Institute of nutrition and health, Qingdao University, Qingdao 266021, China
| | - Feng Zhong
- School of Public Health, Qingdao University, Qingdao 266021, China; (K.-x.D.); (T.-l.G.); (R.X.); (J.C.); (H.-q.Z.); (Y.-y.S.); (A.-g.M.)
- Institute of nutrition and health, Qingdao University, Qingdao 266021, China
| | - Ai-guo Ma
- School of Public Health, Qingdao University, Qingdao 266021, China; (K.-x.D.); (T.-l.G.); (R.X.); (J.C.); (H.-q.Z.); (Y.-y.S.); (A.-g.M.)
- Institute of nutrition and health, Qingdao University, Qingdao 266021, China
| |
Collapse
|
124
|
Ahn J, Ha TY, Ahn J, Jung CH, Seo HD, Kim MJ, Kim YS, Jang YJ. Undaria pinnatifida extract feeding increases exercise endurance and skeletal muscle mass by promoting oxidative muscle remodeling in mice. FASEB J 2020; 34:8068-8081. [PMID: 32293073 DOI: 10.1096/fj.201902399rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 01/10/2024]
Abstract
Dietary habits can alter the skeletal muscle performance and mass, and Undaria pinnatifida extracts are considered a potent candidate for improving the muscle mass and function. Therefore, in this study, we aimed to assess the effect of U pinnatifida extracts on exercise endurance and skeletal muscle mass. C57BL/6 mice were fed a 0.25% U pinnatifida extract-containing diet for 8 weeks. U pinnatifida extract-fed mice showed increased running distance, total running time, and extensor digitorum longus and gastrocnemius muscle weights. U pinnatifida extract supplementation upregulated the expression of myocyte enhancer factor 2C, oxidative muscle fiber markers such as myosin heavy chain 1 (MHC1), and oxidative biomarkers in the gastrocnemius muscles. Compared to the controls, U pinnatifida extract-fed mice showed larger mitochondria and increased gene and protein expression of molecules involved in mitochondrial biogenesis and oxidative phosphorylation, including nuclear respiratory factor 2 and mitochondrial transcription factor A. U pinnatifida extract supplementation also increased the mRNA expression of angiogenesis markers, including VEGFa, VEGFb, FGF1, angiopoietin 1, and angiopoietin 2, in the gastrocnemius muscles. Importantly, U pinnatifida extracts upregulated the estrogen-related receptor γ and peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α)/AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) networks, which are partially increased by fucoxanthin, hesperetin, and caffeic acid treatments. Collectively, U pinnatifida extracts enhance mitochondrial biogenesis, increase oxidative muscle fiber, and promote angiogenesis in skeletal muscles, resulting in improved exercise capacity and skeletal muscle mass. These effects are attributable to fucoxanthin, hesperetin, and caffeic acid, bioactive components of U pinnatifida extracts.
Collapse
Affiliation(s)
- Jisong Ahn
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
- Department of Food Science and Technology, Chonbuk National University, Jeonju-si, Republic of Korea
| | - Tae Youl Ha
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Jiyun Ahn
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Chang Hwa Jung
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Hyo Deok Seo
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Min Jung Kim
- Healthcare Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Young-Soo Kim
- Department of Food Science and Technology, Chonbuk National University, Jeonju-si, Republic of Korea
| | - Young Jin Jang
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| |
Collapse
|
125
|
Antioxidant Sulfated Polysaccharide from Edible Red Seaweed Gracilaria birdiae is an Inhibitor of Calcium Oxalate Crystal Formation. Molecules 2020; 25:molecules25092055. [PMID: 32354047 PMCID: PMC7249083 DOI: 10.3390/molecules25092055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 01/10/2023] Open
Abstract
The genus Gracilaria synthesizes sulfated polysaccharides (SPs). Many of these SPs, including those synthesized by the edible seaweed Gracilaria birdiae, have not yet been adequately investigated for their use as potential pharmaceutical compounds. Previous studies have demonstrated the immunomodulatory effects of sulfated galactans from G. birdiae. In this study, a galactan (GB) was extracted from G. birdiae and evaluated by cell proliferation and antioxidant tests. GB showed no radical hydroxyl (OH) and superoxide (O2−) scavenging ability. However, GB was able to donate electrons in two further different assays and presented iron- and copper-chelating activity. Urolithiasis affects approximately 10% of the world’s population and is strongly associated with calcium oxalate (CaOx) crystals. No efficient compound is currently available for the treatment of this disease. GB appeared to interact with and stabilize calcium oxalate dihydrate crystals, leading to the modification of their morphology, size, and surface charge. These crystals then acquired the same characteristics as those found in healthy individuals. In addition, GB showed no cytotoxic effect against human kidney cells (HEK-293). Taken together, our current findings highlight the potential application of GB as an antiurolithic agent.
Collapse
|
126
|
Park JK, Woo HW, Kim MK, Shin J, Lee YH, Shin DH, Shin MH, Choi BY. Dietary iodine, seaweed consumption, and incidence risk of metabolic syndrome among postmenopausal women: a prospective analysis of the Korean Multi-Rural Communities Cohort Study (MRCohort). Eur J Nutr 2020; 60:135-146. [PMID: 32211932 DOI: 10.1007/s00394-020-02225-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Despite a beneficial role of iodine and seaweed consumption against metabolic syndrome (MetS), which is high in postmenopausal women, few studies investigated such associations in a prospective study. This study aimed to investigate the association of dietary iodine and seaweed consumption with the incidence of MetS and its components in postmenopausal women. METHODS A total of 2588 postmenopausal women aged ≥ 40 years were recruited between 2005 and 2011 in the Multi-Rural Communities Cohort (MRCohort). A validated semiquantitative food frequency questionnaire was used to collect dietary intake data. MetS was defined as three of five components [abdominal obesity, elevated blood pressure, glucose, triglyceride, and low-high density lipoprotein cholesterol (HDL-C)] and the incidence of MetS was checked every 2-4 years. The incidence rate ratio (IRR) was estimated using a modified Poisson regression model with a robust error estimator. RESULTS During the mean follow-up period (3.4 ± 2.1 years), MetS occurred in 481 participants. The median cumulative average iodine intake was 108.9 µg/day (interquartile range, 60.8-190.2 µg/day). In multivariable analyses, average iodine and seaweed consumption were inversely associated with MetS (IRR = 0.61, 95% CI 0.47-0.78 in the highest quartile of iodine intake, P for trend = 0.0018; IRR = 0.52, 95% CI 0.39-0.69 in the highest quartile of seaweed consumption, P for trend = 0.0004). Among MetS components, blood glucose (> 100 mg/dL), blood pressure (≥ 130/85 mmHg), and lipid profiles (triglyceride, ≥ 150 mg/dL and HDL-C, < 50 mg/dL) were significantly inversely associated with dietary iodine and seaweed consumption, but there was no clear association for waist circumference (≥ 85 cm). CONCLUSION Dietary iodine and seaweed consumption may be inversely associated with MetS incidence and its individual abnormalities in postmenopausal women.
Collapse
Affiliation(s)
- Jin-Kyu Park
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Hanyang University, Seoul, South Korea
| | - Hye Won Woo
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, South Korea
- Institute for Health and Society, Hanyang University, Seoul, South Korea
| | - Mi Kyung Kim
- Department of Preventive Medicine, Medical School Building A-Room 517-2, College of Medicine, Hanyang University, 222 Wangsimni-ro, Sungdong-Gu, Seoul, 04763, Republic of Korea.
- Institute for Health and Society, Hanyang University, Seoul, South Korea.
| | - Jinho Shin
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Hanyang University, Seoul, South Korea
| | - Young-Hoon Lee
- Department of Preventive Medicine and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan, South Korea
| | - Dong Hoon Shin
- Department of Preventive Medicine, Keimyung University School of Medicine, Daegu, South Korea
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Bo Youl Choi
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, South Korea
- Institute for Health and Society, Hanyang University, Seoul, South Korea
| |
Collapse
|
127
|
Characterization of Antioxidant Potential of Seaweed Extracts for Enrichment of Convenience Food. Antioxidants (Basel) 2020; 9:antiox9030249. [PMID: 32204441 PMCID: PMC7139466 DOI: 10.3390/antiox9030249] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/22/2022] Open
Abstract
In recent years, there has been a growing interest in natural antioxidants as replacements of synthetic compounds because of increased safety concerns and worldwide trend toward the usage of natural additives in foods. One of the richest sources of natural antioxidants, nowadays largely studied for their potential to decrease the risk of diseases and to improve oxidative stability of food products, are edible brown seaweeds. Nevertheless, their antioxidant mechanisms are slightly evaluated and discussed. The aims of this study were to suggest possible mechanism(s) of Fucus vesiculosus antioxidant action and to assess its bioactivity during the production of enriched rye snacks. Chemical and cell-based assays indicate that the efficient preventive antioxidant action of Fucus vesiculosus extracts is likely due to not only the high polyphenol content, but also their good Fe2+-chelating ability. Moreover, the data collected during the production of Fucus vesiculosus-enriched rye snacks show that this seaweed can increase, in appreciable measure, the antioxidant potential of enriched convenience cereals. This information can be used to design functional foods enriched in natural antioxidant ingredients in order to improve the health of targeted consumers.
Collapse
|
128
|
Kumar MS, Sharma SA. Toxicological effects of marine seaweeds: a cautious insight for human consumption. Crit Rev Food Sci Nutr 2020; 61:500-521. [PMID: 32188262 DOI: 10.1080/10408398.2020.1738334] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Marine environment is a rich and diverse source for many biologically active substances including functional foods and nutraceuticals. It is well exploited for useful compounds, natural products and aquaculture industry; and seaweeds is one of the major contributors in terms of both food security and healthy nutrition. They are well-known due to their enormous benefits and is consumed globally in many countries. However, there is lack of attention toward their toxicity reports which might be due toxic chemical compounds from seaweed, epiphytic bacteria or harmful algal bloom and absorbed heavy metals from seawater. The excess of these components might lead to harmful interactions with drugs and hormone levels in the human body. Due to their global consumption and to meet increasing demands, it is necessary to address their hazardous and toxic aspects. In this review, we have done extensive literature for healthy seaweeds, their nutritional composition while summarizing the toxic effects of selected seaweeds from red, brown and green group which includes- Gracilaria, Acanthophora, Caulerpa, Cladosiphon, and Laminaria sp. Spirulina, a microalgae (cyanobacteria) biomass is also included in toxicity discussion as it an important food supplement and many times shows adverse reactions and drug interactions. The identified compounds from seaweeds were concluded to be toxic to humans, though they exhibited certain beneficial effects too. They have an easy access in food chain and thus invade the higher trophic level organisms. This review will create an awareness among scientific and nonscientific community, as well as government organization to regulate edible seaweed consumption and keep them under surveillance for their beneficial and safe consumption.
Collapse
Affiliation(s)
- Maushmi S Kumar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Simran A Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
129
|
Kishida R, Yamagishi K, Muraki I, Sata M, Tamakoshi A, Iso H. Frequency of Seaweed Intake and Its Association with Cardiovascular Disease Mortality: The JACC Study. J Atheroscler Thromb 2020; 27:1340-1347. [PMID: 32132341 PMCID: PMC7840157 DOI: 10.5551/jat.53447] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIM Seaweed is a popular traditional foodstuff in Asian countries. To our knowledge, few studies have examined the association of seaweed intake with mortality from cardiovascular disease. We examined the association of frequency of seaweed intake with total and specific cardiovascular disease mortality. METHODS We examined the association of seaweed intake with mortality from cardiovascular disease among 40,234 men and 55,981 women who participated in the Japan Collaborative Cohort Study for Evaluation of Cancer Risk. Sex-specific hazard ratios for mortality from cardiovascular disease (stroke, stroke subtypes, and coronary heart disease) according to the frequency of seaweed intake were calculated stratified by study area and adjusted for potential cardiovascular risk factors and dietary factors. RESULTS During the 1,580,996 person-year follow-up, 6,525 cardiovascular deaths occurred, of which 2,820 were due to stroke, and 1,378, to coronary heart disease. Among men, the multivariable analysis showed that participants who ate seaweed almost every day compared with those who never ate seaweed had hazard ratios (95% confidence interval; P for trend) of 0.79 (0.62-1.01; 0.72) for total cardiovascular disease, 0.70 (0.49-0.99; 0.47) for total stroke, 0.69 (0.41-1.16; 0.11) for cerebral infarction. Among women, the multivariable-adjusted hazard ratios were 0.72 (0.55-0.95; 0.001) for total cardiovascular disease, 0.70 (0.46-1.06; 0.01) for total stroke, and 0.49 (0.27-0.90; 0.22) for cerebral infarction. No associations were observed between seaweed intake and risk of intraparenchymal hemorrhage and coronary heart disease among either men or women. CONCLUSIONS We found an inverse association between seaweed intake and cardiovascular mortality among Japanese men and women, especially that from cerebral infarction.
Collapse
Affiliation(s)
- Rie Kishida
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine.,Department of Public Health Medicine, Faculty of Medicine, and Health Services Research and Development Center, University of Tsukuba
| | - Kazumasa Yamagishi
- Department of Public Health Medicine, Faculty of Medicine, and Health Services Research and Development Center, University of Tsukuba
| | - Isao Muraki
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine
| | - Mizuki Sata
- Department of Preventive Medicine and Public Health, Keio University School of Medicine
| | - Akiko Tamakoshi
- Department of Public Health, Hokkaido University, Graduate School of Medicine
| | - Hiroyasu Iso
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine
| | | |
Collapse
|
130
|
Souza CRM, Bezerra WP, Souto JT. Marine Alkaloids with Anti-Inflammatory Activity: Current Knowledge and Future Perspectives. Mar Drugs 2020; 18:md18030147. [PMID: 32121638 PMCID: PMC7142576 DOI: 10.3390/md18030147] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022] Open
Abstract
Alkaloids are nitrogenous compounds with various biological activities. Alkaloids with anti-inflammatory activity are commonly found in terrestrial plants, but there are few records of the identification and characterization of the activity of these compounds in marine organisms such as fungi, bacteria, sponges, ascidians, and cnidarians. Seaweed are a source of several already elucidated bioactive compounds, but few studies have described and characterized the activity of seaweed alkaloids with anti-inflammatory properties. In this review, we have gathered the current knowledge about marine alkaloids with anti-inflammatory activity and suggest future perspectives for the study and bioprospecting of these compounds.
Collapse
Affiliation(s)
| | | | - Janeusa T. Souto
- Correspondence: ; Tel.: +55-84-99908-7027; Fax: +55-84-3215-3311
| |
Collapse
|
131
|
Fan Z, Wang Y, Yang M, Cao J, Khan A, Cheng G. UHPLC-ESI-HRMS/MS analysis on phenolic compositions of different E Se tea extracts and their antioxidant and cytoprotective activities. Food Chem 2020; 318:126512. [PMID: 32135418 DOI: 10.1016/j.foodchem.2020.126512] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022]
Abstract
E Se tea, prepared from the leaves of Malus toringoides (Rehd.) Hughes, is a traditional beverage, but there is little known about its chemical substances. This paper is aimed to investigate the chemical composition, antioxidant, and cytoprotective activities of the extract and fractions from E Se tea. Sixteen compounds were characterized by UHPLC-ESI-HRMS/MS. Phloridzin was the main compound, especially in ethyl acetate fraction (EAF). Moreover, EAF had the highest total phenolic and flavonoid contents with 197.54 ± 7.52 mg gallic acid equivalents/g extract and 85.94 ± 5.39 mg rutin equivalents/g extract, respectively, and exhibited the strongest antioxidant capacity (DPPH: IC50 = 54.91 ± 3.38 μg/mL; ABTS: IC50 = 98.08 ± 6.92 μg/mL). Different fractions of E Se tea, especially EAF, significantly inhibited intracellular ROS generation, reduced cell apoptosis, and decreased oxidative stress damage in H2O2-induced HepG-2 cells. Therefore, the obtained results highlight that E Se tea is a promising source for functional beverage or nutritional foods.
Collapse
Affiliation(s)
- Zhifeng Fan
- The Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Yudan Wang
- Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Kunming 650500, People's Republic of China
| | - Meilian Yang
- The Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Jianxin Cao
- The Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Guiguang Cheng
- The Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, People's Republic of China.
| |
Collapse
|
132
|
Cotas J, Leandro A, Pacheco D, Gonçalves AMM, Pereira L. A Comprehensive Review of the Nutraceutical and Therapeutic Applications of Red Seaweeds (Rhodophyta). Life (Basel) 2020; 10:E19. [PMID: 32110890 PMCID: PMC7151636 DOI: 10.3390/life10030019] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
The red seaweed group (Rhodophyta) is one of the phyla of macroalgae, among the groups Phaeophyceae and Chlorophyta, brown and green seaweeds, respectively. Nowadays, all groups of macroalgae are getting the attention of the scientific community due to the bioactive substances they produce. Several macroalgae products have exceptional properties with nutraceutical, pharmacological, and biomedical interest. The main compounds studied are the fatty acids, pigments, phenols, and polysaccharides. Polysaccharides are the most exploited molecules, which are already widely used in various industries and are, presently, entering into more advanced applications from the therapeutic point of view. The focuses of this review are the red seaweeds' compounds, its proprieties, and its uses. Moreover, this work discusses new possible applications of the compounds of the red seaweeds.
Collapse
Affiliation(s)
- João Cotas
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Adriana Leandro
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Diana Pacheco
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Ana M. M. Gonçalves
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leonel Pereira
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| |
Collapse
|
133
|
Lopez-Santamarina A, Miranda JM, Mondragon ADC, Lamas A, Cardelle-Cobas A, Franco CM, Cepeda A. Potential Use of Marine Seaweeds as Prebiotics: A Review. Molecules 2020; 25:E1004. [PMID: 32102343 PMCID: PMC7070434 DOI: 10.3390/molecules25041004] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/28/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023] Open
Abstract
Human gut microbiota plays an important role in several metabolic processes and human diseases. Various dietary factors, including complex carbohydrates, such as polysaccharides, provide abundant nutrients and substrates for microbial metabolism in the gut, affecting the members and their functionality. Nowadays, the main sources of complex carbohydrates destined for human consumption are terrestrial plants. However, fresh water is an increasingly scarce commodity and world agricultural productivity is in a persistent decline, thus demanding the exploration of other sources of complex carbohydrates. As an interesting option, marine seaweeds show rapid growth and do not require arable land, fresh water or fertilizers. The present review offers an objective perspective of the current knowledge surrounding the impacts of seaweeds and their derived polysaccharides on the human microbiome and the profound need for more in-depth investigations into this topic. Animal experiments and in vitro colonic-simulating trials investigating the effects of seaweed ingestion on human gut microbiota are discussed.
Collapse
Affiliation(s)
| | - Jose Manuel Miranda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.L.-S.); (A.d.C.M.); (A.L.); (A.C.-C.); (C.M.F.); (A.C.)
| | | | | | | | | | | |
Collapse
|
134
|
Carrera I, Martínez O, Cacabelos R. Neuroprotection with Natural Antioxidants and Nutraceuticals in the Context of Brain Cell Degeneration: The Epigenetic Connection. Curr Top Med Chem 2020; 19:2999-3011. [PMID: 31789133 DOI: 10.2174/1568026619666191202155738] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/26/2022]
Abstract
Bioactive antioxidant agents present in selected plants are known to provide the first line of biological defense against oxidative stress. In particular, soluble vitamin C, E, carotenoids and phenolic compounds have demonstrated crucial biological effects in cells against oxidative damage, preventing prevalent chronic diseases, such as diabetes, cancer and cardiovascular disease. The reported wide range of effects that included anti-aging, anti-atherosclerosis, anti-inflammatory and anticancer activity were studied against degenerative pathologies of the brain. Vitamins and different phytochemicals are important epigenetic modifiers that prevent neurodegeneration. In order to explore the potential antioxidant sources in functional foods and nutraceuticals against neurodegeneration, the present paper aims to show a comprehensive assessment of antioxidant activity at chemical and cellular levels. The effects of the different bioactive compounds available and their antioxidant activity through an epigenetic point of view are also discussed.
Collapse
Affiliation(s)
- Iván Carrera
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Corunna 15166,Spain
| | - Olaia Martínez
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Corunna 15166,Spain
| | - Ramón Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Corunna 15166,Spain
| |
Collapse
|
135
|
Strain CR, Collins KC, Naughton V, McSorley EM, Stanton C, Smyth TJ, Soler-Vila A, Rea MC, Ross PR, Cherry P, Allsopp PJ. Effects of a polysaccharide-rich extract derived from Irish-sourced Laminaria digitata on the composition and metabolic activity of the human gut microbiota using an in vitro colonic model. Eur J Nutr 2020; 59:309-325. [PMID: 30805695 PMCID: PMC7000515 DOI: 10.1007/s00394-019-01909-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/23/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Brown seaweeds are known to be a rich source of fiber with the presence of several non-digestible polysaccharides including laminarin, fucoidan and alginate. These individual polysaccharides have previously been shown to favorably alter the gut microbiota composition and activity albeit the effect of the collective brown seaweed fiber component on the microbiota remains to be determined. METHODS This study investigated the effect of a crude polysaccharide-rich extract obtained from Laminaria digitata (CE) and a depolymerized CE extract (DE) on the gut microbiota composition and metabolism using an in vitro fecal batch culture model though metagenomic compositional analysis using 16S rRNA FLX amplicon pyrosequencing and short-chain fatty acid (SCFA) analysis using GC-FID. RESULTS Selective culture analysis showed no significant changes in cultured lactobacilli or bifidobacteria between the CE or DE and the cellulose-negative control at any time point measured (0, 5, 10, 24, 36, 48 h). Following metagenomic analysis, the CE and DE significantly altered the relative abundance of several families including Lachnospiraceae and genera including Streptococcus, Ruminococcus and Parabacteroides of human fecal bacterial populations in comparison to cellulose after 24 h. The concentrations of acetic acid, propionic acid, butyric acid and total SCFA were significantly higher for both the CE and DE compared to cellulose after 10, 24, 36 and 48 h fermentation (p < 0.05). Furthermore, the acetate:propionate ratio was significantly reduced (p < 0.05) for both CD and DE following 24, 36 and 48 h fermentation. CONCLUSION The microbiota-associated metabolic and compositional changes noted provide initial indication of putative beneficial health benefits of L. digitata in vitro; however, research is needed to clarify if L. digitata-derived fiber can favorably alter the gut microbiota and confer health benefits in vivo.
Collapse
Affiliation(s)
- Conall R Strain
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, BT52 1SA, UK
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | | | - Violetta Naughton
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, BT52 1SA, UK
| | - Emeir M McSorley
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, BT52 1SA, UK
| | | | - Thomas J Smyth
- Department of Life Science, Institute of Technology Sligo, Sligo, Ireland
| | - Anna Soler-Vila
- Irish Seaweed Research Group, Ryan Institute for Environmental, Marine and Energy Research, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Mary C Rea
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Paul R Ross
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Paul Cherry
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, BT52 1SA, UK
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Philip J Allsopp
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, BT52 1SA, UK.
| |
Collapse
|
136
|
Zhang X, Aweya JJ, Huang ZX, Kang ZY, Bai ZH, Li KH, He XT, Liu Y, Chen XQ, Cheong KL. In vitro fermentation of Gracilaria lemaneiformis sulfated polysaccharides and its agaro-oligosaccharides by human fecal inocula and its impact on microbiota. Carbohydr Polym 2020; 234:115894. [PMID: 32070514 DOI: 10.1016/j.carbpol.2020.115894] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/18/2020] [Accepted: 01/18/2020] [Indexed: 01/04/2023]
Abstract
The fermentation behaviour of sulfated polysaccharides (GLP) and their agaro-oligosaccharides (GLO) derived from Gracilaria lemaneiformis were examined. During in vitro fermentation, GLP and GLO increased the concentrations of short chain fatty acids (SCFAs) and modulated the composition and diversity of gut microorganisms compared with control groups. GLP increased the abundance of Bacteroidetes and decreased the abundance of Firmicutes, while GLO increased the abundance of Firmicutes and Actinobacteria. Moreover, the abundances of potential pathogenic bacteria were reduced. Molecular weight and intrinsic viscosity of GLP decreased significantly from 2.15 × 105 to 1.22 × 105 Da, 374.45-113.91 mL/g, respectively. Furthermore, GLP was degraded into smaller degree of polymerization of oligosaccharides, with no significant change observed in GLO. Overall, this study revealed GLP and GLO could be beneficial for gastrointestinal tract by producing SCFAs and modulating intestinal microbes, indicating GLP and GLO are potentially sources of prebiotics in functional foods.
Collapse
Affiliation(s)
- Xiao Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Jude Juventus Aweya
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Zong-Xun Huang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Zhuo-Ying Kang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Zi-Hao Bai
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Kun-Huan Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Xiao-Tong He
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Xian-Qiang Chen
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China.
| |
Collapse
|
137
|
Nova P, Pimenta-Martins A, Laranjeira Silva J, Silva AM, Gomes AM, Freitas AC. Health benefits and bioavailability of marine resources components that contribute to health - what's new?. Crit Rev Food Sci Nutr 2020; 60:3680-3692. [PMID: 31920109 DOI: 10.1080/10408398.2019.1704681] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The strict connection between nutritional intake and health leads to a necessity of understanding the beneficial and protective role of healthy nutrients and foods. The marine environment is a source of a plethora of many organisms with unique properties, extremely rich in bioactive compounds and with remarkable potential for medical, industrial and biotechnological applications. Marine organisms are an extreme valuable source of functional ingredients such as polysaccharides, vitamins, minerals, pigments, enzymes, proteins and peptides, polyunsaturated fatty acids (PUFA), phenolic compounds and other secondary metabolites that prevent or have the potential to treat several diseases given their cardiovascular protective, anti-inflammatory, anti-hypertensive, anti-oxidant, anti-coagulant, anti-proliferative and anti-diabetic activities. This review provides an overview on the current advances regarding health benefits of marine bioactive compounds on several diseases and on human gut microbiota. In addition, it is discussed a crucial factor that is related to the effectiveness of these compounds on human organism namely its real bioavailability.
Collapse
Affiliation(s)
- Paulo Nova
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnlogia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ana Pimenta-Martins
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnlogia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | | | | | - Ana Maria Gomes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnlogia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ana Cristina Freitas
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnlogia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
138
|
Gille A, Hollenbach R, Trautmann A, Gomez MR, Krüger R, Bischoff SC, Posten C, Briviba K. Lipophilic compounds, but not fucoxanthin, mediate the genotoxic effect of photoautotrophic grown Phaeodactylum tricornutum in Caco-2 and HT-29 cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
139
|
Kim WK, Cho HH, Lee GW, Jeong YW, Kim JS, Bucciarelli A, Song JE, Khang G. Alleviated Side Effects and Improved Efficiency of Omeprazole Using Oral Thin Film: In Vitro Evaluation. Macromol Res 2019. [DOI: 10.1007/s13233-020-8060-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
140
|
Bermano G, Stoyanova T, Hennequart F, Wainwright CL. Seaweed-derived bioactives as potential energy regulators in obesity and type 2 diabetes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 87:205-256. [PMID: 32089234 DOI: 10.1016/bs.apha.2019.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is epidemiological evidence that dietary intake of seaweeds is associated with a lower prevalence of chronic diseases. While seaweeds are of high nutritious value, due to their high content of fiber, polyunsaturated fatty acids and minerals, they also contain an abundance of bioactive compounds. There is a growing body of scientific data that these bioactive moieties exert effects that could correct the metabolic dysregulation that is present in obesity and Type 2 diabetes (T2D). In this review we describe how the molecular mechanisms, specific to different tissues, that underly obesity and T2D are influenced by both seaweed extracts and seaweed-derived bioactive molecules. In obesity, modulation of antioxidant capacity and reduction of intracellular ROS levels within tissues, and regulation of signaling pathways involved in enhancing browning of white adipose tissue, have been highlighted as key mechanism and identified as a potential target for optimal energy metabolism. In T2D, management of post-prandial blood glucose by modulating α-glucosidase or α-amylase activities, modulation of the AMPK signaling pathway, and similarly to obesity, reduction of ROS and NO production with subsequent increased expression of antioxidant enzymes have been shown to play a key role in glucose metabolism and insulin signaling. Future studies aimed at discovering new therapeutic drugs from marine natural products should, therefore, focus on bioactive compounds from seaweed that exert antioxidant activity and regulate the expression of key signaling pathways involved in glucose homeostasis, mechanisms that are common to both obesity and T2D management. In addition, more data is required to provide evidence of clinical benefit.
Collapse
Affiliation(s)
- Giovanna Bermano
- Centre for Natural Products in Health, School of Pharmacy & Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Teodora Stoyanova
- Centre for Natural Products in Health, School of Pharmacy & Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | | | - Cherry L Wainwright
- Centre for Natural Products in Health, School of Pharmacy & Life Sciences, Robert Gordon University, Aberdeen, United Kingdom.
| |
Collapse
|
141
|
Murai U, Yamagishi K, Sata M, Kokubo Y, Saito I, Yatsuya H, Ishihara J, Inoue M, Sawada N, Iso H, Tsugane S. Seaweed intake and risk of cardiovascular disease: the Japan Public Health Center-based Prospective (JPHC) Study. Am J Clin Nutr 2019; 110:1449-1455. [PMID: 31518387 DOI: 10.1093/ajcn/nqz231] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/20/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The minerals, vitamins, soluble dietary fibers, and flavonoids of seaweed are protective for preventing cardiovascular diseases. However, the association between seaweed intake and risk of cardiovascular disease has not been established. OBJECTIVES We examined the dietary intake of seaweed and its impact upon stroke and ischemic heart disease risk among a Japanese study population. METHODS We surveyed 40,707 men and 45,406 women from 2 large cohorts (age range: 40-69 y). Seaweed intake was determined by FFQ at baseline (1990-1994). Incidences of stroke and ischemic heart disease were ascertained until the end of 2009 (Cohort I) or 2012 (Cohort II). Sex-specific cardiovascular disease HRs (95% CIs) were estimated using Cox proportional hazard models after stratification by area and adjustment for cardiovascular disease risk and dietary factors. RESULTS During 1,493,232 person-years of follow-up, 4777 strokes (2863 ischemic stroke, 1361 intraparenchymal hemorrhages, and 531 subarachnoid hemorrhages) and 1204 ischemic heart disease cases were identified. Among men, significant multivariable HRs (95% CIs) for almost daily consumption compared with almost no consumption of seaweed were seen in ischemic heart disease [0.76 (0.58, 0.99); P-trend = 0.04] and total cardiovascular diseases [0.88 (0.78, 1.00); P-trend = 0.08]. Among women, such inverse associations were 0.56 (0.36, 0.85; P-trend = 0.006) for ischemic heart disease and 0.89 (0.76, 1.05; P-trend = 0.10) for total cardiovascular diseases. No significant associations were observed between seaweed intake and risk of total stroke or stroke types among either men or women. CONCLUSIONS Seaweed intake was inversely associated with risk of ischemic heart disease.
Collapse
Affiliation(s)
- Utako Murai
- Department of Public Health Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan, and Health Services Research and Development Center, University of Tsukuba, Tsukuba, Japan
| | - Kazumasa Yamagishi
- Department of Public Health Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan, and Health Services Research and Development Center, University of Tsukuba, Tsukuba, Japan
| | - Mizuki Sata
- Department of Public Health Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan, and Health Services Research and Development Center, University of Tsukuba, Tsukuba, Japan.,Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Kokubo
- Department of Preventive Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Isao Saito
- Department of Public Health and Epidemiology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Hiroshi Yatsuya
- Department of Public Health, Fujita Health University School of Medicine, Toyoake, Japan
| | - Junko Ishihara
- Department of Food and Life Science, School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Manami Inoue
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | - Norie Sawada
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | - Hiroyasu Iso
- Department of Public Health Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan, and Health Services Research and Development Center, University of Tsukuba, Tsukuba, Japan.,Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shoichiro Tsugane
- Department of Food and Life Science, School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | | |
Collapse
|
142
|
Khan BM, Qiu HM, Xu SY, Liu Y, Cheong KL. Physicochemical characterization and antioxidant activity of sulphated polysaccharides derived from Porphyra haitanensis. Int J Biol Macromol 2019; 145:1155-1161. [PMID: 31730957 DOI: 10.1016/j.ijbiomac.2019.10.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 01/05/2023]
Abstract
This study was designed to fully characterize Porphyra haitanensis polysaccharides, and to evaluate their antioxidant activity. The polysaccharides primarily contained galactose and 3,6-anhydrogalactose in a molar ratio of 1.2:1.0, respectively and sulfate content about 3.8%. The molecular weight of polysaccharides is 2.5 × 105 Da. Scanning electron microscopy and atomic force microscopy of the polysaccharides pointed towards an irregular network with more or less hexagonal and a few rectangular pores. The chemical structure was confirmed through Fourier transform infrared spectroscopy, and 1D and 2D nuclear magnetic resonance structural characterization wherein → 4-3,6-anhydro-α-L-galactopyranose-(1 → 3)-β-D-galactopyranose segments. The extracted polysaccharides revealed relatively high 2, 2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical scavenging activity (53.16% at 2 mg/mL), moderate 2,2-diphenyl-1-picrylhydrazyl radical scavenging efficacy (34.63% at 2 mg/mL), and low hydroxyl radical scavenging potential (23.80% at 2 mg/mL). Further purification of these polysaccharides, hence, is advised for their potential role as antioxidants in the food, pharmaceutical and cosmeceutical industry.
Collapse
Affiliation(s)
- Bilal Muhammad Khan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China; University Institute of Biochemistry and Biotechnology, PMAS - Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan.
| | - Hua-Mai Qiu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China.
| | - Shu-Ying Xu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China.
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China.
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China.
| |
Collapse
|
143
|
Ding Y, Wang L, Im S, Hwang O, Kim HS, Kang MC, Lee SH. Anti-Obesity Effect of Diphlorethohydroxycarmalol Isolated from Brown Alga Ishige okamurae in High-Fat Diet-Induced Obese Mice. Mar Drugs 2019; 17:E637. [PMID: 31717668 PMCID: PMC6891314 DOI: 10.3390/md17110637] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Diphlorethohydroxycarmalol (DPHC) is one of the most abundant bioactive compounds in Ishige okamurae. The previous study suggested that DPHC possesses strong in vitro anti-obesity activity in 3T3-L1 cells. However, the in vivo anti-obesity effect of DPHC has not been determined. The current study explored the effect of DPHC on high-fat diet (HFD)-induced obesity in C57BL/6J mice. The results indicated that oral administration of DPHC (25 and 50 mg/kg/day for six weeks) significantly and dose-dependently reduced HFD-induced adiposity and body weight gain. DPHC not only decreased the levels of triglyceride, low-density lipoprotein cholesterol, leptin, and aspartate transaminase but also increased the level of high-density lipoprotein cholesterol in the serum of HFD mice. In addition, DPHC significantly reduced hepatic lipid accumulation by reduction of expression levels of the critical enzymes for lipogenesis including SREBP-1c, FABP4, and FAS. Furthermore, DPHC remarkably reduced the adipocyte size, as well as decreased the expression levels of key adipogenic-specific proteins and lipogenic enzymes including PPARγ, C/EBPα, SREBP-1c, FABP4, and FAS, which regulate the lipid metabolism in the epididymal adipose tissue (EAT). Further studies demonstrated that DPHC significantly stimulated the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in both liver and EAT. These results demonstrated that DPHC effectively prevented HFD-induced obesity and suggested that DPHC could be used as a potential therapeutic agent for attenuating obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Yuling Ding
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Korea; (Y.D.); (S.I.); (O.H.)
| | - Lei Wang
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Korea;
- Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Korea
| | - SeungTae Im
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Korea; (Y.D.); (S.I.); (O.H.)
| | - Ouibo Hwang
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Korea; (Y.D.); (S.I.); (O.H.)
| | - Hyun-Soo Kim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seochun 33662, Korea;
| | - Min-Cheol Kang
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| | - Seung-Hong Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Korea; (Y.D.); (S.I.); (O.H.)
| |
Collapse
|
144
|
Variation in Lipid Components from 15 Species of Tropical and Temperate Seaweeds. Mar Drugs 2019; 17:md17110630. [PMID: 31698797 PMCID: PMC6891767 DOI: 10.3390/md17110630] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
The present study describes the variation in lipid components from 15 species of seaweeds belonging to the Chlorophyta, Ochrophyta, and Rhodophyta phyla collected in tropical (Indonesia) and temperate (Japan) areas. Analyses were performed of multiple components, including chlorophylls, carotenoids, n-3 and n-6 polyunsaturated fatty acids (PUFAs), and alpha tocopherol (α-Toc). Chlorophyll (Chl) and carotenoid contents varied among phyla, but not with the sampling location. Chl a and b were the major chlorophylls in Chlorophyta. Chl a and Chl c were the main chlorophylls in Ochrophyta, while Chl a was the dominant chlorophylls in Rhodophyta. β-Carotene and fucoxanthin were detected as major seaweed carotenoids. The former was present in all species in a variety of ranges, while the latter was mainly found in Ochrophyta and in small quantities in Rhodophyta, but not in Chlorophyta. The total lipids (TL) content and fatty acids composition were strongly affected by sampling location. The TL and n-3 PUFAs levels tended to be higher in temperate seaweeds compared with those in tropical seaweeds. The major n-3 PUFAs in different phyla, namely, eicosapentaenoic acid (EPA) and stearidonic acid (SDA) in Ochrophyta, α-linolenic acid (ALA) and SDA in Chlorophyta, and EPA in Rhodophyta, accumulated in temperate seaweeds. Chlorophylls, their derivatives, and carotenoids are known to have health benefits, such as antioxidant activities, while n-3 PUFAs are known to be essential nutrients that positively influence human nutrition and health. Therefore, seaweed lipids could be used as a source of ingredients with health benefits for functional foods and nutraceuticals.
Collapse
|
145
|
Santos S, Ferreira T, Almeida J, Pires MJ, Colaço A, Lemos S, Gil da Costa RM, Medeiros R, Bastos MMSM, Neuparth MJ, Abreu H, Pereira R, Pacheco M, Gaivão I, Rosa E, Oliveira PA. Dietary Supplementation with the Red Seaweed Porphyra umbilicalis Protects against DNA Damage and Pre-Malignant Dysplastic Skin Lesions in HPV-Transgenic Mice. Mar Drugs 2019; 17:md17110615. [PMID: 31671845 PMCID: PMC6891340 DOI: 10.3390/md17110615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/22/2022] Open
Abstract
Some diet profiles are associated with the risk of developing cancer; however, some nutrients show protective effects. Porphyra umbilicalis is widely consumed, having a balanced nutritional profile; however, its potential for cancer chemoprevention still needs comprehensive studies. In this study, we incorporated P. umbilicalis into the diet of mice transgenic for the human papillomavirus type 16 (HPV16), which spontaneously develop pre-malignant and malignant lesions, and determined whether this seaweed was able to block lesion development. Forty-four 20-week-old HPV+/− and HPV−/− mice were fed either a base diet or a diet supplemented with 10% seaweed. At the end of the study, skin samples were examined to classify HPV16-induced lesions. The liver was also screened for potential toxic effects of the seaweed. Blood was used to study toxicological parameters and to perform comet and micronucleus genotoxicity tests. P. umbilicalis significantly reduced the incidence of pre-malignant dysplastic lesions, completely abrogating them in the chest skin. These results suggest that P. umbilicalis dietary supplementation has the potential to block the development of pre-malignant skin lesions and indicate its antigenotoxic activity against HPV-induced DNA damage. Further studies are needed to establish the seaweed as a functional food and clarify the mechanisms whereby this seaweed blocks multistep carcinogenesis induced by HPV.
Collapse
Affiliation(s)
- Susana Santos
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal.
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), 5001-801 Vila Real, Portugal.
| | - Tiago Ferreira
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal.
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), 5001-801 Vila Real, Portugal.
| | - José Almeida
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal.
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), 5001-801 Vila Real, Portugal.
| | - Maria J Pires
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal.
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), 5001-801 Vila Real, Portugal.
| | - Aura Colaço
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal.
- Animal and Veterinary Research Center (CECAV), 5001-801 Vila Real, Portugal.
| | - Sílvia Lemos
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal.
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), 5001-801 Vila Real, Portugal.
| | - Rui M Gil da Costa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), 5001-801 Vila Real, Portugal.
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO-Porto), 4200-072 Porto, Portugal.
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO-Porto), 4200-072 Porto, Portugal.
- Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal.
- CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal.
- LPCC Research Department, Portuguese League against Cancer (NRNorte), 4200-172 Porto, Portugal.
| | - Margarida M S M Bastos
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Maria J Neuparth
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal.
| | - Helena Abreu
- ALGAplus, Lda., PCI-Creative Science Park, 3830-352 Ílhavo, Portugal.
| | - Rui Pereira
- ALGAplus, Lda., PCI-Creative Science Park, 3830-352 Ílhavo, Portugal.
| | - Mário Pacheco
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Isabel Gaivão
- Department of Genetic and Biotechnology, CECAV, UTAD, 5001-801 Vila Real, Portugal.
| | - Eduardo Rosa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), 5001-801 Vila Real, Portugal.
- Department of Agronomy, UTAD, 5001-801 Vila Real, Portugal.
| | - Paula A Oliveira
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal.
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), 5001-801 Vila Real, Portugal.
| |
Collapse
|
146
|
Nutraceutical Extract from Dulse ( Palmaria palmata L.) Inhibits Primary Human Neutrophil Activation. Mar Drugs 2019; 17:md17110610. [PMID: 31731428 PMCID: PMC6891576 DOI: 10.3390/md17110610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/28/2019] [Accepted: 10/16/2019] [Indexed: 11/19/2022] Open
Abstract
Palmaria palmata L. (Palmariaceae), commonly known as “dulse”, is a red alga that grows on the northern coasts of the Atlantic and Pacific oceans, and is widely used as source of fiber and protein. Dulse is reported to contain anti-inflammatory and antioxidant compounds, albeit no study has investigated these effects in primary human neutrophils. Implication strategies to diminish neutrophil activation have the potential to prevent pathological states. We evaluated the ability of a phenolic dulse extract (DULEXT) to modulate the lipopolysaccharide (LPS)-mediated activation of primary human neutrophils. Intracellular reactive oxygen species (ROS) were measured by fluorescence analysis and nitric oxide (NO) production using the Griess reaction. Inflammatory enzymes and cytokines were detected by ELISA and RT-qPCR. The results show that DULEXT diminished the neutrophil activation related to the down-regulation of TLR4 mRNA expression, deceased gene expression and the LPS-induced release of the chemoattractant mediator IL-8 and the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α. ROS, NO, and myeloperoxidase (MPO) were also depressed. The data indicated that DULEXT has the potential to disrupt the activation of human primary neutrophils and the derived inflammatory and prooxidant conditions, and suggest a new role for Palmaria palmata L. in the regulation of the pathogenesis of health disorders in which neutrophils play a key role, including atherosclerosis.
Collapse
|
147
|
Wang Y, Hwang JY, Park HB, Yadav D, Oda T, Jin JO. Porphyran isolated from Pyropia yezoensis inhibits lipopolysaccharide-induced activation of dendritic cells in mice. Carbohydr Polym 2019; 229:115457. [PMID: 31826423 DOI: 10.1016/j.carbpol.2019.115457] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022]
Abstract
We previously demonstrated that porphyran, a sulfated polysaccharide extracted from Pyropia yezoensis, shows protective effects on LPS-induced septic shock in the mouse. However, the immune cell-mediated inhibitory effect of porphyran in LPS-induced activation of immune cells has not been well investigated. In this study, we found that treatment of porphyran suppressed LPS-induced upregulation of costimulatory molecule and C-C chemokine receptor type 7 (CCR7) expression in bone marrow-derived dendritic cells (BMDCs) in vitro and spleen DCs in vivo. Moreover, the LPS-induced expression of IL-6, IL-12, and TNF-α in the culture medium of BMDCs and serum dose-dependently decreased by porphyran treatment, which contributed to the inhibition of the intracellular cytokine production in spleen DCs. In addition, LPS-induced differentiation of helper T1 (Th1) and cytotoxic T1 (Tc1) cells was effectively suppressed by porphyran treatment in mice. The inhibitory effect of porphyran in LPS-induced immune activation was mediated by competitive binding of porphyran with LPS in spleen DCs. Thus, these results suggest that porphyran is a promising potential therapeutic agent in endotoxin-mediated inflammatory disease and septic shock.
Collapse
Affiliation(s)
- Yuhua Wang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ju-Young Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Hae-Bin Park
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Tatsuya Oda
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea; Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
148
|
Trifan A, Vasincu A, Luca SV, Neophytou C, Wolfram E, Opitz SEW, Sava D, Bucur L, Cioroiu BI, Miron A, Aprotosoaie AC, Cioanca O, Hancianu M, Jitareanu A, Constantinou AI. Unravelling the potential of seaweeds from the Black Sea coast of Romania as bioactive compounds sources. Part I: Cystoseira barbata (Stackhouse) C. Agardh. Food Chem Toxicol 2019; 134:110820. [PMID: 31539616 DOI: 10.1016/j.fct.2019.110820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/30/2022]
Abstract
The Romanian coastlines of the Black Sea have abundant seaweed resources, but little effort has been done to investigate their biological potential. The aim of the present study was to assess the in vitro antioxidant and anti-proliferative effects of Cystoseira barbata (Stackhouse) C. Agardh (Sargassaceae), a brown alga inhabiting the Black Sea coast of Romania. The 70% acetone, methanol and water extracts of C. barbata were evaluated for their total phenolic content, antioxidant activity and anti-proliferative potential against human tumor cell lines (pulmonary A549, colon HT-29, mammary MCF-7) and the non-tumor mammary epithelial MCF-10A cell line. C. barbata 70% acetone extract (CBAE) displayed the highest antioxidant and cytotoxic activities. The mechanism of CBAE anti-proliferative activity involved initially increased intracellular ROS accumulation, followed by increased DNA content in the subG1 phase and DNA fragmentation leading to excessive apoptosis. Thus, our study provides a theoretical basis for the use of CBAE as a tumor preventive agent. Furthermore, UHPLC-DAD-QTOF-MS analysis of CBAE tentatively identified 18 phlorotannins as fucophlorethol and eckol derivatives, containing three up to seven phloroglucinol units. In conclusion, C. barbata represents a valuable source for the development of macroalgal-based products with putative use as nutraceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Adriana Trifan
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, 700115, Romania
| | - Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, 700115, Romania.
| | - Simon Vlad Luca
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, 700115, Romania; Biothermodynamics, TUM School of Life and Food Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany.
| | | | - Evelyn Wolfram
- Centre for Biochemistry and Bioanalytics, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Wädenswil, 8820, Switzerland
| | - Sebastian E W Opitz
- Phytopharmacy and Natural Products Research Group, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Wädenswil, 8820, Switzerland
| | - Daciana Sava
- Department of Natural Sciences, Faculty of Natural and Agricultural Sciences, Ovidius University, Constanta, 900470, Romania
| | - Laura Bucur
- Department of Pharmacognosy, Faculty of Pharmacy, Ovidius University, Constanta, 900470, Romania
| | | | - Anca Miron
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, 700115, Romania
| | - Ana Clara Aprotosoaie
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, 700115, Romania
| | - Oana Cioanca
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, 700115, Romania
| | - Monica Hancianu
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, 700115, Romania
| | - Alexandra Jitareanu
- Department of Toxicology, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, 700115, Romania
| | | |
Collapse
|
149
|
Abstract
During the last decade, the interest on the use of seaweed as food or feed, which was before limited to certain European regional subpopulations, has experienced a significant increase in other regions of the EU. In fact, the growing awareness and interest on sustainable and alternative food sources, healthier lifestyles and changes on dietary patterns brought seaweed to the spotlight for the general worldwide cuisine. Due to their high biosorption and accumulation capacity, seaweed can be an important source of increased exposure to persistent and potential harmful elements, such as cadmium (Cd), lead (Pb), mercury (Hg) and inorganic arsenic (iAs), or even some micronutrients, particularly iodine (I), to which an antioxidant role as been described in seaweed. This concentration potential has raised the interest of several Food Authorities regarding the risk of increased exposure to these elements. Moreover, the European Commission requested the collection of monitoring data on their levels aiming to aid the performance of better risk assessments and potentially set maximum levels on the European Legislation. This work aimed to obtain levels of these elements in species of seaweed (Fucus vesiculosus, Fucus serratus, Fucus spiralis, Fucus evanescens, Saccharina latissima, ulva lactuca and Ccladophora sp.) cultivated and harvested in Denmark, following European Commission's request. Additionally, a collaboration between Denmark, Ireland, France and the Netherlands was initiated to review and collect all the data available on scientific papers regarding the levels of these contaminants in seaweed worldwide. The final result of this work would be the publication of a review article. This Fellowship also provided on‐the‐job training on the evaluation of applications of new biocides and participation in the science based advises given to the Danish Food and Veterinary Administration, Danish EPA, the Danish Medical Agency and ECHA.
Collapse
|
150
|
Brown Macroalgae as Valuable Food Ingredients. Antioxidants (Basel) 2019; 8:antiox8090365. [PMID: 31480675 PMCID: PMC6769643 DOI: 10.3390/antiox8090365] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022] Open
Abstract
Due to the balanced nutritional value and abundance of bioactive compounds, seaweeds represent great candidates to be used as health-promoting ingredients by the food industry. In this field, Phaeophyta, i.e., brown macroalgae, have been receiving great attention particularly due to their abundance in complex polysaccharides, phlorotannins, fucoxanthin and iodine. In the past decade, brown algae and their extracts have been extensively studied, aiming at the development of well-accepted products with the simultaneous enhancement of nutritional value and/or shelf-life. However, the reports aiming at their bioactivity in in vivo models are still scarce and need additional exploration. Therefore, this manuscript revises the relevant literature data regarding the development of Phaeophyta-enriched food products, namely those focused on species considered as safe for human consumption in Europe. Hopefully, this will create awareness to the need of further studies in order to determine how those benefits can translate to human beings.
Collapse
|