101
|
Alhumaid S, Al Mutared KM, Al Alawi Z, Sabr Z, Alkhars O, Alabdulqader M, Al Dossary N, ALShakhs FM, Majzoub RA, Alalawi YH, Al Noaim K, Alnaim AA, Al Ghamdi MA, Alahmari AA, Albattat SS, Almubarak YS, Al Abdulmohsen EM, Al Shaikh H, Alobaidan ME, Almusallam HH, Alhassan FM, Alamer MA, Al-Hajji JA, Al-Hajji DA, Alkadi AA, Al Mutair A, Rabaan AA. Severity of SARS-CoV-2 infection in children with inborn errors of immunity (primary immunodeficiencies): a systematic review. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:69. [PMID: 37559153 PMCID: PMC10413516 DOI: 10.1186/s13223-023-00831-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/30/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Inborn errors of immunity (IEIs) are considered significant challenges for children with IEIs, their families, and their medical providers. Infections are the most common complication of IEIs and children can acquire coronavirus disease 2019 (COVID-19) even when protective measures are taken. OBJECTIVES To estimate the incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children with IEIs and analyse the demographic parameters, clinical characteristics and treatment outcomes in children with IEIs with COVID-19 illness. METHODS For this systematic review, we searched ProQuest, Medline, Embase, PubMed, CINAHL, Wiley online library, Scopus and Nature through the Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) guideline for studies on the development of COVID-19 in children with IEIs, published from December 1, 2019 to February 28, 2023, with English language restriction. RESULTS Of the 1095 papers that were identified, 116 articles were included in the systematic review (73 case report, 38 cohort 4 case-series and 1 case-control studies). Studies involving 710 children with IEIs with confirmed COVID-19 were analyzed. Among all 710 IEIs pediatric cases who acquired SARS-CoV-2, some children were documented to be admitted to the intensive care unit (ICU) (n = 119, 16.8%), intubated and placed on mechanical ventilation (n = 87, 12.2%), suffered acute respiratory distress syndrome (n = 98, 13.8%) or died (n = 60, 8.4%). Overall, COVID-19 in children with different IEIs patents resulted in no or low severity of disease in more than 76% of all included cases (COVID-19 severity: asymptomatic = 105, mild = 351, or moderate = 88). The majority of children with IEIs received treatment for COVID-19 (n = 579, 81.5%). Multisystem inflammatory syndrome in children (MIS-C) due to COVID-19 in children with IEIs occurred in 103 (14.5%). Fatality in children with IEIs with COVID-19 was reported in any of the included IEIs categories for cellular and humoral immunodeficiencies (n = 19, 18.6%), immune dysregulatory diseases (n = 17, 17.9%), innate immunodeficiencies (n = 5, 10%), bone marrow failure (n = 1, 14.3%), complement deficiencies (n = 1, 9.1%), combined immunodeficiencies with associated or syndromic features (n = 7, 5.5%), phagocytic diseases (n = 3, 5.5%), autoinflammatory diseases (n = 2, 3%) and predominantly antibody deficiencies (n = 5, 2.5%). Mortality was COVID-19-related in a considerable number of children with IEIs (29/60, 48.3%). The highest ICU admission and fatality rates were observed in cases belonging to cellular and humoral immunodeficiencies (26.5% and 18.6%) and immune dysregulatory diseases (35.8% and 17.9%) groups, especially in children infected with SARS-CoV-2 who suffered severe combined immunodeficiency (28.6% and 23.8%), combined immunodeficiency (25% and 15%), familial hemophagocytic lymphohistiocytosis (40% and 20%), X-linked lymphoproliferative diseases-1 (75% and 75%) and X-linked lymphoproliferative diseases-2 (50% and 50%) compared to the other IEIs cases. CONCLUSION Children with IEIs infected with SARS-CoV-2 may experience higher rates of ICU admission and mortality in comparison with the immunocompetent pediatric populations. Underlying immune defects does seem to be independent risk factors for severe SARS-CoV-2 infection in children with IEIs, a number of children with SCID and CID were reported to have prolonged infections-though the number of patients is small-but especially immune dysregulation diseases (XLP1 and XLP2) and innate immunodeficiencies impairing type I interferon signalling (IFNAR1, IFNAR2 and TBK1).
Collapse
Affiliation(s)
- Saad Alhumaid
- School of Pharmacy, University of Tasmania, Hobart, 7000, Australia.
| | - Koblan M Al Mutared
- Administration of Pharmaceutical Care, Ministry of Health, 66255, Najran, Saudi Arabia
| | - Zainab Al Alawi
- Division of Allergy and Immunology, College of Medicine, King Faisal University, 31982, Hofuf, Al-Ahsa, Saudi Arabia
| | - Zainah Sabr
- Division of Allergy and Immunology, Pediatric Department, College of Medicine, King Khalid University, 62529, Abha, Saudi Arabia
| | - Ola Alkhars
- Pediatric Department, King Faisal General Hospital, Ministry of Health, 36361, Hofuf, Al-Ahsa, Saudi Arabia
| | - Muneera Alabdulqader
- Pediatric Nephrology Specialty, Pediatric Department, Medical College, King Faisal University, 31982, Hofuf, Al-Ahsa, Saudi Arabia
| | - Nourah Al Dossary
- General Surgery Department, Alomran General Hospital, Ministry of Health, 36358, Hofuf, Al-Ahsa, Saudi Arabia
| | - Fatemah M ALShakhs
- Respiratory Therapy Department, Prince Saud Bin Jalawi Hospital, Ministry of Health, 36424, Al Mubarraz, Al-Ahsa, Saudi Arabia
| | - Rabab Abbas Majzoub
- Department of Pediatrics, College of Medicine, King Faisal University, 31982, Hofuf, Al-Ahsa, Saudi Arabia
| | - Yousef Hassan Alalawi
- Ear, Nose and Throat Department, Al Jabr Hospital for Eye, Ear, Nose and Throat, Ministry of Health, 36422, Al Mubarraz, Al-Ahsa, Saudi Arabia
| | - Khalid Al Noaim
- Department of Pediatrics, College of Medicine, King Faisal University, 31982, Hofuf, Al-Ahsa, Saudi Arabia
| | - Abdulrahman A Alnaim
- Department of Pediatrics, College of Medicine, King Faisal University, 31982, Hofuf, Al-Ahsa, Saudi Arabia
| | - Mohammed A Al Ghamdi
- Department of Pediatrics, King Fahad Hospital of the University, College of Medicine, Imam Abdulrahman Bin Faisal University, 34212, Dammam, Saudi Arabia
| | - Abdulaziz A Alahmari
- Department of Pediatrics, King Fahad Hospital of the University, College of Medicine, Imam Abdulrahman Bin Faisal University, 34212, Dammam, Saudi Arabia
| | - Sawsan Sami Albattat
- College of Medicine, King Faisal University, 31982, Hofuf, Al-Ahsa, Saudi Arabia
| | - Yasin S Almubarak
- Regional Medical Supply, Al-Ahsa Health Cluster, Ministry of Health, 36361, Hofuf, Al-Ahsa, Saudi Arabia
| | | | - Hanan Al Shaikh
- Infection Prevention and Control Department, Prince Saud Bin Jalawi Hospital, Ministry of Health, 36424, Al Mubarraz, Al-Ahsa, Saudi Arabia
| | - Mortadah Essa Alobaidan
- Pharmacy Department, King Faisal General Hospital, Ministry of Health, 36361, Hofuf, Al-Ahsa, Saudi Arabia
| | - Hadi Hassan Almusallam
- Pharmacy Department, King Faisal General Hospital, Ministry of Health, 36361, Hofuf, Al-Ahsa, Saudi Arabia
| | - Fatimah Mohammed Alhassan
- Pharmacy Department, King Faisal General Hospital, Ministry of Health, 36361, Hofuf, Al-Ahsa, Saudi Arabia
| | - Mohammed Abdulhadi Alamer
- Pharmacy Department, Prince Saud Bin Jalawi Hospital, Ministry of Health, 36424, Al Mubarraz, Al-Ahsa, Saudi Arabia
| | - Jawad Ali Al-Hajji
- Primary Care Medicine, Al-Ahsa Health Cluster, Ministry of Health, 24231, Hofuf, Al-Ahsa, Saudi Arabia
| | - Duaa Ali Al-Hajji
- Nursing Department, King Faisal General Hospital, Ministry of Health, 36361, Hofuf, Al-Ahsa, Saudi Arabia
| | - Anwar Ahmed Alkadi
- Nursing Department, Prince Saud Bin Jalawi Hospital, Ministry of Health, 36424, Al Mubarraz, Al-Ahsa, Saudi Arabia
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, 36342, Al Mubarraz, Al-Ahsa, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdul Rahman University, 11564, Riyadh, Saudi Arabia
- School of Nursing, University of Wollongong, Wollongong, NSW, 2522, Australia
- Nursing Department, Prince Sultan Military College of Health Sciences, 33048, Dhahran, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, 31311, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, 11533, Riyadh, Saudi Arabia
- Department of Public Health/Nutrition, The University of Haripur, Haripur, 22620, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
102
|
Engel JJ, van der Made CI, Keur N, Setiabudiawan T, Röring RJ, Damoraki G, Dijkstra H, Lemmers H, Ioannou S, Poulakou G, van der Meer JWM, Giamarellos-Bourboulis EJ, Kumar V, van de Veerdonk FL, Netea MG, Ziogas A. Dexamethasone attenuates interferon-related cytokine hyperresponsiveness in COVID-19 patients. Front Immunol 2023; 14:1233318. [PMID: 37614228 PMCID: PMC10442808 DOI: 10.3389/fimmu.2023.1233318] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023] Open
Abstract
Background Dexamethasone improves the survival of COVID-19 patients in need of supplemental oxygen therapy. Although its broad immunosuppressive effects are well-described, the immunological mechanisms modulated by dexamethasone in patients hospitalized with COVID-19 remain to be elucidated. Objective We combined functional immunological assays and an omics-based approach to investigate the in vitro and in vivo effects of dexamethasone in the plasma and peripheral blood mononuclear cells (PBMCs) of COVID-19 patients. Methods Hospitalized COVID-19 patients eligible for dexamethasone therapy were recruited from the general care ward between February and July, 2021. Whole blood transcriptomic and targeted plasma proteomic analyses were performed before and after starting dexamethasone treatment. PBMCs were isolated from healthy individuals and COVID-19 patients and stimulated with inactivated SARS-CoV-2 ex vivo in the presence or absence of dexamethasone and transcriptome and cytokine responses were assessed. Results Dexamethasone efficiently inhibited SARS-CoV-2-induced in vitro expression of chemokines and cytokines in PBMCs at the transcriptional and protein level. Dexamethasone treatment in COVID-19 patients resulted in down-regulation of genes related to type I and II interferon (IFN) signaling in whole blood immune cells. In addition, dexamethasone attenuated circulating concentrations of secreted interferon-stimulating gene 15 (ISG15) and pro-inflammatory cytokines and chemokines correlating with disease severity and lethal outcomes, such as tumor necrosis factor (TNF), interleukin-6 (IL-6), chemokine ligand 2 (CCL2), C-X-C motif ligand 8 (CXCL8), and C-X-C motif chemokine ligand 10 (CXCL10). In PBMCs from COVID-19 patients that were stimulated ex vivo with multiple pathogens or Toll-like receptor (TLR) ligands, dexamethasone efficiently inhibited cytokine responses. Conclusion We describe the anti-inflammatory impact of dexamethasone on the pathways contributing to cytokine hyperresponsiveness observed in severe manifestations of COVID-19, including type I/II IFN signaling. Dexamethasone could have adverse effects in COVID-19 patients with mild symptoms by inhibiting IFN responses in early stages of the disease, whereas it exhibits beneficial effects in patients with severe clinical phenotypes by efficiently diminishing cytokine hyperresponsiveness.
Collapse
Affiliation(s)
- Job J. Engel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Caspar I. van der Made
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nick Keur
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Todia Setiabudiawan
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rutger J. Röring
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Georgia Damoraki
- Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Helga Dijkstra
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Heidi Lemmers
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sofia Ioannou
- Department of Therapeutics, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Garyfallia Poulakou
- Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Jos W. M. van der Meer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Genetics, University Medical Center Groningen, Groningen, Netherlands
| | - Frank L. van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Athanasios Ziogas
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
103
|
Lin YS, Chang YC, Chao TL, Tsai YM, Jhuang SJ, Ho YH, Lai TY, Liu YL, Chen CY, Tsai CY, Hsueh YP, Chang SY, Chuang TH, Lee CY, Hsu LC. The Src-ZNRF1 axis controls TLR3 trafficking and interferon responses to limit lung barrier damage. J Exp Med 2023; 220:e20220727. [PMID: 37158982 PMCID: PMC10174191 DOI: 10.1084/jem.20220727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 01/23/2023] [Accepted: 03/02/2023] [Indexed: 05/10/2023] Open
Abstract
Type I interferons are important antiviral cytokines, but prolonged interferon production is detrimental to the host. The TLR3-driven immune response is crucial for mammalian antiviral immunity, and its intracellular localization determines induction of type I interferons; however, the mechanism terminating TLR3 signaling remains obscure. Here, we show that the E3 ubiquitin ligase ZNRF1 controls TLR3 sorting into multivesicular bodies/lysosomes to terminate signaling and type I interferon production. Mechanistically, c-Src kinase activated by TLR3 engagement phosphorylates ZNRF1 at tyrosine 103, which mediates K63-linked ubiquitination of TLR3 at lysine 813 and promotes TLR3 lysosomal trafficking and degradation. ZNRF1-deficient mice and cells are resistant to infection by encephalomyocarditis virus and SARS-CoV-2 because of enhanced type I interferon production. However, Znrf1-/- mice have exacerbated lung barrier damage triggered by antiviral immunity, leading to enhanced susceptibility to respiratory bacterial superinfections. Our study highlights the c-Src-ZNRF1 axis as a negative feedback mechanism controlling TLR3 trafficking and the termination of TLR3 signaling.
Collapse
Affiliation(s)
- You-Sheng Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Chi Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ya-Min Tsai
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Jhen Jhuang
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yu-Hsin Ho
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Yu Lai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ling Liu
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Chiung-Ya Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ching-Yen Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Chih-Yuan Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei City, Taiwan
| | - Li-Chung Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
104
|
Yang MY, Zheng MH, Meng XT, Ma LW, Liang HY, Fan HY. Role of toll-like receptors in the pathogenesis of COVID-19: Current and future perspectives. Scand J Immunol 2023; 98:e13275. [PMID: 38441378 DOI: 10.1111/sji.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 03/07/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic underlines a persistent threat of respiratory tract infectious diseases and warrants preparedness for a rapid response. At present, COVID-19 has had a serious social impact and imposed a heavy global burden on public health. The exact pathogenesis of COVID-19 has not been fully elucidated. Since the outbreak of COVID-19, a renewed attention has been brought to Toll-like receptors (TLRs). Available data and new findings have demonstrated that the interaction of human TLRs and SARS-CoV-2 is a vital mediator of COVID-19 immunopathogenesis. TLRs such as TLR2, 4, 7 and 8 are potentially important in viral combat and activation of immunity in patients with COVID-19. Therapeutics targeting TLRs are currently considered promising options against the pandemic. A number of TLR-targeting immunotherapeutics are now being investigated in preclinical studies and different phases of clinical trials. In addition, innovative vaccines based on TLRs under development could be a promising approach for building a new generation of vaccines to solve the current challenges. In this review, we summarize recent progress in the role of TLRs in COVID-19, focusing the new candidate drugs targeting TLRs, the current technology and potential paths forward for employing TLR agonists as vaccine adjuvants.
Collapse
Affiliation(s)
- Ming-Yan Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Mei-Hua Zheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Xiang-Ting Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Le-Wei Ma
- Ruikang Pharmaceutical Group Co. Ltd., Yantai, China
| | - Hai-Yue Liang
- Yantai Center for Food and Drug Control, Yantai, China
| | - Hua-Ying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
105
|
Philippot Q, Fekkar A, Gervais A, Le Voyer T, Boers LS, Conil C, Bizien L, de Brabander J, Duitman JW, Romano A, Rosain J, Blaize M, Migaud M, Jeljeli M, Hammadi B, Desmons A, Marchal A, Mayaux J, Zhang Q, Jouanguy E, Borie R, Crestani B, Luyt CE, Adle-Biassette H, Sene D, Megarbane B, Cobat A, Bastard P, Bos LDJ, Casanova JL, Puel A. Autoantibodies Neutralizing Type I IFNs in the Bronchoalveolar Lavage of at Least 10% of Patients During Life-Threatening COVID-19 Pneumonia. J Clin Immunol 2023; 43:1093-1103. [PMID: 37209324 PMCID: PMC10199445 DOI: 10.1007/s10875-023-01512-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/03/2023] [Indexed: 05/22/2023]
Abstract
Autoantibodies (auto-Abs) neutralizing type I interferons (IFNs) are found in the blood of at least 15% of unvaccinated patients with life-threatening COVID-19 pneumonia. We report here the presence of auto-Abs neutralizing type I IFNs in the bronchoalveolar lavage (BAL) of 54 of the 415 unvaccinated patients (13%) with life-threatening COVID-19 pneumonia tested. The 54 individuals with neutralizing auto-Abs in the BAL included 45 (11%) with auto-Abs against IFN-α2, 37 (9%) with auto-Abs against IFN-ω, 54 (13%) with auto-Abs against IFN-α2 and/or ω, and five (1%) with auto-Abs against IFN-β, including three (0.7%) with auto-Abs neutralizing IFN-α2, IFN-ω, and IFN-β, and two (0.5%) with auto-Abs neutralizing IFN-α2 and IFN-β. Auto-Abs against IFN-α2 also neutralize the other 12 subtypes of IFN-α. Paired plasma samples were available for 95 patients. All seven patients with paired samples who had detectable auto-Abs in BAL also had detectable auto-Abs in plasma, and one patient had auto-Abs detectable only in blood. Auto-Abs neutralizing type I IFNs are, therefore, present in the alveolar space of at least 10% of patients with life-threatening COVID-19 pneumonia. These findings suggest that these auto-Abs impair type I IFN immunity in the lower respiratory tract, thereby contributing to hypoxemic COVID-19 pneumonia.
Collapse
Affiliation(s)
- Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France.
- Imagine Institute, Université Paris Cité, Paris, EU, France.
| | - Arnaud Fekkar
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
- AP-HP, Groupe Hospitalier La Pitié-Salpêtrière, Service de Parasitologie Mycologie, Paris, EU, France
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
| | - Leonoor S Boers
- Amsterdam UMC, University of Amsterdam, Intensive Care Medicine, Meibergdreef 9, Amsterdam, EU, The Netherlands
| | - Clément Conil
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
| | - Justin de Brabander
- Center for Experimental Molecular Medicine, Amsterdam UMC, Amsterdam, EU, Netherlands
| | - Jan Willem Duitman
- Amsterdam UMC, Location AMC, Department of Pulmonary Medicine, University of Amsterdam, 1105 AZ, Amsterdam, EU, The Netherlands
- Amsterdam UMC, Department of Experimental Immunology, Location University of Amsterdam, 1105 AZ, Amsterdam, EU, The Netherlands
- Amsterdam Infection & Immunity, Inflammatory Diseases, 1105 AZ, Amsterdam, EU, The Netherlands
| | - Alessia Romano
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
| | - Marion Blaize
- AP-HP, Groupe Hospitalier La Pitié-Salpêtrière, Service de Parasitologie Mycologie, Paris, EU, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
| | - Maxime Jeljeli
- Département 3I « Infection, Immunité Et Inflammation », Institut Cochin, INSERM U1016, Université Paris Cité, Paris, EU, France
- Faculté de Médecine, AP-HP-Centre Université de Paris, Hôpital Cochin, Service d'Immunologie Biologique, Université Paris Cité, Paris, EU, France
| | - Boualem Hammadi
- General Chemistry Laboratory, Department of Clinical Chemistry, APHP, Necker Hospital for Sick Children, Paris, EU, France
| | - Aurore Desmons
- Clinical Metabolomic Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Saint Antoine Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP Sorbonne Université), Paris, France
| | - Astrid Marchal
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
| | - Julien Mayaux
- INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, EU, France
- Site Pitié-Salpêtrière, Service de Pneumologie, Médecine Intensive et Réanimation, Département R3S, Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, EU, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Raphael Borie
- Service de Pneumologie A Hôpital Bichat, APHP, Paris, EU, France
- Inserm, PHERE, Université Paris Cité, 75018, Paris, EU, France
| | - Bruno Crestani
- Service de Pneumologie A Hôpital Bichat, APHP, Paris, EU, France
- Inserm, PHERE, Université Paris Cité, 75018, Paris, EU, France
| | - Charles Edouard Luyt
- Service de Médecine Intensive Réanimation, Institut de Cardiologie, AP-HP, Hôpital Pitié-Salpêtrière, Paris, EU, France
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, Paris, EU, France
| | - Homa Adle-Biassette
- AP-HP, Hôpital Lariboisière, Service Anatomie Pathologique and Université de Paris, Paris, EU, France
- Inserm, NeuroDiderot, Paris, EU, France
| | - Damien Sene
- Internal Medicine Department, AP-HP, Lariboisière Hospital, Paris, EU, France
- Université Paris Cité, Paris, EU, France
| | - Bruno Megarbane
- Department of Medical and Toxicological Critical Care, APHP, Lariboisière Hospital, Paris, EU, France
- INSERM UMRS-1144, Paris-University, Paris, EU, France
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Lieuwe D J Bos
- Amsterdam UMC, University of Amsterdam, Intensive Care Medicine, Meibergdreef 9, Amsterdam, EU, The Netherlands
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, EU, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| |
Collapse
|
106
|
Rotulo GA, Palma P. Understanding COVID-19 in children: immune determinants and post-infection conditions. Pediatr Res 2023; 94:434-442. [PMID: 36879079 PMCID: PMC9987407 DOI: 10.1038/s41390-023-02549-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023]
Abstract
Coronavirus disease 2019 in children presents with milder clinical manifestations than in adults. On the other hand, the presence of a wide range of inflammatory manifestations, including multisystem inflammatory syndrome in children (MIS-C), in the period after infection suggests a particular susceptibility of some children toward severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Both protective factors that prevent evolution to severe forms and risk factors for post-infectious conditions are likely to be found in age-related differences in the immune system. The prompt innate response with type I IFN production and the generation of neutralizing antibodies play a crucial role in containing the infection. The greater number of naive and regulatory cells in children helps to avoid the cytokine storm while the causes of the intense inflammatory response in MIS-C need to be elucidated. This review aims to analyze the main results of the recent literature assessing immune response to SARS-CoV-2 over the pediatric age group. We summarized such observations by dividing them into innate and acquired immunity, then reporting how altered immune responses can determine post-infectious conditions. IMPACT: The main immune markers of acute SARS-CoV-2 infection in children are summarized in this review. This paper reports a broad overview of age-related differences in the immune response to SARS-CoV-2 and emerging post-infection conditions. A summary of currently available therapies for the pediatric age group is provided.
Collapse
Affiliation(s)
- Gioacchino Andrea Rotulo
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy.
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", 00185, Rome, Italy.
| |
Collapse
|
107
|
Samuel CE. Interferon at the crossroads of SARS-CoV-2 infection and COVID-19 disease. J Biol Chem 2023; 299:104960. [PMID: 37364688 PMCID: PMC10290182 DOI: 10.1016/j.jbc.2023.104960] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
A novel coronavirus now known as SARS-CoV-2 emerged in late 2019, possibly following a zoonotic crossover from a coronavirus present in bats. This virus was identified as the pathogen responsible for the severe respiratory disease, coronavirus disease-19 (COVID-19), which as of May 2023, has killed an estimated 6.9 million people globally according to the World Health Organization. The interferon (IFN) response, a cornerstone of antiviral innate immunity, plays a key role in determining the outcome of infection by SARS-CoV-2. This review considers evidence that SARS-CoV-2 infection leads to IFN production; that virus replication is sensitive to IFN antiviral action; molecular mechanisms by which the SARS-CoV-2 virus antagonizes IFN action; and how genetic variability of SARS-CoV-2 and the human host affects the IFN response at the level of IFN production or action or both. Taken together, the current understanding suggests that deficiency of an effective IFN response is an important determinant underlying some cases of critical COVID-19 disease and that IFNλ and IFNα/β have potential as therapeutics for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA.
| |
Collapse
|
108
|
Pan-Hammarström Q, Casanova JL. Human genetic and immunological determinants of SARS-CoV-2 and Epstein-Barr virus diseases in childhood: Insightful contrasts. J Intern Med 2023; 294:127-144. [PMID: 36906905 DOI: 10.1111/joim.13628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
There is growing evidence to suggest that severe disease in children infected with common viruses that are typically benign in other children can result from inborn errors of immunity or their phenocopies. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a cytolytic respiratory RNA virus, can lead to acute hypoxemic COVID-19 pneumonia in children with inborn errors of type I interferon (IFN) immunity or autoantibodies against IFNs. These patients do not appear to be prone to severe disease during infection with Epstein-Barr virus (EBV), a leukocyte-tropic DNA virus that can establish latency. By contrast, various forms of severe EBV disease, ranging from acute hemophagocytosis to chronic or long-term illnesses, such as agammaglobulinemia and lymphoma, can manifest in children with inborn errors disrupting specific molecular bridges involved in the control of EBV-infected B cells by cytotoxic T cells. The patients with these disorders do not seem to be prone to severe COVID-19 pneumonia. These experiments of nature reveal surprising levels of redundancy of two different arms of immunity, with type I IFN being essential for host defense against SARS-CoV-2 in respiratory epithelial cells, and certain surface molecules on cytotoxic T cells essential for host defense against EBV in B lymphocytes.
Collapse
Affiliation(s)
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Inserm, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
109
|
Reis BCSD, Soares Faccion R, de Carvalho FAA, Moore DCBC, Zuma MCC, Plaça DR, Salerno Filgueiras I, Leandro Mathias Fonseca D, Cabral-Marques O, Bonomo AC, Savino W, Freitas FCDP, Faoro H, Passetti F, Robaina JR, de Oliveira FRC, Novaes Bellinat AP, Zeitel RDS, Salú MDS, de Oliveira MBG, Rodrigues-Santos G, Prata-Barbosa A, de Vasconcelos ZFM. Rare genetic variants involved in multisystem inflammatory syndrome in children: a multicenter Brazilian cohort study. Front Cell Infect Microbiol 2023; 13:1182257. [PMID: 37588055 PMCID: PMC10426286 DOI: 10.3389/fcimb.2023.1182257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/23/2023] [Indexed: 08/18/2023] Open
Abstract
Introduction Despite the existing data on the Multisystem Inflammatory Syndrome in Children (MIS-C), the factors that determine these patients evolution remain elusive. Answers may lie, at least in part, in genetics. It is currently under investigation that MIS-C patients may have an underlying innate error of immunity (IEI), whether of monogenic, digenic, or even oligogenic origin. Methods To further investigate this hypothesis, 30 patients with MIS-C were submitted to whole exome sequencing. Results Analyses of genes associated with MIS-C, MIS-A, severe covid-19, and Kawasaki disease identified twenty-nine patients with rare potentially damaging variants (50 variants were identified in 38 different genes), including those previously described in IFNA21 and IFIH1 genes, new variants in genes previously described in MIS-C patients (KMT2D, CFB, and PRF1), and variants in genes newly associated to MIS-C such as APOL1, TNFRSF13B, and G6PD. In addition, gene ontology enrichment pointed to the involvement of thirteen major pathways, including complement system, hematopoiesis, immune system development, and type II interferon signaling, that were not yet reported in MIS-C. Discussion These data strongly indicate that different gene families may favor MIS- C development. Larger cohort studies with healthy controls and other omics approaches, such as proteomics and RNAseq, will be precious to better understanding the disease dynamics.
Collapse
Affiliation(s)
- Bárbara Carvalho Santos Dos Reis
- Programa de Pós Graduação em Pesquisa Aplicada à Saúde da Criança e da Mulher, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira (IFF), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Laboratório de Alta Complexidade (LACIFF), Unidade de Pesquisa Clínica, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Departamento de Imunologia, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Roberta Soares Faccion
- Programa de Pós Graduação em Pesquisa Aplicada à Saúde da Criança e da Mulher, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira (IFF), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Laboratório de Alta Complexidade (LACIFF), Unidade de Pesquisa Clínica, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Flavia Amendola Anisio de Carvalho
- Programa de Pós Graduação em Pesquisa Aplicada à Saúde da Criança e da Mulher, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira (IFF), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Departamento de Imunologia, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Daniella Campelo Batalha Cox Moore
- Unidade de Pacientes Graves, Departamento de Pediatria, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Faculdade de Medicina, Universidade Federal Fluminense, Niterói, Rio de Janeiro, RJ, Brazil
| | - Maria Celia Chaves Zuma
- Programa de Pós Graduação em Pesquisa Aplicada à Saúde da Criança e da Mulher, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira (IFF), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Laboratório de Alta Complexidade (LACIFF), Unidade de Pesquisa Clínica, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Desirée Rodrigues Plaça
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas (FCF), Universidade de São Paulo (USP), São Paulo, SP, Brazil
- Programa de Pós-Graduação em Farmácia (Fisiopatologia e Toxicologia), FCF, USP, São Paulo, SP, Brazil
| | - Igor Salerno Filgueiras
- Departamento de Imunologia, Instituto de Ciências Biomédicas (ICB), USP, São Paulo, SP, Brazil
| | - Dennyson Leandro Mathias Fonseca
- Programa Interunidades de Pós-graduação em Bioinformática, Instituto de Matemática e Estatística (IME), USP, São Paulo, SP, Brazil
| | - Otavio Cabral-Marques
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas (FCF), Universidade de São Paulo (USP), São Paulo, SP, Brazil
- Departamento de Imunologia, Instituto de Ciências Biomédicas (ICB), USP, São Paulo, SP, Brazil
- Programa Interunidades de Pós-graduação em Bioinformática, Instituto de Matemática e Estatística (IME), USP, São Paulo, SP, Brazil
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, SP, Brazil
- Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Adriana Cesar Bonomo
- Laboratoírio de Pesquisas Sobre o Timo, Instituto Oswaldo Cruz (IOC), FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Instituto National de Ciencia e Tecnologia em Neuroimunomodulação (INCT/NIM), IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Rede FAPERJ de Pesquisa em Neuroinflamação, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Rede INOVA-IOC em Neuroimunomodulação, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Wilson Savino
- Laboratoírio de Pesquisas Sobre o Timo, Instituto Oswaldo Cruz (IOC), FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Instituto National de Ciencia e Tecnologia em Neuroimunomodulação (INCT/NIM), IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Rede FAPERJ de Pesquisa em Neuroinflamação, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Rede INOVA-IOC em Neuroimunomodulação, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | - Helisson Faoro
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas (ICC), FIOCRUZ, Curitiba, PR, Brazil
| | - Fabio Passetti
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas (ICC), FIOCRUZ, Curitiba, PR, Brazil
| | | | | | | | - Raquel de Seixas Zeitel
- Pediatric Intensive Care Unit, Hospital Universitário Pedro Ernesto (HUPE), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Margarida dos Santos Salú
- Programa de Pós Graduação em Pesquisa Aplicada à Saúde da Criança e da Mulher, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira (IFF), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Laboratório de Alta Complexidade (LACIFF), Unidade de Pesquisa Clínica, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Pediatric Intensive Care Unit, Hospital Martagão Gesteira, Salvador, BA, Brazil
| | | | | | - Arnaldo Prata-Barbosa
- Instituto D’Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, Brazil
- Pediatric Intensive Care Unit, Instituto de Puericultura e Pediatria Martagão Gesteira (IPPMG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | |
Collapse
|
110
|
Wilson GN. A Clinical Qualification Protocol Highlights Overlapping Genomic Influences and Neuro-Autonomic Mechanisms in Ehlers-Danlos and Long COVID-19 Syndromes. Curr Issues Mol Biol 2023; 45:6003-6023. [PMID: 37504295 PMCID: PMC10378515 DOI: 10.3390/cimb45070379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
A substantial fraction of the 15% with double-jointedness or hypermobility have the traditionally ascertained joint-skeletal, cutaneous, and cardiovascular symptoms of connective tissue dysplasia and its particular manifestation as Ehlers-Danlos syndrome (EDS). The holistic ascertainment of 120 findings in 1261 EDS patients added neuro-autonomic symptoms like headaches, muscle weakness, brain fog, chronic fatigue, dyspnea, and bowel irregularity to those of arthralgia and skin laxity, 15 of these symptoms shared with those of post-infectious SARS-CoV-2 (long COVID-19). Underlying articulo-autonomic mechanisms guided a clinical qualification protocol that qualified DNA variants in 317 genes as having diagnostic utility for EDS, six of them identical (F2-LIFR-NLRP3-STAT1-T1CAM1-TNFRSF13B) and eighteen similar to those modifying COVID-19 severity/EDS, including ADAMTS13/ADAMTS2-C3/C1R-IKBKG/IKBKAP-PIK3C3/PIK3R1-POLD4/POLG-TMPRSS2/TMPRSS6-WNT3/WNT10A. Also, contributing to EDS and COVID-19 severity were forty and three genes, respectively, impacting mitochondrial functions as well as parts of an overlapping gene network, or entome, that are hypothesized to mediate the cognitive-behavioral, neuro-autonomic, and immune-inflammatory alterations of connective tissue in these conditions. The further characterization of long COVID-19 natural history and genetic predisposition will be necessary before these parallels to EDS can be carefully delineated and translated into therapies.
Collapse
Affiliation(s)
- Golder N Wilson
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, and KinderGenome Genetics Private Practice, 5347 W Mockingbird, Dallas, TX 75209, USA
| |
Collapse
|
111
|
Giri T, Panda S, Palanisamy A. Pregnancy-induced differential expression of SARS-CoV-2 and influenza a viral entry factors in the lower respiratory tract. PLoS One 2023; 18:e0281033. [PMID: 37437040 DOI: 10.1371/journal.pone.0281033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Despite differences in the clinical presentation of coronavirus disease-19 and pandemic influenza in pregnancy, fundamental mechanistic insights are currently lacking because of the difficulty in recruiting critically ill pregnant subjects for research studies. Therefore, to better understand host-pathogen interaction during pregnancy, we performed a series of foundational experiments in pregnant rats at term gestation to assess the expression of host entry factors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) and genes associated with innate immune response in the lower respiratory tract. We report that pregnancy is characterized by a decrease in host factors mediating SARS-CoV-2 entry and an increase in host factors mediating IAV entry. Furthermore, using flow cytometric assessment of immune cell populations and immune provocation studies, we show an increased prevalence of plasmacytoid dendritic cells and a Type I interferon-biased environment in the lower respiratory tract of pregnancy, contrary to the expected immunological indolence. Our findings, therefore, suggest that the dissimilar clinical presentation of COVID-19 and pandemic influenza A in pregnancy could partly be due to differences in the extent of innate immune activation from altered viral tropism and indicate the need for comparative mechanistic investigations with live virus studies.
Collapse
Affiliation(s)
- Tusar Giri
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Santosh Panda
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Arvind Palanisamy
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States of America
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States of America
| |
Collapse
|
112
|
Savan R, Gale M. Innate immunity and interferon in SARS-CoV-2 infection outcome. Immunity 2023; 56:1443-1450. [PMID: 37437537 PMCID: PMC10361255 DOI: 10.1016/j.immuni.2023.06.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/14/2023]
Abstract
Innate immunity and the actions of type I and III interferons (IFNs) are essential for protection from SARS-CoV-2 and COVID-19. Each is induced in response to infection and serves to restrict viral replication and spread while directing the polarization and modulation of the adaptive immune response. Owing to the distribution of their specific receptors, type I and III IFNs, respectively, impart systemic and local actions. Therapeutic IFN has been administered to combat COVID-19 but with differential outcomes when given early or late in infection. In this perspective, we sort out the role of innate immunity and complex actions of IFNs in the context of SARS-CoV-2 infection and COVID-19. We conclude that IFNs are a beneficial component of innate immunity that has mediated natural clearance of infection in over 700 million people. Therapeutic induction of innate immunity and use of IFN should be featured in strategies to treat acute SARS-CoV-2 infection in people at risk for severe COVID-19.
Collapse
Affiliation(s)
- Ram Savan
- Department of Immunology and Center for Innate Immunity and Immune Disease, University of Washington, 750 Republican St., Seattle, WA 98109, USA
| | - Michael Gale
- Department of Immunology and Center for Innate Immunity and Immune Disease, University of Washington, 750 Republican St., Seattle, WA 98109, USA.
| |
Collapse
|
113
|
García-Nicolás O, Godel A, Zimmer G, Summerfield A. Macrophage phagocytosis of SARS-CoV-2-infected cells mediates potent plasmacytoid dendritic cell activation. Cell Mol Immunol 2023; 20:835-849. [PMID: 37253946 PMCID: PMC10227409 DOI: 10.1038/s41423-023-01039-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/06/2023] [Indexed: 06/01/2023] Open
Abstract
Early and strong interferon type I (IFN-I) responses are usually associated with mild COVID-19 disease, whereas persistent or unregulated proinflammatory cytokine responses are associated with severe disease outcomes. Previous work suggested that monocyte-derived macrophages (MDMs) are resistant and unresponsive to SARS-CoV-2 infection. Here, we demonstrate that upon phagocytosis of SARS-CoV-2-infected cells, MDMs are activated and secrete IL-6 and TNF. Importantly, activated MDMs in turn mediate strong activation of plasmacytoid dendritic cells (pDCs), leading to the secretion of high levels of IFN-α and TNF. Furthermore, pDC activation promoted IL-6 production by MDMs. This kind of pDC activation was dependent on direct integrin-mediated cell‒cell contacts and involved stimulation of the TLR7 and STING signaling pathways. Overall, the present study describes a novel and potent pathway of pDC activation that is linked to the macrophage-mediated clearance of infected cells. These findings suggest that a high infection rate by SARS-CoV-2 may lead to exaggerated cytokine responses, which may contribute to tissue damage and severe disease.
Collapse
Affiliation(s)
- O García-Nicolás
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland.
| | - A Godel
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - G Zimmer
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - A Summerfield
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
114
|
Nigro O, Oltolini C, Barzaghi F, Uberti Foppa C, Cicalese MP, Massimino M, Schiavello E. Pediatric cancer care management during the COVID-19 pandemic: a review of the literature and a single-centre real-life experience of an Italian pediatric oncology unit. Expert Rev Anticancer Ther 2023; 23:927-942. [PMID: 37712347 DOI: 10.1080/14737140.2023.2245148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/02/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION The severe acute respiratory syndrome coronavirus-2 pandemic significantly affected clinical practice, also in pediatric oncology units. Cancer patients needed to be treated with an adequate dose density despite the SARS-CoV-2 infection, balancing risks of developing severe COVID-19 disease. AREAS COVERED Although the pandemic spread worldwide, the prevalence of affected children was low. The percentage of children with severe illness was approximately 1-6%. Pediatric cancer patients represent a prototype of a previously healthy immune system that is hampered by the tumor itself and treatments, such as chemotherapy and steroids. Through a review of the literature, we reported the immunological basis of the response to SARS-CoV-2 infection, the existing antiviral treatments used in pediatric cancer patients, and the importance of vaccination. In conclusion, we reported the real-life experience of our pediatric oncology unit during the pandemic period. EXPERT OPINION Starting from the data available in literature, and our experience, showing the rarity of severe COVID-19 disease in pediatric patients with solid tumors, we recommend carefully tailoring all the oncological treatments (chemotherapy/targeted therapy/stem cell transplantation/radiotherapy). The aim is the preservation of the treatment's timing, balanced with an evaluation of possible severe COVID-19 disease.
Collapse
Affiliation(s)
- Olga Nigro
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Oltolini
- Unit of Infectious and Tropical Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Barzaghi
- Pediatric Immunohematology and Bone Marrow Transplantation Unit and San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milan, Italy
| | - Caterina Uberti Foppa
- Unit of Infectious and Tropical Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Cicalese
- Pediatric Immunohematology and Bone Marrow Transplantation Unit and San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maura Massimino
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | |
Collapse
|
115
|
Candel FJ, Barreiro P, Salavert M, Cabello A, Fernández-Ruiz M, Pérez-Segura P, San Román J, Berenguer J, Córdoba R, Delgado R, España PP, Gómez-Centurión IA, González Del Castillo JM, Heili SB, Martínez-Peromingo FJ, Menéndez R, Moreno S, Pablos JL, Pasquau J, Piñana JL, On Behalf Of The Modus Investigators Adenda. Expert Consensus: Main Risk Factors for Poor Prognosis in COVID-19 and the Implications for Targeted Measures against SARS-CoV-2. Viruses 2023; 15:1449. [PMID: 37515137 PMCID: PMC10383267 DOI: 10.3390/v15071449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
The clinical evolution of patients infected with the Severe Acute Respiratory Coronavirus type 2 (SARS-CoV-2) depends on the complex interplay between viral and host factors. The evolution to less aggressive but better-transmitted viral variants, and the presence of immune memory responses in a growing number of vaccinated and/or virus-exposed individuals, has caused the pandemic to slowly wane in virulence. However, there are still patients with risk factors or comorbidities that put them at risk of poor outcomes in the event of having the coronavirus infectious disease 2019 (COVID-19). Among the different treatment options for patients with COVID-19, virus-targeted measures include antiviral drugs or monoclonal antibodies that may be provided in the early days of infection. The present expert consensus is based on a review of all the literature published between 1 July 2021 and 15 February 2022 that was carried out to establish the characteristics of patients, in terms of presence of risk factors or comorbidities, that may make them candidates for receiving any of the virus-targeted measures available in order to prevent a fatal outcome, such as severe disease or death. A total of 119 studies were included from the review of the literature and 159 were from the additional independent review carried out by the panelists a posteriori. Conditions found related to strong recommendation of the use of virus-targeted measures in the first days of COVID-19 were age above 80 years, or above 65 years with another risk factor; antineoplastic chemotherapy or active malignancy; HIV infection with CD4+ cell counts < 200/mm3; and treatment with anti-CD20 immunosuppressive drugs. There is also a strong recommendation against using the studied interventions in HIV-infected patients with a CD4+ nadir <200/mm3 or treatment with other immunosuppressants. Indications of therapies against SARS-CoV-2, regardless of vaccination status or history of infection, may still exist for some populations, even after COVID-19 has been declared to no longer be a global health emergency by the WHO.
Collapse
Affiliation(s)
- Francisco Javier Candel
- Clinical Microbiology & Infectious Diseases, Transplant Coordination, Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain
| | - Pablo Barreiro
- Regional Public Health Laboratory, Infectious Diseases, Internal Medicine, Hospital General Universitario La Paz, 28055 Madrid, Spain
- Department of Medical Specialities and Public Health, Universidad Rey Juan Carlos, 28922 Madrid, Spain
| | - Miguel Salavert
- Infectious Diseases, Internal Medicine, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Alfonso Cabello
- Internal Medicine, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28041 Madrid, Spain
| | - Pedro Pérez-Segura
- Medical Oncology, Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain
| | - Jesús San Román
- Department of Medical Specialities and Public Health, Universidad Rey Juan Carlos, 28922 Madrid, Spain
| | - Juan Berenguer
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28007 Madrid, Spain
| | - Raúl Córdoba
- Haematology and Haemotherapy, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Rafael Delgado
- Clinical Microbiology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), 28041 Madrid, Spain
| | - Pedro Pablo España
- Pneumology, Hospital Universitario de Galdakao-Usansolo, 48960 Vizcaya, Spain
| | | | | | - Sarah Béatrice Heili
- Intermediate Respiratory Care Unit, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Francisco Javier Martínez-Peromingo
- Department of Medical Specialities and Public Health, Universidad Rey Juan Carlos, 28922 Madrid, Spain
- Geriatrics, Hospital Universitario Rey Juan Carlos, 28933 Madrid, Spain
| | - Rosario Menéndez
- Pneumology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Santiago Moreno
- Infectious Diseases, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - José Luís Pablos
- Rheumatology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), 28041 Madrid, Spain
| | - Juan Pasquau
- Infectious Diseases, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - José Luis Piñana
- Haematology and Haemotherapy, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | | |
Collapse
|
116
|
Kolb AW, Ferguson SA, Larsen IV, Brandt CR. Disease parameters following ocular herpes simplex virus type 1 infection are similar in male and female BALB/C mice. PLoS One 2023; 18:e0287194. [PMID: 37319284 PMCID: PMC10270577 DOI: 10.1371/journal.pone.0287194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Sex related differences in the incidence or severity of infection have been described for multiple viruses. With herpes simplex viruses, the best example is HSV-2 genital infection where women have a higher incidence of infection and can have more severe infections than men. HSV-1 causes several types of infections including skin and mucosal ulcers, keratitis, and encephalitis in humans that do not appear to have a strong biological sex component. Given that mouse strains differ in their MHC loci it is important to determine if sex differences occur in multiple strains of mice. Our goal was to answer two questions: Are virus related sex differences present in BALB/C mice and does virulence of the viral strain have an effect? We generated a panel of recombinant HSV-1 viruses with differing virulence phenotypes and characterized multiple clinical correlates of ocular infection in BALB/c mice. We found no sex-specific differences in blepharitis, corneal clouding, neurovirulence, and viral titers in eye washes. Sex differences in neovascularization, weight loss and eyewash titers were observed for some recombinants, but these were not consistent across the phenotypes tested for any recombinant virus. Considering these findings, we conclude that there are no significant sex specific ocular pathologies in the parameters measured, regardless of the virulence phenotype following ocular infection in BALB/c mice, suggesting that the use of both sexes is not necessary for the bulk of ocular infection studies.
Collapse
Affiliation(s)
- Aaron W. Kolb
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
| | - Sarah A. Ferguson
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
| | - Inna V. Larsen
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
| | - Curtis R. Brandt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States of America
| |
Collapse
|
117
|
Rapnouil BL, Zaarour Y, Arrestier R, Bastard P, Peiffer B, Moncomble E, Parfait M, Bellaïche R, Casanova JL, Mekontso-Dessap A, Mule S, de Prost N. Chest computed tomography characteristics of critically ill COVID-19 patients with auto-antibodies against type I interferons. RESEARCH SQUARE 2023:rs.3.rs-3029654. [PMID: 37398352 PMCID: PMC10312938 DOI: 10.21203/rs.3.rs-3029654/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Purpose patients with auto-antibodies neutralizing type I interferons (anti-IFN auto-Abs) are at risk of severe forms of coronavirus disease 19 (COVID-19). The chest computed tomography (CT) scan characteristics of critically ill COVID-19 patients harboring these auto-Abs have never been reported. Methods Bicentric ancillary study of the ANTICOV study (observational prospective cohort of severe COVID-19 patients admitted to the intensive care unit (ICU) for hypoxemic acute respiratory failure) on chest CT scan characteristics (severity score, parenchymal, pleural, vascular patterns). Anti-IFN auto-Abs were detected using a luciferase neutralization reporting assay. Imaging data were collected through independent blinded reading of two thoracic radiologists of chest CT studies performed at ICU admission (±72h). The primary outcome measure was the evaluation of severity by the total severity score (TSS) and the CT severity score (CTSS) according to the presence or absence of anti-IFN auto-Abs. Results 231 critically ill COVID-19 patients were included in the study (mean age 59.5±12.7 years; males 74.6%). Day 90 mortality was 29.5% (n=72/244). There was a trend towards more severe radiological lesions in patients with auto-IFN anti-Abs than in others, not reaching statistical significance (median CTSS 27.5 (21.0-34.8] versus 24.0 (19.0-30.0), p=0.052; median TSS 14.5 (10.2-17.0) versus 12.0 (9.0-15.0), p=0.070). The extra-parenchymal evaluation found no difference in the proportion of patients with pleural effusion, mediastinal lymphadenopathy or thymal abnormalities in the two populations. The prevalence of pulmonary embolism was not significantly different between groups (8.7% versus 5.3%, p=0.623, n=175). Conclusion There was no significant difference in disease severity as evaluated by chest CT in severe COVID-19 patients admitted to the ICU for hypoxemic acute respiratory failure with or without anti-IFN auto-Abs.
Collapse
|
118
|
Bellucci G, Albanese A, Rizzi C, Rinaldi V, Salvetti M, Ristori G. The value of Interferon β in multiple sclerosis and novel opportunities for its anti-viral activity: a narrative literature review. Front Immunol 2023; 14:1161849. [PMID: 37334371 PMCID: PMC10275407 DOI: 10.3389/fimmu.2023.1161849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023] Open
Abstract
Interferon-beta (IFN-β) for Multiple Sclerosis (MS) is turning 30. The COVID-19 pandemic rejuvenated the interest in interferon biology in health and disease, opening translational opportunities beyond neuroinflammation. The antiviral properties of this molecule are in accord with the hypothesis of a viral etiology of MS, for which a credible culprit has been identified in the Epstein-Barr Virus. Likely, IFNs are crucial in the acute phase of SARS-CoV-2 infection, as demonstrated by inherited and acquired impairments of the interferon response that predispose to a severe COVID-19 course. Accordingly, IFN-β exerted protection against SARS-CoV-2 in people with MS (pwMS). In this viewpoint, we summarize the evidence on IFN-β mechanisms of action in MS with a focus on its antiviral properties, especially against EBV. We synopsize the role of IFNs in COVID-19 and the opportunities and challenges of IFN-β usage for this condition. Finally, we leverage the lessons learned in the pandemic to suggest a role of IFN-β in long-COVID-19 and in special MS subpopulations.
Collapse
Affiliation(s)
- Gianmarco Bellucci
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy
| | - Angela Albanese
- Merck Serono S.p.A., An Affiliate of Merck KGaA, Rome, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Caterina Rizzi
- Merck Serono S.p.A., An Affiliate of Merck KGaA, Rome, Italy
| | - Virginia Rinaldi
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy
| | - Marco Salvetti
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Giovanni Ristori
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy
- Neuroimmunology Unit, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
119
|
Suarez-Pajes E, Tosco-Herrera E, Ramirez-Falcon M, Gonzalez-Barbuzano S, Hernandez-Beeftink T, Guillen-Guio B, Villar J, Flores C. Genetic Determinants of the Acute Respiratory Distress Syndrome. J Clin Med 2023; 12:3713. [PMID: 37297908 PMCID: PMC10253474 DOI: 10.3390/jcm12113713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung condition that arises from multiple causes, including sepsis, pneumonia, trauma, and severe coronavirus disease 2019 (COVID-19). Given the heterogeneity of causes and the lack of specific therapeutic options, it is crucial to understand the genetic and molecular mechanisms that underlie this condition. The identification of genetic risks and pharmacogenetic loci, which are involved in determining drug responses, could help enhance early patient diagnosis, assist in risk stratification of patients, and reveal novel targets for pharmacological interventions, including possibilities for drug repositioning. Here, we highlight the basis and importance of the most common genetic approaches to understanding the pathogenesis of ARDS and its critical triggers. We summarize the findings of screening common genetic variation via genome-wide association studies and analyses based on other approaches, such as polygenic risk scores, multi-trait analyses, or Mendelian randomization studies. We also provide an overview of results from rare genetic variation studies using Next-Generation Sequencing techniques and their links with inborn errors of immunity. Lastly, we discuss the genetic overlap between severe COVID-19 and ARDS by other causes.
Collapse
Affiliation(s)
- Eva Suarez-Pajes
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Eva Tosco-Herrera
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Melody Ramirez-Falcon
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Silvia Gonzalez-Barbuzano
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Tamara Hernandez-Beeftink
- Department of Population Health Sciences, University of Leicester, Leicester LE1 7RH, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE1 7RH, UK
| | - Beatriz Guillen-Guio
- Department of Population Health Sciences, University of Leicester, Leicester LE1 7RH, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE1 7RH, UK
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
- Faculty of Health Sciences, University of Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
120
|
Vinuesa CG, Grenov A, Kassiotis G. Innate virus-sensing pathways in B cell systemic autoimmunity. Science 2023; 380:478-484. [PMID: 37141353 DOI: 10.1126/science.adg6427] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although all multicellular organisms have germ line-encoded innate receptors to sense pathogen-associated molecular patterns, vertebrates also evolved adaptive immunity based on somatically generated antigen receptors on B and T cells. Because randomly generated antigen receptors may also react with self-antigens, tolerance checkpoints operate to limit but not completely prevent autoimmunity. These two systems are intricately linked, with innate immunity playing an instrumental role in the induction of adaptive antiviral immunity. In this work, we review how inborn errors of innate immunity can instigate B cell autoimmunity. Increased nucleic acid sensing, often resulting from defects in metabolizing pathways or retroelement control, can break B cell tolerance and converge into TLR7-, cGAS-STING-, or MAVS-dominant signaling pathways. The resulting syndromes span a spectrum that ranges from chilblain and systemic lupus to severe interferonopathies.
Collapse
Affiliation(s)
- Carola G Vinuesa
- The Francis Crick Institute, London, UK
- China Centre for Personalised Immunology, Renji Hospital, Shanghai, China
| | | | - George Kassiotis
- The Francis Crick Institute, London, UK
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
121
|
García-García A, Pérez de Diego R, Flores C, Rinchai D, Solé-Violán J, Deyà-Martínez À, García-Solis B, Lorenzo-Salazar JM, Hernández-Brito E, Lanz AL, Moens L, Bucciol G, Almuqamam M, Domachowske JB, Colino E, Santos-Perez JL, Marco FM, Pignata C, Bousfiha A, Turvey SE, Bauer S, Haerynck F, Ocejo-Vinyals JG, Lendinez F, Prader S, Naumann-Bartsch N, Pachlopnik Schmid J, Biggs CM, Hildebrand K, Dreesman A, Cárdenes MÁ, Ailal F, Benhsaien I, Giardino G, Molina-Fuentes A, Fortuny C, Madhavarapu S, Conway DH, Prando C, Schidlowski L, Martínez de Saavedra Álvarez MT, Alfaro R, Rodríguez de Castro F, Meyts I, Hauck F, Puel A, Bastard P, Boisson B, Jouanguy E, Abel L, Cobat A, Zhang Q, Casanova JL, Alsina L, Rodríguez-Gallego C. Humans with inherited MyD88 and IRAK-4 deficiencies are predisposed to hypoxemic COVID-19 pneumonia. J Exp Med 2023; 220:e20220170. [PMID: 36880831 PMCID: PMC9998661 DOI: 10.1084/jem.20220170] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
X-linked recessive deficiency of TLR7, a MyD88- and IRAK-4-dependent endosomal ssRNA sensor, impairs SARS-CoV-2 recognition and type I IFN production in plasmacytoid dendritic cells (pDCs), thereby underlying hypoxemic COVID-19 pneumonia with high penetrance. We report 22 unvaccinated patients with autosomal recessive MyD88 or IRAK-4 deficiency infected with SARS-CoV-2 (mean age: 10.9 yr; 2 mo to 24 yr), originating from 17 kindreds from eight countries on three continents. 16 patients were hospitalized: six with moderate, four with severe, and six with critical pneumonia, one of whom died. The risk of hypoxemic pneumonia increased with age. The risk of invasive mechanical ventilation was also much greater than in age-matched controls from the general population (OR: 74.7, 95% CI: 26.8-207.8, P < 0.001). The patients' susceptibility to SARS-CoV-2 can be attributed to impaired TLR7-dependent type I IFN production by pDCs, which do not sense SARS-CoV-2 correctly. Patients with inherited MyD88 or IRAK-4 deficiency were long thought to be selectively vulnerable to pyogenic bacteria, but also have a high risk of hypoxemic COVID-19 pneumonia.
Collapse
Affiliation(s)
- Ana García-García
- Pediatric Allergy and Clinical Immunology Dept., Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Déu, Barcelona, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children, Institut de Recerca Sant Joan de Déu, Barcelona, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jordi Solé-Violán
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Dept. of Intensive Care Medicine, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Àngela Deyà-Martínez
- Pediatric Allergy and Clinical Immunology Dept., Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Déu, Barcelona, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children, Institut de Recerca Sant Joan de Déu, Barcelona, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Blanca García-Solis
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Elisa Hernández-Brito
- Dept. of Immunology, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Anna-Lisa Lanz
- Dept. of Pediatrics, Division of Pediatric Immunology and Rheumatology, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Leen Moens
- Laboratory for Inborn Errors of Immunity, Dept. of Microbiology, Immunology and Transplantation KU Leuven, Leuven, Belgium
| | - Giorgia Bucciol
- Laboratory for Inborn Errors of Immunity, Dept. of Microbiology, Immunology and Transplantation KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Childhood Immunology, UZ Leuven, Leuven, Belgium
| | - Mohamed Almuqamam
- Dept. of Pediatrics, Drexel University College of Medicine, St Christopher’s Hospital for Children, Philadelphia, PA, USA
| | | | - Elena Colino
- Unidad de Enfermedades Infecciosas, Complejo Hospitalario Universitario Insular-Materno Infantil, Las Palmas de Gran Canaria, Spain
| | - Juan Luis Santos-Perez
- Unidad de Gestión Clínica de Pediatría y Cirugía Pediátrica, Hospital Virgen de las Nieves-IBS, Granada, Spain
| | - Francisco M. Marco
- Dept. of Immunology, Alicante University General Hospital Doctor Balmis, Alicante, Spain
- Alicante Institute for Health and Biomedical Research, Alicante, Spain
| | - Claudio Pignata
- Dept. of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Aziz Bousfiha
- Dept. of Pediatric Infectious Diseases and Clinical Immunology, Ibn Rushd University Hospital, Casablanca, Morocco
- Clinical Immunology, Autoimmunity and Inflammation Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Stuart E. Turvey
- Dept. of Paediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Stefanie Bauer
- Clinic for Children and Adolescents. Dept. of Hematology and Oncology. University Clinic Erlangen, Erlangen, Germany
| | - Filomeen Haerynck
- Dept. of Pediatric Immunology and Pulmonology, Centre for Primary Immune Deficiency Ghent, Ghent University Hospital, Ghent, Belgium
- Dept. of Internal Medicine and Pediatrics, PID Research Laboratory, Ghent University, Ghent, Belgium
| | | | - Francisco Lendinez
- Dept. of Pediatric Oncohematology, Hospital Materno Infantil Torrecárdenas, Almería, Spain
| | - Seraina Prader
- Division of Immunology and Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Nora Naumann-Bartsch
- Clinic for Children and Adolescents. Dept. of Hematology and Oncology. University Clinic Erlangen, Erlangen, Germany
| | - Jana Pachlopnik Schmid
- Division of Immunology and Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Catherine M. Biggs
- Dept. of Paediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Kyla Hildebrand
- Dept. of Paediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | | | - Miguel Ángel Cárdenes
- Dept. of Internal Medicine, Unit of Infectious Diseases, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Fatima Ailal
- Dept. of Pediatric Infectious Diseases and Clinical Immunology, Ibn Rushd University Hospital, Casablanca, Morocco
- Clinical Immunology, Autoimmunity and Inflammation Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Ibtihal Benhsaien
- Dept. of Pediatric Infectious Diseases and Clinical Immunology, Ibn Rushd University Hospital, Casablanca, Morocco
- Clinical Immunology, Autoimmunity and Inflammation Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Giuliana Giardino
- Dept. of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | | | - Claudia Fortuny
- Study Group for Immune Dysfunction Diseases in Children, Institut de Recerca Sant Joan de Déu, Barcelona, Barcelona, Spain
- Pediatric Infectious Diseases Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- CIBER of Epidemiology and Public Health, Madrid, Spain; Translational Research Network in Pediatric Infectious Diseases, Madrid, Spain
- Dept. of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, University of Barcelona, Barcelona, Spain
| | - Swetha Madhavarapu
- Dept. of Pediatrics, Drexel University College of Medicine, St Christopher’s Hospital for Children, Philadelphia, PA, USA
| | - Daniel H. Conway
- Dept. of Pediatrics, Drexel University College of Medicine, St Christopher’s Hospital for Children, Philadelphia, PA, USA
| | - Carolina Prando
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Hospital Pequeno Príncipe, Curitiba, Brazil
| | - Laire Schidlowski
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Hospital Pequeno Príncipe, Curitiba, Brazil
| | | | - Rafael Alfaro
- Dept. of Immunology, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Felipe Rodríguez de Castro
- Dept. of Medical and Surgical Sciences, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Dept. of Respiratory Diseases, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Dept. of Microbiology, Immunology and Transplantation KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Childhood Immunology, UZ Leuven, Leuven, Belgium
| | - Fabian Hauck
- Dept. of Pediatrics, Division of Pediatric Immunology and Rheumatology, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Pediatric Hematology and Immunology Unit, Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Laia Alsina
- Pediatric Allergy and Clinical Immunology Dept., Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Déu, Barcelona, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children, Institut de Recerca Sant Joan de Déu, Barcelona, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
- Dept. of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, University of Barcelona, Barcelona, Spain
| | - Carlos Rodríguez-Gallego
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Dept. of Immunology, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
- Dept. of Medical and Surgical Sciences, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
122
|
Mantovani S, Oliviero B, Varchetta S, Renieri A, Mondelli MU. TLRs: Innate Immune Sentries against SARS-CoV-2 Infection. Int J Mol Sci 2023; 24:8065. [PMID: 37175768 PMCID: PMC10178469 DOI: 10.3390/ijms24098065] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been responsible for a devastating pandemic since March 2020. Toll-like receptors (TLRs), crucial components in the initiation of innate immune responses to different pathogens, trigger the downstream production of pro-inflammatory cytokines, interferons, and other mediators. It has been demonstrated that they contribute to the dysregulated immune response observed in patients with severe COVID-19. TLR2, TLR3, TLR4 and TLR7 have been associated with COVID-19 severity. Here, we review the role of TLRs in the etiology and pathogenesis of COVID-19, including TLR7 and TLR3 rare variants, the L412F polymorphism in TLR3 that negatively regulates anti-SARS-CoV-2 immune responses, the TLR3-related cellular senescence, the interaction of TLR2 and TLR4 with SARS-CoV-2 proteins and implication of TLR2 in NET formation by SARS-CoV-2. The activation of TLRs contributes to viral clearance and disease resolution. However, TLRs may represent a double-edged sword which may elicit dysregulated immune signaling, leading to the production of proinflammatory mediators, resulting in severe disease. TLR-dependent excessive inflammation and TLR-dependent antiviral response may tip the balance towards the former or the latter, altering the equilibrium that drives the severity of disease.
Collapse
Affiliation(s)
- Stefania Mantovani
- Department of Research, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.V.)
| | - Barbara Oliviero
- Department of Research, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.V.)
| | - Stefania Varchetta
- Department of Research, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.V.)
| | - Alessandra Renieri
- Medical Genetics, University of Siena, 53100 Siena, Italy;
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Mario U. Mondelli
- Department of Research, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.V.)
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
123
|
Su HC, Jing H, Zhang Y, Casanova JL. Interfering with Interferons: A Critical Mechanism for Critical COVID-19 Pneumonia. Annu Rev Immunol 2023; 41:561-585. [PMID: 37126418 DOI: 10.1146/annurev-immunol-101921-050835] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Infection with SARS-CoV-2 results in clinical outcomes ranging from silent or benign infection in most individuals to critical pneumonia and death in a few. Genetic studies in patients have established that critical cases can result from inborn errors of TLR3- or TLR7-dependent type I interferon immunity, or from preexisting autoantibodies neutralizing primarily IFN-α and/or IFN-ω. These findings are consistent with virological studies showing that multiple SARS-CoV-2 proteins interfere with pathways of induction of, or response to, type I interferons. They are also congruent with cellular studies and mouse models that found that type I interferons can limit SARS-CoV-2 replication in vitro and in vivo, while their absence or diminution unleashes viral growth. Collectively, these findings point to insufficient type I interferon during the first days of infection as a general mechanism underlying critical COVID-19 pneumonia, with implications for treatment and directions for future research.
Collapse
Affiliation(s)
- Helen C Su
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH; Bethesda, Maryland, USA;
| | - Huie Jing
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH; Bethesda, Maryland, USA;
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH; Bethesda, Maryland, USA;
| | - Jean-Laurent Casanova
- Howard Hughes Medical Institute and St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
124
|
Abstract
Immunity to infection has been extensively studied in humans and mice bearing naturally occurring or experimentally introduced germline mutations. Mouse studies are sometimes neglected by human immunologists, on the basis that mice are not humans and the infections studied are experimental and not natural. Conversely, human studies are sometimes neglected by mouse immunologists, on the basis of the uncontrolled conditions of study and small numbers of patients. However, both sides would agree that the infectious phenotypes of patients with inborn errors of immunity often differ from those of the corresponding mutant mice. Why is that? We argue that this important question is best addressed by revisiting and reinterpreting the findings of both mouse and human studies from a genetic perspective. Greater caution is required for reverse-genetics studies than for forward-genetics studies, but genetic analysis is sufficiently strong to define the studies likely to stand the test of time. Genetically robust mouse and human studies can provide invaluable complementary insights into the mechanisms of immunity to infection common and specific to these two species.
Collapse
Affiliation(s)
- Philippe Gros
- McGill University Research Center on Complex Traits, Department of Biochemistry, and Department of Human Genetics, McGill University, Montréal, Québec, Canada;
| | - Jean-Laurent Casanova
- Howard Hughes Medical Institute and St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, and University of Paris Cité, Imagine Institute and Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
125
|
Reyes LF, Rodriguez A, Fuentes YV, Duque S, García-Gallo E, Bastidas A, Serrano-Mayorga CC, Ibáñez-Prada ED, Moreno G, Ramirez-Valbuena PC, Ospina-Tascon G, Hernandez G, Silva E, Díaz AM, Jibaja M, Vera-Alarcon M, Díaz E, Bodí M, Solé-Violán J, Ferrer R, Albaya-Moreno A, Socias L, Figueroa W, Lozano-Villanueva JL, Varón-Vega F, Estella Á, Loza-Vazquez A, Jorge-García R, Sancho I, Shankar-Hari M, Martin-Loeches I. Risk factors for developing ventilator-associated lower respiratory tract infection in patients with severe COVID-19: a multinational, multicentre study, prospective, observational study. Sci Rep 2023; 13:6553. [PMID: 37085552 PMCID: PMC10119842 DOI: 10.1038/s41598-023-32265-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/24/2023] [Indexed: 04/23/2023] Open
Abstract
Around one-third of patients diagnosed with COVID-19 develop a severe illness that requires admission to the Intensive Care Unit (ICU). In clinical practice, clinicians have learned that patients admitted to the ICU due to severe COVID-19 frequently develop ventilator-associated lower respiratory tract infections (VA-LRTI). This study aims to describe the clinical characteristics, the factors associated with VA-LRTI, and its impact on clinical outcomes in patients with severe COVID-19. This was a multicentre, observational cohort study conducted in ten countries in Latin America and Europe. We included patients with confirmed rtPCR for SARS-CoV-2 requiring ICU admission and endotracheal intubation. Only patients with a microbiological and clinical diagnosis of VA-LRTI were included. Multivariate Logistic regression analyses and Random Forest were conducted to determine the risk factors for VA-LRTI and its clinical impact in patients with severe COVID-19. In our study cohort of 3287 patients, VA-LRTI was diagnosed in 28.8% [948/3287]. The cumulative incidence of ventilator-associated pneumonia (VAP) was 18.6% [610/3287], followed by ventilator-associated tracheobronchitis (VAT) 10.3% [338/3287]. A total of 1252 bacteria species were isolated. The most frequently isolated pathogens were Pseudomonas aeruginosa (21.2% [266/1252]), followed by Klebsiella pneumoniae (19.1% [239/1252]) and Staphylococcus aureus (15.5% [194/1,252]). The factors independently associated with the development of VA-LRTI were prolonged stay under invasive mechanical ventilation, AKI during ICU stay, and the number of comorbidities. Regarding the clinical impact of VA-LRTI, patients with VAP had an increased risk of hospital mortality (OR [95% CI] of 1.81 [1.40-2.34]), while VAT was not associated with increased hospital mortality (OR [95% CI] of 1.34 [0.98-1.83]). VA-LRTI, often with difficult-to-treat bacteria, is frequent in patients admitted to the ICU due to severe COVID-19 and is associated with worse clinical outcomes, including higher mortality. Identifying risk factors for VA-LRTI might allow the early patient diagnosis to improve clinical outcomes.Trial registration: This is a prospective observational study; therefore, no health care interventions were applied to participants, and trial registration is not applicable.
Collapse
Affiliation(s)
- Luis Felipe Reyes
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia.
- Clinica Universidad de La Sabana, Chía, Colombia.
- Pandemic Sciences Institute, University of Oxford, Oxford, UK.
| | - Alejandro Rodriguez
- Critical Care Department, URV/IISPV/CIBERES, Hospital Universitari Joan XXIII, Tarragona, Spain
| | - Yuli V Fuentes
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
- Clinica Universidad de La Sabana, Chía, Colombia
| | - Sara Duque
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Esteban García-Gallo
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Alirio Bastidas
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Cristian C Serrano-Mayorga
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
- Clinica Universidad de La Sabana, Chía, Colombia
| | - Elsa D Ibáñez-Prada
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Gerard Moreno
- Critical Care Department, URV/IISPV/CIBERES, Hospital Universitari Joan XXIII, Tarragona, Spain
| | | | | | - Glenn Hernandez
- Critical Care Department, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Ana Maria Díaz
- Eugenio Espejo Hospital of Specialties, Quito, Pichincha, Ecuador
| | - Manuel Jibaja
- Eugenio Espejo Hospital of Specialties, Quito, Pichincha, Ecuador
| | | | - Emili Díaz
- Critical Care Department, Hospital Universitari Parc Taulí, Universitat Autonoma Barcelona, Sabadell, Spain
| | - María Bodí
- Critical Care Department, URV/IISPV/CIBERES, Hospital Universitari Joan XXIII, Tarragona, Spain
| | - Jordi Solé-Violán
- Hospital Universitario Dr Negrín, Las Palmas de Gran Canaria, Spain
- Universidad Fernando Pessoa, Canarias, Spain
| | - Ricard Ferrer
- Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | | | - Lorenzo Socias
- Son Llatzer University Hospital, Palma de Mallorca, Spain
| | - William Figueroa
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | | | | | - Ángel Estella
- Jerez University Hospital, Jerez de la Frontera, Spain
| | - Ana Loza-Vazquez
- Critical Care Department, Hospital Universitario Virgen del Valme, Sevilla, Spain
| | | | - Isabel Sancho
- Critical Care Department, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Manu Shankar-Hari
- Intensive Care Unit, Royal Infirmary of Edinburgh, Little France Crescent, Edinburgh, UK
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, Dublin, UK
| |
Collapse
|
126
|
Simón-Fuentes M, Herrero C, Acero-Riaguas L, Nieto C, Lasala F, Labiod N, Luczkowiak J, Alonso B, Delgado R, Colmenares M, Corbí ÁL, Domínguez-Soto Á. TLR7 Activation in M-CSF-Dependent Monocyte-Derived Human Macrophages Potentiates Inflammatory Responses and Prompts Neutrophil Recruitment. J Innate Immun 2023; 15:517-530. [PMID: 37040733 PMCID: PMC10315069 DOI: 10.1159/000530249] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/15/2023] [Indexed: 04/13/2023] Open
Abstract
Toll-like receptor 7 (TLR7) is an endosomal pathogen-associated molecular pattern (PAMP) receptor that senses single-stranded RNA (ssRNA) and whose engagement results in the production of type I IFN and pro-inflammatory cytokines upon viral exposure. Recent genetic studies have established that a dysfunctional TLR7-initiated signaling is directly linked to the development of inflammatory responses. We present evidence that TLR7 is preferentially expressed by monocyte-derived macrophages generated in the presence of M-CSF (M-MØ). We now show that TLR7 activation in M-MØ triggers a weak MAPK, NFκB, and STAT1 activation and results in low production of type I IFN. Of note, TLR7 engagement reprograms MAFB+ M-MØ towards a pro-inflammatory transcriptional profile characterized by the expression of neutrophil-attracting chemokines (CXCL1-3, CXCL5, CXCL8), whose expression is dependent on the transcription factors MAFB and AhR. Moreover, TLR7-activated M-MØ display enhanced pro-inflammatory responses and a stronger production of neutrophil-attracting chemokines upon secondary stimulation. As aberrant TLR7 signaling and enhanced pulmonary neutrophil/lymphocyte ratio associate with impaired resolution of virus-induced inflammatory responses, these results suggest that targeting macrophage TLR7 might be a therapeutic strategy for viral infections where monocyte-derived macrophages exhibit a pathogenic role.
Collapse
Affiliation(s)
- Miriam Simón-Fuentes
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Cristina Herrero
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Lucia Acero-Riaguas
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Concha Nieto
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Fatima Lasala
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Nuria Labiod
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Joanna Luczkowiak
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Bárbara Alonso
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Rafael Delgado
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Maria Colmenares
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Ángel L Corbí
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | |
Collapse
|
127
|
Upadhyay AA, Viox EG, Hoang TN, Boddapati AK, Pino M, Lee MYH, Corry J, Strongin Z, Cowan DA, Beagle EN, Horton TR, Hamilton S, Aoued H, Harper JL, Edwards CT, Nguyen K, Pellegrini KL, Tharp GK, Piantadosi A, Levit RD, Amara RR, Barratt-Boyes SM, Ribeiro SP, Sekaly RP, Vanderford TH, Schinazi RF, Paiardini M, Bosinger SE. TREM2 + and interstitial-like macrophages orchestrate airway inflammation in SARS-CoV-2 infection in rhesus macaques. Nat Commun 2023; 14:1914. [PMID: 37024448 PMCID: PMC10078029 DOI: 10.1038/s41467-023-37425-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
The immunopathological mechanisms driving the development of severe COVID-19 remain poorly defined. Here, we utilize a rhesus macaque model of acute SARS-CoV-2 infection to delineate perturbations in the innate immune system. SARS-CoV-2 initiates a rapid infiltration of plasmacytoid dendritic cells into the lower airway, commensurate with IFNA production, natural killer cell activation, and a significant increase of blood CD14-CD16+ monocytes. To dissect the contribution of lung myeloid subsets to airway inflammation, we generate a longitudinal scRNA-Seq dataset of airway cells, and map these subsets to corresponding populations in the human lung. SARS-CoV-2 infection elicits a rapid recruitment of two macrophage subsets: CD163+MRC1-, and TREM2+ populations that are the predominant source of inflammatory cytokines. Treatment with baricitinib (Olumiant®), a JAK1/2 inhibitor is effective in eliminating the influx of non-alveolar macrophages, with a reduction of inflammatory cytokines. This study delineates the major lung macrophage subsets driving airway inflammation during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Amit A Upadhyay
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Elise G Viox
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Timothy N Hoang
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Arun K Boddapati
- Emory NPRC Genomics Core Laboratory, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Maria Pino
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Michelle Y-H Lee
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Jacqueline Corry
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary Strongin
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - David A Cowan
- Emory NPRC Genomics Core Laboratory, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Elizabeth N Beagle
- Emory NPRC Genomics Core Laboratory, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Tristan R Horton
- Emory NPRC Genomics Core Laboratory, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Sydney Hamilton
- Emory NPRC Genomics Core Laboratory, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Hadj Aoued
- Emory NPRC Genomics Core Laboratory, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Justin L Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Christopher T Edwards
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Kevin Nguyen
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Kathryn L Pellegrini
- Emory NPRC Genomics Core Laboratory, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Gregory K Tharp
- Emory NPRC Genomics Core Laboratory, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Anne Piantadosi
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Rebecca D Levit
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Rama R Amara
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Simon M Barratt-Boyes
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Susan P Ribeiro
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Rafick P Sekaly
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Thomas H Vanderford
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Raymond F Schinazi
- Department of Pediatrics, School of Medicine, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA.
| | - Steven E Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
128
|
Matuozzo D, Talouarn E, Marchal A, Zhang P, Manry J, Seeleuthner Y, Zhang Y, Bolze A, Chaldebas M, Milisavljevic B, Gervais A, Bastard P, Asano T, Bizien L, Barzaghi F, Abolhassani H, Abou Tayoun A, Aiuti A, Alavi Darazam I, Allende LM, Alonso-Arias R, Arias AA, Aytekin G, Bergman P, Bondesan S, Bryceson YT, Bustos IG, Cabrera-Marante O, Carcel S, Carrera P, Casari G, Chaïbi K, Colobran R, Condino-Neto A, Covill LE, Delmonte OM, El Zein L, Flores C, Gregersen PK, Gut M, Haerynck F, Halwani R, Hancerli S, Hammarström L, Hatipoğlu N, Karbuz A, Keles S, Kyheng C, Leon-Lopez R, Franco JL, Mansouri D, Martinez-Picado J, Metin Akcan O, Migeotte I, Morange PE, Morelle G, Martin-Nalda A, Novelli G, Novelli A, Ozcelik T, Palabiyik F, Pan-Hammarström Q, de Diego RP, Planas-Serra L, Pleguezuelo DE, Prando C, Pujol A, Reyes LF, Rivière JG, Rodriguez-Gallego C, Rojas J, Rovere-Querini P, Schlüter A, Shahrooei M, Sobh A, Soler-Palacin P, Tandjaoui-Lambiotte Y, Tipu I, Tresoldi C, Troya J, van de Beek D, Zatz M, Zawadzki P, Al-Muhsen SZ, Alosaimi MF, Alsohime FM, Baris-Feldman H, Butte MJ, Constantinescu SN, Cooper MA, Dalgard CL, Fellay J, Heath JR, Lau YL, Lifton RP, Maniatis T, Mogensen TH, von Bernuth H, Lermine A, Vidaud M, et alMatuozzo D, Talouarn E, Marchal A, Zhang P, Manry J, Seeleuthner Y, Zhang Y, Bolze A, Chaldebas M, Milisavljevic B, Gervais A, Bastard P, Asano T, Bizien L, Barzaghi F, Abolhassani H, Abou Tayoun A, Aiuti A, Alavi Darazam I, Allende LM, Alonso-Arias R, Arias AA, Aytekin G, Bergman P, Bondesan S, Bryceson YT, Bustos IG, Cabrera-Marante O, Carcel S, Carrera P, Casari G, Chaïbi K, Colobran R, Condino-Neto A, Covill LE, Delmonte OM, El Zein L, Flores C, Gregersen PK, Gut M, Haerynck F, Halwani R, Hancerli S, Hammarström L, Hatipoğlu N, Karbuz A, Keles S, Kyheng C, Leon-Lopez R, Franco JL, Mansouri D, Martinez-Picado J, Metin Akcan O, Migeotte I, Morange PE, Morelle G, Martin-Nalda A, Novelli G, Novelli A, Ozcelik T, Palabiyik F, Pan-Hammarström Q, de Diego RP, Planas-Serra L, Pleguezuelo DE, Prando C, Pujol A, Reyes LF, Rivière JG, Rodriguez-Gallego C, Rojas J, Rovere-Querini P, Schlüter A, Shahrooei M, Sobh A, Soler-Palacin P, Tandjaoui-Lambiotte Y, Tipu I, Tresoldi C, Troya J, van de Beek D, Zatz M, Zawadzki P, Al-Muhsen SZ, Alosaimi MF, Alsohime FM, Baris-Feldman H, Butte MJ, Constantinescu SN, Cooper MA, Dalgard CL, Fellay J, Heath JR, Lau YL, Lifton RP, Maniatis T, Mogensen TH, von Bernuth H, Lermine A, Vidaud M, Boland A, Deleuze JF, Nussbaum R, Kahn-Kirby A, Mentre F, Tubiana S, Gorochov G, Tubach F, Hausfater P, Meyts I, Zhang SY, Puel A, Notarangelo LD, Boisson-Dupuis S, Su HC, Boisson B, Jouanguy E, Casanova JL, Zhang Q, Abel L, Cobat A. Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19. Genome Med 2023; 15:22. [PMID: 37020259 PMCID: PMC10074346 DOI: 10.1186/s13073-023-01173-8] [Show More Authors] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in ~ 80% of cases. METHODS We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded. RESULTS No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P = 1.1 × 10-4) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR = 3.70[95%CI 1.3-8.2], P = 2.1 × 10-4). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR = 19.65[95%CI 2.1-2635.4], P = 3.4 × 10-3), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR = 4.40[9%CI 2.3-8.4], P = 7.7 × 10-8). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD] = 43.3 [20.3] years) than the other patients (56.0 [17.3] years; P = 1.68 × 10-5). CONCLUSIONS Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old.
Collapse
Affiliation(s)
- Daniela Matuozzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Estelle Talouarn
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Astrid Marchal
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jeremy Manry
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, Bethesda, MD, USA
| | | | - Matthieu Chaldebas
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Baptiste Milisavljevic
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Takaki Asano
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Federica Barzaghi
- Department of Paediatric Immunohematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran, Iran
| | - Ahmad Abou Tayoun
- Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Ilad Alavi Darazam
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Luis M Allende
- Immunology Department, University Hospital 12 de Octubre, Research Institute imas12 and Complutense University, Madrid, Spain
| | - Rebeca Alonso-Arias
- Immunology Department, Hospital Universitario Central de Asturias; Health Research Institute of Principality of Asturias, Oviedo, Spain
| | - Andrés Augusto Arias
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Department of Microbiology and Parasitology, Primary Immunodeficiencies Group, School of Medicine, University of Antioquia UdeA, 050010, Medellin, Colombia
- School of Microbiology, University of Antioquia UdeA, 050010, Medellin, Colombia
| | - Gokhan Aytekin
- Deparment of Internal Medicine, Division of Allergy and Immunology, Konya City Hospital, Konya, Turkey
| | - Peter Bergman
- Department of Infectious Diseases, The Immunodeficiency Unit, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Division of Clinical Immunology, Stockholm, Sweden
| | - Simone Bondesan
- Clinical Genomics, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Yenan T Bryceson
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | | | - Oscar Cabrera-Marante
- Institute of Biomedical Research of IdiPAZ, University Hospital "La Paz", Madrid, Spain
| | - Sheila Carcel
- Unidad de Gestión Clínica de Cuidados Intensivos, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Paola Carrera
- Clinical Genomics, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Giorgio Casari
- Division of Genetics and Cell Biology, Genome-Phenome Relationship, San Raffaele Hospital, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Khalil Chaïbi
- Intensive Care Unit Department, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris, Bobigny, France
- Common and Rare Kidney Diseases, Sorbonne University, INSERM UMR-S 1155, Paris, France
| | - Roger Colobran
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
- Translational Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Genetics Department, Immunology Division, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Autonomous University of Barcelona (UAB), Barcelona, Catalonia, Spain
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Laura E Covill
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, Bethesda, MD, USA
| | - Loubna El Zein
- Biology Department, Lebanese University, Beirut, Lebanon
| | - Carlos Flores
- Genomics Division, Institute of Technology and Renewable Energies (ITER), Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Carlos III Health Institute, Madrid, Spain
- Research Unit, University Hospital of Ntra. Sra. de Candelaria, Santa Cruz de Tenerife, Spain
- Faculty of Health Sciences, University of Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Peter K Gregersen
- Feinstein Institute for Medical Research, Northwell Health USA, Manhasset, NY, USA
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Filomeen Haerynck
- Department of Internal Diseases and Pediatrics, Primary Immune Deficiency Research Laboratory, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent, Belgium
| | - Rabih Halwani
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Selda Hancerli
- Department of Pediatrics (Infectious Diseases), Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Lennart Hammarström
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Nevin Hatipoğlu
- Pediatric Infectious Diseases Unit, Bakirkoy Dr Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Adem Karbuz
- Department of Pediatric Infectious Disease, Dr. Cemil Tascioglu City Hospital, Istanbul, Turkey
| | - Sevgi Keles
- Meram Medical Faculty, Pediatric Infectious Diseases Department, Necmettin Erbakan University, Konya, Turkey
| | - Christèle Kyheng
- Department of General Paediatrics, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, University of Paris Saclay, Le Kremlin-Bicêtre, France
| | - Rafael Leon-Lopez
- Unidad de Gestión Clínica de Cuidados Intensivos, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Jose Luis Franco
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UDEA, Medellin, 050010, Colombia
| | - Davood Mansouri
- The Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Clinical Immunology and Infectious Diseases, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute and Institute for Health Science Research Germans Trias I Pujol (IGTP), Badalona, Spain
- Institute for Health Science Research Germans Trias I Pujol (IGTP), Badalona, Spain
- Department of Infectious Diseases and Immunity, University of Vic-Central University of Catalonia, Vic, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ozge Metin Akcan
- Meram Medical Faculty, Pediatric Infectious Diseases Department, Necmettin Erbakan University, Konya, Turkey
| | - Isabelle Migeotte
- Centre de Génétique Humaine de L'Université Libre de Bruxelles, Hôpital Erasme, Brussels, Belgium
| | - Pierre-Emmanuel Morange
- Laboratory of Haematology, La Timone Hospital, Marseille, France
- C2VN, INSERM, INRAE, Aix-Marseille University, Marseille, France
| | - Guillaume Morelle
- Department of General Paediatrics, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, University of Paris Saclay, Le Kremlin-Bicêtre, France
| | - Andrea Martin-Nalda
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Autonomous University of Barcelona (UAB), Barcelona, Catalonia, Spain
- Infection and Immunity in Pediatric Patients Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Figen Palabiyik
- Pediatric Infectious Diseases Unit, Bakirkoy Dr Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | | | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, University Hospital "La Paz", Madrid, Spain
| | - Laura Planas-Serra
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
- Center for Biomedical Research On Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Daniel E Pleguezuelo
- Immunology Department, University Hospital 12 de Octubre, Research Institute imas12 and Complutense University, Madrid, Spain
| | - Carolina Prando
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Aurora Pujol
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
- Center for Biomedical Research On Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | | | - Jacques G Rivière
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Autonomous University of Barcelona (UAB), Barcelona, Catalonia, Spain
- Infection and Immunity in Pediatric Patients Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Carlos Rodriguez-Gallego
- Department of Immunology, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
- Department of Clinical Sciences, University of Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Julian Rojas
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UDEA, Medellin, 050010, Colombia
| | - Patrizia Rovere-Querini
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
- Center for Biomedical Research On Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Mohammad Shahrooei
- Specialized Immunology Laboratory of Dr Shahrooei, Sina Medical Complex, Ahvaz, Iran
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| | - Ali Sobh
- Department of Pediatrics, Mansoura University Children's Hospital, Mansoura University Faculty of Medicine, Mansoura, Egypt
| | - Pere Soler-Palacin
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Autonomous University of Barcelona (UAB), Barcelona, Catalonia, Spain
- Infection and Immunity in Pediatric Patients Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Yacine Tandjaoui-Lambiotte
- Hypoxia and Lung, INSERM U1272, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Imran Tipu
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Cristina Tresoldi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Jesus Troya
- Department of Internal Medicine, Infanta Leonor University Hospital, Madrid, Spain
| | - Diederik van de Beek
- Department of Neurology, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Mayana Zatz
- Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Pawel Zawadzki
- Gordion Bioscience Inc, Cambridge, MA, USA
- Faculty of Physics, Adam Mickiewicz University, Poznan, Poland
| | - Saleh Zaid Al-Muhsen
- Department of Pediatrics, Immunology Research Laboratory, College of Medicine and King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Faraj Alosaimi
- Department of Pediatrics, Immunology Research Laboratory, College of Medicine and King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Fahad M Alsohime
- Department of Pediatrics, Immunology Research Laboratory, College of Medicine and King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Hagit Baris-Feldman
- The Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Manish J Butte
- Departments of Pediatrics and Microbiology, Immunology, and Molecular Genetics, Division of Immunology, Allergy, and Rheumatology, University of California Los Angeles, Los Angeles, CA, USA
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research, Brussels, Belgium
- SIGN Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, Oxford University, Oxford, UK
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Clifton L Dalgard
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, USA
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Richard P Lifton
- Laboratory of Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA
| | - Tom Maniatis
- Zukerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Horst von Bernuth
- Department of Paediatric Respiratory Medicine, Immunology, and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Alban Lermine
- Laboratoire de Biologie Médicale Multisites Seqoia, MG2025, MG2025, Paris, France
| | - Michel Vidaud
- Laboratoire de Biologie Médicale Multisites Seqoia, MG2025, MG2025, Paris, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | | | | | - France Mentre
- Unité de Recherche Clinique, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sarah Tubiana
- Centre d'Investigation Clinique, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Guy Gorochov
- Sorbonne Université, INSERM Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Département d'immunologie Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Florence Tubach
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié Salpêtrière, Département de Santé Publique, Unité de Recherche Clinique PSL-CFX , CIC-1901, Paris, France
| | - Pierre Hausfater
- Emergency Department, Hôpital Pitié-Salpêtrière, APHP-Sorbonne Université, Paris, France
- GRC-14 BIOFAST Sorbonn Université, UMR INSERM 1135, CIMI, Sorbonne Université, Paris, France
| | - Isabelle Meyts
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Luigi D Notarangelo
- Laboratory of Host Defenses, NIAID, National Institutes of Health, Bethesda, MA, USA
| | - Stephanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, Bethesda, MD, USA
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.
- University Paris Cité, Imagine Institute, Paris, France.
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.
- University Paris Cité, Imagine Institute, Paris, France.
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
129
|
Massa C, Wang Y, Marr N, Seliger B. Interferons and Resistance Mechanisms in Tumors and Pathogen-Driven Diseases—Focus on the Major Histocompatibility Complex (MHC) Antigen Processing Pathway. Int J Mol Sci 2023; 24:ijms24076736. [PMID: 37047709 PMCID: PMC10095295 DOI: 10.3390/ijms24076736] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 04/08/2023] Open
Abstract
Interferons (IFNs), divided into type I, type II, and type III IFNs represent proteins that are secreted from cells in response to various stimuli and provide important information for understanding the evolution, structure, and function of the immune system, as well as the signaling pathways of other cytokines and their receptors. They exert comparable, but also distinct physiologic and pathophysiologic activities accompanied by pleiotropic effects, such as the modulation of host responses against bacterial and viral infections, tumor surveillance, innate and adaptive immune responses. IFNs were the first cytokines used for the treatment of tumor patients including hairy leukemia, renal cell carcinoma, and melanoma. However, tumor cells often develop a transient or permanent resistance to IFNs, which has been linked to the escape of tumor cells and unresponsiveness to immunotherapies. In addition, loss-of-function mutations in IFN signaling components have been associated with susceptibility to infectious diseases, such as COVID-19 and mycobacterial infections. In this review, we summarize general features of the three IFN families and their function, the expression and activity of the different IFN signal transduction pathways, and their role in tumor immune evasion and pathogen clearance, with links to alterations in the major histocompatibility complex (MHC) class I and II antigen processing machinery (APM). In addition, we discuss insights regarding the clinical applications of IFNs alone or in combination with other therapeutic options including immunotherapies as well as strategies reversing the deficient IFN signaling. Therefore, this review provides an overview on the function and clinical relevance of the different IFN family members, with a specific focus on the MHC pathways in cancers and infections and their contribution to immune escape of tumors.
Collapse
Affiliation(s)
- Chiara Massa
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Hochstr. 29, 14770 Brandenburg an der Havel, Germany
| | - Yuan Wang
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
| | - Nico Marr
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Hochstr. 29, 14770 Brandenburg an der Havel, Germany
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| | - Barbara Seliger
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Hochstr. 29, 14770 Brandenburg an der Havel, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany
| |
Collapse
|
130
|
Bucciol G, Meyts I. Inherited and acquired errors of type I interferon immunity govern susceptibility to COVID-19 and multisystem inflammatory syndrome in children. J Allergy Clin Immunol 2023; 151:832-840. [PMID: 36841740 PMCID: PMC9951110 DOI: 10.1016/j.jaci.2023.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/02/2023] [Accepted: 02/01/2023] [Indexed: 02/27/2023]
Abstract
Since the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/coronavirus disease 2019 (COVID-19) pandemic, global sequencing efforts have led in the field of inborn errors of immunity, and inspired particularly by previous research on life-threatening influenza, they have revealed that known and novel inborn errors affecting type I interferon immunity underlie critical COVID-19 in up to 5% of cases. In addition, neutralizing autoantibodies against type I interferons have been identified in up to 20% of patients with critical COVID-19 who are older than 80 years and 20% of fatal cases, with a higher prevalence in men and individuals older than 70 years. Also, inborn errors impairing regulation of type I interferon responses and RNA degradation have been found as causes of multisystem inflammatory syndrome in children, a life-threatening hyperinflammatory condition complicating otherwise mild initial SARS-CoV-2 infection in children and young adults. Better understanding of these immunologic mechanisms can aid in designing treatments for severe COVID-19, multisystem inflammatory syndrome in children, long COVID, and neuro-COVID.
Collapse
Affiliation(s)
- Giorgia Bucciol
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium; Childhood Immunology, Department of Pediatrics, Leuven University Hospitals, Leuven, Belgium
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium; Childhood Immunology, Department of Pediatrics, Leuven University Hospitals, Leuven, Belgium.
| |
Collapse
|
131
|
de Castro MV, Silva MVR, Oliveira LDM, Gozzi-Silva SC, Naslavsky MS, Scliar MO, Magalhães ML, da Rocha KM, Nunes K, Castelli EC, Magawa JY, Santos KS, Cunha-Neto E, Sato MN, Zatz M. Immunological evaluation of young unvaccinated patients with Turner syndrome after COVID-19. Int J Infect Dis 2023; 129:207-215. [PMID: 36758851 PMCID: PMC9905041 DOI: 10.1016/j.ijid.2023.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/27/2022] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
OBJECTIVES The X-chromosome contains the largest number of immune-related genes, which play a major role in COVID-19 symptomatology and susceptibility. Here, we had a unique opportunity to investigate, for the first time, COVID-19 outcomes in six unvaccinated young Brazilian patients with Turner syndrome (TS; 45, X0), including one case of critical illness in a child aged 10 years, to evaluate their immune response according to their genetic profile. METHODS A serological analysis of humoral immune response against SARS-CoV-2, phenotypic characterization of antiviral responses in peripheral blood mononuclear cells after stimuli, and the production of cytotoxic cytokines of T lymphocytes and natural killer cells were performed in blood samples collected from the patients with TS during the convalescence period. Whole exome sequencing was also performed. RESULTS Our volunteers with TS showed a delayed or insufficient humoral immune response to SARS-CoV-2 (particularly immunoglobulin G) and a decrease in interferon-γ production by cluster of differentiation (CD)4+ and CD8+ T lymphocytes after stimulation with toll-like receptors 7/8 agonists. In contrast, we observed a higher cytotoxic activity in the volunteers with TS than the volunteers without TS after phorbol myristate acetate/ionomycin stimulation, particularly granzyme B and perforin by CD8+ and natural killer cells. Interestingly, two volunteers with TS carry rare genetic variants in genes that regulate type I and III interferon immunity. CONCLUSION Following previous reports in the literature for other conditions, our data showed that patients with TS may have an impaired immune response against SARS-CoV-2. Furthermore, other medical conditions associated with TS could make them more vulnerable to COVID-19.
Collapse
Affiliation(s)
- Mateus V de Castro
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil.
| | - Monize V R Silva
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Luana de M Oliveira
- Laboratório de Investigação em Dermatologia e Imunodeficiências, LIM 56, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil; Departamento de Dermatologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sarah C Gozzi-Silva
- Laboratório de Investigação em Dermatologia e Imunodeficiências, LIM 56, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil; Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Michel S Naslavsky
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Marilia O Scliar
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Monize L Magalhães
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Katia M da Rocha
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Kelly Nunes
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Erick C Castelli
- School of Medicine, Universidade Estadual Paulista, Botucatu, Brasil
| | - Jhosiene Y Magawa
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil; Instituto de Investigação em Imunologia - Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil; Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Keity S Santos
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil; Instituto de Investigação em Imunologia - Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil; Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Instituto de Investigação em Imunologia - Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil; Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Maria N Sato
- Laboratório de Investigação em Dermatologia e Imunodeficiências, LIM 56, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil; Departamento de Dermatologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
132
|
Tangye SG. Impact of SARS-CoV-2 infection and COVID-19 on patients with inborn errors of immunity. J Allergy Clin Immunol 2023; 151:818-831. [PMID: 36522221 PMCID: PMC9746792 DOI: 10.1016/j.jaci.2022.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022]
Abstract
Since the arrival of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019, its characterization as a novel human pathogen, and the resulting coronavirus disease 2019 (COVID-19) pandemic, over 6.5 million people have died worldwide-a stark and sobering reminder of the fundamental and nonredundant roles of the innate and adaptive immune systems in host defense against emerging pathogens. Inborn errors of immunity (IEI) are caused by germline variants, typically in single genes. IEI are characterized by defects in development and/or function of cells involved in immunity and host defense, rendering individuals highly susceptible to severe, recurrent, and sometimes fatal infections, as well as immune dysregulatory conditions such as autoinflammation, autoimmunity, and allergy. The study of IEI has revealed key insights into the molecular and cellular requirements for immune-mediated protection against infectious diseases. Indeed, this has been exemplified by assessing the impact of SARS-CoV-2 infection in individuals with previously diagnosed IEI, as well as analyzing rare cases of severe COVID-19 in otherwise healthy individuals. This approach has defined fundamental aspects of mechanisms of disease pathogenesis, immunopathology in the context of infection with a novel pathogen, and therapeutic options to mitigate severe disease. This review summarizes these findings and illustrates how the study of these rare experiments of nature can inform key features of human immunology, which can then be leveraged to improve therapies for treating emerging and established infectious diseases.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales Sydney, Randwick, Randwick, Australia; Clinical Immunogenomics Research Consortium of Australasia (CIRCA).
| |
Collapse
|
133
|
Fraser R, Orta-Resendiz A, Dockrell D, Müller-Trutwin M, Mazein A. Severe COVID-19 versus multisystem inflammatory syndrome: comparing two critical outcomes of SARS-CoV-2 infection. Eur Respir Rev 2023; 32:32/167/220197. [PMID: 36889788 PMCID: PMC10032586 DOI: 10.1183/16000617.0197-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/31/2022] [Indexed: 03/10/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with diverse host response immunodynamics and variable inflammatory manifestations. Several immune-modulating risk factors can contribute to a more severe coronavirus disease 2019 (COVID-19) course with increased morbidity and mortality. The comparatively rare post-infectious multisystem inflammatory syndrome (MIS) can develop in formerly healthy individuals, with accelerated progression to life-threatening illness. A common trajectory of immune dysregulation forms a continuum of the COVID-19 spectrum and MIS; however, severity of COVID-19 or the development of MIS is dependent on distinct aetiological factors that produce variable host inflammatory responses to infection with different spatiotemporal manifestations, a comprehensive understanding of which is necessary to set better targeted therapeutic and preventative strategies for both.
Collapse
Affiliation(s)
- Rupsha Fraser
- The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - Aurelio Orta-Resendiz
- Institut Pasteur, Université Paris Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - David Dockrell
- The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - Michaela Müller-Trutwin
- Institut Pasteur, Université Paris Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Alexander Mazein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
134
|
Hawerkamp HC, Dyer AH, Patil ND, McElheron M, O’Dowd N, O’Doherty L, Mhaonaigh AU, George AM, O’Halloran AM, Reddy C, Kenny RA, Little MA, Martin-Loeches I, Bergin C, Kennelly SP, Donnelly SC, Bourke NM, Long A, Sui J, Doherty DG, Conlon N, Cheallaigh CN, Fallon PG. Characterisation of the pro-inflammatory cytokine signature in severe COVID-19. Front Immunol 2023; 14:1170012. [PMID: 37063871 PMCID: PMC10101230 DOI: 10.3389/fimmu.2023.1170012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Clinical outcomes from infection with SARS-CoV-2, the cause of the COVID-19 pandemic, are remarkably variable ranging from asymptomatic infection to severe pneumonia and death. One of the key drivers of this variability is differing trajectories in the immune response to SARS-CoV-2 infection. Many studies have noted markedly elevated cytokine levels in severe COVID-19, although results vary by cohort, cytokine studied and sensitivity of assay used. We assessed the immune response in acute COVID-19 by measuring 20 inflammatory markers in 118 unvaccinated patients with acute COVID-19 (median age: 70, IQR: 58-79 years; 48.3% female) recruited during the first year of the pandemic and 44 SARS-CoV-2 naïve healthy controls. Acute COVID-19 was associated with marked elevations in nearly all pro-inflammatory markers, whilst eleven markers (namely IL-1β, IL-2, IL-6, IL-10, IL-18, IL-23, IL-33, TNF-α, IP-10, G-CSF and YKL-40) were associated with disease severity. We observed significant correlations between nearly all markers elevated in those infected with SARS-CoV-2 consistent with widespread immune dysregulation. Principal component analysis highlighted a pro-inflammatory cytokine signature (with strongest contributions from IL-1β, IL-2, IL-6, IL-10, IL-33, G-CSF, TNF-α and IP-10) which was independently associated with severe COVID-19 (aOR: 1.40, 1.11-1.76, p=0.005), invasive mechanical ventilation (aOR: 1.61, 1.19-2.20, p=0.001) and mortality (aOR 1.57, 1.06-2.32, p = 0.02). Our findings demonstrate elevated cytokines and widespread immune dysregulation in severe COVID-19, adding further evidence for the role of a pro-inflammatory cytokine signature in severe and critical COVID-19.
Collapse
Affiliation(s)
- Heike C. Hawerkamp
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Adam H. Dyer
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
- *Correspondence: Adam H. Dyer, ; Padraic G. Fallon,
| | - Neha D. Patil
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Matt McElheron
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Niamh O’Dowd
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Laura O’Doherty
- Department of Infectious Diseases, St James’s Hospital, Dublin, Ireland
| | - Aisling Ui Mhaonaigh
- Trinity Kidney Centre, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
| | - Angel M. George
- Trinity Kidney Centre, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
| | - Aisling M. O’Halloran
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Conor Reddy
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Rose Anne Kenny
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Mark A. Little
- Trinity Kidney Centre, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
| | | | - Colm Bergin
- Department of Infectious Diseases, St James’s Hospital, Dublin, Ireland
- Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Sean P. Kennelly
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
| | - Seamas C. Donnelly
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Clinical Medicine, Tallaght University Hospital, Dublin, Ireland
| | - Nollaig M. Bourke
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Aideen Long
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Jacklyn Sui
- Department of Immunology, St James’s Hospital, Dublin, Ireland
| | - Derek G. Doherty
- Department of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Niall Conlon
- Department of Immunology, St James’s Hospital, Dublin, Ireland
| | - Cliona Ni Cheallaigh
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Padraic G. Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- *Correspondence: Adam H. Dyer, ; Padraic G. Fallon,
| |
Collapse
|
135
|
Raphael A, Shamriz O, Tvito A, Magen S, Goldberg S, Megged O, Lev A, Simon AJ, Tal Y, Somech R, Eisenberg R, Toker O. SARS-CoV-2 spike antibody concentration in gamma globulin products from high-prevalence COVID-19 countries are transmitted to X-linked agammaglobulinemia patients. Front Immunol 2023; 14:1156823. [PMID: 37063907 PMCID: PMC10090293 DOI: 10.3389/fimmu.2023.1156823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
PurposePatients with X-linked agammaglobulinemia (XLA) are characterized by humoral impairment and are routinely treated with intravenous immunoglobulin (IVIG). In this study, we aimed to investigate the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in IVIG preparations harvested globally and evaluate the transfer of SARS-CoV-2 antibodies to the XLA patient.MethodsA single-center, prospective cohort study was conducted in the period of November 2020 to November 2022. Clinical and laboratory data, specifically, SARS-CoV-2 spike IgG levels from the serum of 115 IVIG preparations given to 5 XLA patient were collected. Concurrently, SARS-CoV-2 spike IgG levels from the serum of the 5 XLA was collected monthly.ResultsFive XLA patients were evaluated within the study period. All were treated monthly with commercial IVIG preparations. A total of 115 IVIG treatments were given over the study period. The origin country and the date of IVIG harvesting was obtained for 111 (96%) of the treatments. Fifty-four IVIG preparations (49%) were harvested during the COVID-19 pandemic of which 76% were positive (>50AU/mL) for SARS-CoV-2 spike antibodies which were subsequently transmitted to the XLA patients in an approximate 10-fold reduction. SARS-CoV2 spike IgG was first detected in IVIG batches that completed their harvest date by September 2021. Positive products were harvested from origin countries with a documented prevalence over 2,000 per 100,000 population.ConclusionAs the prevalence of COVID-19 infections rises, detection of SARS-CoV-2 spike IgG in commercial IVIG products increases and is then transmitted to the patient. Future studies are needed to investigate the neutralizing capabilities of SARS-CoV-2 IgG and whether titer levels in IVIG remain consistent as the incidence of infection and vaccination rates in the population changes.
Collapse
Affiliation(s)
- Allon Raphael
- Pediatric Department, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Oded Shamriz
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ariella Tvito
- Department of Hematology, Shaare Zedek Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sophie Magen
- Clinical Endocrinology Laboratory, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Shmuel Goldberg
- Department of Pediatrics, Pediatric Pulmonology Unit, Shaare Zedek Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orli Megged
- Department of Pediatrics, Infectious Diseases Unit, Shaare Zedek Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Atar Lev
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Tel-Hashomer Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Jeffrey Modell Foundation Israeli Network for Primary Immunodeficiency, New York, NY, United States
| | - Amos J. Simon
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Tel-Hashomer Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Tal
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Tel-Hashomer Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Jeffrey Modell Foundation Israeli Network for Primary Immunodeficiency, New York, NY, United States
| | - Rachel Eisenberg
- Department of Pediatrics, Allergy and Clinical Immunology Unit, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ori Toker
- Department of Pediatrics, Allergy and Clinical Immunology Unit, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Ori Toker,
| |
Collapse
|
136
|
Abstract
OBJECTIVE Interindividual variability in the clinical progression of COVID-19 may be explained by host genetics. Emerging literature supports a potential inherited predisposition to severe forms of COVID-19. Demographic and inflammatory characteristics of COVID-19 suggest that acquired hematologic mutations leading to clonal hematopoiesis (CH) may further increase vulnerability to adverse sequelae. This review summarizes the available literature examining genetic predispositions to severe COVID-19 and describes how these findings could eventually be used to improve its clinical management. DATA SOURCES A PubMed literature search was performed. STUDY SELECTION Studies examining the significance of inherited genetic variation or acquired CH mutations in severe COVID-19 were selected for inclusion. DATA EXTRACTION Relevant genetic association data and aspects of study design were qualitatively assessed and narratively synthesized. DATA SYNTHESIS Genetic variants affecting inflammatory responses may increase susceptibility to severe COVID-19. Genome-wide association studies and candidate gene approaches have identified a list of inherited mutations, which likely alter cytokine and interferon secretion, and lung-specific mechanisms of immunity in COVID-19. The potential role of CH in COVID-19 is more uncertain at present; however, the available evidence suggests that the various types of acquired mutations and their differential influence on immune cell function must be carefully considered. CONCLUSIONS The current literature supports the hypothesis that host genetic factors affect vulnerability to severe COVID-19. Further research is required to confirm the full scope of relevant variants and the causal mechanisms underlying these associations. Clinical approaches, which consider the genetic basis of interindividual variability in COVID-19 and potentially other causes of critical illness, could optimize hospital resource allocation, predict responsiveness to treatment, identify more efficacious drug targets, and ultimately improve outcomes.
Collapse
|
137
|
Cappadona C, Rimoldi V, Paraboschi EM, Asselta R. Genetic susceptibility to severe COVID-19. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 110:105426. [PMID: 36934789 PMCID: PMC10022467 DOI: 10.1016/j.meegid.2023.105426] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of the coronavirus disease 2019 (COVID-19) pandemic. Clinical manifestations of the disease range from an asymptomatic condition to life-threatening events and death, with more severe courses being associated with age, male sex, and comorbidities. Besides these risk factors, intrinsic characteristics of the virus as well as genetic factors of the host are expected to account for COVID-19 clinical heterogeneity. Genetic studies have long been recognized as fundamental to identify biological mechanisms underlying congenital diseases, to pinpoint genes/proteins responsible for the susceptibility to different inherited conditions, to highlight targets of therapeutic relevance, to suggest drug repurposing, and even to clarify causal relationships that make modifiable some environmental risk factors. Though these studies usually take long time to be concluded and, above all, to translate their discoveries to patients' bedside, the scientific community moved really fast to deliver genetic signals underlying different COVID-19 phenotypes. In this Review, besides a concise description of COVID-19 symptomatology and of SARS-CoV-2 mechanism of infection, we aimed to recapitulate the current literature in terms of host genetic factors that specifically associate with an increased severity of the disease.
Collapse
Affiliation(s)
- Claudio Cappadona
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan 20090, Italy
| | - Valeria Rimoldi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan 20090, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Elvezia Maria Paraboschi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan 20090, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan 20090, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy.
| |
Collapse
|
138
|
Taghadosi M, Safarzadeh E, Asgarzadeh A, Roghani SA, Shamsi A, Jalili C, Assar S, Soufivand P, Pournazari M, Feizollahi P, Nicknam MH, Asghariazar V, Vaziri S, Shahriari H, Mohammadi A. Partners in crime: Autoantibodies complicit in COVID-19 pathogenesis. Rev Med Virol 2023; 33:e2412. [PMID: 36471421 PMCID: PMC9877745 DOI: 10.1002/rmv.2412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/06/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
Autoantibodies (AABs) play a critical role in the pathogenesis of autoimmune diseases (AIDs) and serve as a diagnostic and prognostic tool in assessing these complex disorders. Viral infections have long been recognized as a principal environmental factor affecting the production of AABs and the development of autoimmunity. COVID-19 has primarily been considered a hyperinflammatory syndrome triggered by a cytokine storm. In the following, the role of maladaptive B cell response and AABs became more apparent in COVID-19 pathogenesis. The current review will primarily focus on the role of extrafollicular B cell response, Toll-like receptor-7 (TLR-7) activation, and neutrophil extracellular traps (NETs) formation in the development of AABs following SARS-CoV-2 infection. In the following, this review will clarify how these AABs dysregulate immune response to SARS-CoV-2 by disrupting cytokine function and triggering neutrophil hyper-reactivity. Finally, the pathologic effects of these AABs will be further described in COVID-19 associate clinical manifestations, including venous and arterial thrombosis, a multisystem inflammatory syndrome in children (MIS-C), acute respiratory distress syndrome (ARDS), and recently described post-acute sequelae of COVID-19 (PASC) or long-COVID.
Collapse
Affiliation(s)
- Mahdi Taghadosi
- Immunology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Safarzadeh
- Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Asgarzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Seyed Askar Roghani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Afsaneh Shamsi
- Immunology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Department of Anatomy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shirin Assar
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parviz Soufivand
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Feizollahi
- Immunology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hossein Nicknam
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Molecular Immunology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Asghariazar
- Deputy of Research and Technology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Siavash Vaziri
- Infectious Disease Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Shahriari
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
139
|
Lee D, Le Pen J, Yatim A, Dong B, Aquino Y, Ogishi M, Pescarmona R, Talouarn E, Rinchai D, Zhang P, Perret M, Liu Z, Jordan I, Elmas Bozdemir S, Bayhan GI, Beaufils C, Bizien L, Bisiaux A, Lei W, Hasan M, Chen J, Gaughan C, Asthana A, Libri V, Luna JM, Jaffré F, Hoffmann HH, Michailidis E, Moreews M, Seeleuthner Y, Bilguvar K, Mane S, Flores C, Zhang Y, Arias AA, Bailey R, Schlüter A, Milisavljevic B, Bigio B, Le Voyer T, Materna M, Gervais A, Moncada-Velez M, Pala F, Lazarov T, Levy R, Neehus AL, Rosain J, Peel J, Chan YH, Morin MP, Pino-Ramirez RM, Belkaya S, Lorenzo L, Anton J, Delafontaine S, Toubiana J, Bajolle F, Fumadó V, DeDiego ML, Fidouh N, Rozenberg F, Pérez-Tur J, Chen S, Evans T, Geissmann F, Lebon P, Weiss SR, Bonnet D, Duval X, CoV-Contact Cohort§, COVID Human Genetic Effort¶, Pan-Hammarström Q, Planas AM, Meyts I, Haerynck F, Pujol A, Sancho-Shimizu V, Dalgard CL, Bustamante J, Puel A, Boisson-Dupuis S, Boisson B, Maniatis T, Zhang Q, Bastard P, Notarangelo L, Béziat V, Perez de Diego R, Rodriguez-Gallego C, Su HC, Lifton RP, Jouanguy E, Cobat A, Alsina L, Keles S, Haddad E, Abel L, Belot A, Quintana-Murci L, et alLee D, Le Pen J, Yatim A, Dong B, Aquino Y, Ogishi M, Pescarmona R, Talouarn E, Rinchai D, Zhang P, Perret M, Liu Z, Jordan I, Elmas Bozdemir S, Bayhan GI, Beaufils C, Bizien L, Bisiaux A, Lei W, Hasan M, Chen J, Gaughan C, Asthana A, Libri V, Luna JM, Jaffré F, Hoffmann HH, Michailidis E, Moreews M, Seeleuthner Y, Bilguvar K, Mane S, Flores C, Zhang Y, Arias AA, Bailey R, Schlüter A, Milisavljevic B, Bigio B, Le Voyer T, Materna M, Gervais A, Moncada-Velez M, Pala F, Lazarov T, Levy R, Neehus AL, Rosain J, Peel J, Chan YH, Morin MP, Pino-Ramirez RM, Belkaya S, Lorenzo L, Anton J, Delafontaine S, Toubiana J, Bajolle F, Fumadó V, DeDiego ML, Fidouh N, Rozenberg F, Pérez-Tur J, Chen S, Evans T, Geissmann F, Lebon P, Weiss SR, Bonnet D, Duval X, CoV-Contact Cohort§, COVID Human Genetic Effort¶, Pan-Hammarström Q, Planas AM, Meyts I, Haerynck F, Pujol A, Sancho-Shimizu V, Dalgard CL, Bustamante J, Puel A, Boisson-Dupuis S, Boisson B, Maniatis T, Zhang Q, Bastard P, Notarangelo L, Béziat V, Perez de Diego R, Rodriguez-Gallego C, Su HC, Lifton RP, Jouanguy E, Cobat A, Alsina L, Keles S, Haddad E, Abel L, Belot A, Quintana-Murci L, Rice CM, Silverman RH, Zhang SY, Casanova JL. Inborn errors of OAS-RNase L in SARS-CoV-2-related multisystem inflammatory syndrome in children. Science 2023; 379:eabo3627. [PMID: 36538032 PMCID: PMC10451000 DOI: 10.1126/science.abo3627] [Show More Authors] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 08/16/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1, OAS2, or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L-deficient cells. Cytokine production in RNase L-deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS-RNase L deficiencies in these patients unleash the production of SARS-CoV-2-triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C.
Collapse
Affiliation(s)
- Danyel Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Ahmad Yatim
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Beihua Dong
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yann Aquino
- Human Evolutionary Genetics Unit, Institut Pasteur, Paris City University, CNRS UMR 2000, Paris, France
- Doctoral College, Sorbonne University, Paris, France
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | | | - Estelle Talouarn
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Magali Perret
- Laboratory of Immunology, Lyon Sud Hospital, Lyon, France
| | - Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Iolanda Jordan
- Pediatric Intensive Care Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Kids Corona Platform, Barcelona, Spain
- Center for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Surgery and Surgical Specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Respiratory and Immunological Dysfunction in Pediatric Critically Ill Patients, Institute of Recerca Sant Joan de Déu, Barcelona, Spain
| | | | | | - Camille Beaufils
- Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, CHU Sainte-Justine, Montreal, QC, Canada
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Aurelie Bisiaux
- Human Evolutionary Genetics Unit, Institut Pasteur, Paris City University, CNRS UMR 2000, Paris, France
| | - Weite Lei
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Milena Hasan
- Center for Translational Research, Institut Pasteur, Paris City University, Paris, France
| | - Jie Chen
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Christina Gaughan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Abhishek Asthana
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Valentina Libri
- Center for Translational Research, Institut Pasteur, Paris City University, Paris, France
| | - Joseph M. Luna
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
- Department of Biochemistry and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, USA
| | - Fabrice Jaffré
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - H.-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Marion Moreews
- International Center of Infectiology Research (CIRI), University of Lyon, INSERM U1111, Claude Bernard University, Lyon 1, CNRS, UMR5308, ENS of Lyon, Lyon, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Kaya Bilguvar
- Departments of Neurosurgery and Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA
- Department of Medical Genetics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos Flores
- Research Unit, Nuestra Señora de la Candelaria University Hospital, Santa Cruz de Tenerife, Spain
- Genomics Division, Institute of Technology and Renewable Energies (ITER), Granadilla de Abona, Spain
- CIBERES, ISCIII, Madrid, Spain
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- NIAID Clinical Genomics Program, NIH, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Andrés A. Arias
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Primary Immunodeficiencies Group, University of Antioquia (UdeA), Medellin, Colombia
- School of Microbiology, University of Antioquia (UdeA), Medellin, Colombia
| | - Rasheed Bailey
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, IDIBELL–Hospital Duran I Reynals, CIBERER U759, ISIiii, Madrid, Spain
| | - Baptiste Milisavljevic
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Benedetta Bigio
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Marcela Moncada-Velez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Tomi Lazarov
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Romain Levy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Jessica Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Yi-Hao Chan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Marie-Paule Morin
- Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, CHU Sainte-Justine, Montreal, QC, Canada
| | | | - Serkan Belkaya
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Lazaro Lorenzo
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jordi Anton
- Department of Surgery and Surgical Specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Pediatric Rheumatology Division, Hospital Sant Joan de Déu, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institute of Recerca Sant Joan de Déu, Barcelona, Spain
| | | | - Julie Toubiana
- Department of General Pediatrics and Pediatric Infectious Diseases, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris City University, Paris, France
- Biodiversity and Epidemiology of Bacterial Pathogens, Pasteur Institute, Paris, France
| | - Fanny Bajolle
- Department of Pediatric Cardiology, Necker Hospital for Sick Children, AP-HP, Paris City University, Paris, France
| | - Victoria Fumadó
- Kids Corona Platform, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Pediatrics Infectious Diseases Division, Hospital Sant Joan de Déu, Barcelona, Spain
- Infectious Diseases and Microbiome, Institute of Recerca Sant Joan de Déu, Barcelona, Spain
| | - Marta L. DeDiego
- Department of Molecular and Cellular Biology, National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Nadhira Fidouh
- Laboratory of Virology, Bichat–Claude Bernard Hospital, Paris, France
| | - Flore Rozenberg
- Laboratory of Virology, AP-HP, Cochin Hospital, Paris, France
| | - Jordi Pérez-Tur
- Molecular Genetics Unit, Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, Spain
- CIBERNED, ISCIII, Madrid, Spain
- Joint Research Unit in Neurology and Molecular Genetics, Institut of Investigation Sanitaria La Fe, Valencia, Spain
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Frédéric Geissmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pierre Lebon
- Medical School, Paris City University, Paris, France
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Damien Bonnet
- Department of Pediatric Cardiology, Necker Hospital for Sick Children, AP-HP, Paris City University, Paris, France
| | - Xavier Duval
- Bichat–Claude Bernard Hospital, Paris, France
- University Paris Diderot, Paris 7, UFR of Médecine-Bichat, Paris, France
- IAME, INSERM, UMRS1137, Paris City University, Paris, France
- Infectious and Tropical Diseases Department, AP-HP, Bichat–Claude Bernard Hospital, Paris, France
| | - CoV-Contact Cohort§
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Human Evolutionary Genetics Unit, Institut Pasteur, Paris City University, CNRS UMR 2000, Paris, France
- Doctoral College, Sorbonne University, Paris, France
- Laboratory of Immunology, Lyon Sud Hospital, Lyon, France
- Pediatric Intensive Care Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Kids Corona Platform, Barcelona, Spain
- Center for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Surgery and Surgical Specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Respiratory and Immunological Dysfunction in Pediatric Critically Ill Patients, Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Bursa City Hospital, Bursa, Turkey
- Ankara City Hospital, Yildirim Beyazit University, Ankara, Turkey
- Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, CHU Sainte-Justine, Montreal, QC, Canada
- Center for Translational Research, Institut Pasteur, Paris City University, Paris, France
- Department of Biochemistry and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, USA
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- International Center of Infectiology Research (CIRI), University of Lyon, INSERM U1111, Claude Bernard University, Lyon 1, CNRS, UMR5308, ENS of Lyon, Lyon, France
- Departments of Neurosurgery and Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA
- Department of Medical Genetics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Research Unit, Nuestra Señora de la Candelaria University Hospital, Santa Cruz de Tenerife, Spain
- Genomics Division, Institute of Technology and Renewable Energies (ITER), Granadilla de Abona, Spain
- CIBERES, ISCIII, Madrid, Spain
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- NIAID Clinical Genomics Program, NIH, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- Primary Immunodeficiencies Group, University of Antioquia (UdeA), Medellin, Colombia
- School of Microbiology, University of Antioquia (UdeA), Medellin, Colombia
- Neurometabolic Diseases Laboratory, IDIBELL–Hospital Duran I Reynals, CIBERER U759, ISIiii, Madrid, Spain
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pediatrics Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
- Pediatric Rheumatology Division, Hospital Sant Joan de Déu, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of General Pediatrics and Pediatric Infectious Diseases, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris City University, Paris, France
- Biodiversity and Epidemiology of Bacterial Pathogens, Pasteur Institute, Paris, France
- Department of Pediatric Cardiology, Necker Hospital for Sick Children, AP-HP, Paris City University, Paris, France
- Pediatrics Infectious Diseases Division, Hospital Sant Joan de Déu, Barcelona, Spain
- Infectious Diseases and Microbiome, Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Molecular and Cellular Biology, National Center for Biotechnology (CNB-CSIC), Madrid, Spain
- Laboratory of Virology, Bichat–Claude Bernard Hospital, Paris, France
- Laboratory of Virology, AP-HP, Cochin Hospital, Paris, France
- Molecular Genetics Unit, Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, Spain
- CIBERNED, ISCIII, Madrid, Spain
- Joint Research Unit in Neurology and Molecular Genetics, Institut of Investigation Sanitaria La Fe, Valencia, Spain
- Medical School, Paris City University, Paris, France
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Bichat–Claude Bernard Hospital, Paris, France
- University Paris Diderot, Paris 7, UFR of Médecine-Bichat, Paris, France
- IAME, INSERM, UMRS1137, Paris City University, Paris, France
- Infectious and Tropical Diseases Department, AP-HP, Bichat–Claude Bernard Hospital, Paris, France
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Institute for Biomedical Investigations August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Pediatrics, University Hospitals Leuven and Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Primary Immunodeficiency Research Laboratory, Center for Primary Immunodeficiency Ghent, Ghent University Hospital, Ghent, Belgium
- Neurometabolic Diseases Laboratory, IDIBELL–Hospital Duran I Reynals; and Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBERER U759, ISCiii, Madrid, Spain
- Department of Paediatric Infectious Diseases and Virology, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
- New York Genome Center, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
- Laboratory of Immunogenetics of Human Diseases, Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
- Department of Immunology, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Necmettin Erbakan University, Konya, Turkey
- Department of Pediatrics, Department of Microbiology, Immunology and Infectious Diseases, University of Montreal and Immunology and Rheumatology Division, CHU Sainte-Justine, Montreal, QC, Canada
- National Reference Center for Rheumatic, Autoimmune and Systemic Diseases in Children (RAISE), Pediatric Nephrology, Rheumatology, Dermatology Unit, Hospital of Mother and Child, Hospices Civils of Lyon, Lyon, France
- Human Genomics and Evolution, Collège de France, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - COVID Human Genetic Effort¶
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Human Evolutionary Genetics Unit, Institut Pasteur, Paris City University, CNRS UMR 2000, Paris, France
- Doctoral College, Sorbonne University, Paris, France
- Laboratory of Immunology, Lyon Sud Hospital, Lyon, France
- Pediatric Intensive Care Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Kids Corona Platform, Barcelona, Spain
- Center for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Surgery and Surgical Specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Respiratory and Immunological Dysfunction in Pediatric Critically Ill Patients, Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Bursa City Hospital, Bursa, Turkey
- Ankara City Hospital, Yildirim Beyazit University, Ankara, Turkey
- Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, CHU Sainte-Justine, Montreal, QC, Canada
- Center for Translational Research, Institut Pasteur, Paris City University, Paris, France
- Department of Biochemistry and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, USA
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- International Center of Infectiology Research (CIRI), University of Lyon, INSERM U1111, Claude Bernard University, Lyon 1, CNRS, UMR5308, ENS of Lyon, Lyon, France
- Departments of Neurosurgery and Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA
- Department of Medical Genetics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Research Unit, Nuestra Señora de la Candelaria University Hospital, Santa Cruz de Tenerife, Spain
- Genomics Division, Institute of Technology and Renewable Energies (ITER), Granadilla de Abona, Spain
- CIBERES, ISCIII, Madrid, Spain
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- NIAID Clinical Genomics Program, NIH, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- Primary Immunodeficiencies Group, University of Antioquia (UdeA), Medellin, Colombia
- School of Microbiology, University of Antioquia (UdeA), Medellin, Colombia
- Neurometabolic Diseases Laboratory, IDIBELL–Hospital Duran I Reynals, CIBERER U759, ISIiii, Madrid, Spain
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pediatrics Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
- Pediatric Rheumatology Division, Hospital Sant Joan de Déu, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of General Pediatrics and Pediatric Infectious Diseases, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris City University, Paris, France
- Biodiversity and Epidemiology of Bacterial Pathogens, Pasteur Institute, Paris, France
- Department of Pediatric Cardiology, Necker Hospital for Sick Children, AP-HP, Paris City University, Paris, France
- Pediatrics Infectious Diseases Division, Hospital Sant Joan de Déu, Barcelona, Spain
- Infectious Diseases and Microbiome, Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Molecular and Cellular Biology, National Center for Biotechnology (CNB-CSIC), Madrid, Spain
- Laboratory of Virology, Bichat–Claude Bernard Hospital, Paris, France
- Laboratory of Virology, AP-HP, Cochin Hospital, Paris, France
- Molecular Genetics Unit, Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, Spain
- CIBERNED, ISCIII, Madrid, Spain
- Joint Research Unit in Neurology and Molecular Genetics, Institut of Investigation Sanitaria La Fe, Valencia, Spain
- Medical School, Paris City University, Paris, France
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Bichat–Claude Bernard Hospital, Paris, France
- University Paris Diderot, Paris 7, UFR of Médecine-Bichat, Paris, France
- IAME, INSERM, UMRS1137, Paris City University, Paris, France
- Infectious and Tropical Diseases Department, AP-HP, Bichat–Claude Bernard Hospital, Paris, France
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Institute for Biomedical Investigations August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Pediatrics, University Hospitals Leuven and Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Primary Immunodeficiency Research Laboratory, Center for Primary Immunodeficiency Ghent, Ghent University Hospital, Ghent, Belgium
- Neurometabolic Diseases Laboratory, IDIBELL–Hospital Duran I Reynals; and Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBERER U759, ISCiii, Madrid, Spain
- Department of Paediatric Infectious Diseases and Virology, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
- New York Genome Center, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
- Laboratory of Immunogenetics of Human Diseases, Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
- Department of Immunology, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Necmettin Erbakan University, Konya, Turkey
- Department of Pediatrics, Department of Microbiology, Immunology and Infectious Diseases, University of Montreal and Immunology and Rheumatology Division, CHU Sainte-Justine, Montreal, QC, Canada
- National Reference Center for Rheumatic, Autoimmune and Systemic Diseases in Children (RAISE), Pediatric Nephrology, Rheumatology, Dermatology Unit, Hospital of Mother and Child, Hospices Civils of Lyon, Lyon, France
- Human Genomics and Evolution, Collège de France, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | | | - Anna M. Planas
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Institute for Biomedical Investigations August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven and Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Filomeen Haerynck
- Primary Immunodeficiency Research Laboratory, Center for Primary Immunodeficiency Ghent, Ghent University Hospital, Ghent, Belgium
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, IDIBELL–Hospital Duran I Reynals; and Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBERER U759, ISCiii, Madrid, Spain
| | - Vanessa Sancho-Shimizu
- Department of Paediatric Infectious Diseases and Virology, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Clifford L. Dalgard
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | | | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Luigi Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Rebeca Perez de Diego
- Laboratory of Immunogenetics of Human Diseases, Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Carlos Rodriguez-Gallego
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Department of Immunology, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Helen C. Su
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- NIAID Clinical Genomics Program, NIH, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Richard P. Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Laia Alsina
- Kids Corona Platform, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Elie Haddad
- Department of Pediatrics, Department of Microbiology, Immunology and Infectious Diseases, University of Montreal and Immunology and Rheumatology Division, CHU Sainte-Justine, Montreal, QC, Canada
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Alexandre Belot
- International Center of Infectiology Research (CIRI), University of Lyon, INSERM U1111, Claude Bernard University, Lyon 1, CNRS, UMR5308, ENS of Lyon, Lyon, France
- National Reference Center for Rheumatic, Autoimmune and Systemic Diseases in Children (RAISE), Pediatric Nephrology, Rheumatology, Dermatology Unit, Hospital of Mother and Child, Hospices Civils of Lyon, Lyon, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, Paris City University, CNRS UMR 2000, Paris, France
- Human Genomics and Evolution, Collège de France, Paris, France
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Robert H. Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
140
|
Severe COVID-19 patients have impaired plasmacytoid dendritic cell-mediated control of SARS-CoV-2. Nat Commun 2023; 14:694. [PMID: 36755036 PMCID: PMC9907212 DOI: 10.1038/s41467-023-36140-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Type I and III interferons (IFN-I/λ) are important antiviral mediators against SARS-CoV-2 infection. Here, we demonstrate that plasmacytoid dendritic cells (pDC) are the predominant IFN-I/λ source following their sensing of SARS-CoV-2-infected cells. Mechanistically, this short-range sensing by pDCs requires sustained integrin-mediated cell adhesion with infected cells. In turn, pDCs restrict viral spread by an IFN-I/λ response directed toward SARS-CoV-2-infected cells. This specialized function enables pDCs to efficiently turn-off viral replication, likely via a local response at the contact site with infected cells. By exploring the pDC response in SARS-CoV-2 patients, we further demonstrate that pDC responsiveness inversely correlates with the severity of the disease. The pDC response is particularly impaired in severe COVID-19 patients. Overall, we propose that pDC activation is essential to control SARS-CoV-2-infection. Failure to develop this response could be important to understand severe cases of COVID-19.
Collapse
|
141
|
Rosain J, Neehus AL, Manry J, Yang R, Le Pen J, Daher W, Liu Z, Chan YH, Tahuil N, Türel Ö, Bourgey M, Ogishi M, Doisne JM, Izquierdo HM, Shirasaki T, Le Voyer T, Guérin A, Bastard P, Moncada-Vélez M, Han JE, Khan T, Rapaport F, Hong SH, Cheung A, Haake K, Mindt BC, Pérez L, Philippot Q, Lee D, Zhang P, Rinchai D, Al Ali F, Ahmad Ata MM, Rahman M, Peel JN, Heissel S, Molina H, Kendir-Demirkol Y, Bailey R, Zhao S, Bohlen J, Mancini M, Seeleuthner Y, Roelens M, Lorenzo L, Soudée C, Paz MEJ, González ML, Jeljeli M, Soulier J, Romana S, L'Honneur AS, Materna M, Martínez-Barricarte R, Pochon M, Oleaga-Quintas C, Michev A, Migaud M, Lévy R, Alyanakian MA, Rozenberg F, Croft CA, Vogt G, Emile JF, Kremer L, Ma CS, Fritz JH, Lemon SM, Spaan AN, Manel N, Abel L, MacDonald MR, Boisson-Dupuis S, Marr N, Tangye SG, Di Santo JP, Zhang Q, Zhang SY, Rice CM, Béziat V, Lachmann N, Langlais D, Casanova JL, Gros P, Bustamante J. Human IRF1 governs macrophagic IFN-γ immunity to mycobacteria. Cell 2023; 186:621-645.e33. [PMID: 36736301 PMCID: PMC9907019 DOI: 10.1016/j.cell.2022.12.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023]
Abstract
Inborn errors of human IFN-γ-dependent macrophagic immunity underlie mycobacterial diseases, whereas inborn errors of IFN-α/β-dependent intrinsic immunity underlie viral diseases. Both types of IFNs induce the transcription factor IRF1. We describe unrelated children with inherited complete IRF1 deficiency and early-onset, multiple, life-threatening diseases caused by weakly virulent mycobacteria and related intramacrophagic pathogens. These children have no history of severe viral disease, despite exposure to many viruses, including SARS-CoV-2, which is life-threatening in individuals with impaired IFN-α/β immunity. In leukocytes or fibroblasts stimulated in vitro, IRF1-dependent responses to IFN-γ are, both quantitatively and qualitatively, much stronger than those to IFN-α/β. Moreover, IRF1-deficient mononuclear phagocytes do not control mycobacteria and related pathogens normally when stimulated with IFN-γ. By contrast, IFN-α/β-dependent intrinsic immunity to nine viruses, including SARS-CoV-2, is almost normal in IRF1-deficient fibroblasts. Human IRF1 is essential for IFN-γ-dependent macrophagic immunity to mycobacteria, but largely redundant for IFN-α/β-dependent antiviral immunity.
Collapse
Affiliation(s)
- Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France.
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Jérémy Manry
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Wassim Daher
- Infectious Disease Research Institute of Montpellier (IRIM), Montpellier University, 34090 Montpellier, France; Inserm, IRIM, CNRS, UMR9004, 34090 Montpellier, France
| | - Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Yi-Hao Chan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Natalia Tahuil
- Department of Immunology, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - Özden Türel
- Department of Pediatric Infectious Disease, Bezmialem Vakif University Faculty of Medicine, 34093 İstanbul, Turkey
| | - Mathieu Bourgey
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Canadian Centre for Computation Genomics, Montreal, QC H3A 0G1, Canada
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jean-Marc Doisne
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France
| | - Helena M Izquierdo
- Institut Curie, PSL Research University, Inserm U932, 75005 Paris, France
| | - Takayoshi Shirasaki
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Antoine Guérin
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | - Marcela Moncada-Vélez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Ji Eun Han
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Taushif Khan
- Department of Immunology, Sidra Medicine, Doha, Qatar
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Seon-Hui Hong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Andrew Cheung
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Kathrin Haake
- Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Barbara C Mindt
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada; FOCiS Centre of Excellence in Translational Immunology, McGill University, Montreal, QC H3A 0G1, Canada
| | - Laura Pérez
- Department of Immunology and Rheumatology, "J. P. Garrahan" National Hospital of Pediatrics, C1245 CABA Buenos Aires, Argentina
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Danyel Lee
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Fatima Al Ali
- Department of Immunology, Sidra Medicine, Doha, Qatar
| | | | | | - Jessica N Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Yasemin Kendir-Demirkol
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Umraniye Education and Research Hospital, Department of Pediatric Genetics, 34764 İstanbul, Turkey
| | - Rasheed Bailey
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Shuxiang Zhao
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Mathieu Mancini
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Marie Roelens
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France; Paris Cité University, 75006 Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - María Elvira Josefina Paz
- Department of Pediatric Pathology, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - María Laura González
- Central Laboratory, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - Mohamed Jeljeli
- Cochin University Hospital, Biological Immunology Unit, AP-HP, 75014 Paris, France
| | - Jean Soulier
- Inserm/CNRS U944/7212, Paris Cité University, 75006 Paris, France; Hematology Laboratory, Saint-Louis Hospital, AP-HP, 75010 Paris, France; National Reference Center for Bone Marrow Failures, Saint-Louis and Robert Debré Hospitals, 75010 Paris, France
| | - Serge Romana
- Rare Disease Genomic Medicine Department, Paris Cité University, Necker Hospital for Sick Children, 75015 Paris, France
| | | | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Rubén Martínez-Barricarte
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mathieu Pochon
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Alexandre Michev
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | | | - Flore Rozenberg
- Department of Virology, Paris Cité University, Cochin Hospital, 75014 Paris, France
| | - Carys A Croft
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France; Paris Cité University, 75006 Paris, France
| | - Guillaume Vogt
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes, Lille University, Lille Pasteur Institute, Lille University Hospital, 59000 Lille, France; Neglected Human Genetics Laboratory, Paris Cité University, 75006 Paris, France
| | - Jean-François Emile
- Pathology Department, Ambroise-Paré Hospital, AP-HP, 92100 Boulogne-Billancourt, France
| | - Laurent Kremer
- Infectious Disease Research Institute of Montpellier (IRIM), Montpellier University, 34090 Montpellier, France; Inserm, IRIM, CNRS, UMR9004, 34090 Montpellier, France
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - Jörg H Fritz
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada; FOCiS Centre of Excellence in Translational Immunology, McGill University, Montreal, QC H3A 0G1, Canada; Department of Physiology, McGill University, Montreal, QC H3A 0G1, Canada
| | - Stanley M Lemon
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | - András N Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584CX Utrecht, the Netherlands
| | - Nicolas Manel
- Institut Curie, PSL Research University, Inserm U932, 75005 Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Nico Marr
- Department of Immunology, Sidra Medicine, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Nico Lachmann
- Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany; Department of Pediatric Pulmonology, Allergology and Neonatology and Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - David Langlais
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France; Howard Hughes Medical Institute, New York, NY 10065, USA.
| | - Philippe Gros
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 0G1, Canada
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France.
| |
Collapse
|
142
|
Prado CADS, Fonseca DLM, Singh Y, Filgueiras IS, Baiocchi GC, Plaça DR, Marques AHC, Dantas-Komatsu RCS, Usuda JN, Freire PP, Salgado RC, Napoleao SMDS, Ramos RN, Rocha V, Zhou G, Catar R, Moll G, Camara NOS, de Miranda GC, Calich VLG, Giil LM, Mishra N, Tran F, Luchessi AD, Nakaya HI, Ochs HD, Jurisica I, Schimke LF, Cabral-Marques O. Integrative systems immunology uncovers molecular networks of the cell cycle that stratify COVID-19 severity. J Med Virol 2023; 95:e28450. [PMID: 36597912 PMCID: PMC10107240 DOI: 10.1002/jmv.28450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/24/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
Several perturbations in the number of peripheral blood leukocytes, such as neutrophilia and lymphopenia associated with Coronavirus disease 2019 (COVID-19) severity, point to systemic molecular cell cycle alterations during severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, the landscape of cell cycle alterations in COVID-19 remains primarily unexplored. Here, we performed an integrative systems immunology analysis of publicly available proteome and transcriptome data to characterize global changes in the cell cycle signature of COVID-19 patients. We found significantly enriched cell cycle-associated gene co-expression modules and an interconnected network of cell cycle-associated differentially expressed proteins (DEPs) and genes (DEGs) by integrating the molecular data of 1469 individuals (981 SARS-CoV-2 infected patients and 488 controls [either healthy controls or individuals with other respiratory illnesses]). Among these DEPs and DEGs are several cyclins, cell division cycles, cyclin-dependent kinases, and mini-chromosome maintenance proteins. COVID-19 patients partially shared the expression pattern of some cell cycle-associated genes with other respiratory illnesses but exhibited some specific differential features. Notably, the cell cycle signature predominated in the patients' blood leukocytes (B, T, and natural killer cells) and was associated with COVID-19 severity and disease trajectories. These results provide a unique global understanding of distinct alterations in cell cycle-associated molecules in COVID-19 patients, suggesting new putative pathways for therapeutic intervention.
Collapse
Affiliation(s)
- Caroline Aliane de Souza Prado
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dennyson Leandro M Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Youvika Singh
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Igor Salerno Filgueiras
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela Crispim Baiocchi
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Desirée Rodrigues Plaça
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre H C Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Júlia N Usuda
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paula Paccielli Freire
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ranieri Coelho Salgado
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Rodrigo Nalio Ramos
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Instituto D'Or de Ensino e Pesquisa, Hospital São Luiz, São Paulo, Brazil
| | - Vanderson Rocha
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Instituto D'Or de Ensino e Pesquisa, Hospital São Luiz, São Paulo, Brazil.,Fundação Pró-Sangue-Hemocentro de São Paulo, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil.,Department of Hematology, Churchill Hospital, University of Oxford, Oxford, UK
| | - Guangyan Zhou
- Institute of Parasitology, McGill University, Montreal, Quebec, Canada
| | - Rusan Catar
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
| | - Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany.,Berlin Institute of Health (BIH) and Berlin Center for Regenerative Therapies (BCRT), Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin-Brandenburg School for Regenerative Therapies (BSRT), all Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Gustavo Cabral de Miranda
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vera Lúcia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lasse M Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Neha Mishra
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany.,Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andre Ducati Luchessi
- Department of Clinical and Toxicology Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Instituto Israelita de Ensino e Pesquisa Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, Washington, USA
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, Ontario, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.,Departments of Medical Biophysics and Computer Science, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, UHN, Data Science Discovery Centre, Toronto, Ontario, Canada
| | - Lena F Schimke
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Otavio Cabral-Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Pharmacy and Postgraduate Program of Health and Science, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil.,Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
143
|
Falck‐Jones S, Österberg B, Smed‐Sörensen A. Respiratory and systemic monocytes, dendritic cells, and myeloid-derived suppressor cells in COVID-19: Implications for disease severity. J Intern Med 2023; 293:130-143. [PMID: 35996885 PMCID: PMC9538918 DOI: 10.1111/joim.13559] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since the beginning of the SARS-CoV-2 pandemic in 2020, researchers worldwide have made efforts to understand the mechanisms behind the varying range of COVID-19 disease severity. Since the respiratory tract is the site of infection, and immune cells differ depending on their anatomical location, studying blood is not sufficient to understand the full immunopathogenesis in patients with COVID-19. It is becoming increasingly clear that monocytes, dendritic cells (DCs), and monocytic myeloid-derived suppressor cells (M-MDSCs) are involved in the immunopathology of COVID-19 and may play important roles in determining disease severity. Patients with mild COVID-19 display an early antiviral (interferon) response in the nasopharynx, expansion of activated intermediate monocytes, and low levels of M-MDSCs in blood. In contrast, patients with severe COVID-19 seem to lack an early efficient induction of interferons, and skew towards a more suppressive response in blood. This is characterized by downregulation of activation markers and decreased functional capacity of blood monocytes and DCs, reduced circulating DCs, and increased levels of HLA-DRlo CD14+ M-MDSCs. These suppressive characteristics could potentially contribute to delayed T-cell responses in severe COVID-19 cases. In contrast, airways of patients with severe COVID-19 display hyperinflammation with elevated levels of inflammatory monocytes and monocyte-derived macrophages, and reduced levels of tissue-resident alveolar macrophages. These monocyte-derived cells contribute to excess inflammation by producing cytokines and chemokines. Here, we review the current knowledge on the role of monocytes, DCs, and M-MDSCs in COVID-19 and how alterations and the anatomical distribution of these cell populations may relate to disease severity.
Collapse
Affiliation(s)
- Sara Falck‐Jones
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Björn Österberg
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Anna Smed‐Sörensen
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska InstitutetKarolinska University HospitalStockholmSweden
| |
Collapse
|
144
|
Casanova JL, Anderson MS. Unlocking life-threatening COVID-19 through two types of inborn errors of type I IFNs. J Clin Invest 2023; 133:e166283. [PMID: 36719370 PMCID: PMC9888384 DOI: 10.1172/jci166283] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Since 2003, rare inborn errors of human type I IFN immunity have been discovered, each underlying a few severe viral illnesses. Autoantibodies neutralizing type I IFNs due to rare inborn errors of autoimmune regulator (AIRE)-driven T cell tolerance were discovered in 2006, but not initially linked to any viral disease. These two lines of clinical investigation converged in 2020, with the discovery that inherited and/or autoimmune deficiencies of type I IFN immunity accounted for approximately 15%-20% of cases of critical COVID-19 pneumonia in unvaccinated individuals. Thus, insufficient type I IFN immunity at the onset of SARS-CoV-2 infection may be a general determinant of life-threatening COVID-19. These findings illustrate the unpredictable, but considerable, contribution of the study of rare human genetic diseases to basic biology and public health.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
| | - Mark S. Anderson
- Diabetes Center and
- Department of Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
145
|
Cords L, Woost R, Kummer S, Brehm TT, Kluge S, Schmiedel S, Jordan S, Lohse AW, Altfeld M, Addo MM, Schulze Zur Wiesch J, Beisel C. Frequency of IRF5+ dendritic cells is associated with the TLR7-induced inflammatory cytokine response in SARS-CoV-2 infection. Cytokine 2023; 162:156109. [PMID: 36529029 PMCID: PMC9744680 DOI: 10.1016/j.cyto.2022.156109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/20/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
The SARS-CoV-2 infection leads to enhanced inflammation driven by innate immune responses. Upon TLR7 stimulation, dendritic cells (DC) mediate the production of inflammatory cytokines, and in particular of type I interferons (IFN). Especially in DCs, IRF5 is a key transcription factor that regulates pathogen-induced immune responses via activation of the MyD88-dependent TLR signaling pathway. In the current study, the frequencies of IRF5+ DCs and the association with innate cytokine responses in SARS-CoV-2 infected individuals with different disease courses were investigated. In addition to a decreased number of mDC and pDC subsets, we could show reduced relative IRF5+ frequencies in mDCs of SARS-CoV-2 infected individuals compared with healthy donors. Functionally, mDCs of COVID-19 patients produced lower levels of IL-6 in response to in vitro TLR7 stimulation. IRF5+ mDCs more frequently produced IL-6 and TNF-α compared to their IRF5- counterparts upon TLR7 ligation. The correlation of IRF5+ mDCs with the frequencies of IL-6 and TNF-α producing mDCs were indicators for a role of IRF5 in the regulation of cytokine responses in mDCs. In conclusion, our data provide further insights into the underlying mechanisms of TLR7-dependent immune dysfunction and identify IRF5 as a potential immunomodulatory target in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Leon Cords
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robin Woost
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silke Kummer
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas T Brehm
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg - Lübeck - Borstel - Riems, Hamburg, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Schmiedel
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Jordan
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W Lohse
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Altfeld
- German Center for Infection Research (DZIF), Partner Site Hamburg - Lübeck - Borstel - Riems, Hamburg, Germany; Research Department Virus Immunology, Leibniz Institute for Virology (LIV), Hamburg, Germany
| | - Marylyn M Addo
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg - Lübeck - Borstel - Riems, Hamburg, Germany; Institute for Infection Research and Vaccine Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Schulze Zur Wiesch
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg - Lübeck - Borstel - Riems, Hamburg, Germany
| | - Claudia Beisel
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg - Lübeck - Borstel - Riems, Hamburg, Germany; Department of Internal Medicine IV, Gastroenterology and Infectious Diseases, University Hospital Heidelberg, Germany.
| |
Collapse
|
146
|
García-García A, Fortuny C, Fumadó V, Jordan I, Ruiz-López L, González-Navarro EA, Egri N, Esteve-Solé A, Luo Y, Vlagea A, Cabedo MM, Launes C, Soler A, Codina A, Juan M, Pascal M, Deyà-Martínez A, Alsina L. Acute and long-term immune responses to SARS-CoV-2 infection in unvaccinated children and young adults with inborn errors of immunity. Front Immunol 2023; 14:1084630. [PMID: 36742319 PMCID: PMC9896004 DOI: 10.3389/fimmu.2023.1084630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
Purpose To describe SARS-CoV-2 infection outcome in unvaccinated children and young adults with inborn errors of immunity (IEI) and to compare their specific acute and long-term immune responses with a sex-, age-, and severity-matched healthy population (HC). Methods Unvaccinated IEI patients up to 22 years old infected with SARS-CoV-2 were recruited along with a cohort of HC. SARS-CoV-2 serology and ELISpot were performed in the acute phase of infection (up to 6 weeks) and at 3, 6, 9, and 12 months. Results Twenty-five IEI patients (median age 14.3 years, min.-max. range 4.5-22.8; 15/25 males; syndromic combined immunodeficiencies: 48.0%, antibody deficiencies: 16.0%) and 17 HC (median age 15.3 years, min.-max. range 5.4-20.0; 6/17 males, 35.3%) were included. Pneumonia occurred in 4/25 IEI patients. In the acute phase SARS-CoV-2 specific immunoglobulins were positive in all HC but in only half of IEI in whom it could be measured (n=17/25): IgG+ 58.8% (10/17) (p=0.009); IgM+ 41.2% (7/17)(p<0.001); IgA+ 52.9% (9/17)(p=0.003). Quantitative response (index) was also lower compared with HC: IgG IEI (3.1 ± 4.4) vs. HC (3.5 ± 1.5)(p=0.06); IgM IEI (1.9 ± 2.4) vs. HC (3.9 ± 2.4)(p=0.007); IgA IEI (3.3 ± 4.7) vs. HC (4.6 ± 2.5)(p=0.04). ELISpots positivity was qualitatively lower in IEI vs. HC (S-ELISpot IEI: 3/11, 27.3% vs. HC: 10/11, 90.9%; p=0.008; N-ELISpot IEI: 3/9, 33.3% vs. HC: 11/11, 100%; p=0.002) and also quantitatively lower (S-ELISpot IEI: mean index 3.2 ± 5.0 vs. HC 21.2 ± 17.0; p=0.001; N-ELISpot IEI: mean index 9.3 ± 16.6 vs. HC: 39.1 ± 23.7; p=0.004). As for long term response, SARS-CoV-2-IgM+ at 6 months was qualitatively lower in IEI(3/8, 37.5% vs. 9/10 HC: 90.0%; p=0.043), and quantitatively lower in all serologies IgG, M, and A (IEI n=9, 1.1 ± 0.9 vs. HC n=10, 2.1 ± 0.9, p=0.03; IEI n=9, 1.3 ± 1.5 vs. HC n=10, 2.9 ± 2.8, p=0.02; and IEI n=9, 0.6 ± 0.5 vs. HC n=10, 1.7 ± 0.8, p=0.002 -respectively) but there were no differences at remaining time points. Conclusions Our IEI pediatric cohort had a higher COVID-19 pneumonia rate than the general age-range population, with lower humoral and cellular responses in the acute phase (even lower compared to the reported IEI serological response after SARS-CoV-2 vaccination), and weaker humoral responses at 6 months after infection compared with HC.
Collapse
Affiliation(s)
- Ana García-García
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Claudia Fortuny
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Paediatric Infectious Diseases Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- CIBER of Epidemiology and Public Health, Madrid, Spain
- Translational Research Network in Paediatric Infectious Diseases (RITIP), Madrid, Spain
| | - Victoria Fumadó
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Paediatric Infectious Diseases Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- CIBER of Epidemiology and Public Health, Madrid, Spain
- Translational Research Network in Paediatric Infectious Diseases (RITIP), Madrid, Spain
| | - Iolanda Jordan
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Translational Research Network in Paediatric Infectious Diseases (RITIP), Madrid, Spain
- Paediatric Intensive Care Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Laura Ruiz-López
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | | | - Natalia Egri
- Department of Immunology-CDB, Hospital Clínic-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Ana Esteve-Solé
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Yiyi Luo
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Alexandru Vlagea
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
- Department of Immunology-CDB, Hospital Clínic-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Manel Monsonís Cabedo
- Department of Microbiology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Cristian Launes
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Paediatrics Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Paediatric Infectious Diseases Research Group, Institut de Recerca Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Aleix Soler
- Paediatrics Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Anna Codina
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Pathology Department and Biobank Department, Hospital Sant Joan de Deu, Esplugues de Llobregat, Barcelona, Spain
| | - Manel Juan
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
- Department of Immunology-CDB, Hospital Clínic-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Immunotherapy Platform, Hospital Sant Joan de Déu-Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Mariona Pascal
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
- Department of Immunology-CDB, Hospital Clínic-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Spanish Network for Allergy - RETIC de Asma, Reacciones Adversas y Alérgicas (ARADYAL), Madrid, Spain
| | - Angela Deyà-Martínez
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Laia Alsina
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
- Immunotherapy Platform, Hospital Sant Joan de Déu-Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
147
|
Wallach T, Raden M, Hinkelmann L, Brehm M, Rabsch D, Weidling H, Krüger C, Kettenmann H, Backofen R, Lehnardt S. Distinct SARS-CoV-2 RNA fragments activate Toll-like receptors 7 and 8 and induce cytokine release from human macrophages and microglia. Front Immunol 2023; 13:1066456. [PMID: 36713399 PMCID: PMC9880480 DOI: 10.3389/fimmu.2022.1066456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction The pandemic coronavirus disease 19 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is marked by thromboembolic events and an inflammatory response throughout the body, including the brain. Methods Employing the machine learning approach BrainDead we systematically screened for SARS-CoV-2 genome-derived single-stranded (ss) RNA fragments with high potential to activate the viral RNA-sensing innate immune receptors Toll-like receptor (TLR)7 and/or TLR8. Analyzing HEK TLR7/8 reporter cells we tested such RNA fragments with respect to their potential to induce activation of human TLR7 and TLR8 and to activate human macrophages, as well as iPSC-derived human microglia, the resident immune cells in the brain. Results We experimentally validated several sequence-specific RNA fragment candidates out of the SARS-CoV-2 RNA fragments predicted in silico as activators of human TLR7 and TLR8. Moreover, these SARS-CoV-2 ssRNAs induced cytokine release from human macrophages and iPSC-derived human microglia in a sequence- and species-specific fashion. Discussion Our findings determine TLR7 and TLR8 as key sensors of SARS-CoV-2-derived ssRNAs and may deepen our understanding of the mechanisms how this virus triggers, but also modulates an inflammatory response through innate immune signaling.
Collapse
Affiliation(s)
- Thomas Wallach
- Institute of Cell Biology and Neurobiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Martin Raden
- Bioinformatics, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Lukas Hinkelmann
- Institute of Cell Biology and Neurobiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mariam Brehm
- Institute of Cell Biology and Neurobiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dominik Rabsch
- Bioinformatics, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Hannah Weidling
- Institute of Cell Biology and Neurobiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,Cellular Neuroscience, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christina Krüger
- Institute of Cell Biology and Neurobiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Helmut Kettenmann
- Cellular Neuroscience, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Rolf Backofen
- Bioinformatics, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany,*Correspondence: Seija Lehnardt, ; Rolf Backofen,
| | - Seija Lehnardt
- Institute of Cell Biology and Neurobiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,*Correspondence: Seija Lehnardt, ; Rolf Backofen,
| |
Collapse
|
148
|
Pushparaj P, Nicoletto A, Sheward DJ, Das H, Castro Dopico X, Perez Vidakovics L, Hanke L, Chernyshev M, Narang S, Kim S, Fischbach J, Ekström S, McInerney G, Hällberg BM, Murrell B, Corcoran M, Karlsson Hedestam GB. Immunoglobulin germline gene polymorphisms influence the function of SARS-CoV-2 neutralizing antibodies. Immunity 2023; 56:193-206.e7. [PMID: 36574772 PMCID: PMC9742198 DOI: 10.1016/j.immuni.2022.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/23/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
The human immunoglobulin heavy-chain (IGH) locus is exceptionally polymorphic, with high levels of allelic and structural variation. Thus, germline IGH genotypes are personal, which may influence responses to infection and vaccination. For an improved understanding of inter-individual differences in antibody responses, we isolated SARS-CoV-2 spike-specific monoclonal antibodies from convalescent health care workers, focusing on the IGHV1-69 gene, which has the highest level of allelic variation of all IGHV genes. The IGHV1-69∗20-using CAB-I47 antibody and two similar antibodies isolated from an independent donor were critically dependent on allele usage. Neutralization was retained when reverting the V region to the germline IGHV1-69∗20 allele but lost when reverting to other IGHV1-69 alleles. Structural data confirmed that two germline-encoded polymorphisms, R50 and F55, in the IGHV1-69 gene were required for high-affinity receptor-binding domain interaction. These results demonstrate that polymorphisms in IGH genes can influence the function of SARS-CoV-2 neutralizing antibodies.
Collapse
Affiliation(s)
- Pradeepa Pushparaj
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Andrea Nicoletto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Hrishikesh Das
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Laura Perez Vidakovics
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mark Chernyshev
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sanjana Narang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sungyong Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Julian Fischbach
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Simon Ekström
- Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | |
Collapse
|
149
|
Zsichla L, Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses 2023; 15:175. [PMID: 36680215 PMCID: PMC9863423 DOI: 10.3390/v15010175] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The clinical course and outcome of COVID-19 are highly variable, ranging from asymptomatic infections to severe disease and death. Understanding the risk factors of severe COVID-19 is relevant both in the clinical setting and at the epidemiological level. Here, we provide an overview of host, viral and environmental factors that have been shown or (in some cases) hypothesized to be associated with severe clinical outcomes. The factors considered in detail include the age and frailty, genetic polymorphisms, biological sex (and pregnancy), co- and superinfections, non-communicable comorbidities, immunological history, microbiota, and lifestyle of the patient; viral genetic variation and infecting dose; socioeconomic factors; and air pollution. For each category, we compile (sometimes conflicting) evidence for the association of the factor with COVID-19 outcomes (including the strength of the effect) and outline possible action mechanisms. We also discuss the complex interactions between the various risk factors.
Collapse
Affiliation(s)
- Levente Zsichla
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
150
|
Sokal A, Bastard P, Chappert P, Barba-Spaeth G, Fourati S, Vanderberghe A, Lagouge-Roussey P, Meyts I, Gervais A, Bouvier-Alias M, Azzaoui I, Fernández I, de la Selle A, Zhang Q, Bizien L, Pellier I, Linglart A, Rothenbuhler A, Marcoux E, Anxionnat R, Cheikh N, Léger J, Amador-Borrero B, Fouyssac F, Menut V, Goffard JC, Storey C, Demily C, Mallebranche C, Troya J, Pujol A, Zins M, Tiberghien P, Gray PE, McNaughton P, Sullivan A, Peake J, Levy R, Languille L, Rodiguez-Gallego C, Boisson B, Gallien S, Neven B, Michel M, Godeau B, Abel L, Rey FA, Weill JC, Reynaud CA, Tangye SG, Casanova JL, Mahévas M. Human type I IFN deficiency does not impair B cell response to SARS-CoV-2 mRNA vaccination. J Exp Med 2023; 220:213666. [PMID: 36342455 DOI: 10.1084/jem.20220258] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/02/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022] Open
Abstract
Inborn and acquired deficits of type I interferon (IFN) immunity predispose to life-threatening COVID-19 pneumonia. We longitudinally profiled the B cell response to mRNA vaccination in SARS-CoV-2 naive patients with inherited TLR7, IRF7, or IFNAR1 deficiency, as well as young patients with autoantibodies neutralizing type I IFNs due to autoimmune polyendocrine syndrome type-1 (APS-1) and older individuals with age-associated autoantibodies to type I IFNs. The receptor-binding domain spike protein (RBD)-specific memory B cell response in all patients was quantitatively and qualitatively similar to healthy donors. Sustained germinal center responses led to accumulation of somatic hypermutations in immunoglobulin heavy chain genes. The amplitude and duration of, and viral neutralization by, RBD-specific IgG serological response were also largely unaffected by TLR7, IRF7, or IFNAR1 deficiencies up to 7 mo after vaccination in all patients. These results suggest that induction of type I IFN is not required for efficient generation of a humoral response against SARS-CoV-2 by mRNA vaccines.
Collapse
Affiliation(s)
- Aurélien Sokal
- Necker Enfants Malades Institute, INSERM U1151/CNRS UMR 8253, Action thématique incitative sur programme-Avenir Team Auto-Immune and Immune B cell, University Paris Cité, University Paris-Est-Créteil, Créteil, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, University Paris Cité, Paris, France.,Department of Pediatrics, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Pascal Chappert
- Necker Enfants Malades Institute, INSERM U1151/CNRS UMR 8253, Action thématique incitative sur programme-Avenir Team Auto-Immune and Immune B cell, University Paris Cité, University Paris-Est-Créteil, Créteil, France.,INSERM U955, team 2. Mondor Biomedical Research Institute, Paris-Est Créteil University, Créteil, France
| | - Giovanna Barba-Spaeth
- Institut Pasteur, University Paris Cité, CNRS UMR 3569, Structural Virology Unit, Paris, France
| | - Slim Fourati
- Virology, Bacteriology, Hygiene and Mycology-Parasitology, Henri Mondor University Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France.,INSERM U955, team 18. Mondor Biomedical Research Institute, Paris-Est Créteil University, Créteil, France
| | - Alexis Vanderberghe
- INSERM U955, team 2. Mondor Biomedical Research Institute, Paris-Est Créteil University, Créteil, France.,Departement of Internal Medicine, Henri Mondor University Hospital, Assistance Publique-Hôpitaux de Paris, Paris-Est Créteil University, Créteil, France
| | - Pauline Lagouge-Roussey
- INSERM U955, team 2. Mondor Biomedical Research Institute, Paris-Est Créteil University, Créteil, France.,Departement of Internal Medicine, Henri Mondor University Hospital, Assistance Publique-Hôpitaux de Paris, Paris-Est Créteil University, Créteil, France
| | - Isabelle Meyts
- Department of Immunology and Microbiology, Laboratory for Inborn Errors of Immunity, Department of Pediatrics, University Hospitals Leuven and Katholieke Universiteit Leuven, Leuven, Belgium
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, University Paris Cité, Paris, France
| | - Magali Bouvier-Alias
- Virology, Bacteriology, Hygiene and Mycology-Parasitology, Henri Mondor University Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France.,INSERM U955, team 18. Mondor Biomedical Research Institute, Paris-Est Créteil University, Créteil, France
| | - Imane Azzaoui
- INSERM U955, team 2. Mondor Biomedical Research Institute, Paris-Est Créteil University, Créteil, France.,Departement of Internal Medicine, Henri Mondor University Hospital, Assistance Publique-Hôpitaux de Paris, Paris-Est Créteil University, Créteil, France
| | - Ignacio Fernández
- Institut Pasteur, University Paris Cité, CNRS UMR 3569, Structural Virology Unit, Paris, France
| | - Andréa de la Selle
- Necker Enfants Malades Institute, INSERM U1151/CNRS UMR 8253, Action thématique incitative sur programme-Avenir Team Auto-Immune and Immune B cell, University Paris Cité, University Paris-Est-Créteil, Créteil, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, University Paris Cité, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, University Paris Cité, Paris, France
| | - Isabelle Pellier
- Pediatric Immuno-hemato-oncology Unit, Centre Hospitalier Universitaire Angers, Angers, France.,University Angers, Nantes university, Centre Hospitalier Universitaire Angers, INSERM, CRCI2NA, SFR ICAT, Angers, France
| | - Agnès Linglart
- Departement of Pediatric Endocrinology, Bicêtre University Hospital, Assistance Publique-Hôpitaux de Paris, Paris Saclay University, Le Kremlin-Bicêtre, France
| | - Anya Rothenbuhler
- Departement of Pediatric Endocrinology, Bicêtre University Hospital, Assistance Publique-Hôpitaux de Paris, Paris Saclay University, Le Kremlin-Bicêtre, France
| | - Estelle Marcoux
- Department of Pediatrics, Nord Franche Comté Hospital, Trévenans, France
| | | | - Nathalie Cheikh
- Department of Pediatrics, Besançon Hospital, Besançon, France
| | - Juliane Léger
- Department of Pediatric Endocrinology and INSERM NeuroDiderot, Referral Centre for Endocrine, Growth and Development diseases, Assistance Publique-Hôpitaux de Paris Nord, University of Paris, Paris, France
| | - Blanca Amador-Borrero
- Department of Internal Medicine, Lariboisière University Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris, France
| | - Fanny Fouyssac
- Department of Pediatric Hemato-oncology, Childrens Hospital, Nancy University Hospital, Nancy, France
| | - Vanessa Menut
- Department of Pediatrics, Mother-Child Hospital, Nantes, France
| | - Jean-Christophe Goffard
- Department of Internal Medicine, Université Libre de Bruxelles-Hôpitaux Universitaire de Bruxelles, Erasme Hospital, Bruxelles, Belgique
| | - Caroline Storey
- Departement of Pediatric Endocrinology, Robert Debré Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Caroline Demily
- GénoPsy Referral Center, Centre de Référence de Maladies Rares Rare Disease with Psychiatric Epression, Le Vinatier Hospital, Bron, France
| | - Coralie Mallebranche
- Pediatric Immuno-hemato-oncology Unit, Centre Hospitalier Universitaire Angers, Angers, France.,University Angers, Nantes university, Centre Hospitalier Universitaire Angers, INSERM, CRCI2NA, SFR ICAT, Angers, France
| | - Jesus Troya
- Department of Internal Medicine, Infanta Leonor University Hospital, Madrid, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge-Hospital Duran i Reynals, Centro de Investigación Biomédica en Red de Enfermededas Raras U759, and Catalan Institution of Research and Advanced Studies, Barcelona, Spain
| | - Marie Zins
- University of Paris, University of Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines, INSERM UMS11, Villejuif, France
| | - Pierre Tiberghien
- French Blood Agency, La Plaine Saint-Denis, France.,UMR1098 RIGHT, INSERM, French Blood Agency, Franche-Comté University, Besançon, France
| | - Paul E Gray
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Randwick, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, Australia.,Clinical Immunogenomics Research Consortium of Australasia, Sydney, Australia
| | - Peter McNaughton
- Clinical Immunogenomics Research Consortium of Australasia, Sydney, Australia.,Queensland Paediatric Immunology and Allergy Service, Children's Health Queensland, Brisbane, Australia
| | - Anna Sullivan
- Clinical Immunogenomics Research Consortium of Australasia, Sydney, Australia.,Queensland Paediatric Immunology and Allergy Service, Children's Health Queensland, Brisbane, Australia
| | - Jane Peake
- Clinical Immunogenomics Research Consortium of Australasia, Sydney, Australia.,Queensland Paediatric Immunology and Allergy Service, Children's Health Queensland, Brisbane, Australia.,University of Queensland, Brisbane, Australia
| | - Romain Levy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, University Paris Cité, Paris, France.,Department of Pediatric Immuno-Haematology and Rheumatology, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Laetitia Languille
- Departement of Internal Medicine, Henri Mondor University Hospital, Assistance Publique-Hôpitaux de Paris, Paris-Est Créteil University, Créteil, France
| | - Carlos Rodiguez-Gallego
- Department of Immunology, Hospital Universitario de G.C. Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain.,University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, University Paris Cité, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Sébastien Gallien
- Department of Infectious Diseases, Henri Mondor University Hospital, Assistance Publique-Hôpitaux de Paris, Paris-Est Créteil University, Créteil, France
| | - Bénédicte Neven
- Department of Pediatric Immuno-Haematology and Rheumatology, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marc Michel
- Departement of Internal Medicine, Henri Mondor University Hospital, Assistance Publique-Hôpitaux de Paris, Paris-Est Créteil University, Créteil, France
| | - Bertrand Godeau
- Departement of Internal Medicine, Henri Mondor University Hospital, Assistance Publique-Hôpitaux de Paris, Paris-Est Créteil University, Créteil, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, University Paris Cité, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Felix A Rey
- Institut Pasteur, University Paris Cité, CNRS UMR 3569, Structural Virology Unit, Paris, France
| | - Jean-Claude Weill
- Necker Enfants Malades Institute, INSERM U1151/CNRS UMR 8253, Action thématique incitative sur programme-Avenir Team Auto-Immune and Immune B cell, University Paris Cité, University Paris-Est-Créteil, Créteil, France
| | - Claude-Agnès Reynaud
- Necker Enfants Malades Institute, INSERM U1151/CNRS UMR 8253, Action thématique incitative sur programme-Avenir Team Auto-Immune and Immune B cell, University Paris Cité, University Paris-Est-Créteil, Créteil, France
| | - Stuart G Tangye
- Clinical Immunogenomics Research Consortium of Australasia, Sydney, Australia.,Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine & Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, University Paris Cité, Paris, France.,Department of Pediatrics, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Howard Hughes Medical Institute, New York, NY
| | - Matthieu Mahévas
- Necker Enfants Malades Institute, INSERM U1151/CNRS UMR 8253, Action thématique incitative sur programme-Avenir Team Auto-Immune and Immune B cell, University Paris Cité, University Paris-Est-Créteil, Créteil, France.,INSERM U955, team 2. Mondor Biomedical Research Institute, Paris-Est Créteil University, Créteil, France.,Departement of Internal Medicine, Henri Mondor University Hospital, Assistance Publique-Hôpitaux de Paris, Paris-Est Créteil University, Créteil, France
| |
Collapse
|