151
|
Yeung J, Wang T, Shi PY. Improvement of mucosal immunity by a live-attenuated SARS-CoV-2 nasal vaccine. Curr Opin Virol 2023; 62:101347. [PMID: 37604085 DOI: 10.1016/j.coviro.2023.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023]
Abstract
The effectiveness of early COVID-19 vaccines in reducing the severity of the disease has led to a focus on developing next-generation vaccines that can prevent infection and transmission of the virus. One promising approach involves the induction of mucosal immunity through nasal administration and a variety of mucosal vaccine candidates using different platforms are currently in development. Live-attenuated viruses, less pathogenic versions of SARS-CoV-2, have promising features as a mucosal vaccine platform and have the potential to induce hybrid immunity in individuals who have already received mRNA vaccines. This review discusses the potential benefits and considerations for the use of live-attenuated SARS-CoV-2 intranasal vaccines and highlights the authors' work in developing such a vaccine platform.
Collapse
Affiliation(s)
- Jason Yeung
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX, USA; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
152
|
Kumar R, Singh S, Chawla R, Balhara K, Dhar L. COVID-19 vaccination: Immune response in healthcare workers-A study with review of literature. INDIAN J PATHOL MICR 2023; 66:758-763. [PMID: 38084528 DOI: 10.4103/ijpm.ijpm_126_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background As the world has been going through a pandemic of coronavirus disease 2019 (COVID-19) for the past two years, a safe and effective vaccine was urgently needed. Vaccination against the disease was launched in India on January 16, 2021 with healthcare workers, frontline workers, and the elderly above 60 years being the first beneficiaries. Vaccines being used in India are Covishield and Covaxin. Materials and Methods Fifteen healthcare workers (HCWs) who were vaccinated with Covishield or Covaxin were included in the study, and T cell, B cell and antibody response of the HCWs were analyzed. Blood samples collected from every subject were sent for antibody analysis, hematological workup for cell counts, and flow cytometry was performed for various subsets of lymphocytes. Hematological variables in naïve HCWs (who never had any natural infection) and recovered HCWs (those recovered from natural infection) were compared. Results Antibody index among recovered HCWs was significantly higher than the naïve HCWs. All the leucocyte parameters showed a higher median value in the recovered group except total leucocyte count (TLC), T helper cell count (Th cell), T helper cell to T cytotoxic cell (Th cell: CTL) ratio and natural killer (NK) cell. But only Th: CTL ratio showed a statistically significant difference. Conclusion This study shows that the antibody index among individuals who had both vaccination and COVID-19 infection is significantly higher than those who just had vaccination. T helper cell to T cytotoxic cell ratio is lowered in the recovered HCWs as compared to the naïve HCWs and this finding is statistically significant.
Collapse
Affiliation(s)
- Rabish Kumar
- Department of Pathology, Maulana Azad Medical College, New Delhi, India
| | - Sarika Singh
- Department of Pathology, Maulana Azad Medical College, New Delhi, India
| | - Rohit Chawla
- Department of Microbiology, Maulana Azad Medical College, New Delhi, India
| | - Kirti Balhara
- Department of Pathology, Maulana Azad Medical College, New Delhi, India
| | - Lity Dhar
- Department of Pathology, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
153
|
Li C, Ma L, Zou D, Zhang R, Bai X, Li L, Wu G, Huang T, Zhao W, Jin E, Bao Y, Song S. RCoV19: A One-stop Hub for SARS-CoV-2 Genome Data Integration, Variant Monitoring, and Risk Pre-warning. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:1066-1079. [PMID: 37898309 PMCID: PMC10928372 DOI: 10.1016/j.gpb.2023.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
The Resource for Coronavirus 2019 (RCoV19) is an open-access information resource dedicated to providing valuable data on the genomes, mutations, and variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this updated implementation of RCoV19, we have made significant improvements and advancements over the previous version. Firstly, we have implemented a highly refined genome data curation model. This model now features an automated integration pipeline and optimized curation rules, enabling efficient daily updates of data in RCoV19. Secondly, we have developed a global and regional lineage evolution monitoring platform, alongside an outbreak risk pre-warning system. These additions provide a comprehensive understanding of SARS-CoV-2 evolution and transmission patterns, enabling better preparedness and response strategies. Thirdly, we have developed a powerful interactive mutation spectrum comparison module. This module allows users to compare and analyze mutation patterns, assisting in the detection of potential new lineages. Furthermore, we have incorporated a comprehensive knowledgebase on mutation effects. This knowledgebase serves as a valuable resource for retrieving information on the functional implications of specific mutations. In summary, RCoV19 serves as a vital scientific resource, providing access to valuable data, relevant information, and technical support in the global fight against COVID-19. The complete contents of RCoV19 are available to the public at https://ngdc.cncb.ac.cn/ncov/.
Collapse
Affiliation(s)
- Cuiping Li
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Lina Ma
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zou
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Rongqin Zhang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Bai
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Lun Li
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Gangao Wu
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianhao Huang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Enhui Jin
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Bao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shuhui Song
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
154
|
Wellington D, Yin Z, Yu Z, Heilig R, Davis S, Fischer R, Felce SL, Antoun E, Hublitz P, Beveridge R, Dong D, Liu G, Yao X, Peng Y, Kessler BM, Dong T. SARS-CoV-2 mutations affect antigen processing by the proteasome to alter CD8 + T cell responses. Heliyon 2023; 9:e20076. [PMID: 37842619 PMCID: PMC10570596 DOI: 10.1016/j.heliyon.2023.e20076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Mutations within viral epitopes can result in escape from T cells, but the contribution of mutations in flanking regions of epitopes in SARS-CoV-2 has not been investigated. Focusing on two SARS-CoV-2 nucleoprotein CD8+ epitopes, we investigated the contribution of these flanking mutations to proteasomal processing and T cell activation. We found decreased NP9-17-B*27:05 CD8+ T cell responses to the NP-Q7K mutation, likely due to a lack of efficient epitope production by the proteasome, suggesting immune escape caused by this mutation. In contrast, NP-P6L and NP-D103 N/Y mutations flanking the NP9-17-B*27:05 and NP105-113-B*07:02 epitopes, respectively, increased CD8+ T cell responses associated with enhanced epitope production by the proteasome. Our results provide evidence that SARS-CoV-2 mutations outside the epitope could have a significant impact on proteasomal processing, either contributing to T cell escape or enhancement that may be exploited for future vaccine design.
Collapse
Affiliation(s)
- Dannielle Wellington
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Zixi Yin
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Zhanru Yu
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
| | - Raphael Heilig
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
| | - Simon Davis
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
| | - Roman Fischer
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
| | - Suet Ling Felce
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Elie Antoun
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Philip Hublitz
- Genome Engineering Facility, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Ryan Beveridge
- Virus Screening Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Danning Dong
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Guihai Liu
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Xuan Yao
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Yanchun Peng
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Benedikt M. Kessler
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
| | - Tao Dong
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| |
Collapse
|
155
|
Zhang S, Liu X, Zhao Y, Wang P, Yu R, Xu P, Jiang Y, Cheng L. Microbiome characteristics description of COVID-19 patients based on bulk RNA-seq and scRNA-Seq data. Comput Biol Med 2023; 165:107400. [PMID: 37651767 DOI: 10.1016/j.compbiomed.2023.107400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/04/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
After infection with SARS-CoV-2, the microbiome inside the human body changes dramatically. By re-annotating microbial sequences in bulk RNA-seq and scRNA-seq data of COVID-19 patients, we described the cellular microbial landscape of COVID-19 patients and identified characteristic microorganisms in various tissues. We found that Acinetobacter lwoffii was highly correlated with COVID-19 symptoms and might disrupt some pathways of patients by interacting with the host and other microbes, such as Klebsiella pneumoniae. We further identified characteristic microorganisms specific to cell type, indicating the enrichment preference of some microbes. We also revealed the co-infection of SARS-CoV-2 with hMPV, which may cause the development of COVID-19. Overall, we demonstrated that the presence of intracellular microorganisms in COVID-19 patients and the synergies between microorganisms were strongly correlated with disease progression, providing a theoretical basis for COVID-19 treatment in a certain extent.
Collapse
Affiliation(s)
- Sainan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| | - Xingwang Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| | - Yue Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| | - Ping Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| | - Rui Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| | - Peigang Xu
- Chongqing Research Institute of Harbin Institute of Technology, China.
| | - Yue Jiang
- Cipher Gene, Ltd., Beijing, 100080, China.
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China; NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150028, Heilongjiang, China.
| |
Collapse
|
156
|
Hardy N, Vegivinti CTR, Mehta M, Thurnham J, Mebane A, Pederson JM, Tarchand R, Shivakumar J, Olaniran P, Gadodia R, Ganguly A, Kelagere Y, Nallabolu RR, Gaddam M, Keesari PR, Pulakurthi YS, Reddy R, Kallmes K, Musunuru TN. Mortality of COVID-19 in patients with hematological malignancies versus solid tumors: a systematic literature review and meta-analysis. Clin Exp Med 2023; 23:1945-1959. [PMID: 36795239 PMCID: PMC9933827 DOI: 10.1007/s10238-023-01004-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/17/2023] [Indexed: 02/17/2023]
Abstract
Cancer patients are more vulnerable to COVID-19 compared to the general population, but it remains unclear which types of cancer have the highest risk of COVID-19-related mortality. This study examines mortality rates for those with hematological malignancies (Hem) versus solid tumors (Tumor). PubMed and Embase were systematically searched for relevant articles using Nested Knowledge software (Nested Knowledge, St Paul, MN). Articles were eligible for inclusion if they reported mortality for Hem or Tumor patients with COVID-19. Articles were excluded if they were not published in English, non-clinical studies, had insufficient population/outcomes reporting, or were irrelevant. Baseline characteristics collected included age, sex, and comorbidities. Primary outcomes were all-cause and COVID-19-related in-hospital mortality. Secondary outcomes included rates of invasive mechanical ventilation (IMV) and intensive care unit (ICU) admission. Effect sizes from each study were computed as logarithmically transformed odds ratios (ORs) with random-effects, Mantel-Haenszel weighting. The between-study variance component of random-effects models was computed using restricted effects maximum likelihood estimation, and 95% confidence intervals (CIs) around pooled effect sizes were calculated using Hartung-Knapp adjustments. In total, 12,057 patients were included in the analysis, with 2,714 (22.5%) patients in the Hem group and 9,343 (77.5%) patients in the Tumor group. The overall unadjusted odds of all-cause mortality were 1.64 times higher in the Hem group compared to the Tumor group (95% CI: 1.30-2.09). This finding was consistent with multivariable models presented in moderate- and high-quality cohort studies, suggestive of a causal effect of cancer type on in-hospital mortality. Additionally, the Hem group had increased odds of COVID-19-related mortality compared to the Tumor group (OR = 1.86 [95% CI: 1.38-2.49]). There was no significant difference in odds of IMV or ICU admission between cancer groups (OR = 1.13 [95% CI: 0.64-2.00] and OR = 1.59 [95% CI: 0.95-2.66], respectively). Cancer is a serious comorbidity associated with severe outcomes in COVID-19 patients, with especially alarming mortality rates in patients with hematological malignancies, which are typically higher compared to patients with solid tumors. A meta-analysis of individual patient data is needed to better assess the impact of specific cancer types on patient outcomes and to identify optimal treatment strategies.
Collapse
Affiliation(s)
| | | | - Mansi Mehta
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | | | - John M Pederson
- Nested Knowledge, Inc, St Paul, MN, USA
- Superior Medical Experts, St. Paul, MN, USA
| | | | - Jeevan Shivakumar
- Department of Internal Medicine, Montefiore Medical Center, Bronx, NY, USA
| | | | - Ritika Gadodia
- Medstar Washington Hospital Center/Georgetown University, Washington, DC, USA
| | - Arup Ganguly
- University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Yashaswini Kelagere
- Department of Pediatrics, Saint Peter's University Hospital, New Brunswick, NJ, USA
| | | | | | - Praneeth R Keesari
- Kamineni Academy of Medical Sciences and Research Centre, Hyderabad, Telangana, India
| | | | - Rohit Reddy
- Department of Medical Oncology, Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Tejo N Musunuru
- Department of Hematology/Oncology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
157
|
Antoun E, Peng Y, Dong T. Vaccine-induced CD8 + T cells are key to protection from SARS-CoV-2. Nat Immunol 2023; 24:1594-1596. [PMID: 37735590 DOI: 10.1038/s41590-023-01621-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Affiliation(s)
- Elie Antoun
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Yanchun Peng
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Tao Dong
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
158
|
Grandi A, Tomasi M, Ullah I, Bertelli C, Vanzo T, Accordini S, Gagliardi A, Zanella I, Benedet M, Corbellari R, Di Lascio G, Tamburini S, Caproni E, Croia L, Ravà M, Fumagalli V, Di Lucia P, Marotta D, Sala E, Iannacone M, Kumar P, Mothes W, Uchil PD, Cherepanov P, Bolognesi M, Pizzato M, Grandi G. Immunogenicity and Pre-Clinical Efficacy of an OMV-Based SARS-CoV-2 Vaccine. Vaccines (Basel) 2023; 11:1546. [PMID: 37896949 PMCID: PMC10610814 DOI: 10.3390/vaccines11101546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
The vaccination campaign against SARS-CoV-2 relies on the world-wide availability of effective vaccines, with a potential need of 20 billion vaccine doses to fully vaccinate the world population. To reach this goal, the manufacturing and logistic processes should be affordable to all countries, irrespective of economical and climatic conditions. Outer membrane vesicles (OMVs) are bacterial-derived vesicles that can be engineered to incorporate heterologous antigens. Given the inherent adjuvanticity, such modified OMVs can be used as vaccines to induce potent immune responses against the associated proteins. Here, we show that OMVs engineered to incorporate peptides derived from the receptor binding motif (RBM) of the spike protein from SARS-CoV-2 elicit an effective immune response in vaccinated mice, resulting in the production of neutralizing antibodies (nAbs) with a titre higher than 1:300. The immunity induced by the vaccine is sufficient to protect the animals from intranasal challenge with SARS-CoV-2, preventing both virus replication in the lungs and the pathology associated with virus infection. Furthermore, we show that OMVs can be effectively decorated with the RBM of the Omicron BA.1 variant and that such engineered OMVs induce nAbs against Omicron BA.1 and BA.5, as measured using the pseudovirus neutralization infectivity assay. Importantly, we show that the RBM438-509 ancestral-OMVs elicited antibodies which efficiently neutralize in vitro both the homologous ancestral strain, the Omicron BA.1 and BA.5 variants with a neutralization titre ranging from 1:100 to 1:1500, suggesting its potential use as a vaccine targeting diverse SARS-CoV-2 variants. Altogether, given the convenience associated with the ease of engineering, production and distribution, our results demonstrate that OMV-based SARS-CoV-2 vaccines can be a crucial addition to the vaccines currently available.
Collapse
Affiliation(s)
- Alberto Grandi
- Toscana Life Sciences Foundation, Via Fiorentina 1, 53100 Siena, Italy; (A.G.); (A.G.); (M.B.); (G.D.L.); (E.C.)
- BiOMViS Srl, Via Fiorentina 1, 53100 Siena, Italy
| | - Michele Tomasi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.T.); (C.B.); (T.V.); (S.A.); (I.Z.); (R.C.); (S.T.); (L.C.)
| | - Irfan Ullah
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06520, USA; (I.U.); (W.M.); (P.D.U.)
| | - Cinzia Bertelli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.T.); (C.B.); (T.V.); (S.A.); (I.Z.); (R.C.); (S.T.); (L.C.)
| | - Teresa Vanzo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.T.); (C.B.); (T.V.); (S.A.); (I.Z.); (R.C.); (S.T.); (L.C.)
| | - Silvia Accordini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.T.); (C.B.); (T.V.); (S.A.); (I.Z.); (R.C.); (S.T.); (L.C.)
| | - Assunta Gagliardi
- Toscana Life Sciences Foundation, Via Fiorentina 1, 53100 Siena, Italy; (A.G.); (A.G.); (M.B.); (G.D.L.); (E.C.)
| | - Ilaria Zanella
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.T.); (C.B.); (T.V.); (S.A.); (I.Z.); (R.C.); (S.T.); (L.C.)
| | - Mattia Benedet
- Toscana Life Sciences Foundation, Via Fiorentina 1, 53100 Siena, Italy; (A.G.); (A.G.); (M.B.); (G.D.L.); (E.C.)
| | - Riccardo Corbellari
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.T.); (C.B.); (T.V.); (S.A.); (I.Z.); (R.C.); (S.T.); (L.C.)
| | - Gabriele Di Lascio
- Toscana Life Sciences Foundation, Via Fiorentina 1, 53100 Siena, Italy; (A.G.); (A.G.); (M.B.); (G.D.L.); (E.C.)
| | - Silvia Tamburini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.T.); (C.B.); (T.V.); (S.A.); (I.Z.); (R.C.); (S.T.); (L.C.)
| | - Elena Caproni
- Toscana Life Sciences Foundation, Via Fiorentina 1, 53100 Siena, Italy; (A.G.); (A.G.); (M.B.); (G.D.L.); (E.C.)
| | - Lorenzo Croia
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.T.); (C.B.); (T.V.); (S.A.); (I.Z.); (R.C.); (S.T.); (L.C.)
| | - Micol Ravà
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (M.R.); (V.F.); (P.D.L.); (D.M.); (E.S.); (M.I.)
| | - Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (M.R.); (V.F.); (P.D.L.); (D.M.); (E.S.); (M.I.)
- Vita-Salute San Raffaele University, Via Olgettina 58, 00132 Milan, Italy
| | - Pietro Di Lucia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (M.R.); (V.F.); (P.D.L.); (D.M.); (E.S.); (M.I.)
| | - Davide Marotta
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (M.R.); (V.F.); (P.D.L.); (D.M.); (E.S.); (M.I.)
- Vita-Salute San Raffaele University, Via Olgettina 58, 00132 Milan, Italy
| | - Eleonora Sala
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (M.R.); (V.F.); (P.D.L.); (D.M.); (E.S.); (M.I.)
- Vita-Salute San Raffaele University, Via Olgettina 58, 00132 Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (M.R.); (V.F.); (P.D.L.); (D.M.); (E.S.); (M.I.)
- Vita-Salute San Raffaele University, Via Olgettina 58, 00132 Milan, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Priti Kumar
- Department of Microbial Pathogenesis, School of Medicine, Yale University, New Haven, CT 06510, USA;
| | - Walther Mothes
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06520, USA; (I.U.); (W.M.); (P.D.U.)
- Department of Microbial Pathogenesis, School of Medicine, Yale University, New Haven, CT 06510, USA;
| | - Pradeep D. Uchil
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06520, USA; (I.U.); (W.M.); (P.D.U.)
- Department of Microbial Pathogenesis, School of Medicine, Yale University, New Haven, CT 06510, USA;
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London NW1 1AT, UK;
| | - Martino Bolognesi
- Biosciences Department, University of Milan, Via Celoria 26, 20133 Milan, Italy;
| | - Massimo Pizzato
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.T.); (C.B.); (T.V.); (S.A.); (I.Z.); (R.C.); (S.T.); (L.C.)
| | - Guido Grandi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.T.); (C.B.); (T.V.); (S.A.); (I.Z.); (R.C.); (S.T.); (L.C.)
| |
Collapse
|
159
|
Franco F, Bevilacqua A, Wu RM, Kao KC, Lin CP, Rousseau L, Peng FT, Chuang YM, Peng JJ, Park J, Xu Y, Cassotta A, Yu YR, Speiser DE, Sallusto F, Ho PC. Regulatory circuits of mitophagy restrict distinct modes of cell death during memory CD8 + T cell formation. Sci Immunol 2023; 8:eadf7579. [PMID: 37738363 DOI: 10.1126/sciimmunol.adf7579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/11/2023] [Indexed: 09/24/2023]
Abstract
Mitophagy, a central process guarding mitochondrial quality, is commonly impaired in human diseases such as Parkinson's disease, but its impact in adaptive immunity remains unclear. The differentiation and survival of memory CD8+ T cells rely on oxidative metabolism, a process that requires robust mitochondrial quality control. Here, we found that Parkinson's disease patients have a reduced frequency of CD8+ memory T cells compared with healthy donors and failed to form memory T cells upon vaccination against COVID-19, highlighting the importance of mitochondrial quality control for memory CD8+ T cell formation. We further uncovered that regulators of mitophagy, including Parkin and NIX, were up-regulated in response to interleukin-15 (IL-15) for supporting memory T cell formation. Mechanistically, Parkin suppressed VDAC1-dependent apoptosis in memory T cells. In contrast, NIX expression in T cells counteracted ferroptosis by preventing metabolic dysfunction resulting from impaired mitophagy. Together, our results indicate that the mitophagy machinery orchestrates survival and metabolic dynamics required for memory T cell formation, as well as highlight a deficit in T cell-mediated antiviral responses in Parkinson's disease patients.
Collapse
Affiliation(s)
- Fabien Franco
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Epalinges, Switzerland
| | - Alessio Bevilacqua
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Epalinges, Switzerland
| | - Ruey-Mei Wu
- Neurology Department, National Taiwan University Hospital, Taipei, Taiwan
| | - Kung-Chi Kao
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Epalinges, Switzerland
| | - Chun-Pu Lin
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Epalinges, Switzerland
| | - Lorène Rousseau
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Epalinges, Switzerland
| | - Fu-Ti Peng
- Neurology Department, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Ming Chuang
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Epalinges, Switzerland
| | - Jhan-Jie Peng
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Epalinges, Switzerland
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan City, Taiwan
| | - Jaeoh Park
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Epalinges, Switzerland
| | - Yingxi Xu
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Epalinges, Switzerland
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Yi-Ru Yu
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Epalinges, Switzerland
| | - Daniel E Speiser
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Epalinges, Switzerland
| |
Collapse
|
160
|
Goswami A, Kumar M, Ullah S, Gore MM. De novo design of anti-variant COVID-19 vaccine. Biol Methods Protoc 2023; 8:bpad021. [PMID: 37854896 PMCID: PMC10580973 DOI: 10.1093/biomethods/bpad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
Recent studies highlight the effectiveness of hybrid Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) vaccines combining wild-type nucleocapsid and Spike proteins. We have further enhanced this strategy by incorporating delta and omicron variants' spike protein mutations. Both delta and omicron mark the shifts in viral transmissibility and severity in unvaccinated and vaccinated patients. So their mutations are highly crucial for future viral variants also. Omicron is particularly adept at immune evasion by mutating spike epitopes. The rapid adaptations of Omicron and sub-variants to spike-based vaccines and simultaneous transmissibility underline the urgency for new vaccines in the continuous battle against SARS-CoV-2. Therefore, we have added three persistent T-cell-stimulating nucleocapsid peptides similar to homologous sequences from seasonal Human Coronaviruses (HuCoV) and an envelope peptide that elicits a strong T-cell immune response. These peptides are clustered in the hybrid spike's cytoplasmic region with non-immunogenic linkers, enabling systematic arrangement. AlphaFold (Artificial intelligence-based model building) analysis suggests omitting the transmembrane domain enhances these cytoplasmic epitopes' folding efficiency which can ensure persistent immunity for CD4+ structural epitopes. Further molecular dynamics simulations validate the compact conformation of the modeled structures and a flexible C-terminus region. Overall, the structures show stability and less conformational fluctuation throughout the simulation. Also, the AlphaFold predicted structural epitopes maintained their folds during simulation to ensure the specificity of CD4+ T-cell response after vaccination. Our proposed approach may provide options for incorporating diverse anti-viral T-cell peptides, similar to HuCoV, into linker regions. This versatility can be promising to address outbreaks and challenges posed by various viruses for effective management in this era of innovative vaccines.
Collapse
Affiliation(s)
- Arpita Goswami
- Kshamalab, Leo’s Research Services and Suppliers, Mysuru 570016, India
| | - Madan Kumar
- Department of Chemistry-BMC Biochemistry, University of Uppsala, Uppsala 75237, Sweden
| | - Samee Ullah
- National Center for Bioinformatics (NCB), Islamabad 45320, Pakistan
| | - Milind M Gore
- 5/1B, Krutika Co-Op Housing Society, Kothrud, Pune 411039, India
| |
Collapse
|
161
|
Groß-Albenhausen E, Weier A, Velten M, Heider T, Chunder R, Kuerten S. Immune monitoring of SARS-CoV-2-specific T cell and B cell responses in patients with multiple sclerosis treated with ocrelizumab. Front Immunol 2023; 14:1254128. [PMID: 37841269 PMCID: PMC10569464 DOI: 10.3389/fimmu.2023.1254128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Since the development of the coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), there has been significant interest in determining the effectiveness of SARS-CoV-2 vaccines in patients under immunomodulatory or immunosuppressive therapies. The aim of this study was to evaluate the impact of ocrelizumab, a monoclonal anti-CD20 antibody, on SARS-CoV-2-specific T cell and B cell responses in patients with relapsing-remitting multiple sclerosis (RRMS). Methods To this end, peripheral blood mononuclear cells (PBMCs) were isolated from n = 23 patients with RRMS. Of these patients, n = 17 were tested before (time point t0) and one month after (time point t1) their first dose of ocrelizumab. In addition, we studied n = 9 RRMS patients that got infected with SARS-CoV-2 over the course of ocrelizumab therapy (time point t2). PBMCs were also isolated from n = 19 age- and gender-matched healthy controls (HCs) after vaccination or infection with SARS-CoV-2, respectively. Interferon-γ (IFN-γ)/interleukin-2 (IL-2) and granzyme B (GzB)/perforin (PFN) double-color enzyme-linked immunospot (ELISPOT) assays or single-color ELISPOT assays were performed to measure SARS-CoV-2 antigen-specific T cell and B cell responses. Anti-viral antibody titers were quantified in the serum by chemiluminescence immunoassay. Results Our data indicate a significant difference in the SARS-CoV-2 specific IFN-γ (P = 0.0119) and PFN (P = 0.0005) secreting T cell compartment in the MS cohort at t0 compared to HCs. Following the first dose of ocrelizumab treatment, a significant decrease in the number of SARS-CoV-2 spike protein-specific B cells was observed (P = 0.0012). Infection with SARS-CoV-2 in MS patients under ocrelizumab therapy did not significantly alter their existing immune response against the virus. Kaplan-Meier survival analysis suggested that the spike S1 protein-specific immunoglobulin (Ig)G response might be a key parameter for predicting the probability of (re)infection with SARS-CoV-2. Discussion Our results call for a critical discussion regarding appropriate vaccination intervals and potential biomarkers for the prediction of (re)infection with SARS-CoV-2 in patients with MS receiving ocrelizumab. Unique identifier DRKS00029110; URL: http://apps.who.int/trialsearch/.
Collapse
Affiliation(s)
- Elina Groß-Albenhausen
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Alicia Weier
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Markus Velten
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Bonn, Bonn, Germany
| | - Thorsten Heider
- Clinic for Neurology, Klinikum St. Marien Amberg, Amberg, Germany
| | - Rittika Chunder
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Stefanie Kuerten
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| |
Collapse
|
162
|
Mahalingam SS, Jayaraman S, Arunkumar A, Dudley HM, Anthony DD, Shive CL, Jacobson JM, Pandiyan P. Distinct SARS-CoV-2 specific NLRP3 and IL-1β responses in T cells of aging patients during acute COVID-19 infection. Front Immunol 2023; 14:1231087. [PMID: 37799713 PMCID: PMC10548880 DOI: 10.3389/fimmu.2023.1231087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 2019 (COVID-19) that presents with varied clinical manifestations ranging from asymptomatic or mild infections and pneumonia to severe cases associated with cytokine storm, acute respiratory distress syndrome (ARDS), and even death. The underlying mechanisms contributing to these differences are unclear, although exacerbated inflammatory sequelae resulting from infection have been implicated. While advanced aging is a known risk factor, the precise immune parameters that determine the outcome of SARS-CoV-2 infection in elderly individuals are not understood. Here, we found aging-associated (age ≥61) intrinsic changes in T cell responses when compared to those from individuals aged ≤ 60, even among COVID-positive patients with mild symptoms. Specifically, when stimulated with SARS-CoV-2 peptides in vitro, peripheral blood mononuclear cell (PBMC) CD4+ and CD8+ T cells from individuals aged ≥61 showed a diminished capacity to produce IFN-γ and IL-1β. Although they did not have severe disease, aged individuals also showed a higher frequency of PD-1+ cells and significantly diminished IFN-γ/PD-1 ratios among T lymphocytes upon SARS-CoV-2 peptide stimulation. Impaired T cell IL-1β expression coincided with reduced NLRP3 levels in T lymphocytes. However, the expression of these molecules was not affected in the monocytes of individuals aged ≥61. Together, these data reveal SARS-CoV-2-specific CD4+ and CD8+ T-cell intrinsic cytokine alterations in the individuals older than 61 and may provide new insights into dysregulated COVID-directed immune responses in the elderly.
Collapse
Affiliation(s)
- Shanmuga Sundaram Mahalingam
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Sangeetha Jayaraman
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Adhvika Arunkumar
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Holly M. Dudley
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Donald D. Anthony
- Department of Rheumatology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- Center for AIDS Research, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Medicine, School of Medicine, University Hospitals, Case Western Reserve University, Cleveland, OH, United States
| | - Carey L. Shive
- Department of Rheumatology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Jeffrey M. Jacobson
- Center for AIDS Research, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Medicine, School of Medicine, University Hospitals, Case Western Reserve University, Cleveland, OH, United States
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Rheumatology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
- Center for AIDS Research, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
163
|
Fathollahi M, Motamedi H, Hossainpour H, Abiri R, Shahlaei M, Moradi S, Dashtbin S, Moradi J, Alvandi A. Designing a novel multi-epitopes pan-vaccine against SARS-CoV-2 and seasonal influenza: in silico and immunoinformatics approach. J Biomol Struct Dyn 2023; 42:10761-10784. [PMID: 37723861 DOI: 10.1080/07391102.2023.2258420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023]
Abstract
The merger of COVID-19 and seasonal influenza infections is considered a potentially serious threat to public health. These two viral agents can cause extensive and severe lower and upper respiratory tract infections with lung damage with host factors. Today, the development of vaccination has been shown to reduce the risk of hospitalization and mortality from the COVID-19 virus and influenza epidemics. Therefore, this study contributes to an immunoinformatics approach to producing a vaccine that can elicit strong and specific immune responses against COVID-19 and influenza A and B viruses. The NCBI, GISAID, and Uniprot databases were used to retrieve sequences. Linear B cell, Cytotoxic T lymphocyte, and Helper T lymphocyte epitopes were predicted using the online servers. Population coverage of MHC I epitopes worldwide for SARS-CoV-2, Influenza virus H3N2, H3N2, and Yamagata/Victoria were 99.93%, 68.67%, 68.38%, and 85.45%, respectively. Candidate epitopes were linked by GGGGS, GPGPG, and KK linkers. Different epitopes were permutated several times to form different peptides and then screened for antigenicity, allergenicity, and toxicity. The vaccine construct was analyzed for physicochemical properties, conformational B-cell epitopes, interaction with Toll-like receptors, and IFN-gamma-induced. Immune stimulation response of final construct was evaluated using C-IMMSIM. Eventually, the final construct sequence was codon-optimized for Escherichia coli K12 and Homo sapiens to design a multi-epitope vaccine and mRNA vaccine. In conclusion, due to the variable nature of SARS-CoV-2 and influenza proteins, the design of a multi-epitope vaccine can protect against all their standard variants, but laboratory validation is required.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Matin Fathollahi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamid Motamedi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Hossainpour
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ramin Abiri
- Fertility and Infertility Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shirin Dashtbin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jale Moradi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhooshang Alvandi
- Medical Technology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
164
|
Kałucka M, Roszczyk A, Klimaszewska M, Kaleta B, Drelich E, Błażewicz A, Górska-Jakubowska S, Malinowska E, Król M, Prus AM, Trześniowska K, Wołczyńska A, Dorożyński P, Zagożdżon R, Turło J. Optimization of Se- and Zn-Enriched Mycelium of Lentinula edodes (Berk.) Pegler as a Dietary Supplement with Immunostimulatory Activity. Nutrients 2023; 15:4015. [PMID: 37764798 PMCID: PMC10535943 DOI: 10.3390/nu15184015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Mycelial cultures of Lentinula edodes, an edible and medicinal mushroom, have been used in our previous research to obtain selenium-containing immunomodulatory preparations. Our current attempts to obtain a new preparation containing both selenium and zinc, two micronutrients necessary for the functioning of the immune system, extended our interest in the simultaneous accumulation of these elements by mycelia growing in media enriched with selenite and zinc(II) ions. Subsequently, we have studied the effects of new L. edodes mycelium water extracts with different concentrations of selenium and zinc on the activation of T cell fraction in human peripheral blood mononuclear cells (PBMCs). Flow cytometry analysis was used to measure the expression of activation markers on human CD4+ and CD8+ T cells stimulated by anti-CD3 and anti-CD3/CD28 antibodies (Abs). It was demonstrated that statistically significant changes were observed for PD-1 and CD25 antigens on CD8+ T cells. The selenium and zinc content in the examined preparations modified the immunomodulatory activity of mycelial polysaccharides; however, the mechanisms of action of various active ingredients in the mycelial extracts seem to be different.
Collapse
Affiliation(s)
- Małgorzata Kałucka
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| | - Aleksander Roszczyk
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (A.R.); (B.K.)
| | - Marzenna Klimaszewska
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| | - Beata Kaleta
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (A.R.); (B.K.)
| | - Ewelina Drelich
- Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (E.D.)
| | - Anna Błażewicz
- Department of Pathobiochemistry and Interdisiciplinary Applications of Ion Chromatography, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Sandra Górska-Jakubowska
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| | - Eliza Malinowska
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| | - Marek Król
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| | | | - Katarzyna Trześniowska
- Department of Spectrometric Methods, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (K.T.); (A.W.)
| | - Aleksandra Wołczyńska
- Department of Spectrometric Methods, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (K.T.); (A.W.)
| | - Przemysław Dorożyński
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| | - Radosław Zagożdżon
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (A.R.); (B.K.)
- Department of Immunology, Transplantology and Internal Medicine, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Jadwiga Turło
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (P.D.)
| |
Collapse
|
165
|
Lee CH, Huh J, Buckley PR, Jang M, Pinho MP, Fernandes RA, Antanaviciute A, Simmons A, Koohy H. A robust deep learning workflow to predict CD8 + T-cell epitopes. Genome Med 2023; 15:70. [PMID: 37705109 PMCID: PMC10498576 DOI: 10.1186/s13073-023-01225-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND T-cells play a crucial role in the adaptive immune system by triggering responses against cancer cells and pathogens, while maintaining tolerance against self-antigens, which has sparked interest in the development of various T-cell-focused immunotherapies. However, the identification of antigens recognised by T-cells is low-throughput and laborious. To overcome some of these limitations, computational methods for predicting CD8 + T-cell epitopes have emerged. Despite recent developments, most immunogenicity algorithms struggle to learn features of peptide immunogenicity from small datasets, suffer from HLA bias and are unable to reliably predict pathology-specific CD8 + T-cell epitopes. METHODS We developed TRAP (T-cell recognition potential of HLA-I presented peptides), a robust deep learning workflow for predicting CD8 + T-cell epitopes from MHC-I presented pathogenic and self-peptides. TRAP uses transfer learning, deep learning architecture and MHC binding information to make context-specific predictions of CD8 + T-cell epitopes. TRAP also detects low-confidence predictions for peptides that differ significantly from those in the training datasets to abstain from making incorrect predictions. To estimate the immunogenicity of pathogenic peptides with low-confidence predictions, we further developed a novel metric, RSAT (relative similarity to autoantigens and tumour-associated antigens), as a complementary to 'dissimilarity to self' from cancer studies. RESULTS TRAP was used to identify epitopes from glioblastoma patients as well as SARS-CoV-2 peptides, and it outperformed other algorithms in both cancer and pathogenic settings. TRAP was especially effective at extracting immunogenicity-associated properties from restricted data of emerging pathogens and translating them onto related species, as well as minimising the loss of likely epitopes in imbalanced datasets. We also demonstrated that the novel metric termed RSAT was able to estimate immunogenic of pathogenic peptides of various lengths and species. TRAP implementation is available at: https://github.com/ChloeHJ/TRAP . CONCLUSIONS This study presents a novel computational workflow for accurately predicting CD8 + T-cell epitopes to foster a better understanding of antigen-specific T-cell response and the development of effective clinical therapeutics.
Collapse
Affiliation(s)
- Chloe H Lee
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Jaesung Huh
- Visual Geometry Group, Department of Engineering Science, University of Oxford, Oxford, OX2 6NN, UK
| | - Paul R Buckley
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Myeongjun Jang
- Intelligent Systems Lab, Department of Computer Science, University of Oxford, Oxford, OX1 3QG, UK
| | - Mariana Pereira Pinho
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Ricardo A Fernandes
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, OX3 7BN, UK
| | - Agne Antanaviciute
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Alison Simmons
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Hashem Koohy
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK.
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK.
- Alan Turning Fellow in Health and Medicine, The Alan Turing Institute, London, UK.
| |
Collapse
|
166
|
Le Chevalier F, Authié P, Chardenoux S, Bourgine M, Vesin B, Cussigh D, Sassier Y, Fert I, Noirat A, Nemirov K, Anna F, Bérard M, Guinet F, Hardy D, Charneau P, Lemonnier F, Langa-Vives F, Majlessi L. Mice humanized for MHC and hACE2 with high permissiveness to SARS-CoV-2 omicron replication. Microbes Infect 2023; 25:105142. [PMID: 37080384 PMCID: PMC10113602 DOI: 10.1016/j.micinf.2023.105142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/22/2023]
Abstract
Human Angiotensin-Converting Enzyme 2 (hACE2) is the major receptor enabling host cell invasion by SARS-CoV-2 via interaction with Spike. The murine ACE2 does not interact efficiently with SARS-CoV-2 Spike and therefore the laboratory mouse strains are not permissive to SARS-CoV-2 replication. Here, we generated new hACE2 transgenic mice, which harbor the hACE2 gene under the human keratin 18 promoter, in "HHD-DR1" background. HHD-DR1 mice are fully devoid of murine Major Histocompatibility Complex (MHC) molecules of class-I and -II and express only MHC molecules from Human Leukocyte Antigen (HLA) HLA 02.01, DRA01.01, DRB1.01.01 alleles, widely expressed in human populations. We selected three transgenic strains, with various hACE2 mRNA expression levels and distinctive profiles of lung and/or brain permissiveness to SARS-CoV-2 replication. These new hACE2 transgenic strains display high permissiveness to the replication of SARS-CoV-2 Omicron sub-variants, while the previously available B6.K18-ACE22Prlmn/JAX mice have been reported to be poorly susceptible to infection with Omicron. As a first application, one of these MHC- and ACE2-humanized strains was successfully used to show the efficacy of a lentiviral-based COVID-19 vaccine.
Collapse
Affiliation(s)
- Fabien Le Chevalier
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Virology Department, 75724 Paris, France.
| | - Pierre Authié
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Virology Department, 75724 Paris, France.
| | - Sébastien Chardenoux
- Mouse Genetics Engineering, Institut Pasteur, Université Paris Cité, 75724 Paris, France.
| | - Maryline Bourgine
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Virology Department, 75724 Paris, France.
| | - Benjamin Vesin
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Virology Department, 75724 Paris, France.
| | - Delphine Cussigh
- Mouse Genetics Engineering, Institut Pasteur, Université Paris Cité, 75724 Paris, France.
| | - Yohann Sassier
- Mouse Genetics Engineering, Institut Pasteur, Université Paris Cité, 75724 Paris, France.
| | - Ingrid Fert
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Virology Department, 75724 Paris, France.
| | - Amandine Noirat
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Virology Department, 75724 Paris, France.
| | - Kirill Nemirov
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Virology Department, 75724 Paris, France.
| | - François Anna
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Virology Department, 75724 Paris, France.
| | - Marion Bérard
- Institut Pasteur, Université Paris Cité, DT, Animalerie Centrale, 75724 Paris, France.
| | - Françoise Guinet
- Lymphocytes and Immunity Unit, Institut Pasteur, Université Paris Cité, Immunology Department, 75724 Paris, France.
| | - David Hardy
- Histopathology Platform, Institut Pasteur, Université Paris Cité, 75724 Paris, France.
| | - Pierre Charneau
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Virology Department, 75724 Paris, France.
| | - François Lemonnier
- Unit, Institut Cochin - INSERM U1016 - CNRS UMR8104 - Paris F-75014, France.
| | - Francina Langa-Vives
- Mouse Genetics Engineering, Institut Pasteur, Université Paris Cité, 75724 Paris, France.
| | - Laleh Majlessi
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Virology Department, 75724 Paris, France.
| |
Collapse
|
167
|
Reimann H, Moosmann C, Schober K, Lang V, Verhagen J, Zeun J, Mackensen A, Kremer AN, Völkl S, Aigner M. Identification and characterization of T-cell receptors with therapeutic potential showing conserved specificity against all SARS-CoV 2 strains. Immunobiology 2023; 228:152720. [PMID: 37541134 DOI: 10.1016/j.imbio.2023.152720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023]
Abstract
INTRODUCTION Treatment of severe COVID-19 disease can be challenging in immunocompromized patients due to newly emerging virus variants of concern (VOC) escaping the humoral response. Thus, T cells recognizing to date unmutated epitopes are not only relevant for patients' immune responses against VOC, but might also serve as a therapeutic option for patients with severe COVID-19 disease in the future, e.g. following allogenic stem cell transplantation. METHODS To this purpose, the activation, cytokine profile and specificity of T-cell clones against unmutated and omicron Spike (S)-protein was analyzed, HLA restriction was determined and most promising T-cell receptor (TCR) was introduced into allogeneic T cells via CRISPR/Cas9-mediated orthotopic TCR replacement. Finally, T-cell responses of engineered T cells was determined and durability of the TCR replacement measured. PERSPECTIVE SARS-CoV-2 specific engineered T cells recognizing a genomically stable region of the S-protein of all SARS-CoV 2 variants were successfully generated. Such transgenic T cells exhibit favorable effector functions and provide a treatment option of immunocompromised COVID-19 patients.
Collapse
Affiliation(s)
- Hannah Reimann
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany.
| | - Carolin Moosmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Kilian Schober
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Vanessa Lang
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Johan Verhagen
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Department of Internal Medicine 3, Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Zeun
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Anita N Kremer
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Michael Aigner
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
168
|
Habib S, Hamza E, El-Gamal R, Nosser NA, Aboukamar WA, Abdelsalam S, Sobh A, Elegezy M, Elbayoumy M, Eldars W, Elmasry K, Elnagdy MH. Clinical and Immunological Impacts of Latent Toxoplasmosis on COVID-19 Patients. Cureus 2023; 15:e45989. [PMID: 37900421 PMCID: PMC10601516 DOI: 10.7759/cureus.45989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Background Parasites are well-known immune-modulators. They inhibit some aspects of the immune system to ensure persistence inside the host for a long time; meanwhile, they stimulate other immune aspects to assure the survival of the host. Wide variations in the severity of coronavirus disease 2019 (COVID-19) among developed and developing countries were reported during the COVID-19 pandemic. Parasitic infections, including Toxoplasma gondii (T. gondii), were claimed to contribute to such variations. Methods To explore a possible relationship between latent toxoplasmosis and COVID-19 severity, our study included 44 blood samples from moderate/severe COVID-19 patients, who were admitted to Mansoura University Hospitals, Egypt, during the pandemic. Patients' sera were screened for Toxoplasma IgG antibodies using ELISA (Roche Diagnostics, Indianapolis, USA), and the gene expression of important immune markers (iNOS, arginase-1, IFN-γ, TNF-α, IL-6, IL-10, and TGF-β) was checked using real-time quantitative PCR. Clinical and laboratory data were obtained from the patients' medical records. Results Toxoplasma IgG antibodies were detected in 33 (75%) of patients. None of the studied clinical or laboratory parameters showed any significant changes in relation to toxoplasmosis seroprevalence. Further classification of the patients according to COVID-19 severity and Toxoplasma seroprevalence did not reveal any changes related to toxoplasmosis as well. Conclusion Our study indicates that latent toxoplasmosis has no effect on the severity of COVID-19.
Collapse
Affiliation(s)
- Samar Habib
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Eman Hamza
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, EGY
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Horus University, New Damietta, EGY
| | - Randa El-Gamal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, EGY
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Horus University, New Damietta, EGY
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Nessma A Nosser
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Wafaa A Aboukamar
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Sherehan Abdelsalam
- Department of Community Medicine, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Ali Sobh
- Department of Pediatrics, Mansoura University Children's Hospital, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Mohamed Elegezy
- Department of Tropical Medicine, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Mohamed Elbayoumy
- Department of Gastroenterology and Hepatology, King Saud Medical City, Riyadh, SAU
| | - Waleed Eldars
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura, EGY
- Department of Basic Medical Sciences, Faculty of Medicine, New Mansoura University, New Mansoura, EGY
| | - Khaled Elmasry
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, USA
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Marwa H Elnagdy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, EGY
- Department of Basic Medical Sciences, Faculty of Medicine, New Mansoura University, New Mansoura, EGY
| |
Collapse
|
169
|
Chen Y, Mason GH, Scourfield DO, Greenshields-Watson A, Haigh TA, Sewell AK, Long HM, Gallimore AM, Rizkallah P, MacLachlan BJ, Godkin A. Structural definition of HLA class II-presented SARS-CoV-2 epitopes reveals a mechanism to escape pre-existing CD4 + T cell immunity. Cell Rep 2023; 42:112827. [PMID: 37471227 PMCID: PMC10840515 DOI: 10.1016/j.celrep.2023.112827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/21/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023] Open
Abstract
CD4+ T cells recognize a broad range of peptide epitopes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which contribute to immune memory and limit COVID-19 disease. We demonstrate that the immunogenicity of SARS-CoV-2 peptides, in the context of the model allotype HLA-DR1, does not correlate with their binding affinity to the HLA heterodimer. Analyzing six epitopes, some with very low binding affinity, we solve X-ray crystallographic structures of each bound to HLA-DR1. Further structural definitions reveal the precise molecular impact of viral variant mutations on epitope presentation. Omicron escaped ancestral SARS-CoV-2 immunity to two epitopes through two distinct mechanisms: (1) mutations to TCR-facing epitope positions and (2) a mechanism whereby a single amino acid substitution caused a register shift within the HLA binding groove, completely altering the peptide-HLA structure. This HLA-II-specific paradigm of immune escape highlights how CD4+ T cell memory is finely poised at the level of peptide-HLA-II presentation.
Collapse
Affiliation(s)
- Yuan Chen
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Georgina H Mason
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - D Oliver Scourfield
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Alexander Greenshields-Watson
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Tracey A Haigh
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrew K Sewell
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Heather M Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Awen M Gallimore
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Pierre Rizkallah
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Bruce J MacLachlan
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| | - Andrew Godkin
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Department of Gastroenterology & Hepatology, University Hospital of Wales, Cardiff CF14 4XW, UK.
| |
Collapse
|
170
|
Marty PK, Pathakumari B, Shah M, Keulen VP, Erskine CL, Block MS, Arias-Sanchez P, Escalante P, Peikert T. Convalescent Adaptive Immunity is Highly Heterogenous after SARS-CoV-2 Infection. RESEARCH SQUARE 2023:rs.3.rs-3222112. [PMID: 37674707 PMCID: PMC10479471 DOI: 10.21203/rs.3.rs-3222112/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Optimal detection strategies for effective convalescent immunity after SARS-CoV-2 infection and vaccination remain unclear. The objective of this study was to characterize convalescent immunity targeting the SARS-CoV-2 spike protein using a multiparametric approach. At the beginning of the pandemic, between April 23, 2020, to May 11, 2020, we recruited 30 COVID-19 unvaccinated convalescent donors and 7 unexposed asymptomatic donors. Peripheral blood mononuclear cells (PBMCs) were obtained from leukapheresis cones. The humoral immune response was assessed by measuring serum anti-SARS-CoV-2 spike S1 subunit IgG semiquantitative ELISA and T cell immunity against S1 and S2 subunits were studied by IFN-γ Enzyme-Linked Immune absorbent Spot (ELISpot), flow cytometric (FC) activation-induced marker (AIM) assays and the assessment of cytotoxic CD8+ T-cell function (in the subset of HLA-A2 positive patients). No single immunoassay was sufficient in identifying anti-spike convalescent immunity among all patients. There was no consistent correlation between adaptive humoral and cellular anti-spike responses. Our data indicate that the magnitude of anti-spike convalescent humoral and cellular immunity is highly heterogeneous and highlights the need for using multiple assays to comprehensively measure SARS-CoV-2 convalescent immunity. These observations might have implications for COVID-19 surveillance, and optimal vaccination strategies for emerging variants. Further studies are needed to determine the optimal assessment of adaptive humoral and cellular immunity following SARSCoV-2 infection, especially in the context of emerging variants and unclear vaccination schedules.
Collapse
|
171
|
Díaz-Dinamarca DA, Díaz P, Barra G, Puentes R, Arata L, Grossolli J, Riveros-Rodriguez B, Ardiles L, Santelises J, Vasquez-Saez V, Escobar DF, Soto D, Canales C, Díaz J, Lamperti L, Castillo D, Urra M, Zuñiga F, Ormazabal V, Nova-Lamperti E, Benítez R, Rivera A, Cortes CP, Valenzuela MT, García-Escorza HE, Vasquez AE. Humoral immunity against SARS-CoV-2 evoked by heterologous vaccination groups using the CoronaVac (Sinovac) and BNT162b2 (Pfizer/BioNTech) vaccines in Chile. Front Public Health 2023; 11:1229045. [PMID: 37693706 PMCID: PMC10483147 DOI: 10.3389/fpubh.2023.1229045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/27/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Severe acute respiratory syndrome virus 2 (SARS-CoV-2) has caused over million deaths worldwide, with more than 61,000 deaths in Chile. The Chilean government has implemented a vaccination program against SARS-CoV-2, with over 17.7 million people receiving a complete vaccination scheme. The final target is 18 million individuals. The most common vaccines used in Chile are CoronaVac (Sinovac) and BNT162b2 (Pfizer-Biotech). Given the global need for vaccine boosters to combat the impact of emerging virus variants, studying the immune response to SARS-CoV-2 is crucial. In this study, we characterize the humoral immune response in inoculated volunteers from Chile who received vaccination schemes consisting of two doses of CoronaVac [CoronaVac (2x)], two doses of CoronaVac plus one dose of BNT162b2 [CoronaVac (2x) + BNT162b2 (1x)], and three doses of BNT162b2 [BNT162b2 (3x)]. Methods We recruited 469 participants from Clínica Dávila in Santiago and the Health Center Víctor Manuel Fernández in the city of Concepción, Chile. Additionally, we included participants who had recovered from COVID-19 but were not vaccinated (RCN). We analyzed antibodies, including anti-N, anti-S1-RBD, and neutralizing antibodies against SARS-CoV-2. Results We found that antibodies against the SARS-CoV-2 nucleoprotein were significantly higher in the CoronaVac (2x) and RCN groups compared to the CoronaVac (2x) + BNT162b2 (1x) or BNT162b2 (3x) groups. However, the CoronaVac (2x) + BNT162b2 (1x) and BNT162b2 (3x) groups exhibited a higher concentration of S1-RBD antibodies than the CoronaVac (2x) group and RCN group. There were no significant differences in S1-RBD antibody titers between the CoronaVac (2x) + BNT162b2 (1x) and BNT162b2 (3x) groups. Finally, the group immunized with BNT162b2 (3x) had higher levels of neutralizing antibodies compared to the RCN group, as well as the CoronaVac (2x) and CoronaVac (2x) + BNT162b2 (1x) groups. Discussion These findings suggest that vaccination induces the secretion of antibodies against SARS-CoV-2, and a booster dose of BNT162b2 is necessary to generate a protective immune response. In the current state of the pandemic, these data support the Ministry of Health of the Government of Chile's decision to promote heterologous vaccination as they indicate that a significant portion of the Chilean population has neutralizing antibodies against SARS-CoV-2.
Collapse
Affiliation(s)
- Diego A. Díaz-Dinamarca
- Sección de Biotecnología, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Pablo Díaz
- Sección de Biotecnología, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Gisselle Barra
- Sección de Biotecnología, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Rodrigo Puentes
- Sección gestión de la información, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Loredana Arata
- Sección de Biotecnología, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Jonnathan Grossolli
- Sección de Biotecnología, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Boris Riveros-Rodriguez
- Sección de Biotecnología, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Luis Ardiles
- Sección de Biotecnología, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Julio Santelises
- Sección de Biotecnología, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago, Chile
- Tecnología Medica, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Universidad del Desarrollo, Santiago, Chile
| | - Valeria Vasquez-Saez
- Sección de Biotecnología, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Daniel F. Escobar
- Sección de Biotecnología, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Daniel Soto
- Sección de Biotecnología, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Cecilia Canales
- Sección gestión de la información, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Janepsy Díaz
- Sección gestión de la información, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Liliana Lamperti
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Daniela Castillo
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Mychel Urra
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Felipe Zuñiga
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Valeska Ormazabal
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Estefanía Nova-Lamperti
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Rosana Benítez
- Unidad de investigación Clínica, Clínica Dávila, Santiago, Chile
| | - Alejandra Rivera
- Unidad de investigación Clínica, Clínica Dávila, Santiago, Chile
| | - Claudia P. Cortes
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Clínica Santa María, Santiago, Chile
| | | | | | - Abel E. Vasquez
- Sección de Biotecnología, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago, Chile
- Tecnología Medica, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Universidad del Desarrollo, Santiago, Chile
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| |
Collapse
|
172
|
Altmann DM, Reynolds CJ, Joy G, Otter AD, Gibbons JM, Pade C, Swadling L, Maini MK, Brooks T, Semper A, McKnight Á, Noursadeghi M, Manisty C, Treibel TA, Moon JC, Boyton RJ. Persistent symptoms after COVID-19 are not associated with differential SARS-CoV-2 antibody or T cell immunity. Nat Commun 2023; 14:5139. [PMID: 37612310 PMCID: PMC10447583 DOI: 10.1038/s41467-023-40460-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/27/2023] [Indexed: 08/25/2023] Open
Abstract
Among the unknowns in decoding the pathogenesis of SARS-CoV-2 persistent symptoms in Long Covid is whether there is a contributory role of abnormal immunity during acute infection. It has been proposed that Long Covid is a consequence of either an excessive or inadequate initial immune response. Here, we analyze SARS-CoV-2 humoral and cellular immunity in 86 healthcare workers with laboratory confirmed mild or asymptomatic SARS-CoV-2 infection during the first wave. Symptom questionnaires allow stratification into those with persistent symptoms and those without for comparison. During the period up to 18-weeks post-infection, we observe no difference in antibody responses to spike RBD or nucleoprotein, virus neutralization, or T cell responses. Also, there is no difference in the profile of antibody waning. Analysis at 1-year, after two vaccine doses, comparing those with persistent symptoms to those without, again shows similar SARS-CoV-2 immunity. Thus, quantitative differences in these measured parameters of SARS-CoV-2 adaptive immunity following mild or asymptomatic acute infection are unlikely to have contributed to Long Covid causality. ClinicalTrials.gov (NCT04318314).
Collapse
Affiliation(s)
- Daniel M Altmann
- Department of Immunology and Inflammation, Imperial College London, London, UK.
| | | | - George Joy
- St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | | | - Joseph M Gibbons
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Corinna Pade
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Leo Swadling
- Division of Infection and Immunity, University College London, London, UK
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London, UK
| | - Tim Brooks
- UK Health Security Agency, Porton Down, UK
| | | | - Áine McKnight
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, UK
| | - Charlotte Manisty
- St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Thomas A Treibel
- St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - James C Moon
- St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Rosemary J Boyton
- Department of Infectious Disease, Imperial College London, London, UK.
- Lung Division, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| |
Collapse
|
173
|
Dang TTT, Anzurez A, Nakayama-Hosoya K, Miki S, Yamashita K, de Souza M, Matano T, Kawana-Tachikawa A. Breadth and Durability of SARS-CoV-2-Specific T Cell Responses following Long-Term Recovery from COVID-19. Microbiol Spectr 2023; 11:e0214323. [PMID: 37428088 PMCID: PMC10433967 DOI: 10.1128/spectrum.02143-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
T cell immunity is crucial for long-term immunological memory, but the profile of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific memory T cells in individuals who recovered from COVID-19 (COVID-19-convalescent individuals) is not sufficiently assessed. In this study, the breadth and magnitude of SARS-CoV-2-specific T cell responses were determined in COVID-19-convalescent individuals in Japan. Memory T cells against SARS-CoV-2 were detected in all convalescent individuals, and those with more severe disease exhibited a broader T cell response relative to cases with mild symptoms. Comprehensive screening of T cell responses at the peptide level was conducted for spike (S) and nucleocapsid (N) proteins, and regions frequently targeted by T cells were identified. Multiple regions in S and N proteins were targeted by memory T cells, with median numbers of target regions of 13 and 4, respectively. A maximum of 47 regions were recognized by memory T cells for an individual. These data indicate that SARS-CoV-2-convalescent individuals maintain a substantial breadth of memory T cells for at least several months following infection. Broader SARS-CoV-2-specific CD4+ T cell responses, relative to CD8+ T cell responses, were observed for the S but not the N protein, suggesting that antigen presentation is different between viral proteins. The binding affinity of predicted CD8+ T cell epitopes to HLA class I molecules in these regions was preserved for the Delta variant and at 94 to 96% for SARS-CoV-2 Omicron subvariants, suggesting that the amino acid changes in these variants do not have a major impact on antigen presentation to SARS-CoV-2-specific CD8+ T cells. IMPORTANCE RNA viruses, including SARS-CoV-2, evade host immune responses through mutations. As broader T cell responses against multiple viral proteins could minimize the impact of each single amino acid mutation, the breadth of memory T cells would be one essential parameter for effective protection. In this study, breadth of memory T cells to S and N proteins was assessed in COVID-19-convalescent individuals. While broad T cell responses were induced against both proteins, the ratio of N to S proteins for breadth of T cell responses was significantly higher in milder cases. The breadth of CD4+ and CD8+ T cell responses was also significantly different between S and N proteins, suggesting different contributions of N and S protein-specific T cells for COVID-19 control. Most CD8+ T cell epitopes in the immunodominant regions maintained their HLA binding to SARS-CoV-2 Omicron subvariants. Our study provides insights into understanding the protective efficacy of SARS-CoV-2-specific memory T cells against reinfection.
Collapse
Affiliation(s)
- Thi Thu Thao Dang
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Alitzel Anzurez
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | | | - Shoji Miki
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Mark de Souza
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of AIDS Vaccine Development, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of AIDS Vaccine Development, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
174
|
Namuniina A, Muyanja ES, Biribawa VM, Okech BA, Ssemaganda A, Price MA, Hills N, Nanteza A, Bagaya BS, Weiskopf D, Riou C, Reynolds SJ, Galiwango RM, Redd AD. Proportion of Ugandans with pre-pandemic SARS-CoV-2 cross-reactive CD4+ and CD8+ T-cell responses: A pilot study. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001566. [PMID: 37585383 PMCID: PMC10431628 DOI: 10.1371/journal.pgph.0001566] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/12/2023] [Indexed: 08/18/2023]
Abstract
The estimated mortality rate of the SARS-CoV-2 pandemic varied greatly around the world. In particular, multiple countries in East, Central, and West Africa had significantly lower rates of COVID-19 related fatalities than many resource-rich nations with significantly earlier wide-spread access to life-saving vaccines. One possible reason for this lower mortality could be the presence of pre-existing cross-reactive immunological responses in these areas of the world. To explore this hypothesis, an exploratory study of stored peripheral blood mononuclear cells (PBMC) from Ugandans collected from 2015-2017 prior to the COVID-19 pandemic (n = 29) and from hospitalized Ugandan COVID-19 patients (n = 3) were examined using flow-cytometry for the presence of pre-existing SARS-CoV-2 cross-reactive CD4+ and CD8+ T-cell populations using four T-cell epitope mega pools. Of pre-pandemic participants, 89.7% (26/29) had either CD4+ or CD8+, or both, SARS-CoV-2 specific T-cell responses. Specifically, CD4+ T-cell reactivity (72.4%) and CD8+ T-cell reactivity (65.5%) were relatively similar, and 13 participants (44.8%) had both types of cross-reactive types of T-cells present. There were no significant differences in response by sex in the population, however this may be in part due to the limited sample size examined. The rates of cross-reactive T-cell populations in this exploratory Ugandan population appears higher than previous estimates from resource-rich countries like the United States (20-50% reactivity). It is unclear what role, if any, this cross-reactivity played in decreasing COVID-19 related mortality in Uganda and other African countries, but does suggest that a better understanding of global pre-existing immunological cross-reactivity could be an informative data of epidemiological intelligence moving forward.
Collapse
Affiliation(s)
| | - Enoch S. Muyanja
- PATRU, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | | | | | - Aloysious Ssemaganda
- Rady Faculty of Health Sciences, Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Matt A. Price
- IAVI, New York, New York, United States of America
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Nancy Hills
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Ann Nanteza
- College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | - Bernard Ssentalo Bagaya
- Department of Immunology and Molecular Biology, College of Health Sciences, School of Biomedical Sciences, Makerere University, Kampala, Uganda
- Integrated Biorepository of H3-Africa-Uganda (IBRH3AU), COVID-19 Biobank (COV-BANK), College of Health Sciences, Makerere University, Kampala, Uganda
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, United States of America
| | - Catherine Riou
- Department of Pathology, Division of Medical Virology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Steven J. Reynolds
- Division of Intramural Research, NIAID, NIH, Baltimore Maryland, United States of America
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Rakai Health Sciences Program, Kalisizo, Uganda
| | | | - Andrew D. Redd
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Intramural Research, NIAID, NIH, Baltimore Maryland, United States of America
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
175
|
Yue C, Wang P, Tian J, Gao GF, Liu K, Liu WJ. Seeing the T cell Immunity of SARS-CoV-2 and SARS-CoV: Believing the Epitope-Oriented Vaccines. Int J Biol Sci 2023; 19:4052-4060. [PMID: 37705735 PMCID: PMC10496500 DOI: 10.7150/ijbs.80468] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/07/2023] [Indexed: 09/15/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the end of 2019 stimulated vigorous research efforts in immunology and vaccinology. In addition to innate immune responses, both virus-specific humoral and cellular immune responses are of importance for viral clearance. T cell epitopes play a central role in T cell-based immune responses. Herein, we summarized the peptide/major histocompatibility complex (pMHC) structures of the SARS-CoV-2-derived T cell epitopes available in the Protein Data Bank (PDB) and proposed the challenge and opportunities for using of T cell epitopes in future vaccine development efforts. A total of 27 SARS-CoV-2 related pMHC structures and five complexes with T cell receptors were retrieved. The peptides are mainly distributed on spike (S), nucleocapsid (N), and ORF1ab proteins. Most peptides are conserved among variants of concerns (VOCs) for SARS-CoV-2, except for several mutated peptides located in the S protein. The structures of human leukocyte antigen (HLA) complexed with seven epitopes derived from SARS-CoV were also retrieved, which showed a potential cross T cell immunity with SARS-CoV-2. Structural studies of antigenic peptides from SARS-CoV-2 and SARS-CoV help to visualize the processes and the mechanisms of cross T cell immunity. T cell epitope-oriented vaccines are potential next-generation vaccines for SARS-CoV-2, which are worthy of further investigation.
Collapse
Affiliation(s)
- Can Yue
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Pengyan Wang
- Department of Pathogen Biology & Microbiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinmin Tian
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - George F. Gao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - William J. Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| |
Collapse
|
176
|
Pi P, Zeng Z, Zeng L, Han B, Bai X, Xu S. Molecular mechanisms of COVID-19-induced pulmonary fibrosis and epithelial-mesenchymal transition. Front Pharmacol 2023; 14:1218059. [PMID: 37601070 PMCID: PMC10436482 DOI: 10.3389/fphar.2023.1218059] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
As the outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first broke out in Hubei Province, China, at the end of 2019. It has brought great challenges and harms to global public health. SARS-CoV-2 mainly affects the lungs and is mainly manifested as pulmonary disease. However, one of the biggest crises arises from the emergence of COVID-19-induced fibrosis. At present, there are still many questions about how COVID-19 induced pulmonary fibrosis (PF) occurs and how to treat and regulate its long-term effects. In addition, as an important process of fibrosis, the effect of COVID-19 on epithelial-mesenchymal transition (EMT) may be an important factor driving PF. This review summarizes the main pathogenesis and treatment mechanisms of COVID-19 related to PF. Starting with the basic mechanisms of PF, such as EMT, transforming growth factor-β (TGF-β), fibroblasts and myofibroblasts, inflammation, macrophages, innate lymphoid cells, matrix metalloproteinases and tissue inhibitors of metalloproteinases, hedgehog pathway as well as Notch signaling. Further, we highlight the importance of COVID-19-induced EMT in the process of PF and provide an overview of the related molecular mechanisms, which will facilitate future research to propose new clinical therapeutic solutions for the treatment of COVID-19-induced PF.
Collapse
Affiliation(s)
- Peng Pi
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Zhipeng Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Liqing Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Bing Han
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xizhe Bai
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Shousheng Xu
- School of Sports Engineering, Beijing Sport University, Beijing, China
| |
Collapse
|
177
|
Fallet B, Foglierini M, Porret R, Alcaraz-Serna A, Sauvage C, Jenelten R, Caplanusi T, Gilliet M, Perez L, Fenwick C, Genolet R, Harari A, Bobisse S, Gottardo R, Pantaleo G, Muller YD. Intradermal skin test with mRNA vaccines as a surrogate marker of T cell immunity in immunocompromised patients. J Infect 2023; 87:111-119. [PMID: 37321353 PMCID: PMC10264165 DOI: 10.1016/j.jinf.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
OBJECTIVES Intradermal skin test (IDT) with mRNA vaccines may represent a simple, reliable, and affordable tool to measure T cell response in immunocompromised patients who failed to mount serological responses following vaccination with mRNA covid-19 vaccines. METHODS We compared anti-SARS-CoV-2 antibodies and cellular responses in vaccinated immunocompromised patients (n = 58), healthy seronegative naive controls (NC, n = 8), and healthy seropositive vaccinated controls (VC, n = 32) by Luminex, spike-induced IFN-γ Elispot and an IDT. A skin biopsy 24 h after IDT and single-cell RNAseq was performed in three vaccinated volunteers. RESULTS Twenty-five percent of seronegative NC had a positive Elispot (2/8) and IDT (1/4), compared to 95% (20/21) and 93% (28/30) in seropositive VC, respectively. Single-cell RNAseq data in the skin of VC showed a predominant mixed population of effector helper and cytotoxic T cells. The TCR repertoire revealed 18/1064 clonotypes with known specificities against SARS-CoV-2, among which six were spike-specific. Seronegative immunocompromised patients with positive Elispot and IDT were in 83% (5/6) treated with B cell-depleting reagents, while those with negative IDT were all transplant recipients. CONCLUSIONS Our results indicate that delayed local reaction to IDT reflects vaccine-induced T-cell immunity opening new perspectives to monitor seronegative patients and elderly populations with waning immunity.
Collapse
Affiliation(s)
- Benedict Fallet
- Division of Immunology and Allergy, University Hospital of Lausanne, Switzerland
| | - Mathilde Foglierini
- Division of Immunology and Allergy, University Hospital of Lausanne, Switzerland; Biomedical Data Science Center, University Hospital of Lausanne, Switzerland
| | - Raphael Porret
- Division of Immunology and Allergy, University Hospital of Lausanne, Switzerland
| | - Ana Alcaraz-Serna
- Division of Immunology and Allergy, University Hospital of Lausanne, Switzerland
| | - Christophe Sauvage
- Center for Cell Immunotherapy, Department of Oncology and Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne CH-1066, Switzerland
| | - Raphael Jenelten
- Department of Dermatology and Venereology, University Hospital of Lausanne, Switzerland
| | - Teofila Caplanusi
- Department of Dermatology and Venereology, University Hospital of Lausanne, Switzerland
| | - Michel Gilliet
- Department of Dermatology and Venereology, University Hospital of Lausanne, Switzerland; University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Laurent Perez
- Division of Immunology and Allergy, University Hospital of Lausanne, Switzerland; University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Craig Fenwick
- Division of Immunology and Allergy, University Hospital of Lausanne, Switzerland
| | - Raphael Genolet
- Center for Cell Immunotherapy, Department of Oncology and Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne CH-1066, Switzerland
| | - Alexandre Harari
- Center for Cell Immunotherapy, Department of Oncology and Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne CH-1066, Switzerland; University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Sara Bobisse
- Center for Cell Immunotherapy, Department of Oncology and Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne CH-1066, Switzerland
| | - Raphael Gottardo
- Biomedical Data Science Center, University Hospital of Lausanne, Switzerland; University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland; Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, University Hospital of Lausanne, Switzerland; University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Yannick D Muller
- Division of Immunology and Allergy, University Hospital of Lausanne, Switzerland; University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland.
| |
Collapse
|
178
|
Li Z, Xiang T, Liang B, Liu J, Deng H, Yang X, Wang H, Feng X, Zelinskyy G, Trilling M, Sutter K, Lu M, Dittmer U, Wang B, Yang D, Zheng X, Liu J. SARS-CoV-2-specific T cell responses wane profoundly in convalescent individuals 10 months after primary infection. Virol Sin 2023; 38:606-619. [PMID: 37414153 PMCID: PMC10436107 DOI: 10.1016/j.virs.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 06/28/2023] [Indexed: 07/08/2023] Open
Abstract
A key question in the coronavirus disease 2019 (COVID-19) pandemic is the duration of specific T cell responses against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) post primary infection, which is difficult to address due to the large-scale COVID-19 vaccination and re-exposure to the virus. Here, we conducted an analysis of the long-term SARS-CoV-2-specific T cell responses in a unique cohort of convalescent individuals (CIs) that were among the first to be infected worldwide and without any possible antigen re-exposure since then. The magnitude and breadth of SARS-CoV-2-specific T cell responses correlated inversely with the time that had elapsed from disease onset and the age of those CIs. The mean magnitude of SARS-CoV-2-specific CD4 and CD8 T cell responses decreased about 82% and 76%, respectively, over the time period of ten months after infection. Accordingly, the longitudinal analysis also demonstrated that SARS-CoV-2-specific T cell responses waned significantly in 75% of CIs during the follow-up. Collectively, we provide a comprehensive characterization of the long-term memory T cell response in CIs, suggesting that robust SARS-CoV-2-specific T cell immunity post primary infection may be less durable than previously expected.
Collapse
Affiliation(s)
- Ziwei Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tiandan Xiang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Boyun Liang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Deng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuecheng Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuemei Feng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gennadiy Zelinskyy
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, 45147, Germany; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mirko Trilling
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, 45147, Germany; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kathrin Sutter
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, 45147, Germany; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, 45147, Germany; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ulf Dittmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, 45147, Germany; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Baoju Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
179
|
Prenafeta A, Bech-Sàbat G, Moros A, Barreiro A, Fernández A, Cañete M, Roca M, González-González L, Garriga C, Confais J, Toussenot M, Contamin H, Pizzorno A, Rosa-Calatrava M, Pradenas E, Marfil S, Blanco J, Rica PC, Sisteré-Oró M, Meyerhans A, Lorca C, Segalés J, Prat T, March R, Ferrer L. Preclinical evaluation of PHH-1V vaccine candidate against SARS-CoV-2 in non-human primates. iScience 2023; 26:107224. [PMID: 37502366 PMCID: PMC10299950 DOI: 10.1016/j.isci.2023.107224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/26/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
SARS-CoV-2 emerged in December 2019 and quickly spread worldwide, continuously striking with an unpredictable evolution. Despite the success in vaccine production and mass vaccination programs, the situation is not still completely controlled, and therefore accessible second-generation vaccines are required to mitigate the pandemic. We previously developed an adjuvanted vaccine candidate coded PHH-1V, based on a heterodimer fusion protein comprising the RBD domain of two SARS-CoV-2 variants. Here, we report data on the efficacy, safety, and immunogenicity of PHH-1V in cynomolgus macaques. PHH-1V prime-boost vaccination induces high levels of RBD-specific IgG binding and neutralizing antibodies against several SARS-CoV-2 variants, as well as a balanced Th1/Th2 cellular immune response. Remarkably, PHH-1V vaccination prevents SARS-CoV-2 replication in the lower respiratory tract and significantly reduces viral load in the upper respiratory tract after an experimental infection. These results highlight the potential use of the PHH-1V vaccine in humans, currently undergoing Phase III clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Manuel Cañete
- HIPRA, Avda. La Selva, 135, 17170 Amer (Girona), Spain
| | - Mercè Roca
- HIPRA, Avda. La Selva, 135, 17170 Amer (Girona), Spain
| | | | - Carme Garriga
- HIPRA, Avda. La Selva, 135, 17170 Amer (Girona), Spain
| | | | | | | | - Andrés Pizzorno
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Manuel Rosa-Calatrava
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Edwards Pradenas
- IrsiCaixa. AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Spain
| | - Silvia Marfil
- IrsiCaixa. AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Spain
| | - Julià Blanco
- IrsiCaixa. AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Spain
- University of Vic-Central University of Catalonia (uVic-UCC), 08500 Vic, Catalonia, Spain
| | - Paula Cebollada Rica
- Infection Biology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Marta Sisteré-Oró
- Infection Biology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- ICREA (Catalan Institution for Research and Advanced Studies), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Cristina Lorca
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Teresa Prat
- HIPRA, Avda. La Selva, 135, 17170 Amer (Girona), Spain
| | - Ricard March
- HIPRA, Avda. La Selva, 135, 17170 Amer (Girona), Spain
| | - Laura Ferrer
- HIPRA, Avda. La Selva, 135, 17170 Amer (Girona), Spain
| |
Collapse
|
180
|
Wei YY, Wang RR, Zhang DW, Chen SH, Tan YY, Zhang WT, Han MF, Fei GH. Differential Characteristics of Patients for Hospitalized Severe COVID-19 Infected by the Omicron Variants and Wild Type of SARS-CoV-2 in China. J Inflamm Res 2023; 16:3063-3078. [PMID: 37497065 PMCID: PMC10368135 DOI: 10.2147/jir.s420721] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023] Open
Abstract
Background As multiple mutations of SARS-Cov-2 exist, there are now many viral variants with regional differences in distribution. The clinical characteristics of patients hospitalized with the virus also vary significantly, with those of the Omicron variants being strikingly different from those of the earliest wild-type variant. However, comprehensive data on this subject is lacking. It is therefore crucial to explore these differences to develop better clinical strategies for the management of COVID-19. Methods A total of 554 confirmed COVID-19 cases in China were clinically classified as mild, moderate, severe, and critical according to their diagnoses and treatment plans. We compared the demographics and clinical characteristics of patients infected with the Omicron vs wild-type strains, between severe and non-severe cases. Bacterial co-infections with SARS-CoV-2 and correlation between inflammatory factors and T cells were analyzed. Results Compared to the wild-type cases, the severe Omicron cases were older (median age 48.36 vs 73.24), and had more upper-respiratory symptoms and comorbidities. Decreased leukocyte counts were less pronounced, although more instances of significantly decreased CD4+ and CD8+ T-cell counts, elevated infection-related biomarkers (eg procalcitonin and C-reactive protein), and abnormal coagulation factors (including increased D-dimer and fibrinogen levels) were detected in the severe Omicron cases. The mean length of hospital stay was significantly shorter in the severe Omicron cases. CD4+ and CD8+ T cell numbers were negatively correlated with neutrophil-to-lymphocyte ratios, as well as serum interleukin-6, procalcitonin, and C-reactive protein levels. Conclusion There were significant clinical differences between patients hospitalized with severe cases of Omicron- variant COVID-19 vs wild-type. The Omicron cases tended to be older and had more upper respiratory tract symptoms, comorbidities and bacterial co-infections. Elevated levels of inflammatory cytokines with T-cell depletion correlated with poor disease progression and prognosis. We hope these data provide a theoretical basis for future integrated prevention and control plans for COVID-19.
Collapse
Affiliation(s)
- Yuan-Yuan Wei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People’s Republic of China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, 230022, People’s Republic of China
| | - Rui-Rui Wang
- Department of Respiratory and Critical Care Medicine, the Second People’s Hospital of Fuyang City, Fuyang, Anhui, 236015, People’s Republic of China
| | - Da-Wei Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People’s Republic of China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, 230022, People’s Republic of China
| | - Su-Hong Chen
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, 230022, People’s Republic of China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui, 230022, People’s Republic of China
| | - Yuan-Yuan Tan
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, 230022, People’s Republic of China
- Department of Emergency Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People’s Republic of China
| | - Wen-Ting Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People’s Republic of China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, 230022, People’s Republic of China
| | - Ming-Feng Han
- Department of Respiratory and Critical Care Medicine, the Second People’s Hospital of Fuyang City, Fuyang, Anhui, 236015, People’s Republic of China
| | - Guang-He Fei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People’s Republic of China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, 230022, People’s Republic of China
| |
Collapse
|
181
|
Law JC, Watts TH. Considerations for Choosing T Cell Assays during a Pandemic. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:169-174. [PMID: 37399079 DOI: 10.4049/jimmunol.2300129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/15/2023] [Indexed: 07/05/2023]
Abstract
The appropriate immunosurveillance tools are foundational for the creation of therapeutics, vaccines, and containment strategies when faced with outbreaks of novel pathogens. During the COVID-19 pandemic, there was an urgent need to rapidly assess immune memory following infection or vaccination. Although there have been attempts to standardize cellular assays more broadly, methods for measuring cell-mediated immunity remain variable across studies. Commonly used methods include ELISPOT, intracellular cytokine staining, activation-induced markers, cytokine secretion assays, and peptide-MHC tetramer staining. Although each assay offers unique and complementary information on the T cell response, there are challenges associated with standardizing these assays. The choice of assay can be driven by sample size, the need for high throughput, and the information sought. A combination of approaches may be optimal. This review describes the benefits and limitations of commonly used methods for assessing T cell immunity across SARS-CoV-2 studies.
Collapse
Affiliation(s)
- Jaclyn C Law
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
182
|
Schmidt F, Abdesselem HB, Suhre K, Vaikath NN, Sohail MU, Al-Nesf M, Bensmail I, Mashod F, Sarwath H, Bernhardt J, Schaefer-Ramadan S, Tan TM, Morris PE, Schenck EJ, Price D, Mohamed-Ali V, Al-Maadheed M, Arredouani A, Decock J, Blackburn JM, Choi AMK, El-Agnaf OM. Auto-immunoproteomics analysis of COVID-19 ICU patients revealed increased levels of autoantibodies related to the male reproductive system. Front Physiol 2023; 14:1203723. [PMID: 37520825 PMCID: PMC10374950 DOI: 10.3389/fphys.2023.1203723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Background: Coronavirus disease (COVID-19) manifests many clinical symptoms, including an exacerbated immune response and cytokine storm. Autoantibodies in COVID-19 may have severe prodromal effects that are poorly understood. The interaction between these autoantibodies and self-antigens can result in systemic inflammation and organ dysfunction. However, the role of autoantibodies in COVID-19 complications has yet to be fully understood. Methods: The current investigation screened two independent cohorts of 97 COVID-19 patients [discovery (Disc) cohort from Qatar (case = 49 vs. control = 48) and replication (Rep) cohort from New York (case = 48 vs. control = 28)] utilizing high-throughput KoRectly Expressed (KREX) Immunome protein-array technology. Total IgG autoantibody responses were evaluated against 1,318 correctly folded and full-length human proteins. Samples were randomly applied on the precoated microarray slides for 2 h. Cy3-labeled secondary antibodies were used to detect IgG autoantibody response. Slides were scanned at a fixed gain setting using the Agilent fluorescence microarray scanner, generating a 16-bit TIFF file. Group comparisons were performed using a linear model and Fisher's exact test. Differentially expressed proteins were used for KEGG and WIKIpathway annotation to determine pathways in which the proteins of interest were significantly over-represented. Results and conclusion: Autoantibody responses to 57 proteins were significantly altered in the COVID-19 Disc cohort compared to healthy controls (p ≤ 0.05). The Rep cohort had altered autoantibody responses against 26 proteins compared to non-COVID-19 ICU patients who served as controls. Both cohorts showed substantial similarities (r 2 = 0.73) and exhibited higher autoantibody responses to numerous transcription factors, immunomodulatory proteins, and human disease markers. Analysis of the combined cohorts revealed elevated autoantibody responses against SPANXN4, STK25, ATF4, PRKD2, and CHMP3 proteins in COVID-19 patients. The sequences for SPANXN4 and STK25 were cross-validated using sequence alignment tools. ELISA and Western blot further verified the autoantigen-autoantibody response of SPANXN4. SPANXN4 is essential for spermiogenesis and male fertility, which may predict a potential role for this protein in COVID-19-associated male reproductive tract complications, and warrants further research.
Collapse
Affiliation(s)
- Frank Schmidt
- Proteomics Core, Weill Cornell Medicine—Qatar, Doha, Qatar
| | - Houari B. Abdesselem
- Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
- Neurological Disorders Research Center, QBRI, HBKU, Qatar Foundation, Doha, Qatar
| | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine—Qatar, Doha, Qatar
| | - Nishant N. Vaikath
- Neurological Disorders Research Center, QBRI, HBKU, Qatar Foundation, Doha, Qatar
| | | | - Maryam Al-Nesf
- Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
- Center of Metabolism and Inflammation, Division of Medicine, University College London, London, United Kingdom
| | - Ilham Bensmail
- Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Fathima Mashod
- Proteomics Core, Weill Cornell Medicine—Qatar, Doha, Qatar
| | - Hina Sarwath
- Proteomics Core, Weill Cornell Medicine—Qatar, Doha, Qatar
| | - Joerg Bernhardt
- Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | | | - Ti-Myen Tan
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Sengenics Corporation, Damansara Heights, Kuala Lumpur, Malaysia
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Priscilla E. Morris
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Sengenics Corporation, Damansara Heights, Kuala Lumpur, Malaysia
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Edward J. Schenck
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York Presbyterian Hospital—Weill Cornell Medical Center, Weill Cornell Medicine, New York, NY, United States
| | - David Price
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York Presbyterian Hospital—Weill Cornell Medical Center, Weill Cornell Medicine, New York, NY, United States
| | - Vidya Mohamed-Ali
- Center of Metabolism and Inflammation, Division of Medicine, University College London, London, United Kingdom
- Anti-Doping Laboratory Qatar, Doha, Qatar
| | - Mohammed Al-Maadheed
- Center of Metabolism and Inflammation, Division of Medicine, University College London, London, United Kingdom
- Anti-Doping Laboratory Qatar, Doha, Qatar
| | - Abdelilah Arredouani
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Julie Decock
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Jonathan M. Blackburn
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Sengenics Corporation, Damansara Heights, Kuala Lumpur, Malaysia
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Augustine M. K. Choi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York Presbyterian Hospital—Weill Cornell Medical Center, Weill Cornell Medicine, New York, NY, United States
| | - Omar M. El-Agnaf
- Neurological Disorders Research Center, QBRI, HBKU, Qatar Foundation, Doha, Qatar
| |
Collapse
|
183
|
Miyata Y, Suzuki K, Nagano T, Iida K, Hasegawa T, Uga H, Matsuoka H. Cellular immunity reflects the persistent symptoms among COVID-19 recovered patients in Japan. Sci Rep 2023; 13:11071. [PMID: 37422499 PMCID: PMC10329673 DOI: 10.1038/s41598-023-35505-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/18/2023] [Indexed: 07/10/2023] Open
Abstract
Coronavirus disease (COVID-19) often causes persistent symptoms long after infection, referred to as "long COVID" or post-acute COVID-19 syndrome (PACS). This phenomenon has been studied primarily concerning B-cell immunity, while the involvement of T-cell immunity is still unclear. This retrospective study aimed to examine the relationship among the number of symptoms, cytokine levels, and the Enzyme-linked immunosorbent spot (ELISPOT) assay data in patients with COVID-19. To examine inflammatory conditions, plasma interleukin (IL)-6, IL-10, IL-18, chemokine ligand 9 (CXCL9), chemokine ligand 3 (CCL3), and vascular endothelial growth factor (VEGF) levels were analyzed using plasma obtained from COVID-19 recovery patients and healthy controls (HC). These levels were significantly higher in the COVID-19 group than those in the HC group. ELISPOT assays were performed to investigate the correlation between COVID-19 persistent symptoms and T-cell immunity. Cluster analysis of ELISPOT categorized COVID-19 recovery patients in the ELISPOT-high and -low groups, based on the values of S1, S2, and N. The number of persistent symptoms was significantly higher in the ELISPOT-low group than those in the ELISPOT-high group. Thus, T cell immunity is critical for the rapid elimination of COVID-19 persistent symptoms, and its measurement immediately after COVID-19 recovery might predict long-term COVID-19 or PACS.
Collapse
Affiliation(s)
- Yoshiharu Miyata
- Division of Bioresource Research and Development, Department of Social/Community Medicine and Health Science, Kobe University Graduate School of Medicine, 1-5-1 Minatojimanakamachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Kohjin Suzuki
- System Technologies Laboratory, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-ku, Kobe, 651-2271, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Keiji Iida
- Division of Diabetes and Endocrinology, Hyogo Prefectural Kakogawa Medical Center, 203, Kanno, Kanno-cho, Kakogawa, Hyogo, 675-8555, Japan
| | - Takehiro Hasegawa
- Research and Development Division, Sysmex R&D Centre Europe GmbH, Falkenried 88, 20251, Hamburg, Germany
| | - Hitoshi Uga
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-ku, Kobe, 651-2271, Japan
| | - Hiroshi Matsuoka
- Division of Bioresource Research and Development, Department of Social/Community Medicine and Health Science, Kobe University Graduate School of Medicine, 1-5-1 Minatojimanakamachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
184
|
Chadha R, Ds U, Phogat R, Alam S, Mathur N, Singh M, Kataria S, Sharma P, Singh P, Sarma S, Saxena R, Ganguly NK, Trehan N. Evaluation of T and B cell immunophenotyping and antibody response post Covid-19 vaccination. Indian J Med Microbiol 2023; 44:100372. [PMID: 37356831 PMCID: PMC10187542 DOI: 10.1016/j.ijmmb.2023.100372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/21/2023] [Accepted: 04/05/2023] [Indexed: 06/27/2023]
Abstract
PURPOSE To evaluate T and B cell subsets and IgG antibodies in response to SARS-CoV-2 post COVID-19 vaccination. METHODS A total of 50 healthy adults (18-60 years) receiving anti-SARS-CoV-2 vaccination (COVISHIELD) were recruited for the study. Blood samples were collected from participants at 3 time points; just before vaccination (Visit 0, V0), just before booster dose (Visit 1, V1) and 6th month after 1st dose (Visit 2, V2). Peripheral blood mononuclear cell isolation was done and evaluated for T and B cell subsets by Flow cytometry. Quantitative determination of IgG antibodies to SARS-CoV-2 was done by Chemiluminescence immunoassay in all samples. Final data for all three visits was available for 37 participants who remained healthy. Ethics approval was obtained from Medanta Institution of Ethics Committee vide MICR No. 1290/2021 dated 24th May 2021. RESULTS Mean age of the participants was 34.6 ± 5.7 years (Range: 24-45 years). Highly significant improvement in SARS-CoV-2 IgG levels was observed after each visit {Mean IgG: (V0 v/s. V1: 133.8 ± 339.2AU/ml v/s. 434.5 ± 519.2AU/ml; p-value = 0.003) and V0 v/s. V2: 133.8 ± 339.2AU/ml v/s. 420.9 ± 394.2AU/ml; p-value = 0.002) Between visits 0 and 1, the mean value for CD4 Naïve T cells showed significant increase, while CD4 central memory (CM) T cells showed significant decrease. Between visits 0 and 2 the mean values for CD4 Naïve T cells, CD8 Naïve T cells and Pre germinal centre (Pre GC) B cells showed significant increase. During the same period the mean values for CD4CM, CD8 effector memory (EM) and CD8 CM T cells showed significant decrease. CONCLUSION It is concluded that both, humoral and cellular immunity, play an important role in maintaining immunity against COVID-19 infection, following COVISHIELD vaccination. Moreover, in subjects with normalisation of antibody levels post vaccination, persistence of T cell subsets may still offer some immunity.
Collapse
Affiliation(s)
- Ritu Chadha
- Medanta- The Medicity, Gurugram, Haryana, India.
| | | | | | - Sazid Alam
- Medanta- The Medicity, Gurugram, Haryana, India.
| | - Nitin Mathur
- Medanta- The Medicity, Gurugram, Haryana, India.
| | - Manish Singh
- Medanta Institute of Education and Research, Gurugram, Haryana, India.
| | | | - Pooja Sharma
- Medanta Institute of Education and Research, Gurugram, Haryana, India.
| | - Padam Singh
- Medanta Institute of Education and Research, Gurugram, Haryana, India.
| | - Smita Sarma
- Medanta- The Medicity, Gurugram, Haryana, India.
| | - Renu Saxena
- Medanta- The Medicity, Gurugram, Haryana, India.
| | | | | |
Collapse
|
185
|
Afroz S, Bartolo L, Su LF. Pre-existing T Cell Memory to Novel Pathogens. Immunohorizons 2023; 7:543-553. [PMID: 37436166 PMCID: PMC10587503 DOI: 10.4049/immunohorizons.2200003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Immunological experiences lead to the development of specific T and B cell memory, which readies the host for a later pathogen rechallenge. Currently, immunological memory is best understood as a linear process whereby memory responses are generated by and directed against the same pathogen. However, numerous studies have identified memory cells that target pathogens in unexposed individuals. How "pre-existing memory" forms and impacts the outcome of infection remains unclear. In this review, we discuss differences in the composition of baseline T cell repertoire in mice and humans, factors that influence pre-existing immune states, and recent literature on their functional significance. We summarize current knowledge on the roles of pre-existing T cells in homeostasis and perturbation and their impacts on health and disease.
Collapse
Affiliation(s)
- Sumbul Afroz
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA
| | - Laurent Bartolo
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA
| | - Laura F. Su
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| |
Collapse
|
186
|
Ternette N, Adamopoulou E, Purcell AW. How mass spectrometric interrogation of MHC class I ligandomes has advanced our understanding of immune responses to viruses. Semin Immunol 2023; 68:101780. [PMID: 37276649 DOI: 10.1016/j.smim.2023.101780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Affiliation(s)
- Nicola Ternette
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford OX37BN, UK.
| | - Eleni Adamopoulou
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford OX37BN, UK
| | - Anthony W Purcell
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
187
|
Vasileiou S, Hill L, Kuvalekar M, Workineh AG, Watanabe A, Velazquez Y, Lulla S, Mooney K, Lapteva N, Grilley BJ, Heslop HE, Rooney CM, Brenner MK, Eagar TN, Carrum G, Grimes KA, Leen AM, Lulla P. Allogeneic, off-the-shelf, SARS-CoV-2-specific T cells (ALVR109) for the treatment of COVID-19 in high-risk patients. Haematologica 2023; 108:1840-1850. [PMID: 36373249 PMCID: PMC10316279 DOI: 10.3324/haematol.2022.281946] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/31/2022] [Indexed: 07/22/2023] Open
Abstract
Defects in T-cell immunity to SARS-CoV-2 have been linked to an increased risk of severe COVID-19 (even after vaccination), persistent viral shedding and the emergence of more virulent viral variants. To address this T-cell deficit, we sought to prepare and cryopreserve banks of virus-specific T cells, which would be available as a partially HLA-matched, off-the-shelf product for immediate therapeutic use. By interrogating the peripheral blood of healthy convalescent donors, we identified immunodominant and protective T-cell target antigens, and generated and characterized polyclonal virus-specific T-cell lines with activity against multiple clinically important SARS-CoV-2 variants (including 'delta' and 'omicron'). The feasibility of making and safely utilizing such virus-specific T cells clinically was assessed by administering partially HLA-matched, third-party, cryopreserved SARS-CoV-2-specific T cells (ALVR109) in combination with other antiviral agents to four individuals who were hospitalized with COVID-19. This study establishes the feasibility of preparing and delivering off-the-shelf, SARS-CoV-2-directed, virus-specific T cells to patients with COVID-19 and supports the clinical use of these products outside of the profoundly immune compromised setting (ClinicalTrials.gov number, NCT04401410).
Collapse
Affiliation(s)
- Spyridoula Vasileiou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX.
| | - LaQuisa Hill
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Manik Kuvalekar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Aster G Workineh
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Ayumi Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Yovana Velazquez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Suhasini Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Kimberly Mooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Natalia Lapteva
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Bambi J Grilley
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Todd N Eagar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - George Carrum
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Kevin A Grimes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Premal Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| |
Collapse
|
188
|
Yang H, Sun H, Brackenridge S, Zhuang X, Wing PAC, Quastel M, Walters L, Garner L, Wang B, Yao X, Felce SL, Peng Y, Moore S, Peeters BWA, Rei M, Canto Gomes J, Tomas A, Davidson A, Semple MG, Turtle LCW, Openshaw PJM, Baillie JK, Mentzer AJ, Klenerman P, Borrow P, Dong T, McKeating JA, Gillespie GM, McMichael AJ. HLA-E-restricted SARS-CoV-2-specific T cells from convalescent COVID-19 patients suppress virus replication despite HLA class Ia down-regulation. Sci Immunol 2023; 8:eabl8881. [PMID: 37390223 DOI: 10.1126/sciimmunol.abl8881] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 06/07/2023] [Indexed: 07/02/2023]
Abstract
Pathogen-specific CD8+ T cell responses restricted by the nonpolymorphic nonclassical class Ib molecule human leukocyte antigen E (HLA-E) are rarely reported in viral infections. The natural HLA-E ligand is a signal peptide derived from classical class Ia HLA molecules that interact with the NKG2/CD94 receptors to regulate natural killer cell functions, but pathogen-derived peptides can also be presented by HLA-E. Here, we describe five peptides from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that elicited HLA-E-restricted CD8+ T cell responses in convalescent patients with coronavirus disease 2019. These T cell responses were identified in the blood at frequencies similar to those reported for classical HLA-Ia-restricted anti-SARS-CoV-2 CD8+ T cells. HLA-E peptide-specific CD8+ T cell clones, which expressed diverse T cell receptors, suppressed SARS-CoV-2 replication in Calu-3 human lung epithelial cells. SARS-CoV-2 infection markedly down-regulated classical HLA class I expression in Calu-3 cells and primary reconstituted human airway epithelial cells, whereas HLA-E expression was not affected, enabling T cell recognition. Thus, HLA-E-restricted T cells could contribute to the control of SARS-CoV-2 infection alongside classical T cells.
Collapse
Affiliation(s)
- Hongbing Yang
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
| | - Hong Sun
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
- Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Simon Brackenridge
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Xiaodong Zhuang
- Nuffield Depertment of Clinical Medicine, NDM Research Building, University of Oxford, Old Road Campus, Oxford, UK
| | - Peter A C Wing
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
- Nuffield Depertment of Clinical Medicine, NDM Research Building, University of Oxford, Old Road Campus, Oxford, UK
| | - Max Quastel
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Lucy Walters
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Lee Garner
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Beibei Wang
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Xuan Yao
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Suet Ling Felce
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
| | - Yanchun Peng
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Shona Moore
- Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Bas W A Peeters
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Margarida Rei
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus, Oxford, UK
| | - Joao Canto Gomes
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Portugal
| | - Ana Tomas
- Unidada de Investigacao em Patobiologia Molecular, Instituto Portugues de Oncologia de Lisboa Francisco Gentil, EPE Lisbon, Portugal
- Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Andrew Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Malcolm G Semple
- Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Respiratory Unit, Alder Hey Children's Hospital, Eaton Road, Liverpool L12 2AP, UK
| | - Lance C W Turtle
- Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust (member of Liverpool Health Partners), Liverpool, UK
| | | | | | - Alexander J Mentzer
- Welcome Centre for Human Genetics, University of Oxford, Old Road Campus, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research and Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Persephone Borrow
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Tao Dong
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jane A McKeating
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
- Nuffield Depertment of Clinical Medicine, NDM Research Building, University of Oxford, Old Road Campus, Oxford, UK
| | - Geraldine M Gillespie
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Andrew J McMichael
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| |
Collapse
|
189
|
Zhang L, Wang Z, Lyu F, Liu C, Li C, Liu W, Ma X, Zhou J, Qian X, Qian Z, Lu Y. Characterizing distinct profiles of immune and inflammatory response with age to Omicron infection. Front Immunol 2023; 14:1189482. [PMID: 37457688 PMCID: PMC10348361 DOI: 10.3389/fimmu.2023.1189482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Background Understanding inflammatory and immune responses to Omicron infection based on age is crucial when addressing this global health threat. However, the lacking of comprehensive elucidation hinders the development of distinct treatments tailored to different age populations. Methods 1299 cases of Omicron infection in Shanghai were enrolled between April 10, 2022 and June 3, 2022, dividing into three groups by ages: Adult group (18-59 years), Old group (60-79 years), and Elder group (≥ 80 years). Laboratory data including inflammatory cytokines, cellular, and humoral immunity were collected and analyzed. Results The mean age of Adult, Old, and Elder groups were 44.14, 69.98, and 89.35 years, respectively, with 40.9% being men. The Elder group patients exhibited higher white blood cell (WBC) counts and elevated levels of inflammatory cytokines, but their lymphocyte counts were relatively lower. In comparison to the Old group patients, the Elder group patients demonstrated significantly lower CD3+ T-cell counts, CD3+ T-cell proportion, CD4+ T-cell counts, CD8+ T-cell counts, and CD19+ B-cell counts, while the NK-cell counts were higher. Omicron negative patients displayed a higher proportion of CD19+ B-cells and higher levels of Complement-3 and IL-17 compared to the positive patients in the Old group. Omicron negative patients had lower WBC counts, CD3+CD8+ T-cells proportion, and the levels of serum amyloid A and IgA in the Elder group, but the CD4+/CD8+ ratio was higher. Conclusions Our study identified the distinct profiles of inflammatory and immune responses to Omicron infection varying with age and highlighted the diverse correlations between the levels of various biomarkers and Omicron infected/convalescent patients.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhanwen Wang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Lyu
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Chun Liu
- Respiratory and Critical Care Medicine Department, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chunhui Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinhua Ma
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieyu Zhou
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Xinyu Qian
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Zhaoxin Qian
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Lu
- Department of Radiology, Ruijin Hospital Luwan Branch, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
190
|
Lewnard JA, Hong V, Kim JS, Shaw SF, Lewin B, Takhar H, Lipsitch M, Tartof SY. Increased vaccine sensitivity of an emerging SARS-CoV-2 variant. Nat Commun 2023; 14:3854. [PMID: 37386005 PMCID: PMC10310822 DOI: 10.1038/s41467-023-39567-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Host immune responses are a key source of selective pressure driving pathogen evolution. Emergence of many SARS-CoV-2 lineages has been associated with enhancements in their ability to evade population immunity resulting from both vaccination and infection. Here we show diverging trends of escape from vaccine-derived and infection-derived immunity for the emerging XBB/XBB.1.5 Omicron lineage. Among 31,739 patients tested in ambulatory settings in Southern California from December, 2022 to February, 2023, adjusted odds of prior receipt of 2, 3, 4, and ≥5 COVID-19 vaccine doses were 10% (95% confidence interval: 1-18%), 11% (3-19%), 13% (3-21%), and 25% (15-34%) lower, respectively, among cases infected with XBB/XBB.1.5 than among cases infected with other co-circulating lineages. Similarly, prior vaccination was associated with greater point estimates of protection against progression to hospitalization among cases with XBB/XBB.1.5 than among non-XBB/XBB.1.5 cases (70% [30-87%] and 48% [7-71%], respectively, for recipients of ≥4 doses). In contrast, cases infected with XBB/XBB.1.5 had 17% (11-24%) and 40% (19-65%) higher adjusted odds of having experienced 1 and ≥2 prior documented infections, respectively, including with pre-Omicron variants. As immunity acquired from SARS-CoV-2 infection becomes increasingly widespread, fitness costs associated with enhanced vaccine sensitivity in XBB/XBB.1.5 may be offset by increased ability to evade infection-derived host responses.
Collapse
Affiliation(s)
- Joseph A Lewnard
- Division of Epidemiology, School of Public Health, , University of California, Berkeley, Berkeley, CA, 94720, USA.
- Division of Infectious Diseases & Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Center for Computational Biology, College of Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA.
| | - Vennis Hong
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, 91101, USA
| | - Jeniffer S Kim
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, 91101, USA
| | - Sally F Shaw
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, 91101, USA
| | - Bruno Lewin
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, 91101, USA
- Department of Clinical Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, 91101, USA
| | - Harpreet Takhar
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, 91101, USA
| | - Marc Lipsitch
- COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Sara Y Tartof
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, 91101, USA.
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, 91101, USA.
| |
Collapse
|
191
|
de Moor WRJ, Williamson AL, Schäfer G, Douglass N, Gers S, Sutherland AD, Blumenthal MJ, Margolin E, Shaw ML, Preiser W, Chapman R. LSDV-Vectored SARS-CoV-2 S and N Vaccine Protects against Severe Clinical Disease in Hamsters. Viruses 2023; 15:1409. [PMID: 37515096 PMCID: PMC10383203 DOI: 10.3390/v15071409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 07/30/2023] Open
Abstract
The SARS-CoV-2 pandemic demonstrated the need for potent and broad-spectrum vaccines. This study reports the development and testing of a lumpy skin disease virus (LSDV)-vectored vaccine against SARS-CoV-2, utilizing stabilized spike and conserved nucleocapsid proteins as antigens to develop robust immunogenicity. Construction of the vaccine (LSDV-SARS2-S,N) was confirmed by polymerase chain reaction (PCR) amplification and sequencing. In vitro characterization confirmed that cells infected with LSDV-SARS2-S,N expressed SARS-CoV-2 spike and nucleocapsid protein. In BALB/c mice, the vaccine elicited high magnitude IFN-γ ELISpot responses (spike: 2808 SFU/106 splenocytes) and neutralizing antibodies (ID50 = 6552). Testing in hamsters, which emulate human COVID-19 disease progression, showed the development of high titers of neutralizing antibodies against the Wuhan and Delta SARS-CoV-2 variants (Wuhan ID50 = 2905; Delta ID50 = 4648). Additionally, hamsters vaccinated with LSDV-SARS2-S,N displayed significantly less weight loss, lung damage, and reduced viral RNA copies following SARS-CoV-2 infection with the Delta variant as compared to controls, demonstrating protection against disease. These data demonstrate that LSDV-vectored vaccines display promise as an effective SARS-CoV-2 vaccine and as a potential vaccine platform for communicable diseases in humans and animals. Further efficacy testing and immune response analysis, particularly in non-human primates, are warranted.
Collapse
Affiliation(s)
- Warren R J de Moor
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Georgia Schäfer
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- International Centre for Genetic Engineering and Biotechnology, Observatory, Cape Town 7925, South Africa
- Wellcome Trust Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town 7925, South Africa
| | - Nicola Douglass
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | | | - Andrew D Sutherland
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, Cape Town 7505, South Africa
| | - Melissa J Blumenthal
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- International Centre for Genetic Engineering and Biotechnology, Observatory, Cape Town 7925, South Africa
| | - Emmanuel Margolin
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Wellcome Trust Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town 7925, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7701, South Africa
| | - Megan L Shaw
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, Cape Town 7505, South Africa
- Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Bellville, Cape Town 7535, South Africa
| | - Wolfgang Preiser
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, Cape Town 7505, South Africa
| | - Rosamund Chapman
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
192
|
Sarıkaya ZT, Güçyetmez B, Sesin Kocagöz A, Telci L, Akıncı İÖ. The Relationship Between Decreased CD-8 T-Cells and Mortality in Patients with COVID-19 Pneumonia in the Intensive Care Unit, A Retrospective Study. Turk J Anaesthesiol Reanim 2023; 51:227-234. [PMID: 37455519 DOI: 10.4274/tjar.2022.22959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Objective CD-8 T-cells are responsible for the clearance of virally infected cells. In patients with Coronavirus disease-2019 (COVID-19) pneumonia, there are quantitative reductions and functional impairments in T-cells. Low CD-8 T-cell levels cause worse clinical situations. In this study, the relationship between decreased CD-8 T-cells and mortality in patients with COVID-19 pneumonia in the intensive care unit (ICU) was investigated. Methods In this multicenter retrospective study, 277 patients were analyzed. Demographic data, ICU admission scores, blood gas levels, laboratory samples, and outcomes were recorded. Statistical Package for the Social Sciences version 28 was used for statistical analysis. Results Two hundred forty of 277 patients were included in the study. The mortality rate was 43.3%. In non-survivors, median values of age, Charlson comorbidity index, Acute Physiology and Chronic Health Evaluation II (APACHE-II), procalcitonin, leukocyte count, neutrophil count, neutrophil-lymphocyte count ratio, and duration of invasive mechanical ventilation were significantly higher, whereas median values of PaO2-FiO2 ratio, lymphocyte count, CD-4, and CD-8 T-cells were significantly lower than those in survivors. In the multivariate Cox regression model, the risk of mortality increased 1.04-fold (1.02-1.06) and 1.05-fold (1.01-10.8) by every one unit increase in age and APACHE-II, respectively, whereas it decreased 0.71-fold (0.58-0.87) by every hundred increase in CD-8 T-cells P < 0.001, P=0.007 and P=0.001 respectively. Conclusion According to our findings, age, APACHE-II, and CD-8 T-cell levels seem to be independent risk factors for mortality in patients with COVID-19 pneumonia in the ICU.
Collapse
Affiliation(s)
- Zeynep Tuğçe Sarıkaya
- Department of Anaesthesiology and Reanimation, Acıbadem Mehmet Ali Aydınlar University Faculty of Medicine, İstanbul, Turkey
- General Intensive Care Unit, Acıbadem Altunizade Hospital, İstanbul, Turkey
| | - Bülent Güçyetmez
- Department of Anaesthesiology and Reanimation, Acıbadem Mehmet Ali Aydınlar University Faculty of Medicine, İstanbul, Turkey
- General Intensive Care Unit, Acıbadem International Hospital, İstanbul, Turkey
| | - Ayşe Sesin Kocagöz
- Department of Infectious Diseases and Clinical Microbiology, Acıbadem Mehmet Ali Aydınlar University Faculty of Medicine, İstanbul, Turkey
| | - Lütfi Telci
- General Intensive Care Unit, Acıbadem International Hospital, İstanbul, Turkey
| | | |
Collapse
|
193
|
Nowill AE, Caruso M, de Campos-Lima PO. T-cell immunity to SARS-CoV-2: what if the known best is not the optimal course for the long run? Adapting to evolving targets. Front Immunol 2023; 14:1133225. [PMID: 37388738 PMCID: PMC10303130 DOI: 10.3389/fimmu.2023.1133225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/11/2023] [Indexed: 07/01/2023] Open
Abstract
Humanity did surprisingly well so far, considering how unprepared it was to respond to the coronavirus disease 2019 (COVID-19) threat. By blending old and ingenious new technology in the context of the accumulated knowledge on other human coronaviruses, several vaccine candidates were produced and tested in clinical trials in record time. Today, five vaccines account for the bulk of the more than 13 billion doses administered worldwide. The ability to elicit biding and neutralizing antibodies most often against the spike protein is a major component of the protection conferred by immunization but alone it is not enough to limit virus transmission. Thus, the surge in numbers of infected individuals by newer variants of concern (VOCs) was not accompanied by a proportional increase in severe disease and death rate. This is likely due to antiviral T-cell responses, whose evasion is more difficult to achieve. The present review helps navigating the very large literature on T cell immunity induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination. We examine the successes and shortcomings of the vaccinal protection in the light of the emergence of VOCs with breakthrough potential. SARS-CoV-2 and human beings will likely coexist for a long while: it will be necessary to update existing vaccines to improve T-cell responses and attain better protection against COVID-19.
Collapse
Affiliation(s)
- Alexandre E. Nowill
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas, SP, Brazil
| | - Manuel Caruso
- CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center, Québec, QC, Canada
| | - Pedro O. de Campos-Lima
- Boldrini Children’s Center, Campinas, SP, Brazil
- Molecular and Morphofunctional Biology Graduate Program, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
194
|
Diarimalala RO, Wei Y, Hu D, Hu K. Inflammasomes during SARS-CoV-2 infection and development of their corresponding inhibitors. Front Cell Infect Microbiol 2023; 13:1218039. [PMID: 37360532 PMCID: PMC10288989 DOI: 10.3389/fcimb.2023.1218039] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Corona Virus Disease 2019 (COVID-19) continues to be a burden for human health since its outbreak in Wuhan, China in December 2019. Recently, the emergence of new variants of concerns (VOCs) is challenging for vaccines and drugs efficiency. In severe cases, SARS-CoV-2 provokes inappropriate hyperinflammatory immune responses leading to acute respiratory distress syndrome (ARDS) and even death. This process is regulated by inflammasomes which are activated after binding of the viral spike (S) protein to cellular angiotensin-converting enzyme 2 (ACE2) receptor and triggers innate immune responses. Therefore, the formation of "cytokines storm" leads to tissue damage and organ failure. NOD-like receptor family pyrin domain containing 3 (NLRP3) is the best studied inflammasome known to be activated during SARS-CoV-2 infection. However, some studies suggest that SARS-CoV-2 infection is associated with other inflammasomes as well; such as NLRP1, absent in melanoma-2 (AIM-2), caspase-4 and -8 which were mostly found during dsRNA virus or bacteria infection. Multiple inflammasome inhibitors that exist for other non-infectious diseases have the potential to be used to treat severe SARS-CoV-2 complications. Some of them have showed quite encouraging results during pre- and clinical trials. Nevertheless, further studies are in need for the understanding and targeting of SARS-Cov-2-induced inflammasomes; mostly an update of its role during the new VOCs infection is necessary. Hence, this review highlights all reported inflammasomes involved in SARS-CoV-2 infection and their potential inhibitors including NLRP3- and Gasdermin D (GSDMD)-inhibitors. Further strategies such as immunomodulators and siRNA are also discussed. As highly related to COVID-19 severe cases, developing inflammasome inhibitors holds a promise to treat severe COVID-19 syndrome effectively and reduce mortality.
Collapse
|
195
|
Palmer CD, Scallan CD, Kraemer Tardif LD, Kachura MA, Rappaport AR, Koralek DO, Uriel A, Gitlin L, Klein J, Davis MJ, Venkatraman H, Hart MG, Jaroslavsky JR, Kounlavouth S, Marrali M, Nganje CN, Bae K, Yan T, Leodones K, Egorova M, Hong SJ, Kuan J, Grappi S, Garbes P, Jooss K, Ustianowski A. GRT-R910: a self-amplifying mRNA SARS-CoV-2 vaccine boosts immunity for ≥6 months in previously-vaccinated older adults. Nat Commun 2023; 14:3274. [PMID: 37280238 DOI: 10.1038/s41467-023-39053-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
SARS-CoV-2 has resulted in high levels of morbidity and mortality world-wide, and severe complications can occur in older populations. Humoral immunity induced by authorized vaccines wanes within 6 months, and frequent boosts may only offer transient protection. GRT-R910 is an investigational self-amplifying mRNA (samRNA)-based SARS-CoV-2 vaccine delivering full-length Spike and selected conserved non-Spike T cell epitopes. This study reports interim analyses for a phase I open-label dose-escalation trial evaluating GRT-R910 in previously vaccinated healthy older adults (NCT05148962). Primary endpoints of safety and tolerability were assessed. Most solicited local and systemic adverse events (AEs) following GRT-R910 dosing were mild to moderate and transient, and no treatment-related serious AEs were observed. The secondary endpoint of immunogenicity was assessed via IgG binding assays, neutralization assays, interferon-gamma ELISpot, and intracellular cytokine staining. Neutralizing antibody titers against ancestral Spike and variants of concern were boosted or induced by GRT-R910 and, contrasting to authorized vaccines, persisted through at least 6 months after the booster dose. GRT-R910 increased and/or broadened functional Spike-specific T cell responses and primed functional T cell responses to conserved non-Spike epitopes. This study is limited due to small sample size, and additional data from ongoing studies will be required to corroborate these interim findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alison Uriel
- North Manchester General Hospital & University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andrew Ustianowski
- North Manchester General Hospital & University of Manchester, Manchester, UK
| |
Collapse
|
196
|
Patel RS, Agrawal B. Mucosal immunization with lipopeptides derived from conserved regions of SARS-CoV-2 antigens induce robust cellular and cross-variant humoral immune responses in mice. Front Immunol 2023; 14:1178523. [PMID: 37334376 PMCID: PMC10272440 DOI: 10.3389/fimmu.2023.1178523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/17/2023] [Indexed: 06/20/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has infected >600 million people in the ongoing global pandemic. Several variants of the SARS-CoV-2 have emerged in the last >2 years, challenging the continued efficacy of current COVID vaccines. Therefore, there is a crucial need to investigate a highly cross-protective vaccine effective against variants of SARS-CoV-2. In this study, we examined seven lipopeptides derived from highly conserved, immunodominant epitopes from the S, N, and M proteins of SARS-CoV-2, that are predicted to contain epitopes for clinically protective B cells, helper T cells (TH) and cytotoxic T cells (CTL). Intranasal immunization of mice with most of the lipopeptides led to significantly higher splenocyte proliferation and cytokine production, mucosal and systemic antibody responses, and induction of effector B and T lymphocytes in both lungs and spleen, compared to immunizations with the corresponding peptides without lipid. Immunizations with Spike-derived lipopeptides led to cross-reactive IgG, IgM and IgA responses against Alpha, Beta, Delta, and Omicron Spike proteins as well as neutralizing antibodies. These studies support their potential for development as components of a cross-protective SARS-CoV-2 vaccine.
Collapse
|
197
|
Wen Z, Yuan Y, Zhao Y, Wang H, Han Z, Li M, Yuan J, Sun C. Enhancement of SARS-CoV-2 N Antigen-Specific T Cell Functionality by Modulating the Autophagy-Mediated Signal Pathway in Mice. Viruses 2023; 15:1316. [PMID: 37376617 DOI: 10.3390/v15061316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The frequent SARS-CoV-2 variants have caused a continual challenge, weakening the effectiveness of current vaccines, and thus it is of great importance to induce robust and conserved T cellular immunity for developing the next-generation vaccine against SARS-CoV-2 variants. In this study, we proposed a conception of enhancing the SARS-CoV-2 specific T cell functionality by fusing autophagosome-associated LC3b protein to the nucleocapsid (N) (N-LC3b). When compared to N protein alone, the N-LC3b protein was more effectively targeted to the autophagosome/lysosome/MHC II compartment signal pathway and thus elicited stronger CD4+ and CD8+ T cell immune responses in mice. Importantly, the frequency of N-specific polyfunctional CD4+ and CD8+ T cells, which can simultaneously secrete multiple cytokines (IFN-γ+/IL-2+/TNF-α+), in the N-LC3b group was significantly higher than that in the N alone group. Moreover, there was a significantly improved T cell proliferation, especially for CD8+ T cells in the N-LC3b group. In addition, the N-LC3b also induced a robust humoral immune response, characterized by the Th1-biased IgG2a subclass antibodies against the SARS-CoV-2 N protein. Overall, these findings demonstrated that our strategy could effectively induce a potential SARS-CoV-2 specific T cellular immunity with enhanced magnitude, polyfunctionality, and proliferation, and thus provided insights to develop a promising strategy for the design of a novel universal vaccine against SARS-CoV-2 variants and other emerging infectious diseases.
Collapse
Affiliation(s)
- Ziyu Wen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yue Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yangguo Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Haohang Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Zirong Han
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Minchao Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Jianhui Yuan
- Nanshan District Center for Disease Control and Prevention, Shenzhen 518000, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
198
|
Citores MJ, Caballero-Marcos A, Cuervas-Mons V, Alonso-Fernández R, Graus-Morales J, Arias-Milla A, Valerio M, Muñoz P, Salcedo M. Long term SARS-CoV-2-specific cellular immunity after COVID-19 in liver transplant recipients. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:526-536. [PMID: 36964052 PMCID: PMC10020132 DOI: 10.1016/j.jmii.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/09/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023]
Abstract
PURPOSE Long-term immunity after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in immunosuppressed patients is not well characterized. We aimed to explore the long-term natural immunity against SARS-CoV-2 in liver transplant (LT) recipients compared to the non-transplanted population (control group). METHODS Fifteen LT recipients and 15 controls matched according to variables associated with disease severity were included at 12 months following the coronavirus disease 2019 (COVID-19) onset. Peripheral blood mononuclear cells were stimulated with peptide pools covering spike (S), nucleocapside (N), and membrane (M) proteins. Reactive CD4+ and CD8+ T cells were identified using flow cytometry, and cytokine production was evaluated in the culture supernatants using cytometric bead array. Serum anti-N and anti-S IgG antibodies were detected with chemiluminescence. RESULTS The percentage of patients with a positive response in both CD4+ and CD8+ T cells against each viral protein and IL2, IL10, TNF-α, and IFN-γ levels was similar between LT recipients and controls. IFN-γ levels were positively correlated with the percentage of reactive CD4+ (p = 0.022) and CD8+ (p = 0.043) T cells to a mixture of M + N + S peptide pools. The prevalence and levels of anti-N and anti-S IgG antibodies were slightly lower in the LT recipients, but the difference was not statistically significant. CONCLUSION LT recipients exhibited a similar T cell response compared to non-transplanted individuals one year after COVID-19 diagnosis.
Collapse
Affiliation(s)
- Maria J Citores
- Laboratorio de Medicina Interna, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, Madrid, Spain.
| | - Aranzazu Caballero-Marcos
- Hepatology and Liver Transplantation Unit, Hospital General Universitario Gregorio Marañón, Facultad de Medicina Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.
| | - Valentín Cuervas-Mons
- Unidad de Trasplante Hepático, Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| | - Roberto Alonso-Fernández
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| | - Javier Graus-Morales
- Department of Digestive Diseases, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain.
| | - Ana Arias-Milla
- Unidad de Trasplante Hepático, Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, Madrid, Spain.
| | - Maricela Valerio
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| | - Magdalena Salcedo
- Hepatology and Liver Transplantation Unit, Hospital General Universitario Gregorio Marañón, Facultad de Medicina Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.
| |
Collapse
|
199
|
Weingarten-Gabbay S, Chen DY, Sarkizova S, Taylor HB, Gentili M, Pearlman LR, Bauer MR, Rice CM, Clauser KR, Hacohen N, Carr SA, Abelin JG, Saeed M, Sabeti PC. The HLA-II immunopeptidome of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542482. [PMID: 37398281 PMCID: PMC10312465 DOI: 10.1101/2023.05.26.542482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Targeted synthetic vaccines have the potential to transform our response to viral outbreaks; yet the design of these vaccines requires a comprehensive knowledge of viral immunogens, including T-cell epitopes. Having previously mapped the SARS-CoV-2 HLA-I landscape, here we report viral peptides that are naturally processed and loaded onto HLA-II complexes in infected cells. We identified over 500 unique viral peptides from canonical proteins, as well as from overlapping internal open reading frames (ORFs), revealing, for the first time, the contribution of internal ORFs to the HLA-II peptide repertoire. Most HLA-II peptides co-localized with the known CD4+ T cell epitopes in COVID-19 patients. We also observed that two reported immunodominant regions in the SARS-CoV-2 membrane protein are formed at the level of HLA-II presentation. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and non-structural and non-canonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4+ and CD8+ T cell epitopes to maximize the vaccine effectiveness.
Collapse
|
200
|
Shaw RH, Greenland M, Stuart ASV, Aley PK, Andrews NJ, Cameron JC, Charlton S, Clutterbuck EA, Collins AM, Darton T, Dinesh T, Duncan CJA, Faust SN, Ferreira DM, Finn A, Goodman AL, Green CA, Hallis B, Heath PT, Hill H, Lambe T, Libri V, Lillie PJ, Morey E, Mujadidi YF, Payne R, Plested EL, Provstgaard-Morys S, Ramasamy MN, Ramsay M, Read RC, Robinson H, Screaton GR, Singh N, Turner DPJ, Turner PJ, White R, Nguyen-Van-Tam JS, Liu X, Snape MD. Persistence of immune response in heterologous COVID vaccination schedules in the Com-COV2 study - A single-blind, randomised trial incorporating mRNA, viral-vector and protein-adjuvant vaccines. J Infect 2023; 86:574-583. [PMID: 37028454 PMCID: PMC10076082 DOI: 10.1016/j.jinf.2023.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND Heterologous COVID vaccine priming schedules are immunogenic and effective. This report aims to understand the persistence of immune response to the viral vectored, mRNA and protein-based COVID-19 vaccine platforms used in homologous and heterologous priming combinations, which will inform the choice of vaccine platform in future vaccine development. METHODS Com-COV2 was a single-blinded trial in which adults ≥ 50 years, previously immunised with single dose 'ChAd' (ChAdOx1 nCoV-19, AZD1222, Vaxzevria, Astrazeneca) or 'BNT' (BNT162b2, tozinameran, Comirnaty, Pfizer/BioNTech), were randomised 1:1:1 to receive a second dose 8-12 weeks later with either the homologous vaccine, or 'Mod' (mRNA-1273, Spikevax, Moderna) or 'NVX' (NVX-CoV2373, Nuvaxovid, Novavax). Immunological follow-up and the secondary objective of safety monitoring were performed over nine months. Analyses of antibody and cellular assays were performed on an intention-to-treat population without evidence of COVID-19 infection at baseline or for the trial duration. FINDINGS In April/May 2021, 1072 participants were enrolled at a median of 9.4 weeks after receipt of a single dose of ChAd (N = 540, 45% female) or BNT (N = 532, 39% female) as part of the national vaccination programme. In ChAd-primed participants, ChAd/Mod had the highest anti-spike IgG from day 28 through to 6 months, although the heterologous vs homologous geometric mean ratio (GMR) dropped from 9.7 (95% CI (confidence interval): 8.2, 11.5) at D28 to 6.2 (95% CI: 5.0, 7.7) at D196. The heterologous/homologous GMR for ChAd/NVX similarly dropped from 3.0 (95% CI:2.5,3.5) to 2.4 (95% CI:1.9, 3.0). In BNT-primed participants, decay was similar between heterologous and homologous schedules with BNT/Mod inducing the highest anti-spike IgG for the duration of follow-up. The adjusted GMR (aGMR) for BNT/Mod compared with BNT/BNT increased from 1.36 (95% CI: 1.17, 1.58) at D28 to 1.52 (95% CI: 1.21, 1.90) at D196, whilst for BNT/NVX this aGMR was 0.55 (95% CI: 0.47, 0.64) at day 28 and 0.62 (95% CI: 0.49, 0.78) at day 196. Heterologous ChAd-primed schedules produced and maintained the largest T-cell responses until D196. Immunisation with BNT/NVX generated a qualitatively different antibody response to BNT/BNT, with the total IgG significantly lower than BNT/BNT during all follow-up time points, but similar levels of neutralising antibodies. INTERPRETATION Heterologous ChAd-primed schedules remain more immunogenic over time in comparison to ChAd/ChAd. BNT-primed schedules with a second dose of either mRNA vaccine also remain more immunogenic over time in comparison to BNT/NVX. The emerging data on mixed schedules using the novel vaccine platforms deployed in the COVID-19 pandemic, suggest that heterologous priming schedules might be considered as a viable option sooner in future pandemics. ISRCTN 27841311 EudraCT:2021-001275-16.
Collapse
Affiliation(s)
- Robert H Shaw
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Melanie Greenland
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Arabella S V Stuart
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Parvinder K Aley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Nick J Andrews
- Immunisation and Vaccine Preventable Diseases Division, UK Health Security Agency, London, UK
| | | | - Sue Charlton
- UK Health Security Agency, Porton Down, Salisbury, UK
| | | | | | - Tom Darton
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK; Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, UK
| | - Tanya Dinesh
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Christopher J A Duncan
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, UK; Translational and Clinical Research Institute, Newcastle University, UK
| | - Saul N Faust
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | | | - Adam Finn
- Schools of Population Health Sciences and Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Anna L Goodman
- Department of Infection & NIHR BRC, Guy's and St Thomas' NHS Foundation Trust, UK; MRC Clinical Trials Unit, University College London, UK
| | - Christopher A Green
- NIHR/Wellcome Trust Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; School of Chemical Engineering, University of Birmingham, UK
| | - Bassam Hallis
- UK Health Security Agency, Porton Down, Salisbury, UK
| | - Paul T Heath
- The Vaccine Institute, St. George's University of London, London, UK
| | - Helen Hill
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Vincenzo Libri
- NIHR UCLH Clinical Research Facility and NIHR UCLH Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | - Patrick J Lillie
- Infection Research Group, Hull University Teaching Hospitals NHS Trust, Hull, UK
| | - Ella Morey
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Yama F Mujadidi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Ruth Payne
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK; Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, UK
| | - Emma L Plested
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Maheshi N Ramasamy
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Mary Ramsay
- Immunisation and Vaccine Preventable Diseases Division, UK Health Security Agency, London, UK
| | - Robert C Read
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Hannah Robinson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Gavin R Screaton
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nisha Singh
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - David P J Turner
- University of Nottingham, Nottingham, UK; Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Paul J Turner
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Rachel White
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Xinxue Liu
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Matthew D Snape
- Oxford NIHR - Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|