151
|
Gao R, Yang T, Zhang Q. δ-Cells: The Neighborhood Watch in the Islet Community. BIOLOGY 2021; 10:biology10020074. [PMID: 33494193 PMCID: PMC7909827 DOI: 10.3390/biology10020074] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/29/2022]
Abstract
Somatostatin-secreting δ-cells have aroused great attention due to their powerful roles in coordination of islet insulin and glucagon secretion and maintenance of glucose homeostasis. δ-cells exhibit neuron-like morphology with projections which enable pan-islet somatostatin paracrine regulation despite their scarcity in the islets. The expression of a range of hormone and neurotransmitter receptors allows δ-cells to integrate paracrine, endocrine, neural and nutritional inputs, and provide rapid and precise feedback modulations on glucagon and insulin secretion from α- and β-cells, respectively. Interestingly, the paracrine tone of δ-cells can be effectively modified in response to factors released by neighboring cells in this interactive communication, such as insulin, urocortin 3 and γ-aminobutyric acid from β-cells, glucagon, glutamate and glucagon-like peptide-1 from α-cells. In the setting of diabetes, defects in δ-cell function lead to suboptimal insulin and glucagon outputs and lift the glycemic set-point. The interaction of δ-cells and non-δ-cells also becomes defective in diabetes, with reduces paracrine feedback to β-cells to exacerbate hyperglycemia or enhanced inhibition of α-cells, disabling counter-regulation, to cause hypoglycemia. Thus, it is possible to restore/optimize islet function in diabetes targeting somatostatin signaling, which could open novel avenues for the development of effective diabetic treatments.
Collapse
Affiliation(s)
- Rui Gao
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK;
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;
| | - Tao Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK;
- Correspondence:
| |
Collapse
|
152
|
Ahrén B, Yamada Y, Seino Y. The mediation by GLP-1 receptors of glucagon-induced insulin secretion revisited in GLP-1 receptor knockout mice. Peptides 2021; 135:170434. [PMID: 33172827 DOI: 10.1016/j.peptides.2020.170434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022]
Abstract
To study whether activation of GLP-1 receptors importantly contributes to the insulinotropic action of exogenously administered glucagon, we have performed whole animal experiments in normal mice and in mice with GLP-1 receptor knockout. Glucagon (1, 3 or 10 μg/kg), the GLP-1 receptor antagonist exendin 9-39 (30 nmol/kg), glucose (0.35 g/kg) or the incretin hormone glucose-dependent insulinotropic polypeptide (GIP; 3 nmol/kg) was injected intravenously or glucose (75 mg) was given orally through gavage. Furthermore, islets were isolated and incubated in the presence of glucose with or without glucagon. It was found that the insulin response to intravenous glucagon was preserved in GLP-1 receptor knockout mice but that glucagon-induced insulin secretion was markedly suppressed in islets from GLP-1 receptor knockout mice. Similarly, the GLP-1 receptor antagonist markedly suppressed glucagon-induced insulin secretion in wildtype mice. These data suggest that GLP-1 receptors contribute to the insulinotropic action of glucagon and that there is a compensatory mechanism in GLP-1 receptor knockout mice that counteracts a reduced effect of glucagon. Two potential compensatory mechanisms (glucose and GIP) were explored. However, neither of these seemed to explain why the insulin response to glucagon is not suppressed in GLP-1 receptor knockout mice. Based on these data we confirm the hypothesis that glucagon-induced insulin secretion is partially mediated by GLP-1 receptors on the beta cells and we propose that a compensatory mechanism, the nature of which remains to be established, is induced in GLP-1 receptor knockout mice to counteract the expected impaired insulin response to glucagon in these mice.
Collapse
Affiliation(s)
- Bo Ahrén
- Department of Clinical Sciences Lund, Lund University, C11 BMC, Sölvegatan 19, 221 84 Lund, Sweden.
| | - Yuichiro Yamada
- Department of Endocrinology, Diabetes and Geriatric Medicine, Graduate School of Medicine, Akita University, Akita, Japan
| | | |
Collapse
|
153
|
Biglari N, Gaziano I, Schumacher J, Radermacher J, Paeger L, Klemm P, Chen W, Corneliussen S, Wunderlich CM, Sue M, Vollmar S, Klöckener T, Sotelo-Hitschfeld T, Abbasloo A, Edenhofer F, Reimann F, Gribble FM, Fenselau H, Kloppenburg P, Wunderlich FT, Brüning JC. Functionally distinct POMC-expressing neuron subpopulations in hypothalamus revealed by intersectional targeting. Nat Neurosci 2021; 24:913-929. [PMID: 34002087 PMCID: PMC8249241 DOI: 10.1038/s41593-021-00854-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/31/2021] [Indexed: 02/03/2023]
Abstract
Pro-opiomelanocortin (POMC)-expressing neurons in the arcuate nucleus of the hypothalamus represent key regulators of metabolic homeostasis. Electrophysiological and single-cell sequencing experiments have revealed a remarkable degree of heterogeneity of these neurons. However, the exact molecular basis and functional consequences of this heterogeneity have not yet been addressed. Here, we have developed new mouse models in which intersectional Cre/Dre-dependent recombination allowed for successful labeling, translational profiling and functional characterization of distinct POMC neurons expressing the leptin receptor (Lepr) and glucagon like peptide 1 receptor (Glp1r). Our experiments reveal that POMCLepr+ and POMCGlp1r+ neurons represent largely nonoverlapping subpopulations with distinct basic electrophysiological properties. They exhibit a specific anatomical distribution within the arcuate nucleus and differentially express receptors for energy-state communicating hormones and neurotransmitters. Finally, we identify a differential ability of these subpopulations to suppress feeding. Collectively, we reveal a notably distinct functional microarchitecture of critical metabolism-regulatory neurons.
Collapse
Affiliation(s)
- Nasim Biglari
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany ,grid.411097.a0000 0000 8852 305XPoliclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Isabella Gaziano
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany ,grid.411097.a0000 0000 8852 305XPoliclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jonas Schumacher
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany ,grid.411097.a0000 0000 8852 305XPoliclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jan Radermacher
- grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Institute for Zoology, Biocenter, University of Cologne, Cologne, Germany
| | - Lars Paeger
- grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Institute for Zoology, Biocenter, University of Cologne, Cologne, Germany
| | - Paul Klemm
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany ,grid.411097.a0000 0000 8852 305XPoliclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Weiyi Chen
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany ,grid.411097.a0000 0000 8852 305XPoliclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Svenja Corneliussen
- grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Institute for Zoology, Biocenter, University of Cologne, Cologne, Germany
| | - Claudia M. Wunderlich
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany ,grid.411097.a0000 0000 8852 305XPoliclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Michael Sue
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
| | - Stefan Vollmar
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
| | - Tim Klöckener
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany ,grid.411097.a0000 0000 8852 305XPoliclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Tamara Sotelo-Hitschfeld
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany ,grid.411097.a0000 0000 8852 305XPoliclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Amin Abbasloo
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
| | - Frank Edenhofer
- grid.5771.40000 0001 2151 8122Leopold-Franzens-Universität Innsbruck, Institute for Molecular Biology, Innsbruck, Austria
| | - Frank Reimann
- grid.120073.70000 0004 0622 5016Cambridge Institute for Medical Research and Medical Research Council Metabolic Diseases Unit, Addenbrooke’s Hospital, Cambridge, UK
| | - Fiona M. Gribble
- grid.120073.70000 0004 0622 5016Cambridge Institute for Medical Research and Medical Research Council Metabolic Diseases Unit, Addenbrooke’s Hospital, Cambridge, UK
| | - Henning Fenselau
- grid.411097.a0000 0000 8852 305XPoliclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany ,grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Research Group Synaptic Transmission in Energy Homeostasis, Cologne, Germany
| | - Peter Kloppenburg
- grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Institute for Zoology, Biocenter, University of Cologne, Cologne, Germany
| | - Frank T. Wunderlich
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany ,grid.411097.a0000 0000 8852 305XPoliclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jens C. Brüning
- grid.418034.a0000 0004 4911 0702Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany ,grid.411097.a0000 0000 8852 305XPoliclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany ,National Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, Neuherberg, Germany
| |
Collapse
|
154
|
Almutairi M, Gopal K, Greenwell AA, Young A, Gill R, Aburasayn H, Al Batran R, Chahade JJ, Gandhi M, Eaton F, Mailloux RJ, Ussher JR. The GLP-1 Receptor Agonist Liraglutide Increases Myocardial Glucose Oxidation Rates via Indirect Mechanisms and Mitigates Experimental Diabetic Cardiomyopathy. Can J Cardiol 2021; 37:140-150. [PMID: 32640211 DOI: 10.1016/j.cjca.2020.02.098] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/22/2020] [Accepted: 02/26/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) increases risk for cardiovascular disease. Of interest, liraglutide, a therapy for T2D that activates the glucagon-like peptide-1 receptor to augment insulin secretion, reduces cardiovascular-related death in people with T2D, though it remains unknown how liraglutide produces these actions. Notably, the glucagon-like peptide-1 receptor is not expressed in ventricular cardiac myocytes, making it likely that ventricular myocardium-independent actions are involved. We hypothesized that augmented insulin secretion may explain how liraglutide indirectly mediates cardioprotection, which thereby increases myocardial glucose oxidation. METHODS C57BL/6J male mice were fed either a low-fat diet (lean) or were subjected to experimental T2D and treated with either saline or liraglutide 3× over a 24-hour period. Mice were subsequently euthanized and had their hearts perfused in the working mode to assess energy metabolism. A separate cohort of mice with T2D were treated with either vehicle control or liraglutide for 2 weeks for the assessment of cardiac function via ultrasound echocardiography. RESULTS Treatment of lean mice with liraglutide increased myocardial glucose oxidation without affecting glycolysis. Conversely, direct treatment of the isolated working heart with liraglutide had no effect on glucose oxidation. These findings were recapitulated in mice with T2D and associated with increased circulating insulin levels. Furthermore, liraglutide treatment alleviated diastolic dysfunction in mice with T2D, which was associated with enhanced pyruvate dehydrogenase activity, the rate-limiting enzyme of glucose oxidation. CONCLUSIONS Our data demonstrate that liraglutide augments myocardial glucose oxidation via indirect mechanisms, which may contribute to how liraglutide improves cardiovascular outcomes in people with T2D.
Collapse
Affiliation(s)
- Malak Almutairi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda A Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Adrian Young
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Robert Gill
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Hanin Aburasayn
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Rami Al Batran
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Jadin J Chahade
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Manoj Gandhi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Farah Eaton
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ryan J Mailloux
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
155
|
Wen S, Nguyen T, Gong M, Yuan X, Wang C, Jin J, Zhou L. An Overview of Similarities and Differences in Metabolic Actions and Effects of Central Nervous System Between Glucagon-Like Peptide-1 Receptor Agonists (GLP-1RAs) and Sodium Glucose Co-Transporter-2 Inhibitors (SGLT-2is). Diabetes Metab Syndr Obes 2021; 14:2955-2972. [PMID: 34234493 PMCID: PMC8254548 DOI: 10.2147/dmso.s312527] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022] Open
Abstract
GLP-1 receptor agonists (GLP-1RAs) and SGLT-2 inhibitors (SGLT-2is) are novel antidiabetic medications associated with considerable cardiovascular benefits therapying treatment of diabetic patients. GLP-1 exhibits atherosclerosis resistance, whereas SGLT-2i acts to ameliorate the neuroendocrine state in the patients with chronic heart failure. Despite their distinct modes of action, both factors share pathways by regulating the central nervous system (CNS). While numerous preclinical and clinical studies have demonstrated that GLP-1 can access various nuclei associated with energy homeostasis and hedonic eating in the CNS via blood-brain barrier (BBB), research on the activity of SGLT-2is remains limited. In our previous studies, we demonstrated that both GLP-1 receptor agonists (GLP-1RAs) liraglutide and exenatide, as well as an SGLT-2i, dapagliflozin, could activate various nuclei and pathways in the CNS of Sprague Dawley (SD) rats and C57BL/6 mice, respectively. Moreover, our results revealed similarities and differences in neural pathways, which possibly regulated different metabolic effects of GLP-1RA and SGLT-2i via sympathetic and parasympathetic systems in the CNS, such as feeding, blood glucose regulation and cardiovascular activities (arterial blood pressure and heart rate control). In the present article, we extensively discuss recent preclinical studies on the effects of GLP-1RAs and SGLT-2is on the CNS actions, with the aim of providing a theoretical explanation on their mechanism of action in improvement of the macro-cardiovascular risk and reducing incidence of diabetic complications. Overall, these findings are expected to guide future drug design approaches.
Collapse
Affiliation(s)
- Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Thiquynhnga Nguyen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Min Gong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Xinlu Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Chaoxun Wang
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Jianlan Jin
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
- Correspondence: Ligang Zhou Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of ChinaTel +8613611927616 Email
| |
Collapse
|
156
|
Alowaysi M, Astro V, Fiacco E, Alzahrani F, Alkuraya FS, Adamo A. Generation of iPSC lines (KAUSTi011-A, KAUSTi011-B) from a Saudi patient with epileptic encephalopathy carrying homozygous mutation in the GLP1R gene. Stem Cell Res 2020; 50:102148. [PMID: 33421754 DOI: 10.1016/j.scr.2020.102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/03/2020] [Accepted: 12/23/2020] [Indexed: 11/21/2022] Open
Abstract
Glucagon-like peptide-1 receptor (GLP1R) is a seven-transmembrane-spanning helices membrane protein expressed in multiple human tissues including pancreatic islets, lung, brain, heart and central nervous system (CNS). GLP1R agonists are commonly used as antidiabetic drugs, but a neuroprotective function in neurodegenerative disorders is emerging. Here, we established two iPSC lines from a patient harboring a rare homozygous splice site variant in GLP1R (NM_002062.3; c.402 + 3delG). This patient displays severe developmental delay and epileptic encephalopathy. Therefore, the derivation of these iPSC lines constitutes a primary model to study the molecular pathology of GLP1R dysfunction and develop novel therapeutic targets.
Collapse
Affiliation(s)
- Maryam Alowaysi
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Veronica Astro
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Elisabetta Fiacco
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Fatema Alzahrani
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | - Antonio Adamo
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
157
|
Chandramowlishwaran P, Vijay A, Abraham D, Li G, Mwangi SM, Srinivasan S. Role of Sirtuins in Modulating Neurodegeneration of the Enteric Nervous System and Central Nervous System. Front Neurosci 2020; 14:614331. [PMID: 33414704 PMCID: PMC7783311 DOI: 10.3389/fnins.2020.614331] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
Neurodegeneration of the central and enteric nervous systems is a common feature of aging and aging-related diseases, and is accelerated in individuals with metabolic dysfunction including obesity and diabetes. The molecular mechanisms of neurodegeneration in both the CNS and ENS are overlapping. Sirtuins are an important family of histone deacetylases that are important for genome stability, cellular response to stress, and nutrient and hormone sensing. They are activated by calorie restriction (CR) and by the coenzyme, nicotinamide adenine dinucleotide (NAD+). Sirtuins, specifically the nuclear SIRT1 and mitochondrial SIRT3, have been shown to have predominantly neuroprotective roles in the CNS while the cytoplasmic sirtuin, SIRT2 is largely associated with neurodegeneration. A systematic study of sirtuins in the ENS and their effect on enteric neuronal growth and survival has not been conducted. Recent studies, however, also link sirtuins with important hormones such as leptin, ghrelin, melatonin, and serotonin which influence many important processes including satiety, mood, circadian rhythm, and gut homeostasis. In this review, we address emerging roles of sirtuins in modulating the metabolic challenges from aging, obesity, and diabetes that lead to neurodegeneration in the ENS and CNS. We also highlight a novel role for sirtuins along the microbiota-gut-brain axis in modulating neurodegeneration.
Collapse
Affiliation(s)
- Pavithra Chandramowlishwaran
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Research-Gastroenterology, Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Anitha Vijay
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Daniel Abraham
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ge Li
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Research-Gastroenterology, Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Simon Musyoka Mwangi
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Research-Gastroenterology, Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Research-Gastroenterology, Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| |
Collapse
|
158
|
Joly A, Leulier F, De Vadder F. Microbial Modulation of the Development and Physiology of the Enteric Nervous System. Trends Microbiol 2020; 29:686-699. [PMID: 33309188 DOI: 10.1016/j.tim.2020.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022]
Abstract
The gastrointestinal tract harbors an intrinsic neuronal network, the enteric nervous system (ENS). The ENS controls motility, fluid homeostasis, and blood flow, but also interacts with other components of the intestine such as epithelial and immune cells. Recent studies indicate that gut microbiota diversification, which occurs alongside postnatal ENS maturation, could be critical for the development and function of the ENS. Here we discuss the possibility that this functional relationship starts in utero, whereby the maternal microbiota would prime the developing ENS and shape its physiology. We review ENS/microbiota interactions and their modulation in physiological and pathophysiological contexts. While microbial modulation of the ENS physiology is now well established, further studies are required to understand the contribution of the gut microbiota to the development and pathology of the ENS and to reveal the precise mechanisms underlying microbiota-to-ENS communications.
Collapse
Affiliation(s)
- Amélie Joly
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France
| | - Filipe De Vadder
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France.
| |
Collapse
|
159
|
Campbell JE. Targeting the GIPR for obesity: To agonize or antagonize? Potential mechanisms. Mol Metab 2020; 46:101139. [PMID: 33290902 PMCID: PMC8085569 DOI: 10.1016/j.molmet.2020.101139] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic peptide (GIP) is one of two incretin hormones that communicate nutrient intake with systemic metabolism. Although GIP was the first incretin hormone to be discovered, the understanding of GIP's biology was quickly outpaced by research focusing on the other incretin hormone, glucagon-like peptide 1 (GLP-1). Early work on GIP produced the theory that GIP is obesogenic, limiting interest in developing GIPR agonists to treat type 2 diabetes. A resurgence of GIP research has occurred in the last five years, reinvigorating interest in this peptide. Two independent approaches have emerged for treating obesity, one promoting GIPR agonism and the other antagonism. In this report, evidence supporting both cases is discussed and hypotheses are presented to reconcile this apparent paradox. SCOPE OF THE REVIEW This review presents evidence to support targeting GIPR to reduce obesity. Most of the focus is on the effect of singly targeting the GIPR using both a gain- and loss-of-function approach, with additional sections that discuss co-targeting of the GIPR and GLP-1R. MAJOR CONCLUSIONS There is substantial evidence to support that GIPR agonism and antagonism can positively impact body weight. The long-standing theory that GIP drives weight gain is exclusively derived from loss-of-function studies, with no evidence to support that GIPR agonisms increases adiposity or body weight. There is insufficient evidence to reconcile the paradoxical observations that both GIPR agonism and antagonism can reduce body weight; however, two independent hypotheses centered on GIPR antagonism are presented based on new data in an effort to address this question. The first discusses the compensatory relationship between incretin receptors and how antagonism of the GIPR may enhance GLP-1R activity. The second discusses how chronic GIPR agonism may produce desensitization and ultimately loss of GIPR activity that mimics antagonism. Overall, it is clear that a deeper understanding of GIP biology is required to understand how modulating this system impacts metabolic homeostasis.
Collapse
Affiliation(s)
- Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
160
|
Rea K, Dinan TG, Cryan JF. Gut Microbiota: A Perspective for Psychiatrists. Neuropsychobiology 2020; 79:50-62. [PMID: 31726457 DOI: 10.1159/000504495] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/31/2019] [Indexed: 11/19/2022]
Abstract
There is mounting evidence that the trillions of microbes that inhabit our gut are a substantial contributing factor to mental health and, equally, to the progression of neuropsychiatric disorders. The extraordinary complexity of the gut ecosystem, and how it interacts with the intestinal epithelium to manifest physiological changes in the brain to influence mood and behaviour, has been the subject of intense scientific scrutiny over the last 2 decades. To further complicate matters, we each harbour a unique microbiota community that is subject to change by a number of factors including diet, exercise, stress, health status, genetics, medication, and age, amongst others. The microbiota-gut-brain axis is a dynamic matrix of tissues and organs including the gastrointestinal (GI) microbiota, immune cells, gut tissue, glands, the autonomic nervous system (ANS), and the brain that communicate in a complex multidirectional manner through a number of anatomically and physiologically distinct systems. Long-term perturbations to this homeostatic environment may contribute to the progression of a number of disorders by altering physiological processes including hypothalamic-pituitary-adrenal axis activation, neurotransmitter systems, immune function, and the inflammatory response. While an appropriate, co-ordinated physiological response, such as an immune or stress response, is necessary for survival, a dysfunctional response can be detrimental to the host, contributing to the development of a number of central nervous system disorders.
Collapse
Affiliation(s)
- Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland, .,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland,
| |
Collapse
|
161
|
Fang Z, Chen S, Manchanda Y, Bitsi S, Pickford P, David A, Shchepinova MM, Corrêa Jr IR, Hodson DJ, Broichhagen J, Tate EW, Reimann F, Salem V, Rutter GA, Tan T, Bloom SR, Tomas A, Jones B. Ligand-Specific Factors Influencing GLP-1 Receptor Post-Endocytic Trafficking and Degradation in Pancreatic Beta Cells. Int J Mol Sci 2020; 21:E8404. [PMID: 33182425 PMCID: PMC7664906 DOI: 10.3390/ijms21218404] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/30/2022] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is an important regulator of blood glucose homeostasis. Ligand-specific differences in membrane trafficking of the GLP-1R influence its signalling properties and therapeutic potential in type 2 diabetes. Here, we have evaluated how different factors combine to control the post-endocytic trafficking of GLP-1R to recycling versus degradative pathways. Experiments were performed in primary islet cells, INS-1 832/3 clonal beta cells and HEK293 cells, using biorthogonal labelling of GLP-1R to determine its localisation and degradation after treatment with GLP-1, exendin-4 and several further GLP-1R agonist peptides. We also characterised the effect of a rare GLP1R coding variant, T149M, and the role of endosomal peptidase endothelin-converting enzyme-1 (ECE-1), in GLP1R trafficking. Our data reveal how treatment with GLP-1 versus exendin-4 is associated with preferential GLP-1R targeting towards a recycling pathway. GLP-1, but not exendin-4, is a substrate for ECE-1, and the resultant propensity to intra-endosomal degradation, in conjunction with differences in binding affinity, contributes to alterations in GLP-1R trafficking behaviours and degradation. The T149M GLP-1R variant shows reduced signalling and internalisation responses, which is likely to be due to disruption of the cytoplasmic region that couples to intracellular effectors. These observations provide insights into how ligand- and genotype-specific factors can influence GLP-1R trafficking.
Collapse
Affiliation(s)
- Zijian Fang
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
- Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Shiqian Chen
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| | - Yusman Manchanda
- Section of Cell Biology and Functional Genomics, Imperial College London, London W12 0NN, UK; (Y.M.); (S.B.); (G.A.R.)
| | - Stavroula Bitsi
- Section of Cell Biology and Functional Genomics, Imperial College London, London W12 0NN, UK; (Y.M.); (S.B.); (G.A.R.)
| | - Philip Pickford
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| | - Alessia David
- Centre for Bioinformatics and System Biology, Department of Life Sciences, Imperial College London, London SW7 2BX, UK;
| | - Maria M. Shchepinova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, UK; (M.M.S.); (E.W.T.)
| | | | - David J. Hodson
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham B15 2TT, UK;
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Johannes Broichhagen
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany;
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, UK; (M.M.S.); (E.W.T.)
| | - Frank Reimann
- Institute of Metabolic Science & MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK;
| | - Victoria Salem
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Imperial College London, London W12 0NN, UK; (Y.M.); (S.B.); (G.A.R.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore
| | - Tricia Tan
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| | - Stephen R. Bloom
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London W12 0NN, UK; (Y.M.); (S.B.); (G.A.R.)
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| |
Collapse
|
162
|
Vastagh C, Farkas I, Scott MM, Liposits Z. Networking of glucagon-like peptide-1 axons with GnRH neurons in the basal forebrain of male mice revealed by 3DISCO-based immunocytochemistry and optogenetics. Brain Struct Funct 2020; 226:105-120. [PMID: 33169188 PMCID: PMC7817561 DOI: 10.1007/s00429-020-02167-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/17/2020] [Indexed: 12/25/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) regulates reproduction centrally, although, the neuroanatomical basis of the process is unknown. Therefore, the putative networking of the central GLP-1 and gonadotropin-releasing hormone (GnRH) systems was addressed in male mice using whole mount immunocytochemistry and optogenetics. Enhanced antibody penetration and optical clearing procedures applied to 500–1000 µm thick basal forebrain slices allowed the simultaneous visualization of the two distinct systems in the basal forebrain. Beaded GLP-1-IR axons innervated about a quarter of GnRH neurons (23.2 ± 1.4%) forming either single or multiple contacts. GnRH dendrites received a more intense GLP-1 innervation (64.6 ± 0.03%) than perikarya (35.4 ± 0.03%). The physiological significance of the innervation was examined by optogenetic activation of channelrhodopsin-2 (ChR2)-expressing axons of preproglucagon (GCG) neurons upon the firing of GnRH neurons by patch clamp electrophysiology in acute brain slices of triple transgenic mice (Gcg-cre/ChR2/GFP-GnRH). High-frequency laser beam stimulation (20 Hz, 10 ms pulse width, 3 mW laser power) of ChR2-expressing GCG axons in the mPOA increased the firing rate of GnRH neurons (by 75 ± 17.3%, p = 0.0007). Application of the GLP-1 receptor antagonist, Exendin-3-(9-39) (1 μM), prior to the photo-stimulation, abolished the facilitatory effect. In contrast, low-frequency trains of laser pulses (0.2 Hz, 60 pulses) had no effect on the spontaneous postsynaptic currents of GnRH neurons. The findings indicate a direct wiring of GLP-1 neurons with GnRH cells which route is excitatory for the GnRH system. The pathway may relay metabolic signals to GnRH neurons and synchronize metabolism with reproduction.
Collapse
Affiliation(s)
- Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Szigony u. 43, 1083, Budapest, Hungary
| | - Imre Farkas
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Michael M Scott
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Szigony u. 43, 1083, Budapest, Hungary.
- Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
| |
Collapse
|
163
|
Diz-Chaves Y, Herrera-Pérez S, González-Matías LC, Lamas JA, Mallo F. Glucagon-Like Peptide-1 (GLP-1) in the Integration of Neural and Endocrine Responses to Stress. Nutrients 2020; 12:nu12113304. [PMID: 33126672 PMCID: PMC7692797 DOI: 10.3390/nu12113304] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Glucagon like-peptide 1 (GLP-1) within the brain is produced by a population of preproglucagon neurons located in the caudal nucleus of the solitary tract. These neurons project to the hypothalamus and another forebrain, hindbrain, and mesolimbic brain areas control the autonomic function, feeding, and the motivation to feed or regulate the stress response and the hypothalamic-pituitary-adrenal axis. GLP-1 receptor (GLP-1R) controls both food intake and feeding behavior (hunger-driven feeding, the hedonic value of food, and food motivation). The activation of GLP-1 receptors involves second messenger pathways and ionic events in the autonomic nervous system, which are very relevant to explain the essential central actions of GLP-1 as neuromodulator coordinating food intake in response to a physiological and stress-related stimulus to maintain homeostasis. Alterations in GLP-1 signaling associated with obesity or chronic stress induce the dysregulation of eating behavior. This review summarized the experimental shreds of evidence from studies using GLP-1R agonists to describe the neural and endocrine integration of stress responses and feeding behavior.
Collapse
Affiliation(s)
- Yolanda Diz-Chaves
- CINBIO, Universidade de Vigo, Grupo FB3A, Laboratorio de Endocrinología, 36310 Vigo, Spain;
- Correspondence: (Y.D.-C.); (F.M.); Tel.: +34-(986)-130226 (Y.D.-C.); +34-(986)-812393 (F.M.)
| | - Salvador Herrera-Pérez
- CINBIO, Universidade de Vigo, Grupo FB3B, Laboratorio de Neurociencia, 36310 Vigo, Spain; (S.H.-P.); (J.A.L.)
| | | | - José Antonio Lamas
- CINBIO, Universidade de Vigo, Grupo FB3B, Laboratorio de Neurociencia, 36310 Vigo, Spain; (S.H.-P.); (J.A.L.)
| | - Federico Mallo
- CINBIO, Universidade de Vigo, Grupo FB3A, Laboratorio de Endocrinología, 36310 Vigo, Spain;
- Correspondence: (Y.D.-C.); (F.M.); Tel.: +34-(986)-130226 (Y.D.-C.); +34-(986)-812393 (F.M.)
| |
Collapse
|
164
|
Borner T, Shaulson ED, Tinsley IC, Stein LM, Horn CC, Hayes MR, Doyle RP, De Jonghe BC. A second-generation glucagon-like peptide-1 receptor agonist mitigates vomiting and anorexia while retaining glucoregulatory potency in lean diabetic and emetic mammalian models. Diabetes Obes Metab 2020; 22:1729-1741. [PMID: 32410372 PMCID: PMC7927944 DOI: 10.1111/dom.14089] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
Abstract
AIM To develop a conjugate of vitamin B12 bound to the glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 (Ex4) that shows reduced penetrance into the central nervous system while maintaining peripheral glucoregulatory function. METHODS We evaluated whether a vitamin B12 conjugate of Ex4 (B12-Ex4) improves glucose tolerance without inducing anorexia in Goto-Kakizaki (GK) rats, a lean type 2 diabetes model of an understudied but medically compromised population of patients requiring the glucoregulatory effects of GLP-1R agonists without anorexia. We also utilized the musk shrew (Suncus murinus), a mammalian model capable of emesis, to test B12-Ex4 on glycaemic profile, feeding and emesis. RESULTS In both models, native Ex4 and B12-Ex4 equivalently blunted the rise in blood glucose levels during a glucose tolerance test. In both GK rats and shrews, acute Ex4 administration decreased food intake, leading to weight loss; by contrast, equimolar administration of B12-Ex4 had no effect on feeding and body weight. There was a near absence of emesis in shrews given systemic B12-Ex4, in contrast to reliable emesis produced by Ex4. When administered centrally, both B12-Ex4 and Ex4 induced similar potency of emesis, suggesting that brain penetrance of B12-Ex4 is required for induction of emesis. CONCLUSIONS These findings highlight the potential therapeutic value of B12-Ex4 as a novel treatment for type 2 diabetes devoid of weight loss and with reduced adverse effects and better tolerance, but similar glucoregulation to current GLP-1R agonists.
Collapse
Affiliation(s)
- Tito Borner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Evan D. Shaulson
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ian C. Tinsley
- Department of Chemistry, Syracuse University, Syracuse, New York
| | - Lauren M. Stein
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charles C. Horn
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew R. Hayes
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert P. Doyle
- Department of Chemistry, Syracuse University, Syracuse, New York
- Department of Medicine, Upstate Medical University, State University of New York, Syracuse, New York
| | - Bart C. De Jonghe
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
165
|
Bistoletti M, Bosi A, Banfi D, Giaroni C, Baj A. The microbiota-gut-brain axis: Focus on the fundamental communication pathways. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 176:43-110. [PMID: 33814115 DOI: 10.1016/bs.pmbts.2020.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Banfi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
166
|
Krieger JP. Intestinal glucagon-like peptide-1 effects on food intake: Physiological relevance and emerging mechanisms. Peptides 2020; 131:170342. [PMID: 32522585 DOI: 10.1016/j.peptides.2020.170342] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/01/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
The gut-brain hormone glucagon-like peptide-1 (GLP-1) has received immense attention over the last couple of decades for its widespread metabolic effects. Notably, intestinal GLP-1 has been recognized as an endogenous satiation signal. Yet, the underlying mechanisms and the pathophysiological relevance of intestinal GLP-1 in obesity remain unclear. This review first recapitulates early findings indicating that intestinal GLP-1 is an endogenous satiation signal, whose eating effects are primarily mediated by vagal afferents. Second, on the basis of recent findings challenging a paracrine action of intestinal GLP-1, a new model for the mediation of GLP-1 effects on eating by two discrete vagal afferent subsets will be proposed. The central mechanisms processing the vagal anorexigenic signals need however to be further delineated. Finally, the idea that intestinal GLP-1 secretion and/or effects on eating are altered in obesity and play a pathophysiological role in the development of obesity will be discussed. In summary, despite the successful therapeutic use of GLP-1 receptor agonists as anti-obesity drugs, the eating effects of intestinal GLP-1 still remain to be elucidated. Specifically, the findings presented here call for a further evaluation of the vago-central neuronal substrates activated by intestinal GLP-1 and for further investigation of its pathophysiological role in obesity.
Collapse
Affiliation(s)
- Jean-Philippe Krieger
- Department of Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
167
|
Chen J, Xu S, Wang L, Zhou W, Li P, Deng N, Tang Q, Li Y, Wu L, Chen J, Li W. Exendin-4 inhibits atrial arrhythmogenesis in a model of myocardial infarction-induced heart failure via the GLP-1 receptor signaling pathway. Exp Ther Med 2020; 20:3669-3678. [PMID: 32855719 PMCID: PMC7444344 DOI: 10.3892/etm.2020.9089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/01/2020] [Indexed: 01/02/2023] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1 receptor) agonists are considered to exert cardioprotective effects in models of acute and chronic heart disease. The present study aimed to investigate the role of exendin-4 (a GLP-1 receptor agonist) in atrial arrhythmogenesis in a model of myocardial infarction (MI)-induced heart failure and to elucidate the mechanisms underlying its effects. For this purpose, male Sprague-Dawley rats underwent sham surgery or left anterior descending artery ligation prior to being treated with saline/exendin-4/exendin-4 plus exendin9-39 (an antagonist of GLP-1 receptor) for 4 weeks. The effects of exendin-4 on atrial electrophysiology, atrial fibrosis and PI3K/AKT signaling were assessed. Rats with MI exhibited depressed left ventricular function, an enlarged left atrium volume, prolonged action potential duration, elevated atrial tachyarrhythmia inducibility, decreased conduction velocity and an increased total activation time, as well as total activation time dispersion and atrial fibrosis. However, these abnormalities were attenuated by treatment with the GLP-1 receptor agonist, exendin-4. Moreover, the expression levels of collagen I, collagen III, transforming growth factor-β1, phosphorylated PI3K and AKT levels in atrial tissues were upregulated in rats with MI. These changes were also attenuated by exendin-4. It was also found that these exedin-4-mediated attenutations were mitigated by the co-administration of exendin9-39 with exendin-4. Overall, the findings of the present study suggested that exendin-4 decreases susceptibility to atrial arrhythmogenesis, improves conduction properties and exerts antifibrotic effects via the GLP-1 receptor signaling pathway. These findings provide evidence for the potential use of GLP-1R in the treatment of atrial fibrillation.
Collapse
Affiliation(s)
- Jingjing Chen
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Shunen Xu
- Department of Orthopedic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Long Wang
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Wei Zhou
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Ping Li
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Na Deng
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Qian Tang
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yongkang Li
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Lirong Wu
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jiulin Chen
- Department of Cardiology, Qian Xi Nan People's Hospital, Bijie, Guizhou 562400, P.R. China
| | - Wei Li
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
168
|
An IB, Byun MS, Yang SI, Choi Y, Woo JW, Jang HC, Sung YC. A glycosylated Fc-fused glucagon-like peptide-1 receptor agonist exhibits equivalent glucose lowering to but fewer gastrointestinal side effects than dulaglutide. Diabetes Obes Metab 2020; 22:1455-1468. [PMID: 32314505 PMCID: PMC7383507 DOI: 10.1111/dom.14058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 12/30/2022]
Abstract
AIM To evaluate the pharmacokinetic and pharmacodynamic properties of a novel glycosylated Fc-fused glucagon-like peptide-1(GLP-1-gFc) receptor agonist with distinctive receptor binding affinity, designed to improve in vivo stability and safety relative to the commercial GLP-1 analogue dulaglutide, and assess its safety profile and pharmacokinetics in healthy humans. MATERIALS AND METHODS We constructed GLP-1-gFc and determined its binding affinity and potency using in vitro instrumental and cell-based analyses followed by in vivo comparison of the glucose-lowering and gastrointestinal side effects between GLP-1-gFc and dulaglutide. A phase 1 clinical trial was conducted to confirm the efficacy and safety profile of GLP-1-gFc. RESULTS GLP-1-gFc showed 10-fold less binding affinity and 4-fold less potency than dulaglutide in in vitro. A potency-adjusted dose delayed HbA1c increase comparable with that of dulaglutide (Change for 6 weeks: 2.4 mg/kg GLP-1-gFc, 4.34 ± 0.40 vs. 0.6 mg/kg dulaglutide, 4.26 ± 0.22; n.s.). However, the equivalent efficacy dose and higher dose did not induce malaise-related responses (blueberry bar consumption, g/mouse: 2.4 mg/kg GLP-1-gFc, 0.15% ± 0.03% vs. 0.6 mg/kg dulaglutide, 0.04% ± 0.01%; P < .01) or QT interval changes (mean at 14-20 hours, mSc: 0.28 mg/kg GLP-1-gFc, 0.0-8.0 vs. 0.07 mg/kg dulaglutide, 8.0-27.7; n.s.), observed as safety variables in rats and monkeys, compared with those of dulaglutide. Glucose reductions in an oral glucose tolerance test were significant at day 3 postdose without severe gastrointestinal adverse events and pulse rate changes in healthy subjects. CONCLUSIONS These results suggest that GLP-1-gFc could be used as a novel GLP-1 receptor agonist with better safety than dulaglutide to maximize therapeutic benefits in subjects with type 2 diabetes.
Collapse
Affiliation(s)
- In Bok An
- Seoul National University Bundang Hospital and Seoul National University College of MedicineSeongnamRepublic of Korea
- Research Institute, Genexine Co. Ltd.SeongnamRepublic of Korea
| | - Mi Sun Byun
- Research Institute, Genexine Co. Ltd.SeongnamRepublic of Korea
| | - Sang In Yang
- Research Institute, Genexine Co. Ltd.SeongnamRepublic of Korea
| | - Yuri Choi
- Research Institute, Genexine Co. Ltd.SeongnamRepublic of Korea
| | - Jung Won Woo
- Research Institute, Genexine Co. Ltd.SeongnamRepublic of Korea
| | - Hak Chul Jang
- Seoul National University Bundang Hospital and Seoul National University College of MedicineSeongnamRepublic of Korea
| | - Young Chul Sung
- Research Institute, Genexine Co. Ltd.SeongnamRepublic of Korea
- Department of Life SciencePohang University of Science and TechnologyPohangRepublic of Korea
| |
Collapse
|
169
|
Kannt A, Madsen AN, Kammermeier C, Elvert R, Klöckener T, Bossart M, Haack T, Evers A, Lorenz K, Hennerici W, Rocher C, Böcskei Z, Guillemot JC, Mikol V, Pattou F, Staels B, Wagner M. Incretin combination therapy for the treatment of non-alcoholic steatohepatitis. Diabetes Obes Metab 2020; 22:1328-1338. [PMID: 32196896 DOI: 10.1111/dom.14035] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/04/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022]
Abstract
AIMS To test specific mono-agonists to the glucagon-like peptide-1 receptor (GLP-1R), glucagon receptor (GCGR) and glucose-dependent insulinotropic peptide receptor (GIPR), individually and in combination, in a mouse model of diet-induced non-alcoholic steatohepatitis (NASH) and fibrosis in order to decipher the contribution of their activities and potential additive effects to improving systemic and hepatic metabolism. MATERIALS AND METHODS We induced NASH by pre-feeding C57BL/6J mice a diet rich in fat, fructose and cholesterol for 36 weeks. This was followed by 8 weeks of treatment with the receptor-specific agonists 1-GCG (20 μg/kg twice daily), 2-GLP1 (3 μg/kg twice daily) or 3-GIP (30 μg/kg twice daily), or the dual (1 + 2) or triple (1 + 2 + 3) combinations thereof. A dual GLP-1R/GCGR agonistic peptide, 4-dual-GLP1/GCGR (30 μg/kg twice daily), and liraglutide (100 μg/kg twice daily) were included as references. RESULTS Whereas low-dose 1-GCG or 3-GIP alone did not influence body weight, liver lipids and histology, their combination with 2-GLP1 provided additional weight loss, reduction in liver triglycerides and improvement in histological disease activity score. Notably, 4-dual-GLP-1R/GCGR and the triple combination of selective mono-agonists led to a significantly stronger reduction in the histological non-alcoholic fatty liver disease activity score compared to high-dose liraglutide, at the same extent of body weight loss. CONCLUSIONS GCGR and GIPR agonism provide additional, body weight-independent improvements on top of GLP-1R agonism in a murine model of manifest NASH with fibrosis.
Collapse
Affiliation(s)
- Aimo Kannt
- Sanofi Research and Development, Frankfurt, Germany
- Experimental Pharmacology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Frankfurt, Germany
| | | | | | - Ralf Elvert
- Sanofi Research and Development, Frankfurt, Germany
| | | | | | | | | | | | | | - Corinne Rocher
- Sanofi Research and Development, Chilly-Mazarin Cedex, France
| | - Zsolt Böcskei
- Sanofi Research and Development, Chilly-Mazarin Cedex, France
| | | | - Vincent Mikol
- Sanofi Research and Development, Chilly-Mazarin Cedex, France
| | - Francois Pattou
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, Lille, France
| | - Bart Staels
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, Lille, France
| | | |
Collapse
|
170
|
Kaelberer MM, Rupprecht LE, Liu WW, Weng P, Bohórquez DV. Neuropod Cells: The Emerging Biology of Gut-Brain Sensory Transduction. Annu Rev Neurosci 2020; 43:337-353. [PMID: 32101483 PMCID: PMC7573801 DOI: 10.1146/annurev-neuro-091619-022657] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Guided by sight, scent, texture, and taste, animals ingest food. Once ingested, it is up to the gut to make sense of the food's nutritional value. Classic sensory systems rely on neuroepithelial circuits to convert stimuli into signals that guide behavior. However, sensation of the gut milieu was thought to be mediated only by the passive release of hormones until the discovery of synapses in enteroendocrine cells. These are gut sensory epithelial cells, and those that form synapses are referred to as neuropod cells. Neuropod cells provide the foundation for the gut to transduce sensory signals from the intestinal milieu to the brain through fast neurotransmission onto neurons, including those of the vagus nerve. These findings have sparked a new field of exploration in sensory neurobiology-that of gut-brain sensory transduction.
Collapse
Affiliation(s)
- Melanie Maya Kaelberer
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
| | - Laura E Rupprecht
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
| | - Winston W Liu
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
- School of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Peter Weng
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
- School of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Diego V Bohórquez
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
171
|
Kaelberer MM, Rupprecht LE, Liu WW, Weng P, Bohórquez DV. Neuropod Cells: The Emerging Biology of Gut-Brain Sensory Transduction. Annu Rev Neurosci 2020. [PMID: 32101483 DOI: 10.1146/annurev‐neuro‐091619‐022657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Guided by sight, scent, texture, and taste, animals ingest food. Once ingested, it is up to the gut to make sense of the food's nutritional value. Classic sensory systems rely on neuroepithelial circuits to convert stimuli into signals that guide behavior. However, sensation of the gut milieu was thought to be mediated only by the passive release of hormones until the discovery of synapses in enteroendocrine cells. These are gut sensory epithelial cells, and those that form synapses are referred to as neuropod cells. Neuropod cells provide the foundation for the gut to transduce sensory signals from the intestinal milieu to the brain through fast neurotransmission onto neurons, including those of the vagus nerve. These findings have sparked a new field of exploration in sensory neurobiology-that of gut-brain sensory transduction.
Collapse
Affiliation(s)
- Melanie Maya Kaelberer
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
| | - Laura E Rupprecht
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
| | - Winston W Liu
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA; .,School of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Peter Weng
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA; .,School of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Diego V Bohórquez
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA; .,Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
172
|
Da Porto A, Casarsa V, Colussi G, Catena C, Cavarape A, Sechi L. Dulaglutide reduces binge episodes in type 2 diabetic patients with binge eating disorder: A pilot study. Diabetes Metab Syndr 2020; 14:289-292. [PMID: 32289741 DOI: 10.1016/j.dsx.2020.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/22/2022]
Abstract
AIMS Binge eating disorder (BED) is the most common eating disorder in the United States and Europe and is associated with obesity and type 2 diabetes (T2D). Presence and severity of BED have been associated with worse metabolic control and greater BMI in T2D patients. Glucagon Like Peptide-1 (GLP1) receptors are present in central nervous system areas involved in appetite regulation and treatment with GLP-1 receptor agonists modulates appetite and reward-related brain areas in humans. We evaluated the effects of treatment with dulaglutide on eating behavior in T2D outpatients with BED. METHODS This was a pilot open label, prospective controlled study. Inclusion criteria were: Age ≤65, HbA1c between 7.5 and 9% on metformin therapy alone, normal renal function and diagnosis of BED. Patients were randomly assigned to receive either Dulaglutide 1,5 mg/sett or Gliclazide 60 mg for 12 weeks. We evaluated baseline binge eating scale score (BES), weight, BMI, percentage fat mass, HbA1c and their changes after treatment. A multivariate linear regression model was used to verify the association between Δ BES from baseline with Δ Hba1c and variation of anthropometric parameters after treatment. RESULTS After 12 weeks patients treated with dulaglutide had grater reduction of binge eating behaviour (p < 0.0001), body weight (p < 0,0001), BMI (p < 0.0001), percentage fat mass (p < 0.0001) and HbA1c (p = 0.009) than patients treated with gliclazide. Reduction in BES was associated with reduction in body weight (p < 0.0001) and HbA1c (p = 0.033). CONCLUSION Dulaglutide treatment reduces binge eating behaviour in T2D patients with BED.
Collapse
|
173
|
Mayer F, Gunawan AL, Tso P, Aponte GW. Glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide stimulate release of substance P from TRPV1- and TRPA1-expressing sensory nerves. Am J Physiol Gastrointest Liver Physiol 2020; 319:G23-G35. [PMID: 32421358 PMCID: PMC7468754 DOI: 10.1152/ajpgi.00189.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are released from enteroendocrine cells (EECs) in response to nutrient ingestion and lower blood glucose levels by stimulation of insulin secretion and thus are defined as incretins. GLP-1 receptor (GLP-1R) expression has been identified on enteric neurons that include intrinsic afferent neurons, extrinsic spinal, and vagal sensory afferents but has not been shown to have an incretin effect through these nerves. GLP-1 and GIP enter the mesenteric lymphatic fluid (MLF) after a meal via the interstitial fluid (IF) from local tissue secretion and/or blood capillaries. We tested if MLF could induce diet-dependent intransient increases in intracellular calcium ([Ca2+]i) in cultured sensory neurons. Postprandial rat MLF, collected from the superior mesenteric lymphatic duct, induced a significant twofold higher intransient increase in [Ca2+]i in primary-cultured sensory neurons than MLF from fasted rats. Inhibition of transient receptor potential vanilloid 1 (TRPV1) and TRPV1 and ankyrin 1 cation channels (TRPA1) with ruthenium red eliminated the difference. Substance P (SP) (a peptide that stimulates insulin secretion) sensor cells cocultured with sensory neurons showed both the GLP-1R agonist exendin-4 (Ex-4) and GIP induced transient increases in [Ca2+]i directly coupled to SP secretion in the sensory nerves. Ex-4-induced release of SP required expression of either TRPA1 or TRPV1. These data identify unrecognized actions of GLP-1 and GIP as incretins by acting as neurolymphocrines and suggest a mechanism for sensory nerves to respond to the postprandial state through MLF.NEW & NOTEWORTHY Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted upon eating to lower blood sugar. GLP-1 and GIP were found to induce the secretion of substance P (SP) from cultured sensory nerves. SP enhances insulin secretion. Mesenteric lymphatic fluid (MLF) also stimulates sensory neurons in a diet-dependent manner. These studies identify new actions of GLP-1 and GIP as incretins and suggest a mechanism for sensory nerves to respond to diet through MLF.
Collapse
Affiliation(s)
- Fahima Mayer
- 1Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, California
| | - Amanda L. Gunawan
- 1Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, California
| | - Patrick Tso
- 2Department of Pathobiology and Molecular Medicine, University of Cincinnati, Reading, Ohio
| | - Gregory W. Aponte
- 1Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, California
| |
Collapse
|
174
|
Ebrahimzadeh Leylabadlo H, Sanaie S, Sadeghpour Heravi F, Ahmadian Z, Ghotaslou R. From role of gut microbiota to microbial-based therapies in type 2-diabetes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 81:104268. [PMID: 32126303 DOI: 10.1016/j.meegid.2020.104268] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
The incidence of type 2 diabetes mellitus (T2DM) has increased dramatically at an alarming level around the world.T2DM is associated with changeable risk factors in lifestyle as well as genetic and family associated risk factors. More importantly, imbalanced or impaired gut microbial distribution (dysbiosis) has been reported as a contributing risk factor in insulin resistance progression in T2DM. Dysbiosis may restructure the metabolic and functional pathways in the intestine which are involved in the development of T2DM. However, several studies have indicated the constructive and helpful effect of prebiotics, probiotics, and fecal microbiota transplantation (FMT) on the improvement of gut microbiota (GM) and accordingly host metabolism. In this review, the association between GM and T2DM have been evaluated and the role of prebiotics, probiotics and FMT, as potential therapeutic approaches have been discussed. Relevant studies were obtained randomly from online databases such as PubMed/Medline and ISI Web of Science.
Collapse
Affiliation(s)
- Hamed Ebrahimzadeh Leylabadlo
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemah Sadeghpour Heravi
- Surgical Infection Research Group, Faculty of Medicine and Health Science, Macquarie University, Sydney 2019, Australia
| | - Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Reza Ghotaslou
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
175
|
Love KM, Liu J, Regensteiner JG, Reusch JE, Liu Z. GLP-1 and insulin regulation of skeletal and cardiac muscle microvascular perfusion in type 2 diabetes. J Diabetes 2020; 12:488-498. [PMID: 32274893 PMCID: PMC8393916 DOI: 10.1111/1753-0407.13045] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 12/25/2022] Open
Abstract
Muscle microvasculature critically regulates skeletal and cardiac muscle health and function. It provides endothelial surface area for substrate exchange between the plasma compartment and the muscle interstitium. Insulin fine-tunes muscle microvascular perfusion to regulate its own action in muscle and oxygen and nutrient supplies to muscle. Specifically, insulin increases muscle microvascular perfusion, which results in increased delivery of insulin to the capillaries that bathe the muscle cells and then facilitate its own transendothelial transport to reach the muscle interstitium. In type 2 diabetes, muscle microvascular responses to insulin are blunted and there is capillary rarefaction. Both loss of capillary density and decreased insulin-mediated capillary recruitment contribute to a decreased endothelial surface area available for substrate exchange. Vasculature expresses abundant glucagon-like peptide 1 (GLP-1) receptors. GLP-1, in addition to its well-characterized glycemic actions, improves endothelial function, increases muscle microvascular perfusion, and stimulates angiogenesis. Importantly, these actions are preserved in the insulin resistant states. Thus, treatment of insulin resistant patients with GLP-1 receptor agonists may improve skeletal and cardiac muscle microvascular perfusion and increase muscle capillarization, leading to improved delivery of oxygen, nutrients, and hormones such as insulin to the myocytes. These actions of GLP-1 impact skeletal and cardiac muscle function and systems biology such as functional exercise capacity. Preclinical studies and clinical trials involving the use of GLP-1 receptor agonists have shown salutary cardiovascular effects and improved cardiovascular outcomes in type 2 diabetes mellitus. Future studies should further examine the different roles of GLP-1 in cardiac as well as skeletal muscle function.
Collapse
Affiliation(s)
- Kaitlin M. Love
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Jia Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Judith G. Regensteiner
- Center for Women’s Health Research, University of Colorado School of Medicine, Aurora, Colorado
- Department of Medicine, University of Colorado, Aurora, Colorado
| | - Jane E.B. Reusch
- Center for Women’s Health Research, University of Colorado School of Medicine, Aurora, Colorado
- Department of Medicine, University of Colorado, Aurora, Colorado
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
176
|
Han W, Li Y, Cheng J, Zhang J, Chen D, Fang M, Xiang G, Wu Y, Zhang H, Xu K, Wang H, Xie L, Xiao J. Sitagliptin improves functional recovery via GLP-1R-induced anti-apoptosis and facilitation of axonal regeneration after spinal cord injury. J Cell Mol Med 2020; 24:8687-8702. [PMID: 32573108 PMCID: PMC7412681 DOI: 10.1111/jcmm.15501] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Axon growth and neuronal apoptosis are considered to be crucial therapeutic targets against spinal cord injury (SCI). Growing evidences have reported stimulation of glucagon‐like peptide‐1 (GLP‐1)/GLP‐1 receptor (GLP‐1R) signalling axis provides neuroprotection in experimental models of neurodegeneration disease. Endogenous GLP‐1 is rapidly degraded by dipeptidyl peptidase‐IV (DPP4), resulting in blocking of GLP‐1/GLP1R signalling process. Sitagliptin, a highly selective inhibitor of DPP4, has approved to have beneficial effects on diseases in which neurons damaged. However, the roles and the underlying mechanisms of sitagliptin in SCI repairing remain unclear. In this study, we used a rat model of SCI and PC12 cells/primary cortical neurons to explore the mechanism of sitagliptin underlying SCI recovery. We discovered the expression of GLP‐1R decreased in the SCI model. Administration of sitagliptin significantly increased GLP‐1R protein level, alleviated neuronal apoptosis, enhanced axon regeneration and improved functional recovery following SCI. Nevertheless, treatment with exendin9‐39, a GLP‐1R inhibitor, remarkably reversed the protective effect of sitagliptin. Additionally, we detected the AMPK/PGC‐1α signalling pathway was activated by sitagliptin stimulating GLP‐1R. Taken together, sitagliptin may be a potential agent for axon regrowth and locomotor functional repair via GLP‐1R‐induced AMPK/ PGC‐1α signalling pathway after SCI.
Collapse
Affiliation(s)
- Wen Han
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiangting Cheng
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jing Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Dingwen Chen
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Mingqiao Fang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangheng Xiang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanqing Wu
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Hongyu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Ke Xu
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Hangxiang Wang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ling Xie
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
177
|
Gray SM, Xin Y, Ross EC, Chazotte BM, Capozzi ME, El K, Svendsen B, Ravn P, Sloop KW, Tong J, Gromada J, Campbell JE, D'Alessio DA. Discordance between GLP-1R gene and protein expression in mouse pancreatic islet cells. J Biol Chem 2020; 295:11529-11541. [PMID: 32554468 DOI: 10.1074/jbc.ra120.014368] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
The insulinotropic actions of glucagon-like peptide 1 receptor (GLP-1R) in β-cells have made it a useful target to manage type 2 diabetes. Metabolic stress reduces β-cell sensitivity to GLP-1, yet the underlying mechanisms are unknown. We hypothesized that Glp1r expression is heterogeneous among β-cells and that metabolic stress decreases the number of GLP-1R-positive β-cells. Here, analyses of publicly available single-cell RNA-Seq sequencing (scRNASeq) data from mouse and human β-cells indicated that significant populations of β-cells do not express the Glp1r gene, supporting heterogeneous GLP-1R expression. To check these results, we used complementary approaches employing FACS coupled with quantitative RT-PCR, a validated GLP-1R antibody, and flow cytometry to quantify GLP-1R promoter activity, gene expression, and protein expression in mouse α-, β-, and δ-cells. Experiments with Glp1r reporter mice and a validated GLP-1R antibody indicated that >90% of the β-cells are GLP-1R positive, contradicting the findings with the scRNASeq data. α-cells did not express Glp1r mRNA and δ-cells expressed Glp1r mRNA but not protein. We also examined the expression patterns of GLP-1R in mouse models of metabolic stress. Multiparous female mice had significantly decreased β-cell Glp1r expression, but no reduction in GLP-1R protein levels or GLP-1R-mediated insulin secretion. These findings suggest caution in interpreting the results of scRNASeq for low-abundance transcripts such as the incretin receptors and indicate that GLP-1R is widely expressed in β-cells, absent in α-cells, and expressed at the mRNA, but not protein, level in δ-cells.
Collapse
Affiliation(s)
- Sarah M Gray
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Yurong Xin
- Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - Elizabeth C Ross
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Bryanna M Chazotte
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Kimberley El
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Berit Svendsen
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Peter Ravn
- Antibody Discovery and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Kyle W Sloop
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jenny Tong
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, Washington, USA
| | | | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA.,Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA.,Department of Medicine, Division of Endocrinology, Duke University, Durham, North Carolina, USA
| | - David A D'Alessio
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA david.d'.,Department of Medicine, Division of Endocrinology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
178
|
Bosi A, Banfi D, Bistoletti M, Giaroni C, Baj A. Tryptophan Metabolites Along the Microbiota-Gut-Brain Axis: An Interkingdom Communication System Influencing the Gut in Health and Disease. Int J Tryptophan Res 2020; 13:1178646920928984. [PMID: 32577079 PMCID: PMC7290275 DOI: 10.1177/1178646920928984] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/02/2020] [Indexed: 12/12/2022] Open
Abstract
The ‘microbiota-gut-brain axis’ plays a fundamental role in maintaining host homeostasis, and different immune, hormonal, and neuronal signals participate to this interkingdom communication system between eukaryota and prokaryota. The essential aminoacid tryptophan, as a precursor of several molecules acting at the interface between the host and the microbiota, is fundamental in the modulation of this bidirectional communication axis. In the gut, tryptophan undergoes 3 major metabolic pathways, the 5-HT, kynurenine, and AhR ligand pathways, which may be directly or indirectly controlled by the saprophytic flora. The importance of tryptophan metabolites in the modulation of the gastrointestinal tract is suggested by several preclinical and clinical studies; however, a thorough revision of the available literature has not been accomplished yet. Thus, this review attempts to cover the major aspects on the role of tryptophan metabolites in host-microbiota cross-talk underlaying regulation of gut functions in health conditions and during disease states, with particular attention to 2 major gastrointestinal diseases, such as irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD), both characterized by psychiatric disorders. Research in this area opens the possibility to target tryptophan metabolism to ameliorate the knowledge on the pathogenesis of both diseases, as well as to discover new therapeutic strategies based either on conventional pharmacological approaches or on the use of pre- and probiotics to manipulate the microbial flora.
Collapse
Affiliation(s)
- Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Banfi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
179
|
Eid RA, Khalil MA, Alkhateeb MA, Eleawa SM, Zaki MSA, El-Kott AF, Al-Shraim M, El-Sayed F, Eldeen MA, Bin-Meferij MM, Awaji KME, Shatoor AS. Exendin-4 Attenuates Remodeling in the Remote Myocardium of Rats After an Acute Myocardial Infarction by Activating β-Arrestin-2, Protein Phosphatase 2A, and Glycogen Synthase Kinase-3 and Inhibiting β-Catenin. Cardiovasc Drugs Ther 2020; 35:1095-1110. [PMID: 32474680 DOI: 10.1007/s10557-020-07006-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE This study tested if the protective anti-remodeling effect of GLP-1 agonist Exendin-4 after an acute myocardial infarction (MI) in rats involves inhibition of the Wnt1/β-catenin signaling pathway. METHODS Rats were divided into sham, sham + Exendin-4 (10 μg/day, i.p), MI, and MI + Exendin-4. MI was introduced to rats by permanent left anterior descending coronary artery (LAD) ligation. RESULTS On day 7 post-infraction, MI rats showed LV dysfunction with higher serum levels of cardiac markers. Their remote myocardia showed increased mRNA and protein levels of collagen I/III with higher levels of reactive oxygen species (ROS) and inflammatory cytokines, as well as protein levels of Wnt1, phospho-Akt, transforming growth factor (TGF-β1), Smad, phospho-Smad3, α-SMA, caspase-3, and Bax. They also showed higher protein levels of phospho-glycogen synthase kinase-3β (p-GSK3β), as well as total, phosphorylated, and nuclear β-catenin with a concomitant decrease in the levels of cyclic adenosine monophosphate (cAMP), mRNA of manganese superoxide dismutase (MnSOD), and protein levels of Bcl-2, β-arrestin-2, and protein phosphatase-2 (PP2A). Administration of Exendin-4 to MI rats reduced the infarct size and reversed the aforementioned signaling molecules without altering protein levels of TGF-1β and Wnt1 or Akt activation. Interestingly, Exendin-4 increased mRNA levels of MnSOD, protein levels of β-arrestin-2 and PP2A, and β-catenin phosphorylation but reduced the phosphorylation of GSK3β and Smad3, and total β-catenin levels in the LV of control rats. CONCLUSION Exendin-4 inhibits the remodeling in the remote myocardium of rats following acute MI by attenuating β-catenin activation and activating β-arrestin-2, PP2A, and GSK3β. Graphical Abstract A graphical abstract that illustrates the mechanisms by which Exendin-4 inhibits cardiac remodeling in remote myocardium of left ventricle MI-induced rats. Mechanisms are assumed to occur in the cardiomyocytes and/or other resident cells such as fibroblast. Β-catenin activation and nuclear translocation are associated with increased synthesis of inflammatory cytokines and transforming growth factor β-1 (TGF-β1). GSK3β is inhibited by phosphorylation at Ser9. Under normal conditions, β-catenin is degraded in the cytoplasm by the active GSK3β-dependent degradation complex (un-phosphorylated) which usually phosphorylates β-catenin at Ser33/37/Thr41. After MI, TGF-β1, and Wnt 1 levels are significantly increased, the overproduction of Wnt1 induces β-catenin stabilization and nuclear translocation through increasing the phosphorylation of disheveled (DVL) protein which in turn phosphorylates and inhibits GSK3β. TGF-β1 stimulates the phosphorylation of Smad-3 and subsequent nuclear translocation to activate the transcription of collage 1/III and α-smooth muscle actin (α-SMA). Besides, TGF-β1 stabilizes cytoplasmic β-catenin levels indirectly by phosphorylation of Akt at Thr308-induced inhibition of GSK3β by increasing phosphorylation of Ser9. Exendin-4, and possibly through G protein-coupled receptors (GPCRs), increases levels of cAMP and upregulates β-arrestin-2 levels. Both can result in a positive inotropic effect. Besides, β-arrestin-2 can stimulate PP2A to dephosphorylation Smad3 (inhibition) and GSK3β (activation), thus reduces fibrosis and prevents the activation of β-catenin and collagen deposition.
Collapse
Affiliation(s)
- Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, P.O. 641, Abha, 61421, Saudi Arabia.
| | - Mohammad Adnan Khalil
- Department of Basic Medical Sciences, Faculty of Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mahmoud A Alkhateeb
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Samy M Eleawa
- Department of Applied Medical Sciences, College of Health Sciences, PAAET, Shuwaikh, Kuwait
| | - Mohamed Samir Ahmed Zaki
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Histology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Attalla Farag El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Mubarak Al-Shraim
- Department of Pathology, College of Medicine, King Khalid University, P.O. 641, Abha, 61421, Saudi Arabia
| | - Fahmy El-Sayed
- Department of Pathology, College of Medicine, King Khalid University, P.O. 641, Abha, 61421, Saudi Arabia
| | - Muhammad Alaa Eldeen
- Department of Biology, Physiology Section, Faculty of Science, Zagazig University, Zagazig, Egypt
| | | | - Khalid M E Awaji
- Clinical laboratories Department, Asser Central Hospital, Abha, Saudi Arabia
| | - Abdullah S Shatoor
- Department of Clinical Cardiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
180
|
Fu Z, Gong L, Liu J, Wu J, Barrett EJ, Aylor KW, Liu Z. Brain Endothelial Cells Regulate Glucagon-Like Peptide 1 Entry Into the Brain via a Receptor-Mediated Process. Front Physiol 2020; 11:555. [PMID: 32547420 PMCID: PMC7274078 DOI: 10.3389/fphys.2020.00555] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/04/2020] [Indexed: 01/01/2023] Open
Abstract
Glucagon-like peptide 1 (GLP-1) in addition to regulating glucose-dependent insulin and glucagon secretion exerts anorexic and neuroprotective effects. While brain-derived GLP-1 may participate in these central actions, evidence suggests that peripherally derived GLP-1 plays an important role and GLP-1 analogs are known to cross the blood brain barrier. To define the role of brain microvascular endothelial cells in GLP-1 entry into the brain, we infused labeled GLP-1 or exendin-4 into rats intravenously and examined their appearance and protein kinase A activities in various brain regions. We also studied the role of endothelial cell GLP-1 receptor and its signaling in endothelial cell uptake and transport of GLP-1. Systemically infused labeled GLP-1 or exendin-4 appeared rapidly in various brain regions and this was associated with increased protein kinase A activity in these brain regions. Pretreatment with GLP-1 receptor antagonist reduced labeled GLP-1 or exendin-4 enrichment in the brain. Sub-diaphragmatic vagus nerve resection did not alter GLP-1-mediated increases in protein kinase A activity in the brain. Rat brain microvascular endothelial cells rapidly took up labeled GLP-1 and this was blunted by either GLP-1 receptor antagonism or protein kinase A inhibition but enhanced through adenylyl cyclase activation. Using an artificially assembled blood brain barrier consisting of endothelial and astrocyte layers, we found that labeled GLP-1 time-dependently crossed the barrier and the presence of GLP-1 receptor antagonist blunted this transit. We conclude that GLP-1 crosses the blood brain barrier through active trans-endothelial transport which requires GLP-1 receptor binding and activation.
Collapse
Affiliation(s)
- Zhuo Fu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Liying Gong
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States.,Department of Pharmacology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jia Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Jing Wu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States.,Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Eugene J Barrett
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Kevin W Aylor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| |
Collapse
|
181
|
PPG neurons in the nucleus of the solitary tract modulate heart rate but do not mediate GLP-1 receptor agonist-induced tachycardia in mice. Mol Metab 2020; 39:101024. [PMID: 32446875 PMCID: PMC7317700 DOI: 10.1016/j.molmet.2020.101024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 01/07/2023] Open
Abstract
Objective Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are used as anti-diabetic drugs and are approved for obesity treatment. However, GLP-1RAs also affect heart rate (HR) and arterial blood pressure (ABP) in rodents and humans. Although the activation of GLP-1 receptors (GLP-1R) is known to increase HR, the circuits recruited are unclear, and in particular, it is unknown whether GLP-1RAs activate preproglucagon (PPG) neurons, the brain source of GLP-1, to elicit these effects. Methods We investigated the effect of GLP-1RAs on heart rate in anaesthetized adult mice. In a separate study, we manipulated the activity of nucleus tractus solitarius (NTS) PPG neurons (PPGNTS) in awake, freely behaving transgenic Glu-Cre mice implanted with biotelemetry probes and injected with AAV-DIO-hM3Dq:mCherry or AAV-mCherry-FLEX-DTA. Results Systemic administration of the GLP-1RA Ex-4 increased resting HR in anaesthetized or conscious mice, but had no effect on ABP in conscious mice. This effect was abolished by β-adrenoceptor blockade with atenolol, but unaffected by the muscarinic antagonist atropine. Furthermore, Ex-4-induced tachycardia persisted when PPGNTS neurons were ablated, and Ex-4 did not induce expression of the neuronal activity marker cFos in PPGNTS neurons. PPGNTS ablation or acute chemogenetic inhibition of these neurons via hM4Di receptors had no effect on resting HR. In contrast, chemogenetic activation of PPGNTS neurons increased resting HR. Furthermore, the application of GLP-1 within the subarachnoid space of the middle thoracic spinal cord, a major projection target of PPG neurons, increased HR. Conclusions These results demonstrate that both systemic application of Ex-4 or GLP-1 and chemogenetic activation of PPGNTS neurons increases HR. Ex-4 increases the activity of cardiac sympathetic preganglionic neurons of the spinal cord without recruitment of PPGNTS neurons, and thus likely recapitulates the physiological effects of PPG neuron activation. These neurons therefore do not play a significant role in controlling resting HR and ABP but are capable of inducing tachycardia and so are likely involved in cardiovascular responses to acute stress. Activation of PPG neurons triggers increases in heart rate in mice. PPG neurons do not provide a tonic sympathetic drive to the heart. The tachycardic effect of systemic Ex-4 is not mediated by PPG neurons. GLP-1 receptor activation has a sympathoexcitatory effect that increases heart rate. Local activation of GLP-1R in the spinal cord is sufficient to elicit tachycardia.
Collapse
|
182
|
Affiliation(s)
- David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, U.K.
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Edgbaston, U.K
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, U.K
- National Institute for Health Research Oxford Biomedical Research Centre, Churchill Hospital, Oxford, U.K
| |
Collapse
|
183
|
Bae JH, Choi HJ, Cho KIK, Kim LK, Kwon JS, Cho YM. Glucagon-Like Peptide-1 Receptor Agonist Differentially Affects Brain Activation in Response to Visual Food Cues in Lean and Obese Individuals with Type 2 Diabetes Mellitus. Diabetes Metab J 2020; 44:248-259. [PMID: 31701698 PMCID: PMC7188972 DOI: 10.4093/dmj.2019.0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/24/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND To investigate the effects of a glucagon-like peptide-1 receptor agonist on functional brain activation in lean and obese individuals with type 2 diabetes mellitus (T2DM) in response to visual food cues. METHODS In a randomized, single-blinded, crossover study, 15 lean and 14 obese individuals with T2DM were administered lixisenatide or normal saline subcutaneously with a 1-week washout period. We evaluated brain activation in response to pictures of high-calorie food, low-calorie food, and nonfood using functional magnetic resonance imaging and measured appetite and caloric intake in participants who were given access to an ad libitum buffet. RESULTS Obese individuals with T2DM showed significantly greater activation of the hypothalamus, pineal gland, parietal cortex (high-calorie food vs. low-calorie food, P<0.05), orbitofrontal cortex (high-calorie food vs. nonfood, P<0.05), and visual cortex (food vs. nonfood, P<0.05) than lean individuals with T2DM. Lixisenatide injection significantly reduced the functional activation of the fusiform gyrus and lateral ventricle in obese individuals with T2DM compared with that in lean individuals with T2DM (nonfood vs. high-calorie food, P<0.05). In addition, in individuals who decreased their caloric intake after lixisenatide injection, there were significant interaction effects between group and treatment in the posterior cingulate, medial frontal cortex (high-calorie food vs. low-calorie food, P<0.05), hypothalamus, orbitofrontal cortex, and temporal lobe (food vs. nonfood, P<0.05). CONCLUSION Brain responses to visual food cues were different in lean and obese individuals with T2DM. In addition, acute administration of lixisenatide differentially affected functional brain activation in these individuals, especially in those who decreased their caloric intake after lixisenatide injection.
Collapse
Affiliation(s)
- Jae Hyun Bae
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Hyung Jin Choi
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
- Neuroscience Research Institute, Seoul National University, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, Korea
| | - Kang Ik Kevin Cho
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Lee Kyung Kim
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Cheju Halla General Hospital, Jeju, Korea
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Young Min Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
184
|
Graham DL, Durai HH, Trammell TS, Noble BL, Mortlock DP, Galli A, Stanwood GD. A novel mouse model of glucagon-like peptide-1 receptor expression: A look at the brain. J Comp Neurol 2020; 528:2445-2470. [PMID: 32170734 DOI: 10.1002/cne.24905] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone with a number of functions to maintain energy homeostasis and contribute to motivated behavior, both peripherally and within the central nervous system (CNS). These functions, which include insulin secretion, gastric emptying, satiety, and the hedonic aspects of food and drug intake, are primarily mediated through stimulation of the GLP-1 receptor. While this receptor plays an important role in a variety of physiological outcomes, data regarding its CNS expression has been primarily limited to regional receptor binding and single-label transcript expression studies. We thus developed a bacterial artificial chromosome transgenic mouse, in which expression of a red fluorescent protein (mApple) is driven by the GLP-1R promoter. Using this reporter mouse, we characterized the regional and cellular expression patterns of GLP-1R expressing cells in the CNS, using double-label immunohistochemistry and in situ hybridization. GLP-1R-expressing cells were enriched in several key brain regions and circuits, including the lateral septum, hypothalamus, amygdala, bed nucleus of the stria terminalis, hippocampus, ventral midbrain, periaqueductal gray, and cerebral cortex. In most regions, GLP-1R primarily colocalized with GABAergic neurons, except within some regions such as the hippocampus, where it was co-expressed in glutamatergic neurons. GLP-1R-mApple cells were highly co-expressed with 5-HT3 receptor-containing neurons within the cortex and striatum, as well as with dopamine receptor- and calbindin-expressing cells within the lateral septum, the brain region in which GLP-1R is most highly expressed. In this manuscript, we provide detailed images of GLP-1R-mApple expression and distribution within the brain and characterization of these neurons.
Collapse
Affiliation(s)
- Devon L Graham
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Heather H Durai
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Taylor S Trammell
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Brenda L Noble
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Douglas P Mortlock
- Vanderbilt Genetics Institute and Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Aurelio Galli
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gregg D Stanwood
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida, USA
| |
Collapse
|
185
|
Davis EM, Sandoval DA. Glucagon‐Like Peptide‐1: Actions and Influence on Pancreatic Hormone Function. Compr Physiol 2020; 10:577-595. [DOI: 10.1002/cphy.c190025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
186
|
Okabe K, Matsushima S, Ikeda S, Ikeda M, Ishikita A, Tadokoro T, Enzan N, Yamamoto T, Sada M, Deguchi H, Shinohara K, Ide T, Tsutsui H. DPP (Dipeptidyl Peptidase)-4 Inhibitor Attenuates Ang II (Angiotensin II)-Induced Cardiac Hypertrophy via GLP (Glucagon-Like Peptide)-1-Dependent Suppression of Nox (Nicotinamide Adenine Dinucleotide Phosphate Oxidase) 4-HDAC (Histone Deacetylase) 4 Pathway. Hypertension 2020; 75:991-1001. [PMID: 32160098 DOI: 10.1161/hypertensionaha.119.14400] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nox4 (NADPH [Nicotinamide adenine dinucleotide phosphate] oxidase 4) is a major source of oxidative stress and is intimately involved in cardiac hypertrophy. DPP (Dipeptidyl peptidase)-4 inhibitor has been reported to regulate Nox4 expression in adipose tissues. However, its effects on Nox4 in cardiac hypertrophy are still unclear. We investigated whether DPP-4 inhibitor could ameliorate cardiac hypertrophy by regulating Nox4 and its downstream targets. Ang II (Angiotensin II; 1.44 mg/kg per day) or saline was continuously infused into C57BL/6J mice with or without teneligliptin (a DPP-4 inhibitor, 30 mg/kg per day) in the drinking water for 1 week. Teneligliptin significantly suppressed plasma DPP-4 activity without any significant changing aortic blood pressure or metabolic parameters such as blood glucose and insulin levels. It attenuated Ang II-induced increases in left ventricular wall thickness and the ratio of heart weight to body weight. It also significantly suppressed Ang II-induced increases in Nox4 mRNA, 4-hydroxy-2-nonenal, and phosphorylation of HDAC4 (histone deacetylase 4), a downstream target of Nox4 and a crucial suppressor of cardiac hypertrophy, in the heart. Exendin-3 (150 pmol/kg per minute), a GLP-1 (glucagon-like peptide 1) receptor antagonist, abrogated these inhibitory effects of teneligliptin on Nox4, 4-hydroxy-2-nonenal, phosphorylation of HDAC4, and cardiac hypertrophy. In cultured neonatal cardiomyocytes, exendin-4 (100 nmol/L, 24 hours), a GLP-1 receptor agonist, ameliorated Ang II-induced cardiomyocyte hypertrophy and decreased in Nox4, 4-hydroxy-2-nonenal, and phosphorylation of HDAC4. Furthermore, exendin-4 prevented Ang II-induced decrease in nuclear HDAC4 in cardiomyocytes. In conclusion, GLP-1 receptor stimulation by DPP-4 inhibitor can attenuate Ang II-induced cardiac hypertrophy by suppressing of the Nox4-HDAC4 axis in cardiomyocytes.
Collapse
Affiliation(s)
- Kosuke Okabe
- From the Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan (K.O., S.I., M.I., A.I., T.T., N.E., T.Y., M.S., H.D., H.T.)
| | - Shouji Matsushima
- Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (S.M.)
| | - Soichiro Ikeda
- From the Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan (K.O., S.I., M.I., A.I., T.T., N.E., T.Y., M.S., H.D., H.T.)
| | - Masataka Ikeda
- From the Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan (K.O., S.I., M.I., A.I., T.T., N.E., T.Y., M.S., H.D., H.T.)
| | - Akihito Ishikita
- From the Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan (K.O., S.I., M.I., A.I., T.T., N.E., T.Y., M.S., H.D., H.T.)
| | - Tomonori Tadokoro
- From the Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan (K.O., S.I., M.I., A.I., T.T., N.E., T.Y., M.S., H.D., H.T.)
| | - Nobuyuki Enzan
- From the Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan (K.O., S.I., M.I., A.I., T.T., N.E., T.Y., M.S., H.D., H.T.)
| | - Taishi Yamamoto
- From the Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan (K.O., S.I., M.I., A.I., T.T., N.E., T.Y., M.S., H.D., H.T.)
| | - Masashi Sada
- From the Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan (K.O., S.I., M.I., A.I., T.T., N.E., T.Y., M.S., H.D., H.T.)
| | - Hiroko Deguchi
- From the Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan (K.O., S.I., M.I., A.I., T.T., N.E., T.Y., M.S., H.D., H.T.)
| | - Keisuke Shinohara
- Department of Experimental and Clinical Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Japan (K.S., T.I.)
| | - Tomomi Ide
- Department of Experimental and Clinical Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Japan (K.S., T.I.)
| | - Hiroyuki Tsutsui
- From the Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan (K.O., S.I., M.I., A.I., T.T., N.E., T.Y., M.S., H.D., H.T.)
| |
Collapse
|
187
|
Fortin SM, Lipsky RK, Lhamo R, Chen J, Kim E, Borner T, Schmidt HD, Hayes MR. GABA neurons in the nucleus tractus solitarius express GLP-1 receptors and mediate anorectic effects of liraglutide in rats. Sci Transl Med 2020; 12:eaay8071. [PMID: 32132220 PMCID: PMC7211411 DOI: 10.1126/scitranslmed.aay8071] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/22/2019] [Accepted: 02/13/2020] [Indexed: 01/04/2023]
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) agonist liraglutide is approved for the treatment of obesity; however, there is still much to be learned regarding the neuronal sites of action that underlie its suppressive effects on food intake and body weight. Peripherally administered liraglutide in rats acts in part through central GLP-1Rs in both the hypothalamus and the hindbrain. Here, we extend findings supporting a role for hindbrain GLP-1Rs in mediating the anorectic effects of liraglutide in male rats. To dissociate the contribution of GLP-1Rs in the area postrema (AP) and the nucleus tractus solitarius (NTS), we examined the effects of liraglutide in both NTS AAV-shRNA-driven Glp1r knockdown and AP-lesioned animals. Knockdown of NTS GLP-1Rs, but not surgical lesioning of the AP, attenuated the anorectic and body weight-reducing effects of acutely delivered liraglutide. In addition, NTS c-Fos responses were maintained in AP-lesioned animals. Moreover, NTS Glp1r knockdown was sufficient to attenuate the intake- and body weight-reducing effects of chronic daily administered liraglutide over 3 weeks. Development of improved obesity pharmacotherapies requires an understanding of the cellular phenotypes targeted by GLP-1R agonists. Fluorescence in situ hybridization identified Glp1r transcripts in NTS GABAergic neurons, which when inhibited using chemogenetics, attenuated the food intake- and body weight-reducing effects of liraglutide. This work demonstrates the contribution of NTS GLP-1Rs to the anorectic potential of liraglutide and highlights a phenotypically distinct (GABAergic) population of neurons within the NTS that express the GLP-1R and are involved in the mediation of liraglutide signaling.
Collapse
Affiliation(s)
- Samantha M Fortin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachele K Lipsky
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rinzin Lhamo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jack Chen
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eun Kim
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tito Borner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heath D Schmidt
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
188
|
Sarnobat D, Moffett RC, Gault VA, Tanday N, Reimann F, Gribble FM, Flatt PR, Irwin N. Effects of long-acting GIP, xenin and oxyntomodulin peptide analogues on alpha-cell transdifferentiation in insulin-deficient diabetic Glu CreERT2;ROSA26-eYFP mice. Peptides 2020; 125:170205. [PMID: 31738969 PMCID: PMC7212078 DOI: 10.1016/j.peptides.2019.170205] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 02/08/2023]
Abstract
Enzyme-resistant long-acting forms of the gut-derived peptide hormones, glucose-dependent insulinotropic polypeptide (GIP), xenin and oxyntomodulin (Oxm) have been generated, and exert beneficial effects on diabetes control and pancreatic islet architecture. The current study has employed alpha-cell lineage tracing in GluCreERT2;ROSA26-eYFP transgenic mice to investigate the extent to which these positive pancreatic effects are associated with alpha- to beta-cell transdifferentiation. Twice-daily administration of (D-Ala2)GIP, xenin-25[Lys13PAL] or (D-Ser2)-Oxm[Lys38PAL] for 10 days to streptozotocin (STZ)-induced diabetic mice did not affect body weight, food intake or blood glucose levels, but (D-Ser2)-Oxm[Lys38PAL] reduced (P < 0.05 to P < 0.001) fluid intake and circulating glucagon. (D-Ala2)GIP and (D-Ser2)-Oxm[Lys38PAL] also augmented (P < 0.05 and P < 0.01, respectively) pancreatic insulin content. Detrimental changes of pancreatic morphology induced by STZ in GluCreERT2;ROSA26-eYFP mice were partially reversed by all treatment interventions. This was associated with reduced (P < 0.05) apoptosis and increased (P < 0.05 to P < 0.01) proliferation of beta-cells, alongside opposing effects on alpha-cells, with (D-Ala2)GIP and (D-Ser2)-Oxm[Lys38PAL] being particularly effective in this regard. Alpha-cell lineage tracing revealed that induction of diabetes was accompanied by increased (P < 0.01) transdifferentiation of glucagon positive alpha-cells to insulin positive beta-cells. This islet cell transitioning process was augmented (P < 0.01 and P < 0.001, respectively) by (D-Ala2)GIP and (D-Ser2)-Oxm[Lys38PAL]. (D-Ser2)-Oxm[Lys38PAL] also significantly (P < 0.05) promoted loss of alpha-cell identity in favour of other endocrine islet cells. These data highlight intra-islet benefits of (D-Ala2)GIP, xenin-25[Lys13PAL] and (D-Ser2)-Oxm[Lys38PAL] in diabetes with beta-cell loss induced by STZ. The effects appear to be independent of glycaemic change, and associated with alpha- to beta-cell transdifferentiation for the GIP and Oxm analogues.
Collapse
Affiliation(s)
- Dipak Sarnobat
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - R Charlotte Moffett
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Victor A Gault
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Neil Tanday
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Frank Reimann
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Fiona M Gribble
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK.
| |
Collapse
|
189
|
Liu S, Jin Z, Zhang Y, Rong S, He W, Sun K, Wan D, Huo J, Xiao L, Li X, Ding N, Wang F, Sun T. The Glucagon-Like Peptide-1 Analogue Liraglutide Reduces Seizures Susceptibility, Cognition Dysfunction and Neuronal Apoptosis in a Mouse Model of Dravet Syndrome. Front Pharmacol 2020; 11:136. [PMID: 32184723 PMCID: PMC7059191 DOI: 10.3389/fphar.2020.00136] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/31/2020] [Indexed: 12/20/2022] Open
Abstract
Dravet syndrome (DS) is a refractory epilepsy typically caused by heterozygous mutations of the Scn1a gene, which encodes the voltage-gated sodium channel Nav1.1. Glucagon-like peptide-1 (GLP-1) analogues, effective therapeutic agents for the treatment of diabetes, have recently become attractive treatment modalities for patients with nervous system disease; however, the impact of GLP-1 analogues on DS remains unknown. This study aimed to determine the neuroprotective role of liraglutide in mouse and cell models of Scn1a KO-induced epilepsy. Epileptic susceptibility, behavioral changes, and behavioral seizures were assessed using electroencephalography (EEG), IntelliCage (TSE Systems, Bad Homburg, Germany), and the open field task. Morphological changes in brain tissues were observed using hematoxylin and eosin (HE) and Nissl staining. Expression of apoptosis-related proteins and the mammalian target of rapamycin (mTOR) signaling pathway were determined using immunofluorescence and western blotting in Scn1a KO-induced epileptic mice in vitro. Scn1a KO model cell proliferation was evaluated using the Cell Counting Kit-8 assay, and the effect of liraglutide on cellular apoptosis levels was examined using Annexin V-FITC/PI flow cytometry. Apoptotic signal proteins and mTOR were assessed using reverse transcription - quantitative polymerase chain reaction (RT-qPCR) and western blotting. Our results showed that liraglutide significantly increased mRNA ((0.31 ± 0.04) *10-3 vs. (1.07 ± 0.08) * 10-3, P = 0.0004) and protein (0.10 ± 0.02 vs. 0.27 ± 0.02, P = 0.0006) expression of Scn1a in Scn1a KO-induced epileptic mice. In addition, liraglutide significantly alleviated electroencephalographic seizures, the severity of responses to epileptic seizures (96.53 ± 0.45 % vs. 85.98 ± 1.24 %, P = 0.0003), cognitive dysfunction, and epileptic-related necrotic neurons (9.76 ± 0.91 % vs. 19.65 ± 2.64 %, P = 0.0005) in Scn1a KO-induced epileptic mice. Moreover, liraglutide protected against Scn1a KO-induced apoptosis, which was manifested in the phosphorylation of mTOR (KO+NS: 1.99 ± 0.31 vs. KO+Lira: 0.97 ± 0.18, P = 0.0004), as well as the downregulation of cleaved caspase-3 (KO+NS: 0.49 ± 0.04 vs. KO+Lira: 0.30 ± 0.01, P = 0.0003) and restoration of the imbalance between BAX (KO+NS: 0.90 ± 0.02 vs. KO+Lira: 0.75 ± 0.04, P = 0.0005) and BCL-2 (KO+NS: 0.46 ± 0.02 vs. KO+Lira: 0.61 ± 0.02, P = 0.0006). Collectively, these results show that liraglutide reduces seizure susceptibility and cognitive dysfunction in the mouse model of Dravet syndrome, and exerts anti-apoptotic and neuroprotective effects in Scn1a KO mice and cells.
Collapse
Affiliation(s)
- Shenhai Liu
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhe Jin
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Yiling Zhang
- Department of Integrated Medicine, Affiliated DongFeng Hospital, HuBei University of Medicine, Shiyan, China
| | - ShiKuo Rong
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wenxin He
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Kuisheng Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Din Wan
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Junming Huo
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lifei Xiao
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xinxiao Li
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Na Ding
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
190
|
Obesity Affects the Microbiota-Gut-Brain Axis and the Regulation Thereof by Endocannabinoids and Related Mediators. Int J Mol Sci 2020; 21:ijms21051554. [PMID: 32106469 PMCID: PMC7084914 DOI: 10.3390/ijms21051554] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022] Open
Abstract
The hypothalamus regulates energy homeostasis by integrating environmental and internal signals to produce behavioral responses to start or stop eating. Many satiation signals are mediated by microbiota-derived metabolites coming from the gastrointestinal tract and acting also in the brain through a complex bidirectional communication system, the microbiota–gut–brain axis. In recent years, the intestinal microbiota has emerged as a critical regulator of hypothalamic appetite-related neuronal networks. Obesogenic high-fat diets (HFDs) enhance endocannabinoid levels, both in the brain and peripheral tissues. HFDs change the gut microbiota composition by altering the Firmicutes:Bacteroidetes ratio and causing endotoxemia mainly by rising the levels of lipopolysaccharide (LPS), the most potent immunogenic component of Gram-negative bacteria. Endotoxemia induces the collapse of the gut and brain barriers, interleukin 1β (IL1β)- and tumor necrosis factor α (TNFα)-mediated neuroinflammatory responses and gliosis, which alter the appetite-regulatory circuits of the brain mediobasal hypothalamic area delimited by the median eminence. This review summarizes the emerging state-of-the-art evidence on the function of the “expanded endocannabinoid (eCB) system” or endocannabinoidome at the crossroads between intestinal microbiota, gut-brain communication and host metabolism; and highlights the critical role of this intersection in the onset of obesity.
Collapse
|
191
|
Abstract
PURPOSE OF REVIEW Among the gastrointestinal hormones, the incretins: glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 have attracted interest because of their importance for the development and therapy of type 2 diabetes and obesity. New agonists and formulations of particularly the GLP-1 receptor have been developed recently showing great therapeutic efficacy for both diseases. RECENT FINDINGS The status of the currently available GLP-1 receptor agonists (GLP-1RAs) is described, and their strengths and weaknesses analyzed. Their ability to also reduce cardiovascular and renal risk is described and analysed. The most recent development of orally available agonists and of very potent monomolecular co-agonists for both the GLP-1 and GIP receptor is also discussed. SUMMARY The GLP-1RAs are currently the most efficacious agents for weight loss, and show potential for further efficacy in combination with other food-intake-regulating peptides. Because of their glycemic efficacy and cardiorenal protection, the GLP-1 RAs will be prominent elements in future diabetes therapy.
Collapse
Affiliation(s)
- Jens Juul Holst
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, The Panum Institute, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| |
Collapse
|
192
|
Ast J, Arvaniti A, Fine NHF, Nasteska D, Ashford FB, Stamataki Z, Koszegi Z, Bacon A, Jones BJ, Lucey MA, Sasaki S, Brierley DI, Hastoy B, Tomas A, D'Agostino G, Reimann F, Lynn FC, Reissaus CA, Linnemann AK, D'Este E, Calebiro D, Trapp S, Johnsson K, Podewin T, Broichhagen J, Hodson DJ. Super-resolution microscopy compatible fluorescent probes reveal endogenous glucagon-like peptide-1 receptor distribution and dynamics. Nat Commun 2020; 11:467. [PMID: 31980626 PMCID: PMC6981144 DOI: 10.1038/s41467-020-14309-w] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 12/27/2019] [Indexed: 12/25/2022] Open
Abstract
The glucagon-like peptide-1 receptor (GLP1R) is a class B G protein-coupled receptor (GPCR) involved in metabolism. Presently, its visualization is limited to genetic manipulation, antibody detection or the use of probes that stimulate receptor activation. Herein, we present LUXendin645, a far-red fluorescent GLP1R antagonistic peptide label. LUXendin645 produces intense and specific membrane labeling throughout live and fixed tissue. GLP1R signaling can additionally be evoked when the receptor is allosterically modulated in the presence of LUXendin645. Using LUXendin645 and LUXendin651, we describe islet, brain and hESC-derived β-like cell GLP1R expression patterns, reveal higher-order GLP1R organization including membrane nanodomains, and track single receptor subpopulations. We furthermore show that the LUXendin backbone can be optimized for intravital two-photon imaging by installing a red fluorophore. Thus, our super-resolution compatible labeling probes allow visualization of endogenous GLP1R, and provide insight into class B GPCR distribution and dynamics both in vitro and in vivo. Glucagon-like peptide-1 receptor is an important regulator of appetite and glucose homeostasis. Here the authors describe super-resolution microscopy and in vivo imaging compatible fluorescent probes, which reveal endogenous glucagon-like peptide-1 receptor distribution and dynamics in islets and brain.
Collapse
Affiliation(s)
- Julia Ast
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Anastasia Arvaniti
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Nicholas H F Fine
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Daniela Nasteska
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Fiona B Ashford
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Zania Stamataki
- Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Andrea Bacon
- Genome Editing Facility, Technology Hub, University of Birmingham, Birmingham, UK
| | - Ben J Jones
- Division of Diabetes, Endocrinology and Metabolism, Section of Investigative Medicine, Imperial College London, London, UK
| | - Maria A Lucey
- Division of Diabetes, Endocrinology and Metabolism, Section of Investigative Medicine, Imperial College London, London, UK
| | - Shugo Sasaki
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Daniel I Brierley
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Alejandra Tomas
- Division of Diabetes, Endocrinology and Metabolism, Section of Cell Biology and Functional Genomics, Imperial College London, London, UK
| | - Giuseppe D'Agostino
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - Frank Reimann
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | | | - Amelia K Linnemann
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Davide Calebiro
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Stefan Trapp
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Tom Podewin
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany.
| | - Johannes Broichhagen
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany.
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK. .,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.
| |
Collapse
|
193
|
Liu H, Xu Y, Hu F. AMPK in the Ventromedial Nucleus of the Hypothalamus: A Key Regulator for Thermogenesis. Front Endocrinol (Lausanne) 2020; 11:578830. [PMID: 33071984 PMCID: PMC7538541 DOI: 10.3389/fendo.2020.578830] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Abstract
Obesity has become a global health issue, but effective therapies remain very limited. Adaptive thermogenesis promotes weight loss by dissipating energy in the form of heat, thereby representing a promising target to counteract obesity. Notably, the regulation of thermogenesis is tightly orchestrated by complex neuronal networks, especially those in the hypothalamus. Recent evidence highlights the importance of adenosine monophosphate-activated protein kinase (AMPK) within the ventromedial nucleus of the hypothalamus (VMH) in modulating thermogenesis. Various molecules, such as GLP-1, leptin, estradiol, and thyroid hormones, have been reported to act on the VMH to inhibit AMPK, which subsequently increases thermogenesis through the activation of the sympathetic nervous system (SNS). In this review, we summarize the critical role of AMPK within the VMH in the control of energy balance, focusing on its contribution to thermogenesis and the associated mechanisms.
Collapse
Affiliation(s)
- Hailan Liu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Yong Xu
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Fang Hu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Fang Hu
| |
Collapse
|
194
|
Knauf C, Abot A, Wemelle E, Cani PD. Targeting the Enteric Nervous System to Treat Metabolic Disorders? "Enterosynes" as Therapeutic Gut Factors. Neuroendocrinology 2020; 110:139-146. [PMID: 31280267 DOI: 10.1159/000500602] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/28/2019] [Indexed: 11/19/2022]
Abstract
The gut-brain axis is of crucial importance for controlling glucose homeostasis. Alteration of this axis promotes the type 2 diabetes (T2D) phenotype (hyperglycaemia, insulin resistance). Recently, a new concept has emerged to demonstrate the crucial role of the enteric nervous system in the control of glycaemia via the hypothalamus. In diabetic patients and mice, modification of enteric neurons activity in the proximal part of the intestine generates a duodenal hyper-contractility that generates an aberrant message from the gut to the brain. In turn, the hypothalamus sends an aberrant efferent message that provokes a state of insulin resistance, which is characteristic of a T2D state. Targeting the enteric nervous system of the duodenum is now recognized as an innovative strategy for treatment of diabetes. By acting in the intestine, bioactive gut molecules that we called "enterosynes" can modulate the function of a specific type of neurons of the enteric nervous system to decrease the contraction of intestinal smooth muscle cells. Here, we focus on the origins of enterosynes (hormones, neurotransmitters, nutrients, microbiota, and immune factors), which could be considered therapeutic factors, and we describe their modes of action on enteric neurons. This unsuspected action of enterosynes is proposed for the treatment of T2D, but it could be applied for other therapeutic solutions that implicate communication between the gut and brain.
Collapse
Affiliation(s)
- Claude Knauf
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Université Paul Sabatier, UPS, Institut de Recherche en Santé Digestive et Nutrition (IRSD), Toulouse, France,
- NeuroMicrobiota, European Associated Laboratory (EAL) INSERM, Toulouse, France,
| | - Anne Abot
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Université Paul Sabatier, UPS, Institut de Recherche en Santé Digestive et Nutrition (IRSD), Toulouse, France
- NeuroMicrobiota, European Associated Laboratory (EAL) INSERM, Toulouse, France
| | - Eve Wemelle
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Université Paul Sabatier, UPS, Institut de Recherche en Santé Digestive et Nutrition (IRSD), Toulouse, France
- NeuroMicrobiota, European Associated Laboratory (EAL) INSERM, Toulouse, France
| | - Patrice D Cani
- NeuroMicrobiota, European Associated Laboratory (EAL) INSERM, Toulouse, France
- UCLouvain, Université Catholique de Louvain, WELBIO - Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium
| |
Collapse
|
195
|
Velikyan I, Eriksson O. Advances in GLP-1 receptor targeting radiolabeled agent development and prospective of theranostics. Theranostics 2020; 10:437-461. [PMID: 31903131 PMCID: PMC6929622 DOI: 10.7150/thno.38366] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
In the light of theranostics/radiotheranostics and prospective of personalized medicine in diabetes and oncology, this review presents prior and current advances in the development of radiolabeled imaging and radiotherapeutic exendin-based agents targeting glucagon-like peptide-1 receptor. The review covers chemistry, preclinical, and clinical evaluation. Such critical aspects as structure-activity-relationship, stability, physiological potency, kidney uptake, and dosimetry are discussed.
Collapse
Affiliation(s)
- Irina Velikyan
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
196
|
Glucagon-like peptide-1 suppresses neuroinflammation and improves neural structure. Pharmacol Res 2019; 152:104615. [PMID: 31881271 DOI: 10.1016/j.phrs.2019.104615] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is a hormone mainly secreted from enteroendocrine L cells. GLP-1 and its receptor are also expressed in the brain. GLP-1 signaling has pivotal roles in regulating neuroinflammation and memory function, but it is unclear how GLP-1 improves memory function by regulating neuroinflammation. Here, we demonstrated that GLP-1 enhances neural structure by inhibiting lipopolysaccharide (LPS)-induced inflammation in microglia with the effects of GLP-1 itself on neurons. Inflammatory secretions of BV-2 microglia by LPS aggravated mitochondrial function and cell survival, as well as neural structure in Neuro-2a neurons. In inflammatory condition, GLP-1 suppressed the secretion of tumor necrosis factor-alpha (TNF-α)-associated cytokines and chemokines in BV-2 microglia and ultimately enhanced neurite complexity (neurite length, number of neurites from soma, and secondary branches) in Neuro-2a neurons. We confirmed that GLP-1 improves neurite complexity, dendritic spine morphogenesis, and spine development in TNF-α-treated primary cortical neurons based on altered expression levels of the factors related to neurite growth and spine morphology. Given that our data that GLP-1 itself enhances neurite complexity and spine morphology in neurons, we suggest that GLP-1 has a therapeutic potential in central nervous system diseases.
Collapse
|
197
|
Clarke SJ, Giblett JP, Yang LL, Hubsch A, Zhao T, Aetesam-Ur-Rahman M, West NEJ, O'Sullivan M, Figg N, Bennett M, Wewer Albrechtsen NJ, Deacon CF, Cheriyan J, Hoole SP. GLP-1 Is a Coronary Artery Vasodilator in Humans. J Am Heart Assoc 2019; 7:e010321. [PMID: 30571482 PMCID: PMC6404441 DOI: 10.1161/jaha.118.010321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The mechanism underlying the beneficial cardiovascular effects of the incretin GLP‐1 (glucagon‐like peptide 1) and its analogues in humans is elusive. We hypothesized that activating receptors located on vascular smooth muscle cells to induce either peripheral or coronary vasodilatation mediates the cardiovascular effect of GLP‐1. Methods and Results Ten stable patients with angina awaiting left anterior descending artery stenting underwent forearm blood flow measurement using forearm plethysmography and post–percutaneous coronary intervention coronary blood flow measurement using a pressure‐flow wire before and after peripheral GLP‐1 administration. Coronary sinus and artery bloods were sampled for GLP‐1 levels. A further 11 control patients received saline rather than GLP‐1 in the coronary blood flow protocol. GLP‐1 receptor (GLP‐1R) expression was assessed by immunohistochemistry using a specific GLP‐1R monoclonal antibody in human tissue to inform the physiological studies. There was no effect of GLP‐1 on absolute forearm blood flow or forearm blood flow ratio after GLP‐1, systemic hemodynamics were not affected, and no binding of GLP‐1R monoclonal antibody was detected in vascular tissue. GLP‐1 reduced resting coronary transit time (mean [SD], 0.87 [0.39] versus 0.63 [0.27] seconds; P=0.02) and basal microcirculatory resistance (mean [SD], 76.3 [37.9] versus 55.4 [30.4] mm Hg/s; P=0.02), whereas in controls, there was an increase in transit time (mean [SD], 0.48 [0.24] versus 0.83 [0.41] seconds; P<0.001) and basal microcirculatory resistance (mean [SD], 45.9 [34.7] versus 66.7 [37.2] mm Hg/s; P=0.02). GLP‐1R monoclonal antibody binding was confirmed in ventricular tissue but not in vascular tissue, and transmyocardial GLP‐1 extraction was observed. Conclusions GLP‐1 causes coronary microvascular dilation and increased flow but does not influence peripheral tone. GLP‐1R immunohistochemistry suggests that GLP‐1 coronary vasodilatation is indirectly mediated by ventricular‐coronary cross talk.
Collapse
Affiliation(s)
- Sophie J Clarke
- 1 Division of Cardiovascular Medicine University of Cambridge United Kingdom
| | - Joel P Giblett
- 3 Department of Interventional Cardiology Royal Papworth Hospital NHS Foundation Trust Cambridge United Kingdom
| | - Lucy L Yang
- 2 Division of Experimental Medicine and Immunotherapeutics University of Cambridge United Kingdom
| | - Annette Hubsch
- 2 Division of Experimental Medicine and Immunotherapeutics University of Cambridge United Kingdom
| | - Tian Zhao
- 3 Department of Interventional Cardiology Royal Papworth Hospital NHS Foundation Trust Cambridge United Kingdom
| | - Muhammad Aetesam-Ur-Rahman
- 3 Department of Interventional Cardiology Royal Papworth Hospital NHS Foundation Trust Cambridge United Kingdom
| | - Nick E J West
- 3 Department of Interventional Cardiology Royal Papworth Hospital NHS Foundation Trust Cambridge United Kingdom
| | - Michael O'Sullivan
- 3 Department of Interventional Cardiology Royal Papworth Hospital NHS Foundation Trust Cambridge United Kingdom
| | - Nichola Figg
- 1 Division of Cardiovascular Medicine University of Cambridge United Kingdom
| | - Martin Bennett
- 1 Division of Cardiovascular Medicine University of Cambridge United Kingdom
| | - Nicolai J Wewer Albrechtsen
- 4 Department of Biomedical Sciences NNF Centre for Basic Metabolic Research University of Copenhagen Denmark.,5 Department of Clinical Biochemistry, Rigshospitalet University of Copenhagen Denmark
| | - Carolyn F Deacon
- 4 Department of Biomedical Sciences NNF Centre for Basic Metabolic Research University of Copenhagen Denmark
| | - Joseph Cheriyan
- 2 Division of Experimental Medicine and Immunotherapeutics University of Cambridge United Kingdom
| | - Stephen P Hoole
- 3 Department of Interventional Cardiology Royal Papworth Hospital NHS Foundation Trust Cambridge United Kingdom
| |
Collapse
|
198
|
Grandl G, Novikoff A, DiMarchi R, Tschöp MH, Müller TD. Gut Peptide Agonism in the Treatment of Obesity and Diabetes. Compr Physiol 2019; 10:99-124. [PMID: 31853954 DOI: 10.1002/cphy.c180044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity is a global healthcare challenge that gives rise to devastating diseases such as the metabolic syndrome, type-2 diabetes (T2D), and a variety of cardiovascular diseases. The escalating prevalence of obesity has led to an increased interest in pharmacological options to counteract excess weight gain. Gastrointestinal hormones such as glucagon, amylin, and glucagon-like peptide-1 (GLP-1) are well recognized for influencing food intake and satiety, but the therapeutic potential of these native peptides is overall limited by a short half-life and an often dose-dependent appearance of unwanted effects. Recent clinical success of chemically optimized GLP-1 mimetics with improved pharmacokinetics and sustained action has propelled pharmacological interest in using bioengineered gut hormones to treat obesity and diabetes. In this article, we summarize the basic biology and signaling mechanisms of selected gut peptides and discuss how they regulate systemic energy and glucose metabolism. Subsequently, we focus on the design and evaluation of unimolecular drugs that combine the beneficial effects of selected gut hormones into a single entity to optimize the beneficial impact on systems metabolism. © 2020 American Physiological Society. Compr Physiol 10:99-124, 2020.
Collapse
Affiliation(s)
- Gerald Grandl
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Richard DiMarchi
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
199
|
Rodriguez R, Escobedo B, Lee AY, Thorwald M, Godoy-Lugo JA, Nakano D, Nishiyama A, Parkes DG, Ortiz RM. Simultaneous angiotensin receptor blockade and glucagon-like peptide-1 receptor activation ameliorate albuminuria in obese insulin-resistant rats. Clin Exp Pharmacol Physiol 2019; 47:422-431. [PMID: 31675433 DOI: 10.1111/1440-1681.13206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 01/13/2023]
Abstract
Insulin resistance increases renal oxidant production by upregulating NADPH oxidase 4 (Nox4) expression contributing to oxidative damage and ultimately albuminuria. Inhibition of the renin-angiotensin system (RAS) and activation of glucagon-like peptide-1 (GLP-1) receptor signalling may reverse this effect. However, whether angiotensin receptor type 1 (AT1) blockade and GLP-1 receptor activation improve oxidative damage and albuminuria through different mechanisms is not known. Using insulin-resistant Otsuka Long-Evans Tokushima Fatty (OLETF) rats, we tested the hypothesis that simultaneous blockade of AT1 and activation of GLP-1r additively decrease oxidative damage and urinary albumin excretion (Ualb V) in the following groups: (a) untreated, lean LETO (n = 7), (b) untreated, obese OLETF (n = 9), (c) OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg/d; n = 9), (d) OLETF + GLP-1 mimetic (EXE; 10 µg exenatide/kg/d; n = 7) and (e) OLETF + ARB +exenatide (Combo; n = 6). Mean kidney Nox4 protein expression and nitrotyrosine (NT) levels were 30% and 46% greater, respectively, in OLETF compared with LETO. Conversely, Nox4 protein expression and NT were reduced to LETO levels in ARB and EXE, and Combo reduced Nox4, NT and 4-hydroxy-2-nonenal levels by 21%, 27% and 27%, respectively. At baseline, Ualb V was nearly double in OLETF compared with LETO and increased to nearly 10-fold greater levels by the end of the study. Whereas ARB (45%) and EXE (55%) individually reduced Ualb V, the combination completely ameliorated the albuminuria. Collectively, these data suggest that AT1 blockade and GLP-1 receptor activation reduce renal oxidative damage similarly during insulin resistance, whereas targeting both signalling pathways provides added benefit in restoring and/or further ameliorating albuminuria in a model of diet-induced obesity.
Collapse
Affiliation(s)
- Ruben Rodriguez
- Department of Molecular & Cellular Biology, University of California Merced, Merced, CA, USA
| | - Benny Escobedo
- Department of Molecular & Cellular Biology, University of California Merced, Merced, CA, USA
| | - Andrew Y Lee
- Department of Molecular & Cellular Biology, University of California Merced, Merced, CA, USA
| | - Max Thorwald
- Department of Molecular & Cellular Biology, University of California Merced, Merced, CA, USA
| | - Jose A Godoy-Lugo
- Department of Molecular & Cellular Biology, University of California Merced, Merced, CA, USA
| | - Daisuke Nakano
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| | | | - Rudy M Ortiz
- Department of Molecular & Cellular Biology, University of California Merced, Merced, CA, USA
| |
Collapse
|
200
|
Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30:72-130. [PMID: 31767182 PMCID: PMC6812410 DOI: 10.1016/j.molmet.2019.09.010] [Citation(s) in RCA: 1124] [Impact Index Per Article: 187.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake, increase of natriuresis and diuresis, and modulation of rodent β-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GLP-1 and its pharmacology and discuss its therapeutic implications on various diseases. MAJOR CONCLUSIONS Since its discovery, GLP-1 has emerged as a pleiotropic hormone with a myriad of metabolic functions that go well beyond its classical identification as an incretin hormone. The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
| | - B Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - S R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - D D'Alessio
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - D J Drucker
- The Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, M5G1X5, Canada
| | - P R Flatt
- SAAD Centre for Pharmacy & Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - A Fritsche
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - F Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - H J Grill
- Institute of Diabetes, Obesity and Metabolism, Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - J J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - W Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - J J Meier
- Diabetes Division, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - M A Nauck
- Diabetes Center Bochum-Hattingen, St Josef Hospital (Ruhr-Universität Bochum), Bochum, Germany
| | - D Perez-Tilve
- Department of Internal Medicine, University of Cincinnati-College of Medicine, Cincinnati, OH, USA
| | - A Pocai
- Cardiovascular & ImmunoMetabolism, Janssen Research & Development, Welsh and McKean Roads, Spring House, PA, 19477, USA
| | - F Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - D A Sandoval
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DL-2200, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - M Tang-Christensen
- Obesity Research, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - S C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - R D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - M H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|