101
|
Genome-wide identification, characterization, and expression analysis of the expansin gene family in watermelon ( Citrullus lanatus). 3 Biotech 2020; 10:302. [PMID: 32550119 DOI: 10.1007/s13205-020-02293-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/07/2020] [Indexed: 10/24/2022] Open
Abstract
Expansins are plant cell-wall loosening proteins involved in cell enlargement, adaptive responses to environmental stimuli, and various developmental processes. Although expansins have been characterized in many plant species, little is reported on this family in watermelon. In this study, 30 expansin genes in the watermelon genome (ClEXPs) were identified. These genes which were divided into four subfamilies (7 ClEXLAs, 2 ClEXLBs, 18 ClEXPAs, and 3 ClEXPBs) are unevenly distribute on 10 of 11 watermelon chromosomes. Chromosome mapping suggested that tandem duplication events may have played important roles in the expanding of watermelon expansins. Gene structure and motif identification revealed that same subfamily and subgroup have conserved gene structure and motif. Detection of cis-acting elements revealed that ClEXPs gene promoter regions were enriched with light-responsive elements, hormone-responsive, environmental stress-related, and development-related elements. Expression patterns of ClEXPs were investigated by qRT-PCR. The results showed that expression patterns of 15 ClEXP genes differed in three tissues. Through our own and public RNA-seq analysis, we found that ClEXPs had different expression patterns in fruit flesh, fruit rind, and seed at various developmental stages, and most of ClEXPs were highly responsive to abiotic and biotic stresses. Remarkably, 7 ClEXPs (ClEXLA1, ClEXLA6, ClEXLB1, ClEXLB2, ClEXPA5, ClEXPA10, and ClEXPA16) exhibited positive response to at least three kinds of stresses, suggesting that they might play important roles in the crosstalk of stress signal pathways. The results of this study provide useful insights for the functional identification of expansin gene family in watermelon.
Collapse
|
102
|
Valenzuela-Riffo F, Morales-Quintana L. Study of the structure and binding site features of FaEXPA2, an α-expansin protein involved in strawberry fruit softening. Comput Biol Chem 2020; 87:107279. [PMID: 32505880 DOI: 10.1016/j.compbiolchem.2020.107279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/09/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
Tissue softening accompanies the ripening of many fruits and initiates the processes of irreversible deterioration. Expansins are plant cell wall proteins that have been proposed to disrupt hydrogen bonds within the cell wall polymer matrix. Several authors have shown that FaEXPA2 is a key gene that shows an increased expression level during ripening and softening of the strawberry fruit. For this reason, FaEXPA2 is frequently used as a molecular marker of softening in strawberry fruit, and changes in its relative expression have been related to changes in fruit firmness. In this context, we previously reported that FaEXPA2 has a high accumulation rate during fruit ripening in four different strawberry cultivars; however, the molecular mechanism of FaEXPA2 or expansins in general is not yet clear. Herein, a 3D model of the FaEXPA2 protein was built by comparative modeling to understand how FaEXPA2 interacts with different cell wall components at the molecular level. First, the structure was shown to display two domains characteristic of the other expansins that were previously described. The protein-ligand interaction was evaluated by molecular dynamic (MD) simulation using four different long ligands (a cellulose fiber, two of the more important xyloglucan (XG) fibers found in strawberry (XXXG and XXFG type), and a pectin (homogalacturonic acid type)). The results showed that FaEXPA2 formed a more stable complex with cellulose than other ligands via the different residues present in the open groove surface of its two domains, while FaEXPA2 did not interact with the pectin ligand.
Collapse
Affiliation(s)
- Felipe Valenzuela-Riffo
- Instituto de Ciencias Biológicas, Universidad de Talca, Chile; Programa de Doctorado en Ciencias Mención Ingeniería Genética Vegetal, Universidad de Talca, Chile
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédica, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile.
| |
Collapse
|
103
|
Mayorga-Gómez A, Nambeesan SU. Temporal expression patterns of fruit-specific α- EXPANSINS during cell expansion in bell pepper (Capsicum annuum L.). BMC PLANT BIOLOGY 2020; 20:241. [PMID: 32466743 PMCID: PMC7254744 DOI: 10.1186/s12870-020-02452-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Expansins (EXPs) facilitate non-enzymatic cell wall loosening during several phases of plant growth and development including fruit growth, internode expansion, pollen tube growth, leaf and root development, and during abiotic stress responses. In this study, the spatial and temporal expression patterns of C. annuum α- EXPANSIN (CaEXPA) genes were characterized. Additionally, fruit-specific CaEXPA expression was correlated with the rate of cell expansion during bell pepper fruit development. RESULTS Spatial expression patterns revealed that CaEXPA13 was up-regulated in vegetative tissues and flowers, with the most abundant expression in mature leaves. Expression of CaEXPA4 was associated with stems and roots. CaEXPA3 was expressed abundantly in flower at anthesis suggesting a role for CaEXPA3 in flower development. Temporal expression analysis revealed that 9 out of the 21 genes were highly expressed during fruit development. Of these, expression of six genes, CaEXPA5, CaEXPA7, CaEXPA12, CaEXPA14 CaEXPA17 and CaEXPA19 were abundant 7 to 21 days after anthesis (DAA), whereas CaEXPA6 was strongly expressed between 14 and 28 DAA. Further, this study revealed that fruit growth and cell expansion occur throughout bell pepper development until ripening, with highest rates of fruit growth and cell expansion occurring between 7 and 14 DAA. The expression of CaEXPA14 and CaEXPA19 positively correlated with the rate of cell expansion, suggesting their role in post-mitotic cell expansion-mediated growth of the bell pepper fruit. In this study, a ripening specific EXP transcript, CaEXPA9 was identified, suggesting its role in cell wall disassembly during ripening. CONCLUSIONS This is the first genome-wide study of CaEXPA expression during fruit growth and development. Identification of fruit-specific EXPAs suggest their importance in facilitating cell expansion during growth and cell wall loosening during ripening in bell pepper. These EXPA genes could be important targets for future manipulation of fruit size and ripening characteristics.
Collapse
Affiliation(s)
- Andrés Mayorga-Gómez
- Department of Horticulture, University of Georgia, 120 Carlton Street, Athens, GA, 30602, USA
| | - Savithri U Nambeesan
- Department of Horticulture, University of Georgia, 120 Carlton Street, Athens, GA, 30602, USA.
| |
Collapse
|
104
|
Dual functions of Expansin in cell wall extension and compression during cotton fiber development. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00514-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
105
|
Lv LM, Zuo DY, Wang XF, Cheng HL, Zhang YP, Wang QL, Song GL, Ma ZY. Genome-wide identification of the expansin gene family reveals that expansin genes are involved in fibre cell growth in cotton. BMC PLANT BIOLOGY 2020; 20:223. [PMID: 32429837 PMCID: PMC7236947 DOI: 10.1186/s12870-020-02362-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/24/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Expansins (EXPs), a group of proteins that loosen plant cell walls and cellulosic materials, are involved in regulating cell growth and diverse developmental processes in plants. However, the biological functions of this gene family in cotton are still unknown. RESULTS In this paper, we identified a total of 93 expansin genes in Gossypium hirsutum. These genes were classified into four subfamilies, including 67 GhEXPAs, 8 GhEXPBs, 6 GhEXLAs, and 12 GhEXLBs, and divided into 15 subgroups. The 93 expansin genes are distributed over 24 chromosomes, excluding Ghir_A02 and Ghir_D06. All GhEXP genes contain multiple exons, and each GhEXP protein has multiple conserved motifs. Transcript profiling and qPCR analysis revealed that the expansin genes have distinct expression patterns among different stages of cotton fibre development. Among them, 3 genes (GhEXPA4o, GhEXPA1A, and GhEXPA8h) were highly expressed in the initiation stage, 9 genes (GhEXPA4a, GhEXPA13a, GhEXPA4f, GhEXPA4q, GhEXPA8f, GhEXPA2, GhEXPA8g, GhEXPA8a, and GhEXPA4n) had high expression during the fast elongation stage, and GhEXLA1c and GhEXLA1f were preferentially expressed in the transition stage of fibre development. CONCLUSIONS Our results provide a solid basis for further elucidation of the biological functions of expansin genes in relation to cotton fibre development and valuable genetic resources for future crop improvement.
Collapse
Affiliation(s)
- Li-Min Lv
- Hebei Research Base, State Key Laboratory of Cotton Biology in China, Hebei Agricultural University, Baoding, 071001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (CAAS), Anyang, 455000, China
| | - Dong-Yun Zuo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (CAAS), Anyang, 455000, China
| | - Xing-Fen Wang
- Hebei Research Base, State Key Laboratory of Cotton Biology in China, Hebei Agricultural University, Baoding, 071001, China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Hai-Liang Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (CAAS), Anyang, 455000, China
| | - You-Ping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (CAAS), Anyang, 455000, China
| | - Qiao-Lian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (CAAS), Anyang, 455000, China
| | - Guo-Li Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (CAAS), Anyang, 455000, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.
| | - Zhi-Ying Ma
- Hebei Research Base, State Key Laboratory of Cotton Biology in China, Hebei Agricultural University, Baoding, 071001, China.
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
106
|
Liu W, Lyu T, Xu L, Hu Z, Xiong X, Liu T, Cao J. Complex Molecular Evolution and Expression of Expansin Gene Families in Three Basic Diploid Species of Brassica. Int J Mol Sci 2020; 21:ijms21103424. [PMID: 32408673 PMCID: PMC7279145 DOI: 10.3390/ijms21103424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Expansins are a kind of structural proteins of the plant cell wall, and they enlarge cells by loosening the cell walls. Therefore, expansins are involved in many growth and development processes. The complete genomic sequences of Brassica rapa, Brassica oleracea and Brassica nigra provide effective platforms for researchers to study expansin genes, and can be compared with analogues in Arabidopsis thaliana. This study identified and characterized expansin families in B. rapa, B. oleracea, and B. nigra. Through the comparative analysis of phylogeny, gene structure, and physicochemical properties, the expansin families were divided into four subfamilies, and then their expansion patterns and evolution details were explored accordingly. Results showed that after the three species underwent independent evolution following their separation from A. thaliana, the expansin families in the three species had increased similarities but fewer divergences. By searching divergences of promoters and coding sequences, significant positive correlations were revealed among orthologs in A. thaliana and the three basic species. Subsequently, differential expressions indicated extensive functional divergences in the expansin families of the three species, especially in reproductive development. Hence, these results support the molecular evolution of basic Brassica species, potential functions of these genes, and genetic improvement of related crops.
Collapse
Affiliation(s)
- Weimiao Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (T.L.); (L.X.); (Z.H.); (X.X.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Tianqi Lyu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (T.L.); (L.X.); (Z.H.); (X.X.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Liai Xu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (T.L.); (L.X.); (Z.H.); (X.X.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Ziwei Hu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (T.L.); (L.X.); (Z.H.); (X.X.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Xingpeng Xiong
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (T.L.); (L.X.); (Z.H.); (X.X.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Tingting Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (T.L.); (L.X.); (Z.H.); (X.X.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (T.L.); (L.X.); (Z.H.); (X.X.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-8898-2597
| |
Collapse
|
107
|
Narváez-Barragán DA, Tovar-Herrera OE, Torres M, Rodríguez M, Humphris S, Toth IK, Segovia L, Serrano M, Martínez-Anaya C. Expansin-like Exl1 from Pectobacterium is a virulence factor required for host infection, and induces a defence plant response involving ROS, and jasmonate, ethylene and salicylic acid signalling pathways in Arabidopsis thaliana. Sci Rep 2020; 10:7747. [PMID: 32385404 PMCID: PMC7210985 DOI: 10.1038/s41598-020-64529-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/17/2020] [Indexed: 01/09/2023] Open
Abstract
Expansins are encoded by some phytopathogenic bacteria and evidence indicates that they act as virulence factors for host infection. Here we analysed the expression of exl1 by Pectobacterium brasiliense and Pectobacterium atrosepticum. In both, exl1 gene appears to be under quorum sensing control, and protein Exl1 can be observed in culture medium and during plant infection. Expression of exl1 correlates with pathogen virulence, where symptoms are reduced in a Δexl1 mutant strain of P. atrosepticum. As well as Δexl1 exhibiting less maceration of potato plants, fewer bacteria are observed at distance from the inoculation site. However, bacteria infiltrated into the plant tissue are as virulent as the wild type, suggesting that this is due to alterations in the initial invasion of the tissue. Additionally, swarming from colonies grown on MacConkey soft agar was delayed in the mutant in comparison to the wild type. We found that Exl1 acts on the plant tissue, probably by remodelling of a cell wall component or altering the barrier properties of the cell wall inducing a plant defence response, which results in the production of ROS and the induction of marker genes of the JA, ET and SA signalling pathways in Arabidopsis thaliana. Exl1 inactive mutants fail to trigger such responses. This defence response is protective against Pectobacterium brasiliense and Botrytis cinerea in more than one plant species.
Collapse
Affiliation(s)
- Delia A Narváez-Barragán
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
| | - Omar E Tovar-Herrera
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Martha Torres
- Centro de Ciencias Genómicas. Universidad Nacional Autónoma de México, 62110, Cuernavaca, Morelos, Mexico
| | - Mabel Rodríguez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
| | - Sonia Humphris
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Ian K Toth
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Lorenzo Segovia
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
| | - Mario Serrano
- Centro de Ciencias Genómicas. Universidad Nacional Autónoma de México, 62110, Cuernavaca, Morelos, Mexico
| | - Claudia Martínez-Anaya
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
108
|
Patel JD, Huang X, Lin L, Das S, Chandnani R, Khanal S, Adhikari J, Shehzad T, Guo H, Roy-Zokan EM, Rong J, Paterson AH. The Ligon lintless -2 Short Fiber Mutation Is Located within a Terminal Deletion of Chromosome 18 in Cotton. PLANT PHYSIOLOGY 2020; 183:277-288. [PMID: 32102829 PMCID: PMC7210651 DOI: 10.1104/pp.19.01531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/28/2020] [Indexed: 05/06/2023]
Abstract
Extreme elongation distinguishes about one-fourth of cotton (Gossypium sp.) seed epidermal cells as "lint" fibers, useful for the textile industry, from "fuzz" fibers (<5 mm). Ligon lintless-2 (Li 2 ), a dominant mutation that results in no lint fiber but normal fuzz fiber, offers insight into pathways and mechanisms that differentiate spinnable cotton from its progenitors. A genetic map developed using 1,545 F2 plants showed that marker CISP15 was 0.4 cM from Li 2 , and "dominant" simple sequence repeat (SSR) markers (i.e. with null alleles in the Li 2 genotype) SSR7 and SSR18 showed complete linkage with Li 2 Nonrandom distribution of markers with null alleles suggests that the Li 2 phenotype results from a 176- to 221-kb deletion of the terminal region of chromosome 18 that may have been masked in prior pooled-sample mapping strategies. The deletion includes 10 genes with putative roles in fiber development. Two Glycosyltransferase Family 1 genes showed striking expression differences during elongation of wild-type versus Li 2 fiber, and virus-induced silencing of these genes in the wild type induced Li 2 -like phenotypes. Further, at least 7 of the 10 putative fiber development genes in the deletion region showed higher expression in the wild type than in Li 2 mutants during fiber development stages, suggesting coordinated regulation of processes in cell wall development and cell elongation, consistent with the hypothesis that some fiber-related quantitative trait loci comprise closely spaced groups of functionally diverse but coordinately regulated genes.
Collapse
Affiliation(s)
- Jinesh D Patel
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| | - Xianzhong Huang
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
- Plant Genomics Laboratory, College of Life Sciences, Shihezi University, 832003 Shihezi, China
| | - Lifeng Lin
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| | - Sayan Das
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| | - Rahul Chandnani
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| | - Sameer Khanal
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| | - Jeevan Adhikari
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| | - Tariq Shehzad
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Hui Guo
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| | - Eileen M Roy-Zokan
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| | - Junkang Rong
- Zhejiang A&F University, Linan, Hangzhou 311300, Zhejiang, China
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
109
|
Chase WR, Zhaxybayeva O, Rocha J, Cosgrove DJ, Shapiro LR. Global cellulose biomass, horizontal gene transfers and domain fusions drive microbial expansin evolution. THE NEW PHYTOLOGIST 2020; 226:921-938. [PMID: 31930503 DOI: 10.1111/nph.16428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/19/2019] [Indexed: 05/23/2023]
Abstract
Plants must rearrange the network of complex carbohydrates in their cell walls during normal growth and development. To accomplish this, all plants depend on proteins called expansins that nonenzymatically loosen noncovalent bonding between cellulose microfibrils. Surprisingly, expansin genes have more recently been found in some bacteria and microbial eukaryotes, where their biological functions are largely unknown. Here, we reconstruct a comprehensive phylogeny of microbial expansin genes. We find these genes in all eukaryotic microorganisms that have structural cell wall cellulose, suggesting expansins evolved in ancient marine microorganisms long before the evolution of land plants. We also find expansins in an unexpectedly high diversity of bacteria and fungi that do not have cellulosic cell walls. These bacteria and fungi inhabit varied ecological contexts, mirroring the diversity of terrestrial and aquatic niches where plant and/or algal cellulosic cell walls are present. The microbial expansin phylogeny shows evidence of multiple horizontal gene transfer events within and between bacterial and eukaryotic microbial lineages, which may in part underlie their unusually broad phylogenetic distribution. Overall, expansins are unexpectedly widespread in bacteria and eukaryotes, and the contribution of these genes to microbial ecological interactions with plants and algae has probbaly been underappreciated.
Collapse
Affiliation(s)
- William R Chase
- Department of Biology, Pennsylvania State University, University Park, PA, 16801, USA
| | - Olga Zhaxybayeva
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
- Department of Computer Science, Dartmouth College, Hanover, NH, 03755, USA
| | - Jorge Rocha
- Department of Microbiology and Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, PA, 16801, USA
| | - Lori R Shapiro
- Department of Microbiology and Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| |
Collapse
|
110
|
Altegoer F, Weiland P, Giammarinaro PI, Freibert SA, Binnebesel L, Han X, Lepak A, Kahmann R, Lechner M, Bange G. The two paralogous kiwellin proteins KWL1 and KWL1-b from maize are structurally related and have overlapping functions in plant defense. J Biol Chem 2020; 295:7816-7825. [PMID: 32350112 DOI: 10.1074/jbc.ra119.012207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/23/2020] [Indexed: 12/17/2022] Open
Abstract
Many plant-pathogenic bacteria and fungi deploy effector proteins that down-regulate plant defense responses and reprogram plant metabolism for colonization and survival in planta Kiwellin (KWL) proteins are a widespread family of plant-defense proteins that target these microbial effectors. The KWL1 protein from maize (corn, Zea mays) specifically inhibits the enzymatic activity of the secreted chorismate mutase Cmu1, a virulence-promoting effector of the smut fungus Ustilago maydis. In addition to KWL1, 19 additional KWL paralogs have been identified in maize. Here, we investigated the structure and mechanism of the closest KWL1 homolog, KWL1-b (ZEAMA_GRMZM2G305329). We solved the Cmu1-KWL1-b complex to 2.75 Å resolution, revealing a highly symmetric Cmu1-KWL1-b heterotetramer in which each KWL1-b monomer interacts with a monomer of the Cmu1 homodimer. The structure also revealed that the overall architecture of the heterotetramer is highly similar to that of the previously reported Cmu1-KWL1 complex. We found that upon U. maydis infection of Z. mays, KWL1-b is expressed at significantly lower levels than KWL1 and exhibits differential tissue-specific expression patterns. We also show that KWL1-b inhibits Cmu1 activity similarly to KWL1. We conclude that KWL1 and KWL1-b are part of a redundant defense system that tissue-specifically targets Cmu1. This notion was supported by the observation that both KWL proteins are carbohydrate-binding proteins with distinct and likely tissue-related specificities. Moreover, binding by Cmu1 modulated the carbohydrate-binding properties of both KWLs. These findings indicate that KWL proteins are part of a spatiotemporally coordinated, plant-wide defense response comprising proteins with overlapping activities.
Collapse
Affiliation(s)
- Florian Altegoer
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Paul Weiland
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Pietro Ivan Giammarinaro
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Sven-Andreas Freibert
- Institute for Cytobiology and Cytopathology, Philipps-University Marburg, Marburg, Germany
| | - Lynn Binnebesel
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Xiaowei Han
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Alexander Lepak
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Marcus Lechner
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
111
|
Ogden AJ, Wietsma TW, Winkler T, Farris Y, Myers GL, Ahkami AH. Dynamics of Global Gene Expression and Regulatory Elements in Growing Brachypodium Root System. Sci Rep 2020; 10:7071. [PMID: 32341392 PMCID: PMC7184759 DOI: 10.1038/s41598-020-63224-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 02/28/2020] [Indexed: 11/09/2022] Open
Abstract
Root systems are dynamic and adaptable organs that play critical roles in plant development. However, how roots grow and accumulate biomass during plant life cycle and in relation to shoot growth phenology remains understudied. A comprehensive time-dependent root morphological analysis integrated with molecular signatures is then required to advance our understanding of root growth and development. Here we studied Brachypodium distachyon rooting process by monitoring root morphology, biomass production, and C/N ratios during developmental stages. To provide insight into gene regulation that accompanies root growth, we generated comprehensive transcript profiles of Brachypodium whole-root system at four developmental stages. Our data analysis revealed that multiple biological processes including trehalose metabolism and various families of transcription factors (TFs) were differentially expressed in root system during plant development. In particular, the AUX/IAA, ERFs, WRKY, NAC, and MADS TF family members were upregulated as plant entered the booting/heading stage, while ARFs and GRFs were downregulated suggesting these TF families as important factors involved in specific phases of rooting, and possibly in regulation of transition to plant reproductive stages. We identified several Brachypodium candidate root biomass-promoting genes and cis-regulatory elements for further functional validations and root growth improvements in grasses.
Collapse
Affiliation(s)
- Aaron J Ogden
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Thomas W Wietsma
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Tanya Winkler
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Yuliya Farris
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Gabriel L Myers
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Amir H Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA.
| |
Collapse
|
112
|
Peng L, Xu Y, Feng X, Zhang J, Dong J, Yao S, Feng Z, Zhao Q, Feng S, Li F, Hu B. Identification and Characterization of the Expansin Genes in Triticum urartu in Response to Various Phytohormones. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420040109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
113
|
Sun M, Tuan PA, Izydorczyk MS, Ayele BT. Ethylene regulates post-germination seedling growth in wheat through spatial and temporal modulation of ABA/GA balance. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1985-2004. [PMID: 31872216 PMCID: PMC7094081 DOI: 10.1093/jxb/erz566] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/19/2019] [Indexed: 05/02/2023]
Abstract
This study aimed to gain insights into the molecular mechanisms underlying the role of ethylene in regulating germination and seedling growth in wheat by combining pharmacological, molecular, and metabolomics approaches. Our study showed that ethylene does not affect radicle protrusion but controls post-germination endospermic starch degradation through transcriptional regulation of specific α-amylase and α-glucosidase genes, and this effect is mediated by alteration of endospermic bioactive gibberellin (GA) levels, and GA sensitivity via expression of the GA signaling gene, TaGAMYB. Our data implicated ethylene as a positive regulator of embryo axis and coleoptile growth through transcriptional regulation of specific TaEXPA genes. These effects were associated with modulation of GA levels and sensitivity, through expression of GA metabolism (TaGA20ox1, TaGA3ox2, and TaGA2ox6) and signaling (TaGAMYB) genes, respectively, and/or the abscisic acid (ABA) level and sensitivity, via expression of specific ABA metabolism (TaNCED2 or TaCYP707A1) and signaling (TaABI3) genes, respectively. Ethylene appeared to regulate the expression of TaEXPA3 and thereby root growth through its control of coleoptile ABA metabolism, and root ABA signaling via expression of TaABI3 and TaABI5. These results show that spatiotemporal modulation of ABA/GA balance mediates the role of ethylene in regulating post-germination storage starch degradation and seedling growth in wheat.
Collapse
Affiliation(s)
- Menghan Sun
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pham Anh Tuan
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Marta S Izydorczyk
- Grain Research Laboratory, Canadian Grain Commission, Winnipeg, Manitoba, Canada
| | - Belay T Ayele
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba, Canada
- Corresponding author:
| |
Collapse
|
114
|
Yaqoob A, Ali Shahid A, Salisu IB, Shakoor S, Usmaan M, Shad M, Rao AQ. Comparative analysis of Constitutive and fiber-specific promoters under the expression pattern of Expansin gene in transgenic Cotton. PLoS One 2020; 15:e0230519. [PMID: 32187234 PMCID: PMC7080281 DOI: 10.1371/journal.pone.0230519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/02/2020] [Indexed: 11/18/2022] Open
Abstract
Promoters are specified segments of DNA that lead to the initiation of transcription of a specific gene. The designing of a gene cassette for plant transformation is significantly dependent upon the specificity of a promoter. Constitutive Cauliflower mosaic virus promoter, CaMV35S, due to its developmental role, is the most commonly used promoter in plant transformation. While Gossypium hirsutum (Gh) being fiber-specific promoter (GhSCFP) specifically activates transcription in seed coat and fiber associated genes. The Expansin genes are renowned for their versatile roles in plant growth. The overexpression of Expansin genes has been reported to enhance fiber length and fineness. Thus, in this study, a local Cotton variety was transformed with Expansin (CpEXPA1) gene, in the form of two separate cassettes, each with a different promoter, named as 35SEXPA1 and FSEXPA1 expressed under CaMV35S and GhSCFP promoters respectively. Integration and Spatiotemporal relative expression of the transgene were studied in an advanced generation. GhSCFP bearing transgene expression was significantly higher in Cotton fiber than other plant parts. While transgene with CaMV35S promoter was found to be continually expressing in all tissues but the expression was lower in fiber than that expressed under GhSCFP. The temporal expression profile was quite interesting with a gradual increasing pattern of both constructs from 1DPA (days post anthesis) to 18DPA and decreased expression from 24 to 30 DPA. Besides the relative expression of promoters, fiber cellulose quantification and fluorescence intensity were also observed. The study significantly compared the two most commonly used promoters and it is deduced from the results that the GhSCFP promoter could be used more efficiently in fiber when compared with CaMV35S which being constitutive in nature preferred for expression in all parts of the plant.
Collapse
Affiliation(s)
- Amina Yaqoob
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ahmad Ali Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- * E-mail:
| | - Ibrahim Bala Salisu
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sana Shakoor
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Usmaan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Mohsin Shad
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Abdul Qayyum Rao
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
115
|
Luti S, Sella L, Quarantin A, Pazzagli L, Baccelli I. Twenty years of research on cerato-platanin family proteins: clues, conclusions, and unsolved issues. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2019.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
116
|
Vieira P, Nemchinov LG. An Expansin-Like Candidate Effector Protein from Pratylenchus penetrans Modulates Immune Responses in Nicotiana benthamiana. PHYTOPATHOLOGY 2020; 110:684-693. [PMID: 31680651 DOI: 10.1094/phyto-09-19-0336-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The root lesion nematode (RLN) Pratylenchus penetrans is a migratory species that attacks a broad range of crops. After the RLN is initially attracted to host roots by root exudates and compounds, it releases secretions that are critical for successful parasitism. Among those secretions are nematode virulence factors or effectors that facilitate the entry and migration of nematodes through the roots and modulate plant immune defenses. The recognition of the effectors by host resistance proteins leads to effector-triggered immunity and incompatible plant-nematode interactions. Although many candidate effectors of the RLN and other plant-parasitic nematodes have been identified, the detailed mechanisms of their functions and particularly, their host targets remain largely unexplored. In this study, we sequenced and annotated genes encoding expansin-like proteins, which are major candidate effectors of P. penetrans. One of the genes, Pp-EXPB1, which was the most highly expressed during nematode infection in different plant species, was further functionally characterized via transient expression in the model plant Nicotiana benthamiana and global transcriptome profiling of gene expression changes triggered by this candidate effector in plants. As a result of this investigation, the biological roles of Pp-EXPB1 in nematode parasitism were proposed, the putative cellular targets of the proteins were identified, and the molecular mechanisms of plant responses to the nematode-secreted proteins were outlined.
Collapse
Affiliation(s)
- Paulo Vieira
- Molecular Plant Pathology Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705-2350
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061
| | - Lev G Nemchinov
- Molecular Plant Pathology Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705-2350
| |
Collapse
|
117
|
Luo J, Liu Y, Zhang H, Wang J, Chen Z, Luo L, Liu G, Liu P. Metabolic alterations provide insights into Stylosanthes roots responding to phosphorus deficiency. BMC PLANT BIOLOGY 2020; 20:85. [PMID: 32087672 PMCID: PMC7036231 DOI: 10.1186/s12870-020-2283-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/07/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Phosphorus (P) deficiency is one of the major constraints limiting plant growth, especially in acid soils. Stylosanthes (stylo) is a pioneer tropical legume with excellent adaptability to low P stress, but its underlying mechanisms remain largely unknown. RESULTS In this study, the physiological, molecular and metabolic changes in stylo responding to phosphate (Pi) starvation were investigated. Under low P condition, the growth of stylo root was enhanced, which was attributed to the up-regulation of expansin genes participating in root growth. Metabolic profiling analysis showed that a total of 256 metabolites with differential accumulations were identified in stylo roots response to P deficiency, which mainly included flavonoids, sugars, nucleotides, amino acids, phenylpropanoids and phenylamides. P deficiency led to significant reduction in the accumulation of phosphorylated metabolites (e.g., P-containing sugars, nucleotides and cholines), suggesting that internal P utilization was enhanced in stylo roots subjected to low P stress. However, flavonoid metabolites, such as kaempferol, daidzein and their glycoside derivatives, were increased in P-deficient stylo roots. Furthermore, the qRT-PCR analysis showed that a set of genes involved in flavonoids synthesis were found to be up-regulated by Pi starvation in stylo roots. In addition, the abundances of phenolic acids and phenylamides were significantly increased in stylo roots during P deficiency. The increased accumulation of the metabolites in stylo roots, such as flavonoids, phenolic acids and phenylamides, might facilitate P solubilization and cooperate with beneficial microorganisms in rhizosphere, and thus contributing to P acquisition and utilization in stylo. CONCLUSIONS These results suggest that stylo plants cope with P deficiency by modulating root morphology, scavenging internal Pi from phosphorylated metabolites and increasing accumulation of flavonoids, phenolic acids and phenylamides. This study provides valuable insights into the complex responses and adaptive mechanisms of stylo roots to P deficiency.
Collapse
Affiliation(s)
- Jiajia Luo
- College of Tropical Crops, Hainan University, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou, 570228, China
| | - Yunxi Liu
- College of Tropical Crops, Hainan University, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou, 570228, China
| | - Huikai Zhang
- College of Tropical Crops, Hainan University, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou, 570228, China
| | - Jinpeng Wang
- College of Tropical Crops, Hainan University, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou, 570228, China
| | - Zhijian Chen
- College of Tropical Crops, Hainan University, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou, 570228, China
| | - Lijuan Luo
- College of Tropical Crops, Hainan University, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou, 570228, China.
| | - Guodao Liu
- College of Tropical Crops, Hainan University, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou, 570228, China.
| | - Pandao Liu
- College of Tropical Crops, Hainan University, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou, 570228, China.
| |
Collapse
|
118
|
Silva F, Guirgis A, von Aderkas P, Borchers CH, Thornburg R. LC-MS/MS based comparative proteomics of floral nectars reveal different mechanisms involved in floral defense of Nicotiana spp., Petunia hybrida and Datura stramonium. J Proteomics 2020; 213:103618. [PMID: 31846763 DOI: 10.1016/j.jprot.2019.103618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/01/2019] [Accepted: 12/13/2019] [Indexed: 11/19/2022]
Abstract
Tobacco floral nectar (FN) is a biological fluid produced by nectaries composed of sugars, amino acids and proteins called nectarins, involved in the floral defense. FN provides an ideal source of nutrients for microorganisms. Understanding the role of nectar proteins is essential to predict impacts in microbial growth, composition and plants-pollinators interactions. Using LC-MS/MS-based comparative proteomic analysis we identified 22 proteins from P. hybrida, 35 proteins from D. stramonium, and 144 proteins from 23 species of Nicotiana. The data are available at ProteomeXchance (PXD014760). GO analysis and secretory signal prediction demonstrated that defense/stress was the largest group of proteins in the genus Nicotiana. The Nicotiana spp. proteome consisted of 105 exclusive proteins such as lipid transfer proteins (LTPs), Nectar Redox Cycle proteins, proteases inhibitors, and PR-proteins. Analysis by taxonomic sections demonstrated that LTPs were most abundant in Undulatae and Noctiflora, while nectarins were more abundant in Rusticae, Suaveolens, Polydicliae, and Alata sections. Peroxidases (Pox) and chitinases (Chit) were exclusive to P. hybrida, while D. stramonium had only seven unique proteins. Biochemical analysis confirmed these differences. These findings support the hypothesis that, although conserved, there is differential abundance of proteins related to defense/stress which may impact the mechanisms of floral defense. SIGNIFICANCE: This study represents a comparative proteomic analysis of floral nectars of the Nicotiana spp. with two correlated Solanaceous species. Significant differences were identified between the proteome of taxonomic sections providing relevant insights into the group of proteins related to defense/stress associated with Nectar Redox Cycle, antimicrobial proteins and signaling pathways. The activity of FNs proteins is suggested impact the microbial growth. The knowledge about these proteomes provides significant insights into the diversity of proteins secreted in the nectars and the array of mechanisms used by Nicotiana spp. in its floral defense.
Collapse
Affiliation(s)
- FredyA Silva
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Adel Guirgis
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA; Institute of Genetic Engineering and Biotechnology, Menofiya University, Sadat City, Egypt
| | - Patrick von Aderkas
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Christoph H Borchers
- University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, BC V8P 5C2, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada; Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada; Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Robert Thornburg
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
119
|
Bharadwaj VS, Knott BC, Ståhlberg J, Beckham GT, Crowley MF. The hydrolysis mechanism of a GH45 cellulase and its potential relation to lytic transglycosylase and expansin function. J Biol Chem 2020; 295:4477-4487. [PMID: 32054684 DOI: 10.1074/jbc.ra119.011406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/12/2020] [Indexed: 11/06/2022] Open
Abstract
Family 45 glycoside hydrolases (GH45) are endoglucanases that are integral to cellulolytic secretomes, and their ability to break down cellulose has been successfully exploited in textile and detergent industries. In addition to their industrial relevance, understanding the molecular mechanism of GH45-catalyzed hydrolysis is of fundamental importance because of their structural similarity to cell wall-modifying enzymes such as bacterial lytic transglycosylases (LTs) and expansins present in bacteria, plants, and fungi. Our understanding of the catalytic itinerary of GH45s has been incomplete because a crystal structure with substrate spanning the -1 to +1 subsites is currently lacking. Here we constructed and validated a putative Michaelis complex in silico and used it to elucidate the hydrolytic mechanism in a GH45, Cel45A from the fungus Humicola insolens, via unbiased simulation approaches. These molecular simulations revealed that the solvent-exposed active-site architecture results in lack of coordination for the hydroxymethyl group of the substrate at the -1 subsite. This lack of coordination imparted mobility to the hydroxymethyl group and enabled a crucial hydrogen bond with the catalytic acid during and after the reaction. This suggests the possibility of a nonhydrolytic reaction mechanism when the catalytic base aspartic acid is missing, as is the case in some LTs (murein transglycosylase A) and expansins. We calculated reaction free energies and demonstrate the thermodynamic feasibility of the hydrolytic and nonhydrolytic reaction mechanisms. Our results provide molecular insights into the hydrolysis mechanism in HiCel45A, with possible implications for elucidating the elusive catalytic mechanism in LTs and expansins.
Collapse
Affiliation(s)
- Vivek S Bharadwaj
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Brandon C Knott
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Jerry Ståhlberg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P. O. Box 7015, 750 07 Uppsala, Sweden
| | - Gregg T Beckham
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Michael F Crowley
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| |
Collapse
|
120
|
Zhang P, Ma Y, Cui M, Wang J, Huang R, Su R, Qi W, He Z, Thielemans W. Effect of Sugars on the Real-Time Adsorption of Expansin on Cellulose. Biomacromolecules 2020; 21:1776-1784. [DOI: 10.1021/acs.biomac.9b01694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peiqian Zhang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Yuanyuan Ma
- Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Mei Cui
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Jieying Wang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Renliang Huang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P.R. China
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P.R. China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| |
Collapse
|
121
|
Hepler NK, Bowman A, Carey RE, Cosgrove DJ. Expansin gene loss is a common occurrence during adaptation to an aquatic environment. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:666-680. [PMID: 31627246 DOI: 10.1111/tpj.14572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 05/15/2023]
Abstract
Expansins comprise a superfamily of plant cell wall loosening proteins that can be divided into four individual families (EXPA, EXPB, EXLA and EXLB). Aside from inferred roles in a variety of plant growth and developmental traits, little is known regarding the function of specific expansin clades, for which there are at least 16 in flowering plants (angiosperms); however, there is evidence to suggest that some expansins have cell-specific functions, in root hair and pollen tube development, for example. Recently, two duckweed genomes have been sequenced (Spirodela polyrhiza strains 7498 and 9509), revealing significantly reduced superfamily sizes. We hypothesized that there would be a correlation between expansin loss and morphological reductions seen among highly adapted aquatic species. In order to provide an answer to this question, we characterized the expansin superfamilies of the greater duckweed Spirodela, the marine eelgrass Zostera marina and the bladderwort Utricularia gibba. We discovered rampant expansin gene and clade loss among the three, including a complete absence of the EXLB family and EXPA-VII. The most convincing correlation between morphological reduction and expansin loss was seen for Utricularia and Spirodela, which both lack root hairs and the root hair expansin clade EXPA-X. Contrary to the pattern observed in other species, four Utricularia expansins failed to branch within any clade, suggesting that they may be the result of neofunctionalization. Last, an expansin clade previously discovered only in eudicots was identified in Spirodela, allowing us to conclude that the last common ancestor of monocots and eudicots contained a minimum of 17 expansins.
Collapse
Affiliation(s)
- Nathan K Hepler
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alexa Bowman
- Program in Biochemistry and Molecular Biology, Lebanon Valley College, 101 N. College Ave., Annville, PA, 17003, USA
| | - Robert E Carey
- Department of Biology, Lebanon Valley College, 101 N. College Ave., Annville, PA, 17003, USA
| | - Daniel J Cosgrove
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
122
|
Jadamba C, Kang K, Paek NC, Lee SI, Yoo SC. Overexpression of Rice Expansin7 ( Osexpa7) Confers Enhanced Tolerance to Salt Stress in Rice. Int J Mol Sci 2020; 21:ijms21020454. [PMID: 31936829 PMCID: PMC7013816 DOI: 10.3390/ijms21020454] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/03/2023] Open
Abstract
Expansins are key regulators of cell-wall extension and are also involved in the abiotic stress response. In this study, we evaluated the function of OsEXPA7 involved in salt stress tolerance. Phenotypic analysis showed that OsEXPA7 overexpression remarkably enhanced tolerance to salt stress. OsEXPA7 was highly expressed in the shoot apical meristem, root, and the leaf sheath. Promoter activity of OsEXPA7:GUS was mainly observed in vascular tissues of roots and leaves. Morphological analysis revealed structural alterations in the root and leaf vasculature of OsEXPA7 overexpressing (OX) lines. OsEXPA7 overexpression resulted in decreased sodium ion (Na+) and accumulated potassium ion (K+) in the leaves and roots. Under salt stress, higher antioxidant activity was also observed in the OsEXPA7-OX lines, as indicated by lower reactive oxygen species (ROS) accumulation and increased antioxidant activity, when compared with the wild-type (WT) plants. In addition, transcriptional analysis using RNA-seq and RT-PCR revealed that genes involved in cation exchange, auxin signaling, cell-wall modification, and transcription were differentially expressed between the OX and WT lines. Notably, salt overly sensitive 1, which is a sodium transporter, was highly upregulated in the OX lines. These results suggest that OsEXPA7 plays an important role in increasing salt stress tolerance by coordinating sodium transport, ROS scavenging, and cell-wall loosening.
Collapse
Affiliation(s)
- Chuluuntsetseg Jadamba
- Crop Molecular Breeding Laboratory, Department of Plant Life and Environmental Science, Hankyong National University, Jungangro, Anseong-si, Gyeonggi-do 17579, Korea;
| | - Kiyoon Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea; (K.K.); (N.-C.P.)
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea; (K.K.); (N.-C.P.)
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea
- Correspondence: (S.I.L.); (S.-C.Y.)
| | - Soo-Cheul Yoo
- Crop Molecular Breeding Laboratory, Department of Plant Life and Environmental Science, Hankyong National University, Jungangro, Anseong-si, Gyeonggi-do 17579, Korea;
- Correspondence: (S.I.L.); (S.-C.Y.)
| |
Collapse
|
123
|
Comparative Transcriptome Analysis Provides Molecular Insights into the Interaction of Beet necrotic yellow vein virus and Beet soil-borne mosaic virus with Their Host Sugar Beet. Viruses 2020; 12:v12010076. [PMID: 31936258 PMCID: PMC7019549 DOI: 10.3390/v12010076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/18/2019] [Accepted: 12/29/2019] [Indexed: 01/10/2023] Open
Abstract
Beet necrotic yellow vein virus (BNYVV) and Beet soil-borne mosaic virus (BSBMV) are closely related species, but disease development induced in their host sugar beet displays striking differences. Beet necrotic yellow vein virus induces excessive lateral root (LR) formation, whereas BSBMV-infected roots appear asymptomatic. A comparative transcriptome analysis was performed to elucidate transcriptomic changes associated with disease development. Many differentially expressed genes (DEGs) were specific either to BNYVV or BSBMV, although both viruses shared a high number of DEGs. Auxin biosynthesis pathways displayed a stronger activation by BNYVV compared to BSBMV-infected plants. Several genes regulated by auxin signalling and required for LR formation were exclusively altered by BNYVV. Both viruses reprogrammed the transcriptional network, but a large number of transcription factors involved in plant defence were upregulated in BNYVV-infected plants. A strong activation of pathogenesis-related proteins by both viruses suggests a salicylic acid or jasmonic acid mediated-defence response, but the data also indicate that both viruses counteract the SA-mediated defence. The ethylene signal transduction pathway was strongly downregulated which probably increases the susceptibility of sugar beet to Benyvirus infection. Our study provides a deeper insight into the interaction of BNYVV and BSBMV with the economically important crop sugar beet.
Collapse
|
124
|
The Expression of Potato Expansin A3 ( StEXPA3) and Extensin4 ( StEXT4) Genes with Distribution of StEXPAs and HRGPs-Extensin Changes as an Effect of Cell Wall Rebuilding in Two Types of PVY NTN- Solanum tuberosum Interactions. Viruses 2020; 12:v12010066. [PMID: 31948116 PMCID: PMC7020060 DOI: 10.3390/v12010066] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 01/06/2023] Open
Abstract
The plant cell wall acts not only as a physical barrier, but also as a complex and dynamic structure that actively changes under different biotic and abiotic stress conditions. The question is, how are the different cell wall compounds modified during different interactions with exogenous stimuli such as pathogens? Plants exposed to viral pathogens respond to unfavorable conditions on multiple levels. One challenge that plants face under viral stress is the number of processes required for differential cell wall remodeling. The key players in these conditions are the cell wall genes and proteins, which can be regulated in specific ways during the interactions and have direct influences on the rebuilding of the cell wall structure. The cell wall modifications occurring in plants during viral infection remain poorly described. Therefore, this study focuses on cell wall dynamics as an effect of incompatible interactions between the potato virus Y (PVYNTN) and resistant potatoes (hypersensitive plant), as well as compatible (susceptible plant) interactions. Our analysis describes, for the first time, the expression of the potato expansin A3 (StEXPA3) and potato extensin 4 (StEXT4) genes in PVYNTN-susceptible and -resistant potato plant interactions. The results indicated a statistically significant induction of the StEXPA3 gene during a susceptible response. By contrast, we demonstrated the predominantly gradual activation of the StEXT4 gene during the hypersensitive response to PVYNTN inoculation. Moreover, the in situ distributions of expansins (StEXPAs), which are essential cell wall-associated proteins, and the hydroxyproline-rich glycoprotein (HRGP) extensin were investigated in two types of interactions. Furthermore, cell wall loosening was accompanied by an increase in StEXPA deposition in a PVYNTN-susceptible potato, whereas the HRGP content dynamically increased during the hypersensitive response, when the cell wall was reinforced. Ultrastructural localization and quantification revealed that the HRGP extensin was preferably located in the apoplast, but deposition in the symplast was also observed in resistant plants. Interestingly, during the hypersensitive response, StEXPA proteins were mainly located in the symplast area, in contrast to the susceptible potato where StEXPA proteins were mainly observed in the cell wall. These findings revealed that changes in the intracellular distribution and abundance of StEXPAs and HRGPs can be differentially regulated, depending on different types of PVYNTN–potato plant interactions, and confirmed the involvement of apoplast and symplast activation as a defense response mechanism.
Collapse
|
125
|
Góra-Sochacka A, Więsyk A, Fogtman A, Lirski M, Zagórski-Ostoja W. Root Transcriptomic Analysis Reveals Global Changes Induced by Systemic Infection of Solanum lycopersicum with Mild and Severe Variants of Potato Spindle Tuber Viroid. Viruses 2019; 11:v11110992. [PMID: 31671783 PMCID: PMC6893655 DOI: 10.3390/v11110992] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022] Open
Abstract
Potato spindle tuber viroid (PSTVd) causes systemic infection in plant hosts. There are many studies on viroid-host plant interactions, but they have predominantly focused on the aboveground part of the plant. Here, we investigated transcriptomic profile changes in tomato roots systemically infected with mild or severe PSTVd variants using a combined microarray/RNA-seq approach. Analysis indicated differential expression of genes related to various Gene Ontology categories depending on the stage of infection and PSTVd variant. A majority of cell-wall-related genes were down-regulated at early infection stages, but at the late stage, the number of up-regulated genes increased significantly. Along with observed alterations of many lignin-related genes, performed lignin quantification indicated their disrupted level in PSTVd-infected roots. Altered expression of genes related to biosynthesis and signaling of auxin and cytokinin, which are crucial for lateral root development, was also identified. Comparison of both PSTVd infections showed that transcriptional changes induced by the severe variant were stronger than those caused by the mild variant, especially at the late infection stage. Taken together, we showed that similarly to aboveground plant parts, PSTVd infection in the underground tissues activates the plant immune response.
Collapse
Affiliation(s)
- Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | - Aneta Więsyk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | - Anna Fogtman
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | - Maciej Lirski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | | |
Collapse
|
126
|
Expression of Two α-Type Expansins from Ammopiptanthus nanus in Arabidopsis thaliana Enhance Tolerance to Cold and Drought Stresses. Int J Mol Sci 2019; 20:ijms20215255. [PMID: 31652768 PMCID: PMC6862469 DOI: 10.3390/ijms20215255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 12/25/2022] Open
Abstract
Expansins, cell-wall loosening proteins, play an important role in plant growth and development and abiotic stress tolerance. Ammopiptanthus nanus (A. nanus) is an important plant to study to understand stress resistance in forestry. In our previous study, two α-type expansins from A. nanus were cloned and named AnEXPA1 and AnEXPA2. In this study, we found that they responded to different abiotic stress and hormone signals. It suggests that they may play different roles in response to abiotic stress. Their promoters show some of the same element responses to abiotic stress and hormones, but some special elements were identified between the expansins that could be essential for their expression. In order to further testify the reliability of the above results, we conducted an analysis of β-glucuronidase (GUS) dyeing. The analysis showed that AnEXPA1 was only induced by cold stress, whereas AnEXPA2 responded to hormone induction. AnEXPA1 and AnEXPA2 transgenic Arabidopsis plants showed better tolerance to cold and drought stresses. Moreover, the ability to scavenge reactive oxygen species (ROS) was significantly improved in the transgenic plants, and expansin activity was enhanced. These results suggested that AnEXPA1 and AnEXPA2 play an important role in the response to abiotic stress. Our research contributes to a better understanding of the regulatory network of expansins and may benefit agricultural production.
Collapse
|
127
|
Feng X, Xu Y, Peng L, Yu X, Zhao Q, Feng S, Zhao Z, Li F, Hu B. TaEXPB7-B, a β-expansin gene involved in low-temperature stress and abscisic acid responses, promotes growth and cold resistance in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:153004. [PMID: 31279220 DOI: 10.1016/j.jplph.2019.153004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 05/15/2023]
Abstract
Low temperature is one of the primary causes of economic loss in agricultural production, and in this regard, expansin proteins are known to play important roles in plant growth and responses to various abiotic stresses and plant hormones. In order to elucidate the roles of expansin genes in the response of Dongnongdongmai 2 (D2), a highly cold-resistant winter wheat variety, to low-temperature stress, we exposed plants to a temperature of 4℃ and analysed the transcriptome of tillering nodes. Expression levels of TaEXPB7-B were significantly increased in response to both low-temperature stress and abscisic acid (ABA) treatment. To further confirm these observations, we transformed Arabidopsis plants with the β-glucuronidase (GUS) gene driven by the TaEXPB7-B promoter. GUS staining results revealed that TaEXPB7-B showed similar responses to low-temperature and ABA treatments. Our transcriptome data indicated that the AREB/ABF transcription factor gene TaWABI5 was also induced by low temperature in D2. Yeast one-hybrid experiments demonstrated that TaWABI5 binds to an ABRE cis-element in the TaEXPB7-B promoter, and overexpression of TaWABI5 in wheat protoplasts enhanced the expression of endogenous TaEXPB7-B by 7.7-fold, implying that TaWABI5 plays important roles in regulating the expression of TaEXPB7-B. Cytological data obtained from the transient expression of 35S::TaEXPB7-B-eYFP in onion epidermal cells indicated that TaEXPB7-B is cell wall localised. Overexpression of TaEXPB7-B in Arabidopsis promoted a significant increase in plant growth and increased lignin and cellulose contents. Moreover, TaEXPB7-B conferred enhanced antioxidant and osmotic regulation in transgenic Arabidopsis, thereby increasing the tolerance and survival of plants under conditions of low-temperature stress.
Collapse
Affiliation(s)
- Xu Feng
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yongqing Xu
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lina Peng
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xingyu Yu
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qiaoqin Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shanshan Feng
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ziyi Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Fenglan Li
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Baozhong Hu
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China; Harbin University, Harbin, 150086, PR China.
| |
Collapse
|
128
|
Borges KLR, Salvato F, Loziuk PL, Muddiman DC, Azevedo RA. Quantitative proteomic analysis of tomato genotypes with differential cadmium tolerance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26039-26051. [PMID: 31278641 DOI: 10.1007/s11356-019-05766-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/17/2019] [Indexed: 05/06/2023]
Abstract
This is a report on comprehensive characterization of cadmium (Cd)-exposed root proteomes in tomato using label-free quantitative proteomic approach. Two genotypes differing in Cd tolerance, Pusa Ruby (Cd-tolerant) and Calabash Rouge (Cd-sensitive), were exposed during 4 days to assess the Cd-induced effects on root proteome. The overall changes in both genotypes in terms of differentially accumulated proteins (DAPs) were mainly associated to cell wall, redox, and stress responses. The proteome of the sensitive genotype was more responsive to Cd excess, once it presented higher number of DAPs. Contrasting protein accumulation in cellular component was observed: Cd-sensitive enhanced intracellular components, while the Cd-tolerant increased proteins of extracellular and envelope regions. Protective and regulatory mechanisms were different between genotypes, once the tolerant showed alterations of various protein groups that lead to a more efficient system to cope with Cd challenge. These findings could shed some light on the molecular basis underlying the Cd stress response in tomato, providing fundamental insights for the development of Cd-safe cultivars. Graphical abstract.
Collapse
Affiliation(s)
- Karina Lima Reis Borges
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo, 13418-900, Brasil
| | - Fernanda Salvato
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo, 13418-900, Brasil
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brasil
| | - Philip L Loziuk
- W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - David C Muddiman
- W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Ricardo Antunes Azevedo
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo, 13418-900, Brasil.
| |
Collapse
|
129
|
Balestrini R, Rosso LC, Veronico P, Melillo MT, De Luca F, Fanelli E, Colagiero M, di Fossalunga AS, Ciancio A, Pentimone I. Transcriptomic Responses to Water Deficit and Nematode Infection in Mycorrhizal Tomato Roots. Front Microbiol 2019; 10:1807. [PMID: 31456765 PMCID: PMC6700261 DOI: 10.3389/fmicb.2019.01807] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
Climate changes include the intensification of drought in many parts of the world, increasing its frequency, severity and duration. However, under natural conditions, environmental stresses do not occur alone, and, in addition, more stressed plants may become more susceptible to attacks by pests and pathogens. Studies on the impact of the arbuscular mycorrhizal (AM) symbiosis on tomato response to water deficit showed that several drought-responsive genes are differentially regulated in AM-colonized tomato plants (roots and leaves) during water deficit. To date, global changes in mycorrhizal tomato root transcripts under water stress conditions have not been yet investigated. Here, changes in root transcriptome in the presence of an AM fungus, with or without water stress (WS) application, have been evaluated in a commercial tomato cultivar already investigated for the water stress response during AM symbiosis. Since root-knot nematodes (RKNs, Meloidogyne incognita) are obligate endoparasites and cause severe yield losses in tomato, the impact of the AM fungal colonization on RKN infection at 7 days post-inoculation was also evaluated. Results offer new information about the response to AM symbiosis, highlighting a functional redundancy for several tomato gene families, as well as on the tomato and fungal genes involved in WS response during symbiosis, underlying the role of the AM fungus. Changes in the expression of tomato genes related to nematode infection during AM symbiosis highlight a role of AM colonization in triggering defense responses against RKN in tomato. Overall, new datasets on the tomato response to an abiotic and biotic stress during AM symbiosis have been obtained, providing useful data for further researches.
Collapse
Affiliation(s)
- Raffaella Balestrini
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Laura C Rosso
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Pasqua Veronico
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Maria Teresa Melillo
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Francesca De Luca
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Elena Fanelli
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Mariantonietta Colagiero
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | | | - Aurelio Ciancio
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Isabella Pentimone
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| |
Collapse
|
130
|
Chen Y, Zhang B, Li C, Lei C, Kong C, Yang Y, Gong M. A comprehensive expression analysis of the expansin gene family in potato (Solanum tuberosum) discloses stress-responsive expansin-like B genes for drought and heat tolerances. PLoS One 2019; 14:e0219837. [PMID: 31318935 PMCID: PMC6638956 DOI: 10.1371/journal.pone.0219837] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Expansin is a type of cell wall elongation and stress relaxation protein involved in various developmental processes and stress resistances in plant. In this study, we identified 36 potato (Solanum tuberosum L.) genes belonging to the expansin (StEXP) gene family from the genome reference. These genes included 24 α-expansins (StEXPAs), five β-expansins (StEXPBs), one expansin-like A (StEXLA) and six expansin-like B (StEXLBs). The RNA-Seq analysis conducted from a variety of tissue types showed 34 expansins differentially expressed among tissues, some of which only expressed in specific tissues. Most of the StEXPAs and StEXPB2 transcripts were more abundant in young tuber compared with other tissues, suggesting they likely play a role in tuber development. There were 31 genes, especially StEXLB6, showed differential expression under the treatments of ABA, IAA and GA3, as well as under the drought and heat stresses, indicating they were likely involved in potato stress resistance. In addition, the gene co-expression analysis indicated the StEXLBs likely contribute to a wider range of stress resistances compared with other genes. We found the StEXLA and six StEXLBs expressed differently under a range of abiotic stresses (salt, alkaline, heavy metals, drought, heat, and cold stresses), which likely participated in the associated signaling pathways. Comparing with the control group, potato growing under the drought or heat stresses exhibited up-regulation of the all six StEXLB genes in leaves, whereas, the StEXLB3, StEXLB4, StEXLB5 and StEXLB6 showed relatively higher expression levels in roots. This suggested these genes likely played a role in the drought and heat tolerance. Overall, this study has shown the potential role of the StEXP genes in potato growth and stress tolerance, and provided fundamental resources for the future studies in potato breeding.
Collapse
Affiliation(s)
- Yongkun Chen
- School of Life Science, Yunnan Normal University, Kunming, China
| | - Bo Zhang
- Joint Academy of Potato Science, Yunnan Normal University, Kunming, China
| | - Canhui Li
- Joint Academy of Potato Science, Yunnan Normal University, Kunming, China
| | - Chunxia Lei
- School of Life Science, Yunnan Normal University, Kunming, China
| | - Chunyan Kong
- School of Life Science, Yunnan Normal University, Kunming, China
| | - Yu Yang
- School of Life Science, Yunnan Normal University, Kunming, China
| | - Ming Gong
- School of Life Science, Yunnan Normal University, Kunming, China
- * E-mail:
| |
Collapse
|
131
|
Kong Y, Wang B, Du H, Li W, Li X, Zhang C. GmEXLB1, a Soybean Expansin-Like B Gene, Alters Root Architecture to Improve Phosphorus Acquisition in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:808. [PMID: 31333686 PMCID: PMC6624453 DOI: 10.3389/fpls.2019.00808] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/05/2019] [Indexed: 05/27/2023]
Abstract
Expansins comprise four subfamilies, α-expansin (EXPA), β-expansin (EXPB), expansin-like A (EXLA), and expansin-like B (EXLB), which are involved in the regulation of root development and growth under abiotic stress. To date, few EXLB genes have been shown to respond to low phosphorus (P) in plants. In this study, we identified an EXLB gene, GmEXLB1, by analyzing the transcription profiles of GmEXLBs in soybean. Quantitative analysis showed that GmEXLB1 was expressed and induced in the lateral roots of soybean under low P conditions. The observation of β-glucuronidase staining in transgenic Arabidopsis suggested that GmEXLB1 might be associated with lateral root emergence. GmEXLB1 overexpression altered the root architecture of transgenic Arabidopsis by increasing the number and length of lateral roots and the length of primary roots under low P conditions. Additionally, the length of the elongation zone and the average cell length in the elongation zone were increased in transgenic Arabidopsis. Increases in biomass and P content suggested that GmEXLB1 overexpression enhanced P acquisition in Arabidopsis. Overall, we conclude that GmEXLB1 expression is induced in soybean under low P conditions, and the overexpression of GmEXLB1 improves P acquisition by regulating root elongation and architecture in Arabidopsis, which provides a possible direction for research of the function of this gene in soybean.
Collapse
|
132
|
Yang Y, Zheng W, Xiao K, Wu L, Zeng J, Zhou S. Transcriptome analysis reveals the different compatibility between LAAA × AA and LAAA × LL in Lilium. BREEDING SCIENCE 2019; 69:297-307. [PMID: 31481839 PMCID: PMC6711731 DOI: 10.1270/jsbbs.18147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/20/2019] [Indexed: 06/06/2023]
Abstract
To unveil the mechanism of the compatibility of odd-allotetraploid lily (LAAA) as female with diploid male lily, the differences of expressed unigenes in the ovaries and leaves between LAAA × AA and LAAA × LL were investigated using transcriptome analysis. The results showed the fruits of LAAA × AA well developed, while those of LAAA × LL aborted. The number of differentially expressed genes was less in the ovaries of LAAA × AA than those of LAAA × LL, but it showed opposite trend in those of leaves. The unigenes related with auxins, cytokinins, gibberellins, antioxidants, expansins, chlorophylls, carbohydrates, transport proteins were usually up-expressed in the ovaries and leaves of LAAA × AA but not in LAAA × LL; while those of abscisic acid, ethylene, jasmonic acid, and salicylic acid were increased in the ovaries or leaves of LAAA × LL but not in LAAA × AA. The up-expressed unigenes in the ovaries and leaves of LAAA × AA played positive roles in its fruit development because the products of the genes, like phytohormones and antioxidants, had functions protecting leaves from senescence or scavenging ROS, and thus LAAA was compatible with AA, while those of LAAA × LL played negative roles and caused its fruits aborted, and hence LAAA was incompatible with LL.
Collapse
Affiliation(s)
- Youxin Yang
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University,
Nanchang 330045,
China
| | - Wei Zheng
- College of Forestry, Jiangxi Agricultural University,
Nanchang 330045,
China
| | - Kongzhong Xiao
- College of Forestry, Jiangxi Agricultural University,
Nanchang 330045,
China
| | - Like Wu
- College of Forestry, Jiangxi Agricultural University,
Nanchang 330045,
China
| | - Jie Zeng
- College of Forestry, Jiangxi Agricultural University,
Nanchang 330045,
China
| | - Shujun Zhou
- College of Forestry, Jiangxi Agricultural University,
Nanchang 330045,
China
| |
Collapse
|
133
|
Quarantin A, Castiglioni C, Schäfer W, Favaron F, Sella L. The Fusarium graminearum cerato-platanins loosen cellulose substrates enhancing fungal cellulase activity as expansin-like proteins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:229-238. [PMID: 30913532 DOI: 10.1016/j.plaphy.2019.03.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/27/2019] [Accepted: 03/14/2019] [Indexed: 05/01/2023]
Abstract
Cerato-platanin proteins (CPPs) are small non-catalytic, cysteine-rich hydrophobic proteins produced by filamentous fungi. The genome of Fusarium graminearum, the causal agent of Fusarium head blight disease of wheat and other cereal grains, contains two genes putatively encoding for CPPs. To better characterize their features, the two FgCPPs were heterologously expressed in Pichia pastoris. The recombinant FgCPPs reduced the viscosity of a cellulose soluble derivate (carboxymethyl cellulose, CMC). The same effect was not observed on other polysaccharide substrates such as chitin, 1,3-β-glucan, xylan and pectin. Indeed, differently from other fungal CPPs and similarly to expansins, FgCPPs are trapped by cellulose and not by chitin, thus suggesting that these proteins interact with cellulose. A double knock-out mutant deleted of both FgCPPs encoding genes produces much more cellulase activity than the corresponding wild type strain when grown on CMC, likely compensating the absence of FgCPPs. This result prompted us to investigate a possible synergistic effect of these proteins with fungal cellulases. The incubation of FgCPPs in the presence of a fungal cellulase (EC 3.2.1.4) determines an increased enzymatic activity on CMC, filter paper and wheat cell walls. The observation that FgCPPs act with a non-hydrolytic mechanism indicates that these proteins favor fungal cellulase activity in an expansin-like manner. Though the disruption of the FgCPP genes had no demonstrable impact on fungal virulence, our experimental data suggest their probable involvement in virulence, thus we refer to them as accessory virulence genes. Our results suggest also that the FgCPPs could be exploited for future biotechnological application in second-generation biofuels production on lignocellulosic biomasses rich in cellulose. Finally, we demonstrate that FgCPPs act as elicitors of defense responses on Arabidopsis leaves, increasing resistance to Botrytis cinerea infections.
Collapse
Affiliation(s)
- Alessandra Quarantin
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Carla Castiglioni
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Wilhelm Schäfer
- Biocenter Klein Flottbek, Molecular Phytopathology and Genetics, University of Hamburg, Hamburg, Germany
| | - Francesco Favaron
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Luca Sella
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Italy.
| |
Collapse
|
134
|
Ward B, Brien C, Oakey H, Pearson A, Negrão S, Schilling RK, Taylor J, Jarvis D, Timmins A, Roy SJ, Tester M, Berger B, van den Hengel A. High-throughput 3D modelling to dissect the genetic control of leaf elongation in barley (Hordeum vulgare). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:555-570. [PMID: 30604470 PMCID: PMC6850118 DOI: 10.1111/tpj.14225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 05/11/2023]
Abstract
To optimize shoot growth and structure of cereals, we need to understand the genetic components controlling initiation and elongation. While measuring total shoot growth at high throughput using 2D imaging has progressed, recovering the 3D shoot structure of small grain cereals at a large scale is still challenging. Here, we present a method for measuring defined individual leaves of cereals, such as wheat and barley, using few images. Plant shoot modelling over time was used to measure the initiation and elongation of leaves in a bi-parental barley mapping population under low and high soil salinity. We detected quantitative trait loci (QTL) related to shoot growth per se, using both simple 2D total shoot measurements and our approach of measuring individual leaves. In addition, we detected QTL specific to leaf elongation and not to total shoot size. Of particular importance was the detection of a QTL on chromosome 3H specific to the early responses of leaf elongation to salt stress, a locus that could not be detected without the computer vision tools developed in this study.
Collapse
Affiliation(s)
- Ben Ward
- Australian Center for Visual TechnologiesUniversity of AdelaideAdelaideSA5005Australia
| | - Chris Brien
- Australian Plant Phenomics FacilityThe Plant AcceleratorSchool of Agriculture Food & WineUniversity of AdelaideUrrbraeSA5064Australia
- School of Agriculture Food & Wine and Waite Research InstituteUniversity of AdelaideUrrbraeSA5064Australia
- Phenomics and Bioinformatics Research CentreSchool of Information Technology and Mathematical SciencesUniversity of South AustraliaAdelaide5001Australia
| | - Helena Oakey
- School of Agriculture Food & Wine and Waite Research InstituteUniversity of AdelaideUrrbraeSA5064Australia
| | - Allison Pearson
- School of Agriculture Food & Wine and Waite Research InstituteUniversity of AdelaideUrrbraeSA5064Australia
- ARC Centre of Excellence in Plant Energy BiologyThe University of AdelaidePMB 1, Glen OsmondAdelaideSouth Australia5064Australia
- Australian Centre for Plant Functional GenomicsPMB 1, Glen OsmondAdelaideSouth Australia5064Australia
| | - Sónia Negrão
- Division of Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Rhiannon K. Schilling
- School of Agriculture Food & Wine and Waite Research InstituteUniversity of AdelaideUrrbraeSA5064Australia
- Australian Centre for Plant Functional GenomicsPMB 1, Glen OsmondAdelaideSouth Australia5064Australia
| | - Julian Taylor
- School of Agriculture Food & Wine and Waite Research InstituteUniversity of AdelaideUrrbraeSA5064Australia
| | - David Jarvis
- Division of Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Andy Timmins
- School of Agriculture Food & Wine and Waite Research InstituteUniversity of AdelaideUrrbraeSA5064Australia
- Australian Centre for Plant Functional GenomicsPMB 1, Glen OsmondAdelaideSouth Australia5064Australia
| | - Stuart J. Roy
- School of Agriculture Food & Wine and Waite Research InstituteUniversity of AdelaideUrrbraeSA5064Australia
- Australian Centre for Plant Functional GenomicsPMB 1, Glen OsmondAdelaideSouth Australia5064Australia
| | - Mark Tester
- Division of Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Bettina Berger
- Australian Plant Phenomics FacilityThe Plant AcceleratorSchool of Agriculture Food & WineUniversity of AdelaideUrrbraeSA5064Australia
- School of Agriculture Food & Wine and Waite Research InstituteUniversity of AdelaideUrrbraeSA5064Australia
| | - Anton van den Hengel
- Australian Center for Visual TechnologiesUniversity of AdelaideAdelaideSA5005Australia
| |
Collapse
|
135
|
Isolation and characterization of water-deficit stress-responsive α-expansin 1 ( EXPA1) gene from Saccharum complex. 3 Biotech 2019; 9:186. [PMID: 31065486 DOI: 10.1007/s13205-019-1719-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/15/2019] [Indexed: 01/06/2023] Open
Abstract
In this study, full-length (1282-1330 bp) α-expansin 1 (EXPA1) gene from three different accessions belonging to Saccharum complex (Saccharum officinarum-SoEXPA1, Erianthus arundinaceus-EaEXPA1, and Saccharum spp. hybrid-ShEXPA1) was isolated using RAGE technique and characterized. The intronic and coding regions of isolated expansin genes ranged between 526-568 and 756-762 bp, respectively. An open reading frame encoding a polypeptide of 252 amino acids was obtained from S. officinarum and commercial sugarcane hybrid, whereas 254 amino acids were obtained in E. arundinaceus, a wild relative of Saccharum. Bioinformatics analysis of deduced protein revealed the presence of specific signature sequences and conserved amino acid residues crucial for the functioning of the protein. The predicted physicochemical characterization showed that the protein is stable in nature with instability index (II) value less than 40 and also clearly shown the dominance of random coil in the protein structure. Phylogenetic analysis revealed high conservation of EXPA1 among Saccharum complex and related crop species, Sorghum bicolor and Zea mays. The docking study of EXPA1 protein showed the interaction with xylose, which is present in xyloglucan of plant cell wall, elucidated the role of the expansin proteins in plant cell wall modification. This was further supported by the subcellular localization experiment in which it is clearly seen that the expansin protein localizes in the cell wall. Relative expression analysis of EXPA1 gene in Saccharum complex during drought stress showed high expression of the EaEXPA1 in comparison with SoEXPA1 and ShEXPA1 indicating possible role of EaEXPA1 in increased water-deficit stress tolerance in E. arundinaceus. These results suggest the potential use of EXPA1 for increasing the water-deficient stress tolerance levels in crop plants.
Collapse
|
136
|
Wang YH, Que F, Wang GL, Hao JN, Li T, Xu ZS, Xiong AS. iTRAQ-Based Quantitative Proteomics and Transcriptomics Provide Insights Into the Importance of Expansins During Root Development in Carrot. Front Genet 2019; 10:247. [PMID: 30984239 PMCID: PMC6449468 DOI: 10.3389/fgene.2019.00247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/05/2019] [Indexed: 11/13/2022] Open
Abstract
Carrot is an important root vegetable crop with a variety of nutrients. As the main product of carrots, the growth and development of fleshy roots directly determine the yield and quality of carrots. However, molecular mechanism underlying the carrot root formation and expansion is still limited. In our study, isobaric tags for relative and absolute quantification (iTRAQ) was utilized to explore the differentially expressed proteins (DEPs) during different developmental stages of carrot roots. Overall, 2,845 proteins were detected, of which 118 were significantly expressed in all three stages. DEPs that participated in several growth metabolisms were identified, including energy metabolism, defense metabolism, cell growth and shape regulation. Among them, two expansin proteins were obtained. A total of 30 expansin genes were identified based on the carrot genome database. Structure analysis showed that carrot expansin gene family was relatively conserved. Based on the expression analysis, we found that the expression profile of expansins genes was up-regulated during the vigorous growing period of carrot root. Furthermore, there was a consistent relationship between the expression patterns of mRNA and protein. The results indicated that expansin proteins might play important roles during root development in carrot. Our work provided useful information for understanding molecular mechanism of carrot root development.
Collapse
Affiliation(s)
- Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China.,School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Jian-Nan Hao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
137
|
Sawicki M, Rondeau M, Courteaux B, Rabenoelina F, Guerriero G, Gomès E, Soubigou-Taconnat L, Balzergue S, Clément C, Ait Barka E, Vaillant-Gaveau N, Jacquard C. On a Cold Night: Transcriptomics of Grapevine Flower Unveils Signal Transduction and Impacted Metabolism. Int J Mol Sci 2019; 20:E1130. [PMID: 30841651 PMCID: PMC6429367 DOI: 10.3390/ijms20051130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 02/02/2023] Open
Abstract
Low temperature is a critical environmental factor limiting plant productivity, especially in northern vineyards. To clarify the impact of this stress on grapevine flower, we used the Vitis array based on Roche-NimbleGen technology to investigate the gene expression of flowers submitted to a cold night. Our objectives were to identify modifications in the transcript levels after stress and during recovery. Consequently, our results confirmed some mechanisms known in grapes or other plants in response to cold stress, notably, (1) the pivotal role of calcium/calmodulin-mediated signaling; (2) the over-expression of sugar transporters and some genes involved in plant defense (especially in carbon metabolism), and (3) the down-regulation of genes encoding galactinol synthase (GOLS), pectate lyases, or polygalacturonases. We also identified some mechanisms not yet known to be involved in the response to cold stress, i.e., (1) the up-regulation of genes encoding G-type lectin S-receptor-like serine threonine-protein kinase, pathogen recognition receptor (PRR5), or heat-shock factors among others; (2) the down-regulation of Myeloblastosis (MYB)-related transcription factors and the Constans-like zinc finger family; and (3) the down-regulation of some genes encoding Pathogen-Related (PR)-proteins. Taken together, our results revealed interesting features and potentially valuable traits associated with stress responses in the grapevine flower. From a long-term perspective, our study provides useful starting points for future investigation.
Collapse
Affiliation(s)
- Mélodie Sawicki
- Unité de Recherche Résistance Induite et Bioprotection des Plantes-EA 4707, Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Moulin de la Housse-Bâtiment 18, BP 1039, 51687 REIMS Cedex 2, France.
| | - Marine Rondeau
- Unité de Recherche Résistance Induite et Bioprotection des Plantes-EA 4707, Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Moulin de la Housse-Bâtiment 18, BP 1039, 51687 REIMS Cedex 2, France.
| | - Barbara Courteaux
- Unité de Recherche Résistance Induite et Bioprotection des Plantes-EA 4707, Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Moulin de la Housse-Bâtiment 18, BP 1039, 51687 REIMS Cedex 2, France.
| | - Fanja Rabenoelina
- Unité de Recherche Résistance Induite et Bioprotection des Plantes-EA 4707, Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Moulin de la Housse-Bâtiment 18, BP 1039, 51687 REIMS Cedex 2, France.
| | - Gea Guerriero
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41 rue du Brill, L- 4422 Belvaux, Luxembourg.
| | - Eric Gomès
- Institute of Vine and Wine Sciences, UMR 1287 Ecophysiology and Grape Functional Genomics, University of Bordeaux, INRA 210 Chemin de Leysotte - CS 50008, 33882 Villenave d'Ornon CEDEX, France.
| | - Ludivine Soubigou-Taconnat
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France.
| | - Sandrine Balzergue
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France.
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France.
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071 Beaucouzé CEDEX, France.
| | - Christophe Clément
- Unité de Recherche Résistance Induite et Bioprotection des Plantes-EA 4707, Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Moulin de la Housse-Bâtiment 18, BP 1039, 51687 REIMS Cedex 2, France.
| | - Essaïd Ait Barka
- Unité de Recherche Résistance Induite et Bioprotection des Plantes-EA 4707, Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Moulin de la Housse-Bâtiment 18, BP 1039, 51687 REIMS Cedex 2, France.
| | - Nathalie Vaillant-Gaveau
- Unité de Recherche Résistance Induite et Bioprotection des Plantes-EA 4707, Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Moulin de la Housse-Bâtiment 18, BP 1039, 51687 REIMS Cedex 2, France.
| | - Cédric Jacquard
- Unité de Recherche Résistance Induite et Bioprotection des Plantes-EA 4707, Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Moulin de la Housse-Bâtiment 18, BP 1039, 51687 REIMS Cedex 2, France.
| |
Collapse
|
138
|
Liu M, Bassetti N, Petrasch S, Zhang N, Bucher J, Shen S, Zhao J, Bonnema G. What makes turnips: anatomy, physiology and transcriptome during early stages of its hypocotyl-tuber development. HORTICULTURE RESEARCH 2019; 6:38. [PMID: 30854213 DOI: 10.1038/s41438-019-0119-115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 05/26/2023]
Abstract
Brassica species are characterized by their tremendous intraspecific diversity, exemplified by leafy vegetables, oilseeds, and crops with enlarged inflorescences or above ground storage organs. In contrast to potato tubers that are edible storage organs storing energy as starch and are the vegetative propagation modules, the storage organs of turnips, grown from true seed, are swollen hypocotyls with varying degrees of root and stem that mainly store glucose and fructose. To highlight their anatomical origin, we use the term "hypocotyl-tuber" for these turnip vegetative storage organs. We combined cytological, physiological, genetic and transcriptomic approaches, aiming to identify the initial stages, molecular pathways and regulatory genes for hypocotyl-tuber induction in turnips (B. rapa subsp. rapa). We first studied the development of the hypocotyl zone of turnip and Pak choi and found that 16 days after sowing (DAS) morphological changes occurred in the xylem which indicated the early tuberization stage. Tissue culture experiments showed a clear effect of auxin on hypocotyl-tuber growth. Differentially expressed genes between 1 and 6 weeks after sowing in turnip hypocotyls, located in genomic regions involved in tuber initiation and/or tuber growth defined by QTL and selective sweeps for tuber formation, were identified as candidate genes that were studied in more detail for their role in hypocotyl-tuber formation. This included a Bra-FLOR1 paralogue with increased expression 16 DAS, when the hypocotyl starts swelling, suggesting dual roles for duplicated flowering time genes in flowering and hypocotyl-tuber induction. Bra-CYP735A2 was identified for its possible role in tuber growth via trans-zeatin. Weigthed Co-expression Network Analysis (WGCNA) identified 59 modules of co-expressed genes. Bra-FLOR1 and Bra-CYP735A2 were grouped in a module that included several genes involved in carbohydrate transport and metabolism, cell-wall growth, auxin regulation and secondary metabolism that serve as starting points to illuminate the transcriptional regulation of hypocotyl-tuber formation and development.
Collapse
Affiliation(s)
- Mengyang Liu
- 1Plant Breeding, Wageningen University and Research, Wageningen, the Netherlands
- 2Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Niccolo Bassetti
- 1Plant Breeding, Wageningen University and Research, Wageningen, the Netherlands
- 3Biosystematics Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Stefan Petrasch
- 1Plant Breeding, Wageningen University and Research, Wageningen, the Netherlands
- 4Department of Plant Science, University of California, Davis, CA USA
| | - Ningwen Zhang
- 1Plant Breeding, Wageningen University and Research, Wageningen, the Netherlands
| | - Johan Bucher
- 1Plant Breeding, Wageningen University and Research, Wageningen, the Netherlands
| | - Shuxing Shen
- 2Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Jianjun Zhao
- 2Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Guusje Bonnema
- 1Plant Breeding, Wageningen University and Research, Wageningen, the Netherlands
- 2Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
139
|
Hou L, Zhang Z, Dou S, Zhang Y, Pang X, Li Y. Genome-wide identification, characterization, and expression analysis of the expansin gene family in Chinese jujube (Ziziphus jujuba Mill.). PLANTA 2019; 249:815-829. [PMID: 30411169 DOI: 10.1007/s00425-018-3020-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/23/2018] [Indexed: 05/10/2023]
Abstract
Main conclusion 30 expansin genes were identified in the jujube genome. Phylogenetic analysis classified expansins into 17 subgroups. Closely related expansins share a conserved gene structure. ZjEXPs had different expression patterns in different tissues. Plant-specific expansins were first discovered as pH-dependent cell-wall-loosening proteins involved in diverse physiological processes. No comprehensive analysis of the expansin gene family has yet been carried out at the whole genome level in Chinese jujube (Ziziphus jujuba Mill.). In this study, 30 expansin genes were identified in the jujube genome. These genes, which were distributed with varying densities across 10 of the 12 jujube chromosomes, could be divided into four subfamilies: 19 ZjEXPAs, 3 ZjEXPBs, 1 ZjEXLA, and 7 ZjEXLBs. Phylogenetic analysis of expansin genes in Arabidopsis, rice, apple, grape, and jujube classified these genes into 17 subgroups. Members of the same subfamily and subgroup shared conserved gene structure and motif compositions. Homology analysis identified 20 homologous gene pairs between jujube and Arabidopsis. Further analysis of ZjEXP gene promoter regions uncovered various growth, development and stress-responsive cis-acting elements. Expression analysis and transcript profiling revealed that ZjEXPs had different expression patterns in different tissues at various developmental stages. ZjEXPA4 and ZjEXPA6 were highly expressed in young fruits, ZjEXPA3 and ZjEXPA5 were significantly expressed in flowers, and ZjEXPA7 was specifically expressed in young leaves. The results of this study, the first systematic analysis of the jujube expansin gene family, can serve as a strong foundation for further elucidation of the physiological functions and biological roles of jujube expansin genes.
Collapse
Affiliation(s)
- Lu Hou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zhiyong Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Suhan Dou
- Henan Longyuan Flowers &Trees Co., Ltd., Xuchang, 461000, China
| | - Yadong Zhang
- Henan Longyuan Flowers &Trees Co., Ltd., Xuchang, 461000, China
| | - Xiaoming Pang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yingyue Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
140
|
Gautier F, Label P, Eliášová K, Leplé JC, Motyka V, Boizot N, Vondráková Z, Malbeck J, Trávníčková A, Le Metté C, Lesage-Descauses MC, Lomenech AM, Trontin JF, Costa G, Lelu-Walter MA, Teyssier C. Cytological, Biochemical and Molecular Events of the Embryogenic State in Douglas-fir ( Pseudotsuga menziesii [Mirb.]). FRONTIERS IN PLANT SCIENCE 2019; 10:118. [PMID: 30873184 PMCID: PMC6403139 DOI: 10.3389/fpls.2019.00118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/23/2019] [Indexed: 05/08/2023]
Abstract
Somatic embryogenesis techniques have been developed for most coniferous species, but only using very juvenile material. To extend the techniques' scope, better integrated understanding of the key biological, physiological and molecular characteristics of embryogenic state is required. Therefore, embryonal masses (EMs) and non-embryogenic calli (NECs) have been compared during proliferation at multiple levels. EMs and NECs originating from a single somatic embryo (isogenic lines) of each of three unrelated genotypes were used in the analyses, which included comparison of the lines' anatomy by transmission light microscopy, transcriptomes by RNAseq Illumina sequencing, proteomes by free-gel analysis, contents of endogenous phytohormones (indole-3-acetic acid, cytokinins and ABA) by LC-MS analysis, and soluble sugar contents by HPLC. EMs were characterized by upregulation (relative to levels in NECs) of transcripts, proteins, transcription factors and active cytokinins associated with cell differentiation accompanied by histological, carbohydrate content and genetic markers of cell division. In contrast, NECs were characterized by upregulation (relative to levels in EMs) of transcripts, proteins and products associated with responses to stimuli (ABA, degradation forms of cytokinins, phenols), oxidative stress (reactive oxygen species) and carbohydrate storage (starch). Sub-Network Enrichment Analyses that highlighted functions and interactions of transcripts and proteins that significantly differed between EMs and NECs corroborated these findings. The study shows the utility of a novel approach involving integrated multi-scale transcriptomic, proteomic, biochemical, histological and anatomical analyses to obtain insights into molecular events associated with embryogenesis and more specifically to the embryogenic state of cell in Douglas-fir.
Collapse
Affiliation(s)
- Florian Gautier
- BioForA, INRA, ONF, Orléans, France
- PEIRENE, Sylva LIM, Université de Limoges, Limoges, France
| | | | - Kateřina Eliášová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | | | - Václav Motyka
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | | | - Zuzana Vondráková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jiří Malbeck
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Alena Trávníčková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | | | | | - Anne-Marie Lomenech
- Centre de Génomique Fonctionnelle, Plateforme Protéome, University of Bordeaux, Bordeaux, France
| | | | - Guy Costa
- PEIRENE, Sylva LIM, Université de Limoges, Limoges, France
| | | | | |
Collapse
|
141
|
Pomares-Viciana T, Del Río-Celestino M, Román B, Die J, Pico B, Gómez P. First RNA-seq approach to study fruit set and parthenocarpy in zucchini (Cucurbita pepo L.). BMC PLANT BIOLOGY 2019; 19:61. [PMID: 30727959 PMCID: PMC6366093 DOI: 10.1186/s12870-019-1632-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/04/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND Zucchini fruit set can be limited due to unfavourable environmental conditions in off-seasons crops that caused ineffective pollination/fertilization. Parthenocarpy, the natural or artificial fruit development without fertilization, has been recognized as an important trait to avoid this problem, and is related to auxin signalling. Nevertheless, differences found in transcriptome analysis during early fruit development of zucchini suggest that other complementary pathways could regulate fruit formation in parthenocarpic cultivars of this species. The development of next-generation sequencing technologies (NGS) as RNA-sequencing (RNA-seq) opens a new horizon for mapping and quantifying transcriptome to understand the molecular basis of pathways that could regulate parthenocarpy in this species. The aim of the current study was to analyze fruit transcriptome of two cultivars of zucchini, a non-parthenocarpic cultivar and a parthenocarpic cultivar, in an attempt to identify key genes involved in parthenocarpy. RESULTS RNA-seq analysis of six libraries (unpollinated, pollinated and auxin treated fruit in a non-parthenocarpic and parthenocarpic cultivar) was performed mapping to a new version of C. pepo transcriptome, with a mean of 92% success rate of mapping. In the non-parthenocarpic cultivar, 6479 and 2186 genes were differentially expressed (DEGs) in pollinated fruit and auxin treated fruit, respectively. In the parthenocarpic cultivar, 10,497 in pollinated fruit and 5718 in auxin treated fruit. A comparison between transcriptome of the unpollinated fruit for each cultivar has been performed determining that 6120 genes were differentially expressed. Annotation analysis of these DEGs revealed that cell cycle, regulation of transcription, carbohydrate metabolism and coordination between auxin, ethylene and gibberellin were enriched biological processes during pollinated and parthenocarpic fruit set. CONCLUSION This analysis revealed the important role of hormones during fruit set, establishing the activating role of auxins and gibberellins against the inhibitory role of ethylene and different candidate genes that could be useful as markers for parthenocarpic selection in the current breeding programs of zucchini.
Collapse
Affiliation(s)
- Teresa Pomares-Viciana
- Genomics and Biotechnology Department, IFAPA Research Centre La Mojonera, Camino de San Nicolás, 1, 04745 La Mojonera, Almería, Spain
| | - Mercedes Del Río-Celestino
- Genomics and Biotechnology Department, IFAPA Research Centre La Mojonera, Camino de San Nicolás, 1, 04745 La Mojonera, Almería, Spain
| | - Belén Román
- Genomics and Biotechnology Department, IFAPA Research Centre Alameda del Obispo, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Jose Die
- Genetics Department, University of Cordoba, Av. de Medina Azahara, 5, 14071 Córdoba, Spain
| | - Belén Pico
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Pedro Gómez
- Genomics and Biotechnology Department, IFAPA Research Centre La Mojonera, Camino de San Nicolás, 1, 04745 La Mojonera, Almería, Spain
| |
Collapse
|
142
|
Zhang J, Wang Y, Naeem M, Zhu M, Li J, Yu X, Hu Z, Chen G. An AGAMOUS MADS-box protein, SlMBP3, regulates the speed of placenta liquefaction and controls seed formation in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:909-924. [PMID: 30481310 DOI: 10.1093/jxb/ery418] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 11/18/2018] [Indexed: 05/25/2023]
Abstract
AGAMOUS (AG) MADS-box transcription factors have been shown to play crucial roles in floral organ and fruit development in angiosperms. Here, we isolated a tomato (Solanum lycopersicum) AG MADS-box gene SlMBP3 and found that it is preferentially expressed in flowers and during early fruit developmental stages in the wild-type (WT), and in the Nr (never ripe) and rin (ripening inhibitor) mutants. Its transcripts are notably accumulated in the pistils; transcripts abundance decrease during seed and placental development, increasing again during flower development. SlMBP3-RNAi tomato plants displayed fleshy placenta without locular gel and extremely malformed seeds with no seed coat, while SlMBP3-overexpressing plants exhibited advanced liquefaction of the placenta and larger seeds. Enzymatic activities related to cell wall modification, and the contents of cell wall components and pigments were dramatically altered in the placentas of SlMBP3-RNAi compared with the WT. Alterations in these physiological features were also observed in the placentas of SlMBP3-overexpressing plants. The lignin content of mature seeds in SlMBP3-RNAi lines was markedly lower than that in the WT. RNA-seq and qRT-PCR analyses revealed that genes involved in seed development and the biosynthesis of enzymes related to cell wall modification, namely gibberellin, indole-3-acetic acid, and abscisic acid were down-regulated in the SlMBP3-RNAi lines. Taking together, our results demonstrate that SlMBP3 is involved in the regulation of placenta and seed development in tomato.
Collapse
Affiliation(s)
- Jianling Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Yicong Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Muhammad Naeem
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Mingku Zhu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Xiaohui Yu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
143
|
Genome-wide identification and expression analysis of expansin gene family in common wheat (Triticum aestivum L.). BMC Genomics 2019; 20:101. [PMID: 30709338 PMCID: PMC6359794 DOI: 10.1186/s12864-019-5455-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
Background Expansin loosens plant cell walls and involves in cell enlargement and various abiotic stresses. Plant expansin superfamily contains four subfamilies: α-expansin (EXPA), β-expansin (EXPB), expansin-like A (EXLA), and expansin-like B (EXLB). In this work, we performed a comprehensive study on the molecular characterization, phylogenetic relationship and expression profiling of common wheat (Triticum aestivum) expansin gene family using the recently released wheat genome database (IWGSC RefSeq v1.1 with a coverage rate of 94%). Results Genome-wide analysis identified 241 expansin genes in the wheat genome, which were grouped into three subfamilies (EXPA, EXPB and EXLA) by phylogenetic tree. Molecular structure analysis showed that wheat expansin gene family showed high evolutionary conservation although some differences were present in different subfamilies. Some key amino acid sites that contribute to functional divergence, positive selection, and coevolution were detected. Evolutionary analysis revealed that wheat expansin gene superfamily underwent strong positive selection. The transcriptome map and qRT-PCR analysis found that wheat expansin genes had tissue/organ expression specificity and preference, and generally highly expressed in the roots. The expression levels of some expansin genes were significantly induced by NaCl and polyethylene glycol stresses, which was consistent with the differential distribution of the cis-elements in the promoter region. Conclusions Wheat expansin gene family showed high evolutionary conservation and wide range of functional divergence. Different selection constraints may influence the evolution of the three expansin subfamilies. The different expression patterns demonstrated that expansin genes could play important roles in plant growth and abiotic stress responses. This study provides new insights into the structures, evolution and functions of wheat expansin gene family. Electronic supplementary material The online version of this article (10.1186/s12864-019-5455-1) contains supplementary material, which is available to authorized users.
Collapse
|
144
|
Li ZT, Janisiewicz WJ, Liu Z, Callahan AM, Evans BE, Jurick WM, Dardick C. Exposure in vitro to an Environmentally Isolated Strain TC09 of Cladosporium sphaerospermum Triggers Plant Growth Promotion, Early Flowering, and Fruit Yield Increase. FRONTIERS IN PLANT SCIENCE 2019; 9:1959. [PMID: 30774644 PMCID: PMC6367233 DOI: 10.3389/fpls.2018.01959] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/17/2018] [Indexed: 05/23/2023]
Abstract
A growing number of bacteria and fungi have been found to promote plant growth through mutualistic interactions involving elements such as volatile organic compounds (VOCs). Here, we report the identification of an environmentally isolated strain of Cladosporium sphaerospermum (herein named TC09), that substantially enhances plant growth after exposure in vitro beyond what has previously been reported. When cultured on Murashige and Skoog (MS) medium under in vitro conditions, tobacco seedlings (Nicotiana tabacum) exposed to TC09 cultures for 20 days increased stem height and whole plant biomass up to 25- and 15-fold, respectively, over controls without exposure. TC09-mediated growth promotion required >5 g/L sucrose in the plant culture medium and was influenced by the duration of exposure ranging from one to 10 days, beyond which no differences were detected. When transplanted to soil under greenhouse conditions, TC09-exposed tobacco plants retained higher rates of growth. Comparative transcriptome analyses using tobacco seedlings exposed to TC09 for 10 days uncovered differentially expressed genes (DEGs) associated with diverse biological processes including cell expansion and cell cycle, photosynthesis, phytohormone homeostasis and defense responses. To test the potential efficacy of TC09-mediated growth promotion on agricultural productivity, pepper plants (Capsicum annuum L.) of two different varieties, Cayenne and Minisweet, were pre-exposed to TC09 and planted in the greenhouse to monitor growth, flowering, and fruit production. Results showed that treated pepper plants flowered 20 days earlier and yielded up to 213% more fruit than untreated controls. Altogether the data suggest that exposure of young plants to C. sphaerospermum produced VOCs may provide a useful tool to improve crop productivity.
Collapse
Affiliation(s)
- Zhijian T. Li
- Appalachian Fruit Research Station, United States Department of Agriculture – Agricultural Research Service, Kearneysville, WV, United States
| | - Wojciech J. Janisiewicz
- Appalachian Fruit Research Station, United States Department of Agriculture – Agricultural Research Service, Kearneysville, WV, United States
| | - Zongrang Liu
- Appalachian Fruit Research Station, United States Department of Agriculture – Agricultural Research Service, Kearneysville, WV, United States
| | - Ann M. Callahan
- Appalachian Fruit Research Station, United States Department of Agriculture – Agricultural Research Service, Kearneysville, WV, United States
| | - Breyn E. Evans
- Appalachian Fruit Research Station, United States Department of Agriculture – Agricultural Research Service, Kearneysville, WV, United States
| | - Wayne M. Jurick
- Food Quality Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture – Agricultural Research Service, Beltsville, MD, United States
| | - Chris Dardick
- Appalachian Fruit Research Station, United States Department of Agriculture – Agricultural Research Service, Kearneysville, WV, United States
| |
Collapse
|
145
|
Liu M, Bassetti N, Petrasch S, Zhang N, Bucher J, Shen S, Zhao J, Bonnema G. What makes turnips: anatomy, physiology and transcriptome during early stages of its hypocotyl-tuber development. HORTICULTURE RESEARCH 2019; 6:38. [PMID: 30854213 PMCID: PMC6395767 DOI: 10.1038/s41438-019-0119-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 05/16/2023]
Abstract
Brassica species are characterized by their tremendous intraspecific diversity, exemplified by leafy vegetables, oilseeds, and crops with enlarged inflorescences or above ground storage organs. In contrast to potato tubers that are edible storage organs storing energy as starch and are the vegetative propagation modules, the storage organs of turnips, grown from true seed, are swollen hypocotyls with varying degrees of root and stem that mainly store glucose and fructose. To highlight their anatomical origin, we use the term "hypocotyl-tuber" for these turnip vegetative storage organs. We combined cytological, physiological, genetic and transcriptomic approaches, aiming to identify the initial stages, molecular pathways and regulatory genes for hypocotyl-tuber induction in turnips (B. rapa subsp. rapa). We first studied the development of the hypocotyl zone of turnip and Pak choi and found that 16 days after sowing (DAS) morphological changes occurred in the xylem which indicated the early tuberization stage. Tissue culture experiments showed a clear effect of auxin on hypocotyl-tuber growth. Differentially expressed genes between 1 and 6 weeks after sowing in turnip hypocotyls, located in genomic regions involved in tuber initiation and/or tuber growth defined by QTL and selective sweeps for tuber formation, were identified as candidate genes that were studied in more detail for their role in hypocotyl-tuber formation. This included a Bra-FLOR1 paralogue with increased expression 16 DAS, when the hypocotyl starts swelling, suggesting dual roles for duplicated flowering time genes in flowering and hypocotyl-tuber induction. Bra-CYP735A2 was identified for its possible role in tuber growth via trans-zeatin. Weigthed Co-expression Network Analysis (WGCNA) identified 59 modules of co-expressed genes. Bra-FLOR1 and Bra-CYP735A2 were grouped in a module that included several genes involved in carbohydrate transport and metabolism, cell-wall growth, auxin regulation and secondary metabolism that serve as starting points to illuminate the transcriptional regulation of hypocotyl-tuber formation and development.
Collapse
Affiliation(s)
- Mengyang Liu
- Plant Breeding, Wageningen University and Research, Wageningen, the Netherlands
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Niccolo Bassetti
- Plant Breeding, Wageningen University and Research, Wageningen, the Netherlands
- Biosystematics Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Stefan Petrasch
- Plant Breeding, Wageningen University and Research, Wageningen, the Netherlands
- Department of Plant Science, University of California, Davis, CA USA
| | - Ningwen Zhang
- Plant Breeding, Wageningen University and Research, Wageningen, the Netherlands
| | - Johan Bucher
- Plant Breeding, Wageningen University and Research, Wageningen, the Netherlands
| | - Shuxing Shen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Jianjun Zhao
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Guusje Bonnema
- Plant Breeding, Wageningen University and Research, Wageningen, the Netherlands
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
146
|
Zhang F, Bunterngsook B, Li JX, Zhao XQ, Champreda V, Liu CG, Bai FW. Regulation and production of lignocellulolytic enzymes from Trichoderma reesei for biofuels production. ADVANCES IN BIOENERGY 2019. [DOI: 10.1016/bs.aibe.2019.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
147
|
Castillo FM, Canales J, Claude A, Calderini DF. Expansin genes expression in growing ovaries and grains of sunflower are tissue-specific and associate with final grain weight. BMC PLANT BIOLOGY 2018; 18:327. [PMID: 30514222 PMCID: PMC6280438 DOI: 10.1186/s12870-018-1535-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/19/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Grain weight (GW) is a key component of sunflower yield and quality, but may be limited by maternal tissues. Cell growth is influenced by expansin proteins that loosen the plant cell wall. This study aimed to identify spatio-temporal expression of EXPN genes in sunflower reproductive organ tissues (ovary, pericarp, and embryo) and evaluate correlations between reproductive organ growth and expansin genes expression. Evaluations involved eight different developmental stages, two genotypes, two source-sink treatments and two experiments. The genotypes evaluated are contrasting in GW (Alybro and confection variety RHA280) under two source-sink treatments (control and shaded) to study the interactions between grain growth and expansin genes expression. RESULTS Ovaries and grains were sampled at pre- and post-anthesis, respectively. Final GW differed between genotypes and shading treatments. Shading treatment decreased final GW by 16.4 and 19.5% in RHA280 and Alybro, respectively. Relative expression of eight expansin genes were evaluated in grain tissues. EXPN4 was the most abundant expansin in the ovary tissue, while EXPN10 and EXPN7 act predominantly in ovary and pericarp tissues, and EXPN1 and EXPN15 in the embryo tissues. CONCLUSIONS Specific expansin genes were expressed in ovary, pericarp and embryo in a tissue-specific manner. Differential expression among grain tissues was consistent between genotypes, source-sink treatments and experiments. The correlation analysis suggests that EXPN genes could be specifically involved in grain tissue extension, and their expression could be linked to grain size in sunflower.
Collapse
Affiliation(s)
- Francisca M. Castillo
- Graduate School, Faculty of Agricultural Sciences, Universidad Austral de Chile, Valdivia, Chile
- Plant Production and Plant Protection Institute, Faculty of Agricultural Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Javier Canales
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Alejandro Claude
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Daniel F. Calderini
- Plant Production and Plant Protection Institute, Faculty of Agricultural Sciences, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
148
|
Moon KB, Ahn DJ, Park JS, Jung WY, Cho HS, Kim HR, Jeon JH, Park YI, Kim HS. Transcriptome Profiling and Characterization of Drought-Tolerant Potato Plant ( Solanum tuberosum L.). Mol Cells 2018; 41:979-992. [PMID: 30396236 PMCID: PMC6277564 DOI: 10.14348/molcells.2018.0312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 01/25/2023] Open
Abstract
Potato (Solanum tuberosum L.) is the third most important food crop, and breeding drought-tolerant varieties is vital research goal. However, detailed molecular mechanisms in response to drought stress in potatoes are not well known. In this study, we developed EMS-mutagenized potatoes that showed significant tolerance to drought stress compared to the wild-type (WT) 'Desiree' cultivar. In addition, changes to transcripts as a result of drought stress in WT and drought-tolerant (DR) plants were investigated by de novo assembly using the Illumina platform. One-week-old WT and DR plants were treated with -1.8 Mpa polyethylene glycol-8000, and total RNA was prepared from plants harvested at 0, 6, 12, 24, and 48 h for subsequent RNA sequencing. In total, 61,100 transcripts and 5,118 differentially expressed genes (DEGs) displaying up- or down-regulation were identified in pairwise comparisons of WT and DR plants following drought conditions. Transcriptome profiling showed the number of DEGs with up-regulation and down-regulation at 909, 977, 1181, 1225 and 826 between WT and DR plants at 0, 6, 12, 24, and 48 h, respectively. Results of KEGG enrichment showed that the drought tolerance mechanism of the DR plant can mainly be explained by two aspects, the 'photosynthetic-antenna protein' and 'protein processing of the endoplasmic reticulum'. We also divided eight expression patterns in four pairwise comparisons of DR plants (DR0 vs DR6, DR12, DR24, DR48) under PEG treatment. Our comprehensive transcriptome data will further enhance our understanding of the mechanisms regulating drought tolerance in tetraploid potato cultivars.
Collapse
Affiliation(s)
- Ki-Beom Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon,
Korea
- Department of Biological Sciences, Chungnam National University, Daejeon,
Korea
| | - Dong-Joo Ahn
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon,
Korea
| | - Ji-Sun Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon,
Korea
| | - Won Yong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon,
Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon,
Korea
| | - Hye-Ran Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon,
Korea
| | - Jae-Heung Jeon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon,
Korea
| | - Youn-il Park
- Department of Biological Sciences, Chungnam National University, Daejeon,
Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon,
Korea
| |
Collapse
|
149
|
Chruszcz M, Kapingidza AB, Dolamore C, Kowal K. A robust method for the estimation and visualization of IgE cross-reactivity likelihood between allergens belonging to the same protein family. PLoS One 2018; 13:e0208276. [PMID: 30496313 PMCID: PMC6264518 DOI: 10.1371/journal.pone.0208276] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022] Open
Abstract
Among the vast number of identified protein families, allergens emanate from relatively few families which translates to only a small fraction of identified protein families. In allergy diagnostics and immunotherapy, interactions between immunoglobulin E and allergens are crucial because the formation of an allergen-antibody complex is necessary for triggering an allergic reaction. In allergic diseases, there is a phenomenon known as cross-reactivity. Cross-reactivity describes a situation where an individual has produced antibodies against a particular allergenic protein, but said antibodies fail to discriminate between the original sensitizer and other similar proteins that usually belong to the same family. To expound the concept of cross-reactivity, this study examines ten protein families that include allergens selected specifically for the analysis of cross-reactivity. The selected allergen families had at least 13 representative proteins, overall folds that differ significantly between families, and include relevant allergens with various potencies. The selected allergens were analyzed using information on sequence similarities and identities between members of the families as well as reports on clinically relevant cross-reactivities. Based on our analysis, we propose to introduce a new A-RISC index (Allergens’–Relative Identity, Similarity and Cross-reactivity) which describes homology between two allergens belonging to the same protein family and is used to predict the likelihood of cross-reactivity between them. Information on sequence similarities and identities, as well as on the values of the proposed A-RISC index is used to introduce four categories describing a risk of a cross-reactive reaction, namely: high, medium-high, medium-low and low. The proposed approach can facilitate analysis in component-resolved allergy diagnostics, generation of avoidance guidelines for allergic individuals, and help with the design of immunotherapy.
Collapse
Affiliation(s)
- Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
- * E-mail:
| | - A. Brenda Kapingidza
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Coleman Dolamore
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Krzysztof Kowal
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
- Department of Experimental Allergology and Immunology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
150
|
Valenzuela-Riffo F, Gaete-Eastman C, Stappung Y, Lizana R, Herrera R, Moya-León MA, Morales-Quintana L. Comparative in silico study of the differences in the structure and ligand interaction properties of three alpha-expansin proteins from Fragaria chiloensis fruit. J Biomol Struct Dyn 2018; 37:3245-3258. [PMID: 30175949 DOI: 10.1080/07391102.2018.1517610] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Expansins are cell wall proteins associated with several processes, including changes in the cell wall during ripening of fruit, which matches softening of the fruit. We have previously reported an increase in expression of specific expansins transcripts during softening of Fragaria chiloensis fruit. Here, we characterized three α-expansins. Their full-length sequences were obtained, and through qRT-PCR (real-time PCR) analyses, their transcript accumulation during softening of F. chiloensis fruit was confirmed. Interestingly, differential but overlapping expression patterns were observed. With the aim of elucidating their roles, 3D protein models were built using comparative modeling methodology. The models obtained were similar and displayed cellulose binding module(CBM ) with a β-sandwich structure, and a catalytic domain comparable to the catalytic core of protein of the family 45 glycosyl hydrolase. An open groove located at the central part of each expansin was described; however, the shape and size are different. Their protein-ligand interactions were evaluated, showing favorable binding affinity energies with xyloglucan, homogalacturonan, and cellulose, cellulose being the best ligand. However, small differences were observed between the protein-ligand conformations. Molecular mechanics-generalized Born-surface area (MM-GBSA) analyses indicate the major contribution of van der Waals forces and non-polar interactions. The data provide a dynamic view of interaction between expansins and cellulose as putative cell wall ligands at the molecular scale. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Felipe Valenzuela-Riffo
- a Functional genomics, biochemistry and plant physiology group , Instituto de Ciencias Biológicas , Universidad de Talca , Talca , Chile.,b Phytohormone Research Laboratory , Instituto de Ciencias Biológicas, Universidad de Talca , Talca , Chile
| | - Carlos Gaete-Eastman
- a Functional genomics, biochemistry and plant physiology group , Instituto de Ciencias Biológicas , Universidad de Talca , Talca , Chile
| | - Yazmina Stappung
- a Functional genomics, biochemistry and plant physiology group , Instituto de Ciencias Biológicas , Universidad de Talca , Talca , Chile
| | - Rodrigo Lizana
- a Functional genomics, biochemistry and plant physiology group , Instituto de Ciencias Biológicas , Universidad de Talca , Talca , Chile
| | - Raúl Herrera
- a Functional genomics, biochemistry and plant physiology group , Instituto de Ciencias Biológicas , Universidad de Talca , Talca , Chile
| | - María Alejandra Moya-León
- a Functional genomics, biochemistry and plant physiology group , Instituto de Ciencias Biológicas , Universidad de Talca , Talca , Chile
| | - Luis Morales-Quintana
- a Functional genomics, biochemistry and plant physiology group , Instituto de Ciencias Biológicas , Universidad de Talca , Talca , Chile.,c Multidisciplinary Agroindustry Research Laboratory , Carrera de Ingeniería en Informática, Universidad Autónoma de Chile , Talca , Chile.,d Instituto de Ciencias Biomédicas , Universidad Autónoma de Chile Sede Talca , Talca , del Maule , Chile
| |
Collapse
|