101
|
Trisciuzzi D, Alberga D, Mansouri K, Judson R, Novellino E, Mangiatordi GF, Nicolotti O. Predictive Structure-Based Toxicology Approaches To Assess the Androgenic Potential of Chemicals. J Chem Inf Model 2017; 57:2874-2884. [PMID: 29022712 DOI: 10.1021/acs.jcim.7b00420] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We present a practical and easy-to-run in silico workflow exploiting a structure-based strategy making use of docking simulations to derive highly predictive classification models of the androgenic potential of chemicals. Models were trained on a high-quality chemical collection comprising 1689 curated compounds made available within the CoMPARA consortium from the US Environmental Protection Agency and were integrated with a two-step applicability domain whose implementation had the effect of improving both the confidence in prediction and statistics by reducing the number of false negatives. Among the nine androgen receptor X-ray solved structures, the crystal 2PNU (entry code from the Protein Data Bank) was associated with the best performing structure-based classification model. Three validation sets comprising each 2590 compounds extracted by the DUD-E collection were used to challenge model performance and the effectiveness of Applicability Domain implementation. Next, the 2PNU model was applied to screen and prioritize two collections of chemicals. The first is a small pool of 12 representative androgenic compounds that were accurately classified based on outstanding rationale at the molecular level. The second is a large external blind set of 55450 chemicals with potential for human exposure. We show how the use of molecular docking provides highly interpretable models and can represent a real-life option as an alternative nontesting method for predictive toxicology.
Collapse
Affiliation(s)
- Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro" , Via E. Orabona 4, I-70126 Bari, Italy
| | - Domenico Alberga
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro" , Via E. Orabona 4, I-70126 Bari, Italy.,Centro Ricerche TIRES, Università degli Studi di Bari "Aldo Moro" , Via Amendola 173, I-70126 Bari, Italy
| | - Kamel Mansouri
- Oak Ridge Institute for Science and Education , Oak Ridge, Tennessee 37830, United States.,National Center for Computational Toxicology, U.S. Environmental Protection Agency , 109 T.W. Alexander Drive, Research Triangle Park, North Carolina 27711, United States.,ScitoVation LLC , 6 Davis Drive, Research Triangle Park, North Carolina 27709, United States
| | - Richard Judson
- National Center for Computational Toxicology, U.S. Environmental Protection Agency , 109 T.W. Alexander Drive, Research Triangle Park, North Carolina 27711, United States
| | - Ettore Novellino
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , Via D. Montesano 49, 80131 Napoli, Italy
| | - Giuseppe Felice Mangiatordi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro" , Via E. Orabona 4, I-70126 Bari, Italy.,Centro Ricerche TIRES, Università degli Studi di Bari "Aldo Moro" , Via Amendola 173, I-70126 Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro" , Via E. Orabona 4, I-70126 Bari, Italy.,Centro Ricerche TIRES, Università degli Studi di Bari "Aldo Moro" , Via Amendola 173, I-70126 Bari, Italy
| |
Collapse
|
102
|
Helsley RN, Zhou C. Epigenetic impact of endocrine disrupting chemicals on lipid homeostasis and atherosclerosis: a pregnane X receptor-centric view. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx017. [PMID: 29119010 PMCID: PMC5672952 DOI: 10.1093/eep/dvx017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/08/2017] [Accepted: 09/02/2017] [Indexed: 05/25/2023]
Abstract
Despite the major advances in developing diagnostic techniques and effective treatments, atherosclerotic cardiovascular disease (CVD) is still the leading cause of mortality and morbidity worldwide. While considerable progress has been achieved to identify gene variations and environmental factors that contribute to CVD, much less is known about the role of "gene-environment interactions" in predisposing individuals to CVD. Our chemical environment has significantly changed in the last few decades, and there are more than 100,000 synthetic chemicals in the market. Recent large-scale human population studies have associated exposure to certain chemicals including many endocrine disrupting chemicals (EDCs) with increased CVD risk, and animal studies have also confirmed that some EDCs can cause aberrant lipid homeostasis and increase atherosclerosis. However, the underlying mechanisms of how exposure to those EDCs influences CVD risk remain elusive. Numerous EDCs can activate the nuclear receptor pregnane X receptor (PXR) that functions as a xenobiotic sensor to regulate host xenobiotic metabolism. Recent studies have demonstrated the novel functions of PXR in lipid homeostasis and atherosclerosis. In addition to directly regulating transcription, PXR has been implicated in the epigenetic regulation of gene transcription. Exposure to many EDCs can also induce epigenetic modifications, but little is known about how the changes relate to the onset or progression of CVD. In this review, we will discuss recent research on PXR and EDCs in the context of CVD and propose that PXR may play a previously unrealized role in EDC-mediated epigenetic modifications that affect lipid homeostasis and atherosclerosis.
Collapse
Affiliation(s)
- Robert N Helsley
- Department of Pharmacology and Nutritional Sciences, Center for Metabolic Disease Research, University of Kentucky, Lexington, KY 40536, USA
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Changcheng Zhou
- Department of Pharmacology and Nutritional Sciences, Center for Metabolic Disease Research, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
103
|
Wong JC, Zidar J, Ho J, Wang Y, Lee KK, Zheng J, Sullivan MB, You X, Kriegel R. Assessment of several machine learning methods towards reliable prediction of hormone receptor binding affinity. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.cdc.2017.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
104
|
Ford L, Bharadwaj L, McLeod L, Waldner C. Human Health Risk Assessment Applied to Rural Populations Dependent on Unregulated Drinking Water Sources: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E846. [PMID: 28788087 PMCID: PMC5580550 DOI: 10.3390/ijerph14080846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/15/2017] [Accepted: 07/25/2017] [Indexed: 01/28/2023]
Abstract
Safe drinking water is a global challenge for rural populations dependent on unregulated water. A scoping review of research on human health risk assessments (HHRA) applied to this vulnerable population may be used to improve assessments applied by government and researchers. This review aims to summarize and describe the characteristics of HHRA methods, publications, and current literature gaps of HHRA studies on rural populations dependent on unregulated or unspecified drinking water. Peer-reviewed literature was systematically searched (January 2000 to May 2014) and identified at least one drinking water source as unregulated (21%) or unspecified (79%) in 100 studies. Only 7% of reviewed studies identified a rural community dependent on unregulated drinking water. Source water and hazards most frequently cited included groundwater (67%) and chemical water hazards (82%). Most HHRAs (86%) applied deterministic methods with 14% reporting probabilistic and stochastic methods. Publications increased over time with 57% set in Asia, and 47% of studies identified at least one literature gap in the areas of research, risk management, and community exposure. HHRAs applied to rural populations dependent on unregulated water are poorly represented in the literature even though almost half of the global population is rural.
Collapse
Affiliation(s)
- Lorelei Ford
- School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon SK S7N 5C8, Canada.
| | - Lalita Bharadwaj
- School of Public Health, University of Saskatchewan, 107 Wiggins Road, Saskatoon SK S7N 2Z4, Canada.
| | - Lianne McLeod
- Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon SK S7N 5B4, Canada.
| | - Cheryl Waldner
- Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon SK S7N 5B4, Canada.
| |
Collapse
|
105
|
Taylor CM, Kordas K, Golding J, Emond AM. Effects of low-level prenatal lead exposure on child IQ at 4 and 8 years in a UK birth cohort study. Neurotoxicology 2017; 62:162-169. [PMID: 28687448 PMCID: PMC5630203 DOI: 10.1016/j.neuro.2017.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 11/09/2022]
Abstract
The association between prenatal exposure to lead and deficits in offspring cognitive function is not well established. Our aim was to evaluate the association between prenatal lead exposure and child IQ at age 4 and 8 years in an observational birth cohort study. There was no association of prenatal lead exposure with child IQ at either 4 or 8 years old. There was a suggestion, however, that boys are more susceptible than girls to prenatal exposure to lead.
Background The association between childhood exposure to lead (Pb) and deficits in cognitive function is well established. The association with prenatal exposure, however, is not well understood, even though the potential adverse effects are equally important. Objectives To evaluate the association between low prenatal exposure to lead and IQ in children, to determine whether there were sex differences in the associations, and to evaluate the moderation effect of prenatal Pb exposure on child IQ. Methods Whole blood samples from pregnant women enrolled in ALSPAC (n = 4285) and from offspring at age 30 months (n = 235) were analysed for Pb. Associations between prenatal blood lead concentrations (B-Pb) and child IQ at age 4 and 8 years (WPPSI and WISC-III, respectively) were examined in adjusted regression models. Results There was no association of prenatal lead exposure with child IQ at 4 or 8 years old in adjusted regression models, and no moderation of the association between child B-Pb and IQ. However, there was a positive association for IQ at age 8 years in girls with a predicted increase in IQ (points) per 1 μg/dl of: verbal 0.71, performance 0.57, total 0.73. In boys, the coefficients tended to be negative (−0.15, −0.42 and −0.29 points, respectively). Conclusion Prenatal lead exposure was not associated with adverse effects on child IQ at age 4 or 8 years in this study. There was, however, some evidence to suggest that boys are more susceptible than girls to prenatal exposure to lead. Further investigation in other cohorts is required.
Collapse
Affiliation(s)
- Caroline M Taylor
- Centre for Child and Adolescent Health, School of Social and Community Medicine, University of Bristol, UK.
| | - Katarzyna Kordas
- Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Jean Golding
- Centre for Child and Adolescent Health, School of Social and Community Medicine, University of Bristol, UK
| | - Alan M Emond
- Centre for Child and Adolescent Health, School of Social and Community Medicine, University of Bristol, UK
| |
Collapse
|
106
|
Facile route synthesis of novel graphene oxide-β-cyclodextrin nanocomposite and its application as adsorbent for removal of toxic bisphenol A from the aqueous phase. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.04.113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
107
|
Wu MH, Xie DG, Xu G, Sun R, Xia XY, Liu WL, Tang L. Benzophenone-type UV filters in surface waters: An assessment of profiles and ecological risks in Shanghai, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:235-241. [PMID: 28359989 DOI: 10.1016/j.ecoenv.2017.03.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 06/07/2023]
Abstract
Benzophenone-type UV filters (BP-UV filters) are frequently introduced into aquatic environment from several sources. The occurrence and fate of select BP-UV filters and their metabolites were investigated in this study. All target compounds were detected in water samples, except for 2, 3, 4-trihydroxybenzophenone (2, 3, 4-OH-BP). The concentration reached up 131ngL-1 for 5-benzoyl-4-hydroxy-2-ethoxybenzenesulfonic acid (BP-4), 30.0ngL-1 for 2-hydroxy-4-methoxybenzophenone (BP-3), and mean value of 158ngL-1 for benzophenone (BP). Concentrations of BP-UV filters were not related to recreational waters but with high population frequencies. In addition, five BP-UV filters, namely 2,2',4,4'-tetrahydroxybenzophenone (BP-2), 2,3,4-OH-BP, 2,4-dihydroxybenzophenone (BP-1), 4-hydroxybenzophenone (4-OH-BP) and BP were investigated for probable sources, and found that they originate from BP-3 metabolism. There is a similar source for BP-3, BP-4, BP-1, 4-OH-BP and BP. Environmental risk assessment (ERA) showed that risk quotients (RQs) of BP-4, BP-3 and BP were 2.7, 0.8 and 0.5, respectively.
Collapse
Affiliation(s)
- Ming-Hong Wu
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Deng-Guo Xie
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Gang Xu
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Rui Sun
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xiao-Yu Xia
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Wen-Long Liu
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Liang Tang
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
108
|
Olutona GO, Oyekunle JAO, Ogunfowokan AO, Fatoki OS. Concentrations of Polybrominated Diphenyl Ethers (PBDEs) in Water from Asunle Stream, Ile-Ife, Nigeria. TOXICS 2017; 5:toxics5020013. [PMID: 29051445 PMCID: PMC5606669 DOI: 10.3390/toxics5020013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/07/2017] [Accepted: 06/14/2017] [Indexed: 11/23/2022]
Abstract
This study assessed the concentrations of polybrominated diphenylethers (PBDEs) in stream water obtained from Asunle stream, an adjoining stream of the Obafemi Awolowo University dumpsite. Water samples were collected for a period of eight months from six different locations comprising of a spot upstream in an uphill area relative to the refuse dumpsite and five others downstream along the stream course. The sampled waters were extracted with dicholoromethane using liquid-liquid extraction method and cleanup was carried out with silica gel. The final extracts after concentration were analyzed using GC-MS/MS. The recovery experiments were adequate (105%–110%). The mean levels of Ʃ6PBDEs compounds analyzed ranged from 0.03 to 0.45 ng/mL. Seasonal variability of PBDEs indicated that higher levels were found during the wet season. The levels of PBDEs recorded in this work were relatively lower compared to the values reported in the literature from other developed nations.
Collapse
Affiliation(s)
- Godwin O Olutona
- Department of Chemistry and Industrial Chemistry, Bowen University, Iwo 232102, Nigeria.
| | - John A O Oyekunle
- Department of Chemistry, Obafemi Awolowo University, Ile-Ife 220282, Nigeria.
| | | | - Olalekan S Fatoki
- Department of Chemistry, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town 7530, South Africa.
| |
Collapse
|
109
|
Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA, Nadal A, Palanza P, Panzica G, Sargis R, Vandenberg LN, Vom Saal F. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol 2017; 68:3-33. [PMID: 27760374 PMCID: PMC5365353 DOI: 10.1016/j.reprotox.2016.10.001] [Citation(s) in RCA: 719] [Impact Index Per Article: 89.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/04/2016] [Accepted: 10/13/2016] [Indexed: 01/09/2023]
Abstract
The recent epidemics of metabolic diseases, obesity, type 2 diabetes(T2D), liver lipid disorders and metabolic syndrome have largely been attributed to genetic background and changes in diet, exercise and aging. However, there is now considerable evidence that other environmental factors may contribute to the rapid increase in the incidence of these metabolic diseases. This review will examine changes to the incidence of obesity, T2D and non-alcoholic fatty liver disease (NAFLD), the contribution of genetics to these disorders and describe the role of the endocrine system in these metabolic disorders. It will then specifically focus on the role of endocrine disrupting chemicals (EDCs) in the etiology of obesity, T2D and NAFLD while finally integrating the information on EDCs on multiple metabolic disorders that could lead to metabolic syndrome. We will specifically examine evidence linking EDC exposures during critical periods of development with metabolic diseases that manifest later in life and across generations.
Collapse
Affiliation(s)
- Jerrold J Heindel
- National Institute of Environmental Health Sciences, Division of Extramural Research and Training Research Triangle Park, NC, USA.
| | - Bruce Blumberg
- University of California, Department of Developmental and Cell Biology, Irvine CA, USA
| | - Mathew Cave
- University of Louisville, Division of Gastroenterology, Hepatology and Nutrition, Louisville KY, USA
| | | | | | - Michelle A Mendez
- University of North Carolina at Chapel Hill, School of Public Health, Chapel Hill NC, USA
| | - Angel Nadal
- Institute of Bioengineering and CIBERDEM, Miguel Hernandez University of Elche, Elche, Alicante, Spain
| | - Paola Palanza
- University of Parma, Department of Neurosciences, Parma, Italy
| | - Giancarlo Panzica
- University of Turin, Department of Neuroscience and Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy
| | - Robert Sargis
- University of Chicago, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine Chicago, IL, USA
| | - Laura N Vandenberg
- University of Massachusetts, Department of Environmental Health Sciences, School of Public Health & Health Sciences, Amherst, MA, USA
| | - Frederick Vom Saal
- University of Missouri, Department of Biological Sciences, Columbia, MO, USA
| |
Collapse
|
110
|
Matthiessen P, Ankley GT, Biever RC, Bjerregaard P, Borgert C, Brugger K, Blankinship A, Chambers J, Coady KK, Constantine L, Dang Z, Denslow ND, Dreier DA, Dungey S, Gray LE, Gross M, Guiney PD, Hecker M, Holbech H, Iguchi T, Kadlec S, Karouna-Renier NK, Katsiadaki I, Kawashima Y, Kloas W, Krueger H, Kumar A, Lagadic L, Leopold A, Levine SL, Maack G, Marty S, Meado J, Mihaich E, Odum J, Ortego L, Parrott J, Pickford D, Roberts M, Schaefers C, Schwarz T, Solomon K, Verslycke T, Weltje L, Wheeler JR, Williams M, Wolf JC, Yamazaki K. Recommended approaches to the scientific evaluation of ecotoxicological hazards and risks of endocrine-active substances. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2017; 13:267-279. [PMID: 28127947 PMCID: PMC6069525 DOI: 10.1002/ieam.1885] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/12/2016] [Accepted: 11/28/2016] [Indexed: 05/02/2023]
Abstract
A SETAC Pellston Workshop® "Environmental Hazard and Risk Assessment Approaches for Endocrine-Active Substances (EHRA)" was held in February 2016 in Pensacola, Florida, USA. The primary objective of the workshop was to provide advice, based on current scientific understanding, to regulators and policy makers; the aim being to make considered, informed decisions on whether to select an ecotoxicological hazard- or a risk-based approach for regulating a given endocrine-disrupting substance (EDS) under review. The workshop additionally considered recent developments in the identification of EDS. Case studies were undertaken on 6 endocrine-active substances (EAS-not necessarily proven EDS, but substances known to interact directly with the endocrine system) that are representative of a range of perturbations of the endocrine system and considered to be data rich in relevant information at multiple biological levels of organization for 1 or more ecologically relevant taxa. The substances selected were 17α-ethinylestradiol, perchlorate, propiconazole, 17β-trenbolone, tributyltin, and vinclozolin. The 6 case studies were not comprehensive safety evaluations but provided foundations for clarifying key issues and procedures that should be considered when assessing the ecotoxicological hazards and risks of EAS and EDS. The workshop also highlighted areas of scientific uncertainty, and made specific recommendations for research and methods-development to resolve some of the identified issues. The present paper provides broad guidance for scientists in regulatory authorities, industry, and academia on issues likely to arise during the ecotoxicological hazard and risk assessment of EAS and EDS. The primary conclusion of this paper, and of the SETAC Pellston Workshop on which it is based, is that if data on environmental exposure, effects on sensitive species and life-stages, delayed effects, and effects at low concentrations are robust, initiating environmental risk assessment of EDS is scientifically sound and sufficiently reliable and protective of the environment. In the absence of such data, assessment on the basis of hazard is scientifically justified until such time as relevant new information is available. Integr Environ Assess Manag 2017;13:267-279. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Peter Matthiessen
- independent Consultant, Dolfan Barn, Beulah, Llanwrtyd Wells, Powys, United Kingdom
| | | | | | - Poul Bjerregaard
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Christopher Borgert
- Applied Pharmacology and Toxicology, Gainesville, Florida, USA; Dept Physiol Sciences, CEHT, Univ of Florida College of Veterinary Medicine, Gainesville, Florida, USA
| | - Kristin Brugger
- DuPont Crop Protection, Stine-Haskell Research Center, Newark, New Jersey, USA
| | - Amy Blankinship
- Office of Pesticide Programs, United States Environmental Protection Agency, Washington DC
| | - Janice Chambers
- College of Veterinary Medicine, Mississippi State University, Mississippi, USA
| | - Katherine K Coady
- The Dow Chemical Company, Toxicology and Environmental Research and Consulting, Midland, Michigan, USA
| | | | | | - Nancy D Denslow
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - David A Dreier
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Steve Dungey
- Environment Agency, Wallingford, Oxfordshire, United Kingdom
| | - L Earl Gray
- US Environmental Agency, Reproductive Toxicology Branch, Research Triangle Park, North Carolina
| | | | - Patrick D Guiney
- Molecular & Environmental Toxicology Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Markus Hecker
- Toxicology Centre and School of the Environment & Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Taisen Iguchi
- National Institute for Basic Biology, Myodaiji, Okazaki, Japan
| | - Sarah Kadlec
- University of Minnesota, Integrated Biosciences Graduate Program, Duluth, Minnesota, USA
| | | | - Ioanna Katsiadaki
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset, United Kingdom
| | | | - Werner Kloas
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | | | - Anu Kumar
- CSIRO, Glen Osmond, South Australia, Australia
| | - Laurent Lagadic
- Bayer AG, Crop Science Division, Environmental Safety, Ecotoxicology, Monheim am Rhein, Germany
| | | | - Steven L Levine
- Global Regulatory Sciences, Monsanto Company, St Louis, Missouri, USA
| | - Gerd Maack
- German Environment Agency (UBA), Dessau-Roßlau, Germany
| | - Sue Marty
- Dow Chemical Company, Midland, Michigan, USA
| | - James Meado
- Ecotoxicology and Environmental Fish Health Program, Northwest Fisheries Science Center, NOAA, Seattle, Washington, USA
| | - Ellen Mihaich
- Environmental and Regulatory Resources, Durham, North Carolina, USA
| | - Jenny Odum
- Regulatory Science Associates, Binley Business Park, Coventry, United Kingdom
| | - Lisa Ortego
- Bayer CropScience, Research Triangle Park, North Carolina, USA
| | - Joanne Parrott
- Environment and Climate Change Canada, Water Science and Technology Directorate, Burlington, Ontario, Canada
| | - Daniel Pickford
- Syngenta, Jealotts Hill International Research Centre, Bracknell, United Kingdom
| | - Mike Roberts
- Independent Consultant, Burnham-on-Crouch, Essex, United Kingdom
| | | | - Tamar Schwarz
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset, United Kingdom
| | - Keith Solomon
- Centre for Toxicology, School of Environmental Sciences, University of Guelph, Ontario, Canada
| | | | | | | | | | - Jeffrey C Wolf
- Experimental Pathology Laboratories, Sterling, Virginia, USA
| | - Kunihiko Yamazaki
- Department of Environmental Health, Ministry of the Environment, Tokyo, Japan
| |
Collapse
|
111
|
Choi YJ, Ha KH, Kim DJ. Exposure to bisphenol A is directly associated with inflammation in healthy Korean adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:284-290. [PMID: 27714659 DOI: 10.1007/s11356-016-7806-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
It was recently discovered that bisphenol A (BPA) and phthalates are cardiovascular disruptors. Inflammation is central to the initiation and progression of cardiovascular disease (CVD). This study evaluated whether BPA and different phthalate metabolites are associated with the inflammation marker high-sensitivity C-reactive protein (hs-CRP) in healthy Korean adults. This research is part of an ongoing, population-based study of Korean adults (30-64 years of age) conducted at the Cardiovascular and Metabolic Diseases Etiology Research Center (CMERC). The study enrolled 200 healthy volunteers (96 men, 104 women). Plasma hs-CRP was measured as an inflammation marker. BPA and five phthalate metabolites in urine were analyzed by using liquid chromatography/tandem mass spectrometry. BPA and monobenzyl phthalate (MBzP) differed significantly between the low-hs-CRP (<2 mg/L) and high-hs-CRP (≥2 mg/L) groups. BPA and MBzP were related to hs-CRP in an inverted L-shaped manner. High BPA levels (≥75th percentile) had significant odd ratios (ORs) for high hs-CRP even after adjusting for confounding factors related to obesity and insulin resistance, such as visceral fat volume, body mass index (BMI), adiponectin, high-density lipoprotein (HDL) cholesterol, hemoglobin A1c (HbA1c), and homeostasis model assessment of insulin resistance (HOMA-IR) (OR = 2.85; 95 % CI, 1.16-6.97). However, there was no significant association for MBzP ≥75th percentile. BPA was significantly related to high hs-CRP, even after adjusting for factors related to obesity and insulin resistance. Therefore, BPA could have a direct relationship with systemic inflammation regardless of obesity or insulin resistance.
Collapse
Affiliation(s)
- Yong Jun Choi
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
- Cardiovascular and Metabolic Disease Etiology Research Center, Ajou University School of Medicine, Suwon, South Korea
| | - Kyoung Hwa Ha
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
- Cardiovascular and Metabolic Disease Etiology Research Center, Ajou University School of Medicine, Suwon, South Korea
| | - Dae Jung Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.
- Cardiovascular and Metabolic Disease Etiology Research Center, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
112
|
Ahmed SI, Ali TO, Elsheikh AS. Ultra-structure of testes of rats born to dams treated with hydroxy-progesterone hexanoate. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2016. [DOI: 10.1016/j.apjr.2016.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
113
|
Guerra MT, Sanabria M, Petrusz P, De Grava Kempinas W. Perinatal exposure to androgen excess and the effects on the rat uterine estradiol responsiveness. ENVIRONMENTAL TOXICOLOGY 2016; 31:1460-1468. [PMID: 26031391 DOI: 10.1002/tox.22151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/24/2015] [Accepted: 05/10/2015] [Indexed: 06/04/2023]
Abstract
Androgen exposure during sexual development induces alterations in steroidal target tissues. The objective of this study was to evaluate the uterine responsiveness to estradiol after perinatal androgenization. Pregnant Wistar rats were exposed to corn oil or testosterone propionate at 0.05, 0.1, or 0.2 mg/kg from gestational day 12 until postnatal day 21. Female offspring was challenged with estradiol (E2 ) after weaning (0.4 mg/kg) and at adulthood (10 or 100 µg/day), when the pituitary response was also evaluated. At adulthood, control and 0.05 mg/kg groups presented a uterine weight increment when exposed to 100 µg/day of E2 , 0.1 mg/kg group only responded to 10 µg/day of E2 , and the 0.2 mg/kg group showed increased uterine weight at both doses. The pituitary weight was similarly increased after estradiol stimulation in all experimental groups. In conclusion, testosterone propionate exposure induced an abnormal stimulation of uterine tissue growth by estrogen stimulus without affecting pituitary response. More studies are needed to clarify whether these alterations are capable of impairing the reproductive capacity of the female tract. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1460-1468, 2016.
Collapse
Affiliation(s)
- Marina T Guerra
- Department of Morphology, Institute of Biosciences, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil.
| | - Marciana Sanabria
- Department of Morphology, Institute of Biosciences, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Peter Petrusz
- Department of Cell and Developmental Biology and Laboratories for Reproductive Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Wilma De Grava Kempinas
- Department of Morphology, Institute of Biosciences, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| |
Collapse
|
114
|
Slama R, Bourguignon JP, Demeneix B, Ivell R, Panzica G, Kortenkamp A, Zoeller RT. Scientific Issues Relevant to Setting Regulatory Criteria to Identify Endocrine-Disrupting Substances in the European Union. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1497-1503. [PMID: 27108591 PMCID: PMC5047779 DOI: 10.1289/ehp217] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 02/17/2016] [Accepted: 04/05/2016] [Indexed: 05/13/2023]
Abstract
BACKGROUND Endocrine disruptors (EDs) are defined by the World Health Organization (WHO) as exogenous compounds or mixtures that alter function(s) of the endocrine system and consequently cause adverse effects in an intact organism, or its progeny, or (sub)populations. European regulations on pesticides, biocides, cosmetics, and industrial chemicals require the European Commission to establish scientific criteria to define EDs. OBJECTIVES We address the scientific relevance of four options for the identification of EDs proposed by the European Commission. DISCUSSION Option 1, which does not define EDs and leads to using interim criteria unrelated to the WHO definition of EDs, is not relevant. Options 2 and 3 rely on the WHO definition of EDs, which is widely accepted by the scientific community, with option 3 introducing additional categories based on the strength of evidence (suspected EDs and endocrine-active substances). Option 4 adds potency to the WHO definition, as a decision criterion. We argue that potency is dependent on the adverse effect considered and is scientifically ambiguous, and note that potency is not used as a criterion to define other particularly hazardous substances such as carcinogens and reproductive toxicants. The use of potency requires a context that goes beyond hazard identification and corresponds to risk characterization, in which potency (or, more relevantly, the dose-response function) is combined with exposure levels. CONCLUSIONS There is scientific agreement regarding the adequacy of the WHO definition of EDs. The potency concept is not relevant to the identification of particularly serious hazards such as EDs. As is common practice for carcinogens, mutagens, and reproductive toxicants, a multi-level classification of ED based on the WHO definition, and not considering potency, would be relevant (corresponding to option 3 proposed by the European Commission). CITATION Slama R, Bourguignon JP, Demeneix B, Ivell R, Panzica G, Kortenkamp A, Zoeller RT. 2016. Scientific issues relevant to setting regulatory criteria to identify endocrine disrupting substances in the European Union. Environ Health Perspect 124:1497-1503; http://dx.doi.org/10.1289/EHP217.
Collapse
Affiliation(s)
- Rémy Slama
- Team of Environmental Epidemiology, IAB (Institute of Advanced Biosciences), Inserm, CNRS, University Grenoble-Alpes, IAB joint research center, Grenoble (La Tronche), France
| | - Jean-Pierre Bourguignon
- Pediatric Endocrinology, CHU Liège and Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Belgium
| | - Barbara Demeneix
- Department RDDM, Muséum National d’Histoire Naturelle, UMR CNRS/MNHN 7221, Paris, France
| | - Richard Ivell
- School of Biosciences, and
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Giancarlo Panzica
- Department of Neuroscience, University of Torino, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Andreas Kortenkamp
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - R. Thomas Zoeller
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
115
|
Rich AL, Phipps LM, Tiwari S, Rudraraju H, Dokpesi PO. The Increasing Prevalence in Intersex Variation from Toxicological Dysregulation in Fetal Reproductive Tissue Differentiation and Development by Endocrine-Disrupting Chemicals. ENVIRONMENTAL HEALTH INSIGHTS 2016; 10:163-171. [PMID: 27660460 PMCID: PMC5017538 DOI: 10.4137/ehi.s39825] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
An increasing number of children are born with intersex variation (IV; ambiguous genitalia/hermaphrodite, pseudohermaphroditism, etc.). Evidence shows that endocrine-disrupting chemicals (EDCs) in the environment can cause reproductive variation through dysregulation of normal reproductive tissue differentiation, growth, and maturation if the fetus is exposed to EDCs during critical developmental times in utero. Animal studies support fish and reptile embryos exhibited IV and sex reversal when exposed to EDCs. Occupational studies verified higher prevalence of offspring with IV in chemically exposed workers (male and female). Chemicals associated with endocrine-disrupting ability in humans include organochlorine pesticides, poly-chlorinated biphenyls, bisphenol A, phthalates, dioxins, and furans. Intersex individuals may have concurrent physical disorders requiring lifelong medical intervention and experience gender dysphoria. An urgent need exists to determine which chemicals possess the greatest risk for IV and the mechanisms by which these chemicals are capable of interfering with normal physiological development in children.
Collapse
Affiliation(s)
- Alisa L. Rich
- University of North Texas Health Science Center, Department of Environmental and Occupational Health Science, Fort Worth, TX, USA
- World Health Organization Chemical Risk Assessment Network Member, Geneva, Switzerland
| | - Laura M. Phipps
- University of North Texas Health Science Center, Department of Environmental and Occupational Health Science, Fort Worth, TX, USA
| | - Sweta Tiwari
- University of North Texas Health Science Center, Department of Environmental and Occupational Health Science, Fort Worth, TX, USA
| | - Hemanth Rudraraju
- University of North Texas Health Science Center, Department of Environmental and Occupational Health Science, Fort Worth, TX, USA
| | - Philip O. Dokpesi
- University of North Texas Health Science Center, Department of Environmental and Occupational Health Science, Fort Worth, TX, USA
| |
Collapse
|
116
|
Merritt CM, Torrentera L, Winter KM, Tornehl CK, Girvin K, Dodson SI. Dieldrin reduces male production and sex ratio in Daphnia galeata mendotae. Toxicol Ind Health 2016. [DOI: 10.1177/074823379901500117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We used the sex ratio of neonate Daphnia, as well as the more standard endpoints of adult survivorship and fecundity and neonatal morphology, as an assay for detecting the effects of the insecticides endosulfan and dieldrin. Dieldrin caused a decrease in sex ratio (number of males/number of males plus females); we observed no endosulfan effect. We estimated (by extrapolation) that the sex ratio was reduced by dieldrin from concentrations of about 30 ppb and higher, based on a linear decrease in sex ratio with log dieldrin concentrations from 50 to 600 ppb. Neither insecticide significantly affected adult survival or clutch size. Because sex ratio changed but total neonate production did not change, the data suggest that the effect of dieldrin was on the sex-determining system during embryogenesis. Neither insecticide caused morphological abnormalities. Mixtures of the two pesticides produced only additive effects.
Collapse
Affiliation(s)
| | - Laura Torrentera
- Department of Zoology, University of Wisconsin, Madison, Wisconsin
| | | | | | | | | |
Collapse
|
117
|
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous compounds that have the ability to disrupt the production and actions of hormones through direct or indirect interaction with hormone receptors, thus acting as agonists or antagonists. Human health is affected after either individual occupation or dietary and environmental exposure to EDCs. On the other hand, skin is one of the largest organs of the body and its main function is protection from noxious substances. EDCs perturb the endocrine system, and they are also carcinogenic, immunotoxic, and hepatotoxic to human skin. In addition, their effects on keratinocytes, melanocytes, sebocytes, inflammatory and immunological cells, and skin stem cells produce inflammatory and allergic skin diseases, chloracne, disorders of skin pigmentation, skin cancer, and skin aging. Mechanisms, which EDCs use to induce these skin disorders are complicated, and involve the interference of endogenous hormones and most importantly the activation of the aryl hydrocarbon receptor signal pathway. Further studies on EDCs and skin diseases are necessary to elucidate these mechanisms.
Collapse
Affiliation(s)
- Qiang Ju
- Department of Dermatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Auenweg 38, 06847, Dessau, Germany.
| |
Collapse
|
118
|
Dang VD, Kroll KJ, Supowit SD, Halden RU, Denslow ND. Tissue distribution of organochlorine pesticides in largemouth bass (Micropterus salmoides) from laboratory exposure and a contaminated lake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:877-883. [PMID: 27394080 PMCID: PMC5014564 DOI: 10.1016/j.envpol.2016.06.061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/26/2016] [Accepted: 06/27/2016] [Indexed: 05/24/2023]
Abstract
Tissue concentrations of persistent organochlorine pesticides in laboratory-exposed largemouth bass (Micropterus salmoides) and in bass collected from Lake Apopka, FL were determined by both total mass and lipid normalized mass to better understand the bioaccumulation pathways of contaminants. In the laboratory study, male bass were orally administered a single dose of a mixture of two pesticides (p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and dieldrin) and then fed uncontaminated food for 28 days. Gastrointestinal tract, liver, brain, gonad, kidney, spleen, and muscle were collected for chemical analysis. Different profiles were observed by total contaminant mass in tissues compared to lipid normalized mass. On a lipid normalized basis, p,p'-DDE was highest in the gastrointestinal tract followed by the liver, gonad, spleen, muscle, kidney and then brain. Dieldrin, on the other hand, was highest in the gastrointestinal tract and spleen and then followed by the gonad, muscle, liver, kidney, and brain. Distribution of the chemicals among the organs differed by their log KOW values and generally followed the blood flow path after the gastrointestinal tract. The low contaminant levels found in kidney and brain suggest insufficient time for equilibration into these tissues, especially into the brain where the blood-brain barrier may be slow to traverse. In Lake Apopka fish, dichlorodiphenyltrichloroethanes (DDXs, sum of p,p'-DDE, p,p'-DDD, and p,p'-DDT), Drins (sum of aldrin, dieldrin, and endrin), and hexachlorocyclohexanes (HCHs) were found. For DDXs, the lipid normalized concentrations in each tissue were about the same, as predicted from theory. For Drins and HCHs, the lipid normalized concentrations were similar for kidney, spleen, brain, gonad and muscle, but much lower in the gastrointestinal tract and liver, probably because of metabolism occurring in those tissues.
Collapse
Affiliation(s)
- Viet D Dang
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA.
| | - Kevin J Kroll
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Samuel D Supowit
- Biodesign Center for Environmental Security, The Biodesign Institute, Global Security Initiative and School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
| | - Rolf U Halden
- Biodesign Center for Environmental Security, The Biodesign Institute, Global Security Initiative and School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
119
|
Lafuente R, García-Blàquez N, Jacquemin B, Checa MA. Outdoor air pollution and sperm quality. Fertil Steril 2016; 106:880-96. [PMID: 27565259 DOI: 10.1016/j.fertnstert.2016.08.022] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 12/25/2022]
Abstract
UNLABELLED Exposure to air pollution has been clearly associated with a range of adverse health effects, including reproductive toxicity, but its effects on male semen quality are still unclear. We performed a systematic review (up to June 2016) to assess the impact of air pollutants on sperm quality. We included 17 semi-ecological, panel, and cohort studies, assessing outdoor air pollutants, such as PM2.5, PM10, NOx, SO2, and O3, and their effects on DNA fragmentation, sperm count, sperm motility, and sperm morphology. Thirteen studies assessed air pollution exposure measured environmentally, and six used biomarkers of air pollution exposure (two did both). We rated the studies using the Newcastle-Ottawa Scale and assessed with the exposure method. Taking into account these factors and the number of studies finding significant results (positive or negative), the evidence supporting an effect of air pollution on DNA fragmentation is weak but suggestive, on sperm motility is limited and probably inexistent, on lower sperm count is inconclusive, and on sperm morphology is very suggestive. Because of the diversity of air pollutants and sperm parameters, and the studies' designs, we were unable to perform a meta-analysis. In summary, most studies concluded that outdoor air pollution affects at least one of the four semen quality parameters included in the review. However, results lack consistency, and furthermore, studies were not comparable. Studies using standardized air pollution and semen measures are required to obtain more reliable conclusions. PROSPERO REGISTRATION NUMBER CRD42015007175.
Collapse
Affiliation(s)
- Rafael Lafuente
- Department of Pediatrics, Obstetrics and Gynecology, Preventive Medicine, and Public Health, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Infertilidad y Reproducción Humana, EUGIN, Barcelona, Spain
| | - Núria García-Blàquez
- Universitat Pompeu Fabra, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bénédicte Jacquemin
- Universitat Pompeu Fabra, Barcelona, Spain; VIMA: Aging and Chronic Diseases, Epidemiological and Public Health Approaches), U1168, Institut Médical de Santé et Recherche Médicale, Villejuif, France; Unité mixte de recherche (UMR)-S1168, Université Versailles St-Quentin-en-Yvelines, Versailles, France; ISGlobal (Barcelona Institute for Global Health)-Centre for Research in Environmental Epidemiology, Barcelona, Spain; Univerity Pompeu Fabra, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Epidemiología y Salud Pública, Barcelona, Spain; Barcelona Research Infertility Group, Barcelona, Spain
| | - Miguel Angel Checa
- Centro de Infertilidad y Reproducción Humana, EUGIN, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain; Barcelona Research Infertility Group, Barcelona, Spain; Department of Obstetrics and Gynecology, Parc de Salut Mar, Barcelona, Spain.
| |
Collapse
|
120
|
Rutkowska AZ, Diamanti-Kandarakis E. Polycystic ovary syndrome and environmental toxins. Fertil Steril 2016; 106:948-58. [PMID: 27559705 DOI: 10.1016/j.fertnstert.2016.08.031] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 11/19/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most common, heterogeneous, and multifactorial endocrine disorder in premenopausal women. The pathophysiology of this endocrinopathy is still unclear; however, the heterogeneity of its features within ethnic races, geographic location, and families suggests that environment and lifestyle are of prime importance. This work is mainly focused on the possible role of the most common and studied environmental toxins for this syndrome in the pathogenesis of PCOS. Plasticizers, such as bisphenol A (BPA) or phthalates, which belong to the categories of endocrine disrupting chemicals (EDCs) and advanced glycation end products (AGEs), affect humans' health in everyday, industrialized life; therefore special attention should be paid to such exposure. Timing of exposure to EDCs is crucial for the intensity of adverse health effects. It is now evident that fetuses, infants, and/or young children are the most susceptible groups, especially in the early development periods. Prenatal exposure to EDCs that mimic endogenous hormones may contribute to the altered fetal programming and in consequence lead to PCOS and other adverse health effects, potentially transgenerationally. Acute or prolonged exposure to EDCs and AGEs through different life cycle stages may result in destabilization of the hormonal homeostasis and lead to disruption of reproductive functions. They may also interfere with metabolic alterations such as obesity, insulin resistance, and compensatory hyperinsulinemia that can exacerbate the PCOS phenotype and contribute to PCOS consequences such as type 2 diabetes and cardiovascular disease. Since wide exposure to environmental toxins and their role in the pathophysiology of PCOS are supported by extensive data derived from diverse scientific models, protective strategies and strong recommendations should be considered to reduce human exposure to protect present and future generations from their adverse health effects.
Collapse
Affiliation(s)
| | - Evanthia Diamanti-Kandarakis
- Department of Endocrinology and Diabetes Center of Excellence, Medical School University of Athens, EUROCLINIC, Athens, Greece.
| |
Collapse
|
121
|
Li W, Zheng Y, Zhang H, Liu Z, Su W, Chen S, Liu Y, Zhuang J, Lei B. Phytotoxicity, Uptake, and Translocation of Fluorescent Carbon Dots in Mung Bean Plants. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19939-45. [PMID: 27425200 DOI: 10.1021/acsami.6b07268] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Fluorescent carbon dots (CDs) have been widely studied in bioscience and bioimaging, but the effect of CDs on plants has been rarely studied. Herein, mung bean was adopted as a model plant to study the phytotoxicity, uptake, and translocation of red emissive CDs in plants. The incubation with CDs at a concentration range from 0.1 to 1.0 mg/mL induced physiological response of mung bean plant and imposed no phytotoxicity on mung bean growth. The lengths of the root and stem presented an increasing trend up to the treatment of 0.4 mg/mL. Confocal imaging showed that CDs were transferred from the roots to the stems and leaves by the vascular system through the apoplastic pathway. The uptake kinetics study was performed and demonstrated that the CDs were abundantly incubated by mung beans during both germination and growth periods. Furthermore, in vivo visualization of CDs provides potential for their successful application as delivery vehicles in plants based on the unique optical properties.
Collapse
Affiliation(s)
- Wei Li
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy and ‡College of Horticulture, South China Agricultural University , Guangzhou 510642, China
| | - Yinjian Zheng
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy and ‡College of Horticulture, South China Agricultural University , Guangzhou 510642, China
| | - Haoran Zhang
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy and ‡College of Horticulture, South China Agricultural University , Guangzhou 510642, China
| | - Zulang Liu
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy and ‡College of Horticulture, South China Agricultural University , Guangzhou 510642, China
| | - Wei Su
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy and ‡College of Horticulture, South China Agricultural University , Guangzhou 510642, China
| | - Shi Chen
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy and ‡College of Horticulture, South China Agricultural University , Guangzhou 510642, China
| | - Yingliang Liu
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy and ‡College of Horticulture, South China Agricultural University , Guangzhou 510642, China
| | - Jianle Zhuang
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy and ‡College of Horticulture, South China Agricultural University , Guangzhou 510642, China
| | - Bingfu Lei
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy and ‡College of Horticulture, South China Agricultural University , Guangzhou 510642, China
| |
Collapse
|
122
|
Schug TT, Johnson AF, Birnbaum LS, Colborn T, Guillette LJ, Crews DP, Collins T, Soto AM, Vom Saal FS, McLachlan JA, Sonnenschein C, Heindel JJ. Minireview: Endocrine Disruptors: Past Lessons and Future Directions. Mol Endocrinol 2016; 30:833-47. [PMID: 27477640 PMCID: PMC4965846 DOI: 10.1210/me.2016-1096] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/12/2016] [Indexed: 11/19/2022] Open
Abstract
Within the past few decades, the concept of endocrine-disrupting chemicals (EDCs) has risen from a position of total obscurity to become a focus of dialogue, debate, and concern among scientists, physicians, regulators, and the public. The emergence and development of this field of study has not always followed a smooth path, and researchers continue to wrestle with questions about the low-dose effects and nonmonotonic dose responses seen with EDCs, their biological mechanisms of action, the true pervasiveness of these chemicals in our environment and in our bodies, and the extent of their effects on human and wildlife health. This review chronicles the development of the unique, multidisciplinary field of endocrine disruption, highlighting what we have learned about the threat of EDCs and lessons that could be relevant to other fields. It also offers perspectives on the future of the field and opportunities to better protect human health.
Collapse
Affiliation(s)
- Thaddeus T Schug
- National Institute of Environmental Health Sciences/National Institutes of Health (T.T.S., J.J.H.), Division of Extramural Research, Research Triangle Park, North Carolina 27560; 2MDB, Inc (A.F.J.), Durham, North Carolina 27713; National Cancer Institute and National Institute of Environmental Health Sciences (L.S.B.), National Institutes of Health, Research Triangle Park, North Carolina 27709; The Endocrine Disruption Exchange (T.Colb.), Paonia, Colorado 81428; Department of Obstetrics and Gynecology (L.J.G.), Medical University of S Carolina, and Hollings Marine Laboratory, Charleston, South Carolina 29425; Section of Integrative Biology (D.C.), University of Texas at Austin, Austin, Texas 78712; Department of Chemistry (T.Coll.), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Anatomy and Cellular Biology (A.M.S., C.S.), Tufts University School of Medicine, Boston, Massachusetts 02155; Division of Biological Sciences and Department (F.S.v.S.),University of Missouri-Columbia, Columbia, Missouri 65211; and Department of Pharmacology (J.A.M.), Tulane University School of Medicine, New Orleans, Louisiana 70118
| | - Anne F Johnson
- National Institute of Environmental Health Sciences/National Institutes of Health (T.T.S., J.J.H.), Division of Extramural Research, Research Triangle Park, North Carolina 27560; 2MDB, Inc (A.F.J.), Durham, North Carolina 27713; National Cancer Institute and National Institute of Environmental Health Sciences (L.S.B.), National Institutes of Health, Research Triangle Park, North Carolina 27709; The Endocrine Disruption Exchange (T.Colb.), Paonia, Colorado 81428; Department of Obstetrics and Gynecology (L.J.G.), Medical University of S Carolina, and Hollings Marine Laboratory, Charleston, South Carolina 29425; Section of Integrative Biology (D.C.), University of Texas at Austin, Austin, Texas 78712; Department of Chemistry (T.Coll.), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Anatomy and Cellular Biology (A.M.S., C.S.), Tufts University School of Medicine, Boston, Massachusetts 02155; Division of Biological Sciences and Department (F.S.v.S.),University of Missouri-Columbia, Columbia, Missouri 65211; and Department of Pharmacology (J.A.M.), Tulane University School of Medicine, New Orleans, Louisiana 70118
| | - Linda S Birnbaum
- National Institute of Environmental Health Sciences/National Institutes of Health (T.T.S., J.J.H.), Division of Extramural Research, Research Triangle Park, North Carolina 27560; 2MDB, Inc (A.F.J.), Durham, North Carolina 27713; National Cancer Institute and National Institute of Environmental Health Sciences (L.S.B.), National Institutes of Health, Research Triangle Park, North Carolina 27709; The Endocrine Disruption Exchange (T.Colb.), Paonia, Colorado 81428; Department of Obstetrics and Gynecology (L.J.G.), Medical University of S Carolina, and Hollings Marine Laboratory, Charleston, South Carolina 29425; Section of Integrative Biology (D.C.), University of Texas at Austin, Austin, Texas 78712; Department of Chemistry (T.Coll.), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Anatomy and Cellular Biology (A.M.S., C.S.), Tufts University School of Medicine, Boston, Massachusetts 02155; Division of Biological Sciences and Department (F.S.v.S.),University of Missouri-Columbia, Columbia, Missouri 65211; and Department of Pharmacology (J.A.M.), Tulane University School of Medicine, New Orleans, Louisiana 70118
| | - Theo Colborn
- National Institute of Environmental Health Sciences/National Institutes of Health (T.T.S., J.J.H.), Division of Extramural Research, Research Triangle Park, North Carolina 27560; 2MDB, Inc (A.F.J.), Durham, North Carolina 27713; National Cancer Institute and National Institute of Environmental Health Sciences (L.S.B.), National Institutes of Health, Research Triangle Park, North Carolina 27709; The Endocrine Disruption Exchange (T.Colb.), Paonia, Colorado 81428; Department of Obstetrics and Gynecology (L.J.G.), Medical University of S Carolina, and Hollings Marine Laboratory, Charleston, South Carolina 29425; Section of Integrative Biology (D.C.), University of Texas at Austin, Austin, Texas 78712; Department of Chemistry (T.Coll.), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Anatomy and Cellular Biology (A.M.S., C.S.), Tufts University School of Medicine, Boston, Massachusetts 02155; Division of Biological Sciences and Department (F.S.v.S.),University of Missouri-Columbia, Columbia, Missouri 65211; and Department of Pharmacology (J.A.M.), Tulane University School of Medicine, New Orleans, Louisiana 70118
| | - Louis J Guillette
- National Institute of Environmental Health Sciences/National Institutes of Health (T.T.S., J.J.H.), Division of Extramural Research, Research Triangle Park, North Carolina 27560; 2MDB, Inc (A.F.J.), Durham, North Carolina 27713; National Cancer Institute and National Institute of Environmental Health Sciences (L.S.B.), National Institutes of Health, Research Triangle Park, North Carolina 27709; The Endocrine Disruption Exchange (T.Colb.), Paonia, Colorado 81428; Department of Obstetrics and Gynecology (L.J.G.), Medical University of S Carolina, and Hollings Marine Laboratory, Charleston, South Carolina 29425; Section of Integrative Biology (D.C.), University of Texas at Austin, Austin, Texas 78712; Department of Chemistry (T.Coll.), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Anatomy and Cellular Biology (A.M.S., C.S.), Tufts University School of Medicine, Boston, Massachusetts 02155; Division of Biological Sciences and Department (F.S.v.S.),University of Missouri-Columbia, Columbia, Missouri 65211; and Department of Pharmacology (J.A.M.), Tulane University School of Medicine, New Orleans, Louisiana 70118
| | - David P Crews
- National Institute of Environmental Health Sciences/National Institutes of Health (T.T.S., J.J.H.), Division of Extramural Research, Research Triangle Park, North Carolina 27560; 2MDB, Inc (A.F.J.), Durham, North Carolina 27713; National Cancer Institute and National Institute of Environmental Health Sciences (L.S.B.), National Institutes of Health, Research Triangle Park, North Carolina 27709; The Endocrine Disruption Exchange (T.Colb.), Paonia, Colorado 81428; Department of Obstetrics and Gynecology (L.J.G.), Medical University of S Carolina, and Hollings Marine Laboratory, Charleston, South Carolina 29425; Section of Integrative Biology (D.C.), University of Texas at Austin, Austin, Texas 78712; Department of Chemistry (T.Coll.), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Anatomy and Cellular Biology (A.M.S., C.S.), Tufts University School of Medicine, Boston, Massachusetts 02155; Division of Biological Sciences and Department (F.S.v.S.),University of Missouri-Columbia, Columbia, Missouri 65211; and Department of Pharmacology (J.A.M.), Tulane University School of Medicine, New Orleans, Louisiana 70118
| | - Terry Collins
- National Institute of Environmental Health Sciences/National Institutes of Health (T.T.S., J.J.H.), Division of Extramural Research, Research Triangle Park, North Carolina 27560; 2MDB, Inc (A.F.J.), Durham, North Carolina 27713; National Cancer Institute and National Institute of Environmental Health Sciences (L.S.B.), National Institutes of Health, Research Triangle Park, North Carolina 27709; The Endocrine Disruption Exchange (T.Colb.), Paonia, Colorado 81428; Department of Obstetrics and Gynecology (L.J.G.), Medical University of S Carolina, and Hollings Marine Laboratory, Charleston, South Carolina 29425; Section of Integrative Biology (D.C.), University of Texas at Austin, Austin, Texas 78712; Department of Chemistry (T.Coll.), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Anatomy and Cellular Biology (A.M.S., C.S.), Tufts University School of Medicine, Boston, Massachusetts 02155; Division of Biological Sciences and Department (F.S.v.S.),University of Missouri-Columbia, Columbia, Missouri 65211; and Department of Pharmacology (J.A.M.), Tulane University School of Medicine, New Orleans, Louisiana 70118
| | - Ana M Soto
- National Institute of Environmental Health Sciences/National Institutes of Health (T.T.S., J.J.H.), Division of Extramural Research, Research Triangle Park, North Carolina 27560; 2MDB, Inc (A.F.J.), Durham, North Carolina 27713; National Cancer Institute and National Institute of Environmental Health Sciences (L.S.B.), National Institutes of Health, Research Triangle Park, North Carolina 27709; The Endocrine Disruption Exchange (T.Colb.), Paonia, Colorado 81428; Department of Obstetrics and Gynecology (L.J.G.), Medical University of S Carolina, and Hollings Marine Laboratory, Charleston, South Carolina 29425; Section of Integrative Biology (D.C.), University of Texas at Austin, Austin, Texas 78712; Department of Chemistry (T.Coll.), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Anatomy and Cellular Biology (A.M.S., C.S.), Tufts University School of Medicine, Boston, Massachusetts 02155; Division of Biological Sciences and Department (F.S.v.S.),University of Missouri-Columbia, Columbia, Missouri 65211; and Department of Pharmacology (J.A.M.), Tulane University School of Medicine, New Orleans, Louisiana 70118
| | - Frederick S Vom Saal
- National Institute of Environmental Health Sciences/National Institutes of Health (T.T.S., J.J.H.), Division of Extramural Research, Research Triangle Park, North Carolina 27560; 2MDB, Inc (A.F.J.), Durham, North Carolina 27713; National Cancer Institute and National Institute of Environmental Health Sciences (L.S.B.), National Institutes of Health, Research Triangle Park, North Carolina 27709; The Endocrine Disruption Exchange (T.Colb.), Paonia, Colorado 81428; Department of Obstetrics and Gynecology (L.J.G.), Medical University of S Carolina, and Hollings Marine Laboratory, Charleston, South Carolina 29425; Section of Integrative Biology (D.C.), University of Texas at Austin, Austin, Texas 78712; Department of Chemistry (T.Coll.), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Anatomy and Cellular Biology (A.M.S., C.S.), Tufts University School of Medicine, Boston, Massachusetts 02155; Division of Biological Sciences and Department (F.S.v.S.),University of Missouri-Columbia, Columbia, Missouri 65211; and Department of Pharmacology (J.A.M.), Tulane University School of Medicine, New Orleans, Louisiana 70118
| | - John A McLachlan
- National Institute of Environmental Health Sciences/National Institutes of Health (T.T.S., J.J.H.), Division of Extramural Research, Research Triangle Park, North Carolina 27560; 2MDB, Inc (A.F.J.), Durham, North Carolina 27713; National Cancer Institute and National Institute of Environmental Health Sciences (L.S.B.), National Institutes of Health, Research Triangle Park, North Carolina 27709; The Endocrine Disruption Exchange (T.Colb.), Paonia, Colorado 81428; Department of Obstetrics and Gynecology (L.J.G.), Medical University of S Carolina, and Hollings Marine Laboratory, Charleston, South Carolina 29425; Section of Integrative Biology (D.C.), University of Texas at Austin, Austin, Texas 78712; Department of Chemistry (T.Coll.), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Anatomy and Cellular Biology (A.M.S., C.S.), Tufts University School of Medicine, Boston, Massachusetts 02155; Division of Biological Sciences and Department (F.S.v.S.),University of Missouri-Columbia, Columbia, Missouri 65211; and Department of Pharmacology (J.A.M.), Tulane University School of Medicine, New Orleans, Louisiana 70118
| | - Carlos Sonnenschein
- National Institute of Environmental Health Sciences/National Institutes of Health (T.T.S., J.J.H.), Division of Extramural Research, Research Triangle Park, North Carolina 27560; 2MDB, Inc (A.F.J.), Durham, North Carolina 27713; National Cancer Institute and National Institute of Environmental Health Sciences (L.S.B.), National Institutes of Health, Research Triangle Park, North Carolina 27709; The Endocrine Disruption Exchange (T.Colb.), Paonia, Colorado 81428; Department of Obstetrics and Gynecology (L.J.G.), Medical University of S Carolina, and Hollings Marine Laboratory, Charleston, South Carolina 29425; Section of Integrative Biology (D.C.), University of Texas at Austin, Austin, Texas 78712; Department of Chemistry (T.Coll.), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Anatomy and Cellular Biology (A.M.S., C.S.), Tufts University School of Medicine, Boston, Massachusetts 02155; Division of Biological Sciences and Department (F.S.v.S.),University of Missouri-Columbia, Columbia, Missouri 65211; and Department of Pharmacology (J.A.M.), Tulane University School of Medicine, New Orleans, Louisiana 70118
| | - Jerrold J Heindel
- National Institute of Environmental Health Sciences/National Institutes of Health (T.T.S., J.J.H.), Division of Extramural Research, Research Triangle Park, North Carolina 27560; 2MDB, Inc (A.F.J.), Durham, North Carolina 27713; National Cancer Institute and National Institute of Environmental Health Sciences (L.S.B.), National Institutes of Health, Research Triangle Park, North Carolina 27709; The Endocrine Disruption Exchange (T.Colb.), Paonia, Colorado 81428; Department of Obstetrics and Gynecology (L.J.G.), Medical University of S Carolina, and Hollings Marine Laboratory, Charleston, South Carolina 29425; Section of Integrative Biology (D.C.), University of Texas at Austin, Austin, Texas 78712; Department of Chemistry (T.Coll.), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Anatomy and Cellular Biology (A.M.S., C.S.), Tufts University School of Medicine, Boston, Massachusetts 02155; Division of Biological Sciences and Department (F.S.v.S.),University of Missouri-Columbia, Columbia, Missouri 65211; and Department of Pharmacology (J.A.M.), Tulane University School of Medicine, New Orleans, Louisiana 70118
| |
Collapse
|
123
|
Vandenberg LN, Ågerstrand M, Beronius A, Beausoleil C, Bergman Å, Bero LA, Bornehag CG, Boyer CS, Cooper GS, Cotgreave I, Gee D, Grandjean P, Guyton KZ, Hass U, Heindel JJ, Jobling S, Kidd KA, Kortenkamp A, Macleod MR, Martin OV, Norinder U, Scheringer M, Thayer KA, Toppari J, Whaley P, Woodruff TJ, Rudén C. A proposed framework for the systematic review and integrated assessment (SYRINA) of endocrine disrupting chemicals. Environ Health 2016; 15:74. [PMID: 27412149 PMCID: PMC4944316 DOI: 10.1186/s12940-016-0156-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/17/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND The issue of endocrine disrupting chemicals (EDCs) is receiving wide attention from both the scientific and regulatory communities. Recent analyses of the EDC literature have been criticized for failing to use transparent and objective approaches to draw conclusions about the strength of evidence linking EDC exposures to adverse health or environmental outcomes. Systematic review methodologies are ideal for addressing this issue as they provide transparent and consistent approaches to study selection and evaluation. Objective methods are needed for integrating the multiple streams of evidence (epidemiology, wildlife, laboratory animal, in vitro, and in silico data) that are relevant in assessing EDCs. METHODS We have developed a framework for the systematic review and integrated assessment (SYRINA) of EDC studies. The framework was designed for use with the International Program on Chemical Safety (IPCS) and World Health Organization (WHO) definition of an EDC, which requires appraisal of evidence regarding 1) association between exposure and an adverse effect, 2) association between exposure and endocrine disrupting activity, and 3) a plausible link between the adverse effect and the endocrine disrupting activity. RESULTS Building from existing methodologies for evaluating and synthesizing evidence, the SYRINA framework includes seven steps: 1) Formulate the problem; 2) Develop the review protocol; 3) Identify relevant evidence; 4) Evaluate evidence from individual studies; 5) Summarize and evaluate each stream of evidence; 6) Integrate evidence across all streams; 7) Draw conclusions, make recommendations, and evaluate uncertainties. The proposed method is tailored to the IPCS/WHO definition of an EDC but offers flexibility for use in the context of other definitions of EDCs. CONCLUSIONS When using the SYRINA framework, the overall objective is to provide the evidence base needed to support decision making, including any action to avoid/minimise potential adverse effects of exposures. This framework allows for the evaluation and synthesis of evidence from multiple evidence streams. Finally, a decision regarding regulatory action is not only dependent on the strength of evidence, but also the consequences of action/inaction, e.g. limited or weak evidence may be sufficient to justify action if consequences are serious or irreversible.
Collapse
Affiliation(s)
- Laura N. Vandenberg
- />Department of Environmental Health Sciences, University of Massachusetts Amherst School of Public Health & Health Sciences, Amherst, MA USA
| | - Marlene Ågerstrand
- />Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Anna Beronius
- />Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Claire Beausoleil
- />ANSES (French Agency for Food, Environmental and Occupational Health Safety), Maisons Alfort, France
| | - Åke Bergman
- />Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
- />Swedish Toxicology Sciences Research Center, Södertälje, Sweden
| | - Lisa A. Bero
- />Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Carl-Gustaf Bornehag
- />Department of health sciences, Karlstad University, Karlstad, Sweden
- />Icahn School of Medicine at Mount Sinai, New York City, USA
| | - C. Scott Boyer
- />Swedish Toxicology Sciences Research Center, Södertälje, Sweden
| | | | - Ian Cotgreave
- />Swedish Toxicology Sciences Research Center (Swetox), Karolinska Institutet, Södertälje, Sweden
| | - David Gee
- />Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - Philippe Grandjean
- />Department of Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Ulla Hass
- />National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Jerrold J. Heindel
- />National Institute of Environmental Health Sciences, Division of Extramural Research and Training, Research Triangle Park, NC USA
| | - Susan Jobling
- />Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - Karen A. Kidd
- />Biology Department and Canadian Rivers Institute, University of New Brunswick, Saint John, New Brunswick Canada
| | - Andreas Kortenkamp
- />Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - Malcolm R. Macleod
- />Centre for Clinical Brain Sciences, University of Edinburgh, Scotland, UK
| | - Olwenn V. Martin
- />Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - Ulf Norinder
- />Swedish Toxicology Sciences Research Center, Södertälje, Sweden
| | - Martin Scheringer
- />Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| | - Kristina A. Thayer
- />Department of Health and Human Services, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC USA
| | - Jorma Toppari
- />University of Turku, Turku University Hospital, Turku, Finland
| | - Paul Whaley
- />Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Tracey J. Woodruff
- />School of Medicine, Program on Reproductive Health and the Environment, University of California, San Francisco, Oakland, CA USA
| | - Christina Rudén
- />Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
124
|
Trasande L, Vandenberg LN, Bourguignon JP, Myers JP, Slama R, Vom Saal F, Zoeller RT. Peer-reviewed and unbiased research, rather than 'sound science', should be used to evaluate endocrine-disrupting chemicals. J Epidemiol Community Health 2016; 70:1051-1056. [PMID: 27417427 DOI: 10.1136/jech-2016-207841] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/21/2016] [Indexed: 12/31/2022]
Abstract
Evidence increasingly confirms that synthetic chemicals disrupt the endocrine system and contribute to disease and disability across the lifespan. Despite a United Nations Environment Programme/WHO report affirmed by over 100 countries at the Fourth International Conference on Chemicals Management, 'manufactured doubt' continues to be cast as a cloud over rigorous, peer-reviewed and independently funded scientific data. This study describes the sources of doubt and their social costs, and suggested courses of action by policymakers to prevent disease and disability. The problem is largely based on the available data, which are all too limited. Rigorous testing programmes should not simply focus on oestrogen, androgen and thyroid. Tests should have proper statistical power. 'Good laboratory practice' (GLP) hardly represents a proper or even gold standard for laboratory studies of endocrine disruption. Studies should be evaluated with regard to the contamination of negative controls, responsiveness to positive controls and dissection techniques. Flaws in many GLP studies have been identified, yet regulatory agencies rely on these flawed studies. Peer-reviewed and unbiased research, rather than 'sound science', should be used to evaluate endocrine-disrupting chemicals.
Collapse
Affiliation(s)
- Leonardo Trasande
- Department of Pediatrics, New York University School of Medicine, New York, New York, USA Department of Environmental Medicine and Population Health, New York University School of Medicine, New York, New York, USA Department of Population Health, New York University School of Medicine, New York, New York, USA NYU Wagner School of Public Service, New York, New York, USA Department of Nutrition, Food & Public Health, NYU Steinhardt School of Culture, Education and Human Development, New York, New York, USA NYU Global Institute of Public Health, New York, New York, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts-Amherst, Amherst, Massachusetts, USA
| | - Jean-Pierre Bourguignon
- Pediatric Endocrinology, CHU Liège and Neuroendocrinology Unit, GIGA Neurosciences, Universite de Liege, Liège, Belgium
| | | | - Remy Slama
- Inserm, CNRS and Univ. Grenoble Alpes joint research center (IAB), Team of Environmental Epidemiology, Grenoble, France
| | - Frederick Vom Saal
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | | |
Collapse
|
125
|
Mansouri K, Abdelaziz A, Rybacka A, Roncaglioni A, Tropsha A, Varnek A, Zakharov A, Worth A, Richard AM, Grulke CM, Trisciuzzi D, Fourches D, Horvath D, Benfenati E, Muratov E, Wedebye EB, Grisoni F, Mangiatordi GF, Incisivo GM, Hong H, Ng HW, Tetko IV, Balabin I, Kancherla J, Shen J, Burton J, Nicklaus M, Cassotti M, Nikolov NG, Nicolotti O, Andersson PL, Zang Q, Politi R, Beger RD, Todeschini R, Huang R, Farag S, Rosenberg SA, Slavov S, Hu X, Judson RS. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1023-33. [PMID: 26908244 PMCID: PMC4937869 DOI: 10.1289/ehp.1510267] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/05/2015] [Accepted: 02/08/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Humans are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Most of these chemicals have never been tested for their ability to interact with the estrogen receptor (ER). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program. OBJECTIVES We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) and demonstrate the efficacy of using predictive computational models trained on high-throughput screening data to evaluate thousands of chemicals for ER-related activity and prioritize them for further testing. METHODS CERAPP combined multiple models developed in collaboration with 17 groups in the United States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure-activity relationship models and docking approaches were employed, mostly using a common training set of 1,677 chemical structures provided by the U.S. EPA, to build a total of 40 categorical and 8 continuous models for binding, agonist, and antagonist ER activity. All predictions were evaluated on a set of 7,522 chemicals curated from the literature. To overcome the limitations of single models, a consensus was built by weighting models on scores based on their evaluated accuracies. RESULTS Individual model scores ranged from 0.69 to 0.85, showing high prediction reliabilities. Out of the 32,464 chemicals, the consensus model predicted 4,001 chemicals (12.3%) as high priority actives and 6,742 potential actives (20.8%) to be considered for further testing. CONCLUSION This project demonstrated the possibility to screen large libraries of chemicals using a consensus of different in silico approaches. This concept will be applied in future projects related to other end points. CITATION Mansouri K, Abdelaziz A, Rybacka A, Roncaglioni A, Tropsha A, Varnek A, Zakharov A, Worth A, Richard AM, Grulke CM, Trisciuzzi D, Fourches D, Horvath D, Benfenati E, Muratov E, Wedebye EB, Grisoni F, Mangiatordi GF, Incisivo GM, Hong H, Ng HW, Tetko IV, Balabin I, Kancherla J, Shen J, Burton J, Nicklaus M, Cassotti M, Nikolov NG, Nicolotti O, Andersson PL, Zang Q, Politi R, Beger RD, Todeschini R, Huang R, Farag S, Rosenberg SA, Slavov S, Hu X, Judson RS. 2016. CERAPP Collaborative Estrogen Receptor Activity Prediction Project. Environ Health Perspect 124:1023-1033; http://dx.doi.org/10.1289/ehp.1510267.
Collapse
Affiliation(s)
- Kamel Mansouri
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Ahmed Abdelaziz
- Institute of Structural Biology, Helmholtz Zentrum Muenchen-German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | | | - Alessandra Roncaglioni
- Environmental Chemistry and Toxicology Laboratory, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico)-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alexandre Varnek
- Laboratoire de Chemoinformatique, University of Strasbourg, Strasbourg, France
| | - Alexey Zakharov
- National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Andrew Worth
- Institute for Health and Consumer Protection (IHCP), Joint Research Centre of the European Commission in Ispra, Ispra, Italy
| | - Ann M. Richard
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Christopher M. Grulke
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | | | - Denis Fourches
- Laboratory for Molecular Modeling, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dragos Horvath
- Laboratoire de Chemoinformatique, University of Strasbourg, Strasbourg, France
| | - Emilio Benfenati
- Environmental Chemistry and Toxicology Laboratory, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico)-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Eugene Muratov
- Laboratory for Molecular Modeling, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eva Bay Wedebye
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Francesca Grisoni
- Milano Chemometrics and QSAR Research Group, University of Milano-Bicocca, Milan, Italy
| | | | - Giuseppina M. Incisivo
- Environmental Chemistry and Toxicology Laboratory, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico)-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Huixiao Hong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration (USDA), Jefferson, Arizona, USA
| | - Hui W. Ng
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration (USDA), Jefferson, Arizona, USA
| | - Igor V. Tetko
- Institute of Structural Biology, Helmholtz Zentrum Muenchen-German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- BigChem GmbH, Neuherberg, Germany
| | - Ilya Balabin
- High Performance Computing, Lockheed Martin, Research Triangle Park, North Carolina, USA
| | - Jayaram Kancherla
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Jie Shen
- Research Institute for Fragrance Materials, Inc., Woodcliff Lake, New Jersey, USA
| | - Julien Burton
- Institute for Health and Consumer Protection (IHCP), Joint Research Centre of the European Commission in Ispra, Ispra, Italy
| | - Marc Nicklaus
- National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Matteo Cassotti
- Milano Chemometrics and QSAR Research Group, University of Milano-Bicocca, Milan, Italy
| | - Nikolai G. Nikolov
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Orazio Nicolotti
- Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | | | - Qingda Zang
- Integrated Laboratory Systems, Inc., Research Triangle Park, North Carolina, USA
| | - Regina Politi
- Laboratory for Molecular Modeling, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Richard D. Beger
- Division of Systems Biology, National Center for Toxicological Research, USDA, Jefferson, Arizona, USA
| | - Roberto Todeschini
- Milano Chemometrics and QSAR Research Group, University of Milano-Bicocca, Milan, Italy
| | - Ruili Huang
- National Center for Advancing Translational Sciences, NIH, DHHS, Bethesda, Maryland, USA
| | - Sherif Farag
- Laboratory for Molecular Modeling, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sine A. Rosenberg
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Svetoslav Slavov
- Integrated Laboratory Systems, Inc., Research Triangle Park, North Carolina, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences, NIH, DHHS, Bethesda, Maryland, USA
| | - Richard S. Judson
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
- Address correspondence to R.S. Judson, U.S. EPA, National Center for Computational Toxicology, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711 USA. Telephone: (919) 541-3085. E-mail:
| |
Collapse
|
126
|
Abstract
Recent events have drawn attention to the hypothesis that some xenobiotics in the environment may elicit toxicities in humans by modulating endocrine pathways. From the perspective of regulatory toxicology, pursuit of this hypothesis w ill prove difficult, because current risk assessment m ethods do not readily apply to substances with very high potencies, reversibility, transgener-ational effects, and subtle biological outcomes. Such xenobiotics typically persist in the body and bioaccumulate in the food chain. Yet the exposures are important only during critical periods of vulnerability, and no sustained bio-markers of these important exposures currently exist. This article describes some recent efforts by federal agencies to pursue the hypothesis, including research planning and screening of potential endocrine modulating xenobiotics and risk assessment of dioxin conflicts with its policy for substances that cause thyroid follicular carcinomas.
Collapse
Affiliation(s)
- Daniel M. Byrd
- Center for the Study of Environmental Endocrine Effects, Federal Focus, Inc., Washington, DC, USA
| | - M. Luann Roegner
- Novartis Seeds, Cornwalis Drive, Research Triangle Park, North Carolina, USA
| |
Collapse
|
127
|
Abstract
Historical observations, first publicized in Rachel Carson's Silent Spring, demonstrated biological effects of persistent, bioaccumulative pollutants on wildlife. These effects included disruption of reproduction and, in some situations, responses mediated through the endocrine system. The substances that caused these effects were mainly highly chlorinated halocarbon compounds, such as DDT (and metabolites), other organochlorine pesticides, polychlori-nated biphenyls, poly chlorinated dibenzo-p-dioxins, and poly chlorinated dibenzofurans. In contrast, responses of fish to industrial discharges and pulp mill effluents have implicated more water-soluble compounds. Characterizations of wildlife exposures require consideration of temporal and spatial factors that they exacerbate or ameliorate responses. Likewise, effects of endocrine-modulating substances m ay appear at subsequent stages of development, not at the time of exposure. Consistent with the declines in environmental concentrations of persistent, bioaccumulative substances, populations of several wild bird species, including bald eagles, cormorants, herring gulls, and Caspian terns, have increased, recovering from declines noted in previously polluted areas during the 1960s and 1970s.
Collapse
Affiliation(s)
- Keith R. Solomon
- Centre for Toxicology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
128
|
Tomei G, Rosati MV, Ciarrocca M, Capozzella A, Pimpinella B, Palitti T, Casale T, Di Famiani M, Filippelli C, Cangemi C, Giubilati R, Monti C, Tomei F. Urban stressors and plasmatic 17-β-estradiol (E2) in male exposed workers. Toxicol Ind Health 2016; 23:537-43. [DOI: 10.1177/0748233708089043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of the study is to evaluate if the occupational exposure to urban stressors could cause alterations in 17-β-estradiol (E2) plasma levels and related disorders in male traffic police compared with a control group. After excluding from the study, the subjects with the principal confounding factors, traffic police and controls were matched by age, working life, Body Mass Index (BMI), smoking and drinking habit. A total of 171 male traffic police and 171 controls were included in the study. In traffic police, mean E2 values were significantly lower versus controls ( P < 0.001). The distribution of E2 values in traffic police and controls was significant ( P < 0.001). No significant differences were found in percentage of traffic police versus controls concerning the following questionnaire items: fertility and mental health diseases. Our results suggest that the occupational exposure to chemical urban stressor, interacting with and adding to the psychosocial ones, could alter plasma E2 concentrations in male traffic police compared with a control group. According to our previous researches on other neuro-immune-endocrine parameters, E2 could be used as an early biological marker, valuable for the group, to be used in occupational set even before the onset of the pathologies.
Collapse
Affiliation(s)
- G Tomei
- Department of Psychiatric Science and Psychological Medicine, University of Rome “Sapienza”, Rome, Italy
| | - MV Rosati
- Department of Occupational Medicine, University of Rome “Sapienza”, Rome, Italy
| | - M Ciarrocca
- Department of Occupational Medicine, University of Rome “Sapienza”, Rome, Italy
| | - A Capozzella
- Department of Occupational Medicine, University of Rome “Sapienza”, Rome, Italy
| | - B Pimpinella
- Department of Occupational Medicine, University of Rome “Sapienza”, Rome, Italy
| | - T Palitti
- Department of Occupational Medicine, University of Rome “Sapienza”, Rome, Italy
| | - T Casale
- Department of Occupational Medicine, University of Rome “Sapienza”, Rome, Italy
| | - M Di Famiani
- Department of Occupational Medicine, University of Rome “Sapienza”, Rome, Italy
| | - C Filippelli
- Department of Occupational Medicine, University of Rome “Sapienza”, Rome, Italy
| | - C Cangemi
- Department of Occupational Medicine, University of Rome “Sapienza”, Rome, Italy
| | - R Giubilati
- Department of Occupational Medicine, University of Rome “Sapienza”, Rome, Italy
| | - C Monti
- Department of Occupational Medicine, University of Rome “Sapienza”, Rome, Italy
| | - F Tomei
- Department of Occupational Medicine, University of Rome “Sapienza”, Rome, Italy
| |
Collapse
|
129
|
Tan B, Mustafa A. The Monitoring of Pesticides and Alkylphenols in Selected Rivers in the State of Selan Jor, Malaysia. Asia Pac J Public Health 2016; 16:54-63. [DOI: 10.1177/101053950401600110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alkylphenols and most pesticides, especially organochlorine pesticides are endocrine-disrupting chemicals and they usually mimic the female hormone, estrogen. Using these chemicals in our environment would eventually lead us to consume them somehow in the food web. Several rivers in the State of Selangor, Malaysia were selected to monitor the level of alkylphenols and pesticides contamination for several months. The compounds were extracted from the water samples using liquid-liquid extraction method with dichloromethane and ethyl acetate as the extracting solvents. The alkylphenols and pesticides were analyzed by selected ion monitoring (SIM) mode using the quadrapole detector in Shimadzu QP-5000 gas chromatograph-mass spectrometer (GCMS). Recovery of most alkylphenols and pesticides were in the range of 50% to 120%. Trace amounts of the compounds were detected in the river water samples, mainly in the range of parts per trillion. This technique of monitoring the levels of endocrine-disruptors in river water is consistent and cost effective. Asia Pac JPublic Health 2004,- 16(1): 54- 63.
Collapse
Affiliation(s)
- B.L.L. Tan
- Department of Pharmacology, Faculty of Medicine, University
of Malaya, Kuala Lumpur, Malaysia,
| | - A.M. Mustafa
- Department of Pharmacology, Faculty of Medicine, University
of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
130
|
Lundin JI, Ylitalo GM, Booth RK, Anulacion B, Hempelmann JA, Parsons KM, Giles DA, Seely EA, Hanson MB, Emmons CK, Wasser SK. Modulation in Persistent Organic Pollutant Concentration and Profile by Prey Availability and Reproductive Status in Southern Resident Killer Whale Scat Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6506-6516. [PMID: 27186642 DOI: 10.1021/acs.est.6b00825] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Persistent organic pollutants (POPs), specifically PCBs, PBDEs, and DDTs, in the marine environment are well documented, however accumulation and mobilization patterns at the top of the food-web are poorly understood. This study broadens the understanding of POPs in the endangered Southern Resident killer whale population by addressing modulation by prey availability and reproductive status, along with endocrine disrupting effects. A total of 140 killer whale scat samples collected from 54 unique whales across a 4 year sampling period (2010-2013) were analyzed for concentrations of POPs. Toxicant measures were linked to pod, age, and birth order in genotyped individuals, prey abundance using open-source test fishery data, and pregnancy status based on hormone indices from the same sample. Toxicant concentrations were highest and had the greatest potential for toxicity when prey abundance was the lowest. In addition, these toxicants were likely from endogenous lipid stores. Bioaccumulation of POPs increased with age, with the exception of presumed nulliparous females. The exceptional pattern may be explained by females experiencing unobserved neonatal loss. Transfer of POPs through mobilization of endogenous lipid stores during lactation was highest for first-borns with diminished transfer to subsequent calves. Contrary to expectation, POP concentrations did not demonstrate an associated disruption of thyroid hormone, although this association may have been masked by impacts of prey abundance on thyroid hormone concentrations. The noninvasive method for measuring POP concentrations in killer whales through scat employed in this study may improve toxicant monitoring in the marine environment and promote conservation efforts.
Collapse
Affiliation(s)
- Jessica I Lundin
- Center for Conservation Biology, Department of Biology, University of Washington , Seattle, Washington 98195, United States
| | - Gina M Ylitalo
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration , Seattle, Washington 98112, United States
| | - Rebecca K Booth
- Center for Conservation Biology, Department of Biology, University of Washington , Seattle, Washington 98195, United States
| | - Bernadita Anulacion
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration , Seattle, Washington 98112, United States
| | - Jennifer A Hempelmann
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration , Seattle, Washington 98112, United States
| | - Kim M Parsons
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration , Seattle, Washington 98112, United States
- Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration , Seattle, Washington 98115, United States
| | - Deborah A Giles
- Center for Whale Research , Friday Harbor, Washington 98250, United States
| | - Elizabeth A Seely
- Center for Conservation Biology, Department of Biology, University of Washington , Seattle, Washington 98195, United States
| | - M Bradley Hanson
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration , Seattle, Washington 98112, United States
| | - Candice K Emmons
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration , Seattle, Washington 98112, United States
| | - Samuel K Wasser
- Center for Conservation Biology, Department of Biology, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|
131
|
Dang Y, Wang J, Giesy JP, Liu C. Responses of the zebrafish hypothalamic-pituitary-gonadal-liver axis PCR array to prochloraz are dependent on timing of sampling. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:154-159. [PMID: 27055099 DOI: 10.1016/j.aquatox.2016.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
A PCR array, based on expression of genes along the hypothalamic-pituitary-gonadal-liver (HPGL) axis of fish, has been suggested as a useful method for screening of endocrine-disrupting chemicals (EDCs). However, effects of circadian rhythm on responses of the HPGL axis to exposure to chemicals were unknown. In this study, profiles of expression of genes along the HPGL axis and concentrations of 17β-estradiol (E2) in blood plasma of female zebrafish were compared at two sampling times of day (8:00 AM and 7:00 PM). Prochloraz (PCZ) was selected as a model chemical to evaluate differences in responses of the HPGL axis at these two times of day. Profiles of responses of concentrations of E2 in plasma and expressions of genes along the HPGL axis genes were different between the two times of sampling. Concentrations of E2 were less, and abundances of mRNA for several genes along the HPGL axis were significantly greater or lesser when samples were collected at 7:00 PM than they were when samples were collected at 8:00 AM. Exposure to three concentrations of PCZ (3, 30 or 300μg/L) for 48h resulted in significantly lesser concentrations of plasma E2 and caused compensatory up-regulation of genes included in hypothalamus, pituitary and ovary. Expressions of genes along the HPGL were more responsive to PCZ at 8:00 AM than they were when samples were collected at 7:00 PM. Correlations among parameters in samples collected at the two times indicated the effects might be due to different concentrations of E2 in plasma due to exposure to PCZ.
Collapse
Affiliation(s)
- Yao Dang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - John P Giesy
- School of Biological Sciences, University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan Changde 415000, China.
| |
Collapse
|
132
|
Tu W, Xu C, Jin Y, Lu B, Lin C, Wu Y, Liu W. Permethrin is a potential thyroid-disrupting chemical: In vivo and in silico envidence. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:39-46. [PMID: 26994367 DOI: 10.1016/j.aquatox.2016.03.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/04/2016] [Accepted: 03/05/2016] [Indexed: 06/05/2023]
Abstract
Permethrin (PM), one of the most heavily used synthetic pyrethroids, has the potential to interfere with thyroid hormones in mammals, however, the effect is poorly recognized in aquatic organisms. Herein, embryonic zebrafish were exposed to PM (0, 1, 3 and 10μg/L) until 72h post-fertilization. We demonstrated that PM readily accumulated in larvae with a preference for cis-PM, inhibited development and increased thyroxine and 3,5,3'-triiodothyronine levels accompanying increase in the transcription of most target genes, i.e., thyroid-stimulating hormone β, deiodinases, thyroid receptors, involved in the hypothalamic-pituitary-thyroid axis. Further Western blot analysis indicated that transthyretin (TTR) protein was significantly increased. Molecular docking analysis and molecular dynamics simulations revealed that PM fits into three hydrophobic binding pocket of TTR, one of the molecular targets of thyroid hormone disrupting chemicals (THDCs), and forms strong van der Waals interactions with six resides of TTR, including Leu8, Leu 101, Leu125, Thr214, Leu218 and Val229, thus altering TTR activity. Both in vivo and in silico studies clearly disclosed that PM potentially disrupts the thyroid endocrine system in fish. This study provides a rapid and cost-effective approach for identifying THDCs and the underlying mechanisms.
Collapse
Affiliation(s)
- Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330029, China; College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Yuanxiang Jin
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Bin Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chunmian Lin
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yongming Wu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330029, China
| | - Weiping Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
133
|
Guerra MT, Furlong HC, Kempinas WG, Foster WG. Effects of in vitro exposure to butylparaben and di-(2 ethylhexyl) phthalate, alone or in combination, on ovarian function. J Appl Toxicol 2016; 36:1235-45. [PMID: 27135907 DOI: 10.1002/jat.3335] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 01/12/2023]
Abstract
Parabens and phthalates are commercial chemicals widely used in the manufacture of industrial and consumer products frequently found as contaminants in biological fluids. We evaluated the effects of di-(2-ethylhexyl) phthalate (DEHP) (ranging from 10(-9) to 10(-7) m [1-100 nm; 0.39-39 ng ml(-1) ]) and butylparaben (BP) (ranging from 10(-8) to 10(-5) m [10 nm-10 μm; 1.9 ng ml(-1) to 1.9 μg ml(-1) ]), alone and in combination, on isolated mouse preantral follicle and human granulosa cell (hGC) cultures to study direct effects on follicle growth and ovarian steroidogenesis. Our results revealed that, in follicle culture, DEHP and BP attenuate estradiol output but only when present together. DEHP decreases progesterone concentrations in the spent media of hGC cultures, an effect that was attenuated when BP was added together with DEHP. Although changes in steroidogenesis were observed, no effects on follicular development or survival were noted in the culture systems. We suggest that BP and DEHP act with additive effect to decrease estradiol production whereas at later stages of follicle development BP blocks the effect of DEHP in hGCs resulting in decreased progesterone output. Taken together our results suggest that DEHP and BP adversely affect steroidogenesis from the preantral stage onward and the effects of these chemicals are both stage-dependent and modified by co-exposure. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Marina T Guerra
- Department of Morphology, Institute of Biosciences, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Hayley C Furlong
- Department of Obstetrics and Gynaecology, McMaster University, Hamilton, Ontario, Canada
| | - Wilma G Kempinas
- Department of Morphology, Institute of Biosciences, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Warren G Foster
- Department of Obstetrics and Gynaecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
134
|
Prenatal progesterone exposure of male rats induces morphometric and histological changes in testes. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2016. [DOI: 10.1016/j.apjr.2016.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
135
|
Arukwe A, Myburgh J, Langberg HA, Adeogun AO, Braa IG, Moeder M, Schlenk D, Crago JP, Regoli F, Botha C. Developmental alterations and endocrine-disruptive responses in farmed Nile crocodiles (Crocodylus niloticus) exposed to contaminants from the Crocodile River, South Africa. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 173:83-93. [PMID: 26851571 DOI: 10.1016/j.aquatox.2015.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/26/2015] [Accepted: 12/31/2015] [Indexed: 06/05/2023]
Abstract
In the present study, the developmental (including fertility) and endocrine-disruptive effects in relation to chemical burden in male and female Nile crocodiles (Crocodylus niloticus), from a commercial crocodile farm in the Brits district, South Africa, exposed to various anthropogenic aquatic contaminants from the natural environment was investigated. Hepatic transcript levels for vitellogenin (Vtg), zona pellucida (ZP) and ERα (also in gonads) were analyzed using real-time PCR. Plasma estradiol-17β (E2), testosterone (T) and 11-ketotestosterone (11-KT) were analyzed using enzyme immunoassay. Gonadal aromatase and hepatic testosterone metabolism (6β-hydroxylase (6β-OHase)) were analyzed using biochemical methods. Overall, there is high and abnormal number (%) of infertile and banded eggs during the studied reproductive seasons, showing up to 57 and 34% of infertile eggs in the 2009/2010 and 2013/2014 seasons, respectively. In addition, the percentage of banded eggs ranged between 10 and 19% during the period of 2009-2014 seasons. While hepatic ERα, Vtg, ZP mRNA and testosterone 6β-OHase, were equally expressed in female and male crocodiles, gonadal ERα mRNA and aromatase activity were significantly higher in females compared to male crocodiles. On the other hand, plasma T and 11-KT levels were significantly higher in males, compared to female crocodiles. Principal component analysis (PCA) produced significant grouping that revealed correlative relationships between reproductive/endocrine-disruptive variables and liver contaminant burden, that further relates to measured contaminants in the natural environment. The overall results suggest that these captive pre-slaughter farm crocodiles exhibited responses to anthropogenic aquatic contaminants with potentially relevant consequences on key reproductive and endocrine pathways and these responses may be established as relevant species endocrine disruptor biomarkers of exposure and effects in this threatened species.
Collapse
Affiliation(s)
- Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
| | - Jan Myburgh
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Håkon A Langberg
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Aina O Adeogun
- Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Idunn Godal Braa
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Monika Moeder
- Helmholtz center for Environmental Research UFZ, Department of Analytical Chemistry, Leipzig, Germany
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Jordan Paul Crago
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Christo Botha
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| |
Collapse
|
136
|
Zhou C. Novel functions of PXR in cardiometabolic disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1112-1120. [PMID: 26924429 DOI: 10.1016/j.bbagrm.2016.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 12/17/2022]
Abstract
Cardiometabolic disease emerges as a worldwide epidemic and there is urgent need to understand the molecular mechanisms underlying this chronic disease. The chemical environment to which we are exposed has significantly changed in the past few decades and recent research has implicated its contribution to the development of many chronic human diseases. However, the mechanisms of how exposure to chemicals contributes to the development of cardiometabolic disease are poorly understood. Numerous chemicals have been identified as ligands for the pregnane X receptor (PXR), a nuclear receptor functioning as a xenobiotic sensor to coordinately regulate xenobiotic metabolism via transcriptional regulation of xenobiotic-detoxifying enzymes and transporters. In the past decade, the function of PXR in the regulation of xenobiotic metabolism has been extensively studied by many laboratories and the role of PXR as a xenobiotic sensor has been well-established. The identification of PXR as a xenobiotic sensor has provided an important tool for the study of new mechanisms through which xenobiotic exposure impacts human chronic diseases. Recent studies have revealed novel and unexpected roles of PXR in modulating obesity, insulin sensitivity, lipid homeostasis, atherogenesis, and vascular functions. These studies suggest that PXR signaling may contribute significantly to the pathophysiological effects of many known xenobiotics on cardiometabolic disease in humans. The discovery of novel functions of PXR in cardiometabolic disease not only contributes to our understanding of "gene-environment interactions" in predisposing individuals to chronic diseases but also provides strong evidence to inform future risk assessment for relevant chemicals. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Changcheng Zhou
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
137
|
Mauduit C, Siddeek B, Benahmed M. Origine développementale et environnementale de l’infertilité masculine. Med Sci (Paris) 2016; 32:45-50. [DOI: 10.1051/medsci/20163201008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
138
|
Syberg K, Hansen SF. Environmental risk assessment of chemicals and nanomaterials--The best foundation for regulatory decision-making? THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:784-794. [PMID: 26433335 DOI: 10.1016/j.scitotenv.2015.09.112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/22/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
Environmental risk assessment (ERA) is often considered as the most transparent, objective and reliable decision-making tool for informing the risk management of chemicals and nanomaterials. ERAs are based on the assumption that it is possible to provide accurate estimates of hazard and exposure and, subsequently, to quantify risk. In this paper we argue that since the quantification of risk is dominated by uncertainties, ERAs do not provide a transparent or an objective foundation for decision-making and they should therefore not be considered as a "holy grail" for informing risk management. We build this thesis on the analysis of two case studies (of nonylphenol and nanomaterials) as well as a historical analysis in which we address the scientific foundation for ERAs. The analyses show that ERAs do not properly address all aspects of actual risk, such as the mixture effect and the environmentally realistic risk from nanomaterials. Uncertainties have been recognised for decades, and assessment factors are used to compensate for the lack of realism in ERAs. The assessment factors' values were pragmatically determined, thus lowering the scientific accuracy of the ERAs. Furthermore, the default choice of standard assay for assessing a hazard might not always be the most biologically relevant, so we therefore argue that an ERA should be viewed as a pragmatic decision-making tool among several, and it should not have a special status for informing risk management. In relation to other relevant decision-making tools we discuss the use of chemical alternative assessments (CAAs) and the precautionary principle.
Collapse
Affiliation(s)
- Kristian Syberg
- Department of Environmental, Social and Spatial Change, Roskilde University, Denmark.
| | - Steffen Foss Hansen
- DTU Environment, Department of Environmental Engineering, Technical University of Denmark, Denmark
| |
Collapse
|
139
|
Gañán J, Morante-Zarcero S, Pérez-Quintanilla D, Marina ML, Sierra I. One-pot synthesized functionalized mesoporous silica as a reversed-phase sorbent for solid-phase extraction of endocrine disrupting compounds in milks. J Chromatogr A 2016; 1428:228-35. [DOI: 10.1016/j.chroma.2015.08.063] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 11/15/2022]
|
140
|
Bhandari RK. Medaka as a model for studying environmentally induced epigenetic transgenerational inheritance of phenotypes. ENVIRONMENTAL EPIGENETICS 2016; 2:dvv010. [PMID: 29492282 PMCID: PMC5804509 DOI: 10.1093/eep/dvv010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/24/2015] [Accepted: 12/08/2015] [Indexed: 05/29/2023]
Abstract
Ability of environmental stressors to induce transgenerational diseases has been experimentally demonstrated in plants, worms, fish, and mammals, indicating that exposures affect not only human health but also fish and ecosystem health. Small aquarium fish have been reliable model to study genetic and epigenetic basis of development and disease. Additionally, fish can also provide better, economic opportunity to study transgenerational inheritance of adverse health and epigenetic mechanisms. Molecular mechanisms underlying germ cell development in fish are comparable to those in mammals and humans. This review will provide a short overview of long-term effects of environmental chemical contaminant exposure in various models, associated epigenetic mechanisms, and a perspective on fish as model to study environmentally induced transgenerational inheritance of altered phenotypes.
Collapse
Affiliation(s)
- Ramji K Bhandari
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
141
|
Duis K, Coors A. Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. ENVIRONMENTAL SCIENCES EUROPE 2016; 28:2. [PMID: 27752437 PMCID: PMC5044952 DOI: 10.1186/s12302-015-0069-y] [Citation(s) in RCA: 762] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/22/2015] [Indexed: 05/18/2023]
Abstract
Due to the widespread use and durability of synthetic polymers, plastic debris occurs in the environment worldwide. In the present work, information on sources and fate of microplastic particles in the aquatic and terrestrial environment, and on their uptake and effects, mainly in aquatic organisms, is reviewed. Microplastics in the environment originate from a variety of sources. Quantitative information on the relevance of these sources is generally lacking, but first estimates indicate that abrasion and fragmentation of larger plastic items and materials containing synthetic polymers are likely to be most relevant. Microplastics are ingested and, mostly, excreted rapidly by numerous aquatic organisms. So far, there is no clear evidence of bioaccumulation or biomagnification. In laboratory studies, the ingestion of large amounts of microplastics mainly led to a lower food uptake and, consequently, reduced energy reserves and effects on other physiological functions. Based on the evaluated data, the lowest microplastic concentrations affecting marine organisms exposed via water are much higher than levels measured in marine water. In lugworms exposed via sediment, effects were observed at microplastic levels that were higher than those in subtidal sediments but in the same range as maximum levels in beach sediments. Hydrophobic contaminants are enriched on microplastics, but the available experimental results and modelling approaches indicate that the transfer of sorbed pollutants by microplastics is not likely to contribute significantly to bioaccumulation of these pollutants. Prior to being able to comprehensively assess possible environmental risks caused by microplastics a number of knowledge gaps need to be filled. However, in view of the persistence of microplastics in the environment, the high concentrations measured at some environmental sites and the prospective of strongly increasing concentrations, the release of plastics into the environment should be reduced in a broad and global effort regardless of a proof of an environmental risk.
Collapse
Affiliation(s)
- Karen Duis
- ECT Oekotoxikologie GmbH, Böttgerstr. 2-14, 65439 Flörsheim/Main, Germany
| | - Anja Coors
- ECT Oekotoxikologie GmbH, Böttgerstr. 2-14, 65439 Flörsheim/Main, Germany
| |
Collapse
|
142
|
Vandermarken T, De Galan S, Croes K, Van Langenhove K, Vercammen J, Sanctorum H, Denison MS, Goeyens L, Elskens M, Baeyens W. Characterisation and implementation of the ERE-CALUX bioassay on indoor dust samples of kindergartens to assess estrogenic potencies. J Steroid Biochem Mol Biol 2016; 155:182-9. [PMID: 25595043 DOI: 10.1016/j.jsbmb.2015.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 12/18/2014] [Accepted: 01/11/2015] [Indexed: 11/24/2022]
Abstract
Estrogen-like endocrine disrupting chemicals (EEDCs) can be found abundantly in the environment. Due to their low-dose effects and the large amount of unknown EEDCs, it is difficult to assess and manage possible human health risks. For young children, who are particularly vulnerable to endocrine disruption due to their development rate, indoor dust is one of the main routes of exposure. In this study, an estrogen responsive elements chemically activated luciferase gene expression (ERE-CALUX) bioassay was characterized and implemented for the analysis of 12 dust samples from kindergartens in Flanders and Brussels (Belgium). The human ovarian carcinoma BG 1CALUX cell line showed reproducible results and a low limit of detection (LOD). The effective concentration at 50% of the maximum response (EC50) yielded 497 fg/well, while the LOD was 16 fg/well. For all dust samples, full dose-response curves and their corresponding EC50 values could be calculated. All samples yielded bio-analytical equivalent concentrations (BEQs) that were significantly higher than the procedural blank level and ranged from 426 to 8710 pg E2 equivalents/g dust. A clear relationship was observed between a semi-quantitative interior score and the ERE-CALUX response of the samples. In addition, the concentration of phthalates, a major group of EEDCs used as plasticizers in plastics, was determined in the samples by GC-MS. Diisoheptyl phthalate (DiHP) and di(2-ethylhexyl) phthalate (DEHP) were present in every dust sample. A good correlation was found between ERE-CALUX activities and phthalate concentrations, when all phthalates except diisononyl phthalate (DiNP) and diisodecyl phthalate (DiDP), which do not bind to the estrogen receptor, were taken into account. This shows that the ERE-CALUX can provide relevant results concerning exposure to EEDCs from indoor dust. This article is part of a Special Issue entitled 'Endocrine disruptors & steroids'.
Collapse
Affiliation(s)
- T Vandermarken
- Vrije Universiteit Brussel, Department of Analytical, Environmental and Geo-Chemistry, Pleinlaan 2, 1050 Brussels, Belgium.
| | - S De Galan
- Vrije Universiteit Brussel, Department of Analytical, Environmental and Geo-Chemistry, Pleinlaan 2, 1050 Brussels, Belgium
| | - K Croes
- Vrije Universiteit Brussel, Department of Analytical, Environmental and Geo-Chemistry, Pleinlaan 2, 1050 Brussels, Belgium
| | - K Van Langenhove
- Vrije Universiteit Brussel, Department of Analytical, Environmental and Geo-Chemistry, Pleinlaan 2, 1050 Brussels, Belgium
| | - J Vercammen
- Interscience, Avenue J.E. Lenoir 2, 1348 Louvain-la-Neuve, Belgium
| | - H Sanctorum
- Vrije Universiteit Brussel, Department of Analytical, Environmental and Geo-Chemistry, Pleinlaan 2, 1050 Brussels, Belgium
| | - M S Denison
- Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA
| | - L Goeyens
- Vrije Universiteit Brussel, Department of Analytical, Environmental and Geo-Chemistry, Pleinlaan 2, 1050 Brussels, Belgium
| | - M Elskens
- Vrije Universiteit Brussel, Department of Analytical, Environmental and Geo-Chemistry, Pleinlaan 2, 1050 Brussels, Belgium
| | - W Baeyens
- Vrije Universiteit Brussel, Department of Analytical, Environmental and Geo-Chemistry, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
143
|
Zhang L, Cao Y, Hao X, Zhang Y, Liu J. Application of the GREAT-ER model for environmental risk assessment of nonylphenol and nonylphenol ethoxylates in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:18531-18540. [PMID: 26358209 DOI: 10.1007/s11356-015-5352-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
The environmental risk presented by "down-the-drain" chemicals to receiving rivers in large urban areas has received increasing attention in recent years. Geo-referenced Regional Environmental Assessment Tool for European Rivers (GREAT-ER) is a typical river catchment model that has been specifically developed for the risk assessment of these chemicals and applied in many European rivers. By utilizing the new version of the model, GREAT-ER 3.0, which is the first completely open source software for worldwide application, this study represents the first attempt to conduct an application of GREAT-ER in the Wenyu River of China. Aquatic exposure simulation and an environmental risk assessment of nonylphenol (NP) and its environmental precursor nonylphenol ethoxylates (NPEOs) were conducted effectively by GREAT-ER model, since NP is one of typical endocrine disrupting chemicals (EDCs) and its environmental precursor NPEOs as a "down-the-drain" chemical are extensively used in China. In the result, the predicted environmental concentrations (PECs) of NP and NPEOs in the water of Wenyu River were 538 and 4320 ng/L, respectively, at the regional scale, and 1210 and 8990 ng/L, respectively, at the local scale. From the results profile of the RCR, the combination of high emissions from large STPs with insufficient dilution of the river caused the high RCR. The PECs of NP in the sediment were in the range of 216.8-8218.3 ng/g (dry weight), which was consistent with the available monitoring data. The study showed the worldwide applicability and reliability of GREAT-ER as a river catchment model for the risk assessment of these chemicals and also revealed the general environmental risks presented by NP and NPEOs in the Wenyu River catchment in Beijing due to the extensive use of these chemicals. The results suggest that specific control or treatment measures are probably warranted for these chemicals to reduce their discharge in major cities.
Collapse
Affiliation(s)
- Lai Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Yan Cao
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Xuewen Hao
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Yongyong Zhang
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jianguo Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
144
|
Kaur R, Gupta V, Christopher A, Bansal P. Potential pathways of pesticide action on erectile function – A contributory factor in male infertility. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2015. [DOI: 10.1016/j.apjr.2015.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
145
|
Beronius A, Vandenberg LN. Using systematic reviews for hazard and risk assessment of endocrine disrupting chemicals. Rev Endocr Metab Disord 2015; 16:273-87. [PMID: 26847432 PMCID: PMC4803521 DOI: 10.1007/s11154-016-9334-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The possibility that endocrine disrupting chemicals (EDCs) in our environment contribute to hormonally related effects and diseases observed in human and wildlife populations has caused concern among decision makers and researchers alike. EDCs challenge principles traditionally applied in chemical risk assessment and the identification and assessment of these compounds has been a much debated topic during the last decade. State of the science reports and risk assessments of potential EDCs have been criticized for not using systematic and transparent approaches in the evaluation of evidence. In the fields of medicine and health care, systematic review methodologies have been developed and used to enable objectivity and transparency in the evaluation of scientific evidence for decision making. Lately, such approaches have also been promoted for use in the environmental health sciences and risk assessment of chemicals. Systematic review approaches could provide a tool for improving the evaluation of evidence for decision making regarding EDCs, e.g. by enabling systematic and transparent use of academic research data in this process. In this review we discuss the advantages and challenges of applying systematic review methodology in the identification and assessment of EDCs.
Collapse
Affiliation(s)
- Anna Beronius
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, University of Massachusetts Amherst School of Public Health & Health Sciences, Amherst, MA, USA
| |
Collapse
|
146
|
Parandin R, Behnam Rassouli M, Sisakhtnezhad S, Mahdavi Shahri N. In Vitro Evaluation of the Effects of Zearalenone and α-Zearalenol on MCF-7 and MDA-MB-468 Cell Lines of Human Breast Cancer. RAZAVI INTERNATIONAL JOURNAL OF MEDICINE 2015. [DOI: 10.17795/rijm30231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
147
|
Wang ZY, Lu J, Zhang YZ, Zhang M, Liu T, Qu XL. Effect of Bisphenol A on invasion ability of human trophoblastic cell line BeWo. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:14355-14364. [PMID: 26823751 PMCID: PMC4713537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
Bisphenol A (BPA) is a kind of environmental endocrine disruptors (EEDs) that interfere embryo implantation. Trophoblast invasion plays a crucial role during embryo implantation. In this study, the effects of BPA on invasion ability of human trophoblastic cell line BeWo and its possible mechanism were investigated. BeWo cells were exposed to BPA and co-cultured with human endometrial cells to mimic embryo implantation in transwell model. The proliferation and invasion capability of BeWo cells were detected. The expression of E-cadherin, DNMT1, MMP-2, MMP-9, TIMP-1 and TIMP-2 were also analyzed. The results showed that the invasion capability of BeWo was reduced after daily exposure to BPA. BPA had biphasic effect on E-cadherin expression level in BeWo cells and expression level of DNMT1 was decreased when treated with BPA. Moreover, BPA treatment also changed the balance of MMPs/TIMPs in BeWo cells by down-regulating MMP-2, MMP-9 and up-regulating TIMP-1, TIMP-2 with increasing BPA concentration. Taken together, these results showed that BPA treatment could reduce the invasion ability of BeWo cells and alter the expression level of E-cadherin, DNMT1, TIMP-1, TIMP-2, MMP-2, and MMP-9. Our study would help us to understand the possible mechanism of BPA effect on invasion ability of human trophoblastic cell line BeWo.
Collapse
Affiliation(s)
- Zi-Yi Wang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei Province, People’s Republic of China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei Province, People’s Republic of China
| | - Jing Lu
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei Province, People’s Republic of China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei Province, People’s Republic of China
| | - Yuan-Zhen Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei Province, People’s Republic of China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei Province, People’s Republic of China
| | - Ming Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei Province, People’s Republic of China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei Province, People’s Republic of China
| | - Teng Liu
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei Province, People’s Republic of China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei Province, People’s Republic of China
| | - Xin-Lan Qu
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei Province, People’s Republic of China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei Province, People’s Republic of China
| |
Collapse
|
148
|
Cheng YC, Chen HW, Chen WL, Chen CY, Wang GS. Occurrence of nonylphenol and bisphenol A in household water pipes made of different materials. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 188:562. [PMID: 27624744 DOI: 10.1007/s10661-016-5556-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
We assessed the occurrence of nonylphenol (NP) and bisphenol A (BPA) in tap water supplied through polyvinyl chloride (PVC), stainless steel, and galvanized pipes. Water samples were collected from selected households in Taipei and Kaohsiung (Northern and Southern Taiwan, respectively) in different seasons to elucidate the effects of pipeline materials and ambient temperatures on NP and BPA concentrations in tap water. We detected higher concentrations of NP in tap water from households using PVC pipes (64-195 ng/L) than from those using stainless steel pipes (17-44 ng/L) and galvanized pipes (27-96 ng/L). To verify that water can absorb NP and BPA from PVC pipes, we sealed Milli-Q and tap water in PVC and stainless steel pipes to assess the potential release of NP and BPA from the pipes into the water. Both NP and BPA concentrations initially increased with contact time in the PVC pipes, and the concentration profiles during the retention appeared to be more strongly affected by ambient temperatures. Concentration variations in the stainless steel pipes were smaller than those in the PVC pipes.
Collapse
Affiliation(s)
- Yang-Chen Cheng
- Institute of Environmental Health, National Taiwan University, Taipei, Taiwan
| | - Huei-Wen Chen
- Institute of Environmental Health, National Taiwan University, Taipei, Taiwan
| | - Wen-Ling Chen
- Institute of Environmental Health, National Taiwan University, Taipei, Taiwan
| | - Chia-Yang Chen
- Institute of Environmental Health, National Taiwan University, Taipei, Taiwan
| | - Gen-Shuh Wang
- Institute of Environmental Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
149
|
Tongo I, Ezemonye L. Human health risks associated with residual pesticide levels in edible tissues of slaughtered cattle in Benin City, Southern Nigeria. Toxicol Rep 2015; 2:1117-1135. [PMID: 28962453 PMCID: PMC5598159 DOI: 10.1016/j.toxrep.2015.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 11/21/2022] Open
Abstract
Pesticide residues in meat is of growing concern due to possible adverse effects on humans. Pesticide levels were assessed in five edible cattle parts: muscle, liver, kidney and tongue tissues to determine human health risk associated with consumption of these tissues. Health risk estimates were analysed using estimated daily intake (EDI), hazard quotient (HQ) and hazard index (HI) for two (2) age/weight categories: 1-11years/30 kg for children while 70 kg was used for adult. Risks were categorized for non-carcinogenic and carcinogenic health effects and measured at the average, maximum, 50th and 95th percentiles of the measured exposure concentrations (MEC). Total pesticide residues ranged from 2.38 to 3.86 μg/kg (muscle), 3.58 to 6.3 μg/kg (liver), 1.87 to 4.59 μg/kg (kidney) and 2.54 to 4.35 μg/kg (tongue). Residual pesticide concentrations in the tissues were in the order: Liver > Tongue > Muscle > Kidney. The concentrations of all the assessed pesticides observed in the tissues were however lower than the recommended maximum residual limits (MRLs). Human health risk estimations for the children showed EDI values for heptachlor epoxide, aldrin and dieldrin exceeding threshold values. Non-cancer risk posed to children on consumption of contaminated cattle parts showed HQ values for heptachlor epoxide, aldrin, dieldrin and HI values for organochlorines exceeding 1, indicating the possibility of non-carcinogenic health risks to consumers especially children from consumption of cattle meat from the selected abattoirs.
Collapse
Affiliation(s)
- Isioma Tongo
- Laboratory of Ecotoxicology and Environmental Forensics, Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, Nigeria
| | | |
Collapse
|
150
|
Wolff SE, Veldhoen N, Helbing CC, Ramirez CA, Malpas JM, Propper CR. Estrogenic environmental contaminants alter the mRNA abundance profiles of genes involved in gonadal differentiation of the American bullfrog. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 521-522:380-7. [PMID: 25863316 PMCID: PMC4440455 DOI: 10.1016/j.scitotenv.2015.02.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 05/08/2023]
Abstract
Wildlife and human populations are exposed to anthropogenic mixtures of chemicals in the environment that may adversely influence normal reproductive function and development. We determined the effects of exposure to estrogenic chemicals and wastewater effluent (WWE) on developing gonads of the American bullfrog, Rana (Lithobates) catesbeiana, a species whose widespread distribution make it an ideal model for environmental monitoring of endocrine effects of chemical contaminants. Premetamorphic bullfrog tadpoles were exposed to treatment vehicle, 17β-estradiol (E2; 10(-9)M) or 4-tert-octylphenol (OP; 10(-9)M, 10(-8)M, and 10(-7)M). Additionally, gonadal differentiation was evaluated in bullfrog tadpoles from a WWE-containing site versus those from a reference location receiving no WWE. In both studies, phenotypic sex, steroidogenic factor-1 (nr5a1), and aromatase (cyp19a1) mRNA levels using quantitative real-time PCR were determined. Exposure to E2 or OP did not alter sex ratios. In controls, both nr5a1 and cyp19a1 transcript levels exhibited sexual dimorphism, with males demonstrating higher levels of nr5a1 and females greater abundance of cyp19a1. However, E2 exposure increased cyp19a1 mRNA abundance in testes and decreased levels in ovaries, eliminating the sexual dimorphism observed in controls. E2-exposed males exhibited increased nr5a1 transcript levels in the testes compared to controls, while females demonstrated no E2 effect. OP treatment had no effect on female cyp19a1 mRNA abundance, but exposure to 10(-7)M OP increased testicular transcript levels. Treatment with 10(-9) and 10(-8)M OP, but not 10(-7)M, resulted in decreased abundance of nr5a1 transcript in both ovaries and testes. Animals from the field had sexually dimorphic gonadal levels of cyp19a1, but both sexes from the WWE site exhibited elevated cyp19a1 transcript abundance compared to the reference location. Individual chemical compounds and anthropogenic wastewater effluent dispersed within the environment influence the levels of gonadal mRNA encoding key proteins involved in gonadal differentiation.
Collapse
Affiliation(s)
- Stephanie E Wolff
- Department of Biological Sciences, S. Beaver St., Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Nik Veldhoen
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Claire A Ramirez
- Department of Biological Sciences, S. Beaver St., Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Janae M Malpas
- Department of Biological Sciences, S. Beaver St., Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Catherine R Propper
- Department of Biological Sciences, S. Beaver St., Northern Arizona University, Flagstaff, AZ 86011, USA.
| |
Collapse
|