151
|
Yamamura R, Ooshio T, Sonoshita M. Tiny Drosophila makes giant strides in cancer research. Cancer Sci 2021; 112:505-514. [PMID: 33275812 PMCID: PMC7893992 DOI: 10.1111/cas.14747] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer burden has been increasing worldwide, making cancer the second leading cause of death in the world. Over the past decades, various experimental models have provided important insights into the nature of cancer. Among them, the fruit fly Drosophila as a whole-animal toolkit has made a decisive contribution to our understanding of fundamental mechanisms of cancer development including loss of cell polarity. In recent years, scalable Drosophila platforms have proven useful also in developing anti-cancer regimens that are effective not only in mammalian models but also in patients. Here, we review studies using Drosophila as a tool to advance cancer study by complementing other traditional research systems.
Collapse
Affiliation(s)
- Ryodai Yamamura
- Division of Biomedical OncologyInstitute for Genetic MedicineHokkaido UniversitySapporoJapan
| | - Takako Ooshio
- Division of Biomedical OncologyInstitute for Genetic MedicineHokkaido UniversitySapporoJapan
| | - Masahiro Sonoshita
- Division of Biomedical OncologyInstitute for Genetic MedicineHokkaido UniversitySapporoJapan
- Global Station for Biosurfaces and Drug DiscoveryHokkaido UniversitySapporoJapan
| |
Collapse
|
152
|
Malita A, Rewitz K. Interorgan communication in the control of metamorphosis. CURRENT OPINION IN INSECT SCIENCE 2021; 43:54-62. [PMID: 33214126 DOI: 10.1016/j.cois.2020.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Steroid hormones control major developmental transitions such as metamorphosis in insects and puberty in mammals. The juvenile must attain a sufficient size before it begins maturation in order to give rise to a properly sized and reproductively fit adult. Studies in the insect Drosophila have begun to reveal a remarkable example of the complex interplay between different organs and the neuroendocrine system that controls the production of the steroid ecdysone, which triggers metamorphosis. This review discusses the inter-organ signals mediating this crosstalk, which allows the neuroendocrine system to assess nutrient availability and growth status of internal organs, ensuring that maturation is initiated at the appropriate time. We discuss how the neuroendocrine system integrates signals from different tissues to coordinate growth and maturation. These studies are still unraveling the organ-to-organ signaling networks that control the timing of metamorphosis, defining important principles underlying the logic of growth and maturation coordination in animals.
Collapse
Affiliation(s)
- Alina Malita
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
153
|
Mascolo E, Liguori F, Stufera Mecarelli L, Amoroso N, Merigliano C, Amadio S, Volonté C, Contestabile R, Tramonti A, Vernì F. Functional Inactivation of Drosophila GCK Orthologs Causes Genomic Instability and Oxidative Stress in a Fly Model of MODY-2. Int J Mol Sci 2021; 22:ijms22020918. [PMID: 33477627 PMCID: PMC7831483 DOI: 10.3390/ijms22020918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Maturity-onset diabetes of the young (MODY) type 2 is caused by heterozygous inactivating mutations in the gene encoding glucokinase (GCK), a pivotal enzyme for glucose homeostasis. In the pancreas GCK regulates insulin secretion, while in the liver it promotes glucose utilization and storage. We showed that silencing the DrosophilaGCK orthologs Hex-A and Hex-C results in a MODY-2-like hyperglycemia. Targeted knock-down revealed that Hex-A is expressed in insulin producing cells (IPCs) whereas Hex-C is specifically expressed in the fat body. We showed that Hex-A is essential for insulin secretion and it is required for Hex-C expression. Reduced levels of either Hex-A or Hex-C resulted in chromosome aberrations (CABs), together with an increased production of advanced glycation end-products (AGEs) and reactive oxygen species (ROS). This result suggests that CABs, in GCK depleted cells, are likely due to hyperglycemia, which produces oxidative stress through AGE metabolism. In agreement with this hypothesis, treating GCK-depleted larvae with the antioxidant vitamin B6 rescued CABs, whereas the treatment with a B6 inhibitor enhanced genomic instability. Although MODY-2 rarely produces complications, our data revealed the possibility that MODY-2 impacts genome integrity.
Collapse
Affiliation(s)
- Elisa Mascolo
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (E.M.); (L.S.M.); (N.A.); (C.M.)
| | - Francesco Liguori
- Preclinical Neuroscience, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (F.L.); (S.A.); (C.V.)
| | - Lorenzo Stufera Mecarelli
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (E.M.); (L.S.M.); (N.A.); (C.M.)
| | - Noemi Amoroso
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (E.M.); (L.S.M.); (N.A.); (C.M.)
| | - Chiara Merigliano
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (E.M.); (L.S.M.); (N.A.); (C.M.)
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Susanna Amadio
- Preclinical Neuroscience, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (F.L.); (S.A.); (C.V.)
| | - Cinzia Volonté
- Preclinical Neuroscience, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (F.L.); (S.A.); (C.V.)
- Institute for Systems Analysis and Computer Science “A. Ruberti”, National Research Council (IASI-CNR), 00185 Rome, Italy
| | - Roberto Contestabile
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University, 00185 Rome, Italy; (R.C.); (A.T.)
| | - Angela Tramonti
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University, 00185 Rome, Italy; (R.C.); (A.T.)
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
| | - Fiammetta Vernì
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (E.M.); (L.S.M.); (N.A.); (C.M.)
- Correspondence:
| |
Collapse
|
154
|
Zhang K, Wang T, Liu X, Yuan Q, Xiao T, Yuan X, Zhang Y, Yuan L, Wang Y. CASK, APBA1, and STXBP1 collaborate during insulin secretion. Mol Cell Endocrinol 2021; 520:111076. [PMID: 33159991 DOI: 10.1016/j.mce.2020.111076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 01/09/2023]
Abstract
Calcium/calmodulin-dependent serine protein kinase (CASK) knockdown reduces insulin vesicle docking to cell membranes. Here, we explored CASK interactions with other proteins during insulin secretion. Using co-immunoprecipitation, liquid chromatography-mass spectrometry and bioinformatic analysis, we identified that CASK, Adapter protein X11 alpha (APBA1), and Syntaxin binding protein 1 (STXBP1) formed tripartite complex during insulin secretion. CASK enhanced APBA1-STXBP1 interaction and mediated their traffic from cytoplasm to plasma membrane during insulin release. High fatty acid stimulation decreased insulin secretion along with CASK, APBA1, and STXBP1 expression; Cask overexpression enhanced CASK/APBA1/STXBP1 tripartite complex function, and may thereby rescue lipotoxicity-induced insulin-release defects. Collectively, our results illustrated the function of CASK in insulin granules exocytosis, which broadens the underlying mechanism of insulin secretion and highlights the clinical potential of CASK as a drug target of type 2 Diabetes Mellitus (T2DM).
Collapse
Affiliation(s)
- Kai Zhang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, 210009, China
| | - Tianyuan Wang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, 210009, China
| | - Xingjing Liu
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, 210009, China
| | - Qingzhao Yuan
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, 210009, China
| | - Tin Xiao
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, 210009, China
| | - Xiangjiang Yuan
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210009, China
| | - Yijian Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210009, China
| | - Li Yuan
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210009, China
| | - Yao Wang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
155
|
Millington JW, Brownrigg GP, Chao C, Sun Z, Basner-Collins PJ, Wat LW, Hudry B, Miguel-Aliaga I, Rideout EJ. Female-biased upregulation of insulin pathway activity mediates the sex difference in Drosophila body size plasticity. eLife 2021; 10:e58341. [PMID: 33448263 PMCID: PMC7864645 DOI: 10.7554/elife.58341] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Nutrient-dependent body size plasticity differs between the sexes in most species, including mammals. Previous work in Drosophila showed that body size plasticity was higher in females, yet the mechanisms underlying increased female body size plasticity remain unclear. Here, we discover that a protein-rich diet augments body size in females and not males because of a female-biased increase in activity of the conserved insulin/insulin-like growth factor signaling pathway (IIS). This sex-biased upregulation of IIS activity was triggered by a diet-induced increase in stunted mRNA in females, and required Drosophila insulin-like peptide 2, illuminating new sex-specific roles for these genes. Importantly, we show that sex determination gene transformer promotes the diet-induced increase in stunted mRNA via transcriptional coactivator Spargel to regulate the male-female difference in body size plasticity. Together, these findings provide vital insight into conserved mechanisms underlying the sex difference in nutrient-dependent body size plasticity.
Collapse
Affiliation(s)
- Jason W Millington
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - George P Brownrigg
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Charlotte Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Ziwei Sun
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Paige J Basner-Collins
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Lianna W Wat
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Bruno Hudry
- MRC London Institute of Medical Sciences, and Institute of Clinical Sciences, Faculty of Medicine, Imperial College LondonLondonUnited Kingdom
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, and Institute of Clinical Sciences, Faculty of Medicine, Imperial College LondonLondonUnited Kingdom
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| |
Collapse
|
156
|
Abstract
Brain insulin signaling contributes to memory function and might be a viable target in the prevention and treatment of memory impairments including Alzheimer's disease. This short narrative review explores the potential of central nervous system (CNS) insulin administration via the intranasal pathway to improve memory performance in health and disease, with a focus on the most recent results. Proof-of-concept studies and (pilot) clinical trials in individuals with mild cognitive impairment or Alzheimer's disease indicate that acute and prolonged intranasal insulin administration enhances memory performance, and suggest that brain insulin resistance is a pathophysiological factor in Alzheimer's disease with or without concomitant metabolic dysfunction. Intranasally administered insulin is assumed to trigger improvements in synaptic plasticity and regional glucose uptake as well as alleviations of Alzheimer's disease neuropathology; additional contributions of changes in hypothalamus-pituitary-adrenocortical axis activity and sleep-related mechanisms are discussed. While intranasal insulin delivery has been conclusively demonstrated to be effective and safe, the recent outcomes of large-scale clinical studies underline the need for further investigations, which might also yield new insights into sex differences in the response to intranasal insulin and contribute to the optimization of delivery devices to grasp the full potential of intranasal insulin for Alzheimer's disease.
Collapse
Affiliation(s)
- Manfred Hallschmid
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Otfried-Müller-Str. 25, 72076, Tübingen, Germany.
- German Center for Diabetes Research (DZD), Tübingen, Germany.
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
| |
Collapse
|
157
|
Tatar M. Aging Regulated Through a Stability Model of Insulin/Insulin Growth Factor Receptor Function. Front Endocrinol (Lausanne) 2021; 12:649880. [PMID: 33776941 PMCID: PMC7991905 DOI: 10.3389/fendo.2021.649880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/08/2021] [Indexed: 01/04/2023] Open
Abstract
Mutations of the insulin-like receptor in Drosophila extend lifespan. New research suggests this receptor operates in two modes. The first extends lifespan while slowing reproduction and reducing growth. The second strongly extends lifespan without impairing growth or reproduction; it confers longevity assurance. The mutation that confers longevity assurance resides in the kinase insert domain, which contains a potential SH2 binding site for substrate proteins. We apply a recent model for the function of receptor tyrosine kinases to propose how insulin receptor structure can modulate aging. This concept hypothesizes that strong insulin-like ligands promote phosphorylation of high threshold substrate binding sites to robustly induce reproduction, which impairs survival as a consequence of trade-offs. Lower levels of receptor stimulation provide less kinase dimer stability, which reduces reproduction and extends lifespan by avoiding reproductive costs. Environmental conditions that favor diapause alter the expression of insulin ligands to further repress the stability of the interacting kinase domains, block phosphorylation of low threshold substrates and thus induce a unique molecular program that confers longevity assurance. Mutations of the insulin receptor that block low-phosphorylation site interactions, such as within the kinase insert domain, can extend lifespan while maintaining overall dimer stability. These flies are long-lived while maintaining reproduction and growth. The kinase insert domain of Drosophila provides a novel avenue from which to seek signaling of the insulin/insulin-like growth factor system of humans that modulate aging without impacting reproduction and growth, or incurring insulin resistance pathology.
Collapse
|
158
|
Clements J, Buhler K, Winant M, Vulsteke V, Callaerts P. Glial and Neuronal Neuroglian, Semaphorin-1a and Plexin A Regulate Morphological and Functional Differentiation of Drosophila Insulin-Producing Cells. Front Endocrinol (Lausanne) 2021; 12:600251. [PMID: 34276554 PMCID: PMC8281472 DOI: 10.3389/fendo.2021.600251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 06/11/2021] [Indexed: 11/21/2022] Open
Abstract
The insulin-producing cells (IPCs), a group of 14 neurons in the Drosophila brain, regulate numerous processes, including energy homeostasis, lifespan, stress response, fecundity, and various behaviors, such as foraging and sleep. Despite their importance, little is known about the development and the factors that regulate morphological and functional differentiation of IPCs. In this study, we describe the use of a new transgenic reporter to characterize the role of the Drosophila L1-CAM homolog Neuroglian (Nrg), and the transmembrane Semaphorin-1a (Sema-1a) and its receptor Plexin A (PlexA) in the differentiation of the insulin-producing neurons. Loss of Nrg results in defasciculation and abnormal neurite branching, including ectopic neurites in the IPC neurons. Cell-type specific RNAi knockdown experiments reveal that Nrg, Sema-1a and PlexA are required in IPCs and glia to control normal morphological differentiation of IPCs albeit with a stronger contribution of Nrg and Sema-1a in glia and of PlexA in the IPCs. These observations provide new insights into the development of the IPC neurons and identify a novel role for Sema-1a in glia. In addition, we show that Nrg, Sema-1a and PlexA in glia and IPCs not only regulate morphological but also functional differentiation of the IPCs and that the functional deficits are likely independent of the morphological phenotypes. The requirements of nrg, Sema-1a, and PlexA in IPC development and the expression of their vertebrate counterparts in the hypothalamic-pituitary axis, suggest that these functions may be evolutionarily conserved in the establishment of vertebrate endocrine systems.
Collapse
|
159
|
Bombin A, Cunneely O, Eickman K, Bombin S, Ruesy A, Su M, Myers A, Cowan R, Reed L. Influence of Lab Adapted Natural Diet and Microbiota on Life History and Metabolic Phenotype of Drosophila melanogaster. Microorganisms 2020; 8:E1972. [PMID: 33322411 PMCID: PMC7763083 DOI: 10.3390/microorganisms8121972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 01/14/2023] Open
Abstract
Symbiotic microbiota can help its host to overcome nutritional challenges, which is consistent with a holobiont theory of evolution. Our project investigated the effects produced by the microbiota community, acquired from the environment and horizontal transfer, on metabolic traits related to obesity. The study applied a novel approach of raising Drosophila melanogaster, from ten wild-derived genetic lines on naturally fermented peaches, preserving genuine microbial conditions. Larvae raised on the natural and standard lab diets were significantly different in every tested phenotype. Frozen peach food provided nutritional conditions similar to the natural ones and preserved key microbial taxa necessary for survival and development. On the peach diet, the presence of parental microbiota increased the weight and development rate. Larvae raised on each tested diet formed microbial communities distinct from each other. The effect that individual microbial taxa produced on the host varied significantly with changing environmental and genetic conditions, occasionally to the degree of opposite correlations.
Collapse
Affiliation(s)
- Andrei Bombin
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (O.C.); (K.E.); (S.B.); (A.R.); (M.S.); (A.M.); (R.C.)
| | | | | | | | | | | | | | | | - Laura Reed
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (O.C.); (K.E.); (S.B.); (A.R.); (M.S.); (A.M.); (R.C.)
| |
Collapse
|
160
|
Meep, a Novel Regulator of Insulin Signaling, Supports Development and Insulin Sensitivity via Maintenance of Protein Homeostasis in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2020; 10:4399-4410. [PMID: 32998936 PMCID: PMC7718763 DOI: 10.1534/g3.120.401688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Insulin signaling is critical for developmental growth and adult homeostasis, yet the downstream regulators of this signaling pathway are not completely understood. Using the model organism Drosophila melanogaster, we took a genomic approach to identify novel mediators of insulin signaling. These studies led to the identification of Meep, encoded by the gene CG32335. Expression of this gene is both insulin receptor- and diet-dependent. We found that Meep was specifically required in the developing fat body to tolerate a high-sugar diet (HSD). Meep is not essential on a control diet, but when reared on an HSD, knockdown of meep causes hyperglycemia, reduced growth, developmental delay, pupal lethality, and reduced longevity. These phenotypes stem in part from Meep’s role in promoting insulin sensitivity and protein stability. This work suggests a critical role for protein homeostasis in development during overnutrition. Because Meep is conserved and obesity-associated in mammals, future studies on Meep may help to understand the role of proteostasis in insulin-resistant type 2 diabetes.
Collapse
|
161
|
Streptozotocin induces brain glucose metabolic changes and alters glucose transporter expression in the Lobster cockroach; Nauphoeta cinerea (Blattodea: Blaberidae). Mol Cell Biochem 2020; 476:1109-1121. [PMID: 33219441 DOI: 10.1007/s11010-020-03976-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/06/2020] [Indexed: 12/27/2022]
Abstract
The development of new models to study diabetes in invertebrates is important to ensure adherence to the 3R's principle and to expedite knowledge of the complex molecular events underlying glucose toxicity. Streptozotocin (STZ)-an alkylating and highly toxic agent that has tropism to mammalian beta cells-is used as a model of type 1 diabetes in rodents, but little is known about STZ effects in insects. Here, the cockroach; Nauphoeta cinerea was used to determine the acute toxicity of 74 and 740 nmol of STZ injection per cockroach. STZ increased the glucose content, mRNA expression of glucose transporter 1 (GLUT1) and markers of oxidative stress in the head. Fat body glycogen, insect survival, acetylcholinesterase activity, triglyceride content and viable cells in head homogenate were reduced, which may indicate a disruption in glucose utilization by the head and fat body of insects after injection of 74 and 740 nmol STZ per nymph. The glutathione S-transferase (GST) activity and reduced glutathione levels (GSH) were increased, possibly via activation of nuclear factor erythroid 2 related factor as a compensatory response against the increase in reactive oxygen species. Our data present the potential for metabolic disruption in N. cinerea by glucose analogues and opens paths for the study of brain energy metabolism in insects. We further phylogenetically demonstrated conservation between N. cinerea glucose transporter 1 and the GLUT of other insects in the Neoptera infra-class.
Collapse
|
162
|
Insulin and Leptin/Upd2 Exert Opposing Influences on Synapse Number in Fat-Sensing Neurons. Cell Metab 2020; 32:786-800.e7. [PMID: 32976758 PMCID: PMC7642105 DOI: 10.1016/j.cmet.2020.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/29/2020] [Accepted: 08/28/2020] [Indexed: 01/20/2023]
Abstract
Energy-sensing neural circuits decide to expend or conserve resources based, in part, on the tonic, steady-state, energy-store information they receive. Tonic signals, in the form of adipose tissue-derived adipokines, set the baseline level of activity in the energy-sensing neurons, thereby providing context for interpretation of additional inputs. However, the mechanism by which tonic adipokine information establishes steady-state neuronal function has heretofore been unclear. We show here that under conditions of nutrient surplus, Upd2, a Drosophila leptin ortholog, regulates actin-based synapse reorganization to reduce bouton number in an inhibitory circuit, thus establishing a neural tone that is permissive for insulin release. Unexpectedly, we found that insulin feeds back on these same inhibitory neurons to conversely increase bouton number, resulting in maintenance of negative tone. Our results point to a mechanism by which two surplus-sensing hormonal systems, Upd2/leptin and insulin, converge on a neuronal circuit with opposing outcomes to establish energy-store-dependent neuron activity.
Collapse
|
163
|
Nässel DR, Zandawala M. Hormonal axes in Drosophila: regulation of hormone release and multiplicity of actions. Cell Tissue Res 2020; 382:233-266. [PMID: 32827072 PMCID: PMC7584566 DOI: 10.1007/s00441-020-03264-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Hormones regulate development, as well as many vital processes in the daily life of an animal. Many of these hormones are peptides that act at a higher hierarchical level in the animal with roles as organizers that globally orchestrate metabolism, physiology and behavior. Peptide hormones can act on multiple peripheral targets and simultaneously convey basal states, such as metabolic status and sleep-awake or arousal across many central neuronal circuits. Thereby, they coordinate responses to changing internal and external environments. The activity of neurosecretory cells is controlled either by (1) cell autonomous sensors, or (2) by other neurons that relay signals from sensors in peripheral tissues and (3) by feedback from target cells. Thus, a hormonal signaling axis commonly comprises several components. In mammals and other vertebrates, several hormonal axes are known, such as the hypothalamic-pituitary-gonad axis or the hypothalamic-pituitary-thyroid axis that regulate reproduction and metabolism, respectively. It has been proposed that the basic organization of such hormonal axes is evolutionarily old and that cellular homologs of the hypothalamic-pituitary system can be found for instance in insects. To obtain an appreciation of the similarities between insect and vertebrate neurosecretory axes, we review the organization of neurosecretory cell systems in Drosophila. Our review outlines the major peptidergic hormonal pathways known in Drosophila and presents a set of schemes of hormonal axes and orchestrating peptidergic systems. The detailed organization of the larval and adult Drosophila neurosecretory systems displays only very basic similarities to those in other arthropods and vertebrates.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Meet Zandawala
- Department of Neuroscience, Brown University, Providence, RI USA
| |
Collapse
|
164
|
Manière G, Alves G, Berthelot-Grosjean M, Grosjean Y. Growth regulation by amino acid transporters in Drosophila larvae. Cell Mol Life Sci 2020; 77:4289-4297. [PMID: 32358623 PMCID: PMC7588360 DOI: 10.1007/s00018-020-03535-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/27/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022]
Abstract
Drosophila larvae need to adapt their metabolism to reach a critical body size to pupate. This process needs food resources and has to be tightly adjusted to control metamorphosis timing and adult size. Nutrients such as amino acids either directly present in the food or obtained via protein digestion play key regulatory roles in controlling metabolism and growth. Amino acids act especially on two organs, the fat body and the brain, to control larval growth, body size developmental timing and pupariation. The expression of specific amino acid transporters in fat body cells, and in the brain through specific neurons and glial cells is essential to activate downstream molecular signaling pathways in response to amino acid levels. In this review, we highlight some of these specific networks dependent on amino acid diet to control DILP levels, and by consequence larval metabolism and growth.
Collapse
Affiliation(s)
- Gérard Manière
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 21000, Dijon, France.
| | - Georges Alves
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Martine Berthelot-Grosjean
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Yael Grosjean
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 21000, Dijon, France.
| |
Collapse
|
165
|
Hadjieconomou D, King G, Gaspar P, Mineo A, Blackie L, Ameku T, Studd C, de Mendoza A, Diao F, White BH, Brown AEX, Plaçais PY, Préat T, Miguel-Aliaga I. Enteric neurons increase maternal food intake during reproduction. Nature 2020; 587:455-459. [PMID: 33116314 PMCID: PMC7610780 DOI: 10.1038/s41586-020-2866-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/04/2020] [Indexed: 01/01/2023]
Abstract
Reproduction induces increased food intake across females of many animal species1-4, providing a physiologically relevant paradigm for the exploration of appetite regulation. Here, by examining the diversity of enteric neurons in Drosophila melanogaster, we identify a key role for gut-innervating neurons with sex- and reproductive state-specific activity in sustaining the increased food intake of mothers during reproduction. Steroid and enteroendocrine hormones functionally remodel these neurons, which leads to the release of their neuropeptide onto the muscles of the crop-a stomach-like organ-after mating. Neuropeptide release changes the dynamics of crop enlargement, resulting in increased food intake, and preventing the post-mating remodelling of enteric neurons reduces both reproductive hyperphagia and reproductive fitness. The plasticity of enteric neurons is therefore key to reproductive success. Our findings provide a mechanism to attain the positive energy balance that sustains gestation, dysregulation of which could contribute to infertility or weight gain.
Collapse
Affiliation(s)
- Dafni Hadjieconomou
- MRC London Institute of Medical Sciences, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - George King
- MRC London Institute of Medical Sciences, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Pedro Gaspar
- MRC London Institute of Medical Sciences, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Alessandro Mineo
- MRC London Institute of Medical Sciences, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Laura Blackie
- MRC London Institute of Medical Sciences, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Tomotsune Ameku
- MRC London Institute of Medical Sciences, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Chris Studd
- MRC London Institute of Medical Sciences, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Alex de Mendoza
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Fengqiu Diao
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin H White
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - André E X Brown
- MRC London Institute of Medical Sciences, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Pierre-Yves Plaçais
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Thomas Préat
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, London, UK.
- Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
166
|
Texada MJ, Koyama T, Rewitz K. Regulation of Body Size and Growth Control. Genetics 2020; 216:269-313. [PMID: 33023929 PMCID: PMC7536854 DOI: 10.1534/genetics.120.303095] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
The control of body and organ growth is essential for the development of adults with proper size and proportions, which is important for survival and reproduction. In animals, adult body size is determined by the rate and duration of juvenile growth, which are influenced by the environment. In nutrient-scarce environments in which more time is needed for growth, the juvenile growth period can be extended by delaying maturation, whereas juvenile development is rapidly completed in nutrient-rich conditions. This flexibility requires the integration of environmental cues with developmental signals that govern internal checkpoints to ensure that maturation does not begin until sufficient tissue growth has occurred to reach a proper adult size. The Target of Rapamycin (TOR) pathway is the primary cell-autonomous nutrient sensor, while circulating hormones such as steroids and insulin-like growth factors are the main systemic regulators of growth and maturation in animals. We discuss recent findings in Drosophila melanogaster showing that cell-autonomous environment and growth-sensing mechanisms, involving TOR and other growth-regulatory pathways, that converge on insulin and steroid relay centers are responsible for adjusting systemic growth, and development, in response to external and internal conditions. In addition to this, proper organ growth is also monitored and coordinated with whole-body growth and the timing of maturation through modulation of steroid signaling. This coordination involves interorgan communication mediated by Drosophila insulin-like peptide 8 in response to tissue growth status. Together, these multiple nutritional and developmental cues feed into neuroendocrine hubs controlling insulin and steroid signaling, serving as checkpoints at which developmental progression toward maturation can be delayed. This review focuses on these mechanisms by which external and internal conditions can modulate developmental growth and ensure proper adult body size, and highlights the conserved architecture of this system, which has made Drosophila a prime model for understanding the coordination of growth and maturation in animals.
Collapse
Affiliation(s)
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Denmark
| |
Collapse
|
167
|
Lee JH, Lee KA, Lee WJ. Drosophila as a model system for deciphering the 'host physiology-nutrition-microbiome' axis. CURRENT OPINION IN INSECT SCIENCE 2020; 41:112-119. [PMID: 32979529 DOI: 10.1016/j.cois.2020.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
For metazoans, nutritional stressors, such as undernutrition during growth and development, results in serious outcomes, including growth impairments and organ wasting. When undernutrition is accompanied by other complications, including chronic inflammation, a more complex pathophysiology may emerge, such as environmental enteropathy. Although nutrition is one of the most important environmental factors that influences host physiology, the mechanism by which undernutrition induces host pathophysiology is not fully understood. Recently, gut microbiome was found to alleviate undernutrition-induced pathophysiology in an insect model, revealing the importance of nutrition-microbiome interactions. Here, we discussed how nutrition-microbiome interactions influence host physiology, including growth, tissue homeostasis, immunity, and behavior, by regulating the central metabolic signaling pathways with an emphasis on findings made through Drosophila, an insect model.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- School of Biological Science, Seoul National University and National Creative Research Initiative Center for Hologenomics, Seoul 151-742, South Korea.
| | - Kyung-Ah Lee
- School of Biological Science, Seoul National University and National Creative Research Initiative Center for Hologenomics, Seoul 151-742, South Korea
| | - Won-Jae Lee
- School of Biological Science, Seoul National University and National Creative Research Initiative Center for Hologenomics, Seoul 151-742, South Korea.
| |
Collapse
|
168
|
Fat Body p53 Regulates Systemic Insulin Signaling and Autophagy under Nutrient Stress via Drosophila Upd2 Repression. Cell Rep 2020; 33:108321. [DOI: 10.1016/j.celrep.2020.108321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/05/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
|
169
|
A diet-induced type 2 diabetes model in Drosophila. SCIENCE CHINA-LIFE SCIENCES 2020; 64:326-329. [PMID: 32778999 DOI: 10.1007/s11427-020-1774-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
|
170
|
Sphingolipids in Type 1 Diabetes: Focus on Beta-Cells. Cells 2020; 9:cells9081835. [PMID: 32759843 PMCID: PMC7465050 DOI: 10.3390/cells9081835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022] Open
Abstract
Type 1 diabetes (T1DM) is a chronic autoimmune disease, with a strong genetic background, leading to a gradual loss of pancreatic beta-cells, which secrete insulin and control glucose homeostasis. Patients with T1DM require life-long substitution with insulin and are at high risk for development of severe secondary complications. The incidence of T1DM has been continuously growing in the last decades, indicating an important contribution of environmental factors. Accumulating data indicates that sphingolipids may be crucially involved in T1DM development. The serum lipidome of T1DM patients is characterized by significantly altered sphingolipid composition compared to nondiabetic, healthy probands. Recently, several polymorphisms in the genes encoding the enzymatic machinery for sphingolipid production have been identified in T1DM individuals. Evidence gained from studies in rodent islets and beta-cells exposed to cytokines indicates dysregulation of the sphingolipid biosynthetic pathway and impaired function of several sphingolipids. Moreover, a number of glycosphingolipids have been suggested to act as beta-cell autoantigens. Studies in animal models of autoimmune diabetes, such as the Non Obese Diabetic (NOD) mouse and the LEW.1AR1-iddm (IDDM) rat, indicate a crucial role of sphingolipids in immune cell trafficking, islet infiltration and diabetes development. In this review, the up-to-date status on the findings about sphingolipids in T1DM will be provided, the under-investigated research areas will be identified and perspectives for future studies will be given.
Collapse
|
171
|
Lien W, Chen Y, Li Y, Wu J, Huang K, Lin J, Lin S, Hou C, Wang H, Wu C, Huang S, Chan C. Lifespan regulation in α/β posterior neurons of the fly mushroom bodies by Rab27. Aging Cell 2020; 19:e13179. [PMID: 32627932 PMCID: PMC7431830 DOI: 10.1111/acel.13179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
Brain function has been implicated to control the aging process and modulate lifespan. However, continuous efforts remain for the identification of the minimal sufficient brain region and the underlying mechanism for neuronal regulation of longevity. Here, we show that the Drosophila lifespan is modulated by rab27 functioning in a small subset of neurons of the mushroom bodies (MB), a brain structure that shares analogous functions with mammalian hippocampus and hypothalamus. Depleting rab27 in the α/βp neurons of the MB is sufficient to extend lifespan, enhance systemic stress responses, and alter energy homeostasis, all without trade‐offs in major life functions. Within the α/βp neurons, rab27KO causes the mislocalization of phosphorylated S6K thus attenuates TOR signaling, resulting in decreased protein synthesis and reduced neuronal activity. Consistently, expression of dominant‐negative S6K in the α/βp neurons increases lifespan. Furthermore, the expression of phospho‐mimetic S6 in α/βp neurons of rab27KO rescued local protein synthesis and reversed lifespan extension. These findings demonstrate that inhibiting TOR‐mediated protein synthesis in α/βp neurons is sufficient to promote longevity.
Collapse
Affiliation(s)
- Wen‐Yu Lien
- Graduate Institute of Physiology College of Medicine National Taiwan University Taipei Taiwan
| | - Yu‐Ting Chen
- Graduate Institute of Physiology College of Medicine National Taiwan University Taipei Taiwan
| | - Yi‐Jhan Li
- Graduate Institute of Physiology College of Medicine National Taiwan University Taipei Taiwan
| | - Jie‐Kai Wu
- Department of Biochemistry and Graduate Institute of Biomedical Sciences College of Medicine Chang Gung University Taoyuan Taiwan
| | - Kuan‐Lin Huang
- Graduate Institute of Physiology College of Medicine National Taiwan University Taipei Taiwan
| | - Jian‐Rong Lin
- Graduate Institute of Physiology College of Medicine National Taiwan University Taipei Taiwan
| | - Shih‐Ching Lin
- Graduate Institute of Physiology College of Medicine National Taiwan University Taipei Taiwan
| | - Chia‐Chun Hou
- Graduate Institute of Physiology College of Medicine National Taiwan University Taipei Taiwan
| | - Horng‐Dar Wang
- Institute of Biotechnology National Tsing Hua University Hsinchu Taiwan
| | - Chia‐Lin Wu
- Department of Biochemistry and Graduate Institute of Biomedical Sciences College of Medicine Chang Gung University Taoyuan Taiwan
- Department of Neurology Linkou Chang Gung Memorial Hospital Taoyuan Taiwan
| | - Shu‐Yi Huang
- Department of Medical Research National Taiwan University Hospital Taipei Taiwan
| | - Chih‐Chiang Chan
- Graduate Institute of Physiology College of Medicine National Taiwan University Taipei Taiwan
| |
Collapse
|
172
|
Ertekin D, Kirszenblat L, Faville R, van Swinderen B. Down-regulation of a cytokine secreted from peripheral fat bodies improves visual attention while reducing sleep in Drosophila. PLoS Biol 2020; 18:e3000548. [PMID: 32745077 PMCID: PMC7426065 DOI: 10.1371/journal.pbio.3000548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 08/13/2020] [Accepted: 07/13/2020] [Indexed: 11/29/2022] Open
Abstract
Sleep is vital for survival. Yet under environmentally challenging conditions, such as starvation, animals suppress their need for sleep. Interestingly, starvation-induced sleep loss does not evoke a subsequent sleep rebound. Little is known about how starvation-induced sleep deprivation differs from other types of sleep loss, or why some sleep functions become dispensable during starvation. Here, we demonstrate that down-regulation of the secreted cytokine unpaired 2 (upd2) in Drosophila flies may mimic a starved-like state. We used a genetic knockdown strategy to investigate the consequences of upd2 on visual attention and sleep in otherwise well-fed flies, thereby sidestepping the negative side effects of undernourishment. We find that knockdown of upd2 in the fat body (FB) is sufficient to suppress sleep and promote feeding-related behaviors while also improving selective visual attention. Furthermore, we show that this peripheral signal is integrated in the fly brain via insulin-expressing cells. Together, these findings identify a role for peripheral tissue-to-brain interactions in the simultaneous regulation of sleep quality and attention, to potentially promote adaptive behaviors necessary for survival in hungry animals.
Collapse
Affiliation(s)
- Deniz Ertekin
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Leonie Kirszenblat
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Richard Faville
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
173
|
Liao S, Nässel DR. Drosophila Insulin-Like Peptide 8 (DILP8) in Ovarian Follicle Cells Regulates Ovulation and Metabolism. Front Endocrinol (Lausanne) 2020; 11:461. [PMID: 32849266 PMCID: PMC7396567 DOI: 10.3389/fendo.2020.00461] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
In Drosophila melanogaster eight insulin-like peptides (DILP1-8) are encoded on separate genes. These DILPs are characterized by unique spatial and temporal expression patterns during the lifecycle. Whereas, functions of several of the DILPs have been extensively investigated at different developmental stages, the role of DILP8 signaling is primarily known from larvae and pupae where it couples organ growth and developmental transitions. In adult female flies, a study showed that a specific set of neurons that express the DILP8 receptor, Lgr3, is involved in regulation of reproductive behavior. Here, we further investigated the expression of dilp8/DILP8 and Lgr3 in adult female flies and the functional role of DILP8 signaling. The only site where we found both dilp8 expression and DILP8 immunolabeling was in follicle cells around mature eggs. Lgr3 expression was detected in numerous neurons in the brain and ventral nerve cord, a small set of peripheral neurons innervating the abdominal heart, as well as in a set of follicle cells close to the oviduct. Ovulation was affected in dilp8 mutants as well as after dilp8-RNAi using dilp8 and follicle cell Gal4 drivers. More eggs were retained in the ovaries and fewer were laid, indicating that DILP8 is important for ovulation. Our data suggest that DILP8 signals locally to Lgr3 expressing follicle cells as well as systemically to Lgr3 expressing efferent neurons in abdominal ganglia that innervate oviduct muscle. Thus, DILP8 may act at two targets to regulate ovulation: follicle cell rupture and oviduct contractions. Furthermore, we could show that manipulations of dilp8 expression affect starvation resistance suggesting effects on metabolism. Possibly this reflects a feedback signaling between ovaries and the CNS that ensures nutrients for ovary development. In summary, it seems that DILP8 signaling in regulation of reproduction is an ancient function, conserved in relaxin signaling in mammals.
Collapse
|
174
|
Insulin-Like Signalling Influences the Coordination of Larval Hemocyte Number with Body Size in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2020; 10:2213-2220. [PMID: 32341056 PMCID: PMC7341137 DOI: 10.1534/g3.120.401313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Blood cells, known as hemocytes in invertebrates, play important and conserved roles in immunity, wound healing and tissue remodelling. The control of hemocyte number is therefore critical to ensure these functions are not compromised, and studies using Drosophila melanogaster are proving useful for understanding how this occurs. Recently, the embryonic patterning gene, torso-like (tsl), was identified as being required both for normal hemocyte development and for providing immunity against certain pathogens. Here, we report that Tsl is required specifically during the larval phase of hematopoiesis, and that tsl mutant larvae likely have reduced hemocyte numbers due to a reduced larval growth rate and compromised insulin signaling. Consistent with this, we find that impairing insulin-mediated growth, either by nutrient deprivation or genetically, results in fewer hemocytes. This is likely the result of impaired insulin-like signaling in the hemocytes themselves, since modulation of Insulin-like Receptor (InR) activity specifically in hemocytes causes concomitant changes to their population size in developing larvae. Taken together, our work reveals the strong relationship that exists between body size and hemocyte number, and suggests that insulin-like signaling contributes to, but is not solely responsible for, keeping these tightly aligned during larval development.
Collapse
|
175
|
Wang L, Chen H, Wang L, Song L. An insulin-like peptide serves as a regulator of glucose metabolism in the immune response of Chinese mitten crab Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103686. [PMID: 32205179 DOI: 10.1016/j.dci.2020.103686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
A robust immune response against invading pathogens greatly depends on the balance of metabolism, which could be vigorously modulated by insulin/IGF signaling (IIS) pathway in vertebrates. However, knowledge on the IIS pathway, especially the function of insulin-like peptides (ILPs) in invertebrates remained largely unknown. In the present study, a novel ILP was identified from Eriocheir sinensisis (designated EsILP). The coding sequence of EsILP was of 216 bp, which encoded a polypeptide of 71 amino acids containing an IlGF-like domain with four conserved cysteine residues. The mRNA transcripts of EsILP were found to be expressed dominantly in eyestalks and hepatopancreas, and EsILP protein was found to be distributed in the anterior median area of thoracic ganglion mass and the edges of hepatic tubules correspondingly. After Aeromonas hydrophila stimulation, EsILP transcripts were significantly increased at 3, 12 and 24 h post-stimulation in eyestalks and 6 and 48 h in hemocytes, respectively. In contrast, the expression level of EsILP decreased significantly in hepatopancreas from 6 h to 12 h after the stimulation. The glucose level in the hemolymph of crabs was significantly decreased from 6 to 12 h after the injection of recombinant EsILP. These results collectively demonstrated that the ancient ILP protein in E. sinensisis could negatively regulate glucose metabolism and participate in the immune response of the crabs against pathogen infection, which provided clues for the further investigation about the evolution and function of the IIS pathway in invertebrates.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
176
|
Vea IM, Shingleton AW. Network-regulated organ allometry: The developmental regulation of morphological scaling. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e391. [PMID: 32567243 DOI: 10.1002/wdev.391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/30/2020] [Accepted: 05/23/2020] [Indexed: 12/11/2022]
Abstract
Morphological scaling relationships, or allometries, describe how traits grow coordinately and covary among individuals in a population. The developmental regulation of scaling is essential to generate correctly proportioned adults across a range of body sizes, while the mis-regulation of scaling may result in congenital birth defects. Research over several decades has identified the developmental mechanisms that regulate the size of individual traits. Nevertheless, we still have poor understanding of how these mechanisms work together to generate correlated size variation among traits in response to environmental and genetic variation. Conceptually, morphological scaling can be generated by size-regulatory factors that act directly on multiple growing traits (trait-autonomous scaling), or indirectly via hormones produced by central endocrine organs (systemically regulated scaling), and there are a number of well-established examples of such mechanisms. There is much less evidence, however, that genetic and environmental variation actually acts on these mechanisms to generate morphological scaling in natural populations. More recent studies indicate that growing organs can themselves regulate the growth of other organs in the body. This suggests that covariation in trait size can be generated by network-regulated scaling mechanisms that respond to changes in the growth of individual traits. Testing this hypothesis, and one of the main challenges of understanding morphological scaling, requires connecting mechanisms elucidated in the laboratory with patterns of scaling observed in the natural world. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Comparative Development and Evolution > Organ System Comparisons Between Species.
Collapse
Affiliation(s)
- Isabelle M Vea
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alexander W Shingleton
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
177
|
Xue WH, Liu YL, Jiang YQ, He SF, Wang QQ, Yang ZN, Xu HJ. Molecular characterization of insulin-like peptides in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). INSECT MOLECULAR BIOLOGY 2020; 29:309-319. [PMID: 31967370 DOI: 10.1111/imb.12636] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/28/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Insulin-like peptides (ILPs) including insulin, insulin-like growth factor (IGF) and relaxin are evolutionarily conserved hormones in metazoans, and they are involved in diverse physiological processes. The migratory brown planthopper (BPH), Nilaparvata lugens, encodes four ILP genes (Nlilp1, Nlilp2, Nlilp3 and Nlilp4) but their physiological roles are largely unknown. Sequence analysis showed that NlILP1 contained a relaxin-specific G protein-coupled receptor-binding motif and a variant motif of cysteine residues, and NlILP2 and NlILP4 resembled vertebrate IGFs. RNA interference (RNAi)-mediated gene silencing showed that depletion of each of Nlilp1, 2 and 3 significantly delayed the developmental duration of nymphs, and this effect could be exacerbated by double or triple gene depletion. Depletion of Nlilp1, Nlilp2 or Nlilp3 induces the accumulation of glucose, trehalose and glycogen, which is contradictory to depletion of the insulin receptor (NlInR1) in the BPH. Depletion of Nlilp1 significantly enhanced starvation resistance in both females and males although its extent was smaller than NlInR1 depletion. A parental RNAi assay showed that depletion of each of Nlilp1-4 dramatically impaired female fecundity. These findings indicate that NlILP1-4 have redundant and distinct roles in physiological processes in the BPH, thereby enhancing our understanding of the contribution of each NlILP to the ecological success of this species in natural habitats.
Collapse
Affiliation(s)
- W-H Xue
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Y-L Liu
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Y-Q Jiang
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - S-F He
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Q-Q Wang
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Z-N Yang
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - H-J Xu
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
178
|
Song X, Pei L, Zhang Y, Chen X, Zhong Q, Ji Y, Tang J, Feng F, Li B. Functional diversification of three delta-class glutathione S-transferases involved in development and detoxification in Tribolium castaneum. INSECT MOLECULAR BIOLOGY 2020; 29:320-336. [PMID: 31999035 DOI: 10.1111/imb.12637] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Glutathione S-transferases (GSTs) are members of a multifunctional enzyme superfamily. Forty-one GSTs have been identified in Tribolium castaneum; however, none of the 41 GSTs has been functionally characterized. Here, three delta-class GSTs, TcGSTd1, TcGSTd2 and TcGSTd3, of T. castaneum were successfully cloned and expressed in Escherichia coli. All of the studied GSTs catalysed the conjugation of reduced glutathione with 1-chloro-2,4-dinitrobenzene. Insecticide treatment showed that the expression levels of TcGSTd3 and TcGSTd2 were significantly increased after exposure to phoxim and lambda-cyhalothrin, whereas TcGSTd1 was slightly upregulated only in response to phoxim. A disc diffusion assay showed that overexpression of TcGSTD3, but not TcGSTD1 or TcGSTD2, in E. coli increased resistance to paraquat-induced oxidative stress. RNA interference knockdown of TcGSTd1 caused metamorphosis deficiencies and reduced fecundity by regulating insulin/target-of-rapamycin signalling pathway-mediated ecdysteroid biosynthesis, and knockdown of TcGSTd3 led to reduced fertility and a decreased hatch rate of the offspring, probably caused by the reduced antioxidative activity in the reproductive organs. These results indicate that TcGSTd3 and TcGSTd2 may play vital roles in cellular detoxification, whereas TcGSTd1 may play essential roles in normal development of T. castaneum. These delta-class GSTs in T. castaneum have obtained different functions during the evolution.
Collapse
Affiliation(s)
- X Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - L Pei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Y Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - X Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Q Zhong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Y Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - J Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | | | - B Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
179
|
Poe AR, Xu Y, Zhang C, Lei J, Li K, Labib D, Han C. Low FoxO expression in Drosophila somatosensory neurons protects dendrite growth under nutrient restriction. eLife 2020; 9:53351. [PMID: 32427101 PMCID: PMC7308081 DOI: 10.7554/elife.53351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/18/2020] [Indexed: 12/22/2022] Open
Abstract
During prolonged nutrient restriction, developing animals redistribute vital nutrients to favor brain growth at the expense of other organs. In Drosophila, such brain sparing relies on a glia-derived growth factor to sustain proliferation of neural stem cells. However, whether other aspects of neural development are also spared under nutrient restriction is unknown. Here we show that dynamically growing somatosensory neurons in the Drosophila peripheral nervous system exhibit organ sparing at the level of arbor growth: Under nutrient stress, sensory dendrites preferentially grow as compared to neighboring non-neural tissues, resulting in dendrite overgrowth. These neurons express lower levels of the stress sensor FoxO than neighboring epidermal cells, and hence exhibit no marked induction of autophagy and a milder suppression of Tor signaling under nutrient stress. Preferential dendrite growth allows for heightened animal responses to sensory stimuli, indicative of a potential survival advantage under environmental challenges.
Collapse
Affiliation(s)
- Amy R Poe
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Yineng Xu
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Christine Zhang
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Joyce Lei
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Kailyn Li
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - David Labib
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Chun Han
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| |
Collapse
|
180
|
Toprak U. The Role of Peptide Hormones in Insect Lipid Metabolism. Front Physiol 2020; 11:434. [PMID: 32457651 PMCID: PMC7221030 DOI: 10.3389/fphys.2020.00434] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
Lipids are the primary storage molecules and an essential source of energy in insects during reproduction, prolonged periods of flight, starvation, and diapause. The coordination center for insect lipid metabolism is the fat body, which is analogous to the vertebrate adipose tissue and liver. The fat body is primarily composed of adipocytes, which accumulate triacylglycerols in intracellular lipid droplets. Genomics and proteomics, together with functional analyses, such as RNA interference and CRISPR/Cas9-targeted genome editing, identified various genes involved in lipid metabolism and elucidated their functions. However, the endocrine control of insect lipid metabolism, in particular the roles of peptide hormones in lipogenesis and lipolysis are relatively less-known topics. In the current review, the neuropeptides that directly or indirectly affect insect lipid metabolism are introduced. The primary lipolytic and lipogenic peptide hormones are adipokinetic hormone and the brain insulin-like peptides (ILP2, ILP3, ILP5). Other neuropeptides, such as insulin-growth factor ILP6, neuropeptide F, allatostatin-A, corazonin, leucokinin, tachykinins and limostatin, might stimulate lipolysis, while diapause hormone-pheromone biosynthesis activating neuropeptide, short neuropeptide F, CCHamide-2, and the cytokines Unpaired 1 and Unpaired 2 might induce lipogenesis. Most of these peptides interact with one another, but mostly with insulin signaling, and therefore affect lipid metabolism indirectly. Peptide hormones are also involved in lipid metabolism during reproduction, flight, diapause, starvation, infections and immunity; these are also highlighted. The review concludes with a discussion of the potential of lipid metabolism-related peptide hormones in pest management.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Lab., Department of Plant Protection Ankara, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
181
|
Waking up quiescent neural stem cells: Molecular mechanisms and implications in neurodevelopmental disorders. PLoS Genet 2020; 16:e1008653. [PMID: 32324743 PMCID: PMC7179833 DOI: 10.1371/journal.pgen.1008653] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neural stem cells (NSCs) are crucial for development, regeneration, and repair of the nervous system. Most NSCs in mammalian adult brains are quiescent, but in response to extrinsic stimuli, they can exit from quiescence and become reactivated to give rise to new neurons. The delicate balance between NSC quiescence and activation is important for adult neurogenesis and NSC maintenance. However, how NSCs transit between quiescence and activation remains largely elusive. Here, we discuss our current understanding of the molecular mechanisms underlying the reactivation of quiescent NSCs. We review recent advances on signaling pathways originated from the NSC niche and their crosstalk in regulating NSC reactivation. We also highlight new intrinsic paradigms that control NSC reactivation in Drosophila and mammalian systems. We also discuss emerging evidence on modeling human neurodevelopmental disorders using NSCs.
Collapse
|
182
|
Li Y, Romey-Glüsing R, Tahan Zadeh N, von Frieling J, Hoffmann J, Huebbe P, Bruchhaus I, Rimbach G, Fink C, Roeder T. Furbellow (Brown Algae) Extract Increases Lifespan in Drosophila by Interfering with TOR-Signaling. Nutrients 2020; 12:E1172. [PMID: 32331413 PMCID: PMC7230866 DOI: 10.3390/nu12041172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/30/2022] Open
Abstract
Algal products are well known for their health promoting effects. Nonetheless, an in depth understanding of the underlying molecular mechanisms is still only fragmentary. Here, we show that aqueous furbelow extracts (brown algae, Saccorhiza polyschides) lengthen the life of both sexes of the fruit fly Drosophila melanogaster substantially, if used as nutritional additives to conventional food. This life prolonging effect became even more pronounced in the presence of stressors, such as high-fat dieting of living under drought conditions. Application of the extracts did not change food intake, excretion, or other major physiological parameters. Nevertheless, effects on the intestinal microbiota were observed, leading to an increased species richness, which is usually associated with healthy conditions. Lifespan extension was not observed in target of rapamycin (TOR)-deficient animals, implying that functional TOR signaling is necessary to unfold the positive effects of brown algae extract (BAE) on this important trait. The lack of life lengthening in animals with deregulated TOR signaling exclusively targeted to body fat showed that this major energy storage organ is instrumental for transmitting these effects. In addition, expression of Imaginal morphogenesis protein-Late 2 (Imp-L2), an effective inhibitor of insulin signaling implies that BAE exerts their positive effects through interaction with the tightly interwoven TOR- and insulin-signaling systems, although insulin levels were not directly affected by this intervention.
Collapse
Affiliation(s)
- Yang Li
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Renja Romey-Glüsing
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
| | - Navid Tahan Zadeh
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
| | - Jakob von Frieling
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
| | - Julia Hoffmann
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
| | - Patricia Huebbe
- Department of Food Sciences, Kiel University, 24098 Kiel, Germany; (P.H.); (G.R.)
| | - Iris Bruchhaus
- Bernhard-Nocht-Institute for Tropical Medicine, D-20359 Hamburg, Germany;
| | - Gerald Rimbach
- Department of Food Sciences, Kiel University, 24098 Kiel, Germany; (P.H.); (G.R.)
| | - Christine Fink
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
- DZL, German Center for Lung Research, ARCN, D-24098 Kiel, Germany
| | - Thomas Roeder
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
- DZL, German Center for Lung Research, ARCN, D-24098 Kiel, Germany
| |
Collapse
|
183
|
Redhai S, Pilgrim C, Gaspar P, Giesen LV, Lopes T, Riabinina O, Grenier T, Milona A, Chanana B, Swadling JB, Wang YF, Dahalan F, Yuan M, Wilsch-Brauninger M, Lin WH, Dennison N, Capriotti P, Lawniczak MKN, Baines RA, Warnecke T, Windbichler N, Leulier F, Bellono NW, Miguel-Aliaga I. An intestinal zinc sensor regulates food intake and developmental growth. Nature 2020; 580:263-268. [PMID: 32269334 PMCID: PMC8833092 DOI: 10.1038/s41586-020-2111-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022]
Abstract
In cells, organs and whole organisms, nutrient sensing is key to maintaining homeostasis and adapting to a fluctuating environment1. In many animals, nutrient sensors are found within the enteroendocrine cells of the digestive system; however, less is known about nutrient sensing in their cellular siblings, the absorptive enterocytes1. Here we use a genetic screen in Drosophila melanogaster to identify Hodor, an ionotropic receptor in enterocytes that sustains larval development, particularly in nutrient-scarce conditions. Experiments in Xenopus oocytes and flies indicate that Hodor is a pH-sensitive, zinc-gated chloride channel that mediates a previously unrecognized dietary preference for zinc. Hodor controls systemic growth from a subset of enterocytes-interstitial cells-by promoting food intake and insulin/IGF signalling. Although Hodor sustains gut luminal acidity and restrains microbial loads, its effect on systemic growth results from the modulation of Tor signalling and lysosomal homeostasis within interstitial cells. Hodor-like genes are insect-specific, and may represent targets for the control of disease vectors. Indeed, CRISPR-Cas9 genome editing revealed that the single hodor orthologue in Anopheles gambiae is an essential gene. Our findings highlight the need to consider the instructive contributions of metals-and, more generally, micronutrients-to energy homeostasis.
Collapse
Affiliation(s)
- Siamak Redhai
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Clare Pilgrim
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Pedro Gaspar
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Lena van Giesen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Tatiana Lopes
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Olena Riabinina
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Department of Biosciences, Durham University, Durham, UK
| | - Théodore Grenier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, ENS de Lyon, CNRS UMR 5242, Lyon, France
| | | | - Bhavna Chanana
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Jacob B Swadling
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Yi-Fang Wang
- MRC London Institute of Medical Sciences, London, UK
| | - Farah Dahalan
- Department of Life Sciences, Imperial College London, London, UK
- Malaria Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Michaela Yuan
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Wei-Hsiang Lin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nathan Dennison
- Department of Life Sciences, Imperial College London, London, UK
| | - Paolo Capriotti
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Richard A Baines
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Tobias Warnecke
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | | | - Francois Leulier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, ENS de Lyon, CNRS UMR 5242, Lyon, France
| | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
184
|
Brown EB, Shah KD, Faville R, Kottler B, Keene AC. Drosophila insulin-like peptide 2 mediates dietary regulation of sleep intensity. PLoS Genet 2020; 16:e1008270. [PMID: 32160200 PMCID: PMC7089559 DOI: 10.1371/journal.pgen.1008270] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 03/23/2020] [Accepted: 12/06/2019] [Indexed: 01/30/2023] Open
Abstract
Sleep is a nearly universal behavior that is regulated by diverse environmental stimuli and physiological states. A defining feature of sleep is a homeostatic rebound following deprivation, where animals compensate for lost sleep by increasing sleep duration and/or sleep depth. The fruit fly, Drosophila melanogaster, exhibits robust recovery sleep following deprivation and represents a powerful model to study neural circuits regulating sleep homeostasis. Numerous neuronal populations have been identified in modulating sleep homeostasis as well as depth, raising the possibility that the duration and quality of recovery sleep is dependent on the environmental or physiological processes that induce sleep deprivation. Here, we find that unlike most pharmacological and environmental manipulations commonly used to restrict sleep, starvation potently induces sleep loss without a subsequent rebound in sleep duration or depth. Both starvation and a sucrose-only diet result in increased sleep depth, suggesting that dietary protein is essential for normal sleep depth and homeostasis. Finally, we find that Drosophila insulin like peptide 2 (Dilp2) is acutely required for starvation-induced changes in sleep depth without regulating the duration of sleep. Flies lacking Dilp2 exhibit a compensatory sleep rebound following starvation-induced sleep deprivation, suggesting Dilp2 promotes resiliency to sleep loss. Together, these findings reveal innate resilience to starvation-induced sleep loss and identify distinct mechanisms that underlie starvation-induced changes in sleep duration and depth. Sleep is nearly universal throughout the animal kingdom and homeostatic regulation represents a defining feature of sleep, where animals compensate for lost sleep by increasing sleep over subsequent time periods. Despite the robustness of this feature, the neural mechanisms regulating recovery from different types of sleep deprivation are not fully understood. Fruit flies provide a powerful model for investigating the genetic regulation of sleep, and like mammals, display robust recovery sleep following deprivation. Here, we find that unlike most stimuli that suppress sleep, sleep deprivation by starvation does not require a homeostatic rebound. These findings are likely due to flies engaging in deeper sleep during the period of partial sleep deprivation, suggesting a natural resilience to starvation-induced sleep loss. This unique resilience to starvation-induced sleep loss is dependent on Drosophila insulin-like peptide 2, revealing a critical role for insulin signaling in regulating interactions between diet and sleep homeostasis.
Collapse
Affiliation(s)
- Elizabeth B. Brown
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Kreesha D. Shah
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
- Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, United States of America
| | | | | | - Alex C. Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|
185
|
Sudhakar SR, Pathak H, Rehman N, Fernandes J, Vishnu S, Varghese J. Insulin signalling elicits hunger-induced feeding in Drosophila. Dev Biol 2020; 459:87-99. [DOI: 10.1016/j.ydbio.2019.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022]
|
186
|
Insulin signaling pathway and related molecules: Role in neurodegeneration and Alzheimer's disease. Neurochem Int 2020; 135:104707. [PMID: 32092326 DOI: 10.1016/j.neuint.2020.104707] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Its major pathological hallmarks, neurofibrillary tangles (NFT), and amyloid-β plaques can result from dysfunctional insulin signaling. Insulin is an important growth factor that regulates cell growth, energy utilization, mitochondrial function, autophagy, oxidative stress, synaptic plasticity, and cognitive function. Insulin and its downstream signaling molecules are located majorly in the regions of cortex and hippocampus. The major molecules involved in impaired insulin signaling include IRS, PI3K, Akt, and GSK-3β. Activation or inactivation of these major molecules through increased or decreased phosphorylation plays a role in insulin signaling abnormalities or insulin resistance. Insulin resistance, therefore, is considered as a major culprit in generating the hallmarks of AD arising from neuroinflammation and oxidative stress, etc. Moreover, caspases, Nrf2, and NF-κB influence this pathway in an indirect way. Various studies also suggest a strong link between Diabetes Mellitus and AD due to the impairment of insulin signaling pathway. Moreover, studies also depict a strong correlation of other neurodegenerative diseases such as Parkinson's disease and Huntington's disease with insulin resistance. Hence this review will provide an insight into the role of insulin signaling pathway and related molecules as therapeutic targets in AD and other neurodegenerative diseases.
Collapse
|
187
|
Delanoue R, Romero NM. Growth and Maturation in Development: A Fly's Perspective. Int J Mol Sci 2020; 21:E1260. [PMID: 32070061 PMCID: PMC7072963 DOI: 10.3390/ijms21041260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/02/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023] Open
Abstract
In mammals like humans, adult fitness is improved due to resource allocation, investing energy in the developmental growth process during the juvenile period, and in reproduction at the adult stage. Therefore, the attainment of their target body height/size co-occurs with the acquisition of maturation, implying a need for coordination between mechanisms that regulate organismal growth and maturation timing. Insects like Drosophila melanogaster also define their adult body size by the end of the juvenile larval period. Recent studies in the fly have shown evolutionary conservation of the regulatory pathways controlling growth and maturation, suggesting the existence of common coordinator mechanisms between them. In this review, we will present an overview of the significant advancements in the coordination mechanisms ensuring developmental robustness in Drosophila. We will include (i) the characterization of feedback mechanisms between maturation and growth hormones, (ii) the recognition of a relaxin-like peptide Dilp8 as a central processor coordinating juvenile regeneration and time of maturation, and (iii) the identification of a novel coordinator mechanism involving the AstA/KISS system.
Collapse
Affiliation(s)
- Renald Delanoue
- University Côte d’Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| | - Nuria M. Romero
- University Côte d’Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
- Universitey Côte d’Azur, INRA, CNRS, Institut Sophia Agrobiotech, 06900 Sophia Antipolis, France
| |
Collapse
|
188
|
Agbu P, Cassidy JJ, Braverman J, Jacobson A, Carthew RW. MicroRNA miR-7 Regulates Secretion of Insulin-Like Peptides. Endocrinology 2020; 161:5686887. [PMID: 31875904 PMCID: PMC7029775 DOI: 10.1210/endocr/bqz040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/20/2019] [Indexed: 01/01/2023]
Abstract
The insulin/insulin-like growth factor (IGF) pathway is essential for linking nutritional status to growth and metabolism. MicroRNAs (miRNAs) are short RNAs that are players in the regulation of this process. The miRNA miR-7 shows highly conserved expression in insulin-producing cells across the animal kingdom. However, its conserved functions in regulation of insulin-like peptides (ILPs) remain unknown. Using Drosophila as a model, we demonstrate that miR-7 limits ILP availability by inhibiting its production and secretion. Increasing miR-7 alters body growth and metabolism in an ILP-dependent manner, elevating circulating sugars and total body triglycerides, while decreasing animal growth. These effects are not due to direct targeting of ILP mRNA, but instead arise through alternate targets that affect the function of ILP-producing cells. The Drosophila F-actin capping protein alpha (CPA) is a direct target of miR-7, and knockdown of CPA in insulin-producing cells phenocopies the effects of miR-7 on ILP secretion. This regulation of CPA is conserved in mammals, with the mouse ortholog Capza1 also targeted by miR-7 in β-islet cells. Taken together, these results support a role for miR-7 regulation of an actin capping protein in insulin regulation, and highlight a conserved mechanism of action for an evolutionarily ancient microRNA.
Collapse
Affiliation(s)
- Pamela Agbu
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois
| | - Justin J Cassidy
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois
| | - Jonathan Braverman
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois
| | - Alec Jacobson
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois
| | - Richard W Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, Illinois
- Correspondence: Richard W. Carthew, PhD, Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208. E-mail:
| |
Collapse
|
189
|
Agrawal P, Kao D, Chung P, Looger LL. The neuropeptide Drosulfakinin regulates social isolation-induced aggression in Drosophila. J Exp Biol 2020; 223:jeb207407. [PMID: 31900346 PMCID: PMC7033730 DOI: 10.1242/jeb.207407] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/19/2019] [Indexed: 01/09/2023]
Abstract
Social isolation strongly modulates behavior across the animal kingdom. We utilized the fruit fly Drosophila melanogaster to study social isolation-driven changes in animal behavior and gene expression in the brain. RNA-seq identified several head-expressed genes strongly responding to social isolation or enrichment. Of particular interest, social isolation downregulated expression of the gene encoding the neuropeptide Drosulfakinin (Dsk), the homologue of vertebrate cholecystokinin (CCK), which is critical for many mammalian social behaviors. Dsk knockdown significantly increased social isolation-induced aggression. Genetic activation or silencing of Dsk neurons each similarly increased isolation-driven aggression. Our results suggest a U-shaped dependence of social isolation-induced aggressive behavior on Dsk signaling, similar to the actions of many neuromodulators in other contexts.
Collapse
Affiliation(s)
- Pavan Agrawal
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Damian Kao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Phuong Chung
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| |
Collapse
|
190
|
Davis FP, Nern A, Picard S, Reiser MB, Rubin GM, Eddy SR, Henry GL. A genetic, genomic, and computational resource for exploring neural circuit function. eLife 2020; 9:e50901. [PMID: 31939737 PMCID: PMC7034979 DOI: 10.7554/elife.50901] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
The anatomy of many neural circuits is being characterized with increasing resolution, but their molecular properties remain mostly unknown. Here, we characterize gene expression patterns in distinct neural cell types of the Drosophila visual system using genetic lines to access individual cell types, the TAPIN-seq method to measure their transcriptomes, and a probabilistic method to interpret these measurements. We used these tools to build a resource of high-resolution transcriptomes for 100 driver lines covering 67 cell types, available at http://www.opticlobe.com. Combining these transcriptomes with recently reported connectomes helps characterize how information is transmitted and processed across a range of scales, from individual synapses to circuit pathways. We describe examples that include identifying neurotransmitters, including cases of apparent co-release, generating functional hypotheses based on receptor expression, as well as identifying strong commonalities between different cell types.
Collapse
Affiliation(s)
- Fred P Davis
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Molecular Immunology and Inflammation BranchNational Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of HealthBethesdaUnited States
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Serge Picard
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Michael B Reiser
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Sean R Eddy
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Howard Hughes Medical Institute and Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUnited States
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeUnited States
| | - Gilbert L Henry
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| |
Collapse
|
191
|
Samuels TJ, Järvelin AI, Ish-Horowicz D, Davis I. Imp/IGF2BP levels modulate individual neural stem cell growth and division through myc mRNA stability. eLife 2020; 9:e51529. [PMID: 31934860 PMCID: PMC7025822 DOI: 10.7554/elife.51529] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/13/2020] [Indexed: 12/24/2022] Open
Abstract
The numerous neurons and glia that form the brain originate from tightly controlled growth and division of neural stem cells, regulated systemically by important known stem cell-extrinsic signals. However, the cell-intrinsic mechanisms that control the distinctive proliferation rates of individual neural stem cells are unknown. Here, we show that the size and division rates of Drosophila neural stem cells (neuroblasts) are controlled by the highly conserved RNA binding protein Imp (IGF2BP), via one of its top binding targets in the brain, myc mRNA. We show that Imp stabilises myc mRNA leading to increased Myc protein levels, larger neuroblasts, and faster division rates. Declining Imp levels throughout development limit myc mRNA stability to restrain neuroblast growth and division, and heterogeneous Imp expression correlates with myc mRNA stability between individual neuroblasts in the brain. We propose that Imp-dependent regulation of myc mRNA stability fine-tunes individual neural stem cell proliferation rates.
Collapse
Affiliation(s)
- Tamsin J Samuels
- Department of BiochemistryThe University of OxfordOxfordUnited Kingdom
| | - Aino I Järvelin
- Department of BiochemistryThe University of OxfordOxfordUnited Kingdom
| | - David Ish-Horowicz
- Department of BiochemistryThe University of OxfordOxfordUnited Kingdom
- MRC Laboratory for Molecular Cell BiologyUniversity CollegeLondonUnited Kingdom
| | - Ilan Davis
- Department of BiochemistryThe University of OxfordOxfordUnited Kingdom
| |
Collapse
|
192
|
Liao S, Post S, Lehmann P, Veenstra JA, Tatar M, Nässel DR. Regulatory Roles of Drosophila Insulin-Like Peptide 1 (DILP1) in Metabolism Differ in Pupal and Adult Stages. Front Endocrinol (Lausanne) 2020; 11:180. [PMID: 32373064 PMCID: PMC7186318 DOI: 10.3389/fendo.2020.00180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/13/2020] [Indexed: 01/12/2023] Open
Abstract
The insulin/IGF-signaling pathway is central in control of nutrient-dependent growth during development, and in adult physiology and longevity. Eight insulin-like peptides (DILP1-8) have been identified in Drosophila, and several of these are known to regulate growth, metabolism, reproduction, stress responses, and lifespan. However, the functional role of DILP1 is far from understood. Previous work has shown that dilp1/DILP1 is transiently expressed mainly during the pupal stage and the first days of adult life. Here, we study the role of dilp1 in the pupa, as well as in the first week of adult life, and make some comparisons to dilp6 that displays a similar pupal expression profile, but is expressed in fat body rather than brain neurosecretory cells. We show that mutation of dilp1 diminishes organismal weight during pupal development, whereas overexpression increases it, similar to dilp6 manipulations. No growth effects of dilp1 or dilp6 manipulations were detected during larval development. We next show that dilp1 and dilp6 increase metabolic rate in the late pupa and promote lipids as the primary source of catabolic energy. Effects of dilp1 manipulations can also be seen in the adult fly. In newly eclosed female flies, survival during starvation is strongly diminished in dilp1 mutants, but not in dilp2 and dilp1/dilp2 mutants, whereas in older flies, only the double mutants display reduced starvation resistance. Starvation resistance is not affected in male dilp1 mutant flies, suggesting a sex dimorphism in dilp1 function. Overexpression of dilp1 also decreases survival during starvation in female flies and increases egg laying and decreases egg to pupal viability. In conclusion, dilp1 and dilp6 overexpression promotes metabolism and growth of adult tissues during the pupal stage, likely by utilization of stored lipids. Some of the effects of the dilp1 manipulations may carry over from the pupa to affect physiology in young adults, but our data also suggest that dilp1 signaling is important in metabolism and stress resistance in the adult stage.
Collapse
Affiliation(s)
- Sifang Liao
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Stephanie Post
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
| | - Philipp Lehmann
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Jan A. Veenstra
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (CNRS UMR5287), University of Bordeaux, Pessac, France
| | - Marc Tatar
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
| | - Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
- *Correspondence: Dick R. Nässel
| |
Collapse
|
193
|
Receptor Tyrosine Kinases in Development: Insights from Drosophila. Int J Mol Sci 2019; 21:ijms21010188. [PMID: 31888080 PMCID: PMC6982143 DOI: 10.3390/ijms21010188] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022] Open
Abstract
Cell-to-cell communication mediates a plethora of cellular decisions and behaviors that are crucial for the correct and robust development of multicellular organisms. Many of these signals are encoded in secreted hormones or growth factors that bind to and activate cell surface receptors, to transmit the cue intracellularly. One of the major superfamilies of cell surface receptors are the receptor tyrosine kinases (RTKs). For nearly half a century RTKs have been the focus of intensive study due to their ability to alter fundamental aspects of cell biology, such as cell proliferation, growth, and shape, and because of their central importance in diseases such as cancer. Studies in model organisms such a Drosophila melanogaster have proved invaluable for identifying new conserved RTK pathway components, delineating their contributions, and for the discovery of conserved mechanisms that control RTK-signaling events. Here we provide a brief overview of the RTK superfamily and the general mechanisms used in their regulation. We further highlight the functions of several RTKs that govern distinct cell-fate decisions in Drosophila and explore how their activities are developmentally controlled.
Collapse
|
194
|
Katsube H, Hinami Y, Yamazoe T, Inoue YH. Endoplasmic reticulum stress-induced cellular dysfunction and cell death in insulin-producing cells results in diabetes-like phenotypes in Drosophila. Biol Open 2019; 8:bio046524. [PMID: 31822470 PMCID: PMC6955230 DOI: 10.1242/bio.046524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022] Open
Abstract
The destruction of pancreatic β cells leads to reduced insulin secretion and eventually causes diabetes. Various types of cellular stress are thought to be involved in destruction and/or malfunction of these cells. We show that endoplasmic reticulum (ER) stress accumulation in insulin-producing cells (IPCs) generated diabetes-like phenotypes in Drosophila To promote the accumulation of extra ER stress, we induced a dominant-negative form of a Drosophila ER chaperone protein (Hsc70-3DN) and demonstrate that it causes the unfolded-protein response (UPR) in various tissues. The numbers of IPCs decreased owing to apoptosis induction mediated by caspases. The apoptosis was driven by activation of Dronc, and subsequently by Drice and Dcp-1. Accordingly, the relative mRNA-expression levels of Drosophila insulin-like peptides significantly decreased. Consistent with these results, we demonstrate that glucose levels in larval haemolymph were significantly higher than those of controls. Accumulation of ER stress induced by continuous Hsc70-3DN expression in IPCs resulted in the production of undersized flies. Ectopic expression of Hsc70-3DN can induce more efficient ER stress responses and more severe phenotypes. We propose that ER stress is responsible for IPC loss and dysfunction, which results in diabetes-related pathogenesis in this Drosophila diabetes model. Moreover, inhibiting apoptosis partially prevents the ER stress-induced diabetes-like phenotypes.
Collapse
Affiliation(s)
- Hiroka Katsube
- Department of Insect Biomedical Research, Research Center for Insect Advanced Studies, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan, 606-0962
| | - Yukiko Hinami
- Department of Insect Biomedical Research, Research Center for Insect Advanced Studies, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan, 606-0962
| | - Tatsuki Yamazoe
- Department of Insect Biomedical Research, Research Center for Insect Advanced Studies, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan, 606-0962
| | - Yoshihiro H Inoue
- Department of Insect Biomedical Research, Research Center for Insect Advanced Studies, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan, 606-0962
| |
Collapse
|
195
|
Lin X, Smagghe G. Roles of the insulin signaling pathway in insect development and organ growth. Peptides 2019; 122:169923. [PMID: 29458057 DOI: 10.1016/j.peptides.2018.02.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/16/2022]
Abstract
Organismal development is a complex process as it requires coordination of many aspects to grow into fit individuals, such as the control of body size and organ growth. Therefore, the mechanisms of precise control of growth are essential for ensuring the growth of organisms at a correct body size and proper organ proportions during development. The control of the growth rate and the duration of growth (or the cessation of growth) are required in size control. The insulin signaling pathway and the elements involved are essential in the control of growth. On the other hand, the ecdysteroid molting hormone determines the duration of growth. The secretion of these hormones is controlled by environmental factors such as nutrition. Moreover, the target of rapamycin (TOR) pathway is considered as a nutrient sensing pathway. Important cross-talks have been shown to exist among these pathways. In this review, we outline the control of body and organ growth by the insulin/TOR signaling pathway, and also the interaction between nutrition via insulin/TOR signaling and ecdysteroids at the coordination of organismal development and organ growth in insects, mainly focusing on the well-studied fruit fly Drosophila melanogaster.
Collapse
Affiliation(s)
- Xianyu Lin
- Department of Crop Protection, Ghent University, 9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
196
|
Moss-Taylor L, Upadhyay A, Pan X, Kim MJ, O'Connor MB. Body Size and Tissue-Scaling Is Regulated by Motoneuron-Derived Activinß in Drosophila melanogaster. Genetics 2019; 213:1447-1464. [PMID: 31585954 PMCID: PMC6893369 DOI: 10.1534/genetics.119.302394] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/29/2019] [Indexed: 01/17/2023] Open
Abstract
Correct scaling of body and organ size is crucial for proper development, and the survival of all organisms. Perturbations in circulating hormones, including insulins and steroids, are largely responsible for changing body size in response to both genetic and environmental factors. Such perturbations typically produce adults whose organs and appendages scale proportionately with final size. The identity of additional factors that might contribute to scaling of organs and appendages with body size is unknown. Here, we report that loss-of-function mutations in DrosophilaActivinβ (Actβ), a member of the TGF-β superfamily, lead to the production of small larvae/pupae and undersized rare adult escapers. Morphometric measurements of escaper adult appendage size (wings and legs), as well as heads, thoraxes, and abdomens, reveal a disproportional reduction in abdominal size compared to other tissues. Similar size measurements of selected Actβ mutant larval tissues demonstrate that somatic muscle size is disproportionately smaller when compared to the fat body, salivary glands, prothoracic glands, imaginal discs, and brain. We also show that Actβ control of body size is dependent on canonical signaling through the transcription-factor dSmad2 and that it modulates the growth rate, but not feeding behavior, during the third-instar period. Tissue- and cell-specific knockdown, and overexpression studies, reveal that motoneuron-derived Actβ is essential for regulating proper body size and tissue scaling. These studies suggest that, unlike in vertebrates, where Myostatin and certain other Activin-like factors act as systemic negative regulators of muscle mass, in Drosophila, Actβ is a positive regulator of muscle mass that is directly delivered to muscles by motoneurons. We discuss the importance of these findings in coordinating proportional scaling of insect muscle mass to appendage size.
Collapse
Affiliation(s)
- Lindsay Moss-Taylor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Ambuj Upadhyay
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Xueyang Pan
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Myung-Jun Kim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
197
|
A circadian output center controlling feeding:fasting rhythms in Drosophila. PLoS Genet 2019; 15:e1008478. [PMID: 31693685 PMCID: PMC6860455 DOI: 10.1371/journal.pgen.1008478] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/18/2019] [Accepted: 10/14/2019] [Indexed: 11/19/2022] Open
Abstract
Circadian rhythms allow animals to coordinate behavioral and physiological processes with respect to one another and to synchronize these processes to external environmental cycles. In most animals, circadian rhythms are produced by core clock neurons in the brain that generate and transmit time-of-day signals to downstream tissues, driving overt rhythms. The neuronal pathways controlling clock outputs, however, are not well understood. Furthermore, it is unclear how the central clock modulates multiple distinct circadian outputs. Identifying the cellular components and neuronal circuitry underlying circadian regulation is increasingly recognized as a critical step in the effort to address health pathologies linked to circadian disruption, including heart disease and metabolic disorders. Here, building on the conserved components of circadian and metabolic systems in mammals and Drosophila melanogaster, we used a recently developed feeding monitor to characterize the contribution to circadian feeding rhythms of two key neuronal populations in the Drosophila pars intercerebralis (PI), which is functionally homologous to the mammalian hypothalamus. We demonstrate that thermogenetic manipulations of PI neurons expressing the neuropeptide SIFamide (SIFa) as well as mutations of the SIFa gene degrade feeding:fasting rhythms. In contrast, manipulations of a nearby population of PI neurons that express the Drosophila insulin-like peptides (DILPs) affect total food consumption but leave feeding rhythms intact. The distinct contribution of these two PI cell populations to feeding is accompanied by vastly different neuronal connectivity as determined by trans-Tango synaptic mapping. These results for the first time identify a non-clock cell neuronal population in Drosophila that regulates feeding rhythms and furthermore demonstrate dissociable control of circadian and homeostatic aspects of feeding regulation by molecularly-defined neurons in a putative circadian output hub.
Collapse
|
198
|
Borreguero-Muñoz N, Fletcher GC, Aguilar-Aragon M, Elbediwy A, Vincent-Mistiaen ZI, Thompson BJ. The Hippo pathway integrates PI3K-Akt signals with mechanical and polarity cues to control tissue growth. PLoS Biol 2019; 17:e3000509. [PMID: 31613895 PMCID: PMC6814241 DOI: 10.1371/journal.pbio.3000509] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 10/25/2019] [Accepted: 10/03/2019] [Indexed: 11/19/2022] Open
Abstract
The Hippo signalling pathway restricts cell proliferation in animal tissues by inhibiting Yes-associated protein (YAP or YAP1) and Transcriptional Activator with a PDZ domain (TAZ or WW-domain-containing transcriptional activator [WWTR1]), coactivators of the Scalloped (Sd or TEAD) DNA-binding transcription factor. Drosophila has a single YAP/TAZ homolog named Yorkie (Yki) that is regulated by Hippo pathway signalling in response to epithelial polarity and tissue mechanics during development. Here, we show that Yki translocates to the nucleus to drive Sd-mediated cell proliferation in the ovarian follicle cell epithelium in response to mechanical stretching caused by the growth of the germline. Importantly, mechanically induced Yki nuclear localisation also requires nutritionally induced insulin/insulin-like growth factor 1 (IGF-1) signalling (IIS) via phosphatidyl inositol-3-kinase (PI3K), phosphoinositide-dependent kinase 1 (PDK1 or PDPK1), and protein kinase B (Akt or PKB) in the follicular epithelium. We find similar results in the developing Drosophila wing, where Yki becomes nuclear in the mechanically stretched cells of the wing pouch during larval feeding, which induces IIS, but translocates to the cytoplasm upon cessation of feeding in the third instar stage. Inactivating Akt prevents nuclear Yki localisation in the wing disc, while ectopic activation of the insulin receptor, PI3K, or Akt/PKB is sufficient to maintain nuclear Yki in mechanically stimulated cells of the wing pouch even after feeding ceases. Finally, IIS also promotes YAP nuclear localisation in response to mechanical cues in mammalian skin epithelia. Thus, the Hippo pathway has a physiological function as an integrator of epithelial cell polarity, tissue mechanics, and nutritional cues to control cell proliferation and tissue growth in both Drosophila and mammals.
Collapse
Affiliation(s)
| | - Georgina C. Fletcher
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Mario Aguilar-Aragon
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ahmed Elbediwy
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Barry J. Thompson
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
- EMBL Australia, Department of Cancer Biology & Therapeutics, The John Curtin School of Medical Research, The Australian National University, Acton, Australia
- * E-mail:
| |
Collapse
|
199
|
Oh Y, Lai JSY, Mills HJ, Erdjument-Bromage H, Giammarinaro B, Saadipour K, Wang JG, Abu F, Neubert TA, Suh GSB. A glucose-sensing neuron pair regulates insulin and glucagon in Drosophila. Nature 2019; 574:559-564. [PMID: 31645735 PMCID: PMC6857815 DOI: 10.1038/s41586-019-1675-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 09/16/2019] [Indexed: 01/08/2023]
Abstract
Although glucose-sensing neurons were identified more than 50 years ago, the physiological role of glucose sensing in metazoans remains unclear. Here we identify a pair of glucose-sensing neurons with bifurcated axons in the brain of Drosophila. One axon branch projects to insulin-producing cells to trigger the release of Drosophila insulin-like peptide 2 (dilp2) and the other extends to adipokinetic hormone (AKH)-producing cells to inhibit secretion of AKH, the fly analogue of glucagon. These axonal branches undergo synaptic remodelling in response to changes in their internal energy status. Silencing of these glucose-sensing neurons largely disabled the response of insulin-producing cells to glucose and dilp2 secretion, disinhibited AKH secretion in corpora cardiaca and caused hyperglycaemia, a hallmark feature of diabetes mellitus. We propose that these glucose-sensing neurons maintain glucose homeostasis by promoting the secretion of dilp2 and suppressing the release of AKH when haemolymph glucose levels are high.
Collapse
Affiliation(s)
- Yangkyun Oh
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Jason Sih-Yu Lai
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- QPS-Qualitix Taiwan, Ren-Ai Road, Taipei, Taiwan
| | - Holly J Mills
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Ascend Public Charter Schools, New York, NY, USA
| | - Hediye Erdjument-Bromage
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Benno Giammarinaro
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Vision Sciences Graduate Program, School of Optometry, UC Berkeley, Berkeley, CA, USA
| | - Khalil Saadipour
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Justin G Wang
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Farhan Abu
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Thomas A Neubert
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Greg S B Suh
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
200
|
Gupta HP, Jha RR, Ahmad H, Patel DK, Ravi Ram K. Xenobiotic mediated diabetogenesis: Developmental exposure to dichlorvos or atrazine leads to type 1 or type 2 diabetes in Drosophila. Free Radic Biol Med 2019; 141:461-474. [PMID: 31319158 DOI: 10.1016/j.freeradbiomed.2019.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/14/2019] [Accepted: 07/14/2019] [Indexed: 12/18/2022]
Abstract
The increased incidence of diabetes to the magnitude of a global epidemic is attributed to non-traditional risk factors, including exposure to environmental chemicals. However, the contribution of xenobiotic exposure during the development of an organism to the etiology of diabetes is not fully addressed. Developing stages are more susceptible to chemical insult, but knowledge on the consequence of the same to the onset of diabetes is residual. In this context, by using Drosophila melanogaster having conserved Insulin/Insulin growth factor-like signaling (IIS) as well as glucose homeostasis as a model, we evaluated the potential of developmental exposure to dichlorvos (DDVP, an organophosphorus pesticide) or atrazine (herbicide) to cause diabetes in exposed organisms. Flies exposed to DDVP during their development display insulin deficiency or type 1 diabetes (T1D) while those exposed to atrazine show insulin resistance or type 2 diabetes (T2D), suggesting that exposure to these xenobiotics during organismal development can result in diabetes and that different mechanisms underlie pesticide mediated diabetes. We show that oxidative stress-mediated c-Jun N-terminal kinase (JNK) signaling activation underlies insulin resistance in flies exposed to atrazine during their development while DDVP-mediated T1D involves activation of caspase-mediated cell death pathway. Mitigation of oxidative stress through over-expression of SOD2 in atrazine (20μg/ml) exposed flies, revealed significantly decreased oxidative stress levels and reduced phosphorylation of JNK. Moreover, glucose and Akt phosphorylation levels in SOD2 over-expression flies exposed to atrazine were comparable to those in controls, suggesting restoration in insulin sensitivity. Therefore, exposure to xenobiotics during development is a common risk factor for the development of type 1 or type 2 diabetes. Accordingly, the present study cautions against the use of such diabetogenic pesticides. Also, mitigation of oxidative stress or anti-oxidant supplementation could be a potential therapy for xenobiotic mediated type 2 diabetes.
Collapse
Affiliation(s)
- Himanshu Pawankumar Gupta
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Rakesh Roshan Jha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India; Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India
| | - Humaira Ahmad
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Devendra Kumar Patel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India; Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India
| | - Kristipati Ravi Ram
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|