151
|
Savidge TC. S-nitrosothiol signals in the enteric nervous system: lessons learnt from big brother. Front Neurosci 2011; 5:31. [PMID: 21441985 PMCID: PMC3058138 DOI: 10.3389/fnins.2011.00031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 02/28/2011] [Indexed: 12/13/2022] Open
Abstract
Nitric oxide (NO) is a functionally important neurotransmitter signaling molecule generated by mammalian and bacterial nitric oxide synthases (NOS), and by chemical conversion of dietary nitrite in the gastrointestinal (GI) tract. Neuronal NOS (nNOS) is the most abundant isoenzyme in the enteric nervous system, and targeted deletion in transgenic mice has clearly demonstrated its importance in normal gut function. Enteric neuropathy is also often associated with abnormal NO production, for example in achalasia and diabetic gastroparesis. Not surprisingly therefore, aberrant nNOS activity is widely implicated in enteric disease, and represents a potential molecular target for therapeutic intervention. One physiological signaling mechanism of NO bioactivity is through chemical reaction with the heme center of guanylyl cyclase, resulting in the conversion of cGMP from GTP. This second messenger nucleotide signal activates cGMP-dependent protein kinases, phosphodiesterases, and ion channels, and is implicated in the neuronal control of GI function. However, few studies in the GI tract have fully related NO bioactivity with specific molecular targets of NO-derived signals. In the central nervous system (CNS), it is now increasingly appreciated that NO bioactivity is often actively transduced via S-nitrosothiol (SNO) signals rather than via activation of guanylyl cyclase. Moreover, aberrant S-nitrosylation of specific molecular targets is implicated in CNS pathology. S-nitrosylation refers to the post-translational modification of a protein cysteine thiol by NO, forming an endogenous SNO. Because cysteine residues are often key regulators of protein function, S-nitrosylation represents a physiologically important signaling mechanism analogous to other post-translational modifications, such as O-phosphorylation. This article provides an overview of how neurotransmitter NO is produced by nNOS as this represents the most prominent and well defined source of SNO production in the enteric nervous system. Further, it provides a perspective of how S-nitrosylation signals derived from multiple diverse sources may potentially transduce NO bioactivity in the GI tract. Possible lessons that might be learnt from the CNS, such as SNO mediated auto-inhibition of nNOS activity and modulation of neuronal cell death, are also explored as these may have pathophysiological relevance in enteric neuropathy. Thus, S-nitrosylation may mediate previously underappreciated NO-derived signals in the enteric nervous system that regulate homeostatic gut functions and disease susceptibility.
Collapse
Affiliation(s)
- Tor C Savidge
- Division of Gastroenterology and Hepatology, The University of Texas Medical Branch Galveston, TX, USA
| |
Collapse
|
152
|
Oliveira AG, Carvalho BM, Tobar N, Ropelle ER, Pauli JR, Bagarolli RA, Guadagnini D, Carvalheira JB, Saad MJ. Physical exercise reduces circulating lipopolysaccharide and TLR4 activation and improves insulin signaling in tissues of DIO rats. Diabetes 2011; 60:784-796. [PMID: 21282367 PMCID: PMC3046839 DOI: 10.2337/db09-1907] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 11/13/2010] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Insulin resistance in diet-induced obesity (DIO) is associated with a chronic systemic low-grade inflammation, and Toll-like receptor 4 (TLR4) plays an important role in the link among insulin resistance, inflammation, and obesity. The current study aimed to analyze the effect of exercise on TLR4 expression and activation in obese rats and its consequences on insulin sensitivity and signaling. RESEARCH DESIGN AND METHODS The effect of chronic and acute exercise was investigated on insulin sensitivity, insulin signaling, TLR4 activation, c-Jun NH(2)-terminal kinase (JNK) and IκB kinase (IKKβ) activity, and lipopolysaccharide (LPS) serum levels in tissues of DIO rats. RESULTS The results showed that chronic exercise reduced TLR4 mRNA and protein expression in liver, muscle, and adipose tissue. However, both acute and chronic exercise blunted TLR4 signaling in these tissues, including a reduction in JNK and IKKβ phosphorylation and IRS-1 serine 307 phosphorylation, and, in parallel, improved insulin-induced IR, IRS-1 tyrosine phosphorylation, and Akt serine phosphorylation, and reduced LPS serum levels. CONCLUSIONS Our results show that physical exercise in DIO rats, both acute and chronic, induces an important suppression in the TLR4 signaling pathway in the liver, muscle, and adipose tissue, reduces LPS serum levels, and improves insulin signaling and sensitivity. These data provide considerable progress in our understanding of the molecular events that link physical exercise to an improvement in inflammation and insulin resistance.
Collapse
Affiliation(s)
| | - Bruno M. Carvalho
- Department of Internal Medicine, State University of Campinas, Campinas, SP, Brazil
| | - Natália Tobar
- Department of Internal Medicine, State University of Campinas, Campinas, SP, Brazil
| | - Eduardo R. Ropelle
- Department of Internal Medicine, State University of Campinas, Campinas, SP, Brazil
| | - José R. Pauli
- Department of Internal Medicine, State University of Campinas, Campinas, SP, Brazil
| | - Renata A. Bagarolli
- Department of Internal Medicine, State University of Campinas, Campinas, SP, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, State University of Campinas, Campinas, SP, Brazil
| | | | - Mario J.A. Saad
- Department of Internal Medicine, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
153
|
Slomiany BL, Slomiany A. Ghrelin suppression of Helicobacter pylori-induced S-nitrosylation-dependent Akt inactivation exerts modulatory influence on gastric mucin synthesis. Inflammopharmacology 2011; 19:89-97. [PMID: 21279549 DOI: 10.1007/s10787-011-0078-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 01/06/2011] [Indexed: 01/27/2023]
Abstract
Loss of mucus coat integrity and the impairment in its mucin component as well as the disturbance in nitric oxide (NO) generation are well-recognized features of gastric disease associated with H. pylori infection. As ghrelin plays a major role in the regulation of nitric oxide synthase system, we investigated the influence of this hormone on H. pylori LPS-induced interference with gastric mucin synthesis. The results revealed that the LPS-induced impairment in mucin synthesis and accompanied induction in inducible nitric oxide synthase (iNOS) expression, were associated with the suppression in Akt kinase activity and the impairment in constitutive nitric oxide synthase (cNOS) phosphorylation. The LPS effect on Akt inactivation was manifested in the kinase protein S-nitrosylation and a decrease in its phosphorylation at Ser(473). Further, we show that the countering effect of ghrelin, on the LPS-induced impairment in mucin synthesis was reflected in the suppression of iNOS and the increase in Akt activation, associated with the loss in S-nitrosylation and the increase in phosphorylation, as well as cNOS activation through phosphorylation. Our findings demonstrate that up-regulation in iNOS with H. pylori infection and subsequent Akt kinase inactivation through S-nitrosylation exerts the detrimental effect on the processes dependent on Akt activation, including that of cNOS activation and mucin synthesis. We also show that ghrelin protection against H. pylori-induced impairment in mucin synthesis is intimately linked to the events of Akt activation and reflected in a decrease in the kinase S-nitrosylation and the increase in its phosphorylation.
Collapse
Affiliation(s)
- B L Slomiany
- Research Center, UMDNJ-NJ Dental School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103-2400, USA.
| | | |
Collapse
|
154
|
Stadler K. Peroxynitrite-driven mechanisms in diabetes and insulin resistance - the latest advances. Curr Med Chem 2011; 18:280-90. [PMID: 21110800 PMCID: PMC4191845 DOI: 10.2174/092986711794088317] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 11/20/2010] [Indexed: 02/07/2023]
Abstract
Since its discovery, peroxynitrite has been known as a potent oxidant in biological systems, and a rapidly growing body of literature has characterized its biochemistry and role in the pathophysiology of various conditions. Either directly or by inducing free radical pathways, peroxynitrite damages vital biomolecules such as DNA, proteins including enzymes with important functions, and lipids. It also initiates diverse reactions leading eventually to disrupted cell signaling, cell death, and apoptosis. The potential role and contribution of this deleterious species has been the subject of investigation in several important diseases, including but not limited to, cancer, neurodegeneration, stroke, inflammatory conditions, cardiovascular problems, and diabetes mellitus. Diabetes, obesity, insulin resistance, and diabetes-related complications represent a major health problem at epidemic levels. Therefore, tremendous efforts have been put into investigation of the molecular basics of peroxynitrite-related mechanisms in diabetes. Studies constantly seek new therapeutical approaches in order to eliminate or decrease the level of peroxynitrite, or to interfere with its downstream mechanisms. This review is intended to emphasize the latest findings about peroxynitrite and diabetes, and, in addition, to discuss recent and novel advances that are likely to contribute to a better understanding of peroxynitrite-mediated damage in this disease.
Collapse
Affiliation(s)
- K Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, LSU System, 6400 Perkins Rd, Baton Rouge, LA 70808, USA.
| |
Collapse
|
155
|
Pilon G, Charbonneau A, White PJ, Dallaire P, Perreault M, Kapur S, Marette A. Endotoxin mediated-iNOS induction causes insulin resistance via ONOO⁻ induced tyrosine nitration of IRS-1 in skeletal muscle. PLoS One 2010; 5:e15912. [PMID: 21206533 PMCID: PMC3011021 DOI: 10.1371/journal.pone.0015912] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/01/2010] [Indexed: 12/03/2022] Open
Abstract
Background It is believed that the endotoxin lipopolysaccharide (LPS) is implicated in the metabolic perturbations associated with both sepsis and obesity (metabolic endotoxemia). Here we examined the role of inducible nitric oxide synthase (iNOS) in skeletal muscle insulin resistance using LPS challenge in rats and mice as in vivo models of endotoxemia. Methodology/Principal Findings Pharmacological (aminoguanidine) and genetic strategies (iNOS−/− mice) were used to counter iNOS induction in vivo. In vitro studies using peroxynitrite (ONOO−) or inhibitors of the iNOS pathway, 1400 W and EGCG were conducted in L6 myocytes to determine the mechanism by which iNOS mediates LPS-dependent insulin resistance. In vivo, both pharmacological and genetic invalidation of iNOS prevented LPS-induced muscle insulin resistance. Inhibition of iNOS also prevented insulin resistance in myocytes exposed to cytokine/LPS while exposure of myocytes to ONOO− fully reproduced the inhibitory effect of cytokine/LPS on both insulin-stimulated glucose uptake and PI3K activity. Importantly, LPS treatment in vivo and iNOS induction and ONOO− treatment in vitro promoted tyrosine nitration of IRS-1 and reduced insulin-dependent tyrosine phosphorylation. Conclusions/Significance Our work demonstrates that iNOS-mediated tyrosine nitration of IRS-1 is a key mechanism of skeletal muscle insulin resistance in endotoxemia, and presents nitrosative modification of insulin signaling proteins as a novel therapeutic target for combating muscle insulin resistance in inflammatory settings.
Collapse
Affiliation(s)
- Geneviève Pilon
- Department of Medicine, Québec Heart and Lung Institute (Laval Hospital), Ste-Foy, Québec, Canada
- Laval University Hospital Research Center, Metabolism, Vascular and Renal Health Axis, Ste-Foy, Québec, Canada
| | - Alexandre Charbonneau
- Department of Medicine, Québec Heart and Lung Institute (Laval Hospital), Ste-Foy, Québec, Canada
- Laval University Hospital Research Center, Metabolism, Vascular and Renal Health Axis, Ste-Foy, Québec, Canada
| | - Phillip J. White
- Department of Medicine, Québec Heart and Lung Institute (Laval Hospital), Ste-Foy, Québec, Canada
- Laval University Hospital Research Center, Metabolism, Vascular and Renal Health Axis, Ste-Foy, Québec, Canada
| | - Patrice Dallaire
- Department of Medicine, Québec Heart and Lung Institute (Laval Hospital), Ste-Foy, Québec, Canada
- Laval University Hospital Research Center, Metabolism, Vascular and Renal Health Axis, Ste-Foy, Québec, Canada
| | - Mylène Perreault
- Department of Medicine, Québec Heart and Lung Institute (Laval Hospital), Ste-Foy, Québec, Canada
- Laval University Hospital Research Center, Metabolism, Vascular and Renal Health Axis, Ste-Foy, Québec, Canada
| | - Sonia Kapur
- Department of Medicine, Québec Heart and Lung Institute (Laval Hospital), Ste-Foy, Québec, Canada
- Laval University Hospital Research Center, Metabolism, Vascular and Renal Health Axis, Ste-Foy, Québec, Canada
| | - André Marette
- Department of Medicine, Québec Heart and Lung Institute (Laval Hospital), Ste-Foy, Québec, Canada
- Laval University Hospital Research Center, Metabolism, Vascular and Renal Health Axis, Ste-Foy, Québec, Canada
- * E-mail:
| |
Collapse
|
156
|
Wu M, Falasca M, Blough ER. Akt/protein kinase B in skeletal muscle physiology and pathology. J Cell Physiol 2010; 226:29-36. [PMID: 20672327 DOI: 10.1002/jcp.22353] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Akt/protein kinase B is critical regulator of cellular homeostasis with diminished Akt activity being associated with dysregulation of cellular metabolism and cell death while Akt over-activation has been linked to inappropriate cell growth and proliferation. Although the regulation of Akt function has been well characterized in vitro, much less is known regarding the function of Akt in vivo. Here we examine how skeletal muscle Akt expression and enzymatic activity are controlled, the role of Akt in the regulation of skeletal muscle contraction, stress response glucose utilization, and protein metabolism, and the potential participation of this important molecule in skeletal muscle atrophy, aging, and cancer.
Collapse
Affiliation(s)
- Miaozong Wu
- Center for Diagnostic Nanosystems, Marshall University, Huntington, West Virginia 25755-1090, USA
| | | | | |
Collapse
|
157
|
Calisto KL, Carvalho BDM, Ropelle ER, Mittestainer FC, Camacho ACA, Guadagnini D, Carvalheira JBC, Saad MJA. Atorvastatin improves survival in septic rats: effect on tissue inflammatory pathway and on insulin signaling. PLoS One 2010; 5:e14232. [PMID: 21151908 PMCID: PMC2997789 DOI: 10.1371/journal.pone.0014232] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 11/13/2010] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to investigate whether the survival-improving effect of atorvastatin in sepsis is accompanied by a reduction in tissue activation of inflammatory pathways and, in parallel, an improvement in tissue insulin signaling in rats. Diffuse sepsis was induced by cecal ligation and puncture surgery (CLP) in male Wistar rats. Serum glucose and inflammatory cytokines levels were assessed 24 h after CLP. The effect of atorvastatin on survival of septic animals was investigated in parallel with insulin signaling and its modulators in liver, muscle and adipose tissue. Atorvastatin improves survival in septic rats and this improvement is accompanied by a marked improvement in insulin sensitivity, characterized by an increase in glucose disappearance rate during the insulin tolerance test. Sepsis induced an increase in the expression/activation of TLR4 and its downstream signaling JNK and IKK/NF-κB activation, and blunted insulin-induced insulin signaling in liver, muscle and adipose tissue; atorvastatin reversed all these alterations in parallel with a decrease in circulating levels of TNF-α and IL-6. In summary, this study demonstrates that atorvastatin treatment increased survival, with a significant effect upon insulin sensitivity, improving insulin signaling in peripheral tissues of rats during peritoneal-induced sepsis. The effect of atorvastatin on the suppression of the TLR-dependent inflammatory pathway may play a central role in regulation of insulin signaling and survival in sepsis insult.
Collapse
Affiliation(s)
- Kelly Lima Calisto
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Bruno de Melo Carvalho
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Eduardo Rochete Ropelle
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | | | - Dioze Guadagnini
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | - Mario José Abdalla Saad
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
158
|
Matteucci E, Giampietro O. Thiol signalling network with an eye to diabetes. Molecules 2010; 15:8890-903. [PMID: 21135801 PMCID: PMC6259199 DOI: 10.3390/molecules15128890] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 11/29/2010] [Accepted: 12/06/2010] [Indexed: 02/06/2023] Open
Abstract
Redox regulatory system controls normal cellular functions. Controlled changes in redox couples potential serve as components for signal transduction, similarly to the phosphorylation cascade. Cellular redox biology requires both compartimentalisation and communication of redox systems: the thermodynamic disequilibrium of the major redox switches allows rapid and sensitive responses to perturbations in redox environments. The many oxidation states of sulphur are found in numerous sulphur species with distinct functional groups (thiols, disulphides, polysulphides, sulphenic, sulphinic and sulphonic acids, etc.), which participate in a complicated network of sulphur-based redox events. Human diseases such as diabetes mellitus and its cardiovascular complications have been associated with increased production of reactive oxygen species and perturbations of thiol redox homeostasis. The review surveys literature related to some etiopathogenic aspects and therapeutic perspectives. The dual toxic-protective property of sulphydryl-donor molecules in experimental settings proposes the general problem of designing antioxidants for therapeutic use.
Collapse
Affiliation(s)
- Elena Matteucci
- Department of Internal Medicine, University of Pisa, Pisa, Italy.
| | | |
Collapse
|
159
|
Da Silva ASR, Pauli JR, Ropelle ER, Oliveira AG, Cintra DE, De Souza CT, Velloso LA, Carvalheira JBC, Saad MJA. Exercise intensity, inflammatory signaling, and insulin resistance in obese rats. Med Sci Sports Exerc 2010; 42:2180-2188. [PMID: 20473230 DOI: 10.1249/mss.0b013e3181e45d08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To evaluate the effects of intensity of exercise on insulin resistance and the expression of inflammatory proteins in the skeletal muscle of diet-induced obese (DIO) rats after a single bout of exercise. METHODS In the first exercise protocol, the rats swam for two 3-h bouts, separated by a 45-min rest period (with 6 h in duration--O + EXE), and in the second protocol, the rats were exercised with 45 min of swimming at 70% of the maximal lactate steady state--SS (DIO + MLSS). RESULTS Our data demonstrated that both protocols of exercise increased insulin sensitivity and increased insulin-stimulated tyrosine phosphorylation of insulin receptor and insulin receptor substrate 1 and serine phosphorylation of protein kinase B in the muscle of DIO rats by the same magnitude. In parallel, both exercise protocols also reduced protein tyrosine phosphatase 1B activity and insulin receptor substrate 1 serine phosphorylation, with concomitant reduction in c-jun N-terminal kinase and IJB kinase activities in the muscle of DIO rats in a similar fashion. CONCLUSIONS Thus, our data demonstrate that either exercise protocols with low intensity and high volume or exercise with moderate intensity and low volume represents different strategies to restore insulin sensitivity with the same efficacy.
Collapse
Affiliation(s)
- Adelino S R Da Silva
- Department of Internal Medicine, Faculty of Medical Sciences State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
White PJ, Charbonneau A, Cooney GJ, Marette A. Nitrosative modifications of protein and lipid signaling molecules by reactive nitrogen species. Am J Physiol Endocrinol Metab 2010; 299:E868-78. [PMID: 20876760 DOI: 10.1152/ajpendo.00510.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review is the last of four review articles addressing covalent modifications of proteins and lipids. Two of the reviews in this series were previously published (15, 28) and dealt with modifications of signaling proteins by GlcNAcylation and serine phosphorylation. In the current issue of the Journal, we complete this series with two reviews, one by Riahi et al. (102a) on the signaling and cellular functions of 4-hydroxyalkenals, key products of lipid peroxidation processes, and our present review on the effects of nitrosative modifications of protein and lipid signaling molecules by reactive nitrogen species. The aim of this Perspectives review is to highlight the significant role that reactive nitrogen species may play in the regulation of cellular metabolism through this important class of posttranslational modification. The potential role of nitrosative modifications in the regulation of insulin signal transduction, mitochondrial energy metabolism, mRNA transcription, stress signaling, and endoplasmic reticulum function will each be discussed. Since nitrosative modifications are not restricted to proteins, the current understanding of a recently described genus of "nitro-fatty acids" will also be addressed.
Collapse
Affiliation(s)
- Phillip J White
- The Quebec Heart and Lung Institute, Hôpital Laval, Quebec, Canada G1V 4G5
| | | | | | | |
Collapse
|
161
|
Medei E, Lima-Leopoldo AP, Pereira-Junior PP, Leopoldo AS, Campos DHS, Raimundo JM, Sudo RT, Zapata-Sudo G, Bruder-Nascimento T, Cordellini S, Nascimento JHM, Cicogna AC. Could a high-fat diet rich in unsaturated fatty acids impair the cardiovascular system? Can J Cardiol 2010; 26:542-8. [PMID: 21165364 PMCID: PMC3006103 DOI: 10.1016/s0828-282x(10)70469-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Accepted: 04/23/2010] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Dyslipidemia results from consumption of a diet rich in saturated fatty acids and is usually associated with cardiovascular disease. A diet rich in unsaturated fatty acids is usually associated with improved cardiovascular condition. OBJECTIVE To investigate whether a high-fat diet rich in unsaturated fatty acids (U-HFD) - in which fatty acid represents approximately 45% of the total calories - impairs the cardiovascular system. METHODS Male, 30-day-old Wistar rats were fed a standard (control) diet or a U-HFD containing 83% unsaturated fatty acid for 19 weeks. The in vivo electrocardiogram, the spectral analysis of heart rate variability, and the vascular reactivity responses to phenylephrine, acetylcholine, noradrenaline and prazosin in aortic ring preparations were analyzed to assess the cardiovascular parameters. RESULTS After 19 weeks, the U-HFD rats had increased total body fat, baseline glucose levels and feed efficiency compared with control rats. However, the final body weight, systolic blood pressure, area under the curve for glucose, calorie intake and heart weight⁄final body weight ratio were similar between the groups. In addition, both groups demonstrated no alteration in the electrocardiogram or cardiac sympathetic parameters. There was no difference in the responses to acetylcholine or the maximal contractile response of the thoracic aorta to phenylephrine between groups, but the concentration necessary to produce 50% of maximal response showed a decrease in the sensitivity to phenylephrine in U-HFD rats. The cumulative concentration- effect curve for noradrenaline in the presence of prazosin was shifted similarly in both groups. CONCLUSIONS The present work shows that U-HFD did not impair the cardiovascular parameters analyzed.
Collapse
Affiliation(s)
- Emiliano Medei
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro
| | - Ana Paula Lima-Leopoldo
- Department of Sports, Center of Physical Education and Sports, Federal University of Espirito Santo, Vitória
| | | | - André Soares Leopoldo
- Department of Clinical and Cardiology, School of Medicine, Universidade Estadual Paulista – São Paulo State University Júlio Mesquita Filho, Botucatu, São Paulo
| | - Dijon Henrique Salomé Campos
- Department of Clinical and Cardiology, School of Medicine, Universidade Estadual Paulista – São Paulo State University Júlio Mesquita Filho, Botucatu, São Paulo
| | - Juliana Montani Raimundo
- Universidade Federal do Rio de Janeiro, Departmento de Farmacologia Basica e Clinica, Rio de Janeiro
| | - Roberto Takashi Sudo
- Universidade Federal do Rio de Janeiro, Departmento de Farmacologia Basica e Clinica, Rio de Janeiro
| | - Gisele Zapata-Sudo
- Universidade Federal do Rio de Janeiro, Departmento de Farmacologia Basica e Clinica, Rio de Janeiro
| | - Thiago Bruder-Nascimento
- Department of Pharmacology, Institute of Biosciences, Universidade Estadual Paulista – São Paulo State University Júlio Mesquita Filho, Botucatu, São Paulo, Brazil
| | - Sandra Cordellini
- Department of Pharmacology, Institute of Biosciences, Universidade Estadual Paulista – São Paulo State University Júlio Mesquita Filho, Botucatu, São Paulo, Brazil
| | | | - Antonio Carlos Cicogna
- Department of Clinical and Cardiology, School of Medicine, Universidade Estadual Paulista – São Paulo State University Júlio Mesquita Filho, Botucatu, São Paulo
| |
Collapse
|
162
|
Slomiany BL, Slomiany A. Helicobacter pylori Induces Disturbances in Gastric Mucosal Akt Activation through Inducible Nitric Oxide Synthase-Dependent S-Nitrosylation: Effect of Ghrelin. ISRN GASTROENTEROLOGY 2010; 2011:308727. [PMID: 21991502 PMCID: PMC3168387 DOI: 10.5402/2011/308727] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 10/21/2010] [Indexed: 12/13/2022]
Abstract
Gastric mucosal inflammatory response to H. pylori and its key virulence factor, lipopolysaccharide (LPS), are characterized by a massive rise in apoptosis and the disturbances in NO signaling pathways. Here, we report that H. pylori LPS-induced enhancement in the mucosal inducible nitric oxide synthase (iNOS) was associated with the suppression in Akt kinase activity and the impairment in constitutive nitric oxide synthase (cNOS) phosphorylation. Further, we demonstrate that the LPS effect on Akt inactivation, manifested in the kinase protein S-nitrosylation and a decrease in its phosphorylation at Ser473, was susceptible to suppression by iNOS inhibition. Moreover, the countering effect of hormone, ghrelin, on the LPS-induced changes in Akt activity was reflected in the loss in Akt S-nitrosylation and the increase in its phosphorylation at Ser473, as well as cNOS activation through phosphorylation. Our findings demonstrate that up-regulation in iNOS with H. pylori infection leads to Akt inactivation through S-nitrosylation that exerts the detrimental effect on the processes of cNOS activation through phosphorylation. We also report that ghrelin protection against H. pylori-induced disturbances is manifested in a marked increase in Akt activity and evoked by a decrease in the kinase S-nitrosylation and the increase in its phosphorylation at Ser473.
Collapse
Affiliation(s)
- Bronislaw L Slomiany
- Research Center, C875 University of Medicine and Dentistry of New Jersey Dental School, 110 Bergen Street, P.O. Box 1709, Newark, NJ 07103-2400, USA
| | | |
Collapse
|
163
|
Quantitative proteomic analysis of S-nitrosated proteins in diabetic mouse liver with ICAT switch method. Protein Cell 2010; 1:675-87. [PMID: 21203939 DOI: 10.1007/s13238-010-0087-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 06/22/2010] [Indexed: 12/29/2022] Open
Abstract
In this study we developed a quantitative proteomic method named ICAT switch by introducing isotope-coded affinity tag (ICAT) reagents into the biotin-switch method, and used it to investigate S-nitrosation in the liver of normal control C57BL/6J mice and type 2 diabetic KK-Ay mice. We got fifty-eight S-nitrosated peptides with quantitative information in our research, among which thirty-seven had changed S-nitrosation levels in diabetic mouse liver. The S-nitrosated peptides belonged to forty-eight proteins (twenty-eight were new S-nitrosated proteins), some of which were new targets of S-nitrosation and known to be related with diabetes. S-nitrosation patterns were different between diabetic and normal mice. Gene ontology enrichment results suggested that S-nitrosated proteins are more abundant in amino acid metabolic processes. The network constructed for S-nitrosated proteins by text-mining technology provided clues about the relationship between S-nitrosation and type 2 diabetes. Our work provides a new approach for quantifying S-nitrosated proteins and suggests that the integrative functions of S-nitrosation may take part in pathophysiological processes of type 2 diabetes.
Collapse
|
164
|
DeBoer MD. Underdiagnosis of Metabolic Syndrome in Non-Hispanic Black Adolescents: A Call for Ethnic-Specific Criteria. CURRENT CARDIOVASCULAR RISK REPORTS 2010; 4:302-310. [PMID: 21379366 PMCID: PMC3046404 DOI: 10.1007/s12170-010-0104-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Childhood obesity is a risk factor for the development of both type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). One marker that can be used to predict T2DM is the metabolic syndrome (MetS). MetS, a cluster of cardiovascular factors associated with insulin resistance, is defined by central obesity, impaired fasting glucose, hypertension, elevated triglycerides (TG), and low levels of high-density lipoprotein cholesterol. Some have advocated using a diagnosis of MetS to trigger increased intervention in children. However, ethnic differences in MetS may hamper identification of at-risk children. For example, non-Hispanic blacks are diagnosed with MetS less frequently than non-Hispanic whites, despite having higher rates of T2DM and CVD. These differences in MetS are predominantly due to a low frequency of hypertriglyceridemia in non-Hispanic blacks. Compared with non-Hispanic whites and Mexican Americans, non-Hispanic blacks have lower TG levels at baseline but exhibit worsening insulin resistance with increasing TG. Therefore "normal" TG levels appear to be falsely reassuring among insulin-resistant non-Hispanic blacks. Ethnic-specific tools may be needed to more accurately predict risk for T2DM and CVD in minorities.
Collapse
Affiliation(s)
- Mark D. DeBoer
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Virginia School of Medicine, P.O. Box 800386, Charlottesville, VA 22908, USA
| |
Collapse
|
165
|
Lu M, Li P, Pferdekamper J, Fan W, Saberi M, Schenk S, Olefsky JM. Inducible nitric oxide synthase deficiency in myeloid cells does not prevent diet-induced insulin resistance. Mol Endocrinol 2010; 24:1413-22. [PMID: 20444886 DOI: 10.1210/me.2009-0462] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent findings denote an important contribution of macrophage inflammatory pathways in causing obesity-related insulin resistance. Inducible nitric oxide synthase (iNOS) is activated in proinflammatory macrophages and modestly elevated in insulin-responsive tissues. Although the benefits of systemic iNOS inhibition in insulin-resistant models have been demonstrated, the role of macrophage iNOS in metabolic disorders is not clear. In the current work, we used bone marrow transplantation (BMT) to generate mice with myeloid iNOS deficiency [iNOS BMT knockout (KO)]. Interestingly, disruption of iNOS in myeloid cells did not protect mice from high-fat diet-induced obesity and insulin resistance. When mice were treated with the iNOS inhibitor, N6-(1-Iminoethyl)-L-lysine hydrochloride (L-NIL), we observed a significant and comparable improvement of glucose homeostasis and insulin sensitivity in both wild-type and iNOS BMT KO mice. We further demonstrated that absence of iNOS in primary macrophages did not affect acute TLR4 signaling pathways and had only a modest and mixed effect on inflammatory gene expression. With respect to TNFalpha treatment, iNOS KO macrophages showed, if anything, a greater inflammatory response. In summary, we conclude that iNOS inhibition in tissues other than myeloid cells is responsible for the beneficial effects in obesity/insulin resistance.
Collapse
Affiliation(s)
- Min Lu
- Department of Medicine, University of California, San Diego, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
166
|
Bagarolli RA, Saad MJA, Saad STO. Toll-like receptor 4 and inducible nitric oxide synthase gene polymorphisms are associated with Type 2 diabetes. J Diabetes Complications 2010; 24:192-8. [PMID: 19395279 DOI: 10.1016/j.jdiacomp.2009.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 02/07/2009] [Accepted: 03/20/2009] [Indexed: 01/21/2023]
Abstract
BACKGROUND The toll-like receptor 4 (TLR4) and inducible nitric oxide synthase are proteins from the innate immune system that, when activated, can induce insulin resistance. Polymorphisms in these genes, TLR4 and NOS2, respectively, could affect the immune response, as well as the prevalence of Type 2 diabetes (T2DM). OBJECTIVE The aim of the present study was to investigate the contribution of four polymorphisms (two from TLR4 and two from NOS2) to susceptibility to T2DM in a southeast Brazilian population. DESIGN A total of 211 patients with T2DM and 200 unrelated controls were genotyped for the Asp299Gly and Thr399Ile polymorphisms of the TLR4 gene and for the insertion (I)/deletion (D) AAAT and (CCTTT)n polymorphisms of the NOS2 promoter gene. RESULTS With regard to the NOS2 promoter region, the data showed that the I allele of the I/D AAAT polymorphism was more prevalent in the T2DM group and that the L/L genotype of the (CCTTT)n polymorphism was also more frequent in the same group. In contrast, the 299Gly allele and the 399Ile allele from the Asp299Gly and Thr399Ile TLR4 gene polymorphisms, respectively, were associated with protection of T2DM. It is believed that the persistence of these genetic variations in human populations may be indicative of a selective advantage in the face of different environmental pressures. CONCLUSIONS Genetic variations in the NOS2 gene promoter and TLR4 coding sequence may lead to deleterious and protective effects, respectively, arising from altered function of the innate immune system in patients with T2DM.
Collapse
Affiliation(s)
- Renata A Bagarolli
- Department of Internal Medicine, State University of Campinas, Campinas, São Paulo, Brazil
| | | | | |
Collapse
|
167
|
Csibi A, Communi D, Müller N, Bottari SP. Angiotensin II inhibits insulin-stimulated GLUT4 translocation and Akt activation through tyrosine nitration-dependent mechanisms. PLoS One 2010; 5:e10070. [PMID: 20383279 PMCID: PMC2850936 DOI: 10.1371/journal.pone.0010070] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 03/11/2010] [Indexed: 12/20/2022] Open
Abstract
Angiotensin II (Ang II) plays a major role in the pathogenesis of insulin resistance and diabetes by inhibiting insulin's metabolic and potentiating its trophic effects. Whereas the precise mechanisms involved remain ill-defined, they appear to be associated with and dependent upon increased oxidative stress. We found Ang II to block insulin-dependent GLUT4 translocation in L6 myotubes in an NO- and O2.−-dependent fashion suggesting the involvement of peroxynitrite. This hypothesis was confirmed by the ability of Ang II to induce tyrosine nitration of the MAP kinases ERK1/2 and of protein kinase B/Akt (Akt). Tyrosine nitration of ERK1/2 was required for their phosphorylation on Thr and Tyr and their subsequent activation, whereas it completely inhibited Akt phosphorylation on Ser473 and Thr308 as well as its activity. The inhibitory effect of nitration on Akt activity was confirmed by the ability of SIN-1 to completely block GSK3α phosphorylation in vitro. Inhibition of nitric oxide synthase and NAD(P)Hoxidase and scavenging of free radicals with myricetin restored insulin-stimulated Akt phosphorylation and GLUT4 translocation in the presence of Ang II. Similar restoration was obtained by inhibiting the ERK activating kinase MEK, indicating that these kinases regulate Akt activation. We found a conserved nitration site of ERK1/2 to be located in their kinase domain on Tyr156/139, close to their active site Asp166/149, in agreement with a permissive function of nitration for their activation. Taken together, our data show that Ang II inhibits insulin-mediated GLUT4 translocation in this skeletal muscle model through at least two pathways: first through the transient activation of ERK1/2 which inhibit IRS-1/2 and second through a direct inhibitory nitration of Akt. These observations indicate that not only oxidative but also nitrative stress play a key role in the pathogenesis of insulin resistance. They underline the role of protein nitration as a major mechanism in the regulation of Ang II and insulin signaling pathways and more particularly as a key regulator of protein kinase activity.
Collapse
Affiliation(s)
- Alfredo Csibi
- Laboratoire de Bioénergétique Fondamentale et Appliquée, INSERM U884, Grenoble Universités, Grenoble, France
| | | | | | | |
Collapse
|
168
|
Charbonneau A, Marette A. Inducible nitric oxide synthase induction underlies lipid-induced hepatic insulin resistance in mice: potential role of tyrosine nitration of insulin signaling proteins. Diabetes 2010; 59:861-71. [PMID: 20103705 PMCID: PMC2844834 DOI: 10.2337/db09-1238] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The present study was undertaken to assess the contribution of inducible nitric oxide (NO) synthase (iNOS) to lipid-induced insulin resistance in vivo. RESEARCH DESIGN AND METHODS Wild-type and iNOS(-/-) mice were infused for 6 h with a 20% intralipid emulsion, during which a hyperinsulinemic-euglycemic clamp was performed. RESULTS In wild-type mice, lipid infusion led to elevated basal hepatic glucose production and marked insulin resistance as revealed by impaired suppression of liver glucose production and reduced peripheral glucose disposal (R(d)) during insulin infusion. Liver insulin resistance was associated with a robust induction of hepatic iNOS, reduced tyrosine phosphorylation of insulin receptor (IR) beta, insulin receptor substrate (IRS)-1, and IRS-2 but elevated serine phosphorylation of IRS proteins as well as decreased Akt activation. The expression of gluconeogenic enzymes Pepck and G6Pc was also increased in the liver of wild-type mice. In contrast to their wild-type counterparts, iNOS(-/-) mice were protected from lipid-induced hepatic and peripheral insulin resistance. Moreover, neither the phosphorylation of insulin signaling intermediates nor expression of gluconeogenic enzymes were altered in the lipid-infused iNOS(-/-) mice compared with their saline-infused controls. Importantly, lipid infusion induced tyrosine nitration of IRbeta, IRS-1, IRS-2, and Akt in wild-type mice but not in iNOS(-/-) animals. Furthermore, tyrosine nitration of hepatic Akt by the NO derivative peroxynitrite blunted insulin-induced Akt tyrosine phosphorylation and kinase activity. CONCLUSIONS These findings demonstrate that iNOS induction is a novel mechanism by which circulating lipids inhibit hepatic insulin action. Our results further suggest that iNOS may cause hepatic insulin resistance through tyrosine nitration of key insulin signaling proteins.
Collapse
Affiliation(s)
- Alexandre Charbonneau
- From the Axe Cardiologie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada, and Centre Hospitalier Universitaire de Québec, Axe Métabolisme, Santé Vasculaire et Rénale, Department of Medicine, Laval University, Québec, Canada
| | - André Marette
- From the Axe Cardiologie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada, and Centre Hospitalier Universitaire de Québec, Axe Métabolisme, Santé Vasculaire et Rénale, Department of Medicine, Laval University, Québec, Canada
- Corresponding author: André Marette,
| |
Collapse
|
169
|
Abstract
Well over 2 decades have passed since the endothelium-derived relaxation factor was reported to be the gaseous molecule nitric oxide (NO). Although soluble guanylyl cyclase (which generates cyclic guanosine monophosphate, cGMP) was the first identified receptor for NO, it has become increasingly clear that NO exerts a ubiquitous influence in a cGMP-independent manner. In particular, many, if not most, effects of NO are mediated by S-nitrosylation, the covalent modification of a protein cysteine thiol by an NO group to generate an S-nitrosothiol (SNO). Moreover, within the current framework of NO biology, endothelium-derived relaxation factor activity (ie, G protein-coupled receptor-mediated, or shear-induced endothelium-derived NO bioactivity) is understood to involve a central role for SNOs, acting both as second messengers and signal effectors. Furthermore, essential roles for S-nitrosylation have been implicated in virtually all major functions of NO in the cardiovascular system. Here, we review the basic biochemistry of S-nitrosylation (and denitrosylation), discuss the role of S-nitrosylation in the vascular and cardiac functions of NO, and identify current and potential clinical applications.
Collapse
Affiliation(s)
- Brian Lima
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, 27710
| | - Michael T. Forrester
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, 27710
| | - Douglas T. Hess
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, 27710
- Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106
| | - Jonathan S. Stamler
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, 27710
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, 27710
- Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106
| |
Collapse
|
170
|
Abstract
The liver is a central regulator of glucose homeostasis and stores or releases glucose according to metabolic demands. In insulin resistant states or diabetes the dysregulation of hepatic glucose release contributes significantly to the pathophysiology of these conditions. Acute or chronic liver disease can aggravate insulin resistance and the physiological effects of insulin on hepatocytes are disturbed. Insulin resistance has also been recognized as an independent risk factor for the development of liver injury. In the healthy liver tissue homeostasis is achieved through cell turnover by apoptosis and dysregulation of the physiological process resulting in too much or too little cell death can have potentially devastating effects on liver tissue. The delineation of the signaling pathways that mediate apoptosis changed the paradigms of understanding of many liver diseases. These signaling events include cell surface based receptor-ligand systems and intracellular signaling pathways that are regulated through kinases on multiple levels. The dissection of these signaling pathways has shown that the regulators of apoptosis signaling events in hepatocytes can also modulate insulin signaling pathways and that mediators of insulin resistance in turn influence liver cell apoptosis. This review will summarize the potential crosstalk between apoptosis and insulin resistance signaling events and discuss the involved mediators.
Collapse
Affiliation(s)
- Jörn M Schattenberg
- I. Medizinsiche Klinik, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany.
| | | |
Collapse
|
171
|
Prada PO, Ropelle ER, Mourão RH, de Souza CT, Pauli JR, Cintra DE, Schenka A, Rocco SA, Rittner R, Franchini KG, Vassallo J, Velloso LA, Carvalheira JB, Saad MJ. EGFR tyrosine kinase inhibitor (PD153035) improves glucose tolerance and insulin action in high-fat diet-fed mice. Diabetes 2009; 58:2910-2919. [PMID: 19696185 PMCID: PMC2780887 DOI: 10.2337/db08-0506] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 08/05/2009] [Indexed: 01/04/2023]
Abstract
OBJECTIVE In obesity, an increased macrophage infiltration in adipose tissue occurs, contributing to low-grade inflammation and insulin resistance. Epidermal growth factor receptor (EGFR) mediates both chemotaxis and proliferation in monocytes and macrophages. However, the role of EGFR inhibitors in this subclinical inflammation has not yet been investigated. We investigated, herein, in vivo efficacy and associated molecular mechanisms by which PD153035, an EGFR tyrosine kinase inhibitor, improved diabetes control and insulin action. RESEARCH DESIGN AND METHODS The effect of PD153035 was investigated on insulin sensitivity, insulin signaling, and c-Jun NH(2)-terminal kinase (JNK) and nuclear factor (NF)-kappaB activity in tissues of high-fat diet (HFD)-fed mice and also on infiltration and the activation state of adipose tissue macrophages (ATMs) in these mice. RESULTS PD153035 treatment for 1 day decreased the protein expression of inducible nitric oxide synthase, tumor necrosis factor (TNF)-alpha, and interleukin (IL)-6 in the stroma vascular fraction, suggesting that this drug reduces the M1 proinflammatory state in ATMs, as an initial effect, in turn reducing the circulating levels of TNF-alpha and IL-6, and initiating an improvement in insulin signaling and sensitivity. After 14 days of drug administration, there was a marked improvement in glucose tolerance; a reduction in insulin resistance; a reduction in macrophage infiltration in adipose tissue and in TNF-alpha, IL-6, and free fatty acids; accompanied by an improvement in insulin signaling in liver, muscle, and adipose tissue; and also a decrease in insulin receptor substrate-1 Ser(307) phosphorylation in JNK and inhibitor of NF-kappaB kinase (IKKbeta) activation in these tissues. CONCLUSIONS Treatment with PD153035 improves glucose tolerance, insulin sensitivity, and signaling and reduces subclinical inflammation in HFD-fed mice.
Collapse
Affiliation(s)
- Patricia O. Prada
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Eduardo R. Ropelle
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Rosa H. Mourão
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Claudio T. de Souza
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Jose R. Pauli
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Dennys E. Cintra
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - André Schenka
- Chemistry Institute, State University of Campinas, Campinas, Brazil
| | - Silvana A. Rocco
- Department of Pathology, State University of Campinas, Campinas, Brazil
| | - Roberto Rittner
- Department of Pathology, State University of Campinas, Campinas, Brazil
| | - Kleber G. Franchini
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - José Vassallo
- Chemistry Institute, State University of Campinas, Campinas, Brazil
| | - Lício A. Velloso
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - José B. Carvalheira
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Mario J.A. Saad
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| |
Collapse
|
172
|
Carvalho-Filho MA, Ropelle ER, Pauli RJ, Cintra DE, Tsukumo DML, Silveira LR, Curi R, Carvalheira JBC, Velloso LA, Saad MJA. Aspirin attenuates insulin resistance in muscle of diet-induced obese rats by inhibiting inducible nitric oxide synthase production and S-nitrosylation of IRbeta/IRS-1 and Akt. Diabetologia 2009; 52:2425-2434. [PMID: 19730809 DOI: 10.1007/s00125-009-1498-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 07/15/2009] [Indexed: 02/06/2023]
Abstract
AIM/HYPOTHESIS High-dose aspirin treatment improves fasting and postprandial hyperglycaemia in patients with type 2 diabetes, as well as in animal models of insulin resistance associated with obesity and sepsis. In this study, we investigated the effects of aspirin treatment on inducible nitric oxide synthase (iNOS)-mediated insulin resistance and on S-nitrosylation of insulin receptor (IR)-beta, IRS-1 and protein kinase B (Akt) in the muscle of diet-induced obese rats and also in iNos (also known as Nos2)-/- mice on high fat diet. METHODS Aspirin (120 mg kg-1 day-1 for 2 days) or iNOS inhibitor (L-NIL; 80 mg/kg body weight) were administered to diet-induced obese rats or mice and iNOS production and insulin signalling were investigated. S-nitrosylation of IRbeta/IRS-1 and Akt was investigated using the biotin switch method. RESULTS iNOS protein levels increased in the muscle of diet-induced obese rats, associated with an increase in S-nitrosylation of IRbeta, IRS-1 and Akt. These alterations were reversed by aspirin treatment, in parallel with an improvement in insulin signalling and sensitivity, as measured by insulin tolerance test and glucose clamp. Conversely, while aspirin reversed the increased phosphorylation of IkappaB kinase beta and c-Jun amino-terminal kinase, as well as IRS-1 serine phosphorylation in diet-induced obese rats and iNos -/- mice on high-fat diet, these alterations were not associated with the improvement of insulin action induced by this drug. CONCLUSIONS/INTERPRETATION Our data demonstrate that aspirin treatment not only reduces iNOS protein levels, but also S-nitrosylation of IRbeta, IRS-1 and Akt. These changes are associated with improved insulin resistance and signalling, suggesting a novel mechanism of insulin sensitisation evoked by aspirin treatment.
Collapse
Affiliation(s)
- M A Carvalho-Filho
- FCM-UNICAMP, Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, Campinas, São Paulo 13083-887, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Gayen JR, Saberi M, Schenk S, Biswas N, Vaingankar SM, Cheung WW, Najjar SM, O'Connor DT, Bandyopadhyay G, Mahata SK. A novel pathway of insulin sensitivity in chromogranin A null mice: a crucial role for pancreastatin in glucose homeostasis. J Biol Chem 2009; 284:28498-509. [PMID: 19706599 PMCID: PMC2781393 DOI: 10.1074/jbc.m109.020636] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/23/2009] [Indexed: 11/06/2022] Open
Abstract
Chromogranin A (CHGA/Chga), a proprotein, widely distributed in endocrine and neuroendocrine tissues (not expressed in muscle, liver, and adipose tissues), generates at least four bioactive peptides. One of those peptides, pancreastatin (PST), has been reported to interfere with insulin action. We generated a Chga knock-out (KO) mouse by the targeted deletion of the Chga gene in neuroendocrine tissues. KO mice displayed hypertension, higher plasma catecholamine, and adipokine levels and lower IL-6 and lipid levels compared with wild type mice. Liver glycogen content was elevated, but the nitric oxide (NO) level was diminished. Glucose, insulin, and pyruvate tolerance tests and hyperinsulinemic-euglycemic clamp studies established increased insulin sensitivity in liver but decreased glucose disposal in muscle. Despite higher catecholamine and ketone body levels and muscle insulin resistance, KO mice maintained euglycemia due to increased liver insulin sensitivity. Suppressed mRNA abundance of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase (G6Pase) in KO mice further support this conclusion. PST administration in KO mice stimulated phosphoenolpyruvate carboxykinase and G6Pase mRNA abundance and raised the blood glucose level. In liver cells transfected with G6Pase promoter, PST caused transcriptional activation in a protein kinase C (PKC)- and NO synthase-dependent manner. Thus, PST action may be mediated by suppressing IRS1/2-phosphatidylinositol 3-kinase-Akt-FOXO-1 signaling and insulin-induced maturation of SREBP1c by PKC and a high level of NO. The combined effects of conventional PKC and endothelial NO synthase activation by PST can suppress insulin signaling. The rise in blood PST level with age and in diabetes suggests that PST is a negative regulator of insulin sensitivity and glucose homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sonia M. Najjar
- the Center for Diabetes and Endocrine Research and Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio 43614-5804
| | - Daniel T. O'Connor
- From the Departments of Medicine
- Molecular Genetics, University of California, San Diego and
- Veterans Affairs San Diego Healthcare System, La Jolla, California 92093-0838 and
| | | | - Sushil K. Mahata
- From the Departments of Medicine
- Veterans Affairs San Diego Healthcare System, La Jolla, California 92093-0838 and
| |
Collapse
|
174
|
Foster MW, Hess DT, Stamler JS. Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med 2009; 15:391-404. [PMID: 19726230 DOI: 10.1016/j.molmed.2009.06.007] [Citation(s) in RCA: 577] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/30/2009] [Accepted: 06/30/2009] [Indexed: 12/24/2022]
Abstract
Protein S-nitrosylation constitutes a large part of the ubiquitous influence of nitric oxide on cellular signal transduction and accumulating evidence indicates important roles for S-nitrosylation both in normal physiology and in a broad spectrum of human diseases. Here we review recent findings that implicate S-nitrosylation in cardiovascular, pulmonary, musculoskeletal and neurological (dys)function, as well as in cancer. The emerging picture shows that, in many cases, pathophysiology correlates with hypo- or hyper-S-nitrosylation of specific protein targets rather than a general cellular insult due to loss of or enhanced nitric oxide synthase activity. In addition, it is increasingly evident that dysregulated S-nitrosylation can not only result from alterations in the expression, compartmentalization and/or activity of nitric oxide synthases, but can also reflect a contribution from denitrosylases, including prominently the S-nitrosoglutathione (GSNO)-metabolizing enzyme GSNO reductase. Finally, because exogenous mediators of protein S-nitrosylation or denitrosylation can substantially affect the development or progression of disease, potential therapeutic agents that modulate S-nitrosylation could well have broad clinical utility.
Collapse
Affiliation(s)
- Matthew W Foster
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
175
|
Zhou J, Huang K. Peroxynitrite mediates muscle insulin resistance in mice via nitration of IRbeta/IRS-1 and Akt. Toxicol Appl Pharmacol 2009; 241:101-10. [PMID: 19682478 DOI: 10.1016/j.taap.2009.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/31/2009] [Accepted: 08/04/2009] [Indexed: 10/20/2022]
Abstract
Accumulating evidence suggests that peroxynitrite (ONOO(-)) is involved in the pathogenesis of insulin resistance. In the current study, we investigated whether insulin resistance in vivo could be mediated by nitration of proteins involved in the early steps of the insulin signal transduction pathway. Exogenous peroxynitrite donated by 3-morpholinosydnonimine hydrochloride (SIN-1) induced in vivo nitration of the insulin receptor beta subunit (IRbeta), insulin receptor substrate (IRS)-1, and protein kinase B/Akt (Akt) in skeletal muscle of mice and dramatically reduced whole-body insulin sensitivity and muscle insulin signaling. Moreover, in high-fat diet (HFD)-fed insulin-resistant mice, we observed enhanced nitration of IRbeta and IRS-1 in skeletal muscle, in parallel with impaired whole-body insulin sensitivity and muscle insulin signaling. Reversal of nitration of these proteins by treatment with the peroxynitrite decomposition catalyst FeTPPS yielded an improvement in whole-body insulin sensitivity and muscle insulin signaling in HFD-fed mice. Taken together, these findings provide new mechanistic insights for the involvement of peroxynitrite in the development of insulin resistance and suggest that nitration of proteins involved in the early steps of insulin signal transduction is a novel molecular mechanism of HFD-induced muscle insulin resistance.
Collapse
Affiliation(s)
- Jun Zhou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | | |
Collapse
|
176
|
Degasperi GR, Denis RGP, Morari J, Solon C, Geloneze B, Stabe C, Pareja JC, Vercesi AE, Velloso LA. Reactive oxygen species production is increased in the peripheral blood monocytes of obese patients. Metabolism 2009; 58:1087-95. [PMID: 19439330 DOI: 10.1016/j.metabol.2009.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 04/04/2009] [Accepted: 04/07/2009] [Indexed: 01/10/2023]
Abstract
Infiltrating macrophages play an important role in the production of inflammatory mediators by the adipose tissue of obese subjects. To reach the adipose tissue, peripheral monocytes are recruited by locally produced chemoattractants. However, little is known about the activation of monocytes in the peripheral blood of obese subjects. The objective of this study was to determine reactive oxygen species and endoplasmic reticulum stress as early markers of monocytic commitment with an inflammatory phenotype in the peripheral blood of nondiabetic obese patients. Patients were recruited from an academic general hospital; controls were voluntary students. Seven lean controls and 6 nondiabetic obese patients were included in the study. Monocytes were prepared from peripheral blood. Immunoblot, flow cytometry, and polymerase chain reaction were used to determine reactive oxygen species and endoplasmic reticulum stress. Increased reactive oxygen species and activation of endoplasmic reticulum stress were detected in the monocytes from obese patients. Reducing endoplasmic reticulum stress with a chemical chaperone reversed monocytic activation, as determined by the reduction of reactive oxygen species production. Thus, monocytes from nondiabetic obese patients are already committed with an inflammatory phenotype in peripheral blood; and reducing endoplasmic reticulum stress negatively modulates their activation.
Collapse
Affiliation(s)
- Giovanna R Degasperi
- Department of Internal Medicine, University of Campinas, Campinas-SP 13084-970, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Aging-associated dysfunction of Akt/protein kinase B: S-nitrosylation and acetaminophen intervention. PLoS One 2009; 4:e6430. [PMID: 19641606 PMCID: PMC2712760 DOI: 10.1371/journal.pone.0006430] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 07/01/2009] [Indexed: 11/22/2022] Open
Abstract
Background Aged skeletal muscle is characterized by an increased incidence of metabolic and functional disorders, which if allowed to proceed unchecked can lead to increased morbidity and mortality. The mechanism(s) underlying the development of these disorders in aging skeletal muscle are not well understood. Protein kinase B (Akt/PKB) is an important regulator of cellular metabolism and survival, but it is unclear if aged muscle exhibits alterations in Akt function. Here we report a novel dysfunction of Akt in aging muscle, which may relate to S-nitrosylation and can be prevented by acetaminophen intervention. Principal Findings Compared to 6- and 27-month rats, the phosphorylation of Akt (Ser473 and Thr308) was higher in soleus muscles of very aged rats (33-months). Paradoxically, these increases in Akt phosphorylation were associated with diminished mammalian target of rapamycin (mTOR) phosphorylation, along with decreased levels of insulin receptor beta (IR-β), phosphoinositide 3-kinase (PI3K), phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and phosphorylation of phosphoinositide-dependent kinase-1 (PDK1) (Ser241). In vitro Akt kinase measurements and ex vivo muscle incubation experiments demonstrated age-related impairments of Akt kinase activity, which were associated with increases in Akt S-nitrosylation and inducible nitric oxide synthase (iNOS). Impairments in Akt function occurred parallel to increases in myocyte apoptosis and decreases in myocyte size and the expression of myosin and actin. These age-related disorders were attenuated by treating aged (27-month) animals with acetaminophen (30 mg/kg body weight/day) for 6-months. Conclusions These data demonstrate that Akt dysfunction and increased S-nitrosylation of Akt may contribute to age-associated disorders in skeletal muscle and that acetaminophen may be efficacious for the treatment of age-related muscle dysfunction.
Collapse
|
178
|
Pauli JR, Cintra DE, Souza CTD, Ropelle ER. Novos mecanismos pelos quais o exercício físico melhora a resistência à insulina no músculo esquelético. ACTA ACUST UNITED AC 2009; 53:399-408. [DOI: 10.1590/s0004-27302009000400003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 05/06/2009] [Indexed: 01/22/2023]
Abstract
O prejuízo no transporte de glicose estimulada por insulina no músculo constitui um defeito crucial para o estabelecimento da intolerância à glicose e do diabetes tipo 2. Por outro lado, é notório o conhecimento de que tanto o exercício aeróbio agudo quanto o crônico podem ter efeitos benéficos na ação da insulina em estados de resistência à insulina. No entanto, pouco se sabe sobre os efeitos moleculares pós-exercício sobre a sinalização da insulina no músculo esquelético. Assim, esta revisãoapresenta novos entendimentos sobre os mecanismos por meio dos quais o exercício agudo restaura a sensibilidade à insulina, com destaque ao importante papel que proteínas inflamatórias e a S-nitrosação possuem sobre a regulação de proteínas da via de sinalização da insulina no músculo esquelético.
Collapse
Affiliation(s)
- José Rodrigo Pauli
- Universidade Federal de São Paulo, Brasil; Universidade do Extremo Sul Catarinense, Brasil
| | | | | | | |
Collapse
|
179
|
Kachko I, Maissel A, Mazor L, Ben-Romano R, Watson RT, Hou JC, Pessin JE, Bashan N, Rudich A. Postreceptoral adipocyte insulin resistance induced by nelfinavir is caused by insensitivity of PKB/Akt to phosphatidylinositol-3,4,5-trisphosphate. Endocrinology 2009; 150:2618-26. [PMID: 19179444 PMCID: PMC2689810 DOI: 10.1210/en.2008-1205] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Adipocyte insulin resistance can be caused by proximal insulin signaling defects but also from postreceptor mechanisms, which in large are poorly characterized. Adipocytes exposed for 18 h to the HIV protease inhibitor nelfinavir manifest insulin resistance characterized by normal insulin-stimulated tyrosine phosphorylation of the insulin receptor and insulin receptor substrate proteins, preserved in vitro phosphatidylinositol 3-kinase (PI 3-kinase) assay activity but impaired activation of PKB/Akt and stimulation of glucose uptake. Here we aimed to assess whether impaired PKB/Akt activation is indeed rate limiting for insulin signaling propagation in response to nelfinavir and the mechanism for defective PKB/Akt activation. Nelfinavir treatment of 3T3-L1 adipocytes impaired the insulin-stimulated translocation and membrane fusion of myc-glucose transporter (GLUT)-4-green fluorescent protein (GFP) reporter. Phosphorylation of PKB/Akt substrates including glycogen synthase kinase-3 and AS160 decreased in response to nelfinavir, and this remained true, even in cells with forced generation of phosphatidylinositol-3,4,5-trisphohphate (PIP(3)) by a membrane-targeted active PI 3-kinase, confirming that impaired PKB/Akt activation was rate limiting for insulin signal propagation. Cells expressing a GFP-tagged pleckstrin homology domain of general receptors for phosphoinositides 1, which binds PIP(3), revealed intact PIP(3)-mediated plasma membrane translocation of this reporter in nelfinavir-treated cells. However, expression of a membrane-targeted catalytic subunit of PI 3-kinase failed to induce myc-GLUT4-GFP translocation in the absence of insulin, as it did in control cells. Conversely, a membrane-targeted and constitutively active PKB/Akt mutant was normally phosphorylated on S473 and T308, confirming intact PKB/Akt kinases activity, and induced myc-GLUT4-GFP translocation. Collectively, nelfinavir uncovers a postreceptor mechanism for insulin resistance, caused by interference with the sensing of PIP(3) by PKB/Akt, leading to impaired GLUT4 translocation and membrane fusion.
Collapse
Affiliation(s)
- Ilana Kachko
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Effects of peroxynitrite-induced protein tyrosine nitration on insulin-stimulated tyrosine phosphorylation in HepG2 cells. Mol Cell Biochem 2009; 331:49-57. [DOI: 10.1007/s11010-009-0144-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Accepted: 04/23/2009] [Indexed: 10/20/2022]
|
181
|
Adachi T, Toishi T, Wu H, Kamiya T, Hara H. Expression of extracellular superoxide dismutase during adipose differentiation in 3T3-L1 cells. Redox Rep 2009; 14:34-40. [PMID: 19161676 DOI: 10.1179/135100009x392467] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Obesity is known to be the primary causal component in metabolic syndrome. Adipocytes in obese patients exhibit increased oxidative stress via the activation of reactive oxygen species (ROS)-producing systems and inactivation of antioxidant enzymes. Extracellular superoxide dismutase (EC-SOD) is an anti-inflammatory enzyme that protects cells from the damaging effects of ROS. An earlier report showed that plasma EC-SOD levels in type 2 diabetic patients were significantly and inversely related to body mass index and homeostasis model assessment-insulin resistance index. Moreover, the administration of pioglitazone, an antidiabetic agent, significantly increased the plasma level of EC-SOD. In this report, the expression of EC-SOD was compared to other adipocytokines in mice 3T3-L1 pre-adipocytes. EC-SOD expression levels were increased after the induction of differentiation and then declined, which was similar to adiponectin and transcription factors such as peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and CCAAT/enhancer-binding protein-alpha (C/EBP-alpha). On the other hand, the expression levels of pro-inflammatory adipocytokines, such as tumor necrosis factor-alpha (TNF-alpha) and monocyte chemo-attractant protein-1 (MCP-1), increased markedly in the development stage of cells. It was observed that the expression of EC-SOD in differentiated 3T3-L1 cells co-cultured with LPS-stimulated J774 macrophages was up-regulated, while the addition of TNF-alpha down-regulated EC-SOD and adiponectin expression in adipocytes. It is known that infiltrated and activated macrophages produce extracellular ROS at high levels in adipose tissue. It is possible that the expression of EC-SOD in adipocytes was stimulated to protect them from oxidative stress in the co-culture system.
Collapse
Affiliation(s)
- Tetsuo Adachi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan.
| | | | | | | | | |
Collapse
|
182
|
Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev 2009; 89:27-71. [PMID: 19126754 DOI: 10.1152/physrev.00014.2008] [Citation(s) in RCA: 371] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Regulated production of reactive oxygen species (ROS)/reactive nitrogen species (RNS) adequately balanced by antioxidant systems is a prerequisite for the participation of these active substances in physiological processes, including insulin action. Yet, increasing evidence implicates ROS and RNS as negative regulators of insulin signaling, rendering them putative mediators in the development of insulin resistance, a common endocrine abnormality that accompanies obesity and is a risk factor of type 2 diabetes. This review deals with this dual, seemingly contradictory, function of ROS and RNS in regulating insulin action: the major processes for ROS and RNS generation and detoxification are presented, and a critical review of the evidence that they participate in the positive and negative regulation of insulin action is provided. The cellular and molecular mechanisms by which ROS and RNS are thought to participate in normal insulin action and in the induction of insulin resistance are then described. Finally, we explore the potential usefulness and the challenges in modulating the oxidant-antioxidant balance as a potentially promising, but currently disappointing, means of improving insulin action in insulin resistance-associated conditions, leading causes of human morbidity and mortality of our era.
Collapse
Affiliation(s)
- Nava Bashan
- Department of Clinical Biochemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | |
Collapse
|
183
|
Abstract
The profound hypermetabolic response to burn injury is associated with insulin resistance and hyperglycemia, significantly contributing to the incidence of morbidity and mortality in this patient population. These responses are present in all trauma, surgical, or critically ill patients, but the severity, length, and magnitude is unique for burn patients. Although advances in therapeutic strategies to attenuate the postburn hypermetabolic response have significantly improved the clinical outcome of these patients during the past years, therapeutic approaches to overcome stress-induced hyperglycemia have remained challenging. Intensive insulin therapy has been shown to significantly reduce morbidity and mortality in critically ill patients. High incidence of hypoglycemic events and difficult blood glucose titrations have led to investigation of alternative strategies, including the use of metformin, a biguanide, or fenofibrate, a peroxisome proliferator-activated receptor (PPAR)-gamma agonist. Nevertheless, weaknesses and potential side affects of these drugs reinforces the need for better understanding of the molecular mechanisms underlying insulin resistance postburn that may lead to novel therapeutic strategies further improving the prognosis of these patients. This review aims to discuss the mechanisms underlying insulin resistance induced hyperglycemia postburn and outlines current therapeutic strategies that are being used to modulate hyperglycemia after thermal trauma.
Collapse
|
184
|
Rammos G, Peppes V, Zakopoulos N. Transient insulin resistance in normal subjects: acute hyperglycemia inhibits endothelial-dependent vasodilatation in normal subjects. Metab Syndr Relat Disord 2008; 6:159-70. [PMID: 18699719 DOI: 10.1089/met.2007.0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Postprandial hyperglycemia is a powerful and independent risk factor for cardiovascular morbidity and mortality. The pathogenesis of vascular damage in the context of acute hyperglycemia is probably multifactorial, yet the overproduction of reactive oxygen species (ROS) is of particular importance. In normal subjects, acute hyperglycemia induces temporary endothelial dysfunction, reflected in an increase in arterial blood pressure. Because hyperglycemia, hyperinsulinemia, and hypertension are characteristic features of insulin resistance, it is hypothesized that during acute hyperglycemia in normal subjects, where similar changes are induced, transient insulin resistance occurs. The hypothesis that the frequency and grade of daily fluctuations of glycemia in conjunction with nutritional changes and lifestyle might participate in the chronic atherosclerotic process is an important issue. The effort to reduce postprandial hyperglycemia should be part of a strategy to prevent and treat cardiovascular disease in normal subjects and in prediabetic patients as well as in diabetic patients. In this review, we describe the mechanisms of transient endothelial dysfunction caused by acute hyperglycemia in normal subjects and suggest ways to treat it.
Collapse
Affiliation(s)
- George Rammos
- Department of Clinical Therapeutics, University of Athens School of Medicine, Alexandra Hospital, Athens, Greece
| | | | | |
Collapse
|
185
|
Lee JH, Palaia T, Ragolia L. Impaired insulin-mediated vasorelaxation in diabetic Goto-Kakizaki rats is caused by impaired Akt phosphorylation. Am J Physiol Cell Physiol 2008; 296:C327-38. [PMID: 19052261 DOI: 10.1152/ajpcell.00254.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Insulin resistance associated with Type 2 diabetes contributes to impaired vasorelaxation. Previously, we showed the phosphorylation of myosin-bound phosphatase substrate MYPT1, a marker of the vascular smooth muscle cell (VSMC) contraction, was negatively regulated by Akt (protein kinase B) phosphorylation in response to insulin stimulation. In this study we examined the role of Akt phosphorylation on impaired insulin-induced vasodilation in the Goto-Kakizaki (GK) rat model of Type 2 diabetes. GK VSMCs had impaired basal and insulin-induced Akt phosphorylation as well as increases in basal MYPT1 phosphorylation, inducible nitric oxide synthase (iNOS) expression, and nitrite/nitrate production compared with Wistar-Kyoto controls. Both iNOS expression and the inhibition of angiotensin (ANG) II-induced MYPT1 phosphorylation were resistant to the effects of insulin in diabetic GK VSMC. We also measured the isometric tension of intact and denuded GK aorta using a myograph and observed significantly impaired insulin-induced vasodilation. Adenovirus-mediated overexpression of constitutively active Akt in GK VSMC led to significantly improved insulin sensitivity in terms of counteracting ANG II-induced contractile signaling via MYPT1, myosin light chain dephosphorylation, and reduced iNOS expression, S-nitrosylation and survivin expression. We demonstrated for the first time the presence of Akt-independent iNOS expression in the GK diabetic model and that the defective insulin-induced vasodilation observed in the diabetic vasculature can be restored by the overexpression of active Akt, which advocates a novel therapeutic strategy for treating diabetes.
Collapse
Affiliation(s)
- Jin Hee Lee
- Vascular Biology Institute, Winthrop Univ. Hospital, 222 Station Plaza North, Rm. 505B, Mineola, NY 11501, USA
| | | | | |
Collapse
|
186
|
Miller AM, Brestoff JR, Phelps CB, Berk EZ, Reynolds TH. Rapamycin does not improve insulin sensitivity despite elevated mammalian target of rapamycin complex 1 activity in muscles of ob/ob mice. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1431-8. [PMID: 18768766 DOI: 10.1152/ajpregu.90428.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Studies of cultured cells have indicated that the mammalian target of rapamycin complex 1 (mTORC1) mediates the development of insulin resistance. Because a role for mTORC1 in the development of skeletal muscle insulin resistance has not been established, we studied mTORC1 activity in skeletal muscles of ob/ob (OB) mice and wild-type (WT) mice. In vivo insulin action was assessed in muscles of mice 15 min following an intraperitoneal injection of insulin or an equivalent volume of saline. In the basal state, the phosphorylation of S6K on Thr(389), mTOR on Ser(2448), and PRAS40 on Thr(246) were increased significantly in muscles from OB mice compared with WT mice. The increase in basal mTORC1 signaling was associated with an increase in basal PKB phosphorylation on Thr(308) and Ser(473). In the insulin-stimulated state, no differences existed in the phosphorylation of S6K on Thr(389), but PKB phosphorylation on Thr(308) and Ser(473) was significantly reduced in muscles of OB compared with WT mice. Despite elevated mTORC1 activity in OB mice, rapamycin treatment did not improve either glucose tolerance or insulin tolerance. These results indicate that the insulin resistance of OB mice is mediated, in part, by factors other than mTORC1.
Collapse
Affiliation(s)
- Andrew M Miller
- Dept. of Exercise Science, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866, USA
| | | | | | | | | |
Collapse
|
187
|
Picardi PK, Calegari VC, Prada PO, Moraes JC, Araújo E, Marcondes MCCG, Ueno M, Carvalheira JBC, Velloso LA, Saad MJA. Reduction of hypothalamic protein tyrosine phosphatase improves insulin and leptin resistance in diet-induced obese rats. Endocrinology 2008; 149:3870-3880. [PMID: 18467448 PMCID: PMC2488223 DOI: 10.1210/en.2007-1506] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 04/25/2008] [Indexed: 02/07/2023]
Abstract
Protein tyrosine phosphatase (PTP1B) has been implicated in the negative regulation of insulin and leptin signaling. PTP1B knockout mice are hypersensitive to insulin and leptin and resistant to obesity when fed a high-fat diet. We investigated the role of hypothalamic PTP1B in the regulation of food intake, insulin and leptin actions and signaling in rats through selective decreases in PTP1B expression in discrete hypothalamic nuclei. We generated a selective, transient reduction in PTP1B by infusion of an antisense oligonucleotide designed to blunt the expression of PTP1B in rat hypothalamic areas surrounding the third ventricle in control and obese rats. The selective decrease in hypothalamic PTP1B resulted in decreased food intake, reduced body weight, reduced adiposity after high-fat feeding, improved leptin and insulin action and signaling in hypothalamus, and may also have a role in the improvement in glucose metabolism in diabetes-induced obese rats.
Collapse
Affiliation(s)
- Paty Karoll Picardi
- Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Nitric oxide decreases expression of osmoprotective genes via direct inhibition of TonEBP transcriptional activity. Pflugers Arch 2008; 457:831-43. [PMID: 18568363 DOI: 10.1007/s00424-008-0540-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 05/28/2008] [Accepted: 06/03/2008] [Indexed: 12/27/2022]
Abstract
During antidiuresis, renal medullary cells adapt to the hyperosmotic interstitial environment by increased expression of osmoprotective genes, which is driven by a common transcriptional activator, tonicity-responsive enhancer binding protein (TonEBP). Because nitric oxide (NO) is abundantly produced in the renal medulla, the present studies addressed the effect of NO on expression of osmoprotective genes and TonEBP activation in MDCK cells. Several structurally unrelated NO donors blunted tonicity-induced up-regulation of TonEBP target genes involved in intracellular accumulation of organic osmolytes. These effects were mediated by reduced transcriptional activity of TonEBP, as assessed by tonicity-responsive elements- and aldose reductase promoter-driven reporter constructs. Neither total TonEBP abundance nor nuclear translocation of TonEBP was affected by NO. Furthermore, 8-bromo-cGMP and peroxynitrite failed to reproduce the inhibitory effect of NO, indicating that NO acts directly on TonEBP rather than through classical NO signaling pathways. In support of this notion, electrophoretic mobility shift assays showed reduced binding of TonEBP to its target sequence in nuclear extracts prepared from MDCK cells treated with NO in vivo and in nuclear extracts exposed to NO in vitro. Furthermore, immunoprecipitation of S-nitrosylated proteins and the biotin-switch method identified TonEBP as a target for S-nitrosylation, which correlates with reduced DNA binding and transcriptional activity. These observations disclose a novel direct inhibitory effect of NO on TonEBP, a phenomenon that may be relevant for regulation of osmoprotective genes in the renal medulla.
Collapse
|
189
|
Hoy AJ, Turner N. New insight into the mechanism by which acute physical exercise ameliorates insulin resistance. J Physiol 2008; 586:2251-2. [PMID: 18325973 DOI: 10.1113/jphysiol.2008.152991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Andrew J Hoy
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia.
| | | |
Collapse
|
190
|
Polkinghorne E, Lau Q, Cooney GJ, Kraegen EW, Cleasby ME. Local activation of the IkappaK-NF-kappaB pathway in muscle does not cause insulin resistance. Am J Physiol Endocrinol Metab 2008; 294:E316-25. [PMID: 18029440 DOI: 10.1152/ajpendo.00537.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin resistance of skeletal muscle is a major defect in obesity and type 2 diabetes. Insulin resistance has been associated with a chronic subclinical inflammatory state in epidemiological studies and specifically with activation of the inhibitor kappaB kinase (IkappaBK)-nuclear factor-kappaB (NF-kappaB) pathway. However, it is unclear whether this pathway plays a role in mediating insulin resistance in muscle in vivo. We separately overexpressed the p65 subunit of NF-kappaB and IkappaBKbeta in single muscles of rats using in vivo electrotransfer and compared the effects after 1 wk vs. paired contralateral control muscles. A 64% increase in p65 protein (P < 0.001) was sufficient to cause muscle fiber atrophy but had no effect on glucose disposal or glycogen storage in muscle under hyperinsulinemic-euglycemic clamp conditions. Similarly, a 650% increase in IkappaBKbeta expression (P < 0.001) caused a significant reduction in IkappaB protein but also had no effect on clamp glucose disposal after lipid infusion. In fact, IkappaBKbeta overexpression in particular caused increases in activating tyrosine phosphorylation of insulin receptor substrate-1 (24%; P = 0.02) and serine phosphorylation of Akt (23%; P < 0.001), implying a moderate increase in flux through the insulin signaling cascade. Interestingly, p65 overexpression resulted in a negative feedback reduction of 36% in Toll-like receptor (TLR)-2 (P = 0.03) but not TLR-4 mRNA. In conclusion, activation of the IkappaBKbeta-NF-kappaB pathway in muscle does not seem to be an important local mediator of insulin resistance.
Collapse
Affiliation(s)
- Emma Polkinghorne
- Department of Veterinary Basic Sciences, Royal Veterinary College, Royal College Street, London, United Kingdom
| | | | | | | | | |
Collapse
|
191
|
Pauli JR, Ropelle ER, Cintra DE, Carvalho-Filho MA, Moraes JC, De Souza CT, Velloso LA, Carvalheira JBC, Saad MJA. Acute physical exercise reverses S-nitrosation of the insulin receptor, insulin receptor substrate 1 and protein kinase B/Akt in diet-induced obese Wistar rats. J Physiol 2008; 586:659-671. [PMID: 17974582 PMCID: PMC2375587 DOI: 10.1113/jphysiol.2007.142414] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/03/2007] [Accepted: 10/30/2007] [Indexed: 02/05/2023] Open
Abstract
Early evidence demonstrates that exogenous nitric oxide (NO) and the NO produced by inducible nitric oxide synthase (iNOS) can induce insulin resistance. Here, we investigated whether this insulin resistance, mediated by S-nitrosation of proteins involved in early steps of the insulin signal transduction pathway, could be reversed by acute physical exercise. Rats on a high-fat diet were subjected to swimming for two 3 h-long bouts, separated by a 45 min rest period. Two or 16 h after the exercise protocol the rats were killed and proteins from the insulin signalling pathway were analysed by immunoprecipitation and immunoblotting. We demonstrated that a high-fat diet led to an increase in the iNOS protein level and S-nitrosation of insulin receptor beta (IR beta), insulin receptor substrate 1 (IRS1) and Akt. Interestingly, an acute bout of exercise reduced iNOS expression and S-nitrosation of proteins involved in the early steps of insulin action, and improved insulin sensitivity in diet-induced obesity rats. Furthermore, administration of GSNO (NO donor) prevents this improvement in insulin action and the use of an inhibitor of iNOS (L-N6-(1-iminoethyl)lysine; L-NIL) simulates the effects of exercise on insulin action, insulin signalling and S-nitrosation of IR beta, IRS1 and Akt. In summary, a single bout of exercise reverses insulin sensitivity in diet-induced obese rats by improving the insulin signalling pathway, in parallel with a decrease in iNOS expression and in the S-nitrosation of IR/IRS1/Akt. The decrease in iNOS protein expression in the muscle of diet-induced obese rats after an acute bout of exercise was accompanied by an increase in AMP-activated protein kinase (AMPK) activity. These results provide new insights into the mechanism by which exercise restores insulin sensitivity.
Collapse
Affiliation(s)
- José R Pauli
- Departamento de Clínica Médica, FCM-UNICAMP, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
192
|
de Luca C, Olefsky JM. Inflammation and insulin resistance. FEBS Lett 2008; 582:97-105. [PMID: 18053812 PMCID: PMC2246086 DOI: 10.1016/j.febslet.2007.11.057] [Citation(s) in RCA: 801] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 11/19/2007] [Accepted: 11/19/2007] [Indexed: 02/06/2023]
Abstract
Obesity-induced chronic inflammation is a key component in the pathogenesis of insulin resistance and the Metabolic syndrome. In this review, we focus on the interconnection between obesity, inflammation and insulin resistance. Pro-inflammatory cytokines can cause insulin resistance in adipose tissue, skeletal muscle and liver by inhibiting insulin signal transduction. The sources of cytokines in insulin resistant states are the insulin target tissue themselves, primarily fat and liver, but to a larger extent the activated tissue resident macrophages. While the initiating factors of this inflammatory response remain to be fully determined, chronic inflammation in these tissues could cause localized insulin resistance via autocrine/paracrine cytokine signaling and systemic insulin resistance via endocrine cytokine signaling all of which contribute to the abnormal metabolic state.
Collapse
Affiliation(s)
- Carl de Luca
- University of California at San Diego, Department of Medicine (0673), 225 Stein Clinical Research Building, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | |
Collapse
|
193
|
da Silva Krause M, de Bittencourt PIH. Type 1 diabetes: can exercise impair the autoimmune event? TheL-arginine/glutamine coupling hypothesis. Cell Biochem Funct 2008; 26:406-33. [DOI: 10.1002/cbf.1470] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
194
|
Lalli CA, Pauli JR, Prada PO, Cintra DE, Ropelle ER, Velloso LA, Saad MJA. Statin modulates insulin signaling and insulin resistance in liver and muscle of rats fed a high-fat diet. Metabolism 2008; 57:57-65. [PMID: 18078859 DOI: 10.1016/j.metabol.2007.07.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 07/12/2007] [Indexed: 02/06/2023]
Abstract
Recent studies have shown that statins might have relevant effects on insulin resistance in animal models and in humans. However, the molecular mechanisms that account for this improvement in insulin sensitivity are not well established. The aim of the present study was to investigate the effect of a statin on insulin sensitivity and insulin signaling in liver and muscle of rats fed on a high-fat diet (HFD) for 4 weeks, treated or not with lovastatin during the last week. Our data show that treatment with lovastatin results in a marked improvement in insulin sensitivity characterized by an increase in glucose disappearance rate during the insulin tolerance test. This increase in insulin sensitivity was associated with an increase in insulin-induced insulin receptor (IR) tyrosine phosphorylation and, in parallel, a decrease in IR serine phosphorylation and association with PTP1B. Our data also show that lovastatin treatment was associated with an increase in insulin-stimulated insulin receptor substrate (IRS) 1/phosphatidylinositol 3-kinase/Akt pathway in the liver and muscle of HFD-fed rats in parallel with a decrease in the inflammatory pathway (c-jun N-terminal kinase and I kappa beta kinase (IKKbeta)/inhibitor of kappaB/nuclear factor kappaB) related to insulin resistance. In summary, statin treatment improves insulin sensitivity in HFD-fed rats by reversing the decrease in the insulin-stimulated IRS-1/phosphatidylinositol 3-kinase/Akt pathway in liver and muscle. The effect of statins on insulin action is further supported by our findings that HFD rats treated with statin show a reduction in IRS-1 serine phosphorylation, I kappa kinase (IKK)/inhibitor of kappaB/nuclear factor kappaB pathway, and c-jun N-terminal kinase activity, associated with an improvement in insulin action. Overall, these results provide important new insight into the mechanism of statin action in insulin sensitivity.
Collapse
Affiliation(s)
- Cristina Alba Lalli
- Departamento de Clínica Médica, FCM, Universidade Estadual de Campinas (UNICAMP) 13081-970 Campinas, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
195
|
Park J, Chung JJ, Kim JB. New evaluations of redox regulating system in adipose tissue of obesity. Diabetes Res Clin Pract 2007; 77 Suppl 1:S11-6. [PMID: 17452057 DOI: 10.1016/j.diabres.2007.01.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2007] [Indexed: 01/22/2023]
Abstract
During the past several decades, the incidence of obesity has significantly increased worldwide. Enormous efforts have been devoted to understanding the molecular mechanisms underlying obesity and its related metabolic disorders such as type 2 diabetes, cardiovascular disease, atherosclerosis, and hypertension. It is now well-established that altered adipocyte metabolism in obese patients is closely associated with the induction of various metabolic stresses including hyperglycemia, hyperlipidemia, hyperinsulinemia, and chronic inflammation. However, the cellular factor(s) which sense metabolic changes and/or initiate the pathological progression of obesity-induced metabolic disorders remain to be elucidated. In this review, we will discuss the possible roles of cellular NADP(+)/NADPH, which function as redox potential regulators, in the induction of obesity-associated oxidative stress, chronic inflammation, and insulin resistance and suggest G6PD, a NADPH-generating enzyme, as a novel target for treating metabolic disorders.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Biological Sciences, Research Center for Functional Cellulomics, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
196
|
Tsukumo DML, Carvalho-Filho MA, Carvalheira JBC, Prada PO, Hirabara SM, Schenka AA, Araújo EP, Vassallo J, Curi R, Velloso LA, Saad MJA. Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 2007; 56:1986-1998. [PMID: 17519423 DOI: 10.2337/db06-1595] [Citation(s) in RCA: 629] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obesity is associated with insulin resistance and a state of abnormal inflammatory response. The Toll-like receptor (TLR)4 has an important role in inflammation and immunity, and its expression has been reported in most tissues of the body, including the insulin-sensitive ones. Because it is activated by lipopolysaccharide and saturated fatty acids, which are inducers of insulin resistance, TLR4 may be a candidate for participation in the cross-talk between inflammatory and metabolic signals. Here, we show that C3H/HeJ mice, which have a loss-of-function mutation in TLR4, are protected against the development of diet-induced obesity. In addition, these mice demonstrate decreased adiposity, increased oxygen consumption, a decreased respiratory exchange ratio, improved insulin sensitivity, and enhanced insulin-signaling capacity in adipose tissue, muscle, and liver compared with control mice during high-fat feeding. Moreover, in these tissues, control mice fed a high-fat diet show an increase in IkappaB kinase complex and c-Jun NH(2)-terminal kinase activity, which is prevented in C3H/HeJ mice. In isolated muscles from C3H/HeJ mice, protection from saturated fatty acid-induced insulin resistance is observed. Thus, TLR4 appears to be an important mediator of obesity and insulin resistance and a potential target for the therapy of these highly prevalent medical conditions.
Collapse
Affiliation(s)
- Daniela M L Tsukumo
- Department of Internal Medicine, State University of Campinas, Campinas, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Newsholme P, Haber EP, Hirabara SM, Rebelato ELO, Procopio J, Morgan D, Oliveira-Emilio HC, Carpinelli AR, Curi R. Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol 2007; 583:9-24. [PMID: 17584843 PMCID: PMC2277225 DOI: 10.1113/jphysiol.2007.135871] [Citation(s) in RCA: 468] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It is now widely accepted, given the current weight of experimental evidence, that reactive oxygen species (ROS) contribute to cell and tissue dysfunction and damage caused by glucolipotoxicity in diabetes. The source of ROS in the insulin secreting pancreatic beta-cells and in the cells which are targets for insulin action has been considered to be the mitochondrial electron transport chain. While this source is undoubtably important, we provide additional information and evidence for NADPH oxidase-dependent generation of ROS both in pancreatic beta-cells and in insulin sensitive cells. While mitochondrial ROS generation may be important for regulation of mitochondrial uncoupling protein (UCP) activity and thus disruption of cellular energy metabolism, the NADPH oxidase associated ROS may alter parameters of signal transduction, insulin secretion, insulin action and cell proliferation or cell death. Thus NADPH oxidase may be a useful target for intervention strategies based on reversing the negative impact of glucolipotoxicity in diabetes.
Collapse
Affiliation(s)
- P Newsholme
- School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
198
|
De Souza CT, Araújo EP, Stoppiglia LF, Pauli JR, Ropelle E, Rocco SA, Marin RM, Franchini KG, Carvalheira JB, Saad MJ, Boschero AC, Carneiro EM, Velloso LA. Inhibition of UCP2 expression reverses diet-induced diabetes mellitus by effects on both insulin secretion and action. FASEB J 2007; 21:1153-1163. [PMID: 17209127 DOI: 10.1096/fj.06-7148com] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent characterization of the ability of uncoupling protein 2 (UCP2) to reduce ATP production and inhibit insulin secretion by pancreatic beta-cells has placed this mitochondrial protein as a candidate target for therapeutics in diabetes mellitus. In the present study we evaluate the effects of short-term treatment of two animal models of type 2 diabetes mellitus with an antisense oligonucleotide to UCP2. In both models, Swiss mice (made obese and diabetic by a hyperlipidic diet) and ob/ob mice, the treatment resulted in a significant improvement in the hyperglycemic syndrome. This effect was due not only to an improvement of insulin secretion, but also to improved peripheral insulin action. In isolated pancreatic islets, the partial inhibition of UCP2 increased ATP content, followed by increased glucose-stimulated insulin secretion. This was not accompanied by increased expression of enzymes involved in protection against oxidative stress. The evaluation of insulin action in peripheral tissues revealed that the inhibition of UCP2 expression significantly improved insulin signal transduction in adipose tissue. In conclusion, short-term inhibition of UCP2 expression ameliorates the hyperglycemic syndrome in two distinct animal models of obesity and diabetes. Metabolic improvement is due to a combined effect on insulin-producing pancreatic islets and in at least one peripheral tissue that acts as a target for insulin.
Collapse
Affiliation(s)
- Cláudio T De Souza
- Department of Internal Medicine, State University of Campinas, Campinas-SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Abstract
Insulin resistance is a major causative factor for type 2 diabetes and is associated with increased risk of cardiovascular disease. Despite intense investigation for a number of years, molecular mechanisms underlying insulin resistance remain to be determined. Recently, chronic inflammation has been highlighted as a culprit for obesity-induced insulin resistance. Nonetheless, upstream regulators and downstream effectors of chronic inflammation in insulin resistance remain unclarified. Inducible nitric oxide synthase (iNOS), a mediator of inflammation, has emerged as an important player in insulin resistance. Obesity is associated with increased iNOS expression in insulin-sensitive tissues in rodents and humans. Inhibition of iNOS ameliorates obesity-induced insulin resistance. However, molecular mechanisms by which iNOS mediates insulin resistance remain largely unknown. Protein S-nitrosylation, a covalent attachment of NO moiety to thiol sulfhydryls, has emerged as a major mediator of a broad array of NO actions. S-nitrosylation is elevated in patients with type 2 diabetes, and increased S-nitrosylation of insulin signaling molecules, including insulin receptor, insulin receptor substrate-1, and Akt/PKB, has been shown in skeletal muscle of obese, diabetic mice. Akt/PKB is reversibly inactivated by S-nitrosylation. Based on these findings, S-nitrosylation has recently been proposed to play an important role in the pathogenesis of insulin resistance.
Collapse
Affiliation(s)
- Masao Kaneki
- Department of Anesthesia & Critical Care, Massachusetts General Hospital, Shriners Hospital for Children, Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | | | | | |
Collapse
|
200
|
Park J, Choe SS, Choi AH, Kim KH, Yoon MJ, Suganami T, Ogawa Y, Kim JB. Increase in glucose-6-phosphate dehydrogenase in adipocytes stimulates oxidative stress and inflammatory signals. Diabetes 2006; 55:2939-49. [PMID: 17065329 DOI: 10.2337/db05-1570] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In adipocytes, oxidative stress and chronic inflammation are closely associated with metabolic disorders, including insulin resistance, obesity, cardiovascular disease, and type 2 diabetes. However, the molecular mechanisms underlying these metabolic disorders have not been thoroughly elucidated. In this report, we demonstrate that overexpression of glucose-6-phosphate dehydrogenase (G6PD) in adipocytes stimulates oxidative stress and inflammatory responses, thus affecting the neighboring macrophages. Adipogenic G6PD overexpression promotes the expression of pro-oxidative enzymes, including inducible nitric oxide synthase and NADPH oxidase, and the activation of nuclear factor-kappaB (NF-kappaB) signaling, which eventually leads to the dysregulation of adipocytokines and inflammatory signals. Furthermore, secretory factors from G6PD-overexpressing adipocytes stimulate macrophages to express more proinflammatory cytokines and to be recruited to the adipocytes; this would cause chronic inflammatory conditions in the adipose tissue of obesity. These effects of G6PD overexpression in adipocytes were abolished by pretreatment with NF-kappaB inhibitors or antioxidant drugs. Thus, we propose that a high level of G6PD in adipocytes may mediate the onset of metabolic disorders in obesity by increasing the oxidative stress and inflammatory signals.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Biological Sciences, Seoul National University, San 56-1, Sillim-Dong, Kwanak-Gu, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|