101
|
Garcia-Serrano AM, Duarte JMN. Brain Metabolism Alterations in Type 2 Diabetes: What Did We Learn From Diet-Induced Diabetes Models? Front Neurosci 2020; 14:229. [PMID: 32265637 PMCID: PMC7101159 DOI: 10.3389/fnins.2020.00229] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/02/2020] [Indexed: 12/27/2022] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disease with impact on brain function through mechanisms that include glucose toxicity, vascular damage and blood–brain barrier (BBB) impairments, mitochondrial dysfunction, oxidative stress, brain insulin resistance, synaptic failure, neuroinflammation, and gliosis. Rodent models have been developed for investigating T2D, and have contributed to our understanding of mechanisms involved in T2D-induced brain dysfunction. Namely, mice or rats exposed to diabetogenic diets that are rich in fat and/or sugar have been widely used since they develop memory impairment, especially in tasks that depend on hippocampal processing. Here we summarize main findings on brain energy metabolism alterations underlying dysfunction of neuronal and glial cells promoted by diet-induced metabolic syndrome that progresses to a T2D phenotype.
Collapse
Affiliation(s)
- Alba M Garcia-Serrano
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
102
|
Badhwar A, Haqqani AS. Biomarker potential of brain-secreted extracellular vesicles in blood in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12001. [PMID: 32211497 PMCID: PMC7085285 DOI: 10.1002/dad2.12001] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/17/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Brain cells secrete extracellular microvesicles (EVs) that cross the blood-brain barrier. Involved in cell-to-cell communication, EVs contain surface markers and a biologically active cargo of molecules specific to their tissue (and cell) of origin, reflecting the tissue or cell's physiological state. Isolation of brain-secreted EVs (BEVs) from blood provides a minimally invasive way to sample components of brain tissue in Alzheimer's disease (AD), and is considered a form of "liquid biopsy." METHODS We performed a comprehensive review of the PubMed literature to assess the biomarker and therapeutic potential of blood-isolated BEVs in AD. RESULTS We summarize methods used for BEV isolation, validation, and novel biomarker discovery, as well as provide insights from 26 studies in humans on the biomarker potential in AD of four cell-specific BEVs isolated from blood: neuron-, neural precursor-, astrocyte-, and brain vasculature-derived BEVs. Of these, neuron-derived BEVs has been investigated on several fronts, and these include levels of amyloid-β and tau proteins, as well as synaptic proteins. In addition, we provide a synopsis of the current landscape of BEV-based evaluation/monitoring of AD therapeutics based on two published trials and a review of registered clinical trials. DISCUSSION Blood-isolated BEVs have emerged as a novel player in the study of AD, with enormous potential as a diagnostic, evaluation of therapeutics, and treatment tool. The literature has largely concentrated on neuron-derived BEVs in the blood in AD. Given the multifactorial pathophysiology of AD, additional studies, in neuron-derived and other brain cell-specific BEVs are warranted to establish BEVs as a robust blood-based biomarker of AD.
Collapse
Affiliation(s)
- AmanPreet Badhwar
- Centre de recherche de l'Institut universitaire de gériatrie de MontréalUniversity of MontrealMontrealQuebecCanada
| | - Arsalan S. Haqqani
- Human Health Therapeutics Research CentreNational Research CouncilOttawaOntarioCanada
| |
Collapse
|
103
|
Chen YC, Chiu YJ, Lin CH, Hsu WC, Wu JL, Huang CH, Lin CW, Yao CF, Huang HJ, Lo YS, Chen CM, Wu YR, Chang KH, Lee-Chen GJ, Mei Hsieh-Li H. Indole Compound NC009-1 Augments APOE and TRKA in Alzheimer's Disease Cell and Mouse Models for Neuroprotection and Cognitive Improvement. J Alzheimers Dis 2020; 67:737-756. [PMID: 30689566 DOI: 10.3233/jad-180643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), associated with abnormal accumulation of amyloid-β (Aβ), is the most common cause of dementia among older people. A few studies have identified substantial AD biomarkers in blood but their results were inconsistent. Here we screened gene expression alterations on Aβ-GFP SH-SY5Y neuronal model for AD, and evaluated the findings on peripheral leukocytes from 78 patients with AD and 56 healthy controls. The therapeutic responses of identified biomarker candidates were further examined in Aβ-GFP SH-SY5Y neuronal and APP/PS1/Tau triple transgenic (3×Tg-AD) mouse models. Downregulation of apolipoprotein E (APOE) and tropomyosin receptor kinase A (TRKA) were detected in Aβ-GFP SH-SY5Y cells and validated by peripheral leukocytes from AD patients. Treatment with an in-house indole compound NC009-1 upregulated the expression of APOE and TRKA accompanied with improvement of neurite outgrowth in Aβ-GFP SH-SY5Y cells. NC009-1 further rescued the downregulated APOE and TRKA and reduced Aβ and tau levels in hippocampus and cortex, and ameliorated cognitive deficits in streptozocin-induced hyperglycemic 3×Tg-AD mice. These results suggest the role of APOE and TRKA as potential peripheral biomarkers in AD, and offer a new drug development target of AD treatment. Further studies of a large series of AD patients will be warranted to verify the findings and confirm the correlation between these markers and therapeutic efficacy.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ya-Jen Chiu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Wen-Chuin Hsu
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Dementia Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jia-Lu Wu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chen-Hsiang Huang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chia-Wei Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Yen-Shi Lo
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
104
|
Abdelhafiz AH, Davies PC, Sinclair AJ. Triad of impairment in older people with diabetes-reciprocal relations and clinical implications. Diabetes Res Clin Pract 2020; 161:108065. [PMID: 32044347 DOI: 10.1016/j.diabres.2020.108065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/28/2020] [Accepted: 02/06/2020] [Indexed: 12/25/2022]
Abstract
Frailty is emerging as a new category complication of diabetes in older people. Clinically, frailty is still not well defined and mostly viewed as a decline in solely the physical domain. However, frailty is a multidimensional syndrome and the newly introduced concept of "triad of impairment" (physical, cognitive and emotional) may be a more representative of the broad nature of frailty. The components of the triad of impairment (TOI) commonly coexist and demonstrate a reciprocal relation. Diabetes in old age appears to increase the risk of the triad of impairment, which may eventually progress to disability. Therefore, older people with diabetes should be regularly assessed for the presence of these three key components. Adequate nutrition and regular resistance exercise training have been shown to have a positive impact on the long-term outcome in this population. However, the role of good glycaemic control and the use of current hypoglycaemic medications in reducing the incidence of this triad are less clear. Future research is needed to develop novel hypoglycaemic medications that not only focus on glycaemic control and cardiovascular safety but also on reducing the risk of the triad of impairment.
Collapse
Affiliation(s)
- A H Abdelhafiz
- Department of Geriatric Medicine, Rotherham General Hospital, Moorgate Road, Rotherham S60 2UD, UK.
| | - P C Davies
- Department of Geriatric Medicine, Rotherham General Hospital, Moorgate Road, Rotherham S60 2UD, UK
| | - A J Sinclair
- Foundation for Diabetes Research in Older People, Diabetes Frail Ltd, Droitwich Spa WR9 0QH, UK; Kings College, London SE1 9NH, UK
| |
Collapse
|
105
|
Avgerinos KI, Egan JM, Mattson MP, Kapogiannis D. Medium Chain Triglycerides induce mild ketosis and may improve cognition in Alzheimer's disease. A systematic review and meta-analysis of human studies. Ageing Res Rev 2020; 58:101001. [PMID: 31870908 DOI: 10.1016/j.arr.2019.101001] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 11/15/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022]
Abstract
INTRODUCTION/AIM The brain in Alzheimer's disease shows glucose hypometabolism but may utilize ketones for energy production. Ketone levels can potentially be boosted through oral intake of Medium Chain Triglycerides (MCTs). The aim of this meta-analysis is to investigate the effect of MCTs on peripheral ketone levels and cognitive performance in patients with mild cognitive impairment and Alzheimer's disease. METHODS Medline, Scopus and Web of Science were searched for literature up to March 1, 2019. Meta-analyses were performed by implementing continuous random-effects models and outcomes were reported as weighted Mean Differences (MDs) or Standardized Mean Differences (SMDs). RESULTS Twelve records (422 participants) were included. Meta-analysis of RCTs showed that, compared with placebo, MCTs elevated beta-hydroxybutyrate [MD = 0.355; 95 % CI (0.286, 0.424), I2 = 0 %], showed a trend towards cognitive improvement on ADAS-Cog [MD = -0.539; 95% CI (-1.239, -0.161), I2 = 0 %], and significantly improved cognition on a combined measure (ADAS-Cog with MMSE) [SMD = -0.289; 95 % CI (-0.551, -0.027), I2 = 0 %]. CONCLUSIONS In this meta-analysis, we demonstrated that MCTs can induce mild ketosis and may improve cognition in patients with mild cognitive impairment and Alzheimer's disease. However, risk of bias of existing studies necessitates future trials.
Collapse
|
106
|
Association between Lower Extremity Skeletal Muscle Mass and Impaired Cognitive Function in Type 2 Diabetes. Sci Rep 2020; 10:2956. [PMID: 32076075 PMCID: PMC7031513 DOI: 10.1038/s41598-020-59914-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/04/2020] [Indexed: 01/28/2023] Open
Abstract
Lower extremity skeletal muscle mass (LESM) in Type 2 Diabetes (T2D) has been linked to adverse clinical events, but it is not known whether it is associated with cognitive difficulties. We conducted a cross-sectional study on 1,235 people (mean age 61.4 ± 8.0 years) with T2D under primary and secondary care in Singapore. Bioelectrical impedance analyses (BIA) measures of upper extremity skeletal muscle mass (UESM), LESM and appendicular skeletal muscle index (SMI) were related to the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) measures of cognition, in multiple linear regression. In multivariable models, tertile 1 LESM (b = −2.62 (−3.92 to −1.32)) and tertile 2 LESM (b = −1.73 (−2.73 to −0.73)), referenced to tertile 3) were significantly associated with decreased RBANS total score. Significant associations of LESM with cognitive domain performances were observed for tertile 1 (b = −3.75 (−5.98 to −1.52)) and tertile 2 (b = −1.98 (−3.69 to −0.27)) with immediate memory, and for tertile 1 (b = −3.05 (−4.86 to −1.24)) and tertile 2 (b = −1.87 (−3.25 to −0.48)) with delayed memory, and for tertile 1 (b = −2.99 (−5.30 to −0.68)) with visuospatial/constructional ability. Tertile 1 SMI (b = −1.94 (−3.79 to −0.08) and tertile 2 SMI (b = −1.75 (−3.14 to −0.37)) were also associated with delayed memory. There were no associations between UESM with cognitive performance. Lower LESM may be a useful marker of possible co-occuring cognitive dysfunction.
Collapse
|
107
|
Athauda D, Gulyani S, Karnati HK, Li Y, Tweedie D, Mustapic M, Chawla S, Chowdhury K, Skene SS, Greig NH, Kapogiannis D, Foltynie T. Utility of Neuronal-Derived Exosomes to Examine Molecular Mechanisms That Affect Motor Function in Patients With Parkinson Disease: A Secondary Analysis of the Exenatide-PD Trial. JAMA Neurol 2020; 76:420-429. [PMID: 30640362 DOI: 10.1001/jamaneurol.2018.4304] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance Exenatide, a glucagon-like peptide 1 agonist used in type 2 diabetes, was recently found to have beneficial effects on motor function in a randomized, placebo-controlled trial in Parkinson disease (PD). Accumulating evidence suggests that impaired brain insulin and protein kinase B (Akt) signaling play a role in PD pathogenesis; however, exploring the extent to which drugs engage with putative mechnisms in vivo remains a challenge. Objective To assess whether participants in the Exenatide-PD trial have augmented activity in brain insulin and Akt signaling pathways. Design, Setting, and Participants Serum samples were collected from 60 participants in the single-center Exenatide-PD trial (June 18, 2014, to June 16, 2016), which compared patients with moderate PD randomized to 2 mg of exenatide once weekly or placebo for 48 weeks followed by a 12-week washout period. Serum extracellular vesicles, including exosomes, were extracted, precipitated, and enriched for neuronal source by anti-L1 cell adhesion molecule antibody absorption, and proteins of interest were evaluated using electrochemiluminescence assays. Statistical analysis was performed from May 1, 2017, to August 31, 2017. Main Outcomes and Measures The main outcome was augmented brain insulin signaling that manifested as a change in tyrosine phosphorylated insulin receptor substrate 1 within neuronal extracellular vesicles at the end of 48 weeks of exenatide treatment. Additional outcome measures were changes in other insulin receptor substrate proteins and effects on protein expression in the Akt and mitogen-activated protein kinase pathways. Results Sixty patients (mean [SD] age, 59.9 [8.4] years; 43 [72%] male) participated in the study: 31 in the exenatide group and 29 in the placebo group (data from 1 patient in the exenatide group were excluded). Patients treated with exenatide had augmented tyrosine phosphorylation of insulin receptor substrate 1 at 48 weeks (0.27 absorbance units [AU]; 95% CI, 0.09-0.44 AU; P = .003) and 60 weeks (0.23 AU; 95% CI, 0.05-0.41 AU; P = .01) compared with patients receiving placebo. Exenatide-treated patients had elevated expression of downstream substrates, including total Akt (0.35 U/mL; 95% CI, 0.16-0.53 U/mL; P < .001) and phosphorylated mechanistic target of rapamycin (mTOR) (0.22 AU; 95% CI, 0.04-0.40 AU; P = .02). Improvements in Movement Disorders Society Unified Parkinson's Disease Rating Scale part 3 off-medication scores were associated with levels of total mTOR (F4,50 = 5.343, P = .001) and phosphorylated mTOR (F4,50 = 4.384, P = .04). Conclusions and Relevance The results of this study are consistent with target engagement of brain insulin, Akt, and mTOR signaling pathways by exenatide and provide a mechanistic context for the clinical findings of the Exenatide-PD trial. This study suggests the potential of using exosome-based biomarkers as objective measures of target engagement in clinical trials using drugs that target neuronal pathways.
Collapse
Affiliation(s)
- Dilan Athauda
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Seema Gulyani
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Hanuma Kumar Karnati
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Yazhou Li
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - David Tweedie
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Maja Mustapic
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Sahil Chawla
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Kashfia Chowdhury
- University College London Comprehensive Clinical Trials Unit, London, United Kingdom
| | - Simon S Skene
- University College London Comprehensive Clinical Trials Unit, London, United Kingdom.,School of Biosciences and Medicine, University of Surrey, Kent, United Kingdom
| | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
108
|
Kapogiannis D, Avgerinos KI. Brain glucose and ketone utilization in brain aging and neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:79-110. [PMID: 32739015 PMCID: PMC9989941 DOI: 10.1016/bs.irn.2020.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To meet its high energy demands, the brain mostly utilizes glucose. However, the brain has evolved to exploit additional fuels, such as ketones, especially during prolonged fasting. With aging and neurodegenerative diseases (NDDs), the brain becomes inefficient at utilizing glucose due to changes in glia and neurons that involve glucose transport, glycolytic and Krebs cycle enzyme activities, and insulin signaling. Positron emission tomography and magnetic resonance spectroscopy studies have identified glucose metabolism abnormalities in aging, Alzheimer's disease (AD) and other NDDs in vivo. Despite glucose hypometabolism, brain cells can utilize ketones efficiently, thereby providing a rationale for the development of therapeutic ketogenic interventions in AD and other NDDs. This review compares available ketogenic interventions and discusses the potential of the potent oral Ketone Ester for future therapeutic use in AD and other NDDs characterized by inefficient glucose utilization.
Collapse
Affiliation(s)
- Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States.
| | - Konstantinos I Avgerinos
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
109
|
Nasoohi S, Parveen K, Ishrat T. Metabolic Syndrome, Brain Insulin Resistance, and Alzheimer's Disease: Thioredoxin Interacting Protein (TXNIP) and Inflammasome as Core Amplifiers. J Alzheimers Dis 2019; 66:857-885. [PMID: 30372683 DOI: 10.3233/jad-180735] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Empirical evidence indicates a strong association between insulin resistance and pathological alterations related to Alzheimer's disease (AD) in different cerebral regions. While cerebral insulin resistance is not essentially parallel with systemic metabolic derangements, type 2 diabetes mellitus (T2DM) has been established as a risk factor for AD. The circulating "toxic metabolites" emerging in metabolic syndrome may engage several biochemical pathways to promote oxidative stress and neuroinflammation leading to impair insulin function in the brain or "type 3 diabetes". Thioredoxin-interacting protein (TXNIP) as an intracellular amplifier of oxidative stress and inflammasome activation may presumably mediate central insulin resistance. Emerging data including those from our recent studies has demonstrated a sharp TXNIP upregulation in stroke, aging and AD and well underlining the significance of this hypothesis. With the main interest to illustrate TXNIP place in type 3 diabetes, the present review primarily briefs the potential mechanisms contributing to cerebral insulin resistance in a metabolically deranged environment. Then with a particular focus on plausible TXNIP functions to drive and associate with AD pathology, we present the most recent evidence supporting TXNIP as a promising therapeutic target in AD as an age-associated dementia.
Collapse
|
110
|
Kapogiannis D, Mustapic M, Shardell MD, Berkowitz ST, Diehl TC, Spangler RD, Tran J, Lazaropoulos MP, Chawla S, Gulyani S, Eitan E, An Y, Huang CW, Oh ES, Lyketsos CG, Resnick SM, Goetzl EJ, Ferrucci L. Association of Extracellular Vesicle Biomarkers With Alzheimer Disease in the Baltimore Longitudinal Study of Aging. JAMA Neurol 2019; 76:1340-1351. [PMID: 31305918 DOI: 10.1001/jamaneurol.2019.2462] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Importance Blood biomarkers able to diagnose Alzheimer disease (AD) at the preclinical stage would enable trial enrollment when the disease is potentially reversible. Plasma neuronal-enriched extracellular vesicles (nEVs) of patients with AD were reported to exhibit elevated levels of phosphorylated (p) tau, Aβ42, and phosphorylated insulin receptor substrate 1 (IRS-1). Objective To validate nEV biomarkers as AD predictors. Design, Setting, Participants This case-control study included longitudinal plasma samples from cognitively normal participants in the Baltimore Longitudinal Study of Aging (BLSA) cohort who developed AD up to January 2015 and age- and sex-matched controls who remained cognitively normal over a similar length of follow-up. Repeated samples were blindly analyzed over 1 year from participants with clinical AD and controls from the Johns Hopkins Alzheimer Disease Research Center (JHADRC). Data were collected from September 2016 to January 2018. Analyses were conducted in March 2019. Main Outcomes and Measures Neuronal-enriched extracellular vesicles were immunoprecipitated; tau, Aβ42, and IRS-1 biomarkers were quantified by immunoassays; and nEV concentration and diameter were determined by nanoparticle tracking analysis. Levels and longitudinal trajectories of nEV biomarkers between participants with future AD and control participants were compared. Results Overall, 887 longitudinal plasma samples from 128 BLSA participants who eventually developed AD and 222 age and sex-matched controls who remained cognitively normal were analyzed. Participants were followed up (from earliest sample to AD symptom onset) for a mean (SD) of 3.5 (2.31) years (range, 0-9.73 years). Overall, 161 participants were included in the training set, and 80 were in the test set. Participants in the BLSA cohort with future AD (mean [SD] age, 79.09 [7.02] years; 68 women [53.13%]) had longitudinally higher p-tau181, p-tau231, pSer312-IRS-1, pY-IRS-1, and nEV diameter than controls (mean [SD] age, 76.2 [7.36] years; 110 women [50.45%]) but had similar Aβ42, total tau, TSG101, and nEV concentration. In the training BLSA set, a model combining preclinical longitudinal data achieved 89.6% area under curve (AUC), 81.8% sensitivity, and 85.8% specificity for predicting AD. The model was validated in the test BLSA set (80% AUC, 55.6% sensitivity, 88.7% specificity). Preclinical levels of nEV biomarkers were associated with cognitive performance. In addition, 128 repeated samples over 1 year from 64 JHADRC participants with clinical AD and controls were analyzed. In the JHADRC cohort (35 participants with AD: mean [SD] age, 74.03 [8.73] years; 18 women [51.43%] and 29 controls: mean [SD] age, 72.14 [7.86] years; 23 women [79.31%]), nEV biomarkers achieved discrimination with 98.9% AUC, 100% sensitivity, and 94.7% specificity in the training set and 76.7% AUC, 91.7% sensitivity, and 60% specificity in the test set. Conclusions and Relevance We validated nEV biomarker candidates and further demonstrated that their preclinical longitudinal trajectories can predict AD diagnosis. These findings motivate further development of nEV biomarkers toward a clinical blood test for AD.
Collapse
Affiliation(s)
- Dimitrios Kapogiannis
- Laboratory of Clinical Investigations, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Maja Mustapic
- Laboratory of Clinical Investigations, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Michelle D Shardell
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Sean T Berkowitz
- Laboratory of Clinical Investigations, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Thomas C Diehl
- Laboratory of Clinical Investigations, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Ryan D Spangler
- Laboratory of Clinical Investigations, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Joyce Tran
- Laboratory of Clinical Investigations, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Michael P Lazaropoulos
- Laboratory of Clinical Investigations, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Sahil Chawla
- Laboratory of Clinical Investigations, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Seema Gulyani
- Laboratory of Clinical Investigations, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Erez Eitan
- Laboratory of Clinical Investigations, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Yang An
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Chiung-Wei Huang
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Esther S Oh
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Constantine G Lyketsos
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Edward J Goetzl
- Department of Medicine, University of California, San Francisco.,Jewish Home of San Francisco, San Francisco, California
| | - Luigi Ferrucci
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
111
|
Park SK, Kang JY, Kim JM, Yoo SK, Han HJ, Chung DH, Kim DO, Kim GH, Heo HJ. Fucoidan-Rich Substances from Ecklonia cava Improve Trimethyltin-Induced Cognitive Dysfunction via Down-Regulation of Amyloid β Production/Tau Hyperphosphorylation. Mar Drugs 2019; 17:E591. [PMID: 31627432 PMCID: PMC6836021 DOI: 10.3390/md17100591] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022] Open
Abstract
Ecklonia cava (E. cava) was investigated to compare the effect of polyphenol and fucoidan extract and mixture (polyphenol:fucoidan = 4:6) on cognitive function. The ameliorating effect of E. cava was evaluated using the Y-maze, passive avoidance and Morris water maze tests with a trimethyltin (TMT)-induced cognitive dysfunction model, and the results showed that the fucoidan extract and mixture (4:6) had relatively higher learning and memory function effects than the polyphenol extract. After a behavioral test, the inhibitory effect of lipid peroxidation and cholinergic system activity were examined in mouse brain tissue, and the fucoidan extract and mixture (4:6) also showed greater improvements than the polyphenol extract. Mitochondrial activity was evaluated using mitochondrial reactive oxygen species (ROS) content, mitochondrial membrane potential (MMP, ΔΨm), adenosine triphosphate (ATP) content, and mitochondria-mediated protein (BAX, cytochrome C) analysis, and these results were similar to the results of the behavioral tests. Finally, to confirm the cognitive function-related mechanism of E. cava, the amyloid-β production and tau hyperphosphorylation-medicated proteins were analyzed. Based on these results, the improvement effect of E. cava was more influenced by fucoidan than polyphenol. Therefore, our study suggests that the fucoidan-rich substances in E. cava could be a potential material for improving cognitive function by down-regulating amyloid-β production and tau hyperphosphorylation.
Collapse
Affiliation(s)
- Seon Kyeong Park
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21 plus), Gyeongsang National University, Jinju 52828, Korea.
| | - Jin Yong Kang
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21 plus), Gyeongsang National University, Jinju 52828, Korea.
| | - Jong Min Kim
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21 plus), Gyeongsang National University, Jinju 52828, Korea.
| | - Seul Ki Yoo
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21 plus), Gyeongsang National University, Jinju 52828, Korea.
| | - Hye Ju Han
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21 plus), Gyeongsang National University, Jinju 52828, Korea.
| | - Dong Hwa Chung
- Food Technology Major, Graduate School of International Agricultural Technology, Institute of Green Bio Science and Technology, Pyeongchang 25354, Korea.
| | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea.
| | - Gun-Hee Kim
- Departments of Food and Nutrition, Duksung Women's University, Seoul 01369, Korea.
| | - Ho Jin Heo
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21 plus), Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
112
|
Potential exerkines for physical exercise-elicited pro-cognitive effects: Insight from clinical and animal research. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 147:361-395. [PMID: 31607361 DOI: 10.1016/bs.irn.2019.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A sedentary lifestyle is now known as a critical risk factor for accelerated aging-related neurodegenerative disorders. In contract, having regular physical exercise has opposite effects. Clinical findings have suggested that physical exercise can promote brain plasticity, particularly the hippocampus and the prefrontal cortex, that are important for learning and memory and mood regulations. However, the underlying mechanisms are still unclear. Animal studies reveal that the effects of physical exercise on promoting neuroplasticity could be mediated by different exerkines derived from the peripheral system and the brain itself. This book chapter summarizes the recent evidence from clinical and pre-clinical studies showing the emerging mediators for exercise-promoted brain health, including myokines secreted from skeletal muscles, adipokines from adipose tissues, and other factors secreted from the bone and liver.
Collapse
|
113
|
Gali CC, Fanaee-Danesh E, Zandl-Lang M, Albrecher NM, Tam-Amersdorfer C, Stracke A, Sachdev V, Reichmann F, Sun Y, Avdili A, Reiter M, Kratky D, Holzer P, Lass A, Kandimalla KK, Panzenboeck U. Amyloid-beta impairs insulin signaling by accelerating autophagy-lysosomal degradation of LRP-1 and IR-β in blood-brain barrier endothelial cells in vitro and in 3XTg-AD mice. Mol Cell Neurosci 2019; 99:103390. [PMID: 31276749 PMCID: PMC6897558 DOI: 10.1016/j.mcn.2019.103390] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/30/2019] [Indexed: 02/06/2023] Open
Abstract
Aberrant insulin signaling constitutes an early change in Alzheimer's disease (AD). Insulin receptors (IR) and low-density lipoprotein receptor-related protein-1 (LRP-1) are expressed in brain capillary endothelial cells (BCEC) forming the blood-brain barrier (BBB). There, insulin may regulate the function of LRP-1 in Aβ clearance from the brain. Changes in IR-β and LRP-1 and insulin signaling at the BBB in AD are not well understood. Herein, we identified a reduction in cerebral and cerebrovascular IR-β levels in 9-month-old male and female 3XTg-AD (PS1M146V, APPSwe, and tauP301L) as compared to NTg mice, which is important in insulin mediated signaling responses. Reduced cerebral IR-β levels corresponded to impaired insulin signaling and LRP-1 levels in brain. Reduced cerebral and cerebrovascular IR-β and LRP-1 levels in 3XTg-AD mice correlated with elevated levels of autophagy marker LC3B. In both genotypes, high-fat diet (HFD) feeding decreased cerebral and hepatic LRP-1 expression and elevated cerebral Aβ burden without affecting cerebrovascular LRP-1 and IR-β levels. In vitro studies using primary porcine (p)BCEC revealed that Aβ peptides 1–40 or 1–42 (240 nM) reduced cellular levels and interaction of LRP-1 and IR-β thereby perturbing insulin-mediated signaling. Further mechanistic investigation revealed that Aβ treatment accelerated the autophagy-lysosomal degradation of IR-β and LRP-1 in pBCEC. LRP-1 silencing in pBCEC decreased IR-β levels through post-translational pathways further deteriorating insulin-mediated responses at the BBB. Our findings indicate that LRP-1 proves important for insulin signaling at the BBB. Cerebral Aβ burden in AD may accelerate LRP-1 and IR-β degradation in BCEC thereby contributing to impaired cerebral and cerebromicrovascular insulin effects.
Collapse
Affiliation(s)
- Chaitanya Chakravarthi Gali
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Elham Fanaee-Danesh
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Martina Zandl-Lang
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Nicole Maria Albrecher
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Carmen Tam-Amersdorfer
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Anika Stracke
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Vinay Sachdev
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Florian Reichmann
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Yidan Sun
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Afrim Avdili
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Marielies Reiter
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Peter Holzer
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Karunya K Kandimalla
- College of Pharmacy, Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Ute Panzenboeck
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
114
|
Moosecker S, Gomes P, Dioli C, Yu S, Sotiropoulos I, Almeida OFX. Activated PPARγ Abrogates Misprocessing of Amyloid Precursor Protein, Tau Missorting and Synaptotoxicity. Front Cell Neurosci 2019; 13:239. [PMID: 31263400 PMCID: PMC6584807 DOI: 10.3389/fncel.2019.00239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/13/2019] [Indexed: 11/20/2022] Open
Abstract
Type 2 diabetes increases the risk for dementia, including Alzheimer’s disease (AD). Pioglitazone (Pio), a pharmacological agonist of the peroxisome proliferator-activated receptor γ (PPARγ), improves insulin sensitivity and has been suggested to have potential in the management of AD symptoms, albeit through mostly unknown mechanisms. We here investigated the potential of Pio to counter synaptic malfunction and loss, a characteristic of AD pathology and its accompanying cognitive deficits. Results from experiments on primary mouse neuronal cultures and a human neural cell line (SH-SY5Y) show that Pio treatment attenuates amyloid β (Aβ)-triggered the pathological (mis-) processing of amyloid precursor protein (APP) and inhibits Aβ-induced accumulation and hyperphosphorylation of Tau. These events are accompanied by increased glutamatergic receptor 2B subunit (GluN2B) levels that are causally linked with neuronal death. Further, Pio treatment blocks Aβ-triggered missorting of hyperphosphorylated Tau to synapses and the subsequent loss of PSD95-positive synapses. These latter effects of Pio are PPARγ-mediated since they are blocked in the presence of GW9662, a selective PPARγ inhibitor. Collectively, these data show that activated PPARγ buffer neurons against APP misprocessing, Tau hyperphosphorylation and its missorting to synapses and subsequently, synaptic loss. These first insights into the mechanisms through which PPARγ influences synaptic loss make a case for further exploration of the potential usefulness of PPARγ agonists in the prevention and treatment of synaptic pathology in AD.
Collapse
Affiliation(s)
- Susanne Moosecker
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Patrícia Gomes
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Chrysoula Dioli
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Shuang Yu
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Osborne F X Almeida
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
115
|
Wijtenburg SA, Kapogiannis D, Korenic SA, Mullins RJ, Tran J, Gaston FE, Chen S, Mustapic M, Hong LE, Rowland LM. Brain insulin resistance and altered brain glucose are related to memory impairments in schizophrenia. Schizophr Res 2019; 208:324-330. [PMID: 30760413 PMCID: PMC6656556 DOI: 10.1016/j.schres.2019.01.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 01/26/2023]
Abstract
Memory is robustly impaired in schizophrenia (SZ) and related to functional outcome. Memory dysfunction has been shown to be related to altered brain glucose metabolism and brain insulin resistance in animal models and human studies of Alzheimer's disease. In this study, differences in brain glucose using magnetic resonance spectroscopy (MRS) and blood Extracellular Vesicle (EV) biomarkers of neuronal insulin resistance (i.e. Akt and signaling effectors) between SZ and controls were investigated, as well as whether these measures were related to memory impairments. Neuronal insulin resistance biomarkers showed a trend for being lower in SZ compared to controls, and memory measures were lower in SZ compared to controls. Occipital cortex glucose was higher in SZ compared to controls indicating lower brain glucose utilization. Linear regression analyses revealed significant relationships between neuronal insulin resistance biomarkers, memory measures, and brain glucose. More specifically, p70S6K, an insulin signaling effector, was related to verbal learning and brain MRS glucose in the SZ group. For the first time, we show that memory impairments in SZ may be related to brain glucose and brain insulin resistance. These data suggest that brain insulin resistance may play a role in the pathophysiology of learning and memory dysfunction in SZ.
Collapse
Affiliation(s)
- S Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Stephanie A Korenic
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Roger J Mullins
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Joyce Tran
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Frank E Gaston
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maja Mustapic
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
116
|
Małkiewicz MA, Szarmach A, Sabisz A, Cubała WJ, Szurowska E, Winklewski PJ. Blood-brain barrier permeability and physical exercise. J Neuroinflammation 2019; 16:15. [PMID: 30678702 PMCID: PMC6345022 DOI: 10.1186/s12974-019-1403-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
In this narrative review, a theoretical framework on the crosstalk between physical exercise and blood-brain barrier (BBB) permeability is presented. We discuss the influence of physical activity on the factors affecting BBB permeability such as systemic inflammation, the brain renin-angiotensin and noradrenergic systems, central autonomic function and the kynurenine pathway. The positive role of exercise in multiple sclerosis and Alzheimer’s disease is described. Finally, the potential role of conditioning as well as the effect of exercise on BBB tight junctions is outlined. There is a body of evidence that regular physical exercise diminishes BBB permeability as it reinforces antioxidative capacity, reduces oxidative stress and has anti-inflammatory effects. It improves endothelial function and might increase the density of brain capillaries. Thus, physical training can be emphasised as a component of prevention programs developed for patients to minimise the risk of the onset of neuroinflammatory diseases as well as an augmentation of existing treatment. Unfortunately, despite a sound theoretical background, it remains unclear as to whether exercise training is effective in modulating BBB permeability in several specific diseases. Further research is needed as the impact of exercise is yet to be fully elucidated.
Collapse
Affiliation(s)
- Marta A Małkiewicz
- Department of Human Physiology, Faculty of Health Sciences, Medical University of Gdansk, Tuwima Str. 15, 80-210, Gdansk, Poland.,Department of Psychiatry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Arkadiusz Szarmach
- 2-nd Department of Radiology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Sabisz
- 2-nd Department of Radiology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Wiesław J Cubała
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Edyta Szurowska
- 2-nd Department of Radiology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Paweł J Winklewski
- Department of Human Physiology, Faculty of Health Sciences, Medical University of Gdansk, Tuwima Str. 15, 80-210, Gdansk, Poland. .,2-nd Department of Radiology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland. .,Department of Clinical Anatomy and Physiology, Faculty of Health Sciences, Pomeranian University of Slupsk, Slupsk, Poland.
| |
Collapse
|
117
|
Duarte JMN, Skoug C, Silva HB, Carvalho RA, Gruetter R, Cunha RA. Impact of Caffeine Consumption on Type 2 Diabetes-Induced Spatial Memory Impairment and Neurochemical Alterations in the Hippocampus. Front Neurosci 2019; 12:1015. [PMID: 30686981 PMCID: PMC6333904 DOI: 10.3389/fnins.2018.01015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
Diabetes affects the morphology and plasticity of the hippocampus, and leads to learning and memory deficits. Caffeine has been proposed to prevent memory impairment upon multiple chronic disorders with neurological involvement. We tested whether long-term caffeine consumption prevents type 2 diabetes (T2D)-induced spatial memory impairment and hippocampal alterations, including synaptic degeneration, astrogliosis, and metabolic modifications. Control Wistar rats and Goto-Kakizaki (GK) rats that develop T2D were treated with caffeine (1 g/L in drinking water) for 4 months. Spatial memory was evaluated in a Y-maze. Hippocampal metabolic profile and glucose homeostasis were investigated by 1H magnetic resonance spectroscopy. The density of neuronal, synaptic, and glial-specific markers was evaluated by Western blot analysis. GK rats displayed reduced Y-maze spontaneous alternation and a lower amplitude of hippocampal long-term potentiation when compared to controls, suggesting impaired hippocampal-dependent spatial memory. Diabetes did not impact the relation of hippocampal to plasma glucose concentrations, but altered the neurochemical profile of the hippocampus, such as increased in levels of the osmolites taurine (P < 0.001) and myo-inositol (P < 0.05). The diabetic hippocampus showed decreased density of the presynaptic proteins synaptophysin (P < 0.05) and SNAP25 (P < 0.05), suggesting synaptic degeneration, and increased GFAP (P < 0.001) and vimentin (P < 0.05) immunoreactivities that are indicative of astrogliosis. The effects of caffeine intake on hippocampal metabolism added to those of T2D, namely reducing myo-inositol levels (P < 0.001) and further increasing taurine levels (P < 0.05). Caffeine prevented T2D-induced alterations of GFAP, vimentin and SNAP25, and improved memory deficits. We conclude that caffeine consumption has beneficial effects counteracting alterations in the hippocampus of GK rats, leading to the improvement of T2D-associated memory impairment.
Collapse
Affiliation(s)
- João M N Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Cecilia Skoug
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Henrique B Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rui A Carvalho
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Radiology, University of Lausanne, Lausanne, Switzerland.,Department of Radiology, University of Geneva, Geneva, Switzerland
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
118
|
Chornenkyy Y, Wang W, Wei A, Nelson PT. Alzheimer's disease and type 2 diabetes mellitus are distinct diseases with potential overlapping metabolic dysfunction upstream of observed cognitive decline. Brain Pathol 2019; 29:3-17. [PMID: 30106209 PMCID: PMC6427919 DOI: 10.1111/bpa.12655] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are highly prevalent aging-related diseases associated with significant morbidity and mortality. Some findings in human and animal models have linked T2DM to AD-type dementia. Despite epidemiological associations between the T2DM and cognitive impairment, the interrelational mechanisms are unclear. The preponderance of evidence in longitudinal studies with autopsy confirmation have indicated that vascular mechanisms, rather than classic AD-type pathologies, underlie the cognitive decline often seen in self-reported T2DM. T2DM is associated with cardiovascular and cerebrovascular disease (CVD), and is associated with increased risk of infarcts and small vessel disease in the brain and other organs. Neuropathological examinations of post-mortem brains demonstrated evidence of cerebrovascular disease and little to no correlation between T2DM and β-amyloid deposits or neurofibrillary tangles. Nevertheless, the mechanisms upstream of early AD-specific pathology remain obscure. In this regard, there may indeed be overlap between the pathologic mechanisms of T2DM/"metabolic syndrome," and AD. More specifically, cerebral insulin processing, glucose metabolism, mitochondrial function, and/or lipid metabolism could be altered in patients in early AD and directly influence symptomatology and/or neuropathology.
Collapse
Affiliation(s)
| | - Wang‐Xia Wang
- University of Kentucky College of MedicineLexingtonKY
- Sanders‐Brown Center on Aging, Department of PathologyUniversity of KentuckyLexingtonKY
| | - Angela Wei
- Department of BiologyUniversity of KentuckyLexingtonKY
| | - Peter T. Nelson
- University of Kentucky College of MedicineLexingtonKY
- Sanders‐Brown Center on Aging, Department of PathologyUniversity of KentuckyLexingtonKY
| |
Collapse
|
119
|
Li L, Ismael S, Nasoohi S, Sakata K, Liao FF, McDonald MP, Ishrat T. Thioredoxin-Interacting Protein (TXNIP) Associated NLRP3 Inflammasome Activation in Human Alzheimer's Disease Brain. J Alzheimers Dis 2019; 68:255-265. [PMID: 30741672 PMCID: PMC10947081 DOI: 10.3233/jad-180814] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is the most common form of age-associated dementia characterized by amyloid-β plaques and neurofibrillary tangles. Recent studies have demonstrated that thioredoxin-interacting protein (TXNIP), an endogenous regulator of redox/glucose induced stress and inflammation, is now known to be upregulated in stroke, traumatic brain injury, diabetes and AD. We hypothesized that TXNIP overexpression sustains neurodegeneration through activation of the nucleotide binding and oligomerization domain-like receptor protein 3 in human AD brains. We analyzed TXNIP and the components of the NLRP3 inflammasome in the cortex of postmortem human brain samples by western blotting, real-time PCR, and immunohistochemical techniques in comparison with age-matched non-demented controls. Our results demonstrate that TXNIP protein as well as its mRNA levels in the cortex was significantly upregulated in AD compared to control brains. Moreover, using double immunofluorescence staining, TXNIP and interlukin-1β (IL-1β) were co-localized near Aβ plaques and p-tau. These results suggest an association between TXNIP overexpression levels and AD pathogenesis. Further, a significant increased expression of cleaved caspase-1 and IL-1β, the products of inflammasome activation, was detected in the cortex of AD brains. Together, these findings suggest that TXNIP, an upstream promising new therapeutic target, is a molecular link between inflammation and AD. The significant contribution of TXNIP to AD pathology suggests that strategies focusing on specific targeting of the TXNIP-NLRP3 inflammasome may lead to novel therapies for the management of AD and other age-related dementias.
Collapse
Affiliation(s)
- Lexiao Li
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Saifudeen Ismael
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sanaz Nasoohi
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kazuko Sakata
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Francesca-Fang Liao
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Michael P. McDonald
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Neurology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
120
|
Osipova ED, Komleva YK, Morgun AV, Lopatina OL, Panina YA, Olovyannikova RY, Vais EF, Salmin VV, Salmina AB. Designing in vitro Blood-Brain Barrier Models Reproducing Alterations in Brain Aging. Front Aging Neurosci 2018; 10:234. [PMID: 30127733 PMCID: PMC6088457 DOI: 10.3389/fnagi.2018.00234] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
Blood-brain barrier (BBB) modeling in vitro is a huge area of research covering study of intercellular communications and development of BBB, establishment of specific properties that provide controlled permeability of the barrier. Current approaches in designing new BBB models include development of new (bio) scaffolds supporting barriergenesis/angiogenesis and BBB integrity; use of methods enabling modulation of BBB permeability; application of modern analytical techniques for screening the transfer of metabolites, bio-macromolecules, selected drug candidates and drug delivery systems; establishment of 3D models; application of microfluidic technologies; reconstruction of microphysiological systems with the barrier constituents. Acceptance of idea that BBB in vitro models should resemble real functional activity of the barrier in different periods of ontogenesis and in different (patho) physiological conditions leads to proposal that establishment of BBB in vitro model with alterations specific for aging brain is one of current challenges in neurosciences and bioengineering. Vascular dysfunction in the aging brain often associates with leaky BBB, alterations in perivascular microenvironment, neuroinflammation, perturbed neuronal and astroglial activity within the neurovascular unit, impairments in neurogenic niches where microvascular scaffold plays a key regulatory role. The review article is focused on aging-related alterations in BBB and current approaches to development of “aging” BBB models in vitro.
Collapse
Affiliation(s)
- Elena D Osipova
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Yulia K Komleva
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Andrey V Morgun
- Department of Medical and Biological Physics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Olga L Lopatina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Yulia A Panina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Raissa Ya Olovyannikova
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Elizaveta F Vais
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Vladimir V Salmin
- Department of Medical and Biological Physics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Alla B Salmina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| |
Collapse
|
121
|
Phillips OR, Onopa AK, Zaiko YV, Singh MK. Insulin resistance is associated with smaller brain volumes in a preliminary study of depressed and obese children. Pediatr Diabetes 2018; 19:892-897. [PMID: 29569318 PMCID: PMC6030449 DOI: 10.1111/pedi.12672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/19/2018] [Accepted: 03/14/2018] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE During childhood, the brain can consume up to 65% of total calories, and a steady supply of the brain's main fuel glucose needs to be maintained. Although the brain itself is not dependent on insulin for the uptake of glucose, insulin plays an important role in energy homeostasis. Thus, the risk for insulin resistance during brain development may negatively impact the whole brain volume. METHODS We investigated the link between the insulin resistance and the whole brain volume as measured by structural Magnetic resonance imaging (MRI) in 46 unmedicated depressed and overweight youths between the ages of 9 and 17 years. RESULTS Smaller whole brain volumes were associated with insulin resistance independent of age, sex, depression severity, body mass index, socioeconomic status, Tanner Stage, and Intelligence quotient (IQ) (r = 0.395, P = .014) CONCLUSIONS There may be a significant cost for developing insulin resistance on the developing brain. Disentangling the precise relationship between the insulin resistance and the developing brain is critical.
Collapse
Affiliation(s)
- Owen R. Phillips
- Department of Psychiatry, Division of Child and Adolescent Psychiatry, Stanford University School of Medicine, Stanford Pediatric Mood Disorders Program, Division of Child and Adolescent Psychiatry, 401 Quarry Road, Stanford, CA 94305-5719,Corresponding Author: Owen Phillips, PhD, Postdoctoral Scholar, Stanford Pediatric Mood Disorders Program, Division of Child and Adolescent Psychiatry, 401 Quarry Road, Stanford, CA 94305-5719 (; Phone: (650) 725-5922; Fax: (650) 724-7389). Website: med.stanford.edu/pedmood
| | - Alexander K. Onopa
- Department of Psychiatry, Division of Child and Adolescent Psychiatry, Stanford University School of Medicine, Stanford Pediatric Mood Disorders Program, Division of Child and Adolescent Psychiatry, 401 Quarry Road, Stanford, CA 94305-5719
| | - Yevgeniya V. Zaiko
- Department of Psychiatry, Division of Child and Adolescent Psychiatry, Stanford University School of Medicine, Stanford Pediatric Mood Disorders Program, Division of Child and Adolescent Psychiatry, 401 Quarry Road, Stanford, CA 94305-5719
| | - Manpreet K. Singh
- Department of Psychiatry, Division of Child and Adolescent Psychiatry, Stanford University School of Medicine, Stanford Pediatric Mood Disorders Program, Division of Child and Adolescent Psychiatry, 401 Quarry Road, Stanford, CA 94305-5719
| |
Collapse
|
122
|
Role of Adiponectin in Central Nervous System Disorders. Neural Plast 2018; 2018:4593530. [PMID: 30150999 PMCID: PMC6087588 DOI: 10.1155/2018/4593530] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/07/2018] [Indexed: 12/14/2022] Open
Abstract
Adiponectin, the most abundant plasma adipokine, plays an important role in the regulation of glucose and lipid metabolism. Adiponectin also possesses insulin-sensitizing, anti-inflammatory, angiogenic, and vasodilatory properties which may influence central nervous system (CNS) disorders. Although initially not thought to cross the blood-brain barrier, adiponectin enters the brain through peripheral circulation. In the brain, adiponectin signaling through its receptors, AdipoR1 and AdipoR2, directly influences important brain functions such as energy homeostasis, hippocampal neurogenesis, and synaptic plasticity. Overall, based on its central and peripheral actions, recent evidence indicates that adiponectin has neuroprotective, antiatherogenic, and antidepressant effects. However, these findings are not without controversy as human observational studies report differing correlations between plasma adiponectin levels and incidence of CNS disorders. Despite these controversies, adiponectin is gaining attention as a potential therapeutic target for diverse CNS disorders, such as stroke, Alzheimer's disease, anxiety, and depression. Evidence regarding the emerging role for adiponectin in these disorders is discussed in the current review.
Collapse
|
123
|
Thein FS, Li Y, Nyunt MSZ, Gao Q, Wee SL, Ng TP. Physical frailty and cognitive impairment is associated with diabetes and adversely impact functional status and mortality. Postgrad Med 2018; 130:561-567. [PMID: 29949390 DOI: 10.1080/00325481.2018.1491779] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Ying Li
- Gerontology Research Programme, Department of Psychological Medicine, National University of Singapore, Singapore
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ma Shwe Zin Nyunt
- Gerontology Research Programme, Department of Psychological Medicine, National University of Singapore, Singapore
| | - Qi Gao
- Gerontology Research Programme, Department of Psychological Medicine, National University of Singapore, Singapore
| | - Shiou Liang Wee
- Geriatric Education and Research Institute, Singapore
- Faculty of Health and Social Sciences, Singapore Institute of Technology, Singapore
| | - Tze Pin Ng
- Geriatric Education and Research Institute, Singapore
- Gerontology Research Programme, Department of Psychological Medicine, National University of Singapore, Singapore
| |
Collapse
|
124
|
Cao L, Wang Z, Wan W. Suppressor of Cytokine Signaling 3: Emerging Role Linking Central Insulin Resistance and Alzheimer's Disease. Front Neurosci 2018; 12:417. [PMID: 29973864 PMCID: PMC6020761 DOI: 10.3389/fnins.2018.00417] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 06/01/2018] [Indexed: 01/09/2023] Open
Abstract
Currently, the etiology of Alzheimer’s disease (AD) is still elusive. Central insulin resistance has been determined to play an important role in the progress of AD. However, the mechanism underlying the development of disrupted insulin signaling pathways in AD is unclear. Suppressor of cytokine signaling 3 (SOCS3) is a member of the SOCS protein family that acts as a negative modulator of insulin signaling in sensitive tissues, such as hepatocytes and adipocytes. However, little is known about its role in neurological diseases. Recent evidence indicates that the level of SOCS3 is increased in the brains of individuals with AD, especially in areas with amyloid beta deposition, suggesting that SOCS3 may regulate the central insulin signaling pathways in AD. Here, we discuss the potential role of SOCS3 in AD and speculate that SOCS3 may be a promising therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Lan Cao
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zigao Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenbin Wan
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
125
|
Chatterjee S, Mudher A. Alzheimer's Disease and Type 2 Diabetes: A Critical Assessment of the Shared Pathological Traits. Front Neurosci 2018; 12:383. [PMID: 29950970 PMCID: PMC6008657 DOI: 10.3389/fnins.2018.00383] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/22/2018] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) and Type 2 Diabetes Mellitus (T2DM) are two of the most prevalent diseases in the elderly population worldwide. A growing body of epidemiological studies suggest that people with T2DM are at a higher risk of developing AD. Likewise, AD brains are less capable of glucose uptake from the surroundings resembling a condition of brain insulin resistance. Pathologically AD is characterized by extracellular plaques of Aβ and intracellular neurofibrillary tangles of hyperphosphorylated tau. T2DM, on the other hand is a metabolic disorder characterized by hyperglycemia and insulin resistance. In this review we have discussed how Insulin resistance in T2DM directly exacerbates Aβ and tau pathologies and elucidated the pathophysiological traits of synaptic dysfunction, inflammation, and autophagic impairments that are common to both diseases and indirectly impact Aβ and tau functions in the neurons. Elucidation of the underlying pathways that connect these two diseases will be immensely valuable for designing novel drug targets for Alzheimer's disease.
Collapse
Affiliation(s)
- Shreyasi Chatterjee
- Centre of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Amritpal Mudher
- Centre of Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
126
|
胡 冬, 李 雅, 梁 赵, 钟 瞾, 唐 杰, 廖 婧, 田 和, 佘 高, 刘 誉, 邢 会. [Long-term high-fat diet inhibits hippocampal expression of insulin receptor substrates and accelerates cognitive deterioration in obese rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:460-465. [PMID: 29735448 PMCID: PMC6765670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Indexed: 10/15/2023]
Abstract
OBJECTIVE To assess the effect of long-term high-fat diet on the expressions of insulin receptor substrates in the hippocampus and spatial learning and memory ability of obese rats. METHODS A total of 100 4-week-old male SD rats were randomly divided into two groups and fed with common diet (CD group, n=40) or high-fat diet (HFD group, n=60) for 16 weeks. At 4, 8, 12, 16 and 20 weeks, 8 rats were randomly selected from each group for testing their spatial learning and memory function using Morris water maze. After the tests, the rats were sacrificed for measurement of the metabolic parameters and detection of the expressions of insulin receptor substrate-1 (IRS-1) and IRS-2 mRNAs in the CA1 region of the hippocampus. RESULTS Compared with those in CD group, the rats in HFD group showed a prolonged escape latency, longer swimming distance, faster average swimming speed, and shorter stay in the platformat 12 weeks. In HFD group, the serum levels of total cholesterol, triglyceride, low-density lipoprotein cholesterol, and fasting insulin were all significantly increased (P<0.05) and the level of high-density lipoprotein cholesterol decreased (P<0.01) in comparison with those in CD group at each of the time points. No significant difference was found in fast glucose levels between the two groups (P>0.05), but the expressions of IRS-1 and IRS-2 mRNAs were significantly decreased in HFD group at 12 weeks (P<0.05). CONCLUSION In obese rats, long-term feeding with high-fat diet leads to insulin resistance, which interferes with hippocampal expression of insulin receptor substrates and insulin metabolism to cause impairment of the cognitive function and accelerate cognitive deterioration.
Collapse
Affiliation(s)
- 冬华 胡
- 暨南大学 附属第一院麻醉科,广东 广州 510630Department of Anesthesia of First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - 雅兰 李
- 暨南大学 附属第一院麻醉科,广东 广州 510630Department of Anesthesia of First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - 赵佳 梁
- 暨南大学 附属第一院麻醉科,广东 广州 510630Department of Anesthesia of First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - 瞾 钟
- 暨南大学 附属第一院麻醉科,广东 广州 510630Department of Anesthesia of First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - 杰柯 唐
- 暨南大学 附属第一院麻醉科,广东 广州 510630Department of Anesthesia of First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - 婧 廖
- 暨南大学 附属第一院麻醉科,广东 广州 510630Department of Anesthesia of First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - 和 田
- 暨南大学 附属第一院麻醉科,广东 广州 510630Department of Anesthesia of First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - 高明 佘
- 暨南大学 附属第一院麻醉科,广东 广州 510630Department of Anesthesia of First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - 誉 刘
- 暨南大学 医学院生化教研室,广东 广州 510630Departmen of Biochemistry, Jinan University, Guangzhou 510630, China
| | - 会杰 邢
- 暨南大学 实验动物中心,广东 广州 510630Institute of Laboratory Animal Science, Jinan University, Guangzhou 510630, China
| |
Collapse
|
127
|
胡 冬, 李 雅, 梁 赵, 钟 瞾, 唐 杰, 廖 婧, 田 和, 佘 高, 刘 誉, 邢 会. [Long-term high-fat diet inhibits hippocampal expression of insulin receptor substrates and accelerates cognitive deterioration in obese rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:460-465. [PMID: 29735448 PMCID: PMC6765670 DOI: 10.3969/j.issn.1673-4254.2018.04.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To assess the effect of long-term high-fat diet on the expressions of insulin receptor substrates in the hippocampus and spatial learning and memory ability of obese rats. METHODS A total of 100 4-week-old male SD rats were randomly divided into two groups and fed with common diet (CD group, n=40) or high-fat diet (HFD group, n=60) for 16 weeks. At 4, 8, 12, 16 and 20 weeks, 8 rats were randomly selected from each group for testing their spatial learning and memory function using Morris water maze. After the tests, the rats were sacrificed for measurement of the metabolic parameters and detection of the expressions of insulin receptor substrate-1 (IRS-1) and IRS-2 mRNAs in the CA1 region of the hippocampus. RESULTS Compared with those in CD group, the rats in HFD group showed a prolonged escape latency, longer swimming distance, faster average swimming speed, and shorter stay in the platformat 12 weeks. In HFD group, the serum levels of total cholesterol, triglyceride, low-density lipoprotein cholesterol, and fasting insulin were all significantly increased (P<0.05) and the level of high-density lipoprotein cholesterol decreased (P<0.01) in comparison with those in CD group at each of the time points. No significant difference was found in fast glucose levels between the two groups (P>0.05), but the expressions of IRS-1 and IRS-2 mRNAs were significantly decreased in HFD group at 12 weeks (P<0.05). CONCLUSION In obese rats, long-term feeding with high-fat diet leads to insulin resistance, which interferes with hippocampal expression of insulin receptor substrates and insulin metabolism to cause impairment of the cognitive function and accelerate cognitive deterioration.
Collapse
Affiliation(s)
- 冬华 胡
- 暨南大学 附属第一院麻醉科,广东 广州 510630Department of Anesthesia of First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - 雅兰 李
- 暨南大学 附属第一院麻醉科,广东 广州 510630Department of Anesthesia of First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - 赵佳 梁
- 暨南大学 附属第一院麻醉科,广东 广州 510630Department of Anesthesia of First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - 瞾 钟
- 暨南大学 附属第一院麻醉科,广东 广州 510630Department of Anesthesia of First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - 杰柯 唐
- 暨南大学 附属第一院麻醉科,广东 广州 510630Department of Anesthesia of First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - 婧 廖
- 暨南大学 附属第一院麻醉科,广东 广州 510630Department of Anesthesia of First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - 和 田
- 暨南大学 附属第一院麻醉科,广东 广州 510630Department of Anesthesia of First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - 高明 佘
- 暨南大学 附属第一院麻醉科,广东 广州 510630Department of Anesthesia of First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - 誉 刘
- 暨南大学 医学院生化教研室,广东 广州 510630Departmen of Biochemistry, Jinan University, Guangzhou 510630, China
| | - 会杰 邢
- 暨南大学 实验动物中心,广东 广州 510630Institute of Laboratory Animal Science, Jinan University, Guangzhou 510630, China
| |
Collapse
|
128
|
Cockerill I, Oliver JA, Xu H, Fu BM, Zhu D. Blood-Brain Barrier Integrity and Clearance of Amyloid-β from the BBB. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:261-278. [PMID: 30315550 DOI: 10.1007/978-3-319-96445-4_14] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Alzheimer's disease, a type of dementia, affects memory, behavior, and cognitive processes in affected individuals. It is one of the prominent diseases, accounting for 60-80% of dementia cases and affecting a significant population of persons over the age of 65 years. While rare, Alzheimer's disease (AD) may affect the younger population as well. With such a widespread number of persons affected with AD, scientists have undertaken the initiative to develop a cure for this devastating disease; however, it has been deemed quite challenging. A dysfunctional blood-brain barrier, with impaired ability to clear amyloid-β from the brain, has been directly linked to the development of Alzheimer's disease. The blood-brain barrier restricts the flow of many substances into and out of the brain and serves as a selective and protective barrier to the brain. A proper functioning blood-brain barrier contributes to the maintenance and integrity of the brain. In turn, different systems and mechanisms within the blood-brain barrier are set in place to facilitate mediated passage of materials and substances between the brain and the bloodstream. In relation to AD, the mediation of amyloid-β clearance is of great importance in maintaining the blood-brain barrier's integrity.
Collapse
Affiliation(s)
- Irsalan Cockerill
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Joy-Anne Oliver
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Fujian Sheng, China.,Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Bingmei M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA
| | - Donghui Zhu
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA.
| |
Collapse
|
129
|
Han K, Jia N, Zhong Y, Shang X. S14G‐humanin alleviates insulin resistance and increases autophagy in neurons of APP/PS1 transgenic mouse. J Cell Biochem 2017; 119:3111-3117. [PMID: 29058763 DOI: 10.1002/jcb.26452] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/03/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Kun Han
- Department of NeurologyThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningPeople's Republic of China
- Department of NeurologyThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouLiaoningPeople's Republic of China
| | - Ning Jia
- Department of NeurologyThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouLiaoningPeople's Republic of China
| | - Yi Zhong
- Department of NeurologyThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouLiaoningPeople's Republic of China
| | - Xiuli Shang
- Department of NeurologyThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningPeople's Republic of China
| |
Collapse
|
130
|
Velazquez R, Tran A, Ishimwe E, Denner L, Dave N, Oddo S, Dineley KT. Central insulin dysregulation and energy dyshomeostasis in two mouse models of Alzheimer's disease. Neurobiol Aging 2017; 58:1-13. [PMID: 28688899 PMCID: PMC5819888 DOI: 10.1016/j.neurobiolaging.2017.06.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/23/2017] [Accepted: 06/09/2017] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder worldwide. While the causes of AD are not known, several risk factors have been identified. Among these, type two diabetes (T2D), a chronic metabolic disease, is one of the most prevalent risk factors for AD. Insulin resistance, which is associated with T2D, is defined as diminished or absent insulin signaling and is reflected by peripheral blood hyperglycemia and impaired glucose clearance. In this study, we used complementary approaches to probe for peripheral insulin resistance, central nervous system (CNS) insulin sensitivity and energy homeostasis in Tg2576 and 3xTg-AD mice, two widely used animal models of AD. We report that CNS insulin signaling abnormalities are evident months before peripheral insulin resistance. In addition, we find that brain energy metabolism is differentially altered in both mouse models, with 3xTg-AD mice showing more extensive changes. Collectively, our data suggest that early AD may reflect engagement of different signaling networks that influence CNS metabolism, which in turn may alter peripheral insulin signaling.
Collapse
Affiliation(s)
- Ramon Velazquez
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - An Tran
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Egide Ishimwe
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, USA
| | - Larry Denner
- Internal Medicine, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, USA
| | - Nikhil Dave
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Salvatore Oddo
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Kelly T Dineley
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, USA.
| |
Collapse
|
131
|
Bachor TP, Karbanová J, Büttner E, Bermúdez V, Marquioni-Ramella M, Carmeliet P, Corbeil D, Suburo AM. Early ciliary and prominin-1 dysfunctions precede neurogenesis impairment in a mouse model of type 2 diabetes. Neurobiol Dis 2017; 108:13-28. [PMID: 28743634 DOI: 10.1016/j.nbd.2017.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 06/19/2017] [Accepted: 07/10/2017] [Indexed: 01/10/2023] Open
Abstract
Diabetes mellitus (DM) is reaching epidemic conditions worldwide and increases the risk for cognition impairment and dementia. Here, we postulated that progenitors in adult neurogenic niches might be particularly vulnerable. Therefore, we evaluated the different components of the mouse subventricular zone (SVZ) during the first week after chemical induction of type 1 and type 2 diabetes-like (T1DM and T2DM) conditions. Surprisingly, only T2DM mice showed SVZ damage. The initial lesions were localized to ependymal cilia, which appeared disorientated and clumped together. In addition, they showed delocalization of the ciliary membrane protein prominin-1. Impairment of neuroprogenitor proliferation, neurogenic marker abnormalities and ectopic migration of neuroblasts were found at a later stage. To our knowledge, our data describe for the first time such an early impact of T2DM on the SVZ. This is consistent with clinical data indicating that brain damage in T2DM patients differs from that in T1DM patients.
Collapse
Affiliation(s)
- Tomás P Bachor
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, B1629AHJ, Pilar, Argentina
| | - Jana Karbanová
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| | - Edgar Büttner
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| | - Vicente Bermúdez
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, B1629AHJ, Pilar, Argentina; Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| | - Melisa Marquioni-Ramella
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, B1629AHJ, Pilar, Argentina
| | - Peter Carmeliet
- Lab of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium; Lab of Angiogenesis and Vascular Metabolism, Dept. of Oncology, KU Leuven, Leuven, Belgium
| | - Denis Corbeil
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany.
| | - Angela M Suburo
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, B1629AHJ, Pilar, Argentina.
| |
Collapse
|