151
|
Tari AR, Walker TL, Huuha AM, Sando SB, Wisloff U. Neuroprotective mechanisms of exercise and the importance of fitness for healthy brain ageing. Lancet 2025; 405:1093-1118. [PMID: 40157803 DOI: 10.1016/s0140-6736(25)00184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 04/01/2025]
Abstract
Ageing is a scientifically fascinating and complex biological occurrence characterised by morphological and functional changes due to accumulated molecular and cellular damage impairing tissue and organ function. Ageing is often accompanied by cognitive decline but is also the biggest known risk factor for Alzheimer's disease, the most common form of dementia. Emerging evidence suggests that sedentary and unhealthy lifestyles accelerate brain ageing, while regular physical activity, high cardiorespiratory fitness (CRF), or a combination of both, can mitigate cognitive impairment and reduce dementia risk. The purpose of this Review is to explore the neuroprotective mechanisms of endurance exercise and highlight the importance of CRF in promoting healthy brain ageing. Key findings show how CRF mediates the neuroprotective effects of exercise via mechanisms such as improved cerebral blood flow, reduced inflammation, and enhanced neuroplasticity. We summarise evidence supporting the integration of endurance exercise that enhances CRF into public health initiatives as a preventive measure against age-related cognitive decline. Additionally, we address important challenges such as lack of long-term studies with harmonised study designs across preclinical and clinical settings, employing carefully controlled and repeatable exercise protocols, and outline directions for future research.
Collapse
Affiliation(s)
- Atefe R Tari
- The Cardiac Exercise Research Group at the Faculty of Medicine and Health Sciences, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St Olavs University Hospital, Trondheim, Norway
| | - Tara L Walker
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Aleksi M Huuha
- The Cardiac Exercise Research Group at the Faculty of Medicine and Health Sciences, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St Olavs University Hospital, Trondheim, Norway
| | - Sigrid B Sando
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St Olavs University Hospital, Trondheim, Norway
| | - Ulrik Wisloff
- The Cardiac Exercise Research Group at the Faculty of Medicine and Health Sciences, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
152
|
Payne NL, Pang SHM, Freeman AJ, Ozkocak DC, Limar JW, Wallis G, Zheng D, Mendonca S, O'Reilly LA, Gray DHD, Poon IKH, Heng TSP. Proinflammatory cytokines sensitise mesenchymal stromal cells to apoptosis. Cell Death Discov 2025; 11:121. [PMID: 40148285 PMCID: PMC11950399 DOI: 10.1038/s41420-025-02412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Mesenchymal stromal cells (MSCs) exert broad therapeutic effects across a range of inflammatory diseases. Their mechanism of action has largely been attributed to paracrine signalling, orchestrated by an array of factors produced by MSCs that are collectively termed the "secretome". Strategies to enhance the release of these soluble factors by pre-exposure to inflammatory cytokines, a concept known as "licensing", is thought to provide a means of enhancing MSC efficacy. Yet, recent evidence shows that intravenously infused MSCs entrapped within the lungs undergo apoptosis, and their subsequent clearance by host phagocytes is essential for their therapeutic efficacy. We therefore sought to clarify the mechanisms governing regulated cell death in MSCs and how exposure to inflammatory cytokines impacts this process. Our results show that MSCs are relatively resistant to cell death induced via the extrinsic pathway of apoptosis, as well as stimuli that induce necroptosis, a form of regulated inflammatory cell death. Instead, efficient killing of MSCs required triggering of the mitochondrial pathway of apoptosis, via inhibition of the pro-survival proteins MCL-1 and BCL-XL. Apoptotic bodies were readily released by MSCs during cell disassembly, a process that was inhibited in vitro and in vivo when the apoptotic effectors BAK and BAX were genetically deleted. Licensing of MSCs by pre-exposure to the inflammatory cytokines TNF and IFN-γ increased the sensitivity of MSCs to intrinsic apoptosis in vitro and accelerated their in vivo clearance by host cells within the lungs after intravenous infusion. Taken together, our study demonstrates that inflammatory "licensing" of MSCs facilitates cell death by increasing their sensitivity to triggers of the intrinsic pathway of apoptosis and accelerating the kinetics of apoptotic cell disassembly.
Collapse
Affiliation(s)
- Natalie L Payne
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Swee Heng Milon Pang
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Andrew J Freeman
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Dilara C Ozkocak
- Research Centre for Extracellular Vesicles, Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Justin W Limar
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Georgia Wallis
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Di Zheng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Senora Mendonca
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lorraine A O'Reilly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Daniel H D Gray
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Ivan K H Poon
- Research Centre for Extracellular Vesicles, Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Tracy S P Heng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
153
|
Hadjimichael E, Deitsch KW. Variable surface antigen expression, virulence, and persistent infection by Plasmodium falciparum malaria parasites. Microbiol Mol Biol Rev 2025; 89:e0011423. [PMID: 39807932 PMCID: PMC11948492 DOI: 10.1128/mmbr.00114-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
SUMMARYThe human malaria parasite Plasmodium falciparum is known for its ability to maintain lengthy infections that can extend for over a year. This property is derived from the parasite's capacity to continuously alter the antigens expressed on the surface of the infected red blood cell, thereby avoiding antibody recognition and immune destruction. The primary target of the immune system is an antigen called PfEMP1 that serves as a cell surface receptor and enables infected cells to adhere to the vascular endothelium and thus avoid filtration by the spleen. The parasite's genome encodes approximately 60 antigenically distinct forms of PfEMP1, each encoded by individual members of the multicopy var gene family. This provides the parasite with a repertoire of antigenic types that it systematically cycles through over the course of an infection, thereby maintaining an infection until the repertoire is exhausted. While this model of antigenic variation based on var gene switching explains the dynamics of acute infections in individuals with limited anti-malarial immunity, it fails to explain reports of chronic, asymptomatic infections that can last over a decade. Recent field studies have led to a re-evaluation of previous conclusions regarding the prevalence of chronic infections, and the application of new technologies has provided insights into the molecular mechanisms that enable chronic infections and how these processes evolved.
Collapse
Affiliation(s)
- Evi Hadjimichael
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Kirk W. Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
154
|
Metz S, Belanich JR, Claussnitzer M, Kilpeläinen TO. Variant-to-function approaches for adipose tissue: Insights into cardiometabolic disorders. CELL GENOMICS 2025:100844. [PMID: 40185091 DOI: 10.1016/j.xgen.2025.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/14/2025] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
Genome-wide association studies (GWASs) have identified thousands of genetic loci associated with cardiometabolic disorders. However, the functional interpretation of these loci remains a daunting challenge. This is particularly true for adipose tissue, a critical organ in systemic metabolism and the pathogenesis of various cardiometabolic diseases. We discuss how variant-to-function (V2F) approaches are used to elucidate the mechanisms by which GWAS loci increase the risk of cardiometabolic disorders by directly influencing adipose tissue. We outline GWAS traits most likely to harbor adipose-related variants and summarize tools to pinpoint the putative causal variants, genes, and cell types for the associated loci. We explain how large-scale perturbation experiments, coupled with imaging and multi-omics, can be used to screen variants' effects on cellular phenotypes and how these phenotypes can be tied to physiological mechanisms. Lastly, we discuss the challenges and opportunities that lie ahead for V2F research and propose a roadmap for future studies.
Collapse
Affiliation(s)
- Sophia Metz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Jonathan Robert Belanich
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Melina Claussnitzer
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Endocrine Division, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA 02142, USA
| | - Tuomas Oskari Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
155
|
Nicchio IG, Cirelli T, Quil LCDC, Camilli AC, Scarel-Caminaga RM, Leite FRM. Understanding the peroxisome proliferator-activated receptor gamma (PPAR-γ) role in periodontitis and diabetes mellitus: A molecular perspective. Biochem Pharmacol 2025; 237:116908. [PMID: 40157459 DOI: 10.1016/j.bcp.2025.116908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/19/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Periodontitis and Type 2 Diabetes Mellitus (T2DM) are chronic conditions with dysregulated immune responses. Periodontitis involves immune dysfunction and dysbiotic biofilms, leading to tissue destruction. T2DM is marked by insulin resistance and systemic inflammation, driving metabolic and tissue damage. Both conditions share activation of key pathways, including Nuclear Factor Kappa B (NF-κB), Activator Protein-1 (AP-1), and Signal Transducer and Activator of Transcription (STAT) proteins, reinforcing an inflammatory feedback loop. This review highlights the role of Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ), a transcription factor central to lipid and glucose metabolism, adipogenesis, and immune regulation. PPAR-γ activation has been shown to suppress inflammatory mediators such as Tumor Necrosis Factor Alpha (TNF-α) and Interleukin 6 (IL-6) through the inhibition of NF-κB, AP-1, and STAT pathways, thereby potentially disrupting the inflammatory-metabolic cycle that drives both diseases. PPAR-γ agonists, including thiazolidinediones (TZDs) and endogenous ligands such as 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), show promise in reducing inflammation and improving insulin sensitivity, but they are limited by adverse effects. Therapies, including Selective Peroxisome Proliferator-Activated Receptor Modulators (SPPARMs), have been developed to offer a more targeted approach, allowing for selective modulation of PPAR-γ activity to retain its anti-inflammatory benefits while minimizing their side effects. By integrating insights into PPAR-γ's molecular mechanisms, this review underscores its therapeutic potential in mitigating inflammation and enhancing metabolic control.
Collapse
Affiliation(s)
- Ingra Gagno Nicchio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil; Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Thamiris Cirelli
- Department of Dentistry, Centro Universitário das Faculdades Associadas, São João da Boa Vista 13870-377, SP, Brazil.
| | - Lucas César da Costa Quil
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil; Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Angelo Constantino Camilli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Raquel Mantuaneli Scarel-Caminaga
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Fabio Renato Manzolli Leite
- National Dental Research Institute Singapore, National Dental Centre Singapore, 168938, Singapore; Oral Health Academic Clinical Programme, Duke-NUS Medical School, 169857, Singapore.
| |
Collapse
|
156
|
Gudiksen A, Zhou E, Pedersen L, Zaia CA, Wille CE, Eliesen EV, Pilegaard H. Loss of PGC-1α causes depot-specific alterations in mitochondrial capacity, ROS handling and adaptive responses to metabolic stress in white adipose tissue. Mitochondrion 2025; 83:102034. [PMID: 40157624 DOI: 10.1016/j.mito.2025.102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/26/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
White adipose tissue (WAT) delivers lipid-fueled metabolic support to systemic energy expenditure through control of lipolytic and re-esterifying regulatory pathways, facilitated by mitochondrial bioenergetic support. Mitochondria are important sources of reactive oxygen species (ROS) and oxidative damage may potentially derail adipocyte function when mitochondrial homeostasis is challenged by overproduction of ROS. Peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α is a transcriptional co-activator that in skeletal muscle plays a central role in mitochondrial biogenesis and function but whether PGC-1α is equally important for mitochondrial function and adaptations in white adipose tissue remains to be fully resolved. The aim of the present study was to characterize the necessity of adipocyte PGC-1α for adaptive regulation of mitochondrial function in distinct white adipose depots. PGC-1α adipose tissue-specific knockout (ATKO) and floxed littermate control mice (CTRL) were subjected to either 24 h of fasting or 48 h of cold exposure. Bioenergetics, ROS handling, basal and adaptive protein responses, markers of protein damage as well as lipid cycling capacity and regulation were characterized in distinct WAT depots. ATKO mice demonstrated impairments in respiration as well as reduced OXPHOS protein content in fed and fasted conditions. Increased ROS emission in tandem with diminished mitochondrial antioxidant defense capacity resulted in increased protein oxidation in ATKO WAT. Adipose tissue PGC-1α knockout also led to changes in regulation of lipolysis and potentially triglyceride reesterification in WAT. In conclusion, PGC-1α regulates adipose tissue mitochondrial respiration and ROS balance as well as lipid cycling during metabolic challenges in a depot specific manner.
Collapse
Affiliation(s)
- Anders Gudiksen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Eva Zhou
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Louise Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Catherine A Zaia
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie E Wille
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth V Eliesen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Pilegaard
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
157
|
Thapa D, Ghimire A, Warne LN, Carlessi R. Targeting the Endocannabinoidome: A Novel Approach to Managing Extraintestinal Complications in Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2025; 18:478. [PMID: 40283915 PMCID: PMC12030576 DOI: 10.3390/ph18040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Inflammatory bowel disease (IBD) is a chronic inflammatory disorder marked by persistent gastrointestinal inflammation and a spectrum of systemic effects, including extraintestinal manifestations (EIMs) that impact the joints, skin, liver, and eyes. Conventional therapies primarily target intestinal inflammation, yet they frequently fail to ameliorate these systemic complications. Recent investigations have highlighted the complex interplay among the immune system, gut, and nervous system in IBD pathogenesis, thereby underscoring the need for innovative therapeutic approaches. Methods: We conducted a comprehensive literature search using databases such as PubMed, Scopus, Web of Science, Science Direct, and Google Scholar. Keywords including "cannabinoids", "endocannabinoid system", "endocannabinoidome", "inflammatory bowel disease", and "extraintestinal manifestations" were used to identify peer-reviewed original research and review articles that explore the role of the endocannabinoidome (eCBome) in IBD. Results: Emerging evidence suggests that eCBome-a network comprising lipid mediators, receptors (e.g., CB1, CB2, GPR55, GPR35, PPARα, TRPV1), and metabolic enzymes-plays a critical role in modulating immune responses, maintaining gut barrier integrity, and regulating systemic inflammation. Targeting eCBome not only improves intestinal inflammation but also appears to mitigate metabolic, neurological, and extraintestinal complications such as arthritis, liver dysfunction, and dermatological disorders. Conclusions: Modulation of eCBome represents a promising strategy for comprehensive IBD management by addressing both local and systemic disease components. These findings advocate for further mechanistic studies to develop targeted interventions that leverage eCBome as a novel therapeutic avenue in IBD.
Collapse
Affiliation(s)
- Dinesh Thapa
- Curtin Medical Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (A.G.); (L.N.W.)
| | - Anjali Ghimire
- Curtin Medical Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (A.G.); (L.N.W.)
| | - Leon N. Warne
- Curtin Medical Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (A.G.); (L.N.W.)
- The Vet Pharmacist, East Fremantle, WA 6158, Australia
| | - Rodrigo Carlessi
- Curtin Medical Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (A.G.); (L.N.W.)
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
158
|
Zhang H, Papiernik T, Tian S, Yaghmour A, Alzein A, Lennon JB, Maini R, Tan X, Niazi A, Park J, Park S, Richter CP, Ebeid M. Kölliker's Organ Functions as a Developmental Hub in Mouse Cochlea Regulating Spiral Limbus and Tectorial Membrane Development. J Neurosci 2025; 45:e0721242025. [PMID: 39909560 PMCID: PMC11949483 DOI: 10.1523/jneurosci.0721-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 12/13/2024] [Accepted: 01/18/2025] [Indexed: 02/07/2025] Open
Abstract
Kölliker's organ is a transient developmental structure in the mouse cochlea that undergoes significant remodeling postnatally. Utilizing an epithelial-specific conditional deletion mouse model of Prdm16 (marker and regulator of Kölliker's organ), we show that Prdm16 is required for interdental cell development, and thereby the development of the limbal domain of the tectorial membrane and its medial anchorage to the spiral limbus. Additionally, we show that Kölliker's organ is involved in normal tectorial membrane collagen fibril development and maturation. Interestingly, mesenchymal cells of the spiral limbus underneath Prdm16-deficient Kölliker's organ failed to produce interstitial matrix proteins, resulting in a hypoplastic and truncated spiral limbus, indicating a non-cell autonomous role of Prdm16 in regulating spiral mesenchymal matrix development. Single-cell RNA sequencing identified differentially expressed genes in Prdm16-deficient Kölliker's organ suggesting a role for connective tissue growth factor (CTGF) downstream Prdm16 in epithelial-mesenchymal signaling involved in spiral limbus matrix deposition. Prdm16-deficient mice showed a hearing deficit, as indicated by elevated auditory brainstem response thresholds at most frequencies, consistent with the cochlear structural defects. Both sexes were studied. This work establishes Prdm16 as a deafness gene in mice through its role in regulating Kölliker's organ development. Such understanding recognizes Kölliker's organ as a developmental hub regulating multiple surrounding cochlear structures.
Collapse
Affiliation(s)
- Hongji Zhang
- Anatomy Department, Midwestern University, Downers Grove, Illinois 60515
- College of Graduate Studies, Midwestern University, Downers Grove, Illinois 60515
| | - Timothy Papiernik
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois 60515
| | - Selena Tian
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois 60515
| | - Amal Yaghmour
- College of Graduate Studies, Midwestern University, Downers Grove, Illinois 60515
| | - Ahmad Alzein
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois 60515
| | - James Benjamin Lennon
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois 60515
| | - Rahul Maini
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois 60515
| | - Xiaodong Tan
- Department of Otolaryngology, Feinberg School of Medicine Northwestern University, Chicago, Illinois 60611
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois 60208
| | - Ava Niazi
- Neuroscience Program, University of Utah, Salt Lake City, Utah 84112
- Department of Neurobiology, University of Utah, Salt Lake City, Utah 84112
| | - Joosang Park
- Department of Neurobiology, University of Utah, Salt Lake City, Utah 84112
| | - Sungjin Park
- Department of Neurobiology, University of Utah, Salt Lake City, Utah 84112
| | - Claus-Peter Richter
- Department of Otolaryngology, Feinberg School of Medicine Northwestern University, Chicago, Illinois 60611
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois 60208
- Departments of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208
- Communication Sciences and Disorders, Northwestern University, Evanston, Illinois 60208
| | - Michael Ebeid
- Anatomy Department, Midwestern University, Downers Grove, Illinois 60515
- College of Graduate Studies, Midwestern University, Downers Grove, Illinois 60515
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois 60515
| |
Collapse
|
159
|
Tashkandi AJ, Gorman A, McGoldrick Mathers E, Carney G, Yacoub A, Setyaningsih WAW, Kuburas R, Margariti A. Metabolic and Mitochondrial Dysregulations in Diabetic Cardiac Complications. Int J Mol Sci 2025; 26:3016. [PMID: 40243689 PMCID: PMC11988959 DOI: 10.3390/ijms26073016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
The growing prevalence of diabetes highlights the urgent need to study diabetic cardiovascular complications, specifically diabetic cardiomyopathy, which is a diabetes-induced myocardial dysfunction independent of hypertension or coronary artery disease. This review examines the role of mitochondrial dysfunction in promoting diabetic cardiac dysfunction and highlights metabolic mechanisms such as hyperglycaemia-induced oxidative stress. Chronic hyperglycaemia and insulin resistance can activate harmful pathways, including advanced glycation end-products (AGEs), protein kinase C (PKC) and hexosamine signalling, uncontrolled reactive oxygen species (ROS) production and mishandling of Ca2+ transient. These processes lead to cardiomyocyte apoptosis, fibrosis and contractile dysfunction. Moreover, endoplasmic reticulum (ER) stress and dysregulated RNA-binding proteins (RBPs) and extracellular vesicles (EVs) contribute to tissue damage, which drives cardiac function towards heart failure (HF). Advanced patient-derived induced pluripotent stem cell (iPSC) cardiac organoids (iPS-COs) are transformative tools for modelling diabetic cardiomyopathy and capturing human disease's genetic, epigenetic and metabolic hallmarks. iPS-COs may facilitate the precise examination of molecular pathways and therapeutic interventions. Future research directions encourage the integration of advanced models with mechanistic techniques to promote novel therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Refik Kuburas
- Wellcome Wolfson Institute of Experimental Medicine, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (A.J.T.); (A.G.); (E.M.M.); (G.C.); (A.Y.); (W.A.W.S.)
| | - Andriana Margariti
- Wellcome Wolfson Institute of Experimental Medicine, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (A.J.T.); (A.G.); (E.M.M.); (G.C.); (A.Y.); (W.A.W.S.)
| |
Collapse
|
160
|
Nozu T, Miyagishi S, Ishioh M, Takakusaki K, Okumura T. Irisin prevents visceral hypersensitivity and colonic hyperpermeability in a rat model of irritable bowel syndrome. Peptides 2025; 188:171394. [PMID: 40154794 DOI: 10.1016/j.peptides.2025.171394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Visceral hypersensitivity and impaired gut barrier function, accompanied by minor inflammation, are crucial components of the pathophysiology of irritable bowel syndrome (IBS). Research has demonstrated that corticotropin-releasing factor (CRF) and toll-like receptor 4 (TLR4) signaling mutually activate to produce proinflammatory cytokines, which modulate these gastrointestinal changes. Irisin, a myokine, has been shown to inhibit TLR4-proinflammatory cytokine signaling, thereby improving inflammation driven by obesity and metabolic syndrome. Based on this, we hypothesized that irisin could improve visceral hypersensitivity and impaired gut barrier function induced by lipopolysaccharide (LPS) or CRF (IBS rat models), and tested this hypothesis. The visceral pain threshold, triggered by colonic balloon distention, was assessed by electrophysiologically monitoring abdominal muscle contractions in male Sprague-Dawley rats. Colonic permeability was evaluated by measuring the amount of Evans blue dye absorbed within the colonic tissue. Intraperitoneal irisin prevented LPS-induced visceral hypersensitivity and colonic hyperpermeability in a dose-dependent manner. Irisin also prevented CRF-induced gastrointestinal alterations. The beneficial effects of irisin in the LPS model were reversed by compound C, an AMP-activated protein kinase (AMPK) inhibitor; NG-nitro-L-arginine methyl ester, a nitric oxide (NO) synthesis inhibitor; sulpiride or domperidone, a dopamine D2 receptor antagonist; atropine and intracisternal injection of SB-334867, a selective orexin 1 receptor antagonist. Overall, these findings suggest that irisin improves visceral sensation and colonic barrier function through AMPK, NO and dopamine D2, cholinergic and brain orexin signaling in IBS model. Thus, irisin may be a promising therapeutic agent for treating IBS.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan; Center for Medical Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan; Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| | - Saori Miyagishi
- Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| | - Masatomo Ishioh
- Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| | - Kaoru Takakusaki
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| | - Toshikatsu Okumura
- Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| |
Collapse
|
161
|
Naderi J, Johnson AK, Thakkar H, Chandravanshi B, Ksiazek A, Anand A, Vincent V, Tran A, Kalimireddy A, Singh P, Sood A, Das A, Talbot CL, Distefano IA, Maschek JA, Cox J, Li Y, Summers SA, Atkinson DJ, Turapov T, Ratcliff JA, Fung J, Shabbir A, Shabeer Yassin M, Shiow SATE, Holland WL, Pitt GS, Chaurasia B. Ceramide-induced FGF13 impairs systemic metabolic health. Cell Metab 2025:S1550-4131(25)00105-6. [PMID: 40169001 DOI: 10.1016/j.cmet.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/02/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
Ceramide accumulation impairs adipocytes' ability to efficiently store and utilize nutrients, leading to energy and glucose homeostasis deterioration. Using a comparative transcriptomic screen, we identified the non-canonical, non-secreted fibroblast growth factor FGF13 as a ceramide-regulated factor that impairs adipocyte function. Obesity robustly induces FGF13 expression in adipose tissue in mice and humans and is positively associated with glycemic indices of type 2 diabetes. Pharmacological or genetic inhibition of ceramide biosynthesis reduces FGF13 expression. Using mice with loss and gain of function of FGF13, we demonstrate that FGF13 is both necessary and sufficient to impair energy and glucose homeostasis independent of ceramides. Mechanistically, FGF13 exerts these effects by inhibiting mitochondrial content and function, metabolic elasticity, and caveolae formation, which cumulatively impairs glucose utilization and thermogenesis. These studies suggest the therapeutic potential of targeting FGF13 to prevent and treat metabolic diseases.
Collapse
Affiliation(s)
- Jamal Naderi
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Amanda Kelsey Johnson
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Himani Thakkar
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Bhawna Chandravanshi
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Alec Ksiazek
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Ajay Anand
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Vinnyfred Vincent
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Aaron Tran
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Anish Kalimireddy
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Pratibha Singh
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Ayushi Sood
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Aasthika Das
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Chad Lamar Talbot
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Isabella A Distefano
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - J Alan Maschek
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - James Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Ying Li
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Scott A Summers
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Donald J Atkinson
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Tursun Turapov
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason A Ratcliff
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA 52242, USA
| | - Javis Fung
- Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Asim Shabbir
- Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - M Shabeer Yassin
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Sue-Anne Toh Ee Shiow
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - William L Holland
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Geoffrey S Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Bhagirath Chaurasia
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
162
|
Tossetta G, Fantone S, Busilacchi EM, Marzioni D, Mazzucchelli R. Dose-dependent effects of curcumin on 22Rv1 prostate cancer cell line. Mol Biol Rep 2025; 52:339. [PMID: 40138070 PMCID: PMC11946973 DOI: 10.1007/s11033-025-10448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Prostate cancer (PCa) is the second most frequent cancer type in the male population over 66 years. Curcumin is a polyphenolic natural compound extract from the rhizomes of Curcuma longa Linn (Zingiberaceae family) which showed important anticancer effects by inhibiting cell proliferation and inducing apoptosis in several cancer types. Recently, some studies reported that oral curcumin lowered PSA levels, but it did not modify the clinical outcomes in patients with prostate cancer who received intermittent androgen deprivation (IAD). Other studies reported that high concentrations of curcumin were toxic for patients. METHODS AND RESULTS In this study we showed that low doses of curcumin can induce senescence-like effects in 22Rv1 cell line while higher concentrations have cytotoxic effects. Five,15 and 30 µM curcumin blocked cell cycle in G2/M phase but only 15 and 30 µM curcumin induced cell death. In addition, an increased expression of p21, a known senescence marker, was detected in 22Rv1 cells treated with curcumin in every experimental condition. However, the expression of p16, another known senescence marker, increased only to 30 µM curcumin. CONCLUSION In the context of personalized approach in PCa care, we suggest that the appropriate concentration of curcumin used in combination with radiotherapy or with androgen deprivation therapy (ADT) could be taken into consideration.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy
| | - Sonia Fantone
- Scientific Direction, IRCCS INRCA, 60124, Ancona, Italy
| | - Elena Marinelli Busilacchi
- Hematology Laboratory, Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126, Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy.
- IRCCS INRCA, 60124, Ancona, Italy.
| | - Roberta Mazzucchelli
- Department of Biomedical Sciences and Public Health, Section of Pathological Anatomy, Università Politecnica delle Marche, 60126, Ancona, Italy
| |
Collapse
|
163
|
Ni X, Zhang Z, Deng ZY, Duan S, Szeto IMY, He J, Li T, Li J. Global Levels and Variations of Cholesterol and Polar Lipids of Human Milk: A Systematic Review and Meta-analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7046-7064. [PMID: 40091209 DOI: 10.1021/acs.jafc.4c11942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Polar lipids and cholesterol are vital structural components of the milk fat globule membrane, playing a crucial role in infant growth and development; however, systematic global reports on their content in human milk are currently lacking. This study conducted a systematic literature search in Chinese and English databases, including 69,392 human milk samples from 96 studies. A random-effects model based on global data was used to assess the content of total lipids, cholesterol, gangliosides, and phospholipids in human milk and their variations with the lactation stage, geographical region, and sample year. The mean contents of total lipids, cholesterol, and total phospholipids were 2774.15 mg/100 g (95% CI: 2614.88, 2933.42 mg/100 g), 21.15 mg/100 g (18.35, 23.95 mg/100 g), and 70.72 mg/100 g (68.84, 72.60 mg/100 g), respectively, with gangliosides GM3 and GD3 at 0.63 mg/100 g (0.54, 0.72 mg/100 g) and 0.34 mg/100 g (0.32, 0.36 mg/100 g). The major phospholipids SM, PC, PE, PS, and PI averaged 24.19 mg/100 g (23.17 and 25.21 mg/100 g), 21.27 mg/100 g (19.92 and 22.62 mg/100 g), 18.28 mg/100 g (17.46 and 19.10 mg/100 g), 2.86 mg/100 g (2.32 and 3.40 mg/100 g), and 2.12 mg/100 g (1.75 and 2.49 mg/100 g). With the progression of lactation, total lipids, gangliosides, and most phospholipids (SM, PC, PS, PI) increased, while cholesterol and PE decreased. Over the years, total lipids, gangliosides, and PE showed an upward trend, whereas cholesterol and most phospholipids declined. Human milk from Europe had lower total lipid and cholesterol levels compared with other regions. While the total phospholipid content did not show significant regional differences (P > 0.05), variations in phospholipid composition were observed. These findings emphasize the importance of understanding spatiotemporal changes in human milk lipids to develop personalized nutrition strategies that support optimal infant growth and development.
Collapse
Affiliation(s)
- Xinggang Ni
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zhiyi Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Sufang Duan
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, Inner Mongolia 010110, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, Inner Mongolia 010110, China
- National Center for Technology Innovation of Dairy, Ltd., Hohhot, Inner Mongolia 010110, China
| | - Ignatius Man-Yau Szeto
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, Inner Mongolia 010110, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, Inner Mongolia 010110, China
- National Center for Technology Innovation of Dairy, Ltd., Hohhot, Inner Mongolia 010110, China
| | - Jian He
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, Inner Mongolia 010110, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, Inner Mongolia 010110, China
- National Center for Technology Innovation of Dairy, Ltd., Hohhot, Inner Mongolia 010110, China
| | - Ting Li
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, Inner Mongolia 010110, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, Inner Mongolia 010110, China
- National Center for Technology Innovation of Dairy, Ltd., Hohhot, Inner Mongolia 010110, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|
164
|
Zapata-Linares N, Toillon I, Wanherdrick K, Pigenet A, Duhalde F, Binvignat M, Martin-Uriz PS, Louvet L, Calleja-Cervantes ME, Ghali Mhenni O, Guibert C, Nourissat G, Nogier A, Leterme D, Broux O, Magneron P, Prosper F, Chauveau C, Landoulsi J, Berenbaum F, Rodriguez-Madoz JR, Lafage-Proust MH, Lucas S, Houard X. Implication of bone marrow adipose tissue in bone homeostasis during osteoarthritis. Osteoarthritis Cartilage 2025:S1063-4584(25)00870-2. [PMID: 40154729 DOI: 10.1016/j.joca.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 03/16/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
OBJECTIVE To explore the role of bone marrow adipocytes (BMAds) in osteoarthritis (OA). METHODS Male and female C57BL/6 mice (n=4/group) underwent meniscectomy (MNX) or SHAM surgery. OA was determined using Osteoarthritis Research Society International (OARSI) score, and the number of perilipin+ adipocytes was quantified. Mesenchymal Stromal Cells (MSCs) from MNX and SHAM mice were differentiated into osteoblasts and adipocytes. Human adipocytes and MSCs (n=8) were enzymatically isolated from epiphyseal and metaphyseal marrow, and from subcutaneous adipose tissue (SCAT) of hip OA patients. Human OA MSCs were differentiated into osteoblasts and adipocytes (OA-Diff-hAdipo). Gene expression patterns of epiphyseal and metaphyseal BMAds, SCAT adipocytes and OA-Diff-hAdipo were evaluated by RNAseq (n=4). The effect conditioned media from OA epiphyseal bone (n=5) on the alkaline phosphatase (ALP) activity and mineralization kinetics was assessed in vitro. RESULTS Increase in BMAd density was positively correlated with cartilage degradation in MNX mice. OA modified the differentiation capacity of MSCs, accelerating adipocyte differentiation and failing to produce osteoblasts in both human and mice. Human epiphyseal, metaphyseal and SCAT adipocytes from the same OA patients each displayed a specific transcriptome, suggesting different functions. Enrichment analysis defined metaphyseal OA-BMAds as cells implicated in hematopoietic stem cell differentiation. On the other hand, epiphyseal OA-BMAds were considered as osteogenic cells showing an up-regulation of genes related to bone mineralization and remodeling. Specifically, OA epiphysis-secreted molecules decreased ALP activity and altered in vitro the mineralization process. CONCLUSION All these results support the emergence of BMAds as new cell partners in OA, opening new venues for therapeutic approaches.
Collapse
Affiliation(s)
- Natalia Zapata-Linares
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, F-75012 Paris, France
| | - Indira Toillon
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, F-75012 Paris, France
| | - Kristell Wanherdrick
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, F-75012 Paris, France
| | - Audrey Pigenet
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, F-75012 Paris, France
| | - Fanny Duhalde
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, F-75012 Paris, France; Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, F-75005, Paris, France
| | - Marie Binvignat
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, F-75012 Paris, France
| | | | - Loïc Louvet
- Marrow Adiposity and Bone Lab (MABLab) ULR4490, Université du Littoral Côte d'Opale, F-62200 Boulogne sur Mer, Univ. Lille, F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Maria E Calleja-Cervantes
- Hemato-Oncology Program. CIMA Universidad de Navarra-IdiSNA, Pamplona, Spain; Computational Biology Program, CIMA Universidad de Navarra-IdiSNA, Pamplona, Spain
| | - Olfa Ghali Mhenni
- Marrow Adiposity and Bone Lab (MABLab) ULR4490, Université du Littoral Côte d'Opale, F-62200 Boulogne sur Mer, Univ. Lille, F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Clément Guibert
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, F-75005, Paris, France
| | - Geoffroy Nourissat
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, F-75012 Paris, France
| | | | - Damien Leterme
- Marrow Adiposity and Bone Lab (MABLab) ULR4490, Université du Littoral Côte d'Opale, F-62200 Boulogne sur Mer, Univ. Lille, F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Odile Broux
- Marrow Adiposity and Bone Lab (MABLab) ULR4490, Université du Littoral Côte d'Opale, F-62200 Boulogne sur Mer, Univ. Lille, F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Paul Magneron
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, F-75012 Paris, France
| | - Felipe Prosper
- Hemato-Oncology Program. CIMA Universidad de Navarra-IdiSNA, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Hematology and Cell Therapy Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain; Cancer Center Universidad de Navarra (CCUN), Pamplona, Spain
| | - Christophe Chauveau
- Marrow Adiposity and Bone Lab (MABLab) ULR4490, Université du Littoral Côte d'Opale, F-62200 Boulogne sur Mer, Univ. Lille, F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Jessem Landoulsi
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, F-75005, Paris, France
| | - Francis Berenbaum
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, F-75012 Paris, France; Rheumatology Department, AP-HP Saint-Antoine Hospital, 184, Rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Juan R Rodriguez-Madoz
- Hemato-Oncology Program. CIMA Universidad de Navarra-IdiSNA, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Cancer Center Universidad de Navarra (CCUN), Pamplona, Spain
| | - Marie-Hélène Lafage-Proust
- Université de Lyon - Université Jean Monnet, INSERM U1059, Faculté de Médecine, F-42270 Saint-Priest en Jarez, France
| | - Stéphanie Lucas
- Marrow Adiposity and Bone Lab (MABLab) ULR4490, Université du Littoral Côte d'Opale, F-62200 Boulogne sur Mer, Univ. Lille, F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Xavier Houard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, F-75012 Paris, France.
| |
Collapse
|
165
|
Di Cola S, D'Amico G, Motamedrad M, Montano-Loza A, Merli M. Study protocol to redefine muscle attenuation cut-offs for better prediction of mortality in patients with cirrhosis: a comprehensive post hoc validation study - a study protocol. BMJ Open 2025; 15:e094252. [PMID: 40132832 PMCID: PMC11938223 DOI: 10.1136/bmjopen-2024-094252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
INTRODUCTION Myosteatosis, characterised by altered muscle composition detectable by muscle radiodensity attenuation on CT scans, has been associated with increased mortality in patients with cirrhosis. However, standard attenuation cut-offs, derived primarily from oncology populations, may not be appropriate for patients with cirrhosis. This study protocol aims to address this diagnostic gap by validating the Ebadi cut-offs, which are based on a retrospective cohort and have not been extensively validated in a cirrhotic population. The aim of the study is to refine these cut-offs for more accurate prediction of mortality in patients with cirrhosis using two independent patient cohorts (retrospective and prospective). METHODS AND ANALYSIS This post hoc validation study analyses muscle weakness cut-offs in patients with cirrhosis using data from two independent cohorts. A total of 1537 patients will be analysed. The study will assess interobserver variability to ensure robust results by analysing random samples of 60 patients from the two cohorts. Statistical methods will be used to determine the accuracy and relevance of current cut-offs in predicting patient mortality. The analysis will also examine the relationship between muscle wasting and clinical outcomes in cirrhosis and the relationship with muscle mass loss. ETHICS AND DISSEMINATION Ethical approval for this study has been obtained from the relevant institutional review boards. The results will be disseminated through presentations at scientific conferences and publication in peer-reviewed journals. The results of the study are expected to contribute to improved diagnostic criteria for myosteatosis in cirrhosis, providing clinicians with more tailored and accurate tools for cirrhosis prognosis. TRIAL REGISTRATION NUMBER NCT06593015.
Collapse
Affiliation(s)
- Simone Di Cola
- Department of Translational and Precision Medicine, University of Rome La Sapienza, Rome, Lazio, Italy
| | | | - Maryam Motamedrad
- Gastroenterology Division and Liver Unit, University of Alberta, Edmonton, Alberta, Canada
| | - Aldo Montano-Loza
- Gastroenterology Division and Liver Unit, University of Alberta, Edmonton, Alberta, Canada
| | - Manuela Merli
- Department of Translational and Precision Medicine, University of Rome La Sapienza, Rome, Lazio, Italy
| |
Collapse
|
166
|
Xu J, Wakai M, Xiong K, Yang Y, Prabakaran A, Wu S, Ahrens D, Molina-Portela MDP, Ni M, Bai Y, Shavlakadze T, Glass DJ. The pro-inflammatory cytokine IL6 suppresses mitochondrial function via the gp130-JAK1/STAT1/3-HIF1α/ERRα axis. Cell Rep 2025; 44:115403. [PMID: 40056415 DOI: 10.1016/j.celrep.2025.115403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/07/2024] [Accepted: 02/14/2025] [Indexed: 03/10/2025] Open
Abstract
Chronic inflammation and a decline in mitochondrial function are hallmarks of aging. Here, we show that the two mechanisms may be linked. We found that interleukin-6 (IL6) suppresses mitochondrial function in settings where PGC1 (both PGC1α and PGC1β) expression is low. This suppression is mediated by the JAK1/STAT1/3 axis, which activates HIF1α through non-canonical mechanisms involving upregulation of HIF1A and ERRα transcription, and subsequent stabilization of the HIF1A protein by ERRα. HIF1α, in turn, inhibits ERRα, which is a master regulator of mitochondrial biogenesis, thus contributing to the inhibition of mitochondrial function. When expressed at higher levels, PGC1 rescues ERRα to boost baseline mitochondrial respiration, including under IL6-treated conditions. Our study suggests that inhibition of the IL6 signaling axis could be a potential treatment for those inflammatory settings where mitochondrial function is compromised.
Collapse
Affiliation(s)
- Jianing Xu
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA.
| | - Matthew Wakai
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Kun Xiong
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Yanfeng Yang
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Adithya Prabakaran
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Sophia Wu
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Diana Ahrens
- Research Flow Cytometry Core, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | | | - Min Ni
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Yu Bai
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Tea Shavlakadze
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA.
| | - David J Glass
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA.
| |
Collapse
|
167
|
Wu R, Liu R, Chen R, Li Y, Xue X, Zhang Y, Li F, Qu J, Qin L, Wang C, Li X. Aurantio-obtusin improves obesity and protects hepatic inflammation by rescuing mitochondrial damage in overwhelmed brown adipose tissue. Chin Med 2025; 20:41. [PMID: 40133913 PMCID: PMC11934537 DOI: 10.1186/s13020-025-01097-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Obesity is frequently linked to chronic systamic inflammation and presents significant challenges to public health. Aurantio-obtusin (AO) boosted the brown adipose tissue (BAT) thermogenesis in diet-induced obesity. However, the specific mechanisms by which injured mitochondria-related damage signals derived from overwhelmed BAT can transmit to liver and exacerbate metabolic disorders and whether AO can reverse this process remain unknown. MATERIALS AND METHODS After applying high-fat diet and glucose-fructose water (HFHS)-induced obesity mice, different BAT transplant procedures and primary BAT adipocytes, we investigated the anti-obesity effects and mechanism of AO through RNA sequencing and biology techniques. RESULTS AO improved whole-body lipid accumulation, mitochondrial metabolism in BAT and hepatic inflammation in HFHS-induced obesity mice. Interscapular transplant of BAT-derived from obese donor mice triggered hepatic inflammation of chow diet-fed recipient mice, which was protected by AO. Furthermore, the transplantation of BAT-derived from AO-treated mice protected hepatic inflammation in obese mice. In vivo and in lipid-challenged primary BAT adipocytes, AO decreased kexin type 9 (PCSK9), prevented mPTP opening and mitochondrial DNA (mtDNA) release in extracellular vesicles (EVs) manner by inhibiting the acetylation of cyclophilin D associated with adenine nucleotide translocase, suppressing oligomerization of voltage-dependent anion channel 1 and activating mitophagy. Ultimately, AO inhibited mtDNA-containing EVs-induced cyclic GMP-AMP synthase/stimulator of interferon genes (STING) activation and hepatic inflammation, which was confirmed by Sting-/- mice. CONCLUSION AO not only improves thermogenesis and mitochondrial function of BAT but also prevents liver inflammation by repairing mitochondrial function and blocking the transfer of mtDNA from BAT to the liver.
Collapse
Affiliation(s)
- Ruiyu Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| | - Ranyun Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Yijie Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaoyong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Yinhao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Lingling Qin
- Department of Science and Technology, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Chen Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| |
Collapse
|
168
|
Fonseka O, Raja R, Ross C, Gare SR, Zhang J, Hille SS, King K, Ruiz-Velasco A, Kaur N, Chen X, Miller JM, Abouleisa RRE, Ou Q, Zou Z, Zhao X, Sotomayor-Flores C, Frank D, Swanton E, Pool MR, Missaglia S, Tavian D, Schiattarella GG, Wang T, Venetucci L, Pinali C, Rutter MK, Keavney BD, Cartwright EJ, Mohamed TMA, Müller OJ, Liu W. XBP1s-EDEM2 Prevents the Onset and Development of HFpEF by Ameliorating Cardiac Lipotoxicity. Circulation 2025. [PMID: 40130322 DOI: 10.1161/circulationaha.124.072194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/03/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND Morbidity and mortality of heart failure with preserved ejection fraction (HFpEF) is increased in metabolic disorders. However, options for preventing and treating these prevalent outcomes are limited. Intramyocardial lipotoxicity contributes to cardiac dysfunction. Here, we investigate the mechanisms underlying endoplasmic reticulum degradation enhancing EDEM2 (endoplasmic reticulum degradation-enhancing alpha-mannosidase-like protein 2) regulation of cardiac lipid homeostasis and assess strategies that inhibit the incidence and progression of HFpEF. METHODS Metabolic stress was induced in C57BL/6 male mice using a high-fat diet and Nω-nitro-l-arginine methyl ester. The recombinant adeno-associated virus 9 delivery system was used for loss- and gain-of-function studies. Palmitic acid and oleic acid stimulation of rat cardiomyocytes and human induced pluripotent stem cell-derived cardiomyocytes imitated a condition of high lipids in vitro. Molecular mechanisms were investigated via RNA sequencing, mass spectrometry proteomics, lipidomic analyses, transmission electron microscopy, histology, and luciferase reporter assays. RESULTS In the human heart, we first detected lipid overload accompanied by a reduction of XBP1 (X-box binding protein 1) under metabolic stress. Thereafter, a decrease in EDEM2 was confirmed in human and mouse HFpEF hearts. Given that the spliced form of XBP1 (XBP1s) is a transcription factor, EDEM2 was identified as its new target in cardiomyocytes. EDEM2 knockdown mice manifested lipid droplet accumulation and higher levels of triglycerides and diglycerides in the myocardium, aggravating oxidative stress, hypertrophy, and the onset and progression of HFpEF under metabolic stress. XBP1s ablation mice displayed a similar myocardial lipid disturbance and cardiac phenotypes, which were reversed by EDEM2 overexpression. Mechanistically, the findings obtained from rat cardiomyocytes and human induced pluripotent stem cell-derived cardiomyocytes demonstrated that, in the presence of EDEM2, SEC23A mediated intracellular translocation of ATGL (adipose triglyceride lipase) under fatty acid stimulation, inhibiting ATGL degradation and excessive intracellular lipid droplets. Furthermore, the functional studies supported that EDEM2 prevention of lipid overload occurred in an ATGL-dependent manner. Therapeutically, cardiac XBP1s or EDEM2 restoration mitigated lipid deposition and preserved lipid profiles in the myocardium, thus preventing the development of HFpEF. CONCLUSIONS We demonstrate a cardioprotective mechanism regulating myocardial lipid homeostasis. The findings provide a promising therapeutic target to prevent and treat HfpEF, a condition with limited treatment options.
Collapse
Affiliation(s)
- Oveena Fonseka
- Faculty of Biology, Medicine and Health, The University of Manchester, UK (O.F., R.R., C.R., S.R.G., J.Z., K.K., A.R.-V., N.K., X.C., Z.Z., X.Z., E.S., M.R.P., T.W., L.V., C.P., M.K.R., B.D.K., E.J.C., T.M.A.M., W.L.)
| | - Rida Raja
- Faculty of Biology, Medicine and Health, The University of Manchester, UK (O.F., R.R., C.R., S.R.G., J.Z., K.K., A.R.-V., N.K., X.C., Z.Z., X.Z., E.S., M.R.P., T.W., L.V., C.P., M.K.R., B.D.K., E.J.C., T.M.A.M., W.L.)
| | - Claire Ross
- Faculty of Biology, Medicine and Health, The University of Manchester, UK (O.F., R.R., C.R., S.R.G., J.Z., K.K., A.R.-V., N.K., X.C., Z.Z., X.Z., E.S., M.R.P., T.W., L.V., C.P., M.K.R., B.D.K., E.J.C., T.M.A.M., W.L.)
| | - Sanskruti R Gare
- Faculty of Biology, Medicine and Health, The University of Manchester, UK (O.F., R.R., C.R., S.R.G., J.Z., K.K., A.R.-V., N.K., X.C., Z.Z., X.Z., E.S., M.R.P., T.W., L.V., C.P., M.K.R., B.D.K., E.J.C., T.M.A.M., W.L.)
| | - Jiayan Zhang
- Faculty of Biology, Medicine and Health, The University of Manchester, UK (O.F., R.R., C.R., S.R.G., J.Z., K.K., A.R.-V., N.K., X.C., Z.Z., X.Z., E.S., M.R.P., T.W., L.V., C.P., M.K.R., B.D.K., E.J.C., T.M.A.M., W.L.)
| | - Susanne S Hille
- Department of Internal Medicine, University of Kiel, Germany. V (S.S.H., D.F., O.J.M.)
- DZHK, German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany (S.S.H., O.J.M.)
| | - Katharine King
- Faculty of Biology, Medicine and Health, The University of Manchester, UK (O.F., R.R., C.R., S.R.G., J.Z., K.K., A.R.-V., N.K., X.C., Z.Z., X.Z., E.S., M.R.P., T.W., L.V., C.P., M.K.R., B.D.K., E.J.C., T.M.A.M., W.L.)
| | - Andrea Ruiz-Velasco
- Faculty of Biology, Medicine and Health, The University of Manchester, UK (O.F., R.R., C.R., S.R.G., J.Z., K.K., A.R.-V., N.K., X.C., Z.Z., X.Z., E.S., M.R.P., T.W., L.V., C.P., M.K.R., B.D.K., E.J.C., T.M.A.M., W.L.)
| | - Namrita Kaur
- Faculty of Biology, Medicine and Health, The University of Manchester, UK (O.F., R.R., C.R., S.R.G., J.Z., K.K., A.R.-V., N.K., X.C., Z.Z., X.Z., E.S., M.R.P., T.W., L.V., C.P., M.K.R., B.D.K., E.J.C., T.M.A.M., W.L.)
| | - Xinyi Chen
- Faculty of Biology, Medicine and Health, The University of Manchester, UK (O.F., R.R., C.R., S.R.G., J.Z., K.K., A.R.-V., N.K., X.C., Z.Z., X.Z., E.S., M.R.P., T.W., L.V., C.P., M.K.R., B.D.K., E.J.C., T.M.A.M., W.L.)
| | - Jessica M Miller
- Surgery Department, Baylor College of Medicine, Houston, TX (J.M.M., R.R.E.A., T.M.A.M.)
| | - Riham R E Abouleisa
- Surgery Department, Baylor College of Medicine, Houston, TX (J.M.M., R.R.E.A., T.M.A.M.)
| | - Qinghui Ou
- Institute of Molecular Cardiology, University of Louisville, KY (Q.O., T.M.A.M.)
| | - Zhiyong Zou
- Faculty of Biology, Medicine and Health, The University of Manchester, UK (O.F., R.R., C.R., S.R.G., J.Z., K.K., A.R.-V., N.K., X.C., Z.Z., X.Z., E.S., M.R.P., T.W., L.V., C.P., M.K.R., B.D.K., E.J.C., T.M.A.M., W.L.)
| | - Xiangjun Zhao
- Faculty of Biology, Medicine and Health, The University of Manchester, UK (O.F., R.R., C.R., S.R.G., J.Z., K.K., A.R.-V., N.K., X.C., Z.Z., X.Z., E.S., M.R.P., T.W., L.V., C.P., M.K.R., B.D.K., E.J.C., T.M.A.M., W.L.)
| | - Cristian Sotomayor-Flores
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Deutsches Herzzentrum der Charité, Charité-Universitätsmedizin Berlin, Germany (C.S.-F., G.G.S.)
- DZHK, German Centre for Cardiovascular Research, Partner Site Berlin, Germany (C.S.-F., G.G.S.)
| | - Derk Frank
- Department of Internal Medicine, University of Kiel, Germany. V (S.S.H., D.F., O.J.M.)
- Department of Internal Medicine III, University of Kiel, Germany. (D.F.)
| | - Eileithyia Swanton
- Faculty of Biology, Medicine and Health, The University of Manchester, UK (O.F., R.R., C.R., S.R.G., J.Z., K.K., A.R.-V., N.K., X.C., Z.Z., X.Z., E.S., M.R.P., T.W., L.V., C.P., M.K.R., B.D.K., E.J.C., T.M.A.M., W.L.)
| | - Martin R Pool
- Faculty of Biology, Medicine and Health, The University of Manchester, UK (O.F., R.R., C.R., S.R.G., J.Z., K.K., A.R.-V., N.K., X.C., Z.Z., X.Z., E.S., M.R.P., T.W., L.V., C.P., M.K.R., B.D.K., E.J.C., T.M.A.M., W.L.)
| | - Sara Missaglia
- Laboratory of Cellular Biochemistry and Molecular Biology, Università Cattolica del Sacro Cuore, Milan, Italy (S.M., D.T.)
| | - Daniela Tavian
- Laboratory of Cellular Biochemistry and Molecular Biology, Università Cattolica del Sacro Cuore, Milan, Italy (S.M., D.T.)
| | - Gabriele G Schiattarella
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Deutsches Herzzentrum der Charité, Charité-Universitätsmedizin Berlin, Germany (C.S.-F., G.G.S.)
- DZHK, German Centre for Cardiovascular Research, Partner Site Berlin, Germany (C.S.-F., G.G.S.)
- Translation Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (G.G.S.)
| | - Tao Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, UK (O.F., R.R., C.R., S.R.G., J.Z., K.K., A.R.-V., N.K., X.C., Z.Z., X.Z., E.S., M.R.P., T.W., L.V., C.P., M.K.R., B.D.K., E.J.C., T.M.A.M., W.L.)
| | - Luigi Venetucci
- Faculty of Biology, Medicine and Health, The University of Manchester, UK (O.F., R.R., C.R., S.R.G., J.Z., K.K., A.R.-V., N.K., X.C., Z.Z., X.Z., E.S., M.R.P., T.W., L.V., C.P., M.K.R., B.D.K., E.J.C., T.M.A.M., W.L.)
| | - Christian Pinali
- Faculty of Biology, Medicine and Health, The University of Manchester, UK (O.F., R.R., C.R., S.R.G., J.Z., K.K., A.R.-V., N.K., X.C., Z.Z., X.Z., E.S., M.R.P., T.W., L.V., C.P., M.K.R., B.D.K., E.J.C., T.M.A.M., W.L.)
| | - Martin K Rutter
- Faculty of Biology, Medicine and Health, The University of Manchester, UK (O.F., R.R., C.R., S.R.G., J.Z., K.K., A.R.-V., N.K., X.C., Z.Z., X.Z., E.S., M.R.P., T.W., L.V., C.P., M.K.R., B.D.K., E.J.C., T.M.A.M., W.L.)
- Diabetes, Endocrinology and Metabolism Centre, NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, UK. (M.K.R.)
| | - Bernard D Keavney
- Faculty of Biology, Medicine and Health, The University of Manchester, UK (O.F., R.R., C.R., S.R.G., J.Z., K.K., A.R.-V., N.K., X.C., Z.Z., X.Z., E.S., M.R.P., T.W., L.V., C.P., M.K.R., B.D.K., E.J.C., T.M.A.M., W.L.)
- Manchester Heart Centre, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, UK. (B.D.K.)
| | - Elizabeth J Cartwright
- Faculty of Biology, Medicine and Health, The University of Manchester, UK (O.F., R.R., C.R., S.R.G., J.Z., K.K., A.R.-V., N.K., X.C., Z.Z., X.Z., E.S., M.R.P., T.W., L.V., C.P., M.K.R., B.D.K., E.J.C., T.M.A.M., W.L.)
| | - Tamer M A Mohamed
- Faculty of Biology, Medicine and Health, The University of Manchester, UK (O.F., R.R., C.R., S.R.G., J.Z., K.K., A.R.-V., N.K., X.C., Z.Z., X.Z., E.S., M.R.P., T.W., L.V., C.P., M.K.R., B.D.K., E.J.C., T.M.A.M., W.L.)
- Surgery Department, Baylor College of Medicine, Houston, TX (J.M.M., R.R.E.A., T.M.A.M.)
- Institute of Molecular Cardiology, University of Louisville, KY (Q.O., T.M.A.M.)
| | - Oliver J Müller
- Department of Internal Medicine, University of Kiel, Germany. V (S.S.H., D.F., O.J.M.)
- DZHK, German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany (S.S.H., O.J.M.)
| | - Wei Liu
- Faculty of Biology, Medicine and Health, The University of Manchester, UK (O.F., R.R., C.R., S.R.G., J.Z., K.K., A.R.-V., N.K., X.C., Z.Z., X.Z., E.S., M.R.P., T.W., L.V., C.P., M.K.R., B.D.K., E.J.C., T.M.A.M., W.L.)
| |
Collapse
|
169
|
Xiao J, Xu C, Zhu R, Fu P, Jia J, Gong L. Exercise Improves the Cytoskeletal and Metabolic Functions of Brown Adipocytes Through the ADRβ3/COX2-Ywhah Axis. Int J Mol Sci 2025; 26:2978. [PMID: 40243609 PMCID: PMC11988500 DOI: 10.3390/ijms26072978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Brown adipose tissue (BAT) is a critical target for obesity treatment, and exercise can enhance BAT function through the activation of ADRβ3. However, the molecular mechanisms underlying BAT metabolism following the exercise-induced activation of ADRβ3 remain unclear. This study utilized RNA sequencing, Western blotting, Oil Red O staining, weighted gene co-expression network analysis (WGCNA), and machine learning to investigate the role of the ADRβ3-COX2 pathway in lipid metabolism in brown adipocytes. We identified Ywhah as a key gene and validated our findings using external datasets. Our results demonstrate that exercise significantly enhances brown adipose tissue metabolism in mice, with ADRβ3 activation promoting metabolic activity in brown adipocytes. In contrast, COX2 inhibition notably reduced the lipolytic effect and thermogenic gene expression induced by ADRβ3 activation. WGCNA and machine learning identified Ywhah as the most important feature variable in the downstream signaling of the ADRβ3-COX2 pathway. External microarray data further confirmed that 8 weeks of aerobic exercise significantly upregulated Ywhah expression. Additionally, Ywhah displayed strong binding affinity to cytoskeletal proteins in affinity purification-mass spectrometry experiments, and its expression was highly correlated with cytoskeletal GSVA scores. In summary, this study reveals the potential role of the ADRβ3-COX2-Ywhah-cytoskeleton axis in regulating brown adipocyte metabolism, providing new insights into obesity treatment mechanisms.
Collapse
Affiliation(s)
- Jingzhe Xiao
- China Ice Sport College, Beijing Sport University, Beijing 100084, China;
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| | - Chunyan Xu
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Rongxin Zhu
- Shanghai Research Institute of Sports Science, Shanghai 200030, China;
| | - Pengyu Fu
- Department of Physical Education, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Jie Jia
- Beijing Research Institute of Sports Science, Beijing 100075, China;
| | - Lijing Gong
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
170
|
Duerre DJ, Hansen JK, John SV, Jen A, Carrillo ND, Bui H, Bao Y, Fabregat M, Catrow JL, Chen LY, Overmyer KA, Shishkova E, Pearce Q, Keller MP, Anderson RA, Cryns VL, Attie AD, Cox JE, Coon JJ, Fan J, Galmozzi A. Haem biosynthesis regulates BCAA catabolism and thermogenesis in brown adipose tissue. Nat Metab 2025:10.1038/s42255-025-01253-6. [PMID: 40133548 DOI: 10.1038/s42255-025-01253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
The distinctive colour of brown adipose tissue (BAT) is attributed to its high content of haem-rich mitochondria. However, the mechanisms by which BAT regulates intracellular haem levels remain largely unexplored. Here we demonstrate that haem biosynthesis is the primary source of haem in brown adipocytes. Inhibiting haem biosynthesis results in an accumulation of the branched-chain amino acids (BCAAs) valine and isoleucine, owing to a haem-associated metabolon that channels BCAA-derived carbons into haem biosynthesis. Haem synthesis-deficient brown adipocytes display reduced mitochondrial respiration and lower UCP1 levels than wild-type cells. Although exogenous haem supplementation can restore intracellular haem levels and mitochondrial function, UCP1 downregulation persists. This sustained UCP1 suppression is linked to epigenetic regulation induced by the accumulation of propionyl-CoA, a byproduct of disrupted haem synthesis. Finally, disruption of haem biosynthesis in BAT impairs thermogenic response and, in female but not male mice, hinders the cold-induced clearance of circulating BCAAs in a sex-hormone-dependent manner. These findings establish adipose haem biosynthesis as a key regulator of thermogenesis and sex-dependent BCAA homeostasis.
Collapse
Affiliation(s)
- Dylan J Duerre
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Julia K Hansen
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Steven V John
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Annie Jen
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Noah D Carrillo
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Molecular and Environmental Toxicology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Hoang Bui
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Yutong Bao
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Matias Fabregat
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - J Leon Catrow
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Li-Yu Chen
- Graduate Program in Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine A Overmyer
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
| | - Quentinn Pearce
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard A Anderson
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Vincent L Cryns
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - James E Cox
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
| | - Jing Fan
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrea Galmozzi
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
171
|
Pourteymour S, Majhi RK, Norheim FA, Drevon CA. Exercise Delays Brain Ageing Through Muscle-Brain Crosstalk. Cell Prolif 2025:e70026. [PMID: 40125692 DOI: 10.1111/cpr.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025] Open
Abstract
Ageing is often accompanied by cognitive decline and an increased risk of dementia. Exercise is a powerful tool for slowing brain ageing and enhancing cognitive function, as well as alleviating depression, improving sleep, and promoting overall well-being. The connection between exercise and healthy brain ageing is particularly intriguing, with exercise-induced pathways playing key roles. This review explores the link between exercise and brain health, focusing on how skeletal muscle influences the brain through muscle-brain crosstalk. We examine the interaction between the brain with well-known myokines, including brain-derived neurotrophic factor, macrophage colony-stimulating factor, vascular endothelial growth factor and cathepsin B. Neuroinflammation accumulates in the ageing brain and leads to cognitive decline, impaired motor skills and increased susceptibility to neurodegenerative diseases. Finally, we examine the evidence on the effects of exercise on neuronal myelination in the central nervous system, a crucial factor in maintaining brain health throughout the lifespan.
Collapse
Affiliation(s)
- Shirin Pourteymour
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rakesh Kumar Majhi
- Tissue Restoration Lab, Department of Biological Sciences and Bioengineering, Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, India
- Center of Excellence in Cancer, Gangwal School of Medical Science and Technology, Indian Institute of Technology Kanpur, Kanpur, India
| | - Frode A Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Vitas Ltd, Oslo, Norway
| |
Collapse
|
172
|
Marlar-Pavey M, Tapias-Gomez D, Mettlen M, Friedman JR. Compositionally unique mitochondria in filopodia support cellular migration. Curr Biol 2025; 35:1227-1241.e6. [PMID: 39978347 PMCID: PMC11945552 DOI: 10.1016/j.cub.2025.01.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/07/2025] [Accepted: 01/28/2025] [Indexed: 02/22/2025]
Abstract
Local metabolic demand within cells varies widely, and the extent to which individual mitochondria can be specialized to meet these functional needs is unclear. We examined the subcellular distribution of the mitochondrial contact site and cristae organizing system (MICOS) complex, a spatial and functional organizer of mitochondria, and discovered that it dynamically enriches at the tip of a minor population of mitochondria in the cell periphery. Based on their appearance, we term these mitochondria "METEORs". METEORs have a unique composition, and MICOS enrichment sites are depleted of mtDNA and matrix proteins and contain high levels of the Ca2+ uniporter MCU, suggesting a functional specialization. METEORs are also enriched for the myosin MYO19, which promotes their trafficking to a small subset of filopodia. We identify a positive correlation between the length of filopodia and the presence of METEORs and show that elimination of mitochondria from filopodia impairs cellular motility. Our data reveal a novel type of mitochondrial heterogeneity and suggest compositionally specialized mitochondria support cell migration.
Collapse
Affiliation(s)
- Madeleine Marlar-Pavey
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel Tapias-Gomez
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan R Friedman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
173
|
Yi T, Wu S, Yang Y, Li X, Yang S, Zhang Y, Zhang L, Hu Y, Zhang G, Li J, Yang D. Single-nucleus RNA sequencing reveals dynamic changes in the microenvironment of visceral adipose tissue and metabolic characteristics after cold exposure. Front Endocrinol (Lausanne) 2025; 16:1562431. [PMID: 40196457 PMCID: PMC11973077 DOI: 10.3389/fendo.2025.1562431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Visceral adipose tissue (VAT) plays a crucial role in regulating systemic metabolic balance. Excess accumulation of VAT is closely associated with various metabolic disorders, a process that involves the coordinated actions of multiple cell types within the tissue. Cold exposure, as a potential intervention, has been proposed to improve metabolic dysfunction. However, the heterogeneity of VAT and its comprehensive metabolic characteristics under cold exposure remain unclear. Methods We collected epididymal white adipose tissue (eWAT) of C57BL/6J mice after cold exposure at three different time points for single-nucleus RNA sequencing (snRNA-seq) analysis. Results We successfully identified ten major cell types in eWAT, enabling understanding of the dynamic changes in the eWAT microenvironment and its metabolic features during cold exposure. This study revealed that cold exposure for 1 day reduced cellular metabolic activity and intercellular communication in eWAT including receptor-ligand-based cell communication and metabolite-mediated interactions. However, after 14 days of cold acclimation, the metabolic activity of adipocytes was significantly enhanced, and intercellular metabolic communication was restored. Additionally, prolonged cold exposure promoted the formation of a distinct adipocyte subpopulation that may be associated with UCP1-independent thermogenesis. These changes may be a new homeostatic state established by VAT to adapt to the cold environment. The study also identified the importance of adipocytes, adipose stem and progenitor cells, myeloid cells, and endothelial cells in the process of cold adaptation. Discussion This research provides valuable insights into the cellular heterogeneity, adipocyte remodeling, and metabolic reprogramming in eWAT after cold exposure. It highlights the critical role of transcriptional dynamics in eWAT during cold exposure and provides new perspectives on the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Ting Yi
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, China
| | - Shuai Wu
- Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, China
| | - Yusha Yang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, China
| | - Xi Li
- Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, China
| | - Shuran Yang
- Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongqiang Zhang
- Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, China
| | - Li Zhang
- Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, China
| | - Yuyu Hu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, China
| | - Guanyu Zhang
- Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, China
| | - Jun Li
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Danfeng Yang
- Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, China
| |
Collapse
|
174
|
Liu T, Melkus G, Ramsay T, Berthiaume A, Armbrecht G, Trudel G. Effect of artificial gravity on calcaneal bone marrow adipose tissue and mineral content in female and male participants in 60 days of bed rest. Exp Physiol 2025. [PMID: 40121548 DOI: 10.1113/ep091495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025]
Abstract
Modulation of bone marrow adipose tissue (BMAT) with prolonged inactivity was reported in haemopoietic but not in non-haemopoietic bones. This prospective randomized controlled trial submitted 16 men and 8 women to 60 days of 6° head-down-tilt bed rest. They were assigned to control, continuous or intermittent artificial gravity (AG) interventions. The AG consisted of daily centrifugation at 2g for 30 min. The serial foot pain questionnaire, MRI and dual-energy X-ray absorptiometry of the calcaneus were performed at baseline, during bed rest and at reambulation. At baseline, all groups had comparable calcaneal BMAT (P = 0.581) and bone mineral density (BMD) (P = 0.574). After bed rest, 83% of participants reported foot pain. Calcaneal BMAT was not significantly modulated after 60 days of bed rest (control, +0.2% ± 0.8%; continuous AG, +0.5% ± 1.1%; and intermittent AG, +0.1% ± 1.5%; P = 0.368). Calcaneal BMD was reduced at reambulation days 3 and 11 after 60 days of bed rest (-0.05 ± 0.06 and -0.06 ± 0.12 g/cm2, respectively; P = 0.008 and P = 0.020). The AG interventions did not significantly alter calcaneal BMAT or BMD. Sex-based analyses demonstrated calcaneal BMD loss in men but not in women. Calcaneal BMAT and BMD were inversely correlated in women and in men (Spearman's ρ, -0.40 and -0.28, respectively; both P = 0.020). Sixty days of bed rest caused foot pain and calcaneal demineralization not rescued by AG interventions. Although inversely correlated with BMD, calcaneal BMAT was not statistically increased by 60 days of head-down-tilt bed rest, possibly owing to a ceiling effect, and no bone marrow reconversion was measured at reambulation. These results have clinical relevance when returning to activities after prolonged bed rest or returning from space.
Collapse
Affiliation(s)
- Tammy Liu
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Gerd Melkus
- Department of Radiology, University of Ottawa, Ottawa, Ontario, Canada
| | - Tim Ramsay
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Alain Berthiaume
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Gabriele Armbrecht
- Department of Radiology, Centre for Muscle and Bone Research, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Guy Trudel
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Medicine, Division of Physiatry, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
175
|
Zhong J, Gao RR, Zhang X, Yang JX, Liu Y, Ma J, Chen Q. Dissecting endothelial cell heterogeneity with new tools. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:10. [PMID: 40121354 PMCID: PMC11929667 DOI: 10.1186/s13619-025-00223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
The formation of a blood vessel network is crucial for organ development and regeneration. Over the past three decades, the central molecular mechanisms governing blood vessel growth have been extensively studied. Recent evidence indicates that vascular endothelial cells-the specialized cells lining the inner surface of blood vessels-exhibit significant heterogeneity to meet the specific needs of different organs. This review focuses on the current understanding of endothelial cell heterogeneity, which includes both intra-organ and inter-organ heterogeneity. Intra-organ heterogeneity encompasses arterio-venous and tip-stalk endothelial cell specialization, while inter-organ heterogeneity refers to organ-specific transcriptomic profiles and functions. Advances in single-cell RNA sequencing (scRNA-seq) have enabled the identification of new endothelial subpopulations and the comparison of gene expression patterns across different subsets of endothelial cells. Integrating scRNA-seq with other high-throughput sequencing technologies promises to deepen our understanding of endothelial cell heterogeneity at the epigenetic level and in a spatially resolved context. To further explore human endothelial cell heterogeneity, vascular organoids offer powerful tools for studying gene function in three-dimensional culture systems and for investigating endothelial-tissue interactions using human cells. Developing organ-specific vascular organoids presents unique opportunities to unravel inter-organ endothelial cell heterogeneity and its implications for human disease. Emerging technologies, such as scRNA-seq and vascular organoids, are poised to transform our understanding of endothelial cell heterogeneity and pave the way for innovative therapeutic strategies to address human vascular diseases.
Collapse
Affiliation(s)
- Jing Zhong
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Rong-Rong Gao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250117, Shandong, China
| | - Xin Zhang
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jia-Xin Yang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yang Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Jinjin Ma
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- The Institute of Future Health, South China of Technology, Guangzhou International Campus, Guangzhou, 511442, China.
| | - Qi Chen
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250117, Shandong, China.
| |
Collapse
|
176
|
Li Y, Xue X, Yu L, Qian J, Li X, Tian M, Yang J, Deng R, Lu C, Xiao C, Liu Y. Recombinant high-density lipoprotein targeted delivery of celastrol to promote foam cells lipophagy against early atherosclerosis. J Nanobiotechnology 2025; 23:237. [PMID: 40119460 PMCID: PMC11929195 DOI: 10.1186/s12951-025-03327-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/13/2025] [Indexed: 03/24/2025] Open
Abstract
INTRODUCTION Atherosclerosis serving as the main underlying factor of cardiovascular disease (CVD) remains the primary cause of mortality and morbidity globally, while the deposition of massive cholesterol in macrophage-derived foam cells exerts pivotal roles in the occurrence and progression of atherosclerosis. Celastrol (CEL) is a bioactive ingredient owning potent capability to modulate lipid metabolism, whereas the poor bioavailability and potential toxicity limit its clinical application. OBJECTIVES This study aims to design a CEL-loaded recombinant high-density lipoprotein (rHDL) delivery platform for active targeting, which may effectively promote lipid degradation in foam cells and reversely transport excessive cholesterol to the liver for metabolism in time. METHODS The rHDL loaded with CEL (CEL-rHDL) was prepared by the thin film dispersion method. Then the anti-atherosclerotic efficacy and targeted delivery to foam cells of atherosclerotic lesions were verified both in vitro and in vivo. RNA-sequence was applied to reveal the potential mechanism against early atherosclerosis, which was further validated through several molecular biology experiments. RESULTS The prepared CEL-rHDL increased the targeting efficiency to foam cells of atherosclerotic lesions, mitigated its off-target toxicity, and improved anti-atherosclerotic efficacy. Importantly, CEL-rHDL decreased lipid storage in foam cells by triggering lipophagy via the activation of Ca2+/CaMKKβ/AMPK/mTOR signaling pathway and reverse cholesterol transport (RCT). CONCLUSION A combination of hypolipidemic chemo-intervention with rHDL participated specific and reverse delivery may offer a promising strategy for biocompatible treatment of early atherosclerosis.
Collapse
Affiliation(s)
- Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxia Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jinxiu Qian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Meng Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jue Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rongjun Deng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
177
|
Ahmad F, Karim A, Khan J, Qaisar R. Irisin Predicts Cardiac Contractile and Postural Dysfunction in Patients with Chronic Heart Failure. Arch Med Res 2025; 56:103203. [PMID: 40121834 DOI: 10.1016/j.arcmed.2025.103203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/22/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
OBJECTIVE Irisin, a myokine, has been observed to be dysregulated in various pathological conditions. However, its role in regulating chronic heart failure (CHF)-induced physical disability in older adults remains unknown. This study aimed to investigate the associations between plasma irisin levels, cardiac parameters, and physical disability in patients with CHF. METHOD Cardiac contractile function, handgrip strength (HGS), gait speed (GS), short physical performance battery (SPPB), plasma c-reactive protein (CRP), and irisin levels were assessed in controls (n = 56) and patients with CHF with ischemic (n = 153) and non-ischemic (n = 139) etiologies. RESULTS Regardless of etiologies, significantly higher plasma CRP levels and lower irisin levels were observed in patients with CHF. The irisin level was positively correlated (r2 = 0.09, p < 0.0001) with left ventricular ejection fraction (LVEF) and negatively correlated (r2 = 0.09, p < 0.0001) with CRP in patients with CHF. Moreover, the physical parameters SPPB cumulative scores were lower while the frailty scores were significantly higher. The GS and HGS were significantly lower in patients with CHF. Indicators of postural dysfunction SPPB scores (r2 = 0.41, p < 0.0001) and GS (r2 = 0.37, p < 0.0001) were positively correlated, and the frailty index score was negatively correlated with plasma irisin. The receiver operating characteristic (ROC) curve analysis revealed higher sensitivity and specificity of irisin, particularly for non-ischemic etiology. CONCLUSIONS Our results provide novel evidence that plasma irisin is significantly associated with systemic inflammation and cardiac and postural dysfunction in patients with CHF. These findings suggest that irisin may serve as a potential biomarker for disease severity.
Collapse
Affiliation(s)
- Firdos Ahmad
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Space Medicine Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| | - Asima Karim
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Javaidullah Khan
- Department of Cardiology, Post Graduate Medical Institute, Hayatabad Medical Complex, Peshawar, Pakistan
| | - Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Space Medicine Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
178
|
Benitez-Amaro A, Garcia E, LaChica Lhoëst MT, Polishchuk A, Zegri-Reiriz I, Vilades D, Guerra JM, Fernández-Del-Rio L, Mirabet S, Samouillan V, Shirihai O, Liesa M, Enrich C, Llorente-Cortés V. LRP1 immunotherapy enhances cardiomyocyte respiration by restricting cholesteryl ester accumulation in mitochondria. J Lipid Res 2025; 66:100783. [PMID: 40122209 DOI: 10.1016/j.jlr.2025.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/25/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025] Open
Abstract
Antibodies (Abs) targeting the P3 sequence (Gly1127-Cys1140) of LDL receptor-related protein 1 (anti-P3 Abs) inhibit the interaction between ApoB100 in cholesteryl ester (CE)-enriched lipoproteins and the CR9 domain in LDL receptor-related protein 1, preventing intracellular CE accumulation induced by a high-fat high-cholesterol (HFHC) diet in cardiomyocytes. This study examines (i) whether HFHC induces cholesterol accumulation in mitochondria, and impacts cardiac bioenergetics, and (ii) the effectiveness of anti-P3 Abs in mitigating HFHC-induced mitochondrial alterations. Cardiac tissue was homogenized, and mitochondria were isolated through subcellular fractionation. Thin layer chromatography demonstrated that HFHC induced the accumulation of CE in cardiac mitochondria, and that this process was significantly reduced by anti-P3 Abs. In line, transmission electron microscopy studies revealed that morphological changes induced by HFHC in cardiomyocyte mitochondria were reversed, at least in part, by anti-P3 Abs. Additionally, anti-P3 Abs promoted more extensive interactions between mitochondria and lipid droplets (LDs), accompanied by an increase in LD diameter and electrodensity in cardiomyocytes. Cardiac mitochondrial respiratory capacity assessed by Seahorse analysis showed that HFHC reduced CI/CIV and CII/CIV activity ratios, while anti-P3 Abs restored complex II/IV activity. In conclusion, by blocking CE uptake from lipoproteins, anti-P3 Abs reduce CE accumulation in the cardiomyocyte mitochondria and LDs, enhance bioenergetically favorable mitochondria/LD interactions, and improve cardiomyocyte respiratory function in hypercholesterolemic rabbits. These findings highlight the therapeutic potential of anti-P3 Abs in metabolic diseases by limiting CE loading of mitochondria and LDs in the heart and restoring cardiac bioenergetics.
Collapse
Affiliation(s)
- A Benitez-Amaro
- Lipids and Cardiovascular Pathology Group, Biomedical Research Institut of Barcelona, IIBB-CSIC, Barcelona, Spain; Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - E Garcia
- Lipids and Cardiovascular Pathology Group, Biomedical Research Institut of Barcelona, IIBB-CSIC, Barcelona, Spain; Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M T LaChica Lhoëst
- Lipids and Cardiovascular Pathology Group, Biomedical Research Institut of Barcelona, IIBB-CSIC, Barcelona, Spain; Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain; Departamento de Bioquímica y Biología Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A Polishchuk
- Lipids and Cardiovascular Pathology Group, Biomedical Research Institut of Barcelona, IIBB-CSIC, Barcelona, Spain; Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - I Zegri-Reiriz
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR SANT PAU), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - D Vilades
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR SANT PAU), Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - J M Guerra
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR SANT PAU), Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - L Fernández-Del-Rio
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - S Mirabet
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR SANT PAU), Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - V Samouillan
- CIRIMAT, Université de Toulouse, Université Paul Sabatier, Equipe PHYPOL, Toulouse, France
| | - O Shirihai
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - M Liesa
- Institut de Biologia Molecular de Barcelona, IBMB, CSIC, Barcelona, Spain; CIBERDEM Institute of Health Carlos III, Madrid, Spain
| | - C Enrich
- Unitat de Biologia Cellular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - V Llorente-Cortés
- Lipids and Cardiovascular Pathology Group, Biomedical Research Institut of Barcelona, IIBB-CSIC, Barcelona, Spain; Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain; CIBERCV, Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
179
|
Kantapan J, Katsube T, Wang B. High-Fat Diet and Altered Radiation Response. BIOLOGY 2025; 14:324. [PMID: 40282189 DOI: 10.3390/biology14040324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025]
Abstract
High-fat diets (HFDs) have become increasingly prevalent in modern societies, driving rising rates of obesity and metabolic syndrome. Concurrently, radiation exposure from medical treatments and environmental sources poses health risks shaped by both biological and environmental factors. This review explores the intersection between HFDs and radiation sensitivity/susceptibility, focusing on how diet-induced metabolic alterations influence the body's response to radiation. Evidence from preclinical and clinical studies indicates that HFDs significantly alter metabolism, leading to increased oxidative stress and immune system dysregulation. These metabolic changes can exacerbate radiation-induced oxidative stress, inflammation, and DNA damage, potentially increasing radiation sensitivity in normal tissues. Conversely, obesity and HFD-induced metabolic disruptions may activate cellular pathways involved in DNA repair, cell survival, and inflammatory responses, fostering tumor resistance and modifying the tumor microenvironment, which may impair the efficacy of radiation therapy in cancer treatment. Understanding the interplay between diet and radiation exposure is critical for optimizing public health guidelines and improving therapeutic outcomes. These findings underscore the need for further research into dietary interventions that may mitigate radiation-associated risks.
Collapse
Affiliation(s)
- Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Takanori Katsube
- Institute for Radiological Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Bing Wang
- Institute for Radiological Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| |
Collapse
|
180
|
Chu Y, Wei M, Cao Z, Chen L, Tan J, Bao W, Yang F, Zhang Y, Lin Y, Zhang Y, Li S, Lv C, Zhou W, Du H, Shen L, Huai C, Wang Z, Qin S. Integrative analysis based on CRISPR screen identifies apilimod as a potential therapeutic agent for cisplatin-induced acute kidney injury treatment. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-025-2874-8. [PMID: 40138089 DOI: 10.1007/s11427-025-2874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025]
Abstract
Acute kidney injury (AKI), a life-threatening side effect of cisplatin therapy, significantly limits the drug's therapeutic potential. In this study, we conducted a genome-wide CRISPR/Cas9 knockout screen in human renal tubular epithelial cells, integrating the results with transcriptome analyses and the Connectivity Map (CMap) database. Apilimod and elacridar emerged as the top two candidates of mitigating cisplatin-induced nephrotoxicity, with apilimod demonstrating superior efficacy in drug matrix experiments. Apilimod reduced cisplatin-induced apoptosis, inflammation and reactive oxygen species (ROS) generation. Transcriptome analyses suggested that apilimod may protect against cisplatin-induced nephrotoxicity via modulating lipid metabolism. In vitro experiments revealed that apilimod significantly ameliorated cisplatin-induced lipotoxicity by enhancing lipid clearance and upregulating PGC1α-mediated fatty acid oxidation. Mechanism experiments showed that apilimod induces the nuclear translocation of TFEB through the inhibition of its target, PIKfyve, thereby enhancing PGC1α expression and ameliorating lipotoxicity. These protective effects of apilimod were simulated by siRNA-mediated PIKfyve knockdown and diminished by the PGC1α inhibitor SR-18292 and siRNA targeting TFEB, confirming the role of the PIKfyve/TFEB/PGC1α signaling axis in apilimod's renoprotective effects. In vivo, apilimod alleviated apoptosis, inflammation, and lipid accumulation in a cisplatin-induced AKI mouse model. Additionally, apilimod treatment did not compromise the antitumor effect of cisplatin in cancer cells or tumor-bearing mice. Overall, our study suggests that apilimod could be a promising therapeutic agent for the treatment of cisplatin-induced AKI and revealed its underlying molecular mechanism.
Collapse
Affiliation(s)
- Yunpeng Chu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Muyun Wei
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Baoshan Branch, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201900, China
| | - Zhongyu Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Luan Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Jie Tan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Wei Bao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Fan Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Yingtian Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Yunxiao Lin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Yutong Zhang
- School of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shiyi Li
- School of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cai Lv
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou, 100062, China
| | - Wei Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Huihui Du
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Cong Huai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Zhenting Wang
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou, 100062, China.
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200230, China.
| |
Collapse
|
181
|
Ma Y, Dong K, Hu J, Tang Y, Xu H. Protocol for the isolation of silk glands from silkworms for snRNA-seq and spatial transcriptomics. STAR Protoc 2025; 6:103581. [PMID: 39804771 PMCID: PMC11772954 DOI: 10.1016/j.xpro.2024.103581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/07/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025] Open
Abstract
The silk glands (SGs) of silkworms specifically synthesize silk proteins, thus strongly influencing the yield and quality of silk. Here, we present a protocol for isolating SG nuclei from silkworms and obtaining high-quality tissue slices for spatial transcriptomics. We describe steps for rearing, dissecting, and nucleus isolation. We then detail procedures for embedding, frozen section, and RNA capturing and sequencing. This protocol enables the exploration of the spatial distribution of SG cells at single-cell resolution. For complete details on the use and execution of this protocol, please refer to Ma et al.1.
Collapse
Affiliation(s)
- Yan Ma
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Keshu Dong
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jie Hu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yiyun Tang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Hanfu Xu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
182
|
Wu Y, Wang C, Tian XY. Protocol for inducing beige adipocytes in white adipose tissue of mouse using cold exposure and CL316,243 injection. STAR Protoc 2025; 6:103337. [PMID: 39817914 PMCID: PMC11783104 DOI: 10.1016/j.xpro.2024.103337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/20/2024] [Accepted: 09/03/2024] [Indexed: 01/18/2025] Open
Abstract
White adipose tissue (WAT) beiging holds significant therapeutic potential for combating obesity. Here, we present a protocol for inducing beige WAT in mice using both cold exposure and CL316,243 treatment. We describe steps for intraperitoneal injection, and subcutaneous WAT (sWAT) isolation, dissection, and fixation. We then detail procedures for histology, whole-mount immunofluorescence (IF) staining, and extracting RNA and protein. This protocol can be used for subsequent analysis to explore the mechanisms governing beige WAT induction in experimental settings, particularly the evaluation of angiogenesis. For complete details on the use and execution of this protocol, please refer to Wang et al.1.
Collapse
Affiliation(s)
- Yalan Wu
- School of Biomedical Sciences, Heart and Vascular Institute, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha 410013, China.
| | - Chenguang Wang
- School of Biomedical Sciences, Heart and Vascular Institute, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Hematology and Oncology, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518071, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, Heart and Vascular Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
183
|
Seewooruttun C, Bouguila B, Corona A, Delanaud S, Bodin R, Bach V, Desailloud R, Pelletier A. 5G Radiofrequency Exposure Reduces PRDM16 and C/EBP β mRNA Expression, Two Key Biomarkers for Brown Adipogenesis. Int J Mol Sci 2025; 26:2792. [PMID: 40141434 PMCID: PMC11942954 DOI: 10.3390/ijms26062792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The widespread use of wireless technologies has raised public health concerns about the biological effects of radiofrequency (RF) exposure. Children have a higher specific absorption rate (SAR) of radiation energy compared to adults. Furthermore, brown adipose tissue (BAT) is more prevalent in infants and tends to decrease with age. Previous animal studies demonstrated a cold sensation in rats exposed to 900 MHz (second generation, 2G). UCP1-dependent thermogenesis and BAT hyperplasia are two fundamental adaptive mechanisms initiated in response to cold. This study investigated the impact of short-term exposure to 2G and fifth generation (5G) on key thermogenic and adipogenic markers related to these mechanisms while considering age and exposure duration. Juvenile and young adult Wistar rats were randomized into three subgroups: a 5G group (3.5 GHz), 2G group (900 MHz), and a control group (SHAM). They were exposed to their respective continuous-wave RF signals for 1 or 2 weeks at an intensity of 1.5 V/m, with two exposure sessions of 1 h per day. After the exposure period, a RT-qPCR was carried out to evaluate the genetic markers involved in BAT thermogenesis and adipogenesis. Two adipogenic biomarkers were affected; a fold change reduction of 49% and 32% was detected for PRDM16 (p = 0.016) and C/EBP β (p = 0.0002), respectively, after 5G exposure, regardless of age and exposure duration. No significant RF effect was found on UCP1-dependent thermogenesis at a transcriptional level. These findings suggest that exposure to a 5G radiofrequency may partially disrupt brown adipocyte differentiation and thermogenic function by downregulating PRDM16 and C/EBP β, possibly leading to higher cold sensitivity.
Collapse
Affiliation(s)
- Chandreshwar Seewooruttun
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
| | - Bélir Bouguila
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
| | - Aurélie Corona
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
| | - Stéphane Delanaud
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
| | - Raphaël Bodin
- PériTox (UMR I_01), INERIS/UPJV, INERIS, MIV/TEAM, 60550 Verneuil-en-Halatte, France
| | - Véronique Bach
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
| | - Rachel Desailloud
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
- Department of Endocrinology, Diabetes Mellitus and Nutrition, Amiens University Hospital, 1 Rond Point du Pr Christian Cabrol, 80054 Amiens, France
| | - Amandine Pelletier
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
| |
Collapse
|
184
|
Zhao Z, Zhu Y, Wan D. Exercise and tissue fibrosis: recent advances in therapeutic potential and molecular mechanisms. Front Endocrinol (Lausanne) 2025; 16:1557797. [PMID: 40182630 PMCID: PMC11965137 DOI: 10.3389/fendo.2025.1557797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Tissue fibrosis represents an aberrant repair process, occurring because of prolonged injury, sustained inflammatory response, or metabolic disorders. It is characterized by an excessive accumulation of extracellular matrix (ECM), resulting in tissue hardening, structural remodeling, and loss of function. This pathological phenomenon is a common feature in the end stage of numerous chronic diseases. Despite the advent of novel therapeutic modalities, including antifibrotic agents, these have only modest efficacy in reversing established fibrosis and are associated with adverse effects. In recent years, a growing body of research has demonstrated that exercise has significant benefits and potential in the treatment of tissue fibrosis. The anti-fibrotic effects of exercise are mediated by multiple mechanisms, including direct inhibition of fibroblast activation, reduction in the expression of pro-fibrotic factors such as transforming growth factor-β (TGF-β) and slowing of collagen deposition. Furthermore, exercise has been demonstrated to assist in maintaining the dynamic equilibrium of tissue repair, thereby indirectly reducing tissue damage and fibrosis. It can also help maintain the dynamic balance of tissue repair by improving metabolic disorders, exerting anti-inflammatory and antioxidant effects, regulating cellular autophagy, restoring mitochondrial function, activating stem cell activity, and reducing cell apoptosis, thereby indirectly alleviating tissue. This paper presents a review of the therapeutic potential of exercise and its underlying mechanisms for the treatment of a range of tissue fibrosis, including cardiac, pulmonary, renal, hepatic, and skeletal muscle. It offers a valuable reference point for non-pharmacological intervention strategies for the comprehensive treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Physical Education, Anyang Normal University, Anyang, Henan, China
| | - Yongjia Zhu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Dongfeng Wan
- School of Health, Shanghai Normal University Tianhua College, Shanghai, China
| |
Collapse
|
185
|
Li F, Ning Y, Zhang Y, Huang H, Yuan Q, Wang X, Wei W. Positional distribution of DHA in triacylglycerols: natural sources, synthetic routes, and nutritional properties. Crit Rev Food Sci Nutr 2025:1-19. [PMID: 40111396 DOI: 10.1080/10408398.2025.2479071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Docosahexaenoic acid (DHA, 22:6 n-3) is a long-chain polyunsaturated fatty acid (PUFA) present in high quantities in the mammalian brain and is a precursor of several metabolites. Clinical trials have demonstrated the benefits of dietary DHA in infants and adults. Triacylglycerols (TAGs) are the most abundant components of many natural oils, and in specific oils (e.g., fish, algal oils, etc.), they represent the main molecular form of dietary DHA. The positional distribution of DHA in the TAG glycerol backbone (sn-2 vs. sn-1/3) varied among different sources. Recent studies have shown that in human breast milk, DHA is mainly esterified at the sn-2 position (∼50% DHA of the total DHA), thus attracting research interest regarding the nutritional properties of sn-2 DHA. In this review, we summarize the different sources of TAG in natural oils with high amounts of DHA, including fish, algae, and marine mammal oils, with a focus on their positional distribution. Methods for analyzing the distribution of fatty acids in TAG of high-PUFA oils are discussed, and the lipase-catalyzed synthetic routes of specific triacylglycerols with sn-2 DHA are summarized. Furthermore, we discuss the recent research progress on the nutritional properties of DHA associated with its positional distribution on TAGs.
Collapse
Affiliation(s)
- Feng Li
- State Key Lab of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yibing Ning
- Nutrition Research Institute, Junlebao Dairy Group Co. Ltd, Shijiazhuang, China
| | - Yiren Zhang
- State Key Lab of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Huidong Huang
- Nutrition Research Institute, Junlebao Dairy Group Co. Ltd, Shijiazhuang, China
| | - Qingbin Yuan
- Nutrition Research Institute, Junlebao Dairy Group Co. Ltd, Shijiazhuang, China
| | - Xingguo Wang
- State Key Lab of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- State Key Lab of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
186
|
Ravindran R, Gustafsson ÅB. Mitochondrial quality control in cardiomyocytes: safeguarding the heart against disease and ageing. Nat Rev Cardiol 2025:10.1038/s41569-025-01142-1. [PMID: 40113864 DOI: 10.1038/s41569-025-01142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 03/22/2025]
Abstract
Mitochondria are multifunctional organelles that are important for many different cellular processes, including energy production and biosynthesis of fatty acids, haem and iron-sulfur clusters. Mitochondrial dysfunction leads to a disruption in these processes, the generation of excessive reactive oxygen species, and the activation of inflammatory and cell death pathways. The consequences of mitochondrial dysfunction are particularly harmful in energy-demanding organs such as the heart. Loss of terminally differentiated cardiomyocytes leads to cardiac remodelling and a reduced ability to sustain contraction. Therefore, cardiomyocytes rely on multilayered mitochondrial quality control mechanisms to maintain a healthy population of mitochondria. Mitochondrial chaperones protect against protein misfolding and aggregation, and resident proteases eliminate damaged proteins through proteolysis. Irreparably damaged mitochondria can also be degraded through mitochondrial autophagy (mitophagy) or ejected from cells inside vesicles. The accumulation of dysfunctional mitochondria in cardiomyocytes is a hallmark of ageing and cardiovascular disease. This accumulation is driven by impaired mitochondrial quality control mechanisms and contributes to the development of heart failure. Therefore, there is a strong interest in developing therapies that directly target mitochondrial quality control in cardiomyocytes. In this Review, we discuss the current knowledge of the mechanisms involved in regulating mitochondrial quality in cardiomyocytes, how these pathways are altered with age and in disease, and the therapeutic potential of targeting mitochondrial quality control pathways in cardiovascular disease.
Collapse
Affiliation(s)
- Rishith Ravindran
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
187
|
Shen H, Aggarwal N, Cui B, Foo GW, He Y, Srivastava SK, Li S, Seah MZX, Wun KS, Ling H, Hwang IY, Ho CL, Lee YS, Chang MW. Engineered commensals for targeted nose-to-brain drug delivery. Cell 2025; 188:1545-1562.e16. [PMID: 39914382 DOI: 10.1016/j.cell.2025.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/22/2024] [Accepted: 01/10/2025] [Indexed: 03/23/2025]
Abstract
Intranasal administration through the olfactory epithelium (OE) presents a direct pathway for brain-targeted therapeutic delivery, although its feasibility is hampered by the anatomical and absorptive limitations of the OE. In this study, we identified Lactobacillus plantarum WCFS1 (Lp), a commensal strain with a natural affinity for the OE and engineered it to function as a vector for cerebral drug delivery. Upon intranasal administration, Lp released specific payload molecules within the OE, with subsequent transport and accumulation in the brain. The therapeutic efficacy of Lp was further validated by the recombinant production and secretion of appetite-regulating hormones. When administered intranasally in a murine model of obesity prevention, the engineered Lp significantly alleviated obesity-related symptoms. This was evidenced by decreased appetite, reduced body weight gain, and improved glucose metabolism and fat mass deposition. Our study demonstrates the capability of Lp as an intranasal delivery vehicle, emphasizing its potential for brain-targeted therapeutic applications.
Collapse
Affiliation(s)
- Haosheng Shen
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Nikhil Aggarwal
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Beiming Cui
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| | - Guo Wei Foo
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Yuanzhi He
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Santosh Kumar Srivastava
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Shengjie Li
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; National Centre for Engineering Biology (NCEB), Singapore, Singapore; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Marcus Ze Xian Seah
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kwok Soon Wun
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Hua Ling
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - In Young Hwang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chun Loong Ho
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| | - Yung Seng Lee
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Matthew Wook Chang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; National Centre for Engineering Biology (NCEB), Singapore, Singapore.
| |
Collapse
|
188
|
Skowron K, Lichocki I, Godziszewski F, Orczyk-Pawiłowicz M. From Mind to Milk: The Influence of Psychological Factors on the Composition of Human Breast Milk. Nutrients 2025; 17:1093. [PMID: 40292567 DOI: 10.3390/nu17061093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Breast milk is a complex fluid crucial for infant development, nutrition, and immunological and neurodevelopmental support. Recent findings suggest that factors regarding mental health, such as stress, anxiety, and postpartum depression (PPD), may influence the composition of breast milk. This review aims to synthesize current knowledge regarding the relationship between a mother's mental state and the biochemical profile of human milk, focusing mainly on nutrients, hormones, immune factors, and microbiota. Methods: A systematic literature search was conducted in PubMed and the Web of Science using predefined keywords related to psychological factors and milk composition. Studies involving validated psychological assessment tools and only human subjects were included, in accordance with PRISMA guidelines. Results: Findings indicated that maternal stress and PPD are associated with alterations in breast milk composition. Elevated cortisol and changes in melatonin and prolactin levels have been observed. Immune components, such as secretory immunoglobulin A and transforming growth factor beta 2, exhibit variable responses depending on stress type and duration. Lower concentrations of docosahexaenoic acid and polyunsaturated fatty acid have been observed among mothers diagnosed with depression. Additionally, maternal psychological distress may influence infants' gut microbiota composition, potentially affecting long-term health outcomes. Conclusions: The maternal psychological state plays an essential role in shaping the composition of human breast milk. Understanding these associations highlights the need for mental health support during the postpartum period to optimize infant development. Future research should focus on the molecular mechanisms underlying these changes and potential interventions to mitigate adverse effects.
Collapse
Affiliation(s)
- Krystian Skowron
- Student Scientific Association of Medical Chemistry and Immunochemistry, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Igor Lichocki
- Student Scientific Club of Drug Form Technology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Filip Godziszewski
- Clinical and Dissecting Anatomy Students' Scientific Club, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Magdalena Orczyk-Pawiłowicz
- Division of Chemistry and Immunochemistry, Department of Biochemistry and Immunochemistry, Wroclaw Medical University, M. Skłodowskiej-Curie 48/50, 50-369 Wroclaw, Poland
| |
Collapse
|
189
|
Lan M, Qin Q, Xie Y, Zhang C, Liu Z, Xu X, Zhang J, Xu S, Yang J, Zhang H, Alatan S, Wang Z, Liu Z. Construction of ceRNA networks of lncRNA and miRNA associated with intramuscular fat deposition in Ujumqin sheep. Front Vet Sci 2025; 12:1559727. [PMID: 40177664 PMCID: PMC11963774 DOI: 10.3389/fvets.2025.1559727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction The molecular mechanisms underlying intramuscular fat (IMF) deposition are crucial for enhancing lamb meat quality. This process is regulated by a network of transcription factors. Exploring the role of non-coding RNAs, particularly lncRNAs and miRNAs, in IMF deposition can clarify its complex genetics and offer resources for breeding Inner Mongolian local breeds. Methods We evaluated carcass and lamb meat quality parameters using 60 six-month-old Ujumqin sheep with similar body weights. To investigate non-coding RNA's role in IMF deposition, we identified differentially expressed genes and pathways between the longissimus dorsi and femoral biceps. Additionally, we analyzed these genes and the lncRNA-miRNA-mRNA co-regulatory network in high- and low-IMF femoral biceps groups. Results We identified 11,529 mRNAs (747 differentially expressed), 9,874 lncRNAs (1,428 differentially expressed), and 761 miRNAs (12 differentially expressed). GO and KEGG enrichment analyses showed these genes are involved in lipid metabolism, fatty acid oxidation, and energy metabolism. We constructed a ceRNA network with 12 lncRNAs, 4 miRNAs, and 6 mRNAs. Notably, lncRNA MSTRG.13155.1 interacts with miR-1343-3p_R + 2, promoting IMF deposition by releasing HADHA gene expression. Dual-luciferase reporter assays confirmed MSTRG.13155.1 and HADHA as miR-1343-3p_R + 2 targets. RT-qPCR validated the expression trends of key mRNAs, miRNAs, and lncRNAs, consistent with sequencing results. Discussion Our comprehensive analysis of differentially expressed genes and pathways in Ujumqin sheep's longissimus dorsi and femoral biceps, along with high- and low-IMF groups, has revealed the complex genetics of IMF deposition. This offers valuable resources for Inner Mongolian local breed selection. The interaction between lncRNA MSTRG.13155.1 and miR-1343-3p_R + 2, and their regulation of HADHA expression, provides new insights into IMF deposition mechanisms. Future research can explore these mechanisms' universality and specificity across different breeds and environments.
Collapse
Affiliation(s)
- Mingxi Lan
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
| | - Qing Qin
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuchun Xie
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
- College of Animal Science and Technology, Hebei Science and Technology Normal University, Qinhuangdao, Hebei, China
| | - Chongyan Zhang
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Sheep & Goat Genetics, Breeding and Reproduction in Inner Mongolia, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Sheep & Goat Genetics and Breeding of Ministry of Agriculture Inner Mongolia Agricultural University, Hohhot, China
| | - Zhichen Liu
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaolong Xu
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
| | - Jingwen Zhang
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
| | - Songsong Xu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ji Yang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haijun Zhang
- Erdos Agricultural and Animal Husbandry Science Research Institute, Ordos, China
| | - Suhe Alatan
- East Ujumqin Banner Hishig Animal Husbandry Development Co., Ltd., East Ujumqin Banner, China
| | - Zhixin Wang
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Sheep & Goat Genetics, Breeding and Reproduction in Inner Mongolia, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Sheep & Goat Genetics and Breeding of Ministry of Agriculture Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Liu
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Sheep & Goat Genetics, Breeding and Reproduction in Inner Mongolia, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Sheep & Goat Genetics and Breeding of Ministry of Agriculture Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
190
|
Son YL, Hou J, Kato-Suzuki M, Okamatsu-Ogura Y, Watase M, Kiyonari H, Kondo T. Eva1 deficiency prevents obesity-induced metabolic disorders by reducing visceral adipose dysfunction. Metabolism 2025; 168:156235. [PMID: 40118448 DOI: 10.1016/j.metabol.2025.156235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
AIMS Epithelial V-like antigen 1 (Eva1) is a highly specific marker for brown adipose tissue (BAT) in both mice and humans, but its metabolic function remains unclear. We investigated the impact of Eva1 deletion on the development of obesity. METHODS To assess the metabolic role of Eva1, we generated whole-body and adipocyte-specific Eva1knockout (KO) mice, which were subjected to a high-fat diet (HFD) for 12 weeks and characterized metabolic phenotypes. To further elucidate the depot-dependent impact of Eva1 deficiency, we performed histological analysis and 3' mRNA-seq of BAT and epididymal visceral white adipose tissue (eWAT). To investigate the role of macrophage-derived Eva1 in obesity development, we transplanted wild-type (WT) or Eva1KO macrophages into Eva1KO mice fed an HFD. RESULTS We found that whole-body Eva1KO mice are resistant to HFD-induced obesity, insulin resistance and visceral adipose inflammation. However, Eva1 deletion in adipocytes, both brown and white, did not phenocopy these protective effects. Notably, whole-body Eva1 deficiency triggers functional changes in eWAT, but not in BAT. These results led us to investigate a possible involvement of macrophages in Eva1-mediated obesity regulation. We found that Eva1 is expressed in macrophages and plays a role in lipopolysaccharide (LPS)-induced inflammatory responses, possibly through the direct interaction with toll-like receptor 4 (TLR4). Moreover, Eva1KO mice exhibited improved survival rates in the face of severe sepsis induced by LPS. Importantly, transplantation of WT macrophages to Eva1KO mice abolished the beneficial effects of whole-body Eva1 deletion against obesity and visceral adipose inflammation. CONCLUSION Our findings highlight macrophage-derived Eva1 as an important mediator in obesity-induced eWAT remodeling, suggesting that targeting Eva1 could offer a novel therapeutic strategy for obesity-related metabolic disorders.
Collapse
Affiliation(s)
- You Lee Son
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| | - Jiahui Hou
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Mira Kato-Suzuki
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Megumi Watase
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
191
|
Osakabe N, Nakamura H, Yoshida Y, Katsuragawa S, Iida N, Fujii Y, Jacob UM, Fritsch T, Abdelhameed A, Calabrese V. A comparative analysis of the impact of repeated administration of flavan 3-ol on brown, subcutaneous, and visceral adipose tissue. Open Med (Wars) 2025; 20:20251152. [PMID: 40109327 PMCID: PMC11920759 DOI: 10.1515/med-2025-1152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Flavan-3-ols (FLs), astringent polyphenols, are known to have low bioavailability and induce excessive sympathetic nervous system activation. This study aimed to compare the effects of FLs on brown, subcutaneous, and visceral adipose tissue in mice. Methods C57BL/6J male mice fed a standard or high-fat diet were given water or 50 mg/kg FL orally by gavage for 2 weeks. Excised brown, inguinal, and epididymal fat tissues were prepared for frozen sectioning. After hematoxylin and eosin (HE) staining, the effects of FL administration on each adipose tissue were observed, and expression analysis of mitochondrial DNA genes was performed. Results Repeated administration of FL had no morphological effects on brown adipose tissue or visceral fat. However, FL significantly reduced the cell size in subcutaneous fat and induced the appearance of multilocular structures. Furthermore, FL increased cytochrome B expression in subcutaneous fat. The results showed that FLs induce browning of subcutaneous fat in mice. Conclusion This study showed that FL-induced enhancement of sympathetic nerve activity increased mitochondria in subcutaneous fat and promoted browning. However, no changes were observed in other adipose tissues. Further long-term administration is required to analyze the effects of FLs on adipose tissue thoroughly.
Collapse
Affiliation(s)
- Naomi Osakabe
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, 337-8570, Japan
- Department of Bioscience and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama, 337-8570, Japan
| | - Hitomi Nakamura
- Department of Bioscience and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama, 337-8570, Japan
| | - Yamato Yoshida
- Department of Bioscience and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama, 337-8570, Japan
| | - Sae Katsuragawa
- Department of Bioscience and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama, 337-8570, Japan
| | - Naoki Iida
- Department of Bioscience and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama, 337-8570, Japan
| | - Yasuyuki Fujii
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, 337-8570, Japan
| | | | | | - Ali Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
192
|
Potts CM, Yang X, Lynes MD, Malka K, Liaw L. Exploration of Conserved Human Adipose Subpopulations Using Targeted Single-Nuclei RNA Sequencing Data Sets. J Am Heart Assoc 2025; 14:e038465. [PMID: 40094187 DOI: 10.1161/jaha.124.038465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Smooth-muscle cells and pericytes are mural cells. Pericytes can differentiate into myofibroblasts, chondrocytes, vascular smooth-muscle cells, and adipocytes, marking them as a distinct progenitor population. Our goal was to molecularly define the progenitor cell populations in human adipose tissues and test the adipogenic potential of human mural cells. METHODS We used informatic analysis of single-cell RNA sequencing data from human tissues to identify and define pericytes and adipose progenitor cells found in human adipose tissues, including perivascular, brown, and white adipose tissues. RESULTS We established tissue-specific patterns of gene expression in pericytes and other putative human adipocyte progenitor cells. PPARG-expressing pericytes were present in multiple human adipose depots with consistent expression of COL25A1, MYO1B, and POSTN. We also found evidence of tissue-specific pericyte markers. Although there is some conservation between human and mouse adipose tissues, human pericyte populations have unique, depot-specific gene expression signatures. Immunofluorescence staining of human adipose tissue revealed the presence of pericytes both distant from and adjacent to vasculature in human adipose tissue. Additionally, we demonstrated the potential of human brain pericytes and aortic vascular smooth-muscle cells to differentiate into adipocytes in vitro on the basis of intracellular lipid accumulation and expression of adipocyte markers. CONCLUSIONS Human adipose cell populations are distinct from mice, and the pericyte subpopulation in human adipose tissues are present across adipose depots. Given that vascular mural cells, including pericytes and smooth-muscle cells, can undergo adipogenesis, we postulate that they are a novel source of adipocytes in the vascular microenvironment.
Collapse
Affiliation(s)
| | - Xuehui Yang
- MaineHealth Institute for Research Scarborough ME
| | | | | | - Lucy Liaw
- MaineHealth Institute for Research Scarborough ME
| |
Collapse
|
193
|
Orioli L, Thissen JP. Myokines as potential mediators of changes in glucose homeostasis and muscle mass after bariatric surgery. Front Endocrinol (Lausanne) 2025; 16:1554617. [PMID: 40171198 PMCID: PMC11958187 DOI: 10.3389/fendo.2025.1554617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Myokines are bioactive peptides released by skeletal muscle. Myokines exert auto-, para-, or endocrine effects, enabling them to regulate many aspects of metabolism in various tissues. However, the contribution of myokines to the dramatic changes in glucose homeostasis and muscle mass induced by bariatric surgery has not been established. Our review highlights that myokines such as brain-derived neurotrophic factor (BDNF), meteorin-like protein (Metrnl), secreted protein acidic and rich in cysteine (SPARC), apelin (APLN) and myostatin (MSTN) may mediate changes in glucose homeostasis and muscle mass after bariatric surgery. Our review also identifies myonectin as an interesting candidate for future studies, as this myokine may regulate lipid metabolism and muscle mass after bariatric surgery. These myokines may provide novel therapeutic targets and biomarkers for obesity, type 2 diabetes and sarcopenia.
Collapse
Affiliation(s)
- Laura Orioli
- Research Laboratory of Endocrinology, Diabetes, and Nutrition, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jean-Paul Thissen
- Research Laboratory of Endocrinology, Diabetes, and Nutrition, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
194
|
Medini H, Mishmar D. Vertebrates show coordinated elevated expression of mitochondrial and nuclear genes after birth. Genome Res 2025; 35:459-474. [PMID: 40037840 PMCID: PMC11960696 DOI: 10.1101/gr.279700.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025]
Abstract
Interactions between mitochondrial and nuclear factors are essential to life. Nevertheless, the importance of coordinated regulation of mitochondrial-nuclear gene expression (CMNGE) to changing physiological conditions is poorly understood and is limited to certain tissues and organisms. We hypothesized that CMNGE is important for development across vertebrates and, hence, should be conserved. As a first step, we analyzed more than 1400 RNA-seq experiments performed during prenatal development, in neonates, and in adults across vertebrate evolution. We find conserved sharp elevation of CMNGE after birth, including oxidative phosphorylation (OXPHOS) and mitochondrial ribosome genes, in the heart, hindbrain, forebrain, and kidney across mammals, as well as in Gallus gallus and in the lizard Anolis carolinensis This is accompanied by elevated expression of TCA cycle enzymes and reduction in hypoxia response genes, suggesting a conserved cross-tissue metabolic switch after birth/hatching. Analysis of about 70 known regulators of mitochondrial gene expression reveals consistently elevated expression of PPARGC1A (also known as Pgc-1alpha) and CEBPB after birth/hatching across organisms and tissues, thus highlighting them as candidate regulators of CMNGE upon transition to the neonate. Analyses of Danio rerio, Xenopus tropicalis, Caenorhabditis elegans, and Drosophila melanogaster reveal elevated CMNGE prior to hatching in X. tropicalis and in D. melanogaster, which is associated with the emergence of muscle activity. Lack of such an ancient pattern in mammals and in chickens suggests that it was lost during radiation of terrestrial vertebrates. Taken together, our results suggest that regulated CMNGE after birth reflects an essential metabolic switch that is under strong selective constraints.
Collapse
Affiliation(s)
- Hadar Medini
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
195
|
Auddino S, Aiello E, Grieco GE, Fignani D, Licata G, Bruttini M, Mori A, Berteramo AF, Pedace E, Nigi L, Formichi C, Guay C, Quero G, Tondolo V, Di Giuseppe G, Soldovieri L, Ciccarelli G, Mari A, Giaccari A, Mezza T, Po A, Regazzi R, Dotta F, Sebastiani G. Comprehensive sequencing profile and functional analysis of IsomiRs in human pancreatic islets and beta cells. Diabetologia 2025:10.1007/s00125-025-06397-4. [PMID: 40102237 DOI: 10.1007/s00125-025-06397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/28/2025] [Indexed: 03/20/2025]
Abstract
AIMS/HYPOTHESIS MiRNAs regulate gene expression, influencing beta cell function and pathways. Isoforms of miRNA (isomiRs), sequence variants of miRNAs with post-transcriptional modifications, exhibit cell-type-specific expression and functions. Despite their biological significance, a comprehensive isomiR profile in human pancreatic islets and beta cells remains unexplored. This study aims to profile isomiR expression in four beta cell sources: (1) laser capture microdissected human islets (LCM-HI); (2) collagenase-isolated human islets (CI-HI); (3) sorted beta cells; and (4) the EndoC-βH1 beta cell line, and to investigate their potential role in beta cell function. METHODS Small RNA-seq and/or small RNA dataset analysis was conducted on human pancreatic islets and beta cells. Data were processed using the sRNAbench bioinformatics pipeline to classify isomiRs based on sequence variations. A beta cell-specific isomiR signature was identified via cross-validation across datasets. Correlations between LCM-HI isomiR expression and in vivo clinical parameters were analysed using regression models. Functional validation of isomiR-411-5p-Ext5p(+1) was performed via overexpression in EndoC-βH1 cells and CI-HI, followed by glucose-stimulated insulin secretion (GSIS) assays and/or transcriptomic analysis. RESULTS IsomiRs constituted 59.2 ± 1.9% (LCM-HI), 59.6 ± 2.4% (CI-HI), 42.3 ± 7.2% (sorted beta cells) and 43.8 ± 1.2% (EndoC-βH1) of total miRNA reads (data represented as mean ± SD), with 3' end trimming (Trim3p) being the predominant modification. A beta cell-specific isomiR signature of 30 sequences was identified, with isomiR-411-5p-Ext5p(+1) showing a significant inverse correlation with basal insulin secretion (p=0.0009, partial R2=0.68) and total insulin secretion (p=0.005, partial R2=0.54). Overexpression of isomiR-411-5p-Ext5p(+1), but not of its canonical counterpart, importantly reduced GSIS by 51% ( ± 15.2%; mean ± SD) (p=0.01) in EndoC-βH1 cells. Transcriptomic analysis performed in EndoC-βH1 cells and CI-HI identified 47 genes significantly downregulated by isomiR-411-5p-Ext5p(+1) (false discovery rate [FDR]<0.05) but not by the canonical miRNA, with enriched pathways related to Golgi vesicle biogenesis (FDR=0.017) and trans-Golgi vesicle budding (FDR=0.018). TargetScan analysis confirmed seed sequence-dependent target specificity for 81 genes uniquely regulated by the isomiR (p=1.1 × 10⁻⁹). CONCLUSIONS/INTERPRETATION This study provides the first comprehensive isomiR profiling in human islets and beta cells, revealing their substantial contribution to miRNA regulation. IsomiR-411-5p-Ext5p(+1) emerges as a distinct key modulator of insulin secretion and granule dynamics in beta cells. These findings highlight isomiRs as potential biomarkers and therapeutic targets for diabetes, warranting further exploration of their roles in beta cell biology.
Collapse
Affiliation(s)
- Stefano Auddino
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Elena Aiello
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Giuseppina E Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Marco Bruttini
- Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| | - Alessia Mori
- Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| | - Andrea F Berteramo
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Erika Pedace
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Quero
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Chirurgia Digestiva, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Vincenzo Tondolo
- General Surgery Unit, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Gianfranco Di Giuseppe
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Laura Soldovieri
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gea Ciccarelli
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Andrea Giaccari
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Teresa Mezza
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Agnese Po
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy.
- Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy.
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| |
Collapse
|
196
|
Sima Y, Shi S, Min Z, Chen Y, Lu Y, Sha H, Liu S. Mitochondrial FIS1 level in cumulus cells correlates with morphological grades of human cleavage-stage embryos. J Assist Reprod Genet 2025:10.1007/s10815-025-03431-7. [PMID: 40097857 DOI: 10.1007/s10815-025-03431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
PURPOSE Advanced-age women have a lower good-quality embryo rate (GQER) compared to young women. However, GQER varies widely within the same age group, suggesting that factors beyond age influence embryo quality. Mitochondria regulate cellular metabolism through dynamic fission and fusion alterations. Specifically, cumulus cell (CC) mitochondria regulate not only the metabolism of CCs but also of adjacent oocytes. This study aims to investigate the relationship between CC mitochondrial dynamics and oocyte developmental potential post-fertilization. METHODS CCs were collected from 183 women aged 25-45 undergoing single sperm intracytoplasmic injection-embryo transfer treatments. Samples were stratified by age into young (< 35) and advanced age (≥ 35) groups. Each group was further subdivided into high and low subgroups based on day 3 GQER. Mitochondrial morphology, dynamics, fission-fusion gene expression, and mitochondrial functions were compared among groups and subgroups. RESULTS Consistent with the literature, data analysis from our laboratory revealed significant variances in GQER among individuals of the same age group. Morphological analysis suggested a negative correlation between GQER and mitochondrial length in CCs (P < 0.0001, r = - 0.38). Live-cell imaging showed that both fission and fusion frequencies of CC mitochondria in the advanced-age group were lower than those in the young group (P = 0.009, P = 0.01). Additionally, within the advanced-age group, CC mitochondria from the low GQER subgroup exhibited lower fission frequency and fission-fusion ratios compared to the high GQER subgroup (P = 0.04, P = 0.01). Consequently, GQER positively correlated with mitochondrial fission-fusion ratio in CCs (P = 0.01, r = 0.44). Notably, there were no significant differences in the expression of mitochondrial fusion-related proteins (OPA1, MFN1, and MFN2) between the advanced-age and young groups or among the subgroups. However, levels of fission proteins, including FIS1 and MFF, were significantly lower in the advanced-age group compared to the young group and in the low GQER subgroup compared to their high GQER counterparts. qPCR results further indicated that fis1 and mff mRNA levels in CCs were positively correlated with GQER (P < 0.0001, r = 0.55; P = 0.0025, r = 0.41). The CCs from the low GQER subgroup exhibit a higher level of mitochondrial dysfunction. CONCLUSIONS Mitochondrial morphology, fission-fusion balance, and fission-fusion gene expression in CCs influence early embryonic development, independent of age. Of these factors, the FIS1 level shows the most robust correlation with GQER.
Collapse
Affiliation(s)
- Yizhen Sima
- Reproductive Medicine Center of Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Sanbao Shi
- Reproductive Medicine Center of Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Zhunyuan Min
- Reproductive Medicine Center of Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yuning Chen
- Reproductive Medicine Center of Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yongning Lu
- Reproductive Medicine Center of Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Hongying Sha
- Reproductive Medicine Center of Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Suying Liu
- Reproductive Medicine Center of Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
197
|
Villagrán-Silva F, Loren P, Sandoval C, Lanas F, Salazar LA. Circulating microRNAs as Potential Biomarkers of Overweight and Obesity in Adults: A Narrative Review. Genes (Basel) 2025; 16:349. [PMID: 40149500 PMCID: PMC11942292 DOI: 10.3390/genes16030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
In an obesogenic environment, such as the one we have been experiencing in recent decades, epigenetics provides answers to the relationship between hereditary and environmentally acquired patterns that have significantly contributed to the global rise in obesity prevalence. MicroRNA (miRNA) constitutes a diminutive non-coding small RNA molecule, 20 to 24 nucleotides in length, that functions as a regulator of gene regulation at the post-translational level. Circulating miRNAs (c-miRNAs) have been detected in multiple body fluids, including blood, plasma, serum, saliva, milk from breastfeeding mothers, and urine. These molecules hold significant therapeutic value and serve as extracellular biomarkers in metabolic diseases. They aid in the diagnosis and tracking of therapy responses, as well as dietary and physical habit modifications. Researchers have studied c-miRNAs as potential biomarkers for diagnosing and characterizing systemic diseases in people of all ages and backgrounds since then. These conditions encompass dyslipidemia, type 2 diabetes mellitus (T2DM), cardiovascular risk, metabolic syndrome, cardiovascular diseases, and obesity. This review therefore analyzes the usefulness of c-miRNAs as therapeutic markers over the past decades. It also provides an update on c-miRNAs associated with general obesity and overweight, as well as with the most prevalent pathologies in the adult population. It also examines the effect of different nutritional approaches and physical activity regarding the activity of miRNAs in circulation in adults with overweight or general obesity. All of this is done with the aim of evaluating their potential use as biomarkers in various research contexts related to overweight and obesity in adults.
Collapse
Affiliation(s)
- Francisca Villagrán-Silva
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de la Frontera, Temuco 4811230, Chile;
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (F.L.)
| | - Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (F.L.)
| | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile;
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| | - Fernando Lanas
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (F.L.)
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (F.L.)
| |
Collapse
|
198
|
Abbasi M, Heath B, McGinness L. Effects of Multivitamin Supplementation on Metabolic Parameters in High- and Low-Fat Diet-Fed C57BL/6J Mice: Potential Links to Adipose Tissue Browning and Gut Microbiome. Nutrients 2025; 17:1045. [PMID: 40292481 DOI: 10.3390/nu17061045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND/OBJECTIVES The relationship between diet, micronutrient supplementation, and metabolic regulation emphasizes the potential of nutritional strategies to address obesity and related disorders. Certain vitamins have the potential to enhance thermogenesis and metabolic health. However, the impact of multivitamin supplementation on white adipose tissue (WAT) browning, the gut microbiome (GM), and metabolic function is not well understood. This study investigated the effects of multivitamin supplementation on obesity-related metabolic dysfunction in mice fed a high-fat diet (HFD) or a low-fat diet (LFD). METHODS Male C57BL/6J mice were assigned to group 1: control chow diet (CHD); 2: control HFD; 3: multivitamin-supplemented HFD (Mv-HFD); 4: control LFD; or 5: multivitamin-supplemented LFD (Mv-LFD). Diets, either supplemented with multivitamins A, D, B1, B5, and C or non-supplemented, were administered for 12 weeks. Metabolic parameters, adipose tissue browning, and the GM composition were analyzed. RESULTS The Mv-HFD significantly reduced weight gain, adipose tissue mass, blood glucose levels, and insulin resistance induced by an HFD. Additionally, it increased energy expenditure and thermogenic gene expression in WAT. Both the Mv-HFD and Mv-LFD improved the GM composition by increasing beneficial bacteria. CONCLUSIONS Multivitamin supplementation improved metabolic health by potentially promoting WAT browning, enhancing energy expenditure, and modulating the GM composition. These findings suggest that multivitamins could offer a promising strategy for combating obesity and associated metabolic dysfunction.
Collapse
Affiliation(s)
- Mehrnaz Abbasi
- Department of Nutritional Sciences, College of Human Sciences, Auburn University, Auburn, AL 36849, USA
| | - Braeden Heath
- Department of Biomedical Sciences, College of Sciences and Mathematics, Auburn University, Auburn, AL 36849, USA
| | - Lauren McGinness
- Department of Nutritional Sciences, College of Human Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
199
|
Dunzhu D, Han G, Shanshan Q, Li S, Yang J, He J, Gou S, Dong G, Jiang C, Hou J. The role of Perilipin 5 in pathological myocardial remodeling. Front Pharmacol 2025; 16:1526494. [PMID: 40166465 PMCID: PMC11955653 DOI: 10.3389/fphar.2025.1526494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Pathological cardiac remodeling (REM), caused by various pathological factors and characterized by changes in cardiac structure and geometry, is strongly associated with heart failure (HF). It damages cardiac tissue, alters energy metabolism, increases oxidative stress, and cause matrix metalloproteinase activation, cardiomyocyte hypertrophy, and interstitial fibrosis, leading to HF. REM determines the outcome of cardiovascular disease. Current treatments have limitations. REM is associated with cardiac energetic remodeling, and modulation of metabolic substrates may slow down the disease. Perilipin 5 (Plin5), positioned as a structural protein located on the surface of lipid droplets (LDs), is abundant in tissues and cells that rely on mitochondrial β-oxidation for energy production. It is the most recently identified member of the perilipin protein (PAT) family, with a notable enrichment in the cardiac muscle. Emerging evidence highlights the critical role of intracellular LD in the regulation of energy metabolism, with metabolic disruptions of LD being directly correlated with the incidence of metabolic disease. As a key barrier to LD, Plin5 is instrumental in controlling the catabolism of LD and regulating the metabolism and transport of fatty acids (FAs). As a protectant against excessive β-oxidation of free fatty acids (FFAs), Plin5 acts to isolate and neutralize overly oxidized fatty acids, thereby shielding the heart from myocardial remodeling instigated by a variety of etiological factors. This protective mechanism helps to ameliorate the progression of persistent and detrimental myocardial remodeling, which can otherwise lead to the development of severe heart failure. This systematic review attempts to delineate the metabolic disorders associated with pathological cardiac remodeling, focusing on the properties and regulatory mechanisms of Plin5. By synthesising current literature, it investigates the pivotal role of Plin5 in modulating the distinctive attributes, initiating factors, and molecular signaling networks underpinning pathological cardiac remodeling.
Collapse
Affiliation(s)
| | - Gao Han
- School of Stomatology, Qilu Medical University, Zibo, China
| | - Qin Shanshan
- School of Medicine, Tibet University, Lhasa, China
| | - Shangshi Li
- The Department of High Mountain Sickness, The General Hospital of Xizang Military Area Command, Xizang, China
| | - Jiali Yang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jian He
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Siyu Gou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Gang Dong
- School of Stomatology, Qilu Medical University, Zibo, China
| | - Chunrong Jiang
- School of Stomatology, Qilu Medical University, Zibo, China
| | - Jun Hou
- The Third People’s Hospital of Chengdu, Chengdu, China
| |
Collapse
|
200
|
Delli Muti N, Di Paolo A, Salvio G, Membrino V, Ciarloni A, Alia S, Salvolini E, Vignini A, Balercia G. Effect of resveratrol on sperm motility in subjects affected by idiopathic asthenozoospermia: An in vitro study. Tissue Cell 2025; 95:102857. [PMID: 40106860 DOI: 10.1016/j.tice.2025.102857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/16/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Asthenozoospermia (AZS) is responsible for about 80 % of male infertility cases. Oxidative stress (OS) seems to be involved in cases of AZS otherwise termed "idiopathic," so antioxidant molecules have gained increasing interest in the treatment of infertility. In the present study, the in vitro effects of two different concentrations (12 and 30 µM) of resveratrol (RSV), a potent natural antioxidant, on sperm motility and OS counteragent of 154 subjects with AZS were evaluated. After 1 hour at 37 °C, the control group and the group treated with 12 µM of RSV showed a slight increase in progressive motility (PM) and a simultaneous decrease in non-progressive motility (NP). Conversely, the group treated with 30 µM of RSV showed a significant decrease in all motility parameters. Moreover, a significant decrease in Dichlorofluorescein (DCF) fluorescence intensity from controls (248.14 ± 111.16 a.u.) was observed both in group treated with 12 µM (152.47 ± 110.59 a.u., p < 0.0001) and 30 µM of RSV (128.06 ± 94.21 a.u., p < 0.0001). These findings support the hypothesis that excessive ROS reduction may lead to redox unbalance that could paradoxically worsen the seminal parameters of subjects with AZS when treated with excessive doses of antioxidants.
Collapse
Affiliation(s)
- Nicola Delli Muti
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona 60126, Italy
| | - Alice Di Paolo
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Via Tronto 10/A, Ancona 60126, Italy
| | - Gianmaria Salvio
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona 60126, Italy.
| | - Valentina Membrino
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Via Tronto 10/A, Ancona 60126, Italy
| | - Alessandro Ciarloni
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona 60126, Italy
| | - Sonila Alia
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Via Tronto 10/A, Ancona 60126, Italy
| | - Eleonora Salvolini
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Via Tronto 10/A, Ancona 60126, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Via Tronto 10/A, Ancona 60126, Italy.
| | - Giancarlo Balercia
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona 60126, Italy
| |
Collapse
|