151
|
Neri C, Edlow AG. Effects of Maternal Obesity on Fetal Programming: Molecular Approaches. Cold Spring Harb Perspect Med 2015; 6:a026591. [PMID: 26337113 DOI: 10.1101/cshperspect.a026591] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Maternal obesity has become a worldwide epidemic. Obesity and a high-fat diet have been shown to have deleterious effects on fetal programming, predisposing offspring to adverse cardiometabolic and neurodevelopmental outcomes. Although large epidemiological studies have shown an association between maternal obesity and adverse outcomes for offspring, the underlying mechanisms remain unclear. Molecular approaches have played a key role in elucidating the mechanistic underpinnings of fetal malprogramming in the setting of maternal obesity. These approaches include, among others, characterization of epigenetic modifications, microRNA expression, the gut microbiome, the transcriptome, and evaluation of specific mRNA expression via quantitative reverse transcription polmerase chain reaction (RT-qPCR) in fetuses and offspring of obese females. This work will review the data from animal models and human fluids/cells regarding the effects of maternal obesity on fetal and offspring neurodevelopment and cardiometabolic outcomes, with a particular focus on molecular approaches.
Collapse
Affiliation(s)
- Caterina Neri
- Department of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome 00100, Italy
| | - Andrea G Edlow
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Tufts Medical Center, Boston, Massachusetts 02111 Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| |
Collapse
|
152
|
Du Q, Hosoda H, Umekawa T, Kinouchi T, Ito N, Miyazato M, Kangawa K, Ikeda T. Postnatal weight gain induced by overfeeding pups and maternal high-fat diet during the lactation period modulates glucose metabolism and the production of pancreatic and gastrointestinal peptides. Peptides 2015; 70:23-31. [PMID: 26022984 DOI: 10.1016/j.peptides.2015.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/14/2015] [Accepted: 05/05/2015] [Indexed: 12/25/2022]
Abstract
The impact of rapid weight gain on glucose metabolism during the early postnatal period remains unclear. We investigated the influence of rapid weight gain under different nutritional conditions on glucose metabolism, focusing on the production of pancreatic and gastric peptides. On postnatal day (PND) 2, C57BL/6N pups were divided into three groups: control (C) pups whose dams were fed a control diet (10%kcal fat) and nursed 10 pups each; maternal high-fat diet (HFD) pups whose dams were fed an HFD (45%kcal fat) and nursed 10 pups each; and overfeeding (OF) pups whose dams were fed the control diet and nursed 4 pups each. Data were collected on PND 7, 14 and 21. The body weight gains of the HFD and OF pups were 1.2 times higher than that of the C pups. On PND 14, the HFD pups had higher blood glucose levels, but there were no significant differences in serum insulin levels between the HFD and C pups. The OF pups had higher blood glucose and serum insulin levels than that of the C pups. Insulin resistance was found in the HFD and OF pups. On PND 14, the content of incretins in the jejunum was increased in the OF pups, and acyl ghrelin in the stomach was upregulated in the HFD and OF pups. These results suggest that neonatal weight gain induced by overfeeding pups and maternal high-fat diet during the early postnatal period modulates the insulin sensitivity and the production of pancreatic and gastrointestinal peptides.
Collapse
Affiliation(s)
- Qinwen Du
- Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, Tsu, Japan; Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Hiroshi Hosoda
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| | - Takashi Umekawa
- Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Toshi Kinouchi
- Nutrition Research Department, Meiji Co., Ltd., Odawara, Japan
| | - Natsuki Ito
- Nutrition Research Department, Meiji Co., Ltd., Odawara, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
153
|
Abstract
In this monograph, the message is that early inactivity and obesity lead to later chronic disease, and, as such, physical inactivity should be recognized as a public health crisis. Sedentary behavior, to some extent, serves a purpose in our current culture (e.g., keeping children indoors keeps them safe), and, as such, may not be amenable to change. Thus, it is important that we understand the underpinnings of later-developing chronic disease as this complex public health issue may have roots that go deeper than sedentary behavior. In this commentary, I speculate on the mechanisms for physical activity exacting positive changes on cognitive abilities. Three potential mechanisms are discussed: glucose transport, postnatal neurogenesis, and vitamin synthesis, all of which are inextricably linked to nutrition. This discussion of mechanisms is followed by a discussion of tractable correlates of the progression to non-communicable disease in the adult.
Collapse
|
154
|
Wang H, Ji J, Yu Y, Wei X, Chai S, Liu D, Huang D, Li Q, Dong Z, Xiao X. Neonatal Overfeeding in Female Mice Predisposes the Development of Obesity in their Male Offspring via Altered Central Leptin Signalling. J Neuroendocrinol 2015; 27:600-8. [PMID: 25855235 DOI: 10.1111/jne.12281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 03/15/2015] [Accepted: 03/31/2015] [Indexed: 02/01/2023]
Abstract
The prevalence of obesity among child-bearing women has increased significantly. The adverse consequences of maternal obesity on the descendants have been well accepted, although few studies have examined the underlying mechanisms. We investigated whether neonatal overfeeding in female mice alters metabolic phenotypes in the offspring and whether hypothalamic leptin signalling is involved. Neonatal overfeeding was induced by reducing the litter size to three pups per litter, in contrast to normal litter size of 10 pups per litter. Normal and neonatally overfed female mice were bred with normal male mice, and offspring of overfeeding mothers (OOM) and control mothers (OCM) were generated. We examined body weight, daily food intake, leptin responsiveness and the number of positive neurones for phosphorylated-signal transducer and activator of transcription 3 (pSTAT3) along with neuropeptide Y (NPY) in the arcuate nucleus of the hypothalamus (ARH) and NPY in the nucleus tractus solitarius (NTS) of the brain stem. The body weight and daily food intake of OOM were significantly higher than those of OCM. Leptin significantly reduced food intake and increased the number of pSTAT3 positive neurones in the ARH of OCM mice, whereas no significant changes in food intake and pSTAT3 neurones were found in leptin-treated OOM mice. The number of NPY neurones in the ARH and NTS of the OOM mice was significantly higher than that of OCM mice. The results of the present study indicate that the obese phenotype from mothers can be passed onto the subsequent generation, which is possibly associated with hypothalamic leptin resistance.
Collapse
Affiliation(s)
- H Wang
- Laboratory of Lipid & Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - J Ji
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Y Yu
- Laboratory of Lipid & Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - X Wei
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - S Chai
- Laboratory of Lipid & Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - D Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - D Huang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Q Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Z Dong
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - X Xiao
- Laboratory of Lipid & Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
155
|
Early-life exposure to high-fat diet may predispose rats to gender-specific hepatic fat accumulation by programming Pepck expression. J Nutr Biochem 2015; 26:433-40. [DOI: 10.1016/j.jnutbio.2014.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 09/28/2014] [Accepted: 10/16/2014] [Indexed: 12/25/2022]
|
156
|
Miotto PM, Castelli LM, Amoye F, Ward WE, LeBlanc PJ. High saturated fat diet alters the lipid composition of triacylglycerol and polar lipids in the femur of dam and offspring rats. Lipids 2015; 50:605-10. [PMID: 25920746 DOI: 10.1007/s11745-015-4023-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 04/13/2015] [Indexed: 11/28/2022]
Abstract
Previous work has shown that dietary lipids alter femur lipid composition. Specifically, we have shown that exposure to high saturated fatty acid (SFA) diets in utero, during suckling, or post-weaning alters femur total lipid composition, resulting in higher percent bone mass in males and females and bone mineral density (BMD) in female offspring with no effect on bone mineral outcomes in dams. Comparatively, high n-3 polyunsaturated fatty acid (PUFA) diets increase femur polar (PL) lipid n-3 content, which has been associated with increased bone mineral content and strength. However, the extent that PL or triacylglycerol (TAG) lipids change with high SFA diets is unknown. The current investigation examined the influence of a high SFA diet (20 % lard by weight) on femur PL and TAG lipid composition in 5-month old female Wistar rats (fed high SFA diet from age 28 days onwards; dams) and their 19-day old offspring (exposed to high SFA in utero and during suckling; pups). High SFA exposure resulted in increased monounsaturates and decreased n-3 and n-6 PUFA in the TAG fraction in both dams and pups, and higher SFA and n-6:n-3 ratio in dams only. The PL fraction showed decreased n-6 PUFA in both dams and pups. The magnitude of the diet-mediated responses, specifically TAG 18:1 and PL n-6 PUFA, may have contributed to the previously reported altered BMD, which was supported with correlation analysis. Future research should investigate the relationship of diet-induced changes in bone lipids on bone structure, as quantified through micro-computed tomography.
Collapse
Affiliation(s)
- Paula M Miotto
- Department of Health Sciences, Faculty of Applied Health Sciences, Centre for Bone and Muscle Health, Brock University, 500 Glenridge Ave., St., Catharines, ON, L2S 3A1, Canada
| | | | | | | | | |
Collapse
|
157
|
Chaplin A, Parra P, Serra F, Palou A. Conjugated Linoleic Acid Supplementation under a High-Fat Diet Modulates Stomach Protein Expression and Intestinal Microbiota in Adult Mice. PLoS One 2015; 10:e0125091. [PMID: 25915857 PMCID: PMC4411160 DOI: 10.1371/journal.pone.0125091] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/13/2015] [Indexed: 12/19/2022] Open
Abstract
The gastrointestinal tract constitutes a physiological interface integrating nutrient and microbiota-host metabolism. Conjugated linoleic acids (CLA) have been reported to contribute to decreased body weight and fat accretion. The modulation by dietary CLA of stomach proteins related to energy homeostasis or microbiota may be involved, although this has not been previously analysed. This is examined in the present study, which aims to underline the potential mechanisms of CLA which contribute to body weight regulation. Adult mice were fed either a normal fat (NF, 12% kJ content as fat) or a high-fat (HF, 43% kJ content as fat) diet. In the latter case, half of the animals received daily oral supplementation of CLA. Expression and content of stomach proteins and specific bacterial populations from caecum were analysed. CLA supplementation was associated with an increase in stomach protein expression, and exerted a prebiotic action on both Bacteroidetes/Prevotella and Akkermansia muciniphila. However, CLA supplementation was not able to override the negative effects of HF diet on Bifidobacterium spp., which was decreased in both HF and HF+CLA groups. Our data show that CLA are able to modulate stomach protein expression and exert a prebiotic effect on specific gut bacterial species.
Collapse
Affiliation(s)
- Alice Chaplin
- Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | - Pilar Parra
- Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| |
Collapse
|
158
|
Maternal high-protein diet during pregnancy, but not during suckling, induced altered expression of an increasing number of hepatic genes in adult mouse offspring. Eur J Nutr 2015; 55:917-30. [PMID: 25903260 DOI: 10.1007/s00394-015-0906-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 04/09/2015] [Indexed: 01/04/2023]
Abstract
PURPOSE Indirect effects of a high-protein maternal diet are not well understood. In this study, we analyzed short-term and sustainable effects of a prenatal versus early postnatal maternal high-protein diet on growth and hepatic gene expression in mouse offspring. METHODS Dams were exposed to an isoenergetic high-protein (HP, 40 % w/w) diet during pregnancy or lactation. Growth and hepatic expression profiles of male offspring were evaluated directly after weaning and 150 days after birth. Offspring from two dietary groups, high-protein diet during pregnancy and control diet during lactation (HPC), and control diet during pregnancy and high-protein diet during lactation (CHP), were compared with offspring (CC) from control-fed dams. RESULTS Maternal CHP treatment was associated with sustained offspring growth retardation, but decreased numbers of affected hepatic genes in adults compared to weanlings. In contrast, offspring of the HPC group did not show persistent effects on growth parameters, but the number of affected hepatic genes was even increased at adult age. In both dietary groups, however, only a small subset of genes was affected in weanlings as well as in adults. CONCLUSIONS We conclude that (1) prenatal and early postnatal maternal HP diet caused persistent, but (2) different effects and partially complementary trends on growth characteristics and on the hepatic transcriptome and associated pathways and that (3) only a small number of genes and associated upstream regulators might be involved in passing early diet-induced imprints to adulthood.
Collapse
|
159
|
Kayser BD, Goran MI, Bouret SG. Perinatal overnutrition exacerbates adipose tissue inflammation caused by high-fat feeding in C57BL/6J mice. PLoS One 2015; 10:e0121954. [PMID: 25835281 PMCID: PMC4383546 DOI: 10.1371/journal.pone.0121954] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/06/2015] [Indexed: 12/24/2022] Open
Abstract
Obesity causes white adipose tissue (WAT) inflammation and insulin resistance in some, but not all individuals. Here, we used a mouse model of early postnatal overfeeding to determine the role of neonatal nutrition in lifelong WAT inflammation and metabolic dysfunction. C57BL/6J mice were reared in small litters of 3 (SL) or normal litters of 7 pups (NL) and fed either regular chow or a 60% high fat diet (HFD) from 5 to 17 weeks. At weaning, SL mice did not develop WAT inflammation despite increased fat mass, although there was an up-regulation of WAT Arg1 and Tlr4 expression. On HFD, adult SL mice had greater inguinal fat mass compared to NL mice, however both groups showed similar increases in visceral fat depots and adipocyte hypertrophy. Despite the similar levels of visceral adiposity, SL-HFD mice displayed greater impairments in glucose homeostasis and more pronounced hepatic steatosis compared to NL-HFD mice. In addition, WAT from SL mice fed a HFD displayed greater crown-like structure formation, increased M1 macrophages, and higher cytokine gene expression. Together, these data suggest that early postnatal overnutrition may be a critical determinant of fatty liver and insulin resistance in obese adults by programming the inflammatory capacity of adipose tissue.
Collapse
Affiliation(s)
- Brandon D. Kayser
- Human and Evolutionary Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, United States of America
- Department of Preventive Medicine, Keck School of Medicine, Childhood Obesity Research Center, University of Southern California, Los Angeles, California, United States of America
| | - Michael I. Goran
- Department of Preventive Medicine, Keck School of Medicine, Childhood Obesity Research Center, University of Southern California, Los Angeles, California, United States of America
| | - Sebastien G. Bouret
- Developmental Neuroscience Program, The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
160
|
Adult offspring of high-fat diet-fed dams can have normal glucose tolerance and body composition. J Dev Orig Health Dis 2015; 5:229-39. [PMID: 24901663 PMCID: PMC4098028 DOI: 10.1017/s2040174414000154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Maternal high-fat diet consumption and obesity have been shown to program long-term obesity and lead to impaired glucose tolerance in offspring. Many rodent studies, however, use non-purified, cereal-based diets as the control for purified high-fat diets. In this study, primiparous ICR mice were fed purified control diet (10–11 kcal% from fat of lard or butter origin) and lard (45 or 60 kcal% fat) or butter (32 or 60 kcal% fat)-based high-fat diets for 4 weeks before mating, throughout pregnancy, and for 2 weeks of nursing. Before mating, female mice fed the 32 and 60% butter-based high-fat diets exhibited impaired glucose tolerance but those females fed the lard-based diets showed normal glucose disposal following a glucose challenge. High-fat diet consumption by female mice of all groups decreased lean to fat mass ratios during the 4th week of diet treatment compared with those mice consuming the 10–11% fat diets. All females were bred to male mice and pregnancy and offspring outcomes were monitored. The body weight of pups born to 45% lard-fed dams was significantly increased before weaning, but only female offspring born to 32% butter-fed dams exhibited long-term body weight increases. Offspring glucose tolerance and body composition were measured for at least 1 year. Minimal, if any, differences were observed in the offspring parameters. These results suggest that many variables should be considered when designing future high-fat diet feeding and maternal obesity studies in mice.
Collapse
|
161
|
Ngo HT, Hetland RB, Steffensen IL. The intrauterine and nursing period is a window of susceptibility for development of obesity and intestinal tumorigenesis by a high fat diet in Min/+ mice as adults. J Obes 2015; 2015:624023. [PMID: 25874125 PMCID: PMC4383426 DOI: 10.1155/2015/624023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/14/2014] [Accepted: 12/16/2014] [Indexed: 11/18/2022] Open
Abstract
We studied how obesogenic conditions during various life periods affected obesity and intestinal tumorigenesis in adult C57BL/6J-Min (multiple intestinal neoplasia)/+ mice. The mice were given a 10% fat diet throughout life (negative control) or a 45% fat diet in utero, during nursing, during both in utero and nursing, during adult life, or during their whole life-span, and terminated at 11 weeks for tumorigenesis (Min/+) or 23 weeks for obesogenic effect (wild-type). Body weight at 11 weeks was increased after a 45% fat diet during nursing, during both in utero and nursing, and throughout life, but had normalized at 23 weeks. In the glucose tolerance test, the early exposure to a 45% fat diet in utero, during nursing, or during both in utero and nursing, did not affect blood glucose, whereas a 45% fat diet given to adults or throughout life did. However, a 45% fat diet during nursing or during in utero and nursing increased the number of small intestinal tumors. So did exposures to a 45% fat diet in adult life or throughout life, but without increasing the tumor numbers further. The intrauterine and nursing period is a window of susceptibility for dietary fat-induced obesity and intestinal tumor development.
Collapse
Affiliation(s)
- Ha Thi Ngo
- Department of Food, Water and Cosmetics, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, 0403 Oslo, Norway
| | - Ragna Bogen Hetland
- Department of Food, Water and Cosmetics, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, 0403 Oslo, Norway
| | - Inger-Lise Steffensen
- Department of Food, Water and Cosmetics, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, 0403 Oslo, Norway
- *Inger-Lise Steffensen:
| |
Collapse
|
162
|
Boersma GJ, Tamashiro KL. Individual differences in the effects of prenatal stress exposure in rodents. Neurobiol Stress 2015; 1:100-8. [PMID: 27589662 PMCID: PMC4721332 DOI: 10.1016/j.ynstr.2014.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 01/18/2023] Open
Abstract
Exposure to prenatal stress alters the phenotype of the offspring in adulthood. When the prenatal and adult environments do not match, these alterations may induce pathology risk. There are, however, large individual differences in the effects of prenatal stress. While some individuals seem vulnerable, others appear to be relatively resistant to its effects. In this review we discuss potential mechanisms underlying these individual differences with a focus on animal models. Differences between rodent models selected for stress coping traits are discussed. In addition, the role of circulating factors, like glucocorticoids and cytokines, factors involved in brain development and influences of epigenetic and genetic factors in prenatal stress induced phenotype are covered.
Collapse
Affiliation(s)
- Gretha J. Boersma
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
163
|
MacPherson REK, Castelli LM, Miotto PM, Frendo-Cumbo S, Milburn A, Roy BD, LeBlanc PJ, Ward WE, Peters SJ. A maternal high fat diet has long-lasting effects on skeletal muscle lipid and PLIN protein content in rat offspring at young adulthood. Lipids 2015; 50:205-17. [PMID: 25552350 DOI: 10.1007/s11745-014-3985-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 12/16/2014] [Indexed: 01/08/2023]
Abstract
A maternal high fat diet (HFD) can have adverse effects on skeletal muscle development. Skeletal muscle PLIN proteins (PLIN2, 3 and 5) are thought to play critical roles in lipid metabolism, however effects of HFD on PLIN and lipases (HSL, ATGL, CGI-58) in mothers as well as their offspring have yet to be investigated. The primary objective of this study was to determine whether maternal HFD would influence skeletal muscle lipase and PLIN protein content in offspring at weaning (19 d) and young adulthood (3 mo). Female rats (28 d old, n = 9/group) were fed control (CON, AIN93G, 7% soybean oil) or HFD (AIN93G, 20% lard) for 10 weeks prior to mating and throughout pregnancy and lactation. All offspring were weaned to CON [n = 18/group, 1 female and 1 male pup per litter were studied at weaning (19 d) and 3 mo of age]. There was no effect of sex for the main outcomes measured in plantaris, therefore male and female data was combined. Maternal HFD resulted in higher triacylglycerol content in pups at 3 mo (p < 0.05), as well as in the dams (p = 0.015). Maternal HFD resulted in higher PLIN5 content in pups at weaning and 3 mo (p = 0.05). PLIN2 and PLIN5 content decreased at 3 mo versus weaning (p < 0.001). HFD dams had a higher PLIN3 content (p = 0.016). Diet had no effect on ATGL, CGI-58, or HSL content. In conclusion, exposure to a maternal HFD resulted in higher skeletal muscle lipid and PLIN5 content in plantaris of offspring through to young adulthood.
Collapse
Affiliation(s)
- Rebecca E K MacPherson
- Faculty of Applied Health Sciences, Center for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada,
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Hsu TM, Konanur VR, Taing L, Usui R, Kayser BD, Goran MI, Kanoski SE. Effects of sucrose and high fructose corn syrup consumption on spatial memory function and hippocampal neuroinflammation in adolescent rats. Hippocampus 2014; 25:227-39. [PMID: 25242636 DOI: 10.1002/hipo.22368] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2014] [Indexed: 12/27/2022]
Abstract
Excessive consumption of added sugars negatively impacts metabolic systems; however, effects on cognitive function are poorly understood. Also unknown is whether negative outcomes associated with consumption of different sugars are exacerbated during critical periods of development (e.g., adolescence). Here we examined the effects of sucrose and high fructose corn syrup-55 (HFCS-55) intake during adolescence or adulthood on cognitive and metabolic outcomes. Adolescent or adult male rats were given 30-day access to chow, water, and either (1) 11% sucrose solution, (2) 11% HFCS-55 solution, or (3) an extra bottle of water (control). In adolescent rats, HFCS-55 intake impaired hippocampal-dependent spatial learning and memory in a Barne's maze, with moderate learning impairment also observed for the sucrose group. The learning and memory impairment is unlikely based on nonspecific behavioral effects as adolescent HFCS-55 consumption did not impact anxiety in the zero maze or performance in a non-spatial response learning task using the same mildly aversive stimuli as the Barne's maze. Protein expression of pro-inflammatory cytokines (interleukin 6, interleukin 1β) was increased in the dorsal hippocampus for the adolescent HFCS-55 group relative to controls with no significant effect in the sucrose group, whereas liver interleukin 1β and plasma insulin levels were elevated for both adolescent-exposed sugar groups. In contrast, intake of HFCS-55 or sucrose in adults did not impact spatial learning, glucose tolerance, anxiety, or neuroinflammatory markers. These data show that consumption of added sugars, particularly HFCS-55, negatively impacts hippocampal function, metabolic outcomes, and neuroinflammation when consumed in excess during the adolescent period of development.
Collapse
Affiliation(s)
- Ted M Hsu
- Neuroscience Program, University of Southern California, Los Angeles, CA; Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
165
|
Kang I, Okla M, Chung S. Ellagic acid inhibits adipocyte differentiation through coactivator-associated arginine methyltransferase 1-mediated chromatin modification. J Nutr Biochem 2014; 25:946-53. [DOI: 10.1016/j.jnutbio.2014.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/04/2014] [Accepted: 04/15/2014] [Indexed: 12/17/2022]
|
166
|
Sun B, Song L, Tamashiro KLK, Moran TH, Yan J. Large litter rearing improves leptin sensitivity and hypothalamic appetite markers in offspring of rat dams fed high-fat diet during pregnancy and lactation. Endocrinology 2014; 155:3421-33. [PMID: 24926823 PMCID: PMC5393320 DOI: 10.1210/en.2014-1051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 06/06/2014] [Indexed: 01/09/2023]
Abstract
Maternal high-fat (HF) diet has long-term consequences on the offspring's metabolic phenotype. Here, we determined the effects of large litter (LL) rearing in offspring of rat dams fed HF diet during gestation and lactation. Pregnant Sprague-Dawley rats were maintained on standard chow (CHOW) or HF diet throughout gestation and lactation. Pups were raised in normal litters (NLs) (10 pups/dam) or LLs (16 pups/dam) during lactation, resulting in 4 groups: CHOW-NL, CHOW-LL, HF-NL, and HF-LL. The offspring were weaned onto to either CHOW or HF diet on postnatal day 21. Male and female pups with maternal HF diet (HF-NL) had greater body weight and adiposity, higher plasma leptin levels, impaired glucose tolerance, abnormal hypothalamic leptin signaling pathways (lower leptin receptor-b [OB-Rb] and signal transducer and activator of transcription 3, higher suppressor of cytokine signaling 3 mRNA expression) and appetite markers (lower neuropeptide Y and Agouti-related peptide mRNA expression), and reduced phospho-signal transducer and activator of transcription 3 level in response to leptin in the arcuate nucleus at weaning, whereas LL rearing normalized these differences. When weaned onto CHOW diet, adult male offspring from HF diet-fed dams continued to have greater adiposity, higher leptin levels, and lower hypothalamic OB-Rb, and LL rearing improved them. When weaned onto HF diet, both adult male and female offspring with maternal HF diet had greater body weight and adiposity, higher leptin levels, impaired glucose tolerance, lower OB-Rb, and higher suppressor of cytokine signaling 3 in hypothalamus compared with those of CHOW dams, whereas LL rearing improved most of them except male OB-Rb expression. Our data suggest that LL rearing improves hypothalamic leptin signaling pathways and appetite markers in an age- and sex-specific manner in this model.
Collapse
Affiliation(s)
- Bo Sun
- Department of Physiology and Pathophysiology (B.S., L.S., J.Y.), Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, People's Republic of China; and Department of Psychiatry and Behavioral Sciences (K.L.K.T., T.H.M.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | | | |
Collapse
|
167
|
Boersma GJ, Bale TL, Casanello P, Lara HE, Lucion AB, Suchecki D, Tamashiro KL. Long-term impact of early life events on physiology and behaviour. J Neuroendocrinol 2014; 26:587-602. [PMID: 24690036 DOI: 10.1111/jne.12153] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/14/2014] [Accepted: 03/25/2014] [Indexed: 01/12/2023]
Abstract
This review discusses the effects of stress and nutrition throughout development and summarises studies investigating how exposure to stress or alterations in nutrition during the pre-conception, prenatal and early postnatal periods can affect the long-term health of an individual. In general, the data presented here suggest that that anything signalling potential adverse conditions later in life, such as high levels of stress or low levels of food availability, will lead to alterations in the offspring, possibly of an epigenetic nature, preparing the offspring for these conditions later in life. However, when similar environmental conditions are not met in adulthood, these alterations may have maladaptive consequences, resulting in obesity and heightened stress sensitivity. The data also suggest that the mechanism underlying these adult phenotypes might be dependent on the type and the timing of exposure.
Collapse
Affiliation(s)
- G J Boersma
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
168
|
Yang Y, Moghadam AA, Cordner ZA, Liang NC, Moran TH. Long term exendin-4 treatment reduces food intake and body weight and alters expression of brain homeostatic and reward markers. Endocrinology 2014; 155:3473-83. [PMID: 24949661 PMCID: PMC4138563 DOI: 10.1210/en.2014-1052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Repeated administration of the long-acting glucagon-like peptide 1 receptor agonist exendin-4 (EX-4) has been shown to reduce food intake and body weight and do so without a rebound increase in food intake after treatment termination. The current study examines the neural mechanisms underlying these actions. After 6 weeks of maintenance on a standard chow or a high-fat (HF) diet, male Sprague Dawley rats were treated with EX-4 (3.2 μg/kg, i.p., twice a day) or vehicle for 9 consecutive days. Food intake and body weight (BW) were monitored daily. Expression of the genes for the hypothalamic arcuate nucleus (ARC) peptides proopiomelanocortin (POMC), neuropeptide Y (NPY), and agouti gene-related protein was determined. Expression of the dopamine precursor tyrosine hydroxylase (TH) gene in the ventral tegmental area and genes for dopamine receptors 1 (D1R) and dopamine receptor 2 in the nucleus accumbens were also determined. Pair-fed groups were included to control for the effects of reduced food intake and BW. Treatment with EX-4 significantly decreased food intake and BW over the 9-day period in both the standard chow and HF groups. HF feeding decreased POMC without changing NPY/agouti gene-related protein gene expression in the ARC. Treatment with EX-4 increased POMC and decreased NPY expression independent of the reduction of food intake and BW. Mesolimbic TH and D1R gene expression were decreased significantly in chronic HF diet-fed rats, and these changes were reversed in both EX-4 and pair-fed conditions. These results suggest a role for increased POMC and decreased NPY expression in the ARC in the effects of EX-4 on food intake and BW. Our findings also suggest that EX-4 induced the recovery of mesolimbic TH and D1R expression in HF diet-fed rats may be secondary to HF intake reduction and/or weight loss.
Collapse
Affiliation(s)
- Yan Yang
- Department of Endocrinology (Y.Y.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Department of Psychiatry and Behavioral Sciences (Y.Y., A.A.M., Z.A.C., T.H.M.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; and Department of Psychology (N.C.L.), University of Illinois-Urbana Champaign, Champaign, Illinois 61820
| | | | | | | | | |
Collapse
|
169
|
Maternal high-fat diet modulates hepatic glucose, lipid homeostasis and gene expression in the PPAR pathway in the early life of offspring. Int J Mol Sci 2014; 15:14967-83. [PMID: 25158235 PMCID: PMC4200747 DOI: 10.3390/ijms150914967] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 01/11/2023] Open
Abstract
Maternal dietary modifications determine the susceptibility to metabolic diseases in adult life. However, whether maternal high-fat feeding can modulate glucose and lipid metabolism in the early life of offspring is less understood. Furthermore, we explored the underlying mechanisms that influence the phenotype. Using C57BL/6J mice, we examined the effects on the offspring at weaning from dams fed with a high-fat diet or normal chow diet throughout pregnancy and lactation. Gene array experiments and quantitative real-time PCR were performed in the liver tissues of the offspring mice. The offspring of the dams fed the high-fat diet had a heavier body weight, impaired glucose tolerance, decreased insulin sensitivity, increased serum cholesterol and hepatic steatosis at weaning. Bioinformatic analyses indicated that all differentially expressed genes of the offspring between the two groups were mapped to nine pathways. Genes in the peroxisome proliferator-activated receptor (PPAR) signaling pathway were verified by quantitative real-time PCR and these genes were significantly up-regulated in the high-fat diet offspring. A maternal high-fat diet during pregnancy and lactation can modulate hepatic glucose, lipid homeostasis, and gene expression in the PPAR signaling in the early life of offspring, and our results suggested that potential mechanisms that influences this phenotype may be related partially to up-regulate some gene expression in the PPAR signalling pathway.
Collapse
|
170
|
Wicklow BA, Sellers EAC. Maternal health issues and cardio-metabolic outcomes in the offspring: a focus on Indigenous populations. Best Pract Res Clin Obstet Gynaecol 2014; 29:43-53. [PMID: 25238683 DOI: 10.1016/j.bpobgyn.2014.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/13/2014] [Indexed: 01/28/2023]
Abstract
Non-communicable diseases (NCDs) including diabetes, obesity and cardiovascular disease are the leading causes of death worldwide. Indigenous populations are disproportionally affected. In an effort to halt the increasing disease burden, the mechanisms underlying the increasing rate of NCDs are an important area of study. Recent evidence has focused on the perinatal period as an influential period impacting the future cardio-metabolic health of the offspring. This concept has been defined as metabolic foetal programming and supports the importance of the developmental origins of health and disease in research and clinical practice, specifically in prevention efforts to protect future generations from NCDs. An understanding of the underlying mechanisms involved is not clear as of yet. However, an understanding of these mechanisms is imperative in order to plan effective intervention strategies. As much of the discussion below is gleaned from large epidemiological studies and animal studies, further research with prospective cohorts is necessary.
Collapse
Affiliation(s)
- Brandy A Wicklow
- Department of Paediatric and Child Health, University of Manitoba, FE- 307 685 William Avenue, Winnipeg, Manitoba R3E 0Z2, Canada.
| | - Elizabeth A C Sellers
- Department of Paediatric and Child Health, University of Manitoba, FE- 307 685 William Avenue, Winnipeg, Manitoba R3E 0Z2, Canada.
| |
Collapse
|
171
|
Dearden L, Balthasar N. Sexual dimorphism in offspring glucose-sensitive hypothalamic gene expression and physiological responses to maternal high-fat diet feeding. Endocrinology 2014; 155:2144-54. [PMID: 24684305 PMCID: PMC4183922 DOI: 10.1210/en.2014-1131] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A wealth of animal and human studies demonstrate that early life environment significantly influences adult metabolic balance, however the etiology for offspring metabolic misprogramming remains incompletely understood. Here, we determine the effect of maternal diet per se on offspring sex-specific outcomes in metabolic health and hypothalamic transcriptome regulation in mice. Furthermore, to define developmental periods of maternal diet misprogramming aspects of offspring metabolic balance, we investigated offspring physiological and transcriptomic consequences of maternal high-fat/high-sugar diet feeding during pregnancy and/or lactation. We demonstrate that female offspring of high-fat/high-sugar diet-fed dams are particularly vulnerable to metabolic perturbation with body weight increases due to postnatal processes, whereas in utero effects of the diet ultimately lead to glucose homeostasis dysregulation. Furthermore, glucose- and maternal-diet sensitive gene expression modulation in the paraventricular hypothalamus is strikingly sexually dimorphic. In summary, we uncover female-specific, maternal diet-mediated in utero misprogramming of offspring glucose homeostasis and a striking sexual dimorphism in glucose- and maternal diet-sensitive paraventricular hypothalamus gene expression adjustment. Notably, female offspring metabolic vulnerability to maternal high-fat/high-sugar diet propagates a vicious cycle of obesity and type 2 diabetes in subsequent generations.
Collapse
Affiliation(s)
- Laura Dearden
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | |
Collapse
|
172
|
Hou M, Chu Z, Liu T, Lv H, Sun L, Wang B, Huang J, Yan W. A high-fat maternal diet decreases adiponectin receptor-1 expression in offspring. J Matern Fetal Neonatal Med 2014; 28:216-21. [PMID: 24724805 DOI: 10.3109/14767058.2014.914489] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In early life, over-nutrition may increase the risk of insulin resistance in the adult stage. Adiponectin and its receptor may play a key role in this process. This study aimed to identify the effect of a high-fat (HF) maternal diet on metabolic parameters and muscle adiponectin signaling in young adult offspring. We found that offspring born to dams fed HF chow (HF; 31% of calories from fat) had elevated body and adipose tissue weight and higher serum glucose levels after glucose challenge at three weeks (W3) and eight weeks (W8) of age. Offspring exposed to a HF diet also had higher serum adiponectin levels at W3 compared to controls. However, adiponectin levels were significantly decreased compared to controls by W8. Adiponectin receptor 1 mRNA expression in skeletal muscle was decreased in the HF group at W3 and W8, and there was no difference between the two groups in adiponectin receptor 2 expression. Furthermore, glucose transporter 4 mRNA and protein expression was decreased in the skeletal muscle of the HF group at W3 and W8. Our results suggest that a HF maternal diet decreases adiponectin receptor 1 expression in the offspring, which could contribute to reduced sensitivity to adiponectin and to adverse nutritional programing outcomes.
Collapse
Affiliation(s)
- Miao Hou
- Department of Cardiology, Soochow University Affiliated Children's Hospital , Suzhou , China and
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Waterland RA. Epigenetic mechanisms affecting regulation of energy balance: many questions, few answers. Annu Rev Nutr 2014; 34:337-55. [PMID: 24850387 DOI: 10.1146/annurev-nutr-071813-105315] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Extensive human and animal model data show that nutrition and other environmental influences during critical periods of embryonic, fetal, and early postnatal life can affect the development of body weight regulatory pathways, with permanent consequences for risk of obesity. Epigenetic processes are widely viewed as a leading mechanism to explain the lifelong persistence of such "developmental programming" of energy balance. Despite meaningful progress in recent years, however, significant research obstacles impede our ability to test this hypothesis. Accordingly, this review attempts to summarize progress toward answering the following outstanding questions: Is epigenetic dysregulation a major cause of human obesity? In what cells/tissues is epigenetic regulation most important for energy balance? Does developmental programming of human body weight regulation occur via epigenetic mechanisms? Do epigenetic mechanisms have a greater impact on food intake or energy expenditure? Does epigenetic inheritance contribute to transgenerational patterns of obesity? In each case, significant obstacles and suggested approaches to surmounting them are elaborated.
Collapse
Affiliation(s)
- Robert A Waterland
- Departments of Pediatrics and Molecular & Human Genetics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, Houston, Texas 77030;
| |
Collapse
|
174
|
Grayson BE, Schneider KM, Woods SC, Seeley RJ. Improved rodent maternal metabolism but reduced intrauterine growth after vertical sleeve gastrectomy. Sci Transl Med 2014; 5:199ra112. [PMID: 23966301 DOI: 10.1126/scitranslmed.3006505] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Obesity has profound negative consequences on female reproduction as well as on the metabolic health of offspring. Bariatric surgery is the most effective method for sustained weight loss. A critical question is whether bariatric surgery can reverse the deleterious effects of obesity on both female reproduction and subsequent offspring. Vertical sleeve gastrectomy (VSG) is a bariatric procedure rapidly growing in popularity because it provides weight loss and other metabolic benefits that are comparable to those offered by the more complicated Roux-en-Y gastric bypass (RYGB). Female rats rendered obese on a high-fat diet (HFD) underwent either VSG or sham surgery. Like their male counterparts, females had significant metabolic improvements including reduced adiposity and improved glucose tolerance. After VSG, female rats showed a more normal reproductive cycle. Despite these maternal benefits, the offspring of dams receiving VSG were born smaller and lighter than offspring of control dams that underwent sham surgery. When maintained on an HFD after puberty, these adult offspring had a greater propensity to develop glucose intolerance and increased adiposity than the offspring of lean mothers or obese mothers who underwent sham surgery. These data suggest that weight loss alone by obese mothers is not sufficient to reverse the deleterious effects of an HFD and obesity on their offspring.
Collapse
Affiliation(s)
- Bernadette E Grayson
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH 45237, USA
| | | | | | | |
Collapse
|
175
|
Additive effects of maternal high fat diet during lactation on mouse offspring. PLoS One 2014; 9:e92805. [PMID: 24664181 PMCID: PMC3963955 DOI: 10.1371/journal.pone.0092805] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/26/2014] [Indexed: 12/30/2022] Open
Abstract
Recent reports indicated that nutrition in early infancy might influence later child health outcomes such as obesity and metabolic syndrome. Therefore, we examined the effects of maternal high fat diet (HFD) during lactation on the onset of a metabolic syndrome in their offspring. All offspring were cross-fostered by dams on the same or opposite diet to yield 4 groups: offspring from HFD-fed dams suckled by HFD-fed dams (OHH) and by control diet (CD)-fed dams (OHC) and CD-fed dams suckled by HFD-fed dams (OCH) and by CD-fed dams (OCC) mice. We examined several metabolic syndrome-related factors including body weight, blood pressure, glucose tolerance and adipocytokines. Mean body weights of OHH and OCH mice were significantly higher than those of OHC and OCC mice, respectively, with elevated systolic blood pressure. Moreover, OHH and OCH mice revealed significantly worse glucose tolerance compared with the OHC and OCC mice, respectively. Triglyceride and leptin levels were significantly increased and adiponectin levels were significantly reduced by the maternal HFD during lactation, with similar changes in leptin and adiponectin mRNA expression but without histone modifications in adipose tissues. In addition, maternal obesity induced by HFD during lactation increased and prolonged the leptin surge in the offspring and the gender differences of leptin surge were observed. Our data suggested that maternal HFD during lactation might have an additive effect on the onset of the metabolic syndrome in the offspring, irrespective of the nutritional status in utero through the modified leptin surge.
Collapse
|
176
|
Impact of maternal hyperlipidic hypercholesterolaemic diet on male reproductive organs and testosterone concentration in rabbits. J Dev Orig Health Dis 2014; 5:183-8. [DOI: 10.1017/s2040174414000087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The concept of Developmental Origins of Health and Disease initially stemmed from the developmental programming of metabolic diseases. Reproductive functions and fertility in adulthood may also be programmed during foetal development. We studied the impact of dietary-induced maternal hyperlipidaemia and hypercholesterolaemia (HH), administered at 10 weeks of age and throughout the gestation and lactation, on male reproductive functions of rabbit offspring. Male rabbits born to HH dams and fed a control diet had significantly lighter testes and epididymes compared with rabbits born to control dams at adulthood. No significant changes in sperm concentration, sperm DNA integrity and sperm membrane composition were observed, but serum-free testosterone concentrations were decreased in HH males. This study confirms the importance of maternal metabolic status for the development of male reproductive organs.
Collapse
|
177
|
Parlee SD, MacDougald OA. Maternal nutrition and risk of obesity in offspring: the Trojan horse of developmental plasticity. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:495-506. [PMID: 23871838 PMCID: PMC3855628 DOI: 10.1016/j.bbadis.2013.07.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 07/05/2013] [Accepted: 07/08/2013] [Indexed: 12/22/2022]
Abstract
Mammalian embryos have evolved to adjust their organ and tissue development in response to an atypical environment. This adaptation, called phenotypic plasticity, allows the organism to thrive in the anticipated environment in which the fetus will emerge. Barker and colleagues proposed that if the environment in which the fetus emerges differs from that in which it develops, phenotypic plasticity may provide an underlying mechanism for disease. Epidemiological studies have shown that humans born small- or large-for-gestational-age, have a higher likelihood of developing obesity as adults. The amount and quality of food that the mother consumes during gestation influences birth weight, and therefore susceptibility of progeny to disease in later life. Studies in experimental animals support these observations, and find that obesity occurs as a result of maternal nutrient-restriction during gestation, followed by rapid compensatory growth associated with ad libitum food consumption. Therefore, obesity associated with maternal nutritional restriction has a developmental origin. Based on this phenomenon, one might predict that gestational exposure to a westernized diet would protect against future obesity in offspring. However, evidence from experimental models indicates that, like maternal dietary restriction, maternal consumption of a westernized diet during gestation and lactation interacts with an adult obesogenic diet to induce further obesity. Mechanistically, restriction of nutrients or consumption of a high fat diet during gestation may promote obesity in progeny by altering hypothalamic neuropeptide production and thereby increasing hyperphagia in offspring. In addition to changes in food intake these animals may also direct energy from muscle toward storage in adipose tissue. Surprisingly, generational inheritance studies in rodents have further indicated that effects on body length, body weight, and glucose tolerance appear to be propagated to subsequent generations. Together, the findings discussed herein highlight the concept that maternal nutrition contributes to a legacy of obesity. Thus, ensuring adequate supplies of a complete and balanced diet during and after pregnancy should be a priority for public health worldwide. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
Affiliation(s)
- Sebastian D Parlee
- Department of Molecular & Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
178
|
Treesukosol Y, Sun B, Moghadam AA, Liang NC, Tamashiro KL, Moran TH. Maternal high-fat diet during pregnancy and lactation reduces the appetitive behavioral component in female offspring tested in a brief-access taste procedure. Am J Physiol Regul Integr Comp Physiol 2014; 306:R499-509. [PMID: 24500433 DOI: 10.1152/ajpregu.00419.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maternal high-fat diet appears to disrupt several energy balance mechanisms in offspring. Here, female offspring from dams fed a high-fat diet (HF) did not significantly differ in body weight compared with those fed chow (CHOW), when weaned onto chow diet. Yet when presented with both a chow and a high-fat diet, high-fat intake was significantly higher in HF compared with CHOW offspring. To assess taste-based responsiveness, offspring (12 wk old) were tested in 30-min sessions (10-s trials) to a sucrose concentration series in a brief-access taste test. Compared with CHOW, the HF offspring initiated significantly fewer trials but did not significantly differ in the amount of concentration-dependent licking. Thus, rather than affect lick response (consummatory), maternal diet affects spout approach (appetitive), which may be attributed to motivation-related mechanisms. Consistent with this possibility, naltrexone, an opioid receptor antagonist, further reduced trial initiation, but not licking in both groups. With naltrexone administration, the group difference in trial initiation was no longer evident, suggesting differences in endogenous opioid activity between the two groups. Relative expression of μ-opioid receptor in the ventral tegmental area was significantly lower in HF rats. When trial initiation was not required in one-bottle intake tests, no main effect of maternal diet on the intake of sucrose and corn oil emulsions was observed. Thus, the maternal high-fat diet-induced difference in diet preference is not likely due to changes in the sensory orosensory component of the taste stimulus but may depend on alterations in satiety signals or absorptive mechanisms.
Collapse
Affiliation(s)
- Yada Treesukosol
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore Maryland
| | | | | | | | | | | |
Collapse
|
179
|
Jang H, Serra C. Nutrition, epigenetics, and diseases. Clin Nutr Res 2014; 3:1-8. [PMID: 24527414 PMCID: PMC3921290 DOI: 10.7762/cnr.2014.3.1.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 12/21/2013] [Accepted: 12/21/2013] [Indexed: 01/06/2023] Open
Abstract
Increasing epidemiological evidence suggests that maternal nutrition and environmental exposure early in development play an important role in susceptibility to disease in later life. In addition, these disease outcomes seem to pass through subsequent generations. Epigenetic modifications provide a potential link between the nutrition status during critical periods in development and changes in gene expression that may lead to disease phenotypes. An increasing body of evidence from experimental animal studies supports the role of epigenetics in disease susceptibility during critical developmental periods, including periconceptional period, gestation, and early postnatal period. The rapid improvements in genetic and epigenetic technologies will allow comprehensive investigations of the relevance of these epigenetic phenomena in human diseases.
Collapse
Affiliation(s)
- Hyeran Jang
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA. ; Harvard Medical School, Boston, MA 02115, USA
| | - Carlo Serra
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA. ; Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
180
|
Vogt MC, Paeger L, Hess S, Steculorum SM, Awazawa M, Hampel B, Neupert S, Nicholls HT, Mauer J, Hausen AC, Predel R, Kloppenburg P, Horvath TL, Brüning JC. Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high-fat feeding. Cell 2014; 156:495-509. [PMID: 24462248 DOI: 10.1016/j.cell.2014.01.008] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 12/04/2013] [Accepted: 01/06/2014] [Indexed: 11/17/2022]
Abstract
Maternal metabolic homeostasis exerts long-term effects on the offspring's health outcomes. Here, we demonstrate that maternal high-fat diet (HFD) feeding during lactation predisposes the offspring for obesity and impaired glucose homeostasis in mice, which is associated with an impairment of the hypothalamic melanocortin circuitry. Whereas the number and neuropeptide expression of anorexigenic proopiomelanocortin (POMC) and orexigenic agouti-related peptide (AgRP) neurons, electrophysiological properties of POMC neurons, and posttranslational processing of POMC remain unaffected in response to maternal HFD feeding during lactation, the formation of POMC and AgRP projections to hypothalamic target sites is severely impaired. Abrogating insulin action in POMC neurons of the offspring prevents altered POMC projections to the preautonomic paraventricular nucleus of the hypothalamus (PVH), pancreatic parasympathetic innervation, and impaired glucose-stimulated insulin secretion in response to maternal overnutrition. These experiments reveal a critical timing, when altered maternal metabolism disrupts metabolic homeostasis in the offspring via impairing neuronal projections, and show that abnormal insulin signaling contributes to this effect.
Collapse
Affiliation(s)
- Merly C Vogt
- Max Planck Institute for Neurological Research, 50931 Cologne, Germany; Department of Mouse Genetics and Metabolism, Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50674 Cologne, Germany
| | - Lars Paeger
- Biocenter, Institute for Zoology, University of Cologne, 50674 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50674 Cologne, Germany
| | - Simon Hess
- Biocenter, Institute for Zoology, University of Cologne, 50674 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50674 Cologne, Germany
| | - Sophie M Steculorum
- Max Planck Institute for Neurological Research, 50931 Cologne, Germany; Department of Mouse Genetics and Metabolism, Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50674 Cologne, Germany
| | - Motoharu Awazawa
- Max Planck Institute for Neurological Research, 50931 Cologne, Germany; Department of Mouse Genetics and Metabolism, Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50674 Cologne, Germany
| | - Brigitte Hampel
- Max Planck Institute for Neurological Research, 50931 Cologne, Germany; Department of Mouse Genetics and Metabolism, Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50674 Cologne, Germany
| | - Susanne Neupert
- Biocenter, Institute for Zoology, University of Cologne, 50674 Cologne, Germany
| | - Hayley T Nicholls
- Max Planck Institute for Neurological Research, 50931 Cologne, Germany; Department of Mouse Genetics and Metabolism, Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50674 Cologne, Germany
| | - Jan Mauer
- Max Planck Institute for Neurological Research, 50931 Cologne, Germany; Department of Mouse Genetics and Metabolism, Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50674 Cologne, Germany
| | - A Christine Hausen
- Max Planck Institute for Neurological Research, 50931 Cologne, Germany; Department of Mouse Genetics and Metabolism, Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50674 Cologne, Germany
| | - Reinhard Predel
- Biocenter, Institute for Zoology, University of Cologne, 50674 Cologne, Germany
| | - Peter Kloppenburg
- Biocenter, Institute for Zoology, University of Cologne, 50674 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50674 Cologne, Germany
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Department of Obstetrics/Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Jens C Brüning
- Max Planck Institute for Neurological Research, 50931 Cologne, Germany; Department of Mouse Genetics and Metabolism, Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50674 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, 50924 Cologne, Germany.
| |
Collapse
|
181
|
|
182
|
Maternal high fat feeding does not have long-lasting effects on body composition and bone health in female and male Wistar rat offspring at young adulthood. Molecules 2013; 18:15094-109. [PMID: 24322493 PMCID: PMC6270313 DOI: 10.3390/molecules181215094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/27/2013] [Accepted: 12/03/2013] [Indexed: 11/17/2022] Open
Abstract
High fat diets adversely affect body composition, bone mineral and strength, and alter bone fatty acid composition. It is unclear if maternal high fat (HF) feeding permanently alters offspring body composition and bone health. Female rats were fed control (CON) or HF diet for 10 weeks, bred, and continued their diets throughout pregnancy and lactation. Male and female offspring were studied at weaning and 3 months, following consumption of CON diet. At weaning, but not 3 months of age, male and female offspring from dams fed HF diet had lower lean mass and higher fat and bone mass, and higher femur bone mineral density (females only) than offspring of dams fed CON diet. Male and female offspring femurs from dams fed HF diet had higher monounsaturates and lower n6 polyunsaturates at weaning than offspring from dams fed CON diet, where females from dams fed HF diet had higher saturates and lower n6 polyunsaturates at 3 months of age. There were no differences in strength of femurs or lumbar vertebrae at 3 months of age in either male or female offspring. In conclusion, maternal HF feeding did not permanently affect body composition and bone health at young adulthood in offspring.
Collapse
|
183
|
Sanghez V, Razzoli M, Carobbio S, Campbell M, McCallum J, Cero C, Ceresini G, Cabassi A, Govoni P, Franceschini P, de Santis V, Gurney A, Ninkovic I, Parmigiani S, Palanza P, Vidal-Puig A, Bartolomucci A. Psychosocial stress induces hyperphagia and exacerbates diet-induced insulin resistance and the manifestations of the Metabolic Syndrome. Psychoneuroendocrinology 2013; 38:2933-42. [PMID: 24060458 DOI: 10.1016/j.psyneuen.2013.07.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/31/2013] [Accepted: 07/31/2013] [Indexed: 01/13/2023]
Abstract
Stress and hypercaloric food are recognized risk factors for obesity, Metabolic Syndrome (MetS) and Type 2 Diabetes (T2D). Given the complexity of these metabolic processes and the unavailability of animal models, there is poor understanding of their underlying mechanisms. We established a model of chronic psychosocial stress in which subordinate mice are vulnerable to weight gain while dominant mice are resilient. Subordinate mice fed a standard diet showed marked hyperphagia, high leptin, low adiponectin, and dyslipidemia. Despite these molecular signatures of MetS and T2D, subordinate mice fed a standard diet were still euglycemic. We hypothesized that stress predisposes subordinate mice to develop T2D when synergizing with other risk factors. High fat diet aggravated dyslipidemia and the MetS thus causing a pre-diabetes-like state in subordinate mice. Contrary to subordinates, dominant mice were fully protected from stress-induced metabolic disorders when fed both a standard- and a high fat-diet. Dominant mice showed a hyperphagic response that was similar to subordinate but, unlike subordinates, showed a significant increase in VO2, VCO2, and respiratory exchange ratio when compared to control mice. Overall, we demonstrated a robust stress- and social status-dependent effect on the development of MetS and T2D and provided insights on the physiological mechanisms. Our results are reminiscent of the effect of the individual socioeconomic status on human health and provide an animal model to study the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Valentina Sanghez
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, USA; Department of Neuroscience, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Dahlhoff M, Pfister S, Blutke A, Rozman J, Klingenspor M, Deutsch MJ, Rathkolb B, Fink B, Gimpfl M, Hrabě de Angelis M, Roscher AA, Wolf E, Ensenauer R. Peri-conceptional obesogenic exposure induces sex-specific programming of disease susceptibilities in adult mouse offspring. Biochim Biophys Acta Mol Basis Dis 2013; 1842:304-17. [PMID: 24275555 DOI: 10.1016/j.bbadis.2013.11.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/20/2013] [Accepted: 11/19/2013] [Indexed: 12/23/2022]
Abstract
Vulnerability of the fetus upon maternal obesity can potentially occur during all developmental phases. We aimed at elaborating longer-term health outcomes of fetal overnutrition during the earliest stages of development. We utilized Naval Medical Research Institute (NMRI) mice to induce pre-conceptional and gestational obesity and followed offspring outcomes in the absence of any postnatal obesogenic influences. Male adult offspring developed overweight, insulin resistance, hyperleptinemia, hyperuricemia and hepatic steatosis; all these features were not observed in females. Instead, they showed impaired fasting glucose and a reduced fat mass and adipocyte size. Influences of the interaction of maternal diet∗sex concerned offspring genes involved in fatty liver disease, lipid droplet size regulation and fat mass expansion. These data suggest that a peri-conceptional obesogenic exposure is sufficient to shape offspring gene expression patterns and health outcomes in a sex- and organ-specific manner, indicating varying developmental vulnerabilities between sexes towards metabolic disease in response to maternal overnutrition.
Collapse
Key Words
- ANOVA
- ATP citrate lyase
- AUC
- Acaca
- Acetyl-Coenzyme A carboxylase 1
- Acly
- Actb
- Analysis of variance
- Area under the curve
- B cell leukemia/lymphoma 2
- BW
- Bax
- Bcl2
- Bcl2-associated X protein
- Berardinelli–Seip congenital lipodystrophy 2 (also known as seipin)
- Beta-actin
- Body weight
- Bscl2
- CD
- CET
- CT
- Carbon dioxide production
- Carnitine palmitoyltransferase 1
- Cd36
- Cd36 antigen
- Cell death-inducing DNA fragmentation factor, alpha subunit-like effector A
- Central European Time
- Cidea
- Computed tomography
- Control diet
- Cpt1
- Day post coitum
- EEC
- European Economic Commission
- Exposure to maternal control diet
- Exposure to maternal high-fat, high-calorie diet
- FA
- Fabp4
- Fasn
- Fatty acid
- Fatty acid binding protein 4
- Fatty acid synthase
- GR
- GTT
- Glucocorticoid receptor
- Glucose tolerance test
- H&E
- HFD
- HMW
- HOMA-IR
- HP
- Hairy and enhancer of split 1
- Heat production
- Hematoxylin–eosin
- Hes1
- High-fat, high-calorie diet
- High-molecular-weight
- Homeostatic model assessment of insulin resistance
- Lep
- Leptin
- MD
- MDA
- MRI
- Magnetic resonance imaging
- Maintenance diet
- Malic enzyme 1
- Malondialdehyde
- Me1
- Mesoderm-specific transcript/imprinted paternally expressed gene 1 (also known as Peg1)
- Mest
- N
- NAFLD
- NEFA
- NMRI
- NRL
- Naval Medical Research Institute
- Nitrogen
- Non-alcoholic fatty liver disease
- Non-esterified fatty acid
- Nose–rump-length
- Nr1h3
- Nr3c1
- Nuclear receptor subfamily 1, group H, member 3 (also known as Lxra, liver X receptor alpha)
- Nuclear receptor subfamily 3, group C, member 1 (also known as Gr, glucocorticoid receptor)
- Obesity
- Offspring
- Oxygen consumption
- PFA
- Paraformaldehyde
- Patatin-like phospholipase domain-containing protein 2 (also known as Atgl, adipose triglyceride lipase)
- Peptidylprolyl isomerase A
- Peri-conceptional
- Perilipin 2
- Peroxisome proliferator activated receptor alpha
- Peroxisome proliferator activated receptor gamma
- Plin2
- Pnpla2
- Ppara
- Pparg
- Ppia
- Pregnancy
- Programming
- RER
- ROI
- Region of interest
- Respiratory exchange ratio
- S.e.m.
- Scd2
- Secreted frizzled-related sequence protein 5
- Sex-specificity
- Sfrp5
- Srebf1
- Standard error of the mean
- Stearoyl-Coenzyme A desaturase 2
- Sterol regulatory element binding transcription factor 1
- TBARS
- Thiobarbituric acid-reactive substances
- Ube2d2
- Ubiquitin-conjugating enzyme E2D 2
- VCO(2)
- VO(2)
- dpc
- mat-CD
- mat-HFD
Collapse
Affiliation(s)
- M Dahlhoff
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
| | - S Pfister
- Research Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Lindwurmstrasse 4, 80337 Munich, Germany.
| | - A Blutke
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Veterinärstrasse 13, 80539 Munich, Germany.
| | - J Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany; Molecular Nutritional Medicine, Else-Kröner Fresenius Center, Technische Universität München, Gregor-Mendel-Strasse 2, 85350 Freising-Weihenstephan, Germany.
| | - M Klingenspor
- Molecular Nutritional Medicine, Else-Kröner Fresenius Center, Technische Universität München, Gregor-Mendel-Strasse 2, 85350 Freising-Weihenstephan, Germany.
| | - M J Deutsch
- Research Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Lindwurmstrasse 4, 80337 Munich, Germany.
| | - B Rathkolb
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany; German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany.
| | - B Fink
- Research Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Lindwurmstrasse 4, 80337 Munich, Germany.
| | - M Gimpfl
- Research Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Lindwurmstrasse 4, 80337 Munich, Germany.
| | - M Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Wissenschaftszentrum Weihenstephan, Technische Universität München, Alte Akademie 8, 85354 Freising, Germany; Member of German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany.
| | - A A Roscher
- Research Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Lindwurmstrasse 4, 80337 Munich, Germany.
| | - E Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
| | - R Ensenauer
- Research Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Lindwurmstrasse 4, 80337 Munich, Germany.
| |
Collapse
|
185
|
Abstract
During critical periods of development early in life, excessive or scarce nutritional environments can disrupt the development of central feeding and metabolic neural circuitry, leading to obesity and metabolic disorders in adulthood. A better understanding of the genetic networks that control the development of feeding and metabolic neural circuits, along with knowledge of how and where dietary signals disrupt this process, can serve as the basis for future therapies aimed at reversing the public health crisis that is now building as a result of the global obesity epidemic. This review of animal and human studies highlights recent insights into the molecular mechanisms that regulate the development of central feeding circuitries, the mechanisms by which gestational and early postnatal nutritional status affects this process, and approaches aimed at counteracting the deleterious effects of early over- and underfeeding.
Collapse
Affiliation(s)
- Daniel A Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | | |
Collapse
|
186
|
Sun B, Liang NC, Ewald ER, Purcell RH, Boersma GJ, Yan J, Moran TH, Tamashiro KLK. Early postweaning exercise improves central leptin sensitivity in offspring of rat dams fed high-fat diet during pregnancy and lactation. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1076-84. [PMID: 24026073 PMCID: PMC3840316 DOI: 10.1152/ajpregu.00566.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 09/04/2013] [Indexed: 12/16/2022]
Abstract
Maternal high-fat (HF) diet has long-term consequences on the metabolic phenotype of the offspring. Here, we determined the effects of postweaning exercise in offspring of rat dams fed HF diet during gestation and lactation. Pregnant Sprague-Dawley rats were maintained on chow or HF diet throughout gestation and lactation. All pups were weaned onto chow diet on postnatal day (PND) 21. At 4 wk of age, male pups were given free access to running wheels (RW) or remained sedentary (SED) for 3 wk, after which all rats remained sedentary, resulting in four groups: CHOW-SED, CHOW-RW, HF-SED, and HF-RW. Male HF offspring gained more body weight by PND7 compared with CHOW pups and maintained this weight difference through the entire experiment. Three weeks of postweaning exercise did not affect body weight gain in either CHOW or HF offspring, but reduced adiposity in HF offspring. Plasma leptin was decreased at the end of the 3-wk running period in HF-RW rats but was not different from HF-SED 9 wk after the exercise period ended. At 14 wk of age, intracerebroventricular injection of leptin suppressed food intake in CHOW-SED, CHOW-RW, and HF-RW, while it did not affect food intake in HF-SED group. At death, HF-RW rats also had higher leptin-induced phospho-STAT3 level in the arcuate nucleus than HF-SED rats. Both maternal HF diet and postweaning exercise had effects on hypothalamic neuropeptide and receptor mRNA expression in adult offspring. Our data suggest that postweaning exercise improves central leptin sensitivity and signaling in this model.
Collapse
Affiliation(s)
- Bo Sun
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China; and
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Li G, Kohorst JJ, Zhang W, Laritsky E, Kunde-Ramamoorthy G, Baker MS, Fiorotto ML, Waterland RA. Early postnatal nutrition determines adult physical activity and energy expenditure in female mice. Diabetes 2013; 62:2773-83. [PMID: 23545705 PMCID: PMC3717861 DOI: 10.2337/db12-1306] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Decades of research in rodent models has shown that early postnatal overnutrition induces excess adiposity and other components of metabolic syndrome that persist into adulthood. The specific biologic mechanisms explaining the persistence of these effects, however, remain unknown. On postnatal day 1 (P1), mice were fostered in control (C) or small litters (SL). SL mice had increased body weight and adiposity at weaning (P21), which persisted to adulthood (P180). Detailed metabolic studies indicated that female adult SL mice have decreased physical activity and energy expenditure but not increased food intake. Genome-scale DNA methylation profiling identified extensive changes in hypothalamic DNA methylation during the suckling period, suggesting that it is a critical period for developmental epigenetics in the mouse hypothalamus. Indeed, SL mice exhibited subtle and sex-specific changes in hypothalamic DNA methylation that persisted from early life to adulthood, providing a potential mechanistic basis for the sustained physiological effects. Expression profiling in adult hypothalamus likewise provided evidence of widespread sex-specific alterations in gene expression. Together, our data indicate that early postnatal overnutrition leads to a reduction in spontaneous physical activity and energy expenditure in females and suggest that early postnatal life is a critical period during which nutrition can affect hypothalamic developmental epigenetics.
Collapse
Affiliation(s)
- Ge Li
- Department of Pediatrics, Baylor College of Medicine, United States Department of Agriculture/Agricultural Research Service Children’s Nutrition Research Center, Houston, Texas
| | - John J. Kohorst
- Department of Pediatrics, Baylor College of Medicine, United States Department of Agriculture/Agricultural Research Service Children’s Nutrition Research Center, Houston, Texas
| | - Wenjuan Zhang
- Department of Pediatrics, Baylor College of Medicine, United States Department of Agriculture/Agricultural Research Service Children’s Nutrition Research Center, Houston, Texas
| | - Eleonora Laritsky
- Department of Pediatrics, Baylor College of Medicine, United States Department of Agriculture/Agricultural Research Service Children’s Nutrition Research Center, Houston, Texas
| | - Govindarajan Kunde-Ramamoorthy
- Department of Pediatrics, Baylor College of Medicine, United States Department of Agriculture/Agricultural Research Service Children’s Nutrition Research Center, Houston, Texas
| | - Maria S. Baker
- Department of Pediatrics, Baylor College of Medicine, United States Department of Agriculture/Agricultural Research Service Children’s Nutrition Research Center, Houston, Texas
| | - Marta L. Fiorotto
- Department of Pediatrics, Baylor College of Medicine, United States Department of Agriculture/Agricultural Research Service Children’s Nutrition Research Center, Houston, Texas
| | - Robert A. Waterland
- Department of Pediatrics, Baylor College of Medicine, United States Department of Agriculture/Agricultural Research Service Children’s Nutrition Research Center, Houston, Texas
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas
- Corresponding author: Robert A. Waterland,
| |
Collapse
|
188
|
Animal models of in utero exposure to a high fat diet: a review. Biochim Biophys Acta Mol Basis Dis 2013; 1842:507-519. [PMID: 23872578 DOI: 10.1016/j.bbadis.2013.07.006] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 07/01/2013] [Accepted: 07/06/2013] [Indexed: 01/29/2023]
Abstract
The incidence of metabolic disease, including type 2 diabetes and obesity, has increased to epidemic levels in recent years. A growing body of evidence suggests that the intrauterine environment plays a key role in the development of metabolic disease in offspring. Among other perturbations in early life, alteration in the provision of nutrients has profound and lasting effects on the long term health and well being of offspring. Rodent and non-human primate models provide a means to understand the underlying mechanisms of this programming effect. These different models demonstrate converging effects of a maternal high fat diet on insulin and glucose metabolism, energy balance, cardiovascular function and adiposity in offspring. Furthermore, evidence suggests that the early life environment can result in epigenetic changes that set the stage for alterations in key pathways of metabolism that lead to type 2 diabetes or obesity. Identifying and understanding the causal factors responsible for this metabolic dysregulation is vital to curtailing these epidemics. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
|
189
|
Abstract
PURPOSE OF REVIEW The association between nutrition during pregnancy and the development of metabolic disease in the offspring has been well evidenced in humans and animals. Whilst evidence has accumulated to support various theories linking maternal diet to long-term health, the precise mechanisms of action remain poorly understood. This review summarizes recent advances within the field, focusing on the use of animal models to investigate common phenotypic outcomes. RECENT FINDINGS Continued characterization of postnatal phenotypes has highlighted the importance of postnatal diet in unmasking programming effects of prenatal diet. Whilst common phenotypes are observed across models, differences in associated regulatory processes exist dependent upon the dietary exposure used and sex of the offspring. The use of unbiased techniques at developmental stages has identified gene pathways sensitive to maternal diet, potentially explaining the induction of a common phenotype by different nutritional interventions. Evidence has also grown to support the role of epigenetic modification, with an increasing range of targets identified as being sensitive. SUMMARY A challenge remains in identifying the direct functional and long-term consequences of changes in gene expression or epigenetic status during development, and to translate these back to human populations.
Collapse
Affiliation(s)
- Sarah McMullen
- Division of Nutritional Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK.
| | | |
Collapse
|
190
|
Carlin J, George R, Reyes TM. Methyl donor supplementation blocks the adverse effects of maternal high fat diet on offspring physiology. PLoS One 2013; 8:e63549. [PMID: 23658839 PMCID: PMC3642194 DOI: 10.1371/journal.pone.0063549] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/02/2013] [Indexed: 11/18/2022] Open
Abstract
Maternal consumption of a high fat diet during pregnancy increases the offspring risk for obesity. Using a mouse model, we have previously shown that maternal consumption of a high fat (60%) diet leads to global and gene specific decreases in DNA methylation in the brain of the offspring. The present experiments were designed to attempt to reverse this DNA hypomethylation through supplementation of the maternal diet with methyl donors, and to determine whether methyl donor supplementation could block or attenuate phenotypes associated with maternal consumption of a HF diet. Metabolic and behavioral (fat preference) outcomes were assessed in male and female adult offspring. Expression of the mu-opioid receptor and dopamine transporter mRNA, as well as global DNA methylation were measured in the brain. Supplementation of the maternal diet with methyl donors attenuated the development of some of the adverse effects seen in offspring from dams fed a high fat diet; including weight gain, increased fat preference (males), changes in CNS gene expression and global hypomethylation in the prefrontal cortex. Notable sex differences were observed. These findings identify the importance of balanced methylation status during pregnancy, particularly in the context of a maternal high fat diet, for optimal offspring outcome.
Collapse
Affiliation(s)
- JesseLea Carlin
- University of Pennsylvania, School of Medicine, Department of Pharmacology, Institute for Translational Medicine and Therapeutics, Philadelphia, Pennsylvania, United States of America
| | - Robert George
- University of Pennsylvania, School of Medicine, Department of Pharmacology, Institute for Translational Medicine and Therapeutics, Philadelphia, Pennsylvania, United States of America
| | - Teresa M. Reyes
- University of Pennsylvania, School of Medicine, Department of Pharmacology, Institute for Translational Medicine and Therapeutics, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
191
|
Abstract
Metabolic syndrome (MS) has reached epidemic proportions worldwide among children. Early life "programming" is now thought to be important in the etiology of obesity, type 2 diabetes, cardiovascular disease and MS. Nutritional imbalance and exposures to endocrine disruptor chemicals during development can increase risk for MS later in life. Epigenetic marks may be reprogrammed in response to both stochastic and environmental stimuli, such as changes in diet and the in utero environment, therefore, determination of targets for early life effects on epigenetic gene regulation provides insight into the molecular mechanisms involved in the epigenetic transgenerational inheritance of a variety of adult onset disease phenotypes. The perinatal period is a crucial time of growth, development and physiological changes in mother and child, which provides a window of opportunity for early intervention that may induce beneficial physiological alternations.
Collapse
|