201
|
Liao X, Cheng F, Jiang Y. Efficacy and safety of mesotherapy with tranexamic acid versus vitamin C in the treatment of melasma: A meta-analysis and systemic review. J Cosmet Dermatol 2024; 23:2785-2792. [PMID: 38693699 DOI: 10.1111/jocd.16353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND The exact pathogenesis of melasma is not yet known, and its treatment remains challenging. Mesotherapy with tranexamic acid (TXA) and vitamin C was both reported to have certain effects on melasma. In spite of that several articles have compared the efficacy and safety of the two drugs on melasma, most of them were clinical study with small sample size. AIMS To evaluate the efficacy and safety of mesotherapy with TXA versus vitamin C in treating melasma through meta-analysis and systemic review. METHODS The authors searched PubMed, Web of Science, Springer, and ScienceDirect for studies that compared mesotherapy with TXA versus vitamin C as a treatment for melasma. Primary outcomes were change in melasma area and severity index (MASI) before and after the treatment. RESULTS Finally, five studies with a total of 127 patients were included in the systematic review. There was no statistic difference in the change in MASI score between the TXA and vitamin C groups (mean difference, 0.16; 95% CI, -0.79 to 1.11). CONCLUSIONS Mesotherapy with both TXA and vitamin C is safe and effective in the treatment of melasma.
Collapse
Affiliation(s)
- Xin Liao
- College of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Fengrui Cheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Yunlan Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| |
Collapse
|
202
|
Miranda-Waldetario MC, Curotto de Lafaille MA. Oral tolerance to dietary antigens and Foxp3 + regulatory T cells. Immunol Rev 2024; 326:8-16. [PMID: 39054615 PMCID: PMC11436310 DOI: 10.1111/imr.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Immune tolerance to foods develops in the intestine upon food ingestion and is essential to prevent IgE-mediated food allergy and gut inflammation. In homeostasis, the intestine is a tolerogenic environment that favors the formation of food-specific Foxp3+ regulatory T cells. A tolerogenic intestinal environment depends on colonization by diverse microbiota and exposure to solid foods at a critical period in early life. These early immune responses lead to the induction of antigen-specific Foxp3+ regulatory T cells in draining mesenteric lymph nodes. These peripherally induced regulatory cells circulate and seed the lamina propria of the gut, exerting suppressive function systemically and locally in the intestine. Successful establishment of a tolerogenic intestinal environment in early life sets the stage for oral tolerance to new antigens in adult life.
Collapse
Affiliation(s)
- Mariana C.G. Miranda-Waldetario
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, and Lipschultz Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria A. Curotto de Lafaille
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, and Lipschultz Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
203
|
Touni AA, Sohn R, Cosgrove C, Shivde RS, Dellacecca ER, Abdel-Aziz RTA, Cedercreutz K, Green SJ, Abdel-Wahab H, Le Poole IC. Topical antibiotics limit depigmentation in a mouse model of vitiligo. Pigment Cell Melanoma Res 2024; 37:583-596. [PMID: 38439216 DOI: 10.1111/pcmr.13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/04/2024] [Accepted: 02/12/2024] [Indexed: 03/06/2024]
Abstract
Oral neomycin administration impacts the gut microbiome and delays vitiligo development in mice, and topical antibiotics may likewise allow the microbiome to preserve skin health and delay depigmentation. Here, we examined the effects of 6-week topical antibiotic treatment on vitiligo-prone pmel-1 mice. Bacitracin, Neosporin, or Vaseline were applied to one denuded flank, while the contralateral flank was treated with Vaseline in all mice. Ventral depigmentation was quantified weekly. We found that topical Neosporin treatment significantly reduced depigmentation and exhibited effects beyond the treated area, while Bacitracin ointment had no effect. Stool samples collected from four representative mice/group during treatment revealed that Neosporin treatment aligned with reduced abundance of the Alistipes genus in the gut, while relevant changes to the skin microbiome at end point were less apparent. Either antibiotic treatment led to reduced expression of MR1, potentially limiting mucosal-associated invariant T-cell activation, while Neosporin-treated skin selectively revealed significantly reduced CD8+ T-cell abundance. The latter finding aligned with reduced expression of multiple inflammatory markers and markedly increased regulatory T-cell density. Our studies on favorable skin and oral antibiotic treatment share the neomycin compound, and in either case, microbial changes were most apparent in stool samples. Taken together, neomycin-containing antibiotic applications can mediate skin Treg infiltration to limit vitiligo development. Our study highlights the therapeutic potential of short-term antibiotic applications to limit depigmentation vitiligo.
Collapse
Affiliation(s)
- Ahmed Ahmed Touni
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rachel Sohn
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Cormac Cosgrove
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rohan S Shivde
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Emilia R Dellacecca
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Kettil Cedercreutz
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Stefan J Green
- Department of Internal Medicine and Genomics and Microbiome Core Facility, Rush University, Chicago, Illinois, USA
| | - Hossam Abdel-Wahab
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt
| | - I Caroline Le Poole
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Microbiology and Immunology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
204
|
Verhasselt V. A newborn's perspective on immune responses to food. Immunol Rev 2024; 326:117-129. [PMID: 39162048 DOI: 10.1111/imr.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
In this review, we will highlight infants' immune responses to food, emphasizing the unique aspects of early-life immunity and the critical role of breast milk as a food dedicated to infants. Infants are susceptible to inflammatory responses rather than immune tolerance at the mucosal and skin barriers, necessitating strategies to promote oral tolerance that consider this susceptibility. Breast milk provides nutrients for growth and cell metabolism, including immune cells. The content of breast milk, influenced by maternal genetics and environmental exposures, prepares the infant's immune system for the outside world, including solid foods. To do this, breast milk promotes immune system development through antigen-specific and non-antigen-specific immune education by exposing the newborn to food and respiratory allergens and acting on three key targets for food allergy prevention: the gut microbiota, epithelial cells, and immune cells. Building knowledge of how the maternal exposome and human milk composition influence offspring's healthy immune development will lead to recommendations that meet the specific needs of the developing immune system and increase the chances of promoting an appropriate immune response to food in the long term.
Collapse
Affiliation(s)
- Valerie Verhasselt
- Larsson-Rosenquist Foundation Centre for Immunology and Breastfeeding, School of Medicine, University of Western Australia, Perth, Western Australia, Australia
- Immunology and Breastfeeding team, Telethon Kids Institute, Perth, Western Australia, Australia
| |
Collapse
|
205
|
Bchetnia M, Powell J, McCuaig C, Boucher-Lafleur AM, Morin C, Dupéré A, Laprise C. Pathological Mechanisms Involved in Epidermolysis Bullosa Simplex: Current Knowledge and Therapeutic Perspectives. Int J Mol Sci 2024; 25:9495. [PMID: 39273442 PMCID: PMC11394917 DOI: 10.3390/ijms25179495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Epidermolysis bullosa (EB) is a clinically and genetically heterogeneous group of mechanobullous diseases characterized by non-scarring blisters and erosions on the skin and mucous membranes upon mechanical trauma. The simplex form (EBS) is characterized by recurrent blister formation within the basal layer of the epidermis. It most often results from dominant mutations in the genes coding for keratin (K) 5 or 14 proteins (KRT5 and KRT14). A disruptive mutation in KRT5 or KRT14 will not only structurally impair the cytoskeleton, but it will also activate a cascade of biochemical mechanisms contributing to EBS. Skin lesions are painful and disfiguring and have a significant impact on life quality. Several gene expression studies were accomplished on mouse model and human keratinocytes to define the gene expression signature of EBS. Several key genes associated with EBS were identified as specific immunological mediators, keratins, and cell junction components. These data deepened the understanding of the EBS pathophysiology and revealed important functional biological processes, particularly inflammation. This review emphasizes the three EBS subtypes caused by dominant mutations on either KRT5 or KRT14 (localized, intermediate, and severe). It aims to summarize current knowledge about the EBS expression profiling pattern and predicted molecular mechanisms involved and to outline progress in therapy.
Collapse
Affiliation(s)
- Mbarka Bchetnia
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada
- Centre Intersectoriel en Santé Durable, Saguenay, QC G7H 2B1, Canada
| | - Julie Powell
- CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | | | - Anne-Marie Boucher-Lafleur
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada
- Centre Intersectoriel en Santé Durable, Saguenay, QC G7H 2B1, Canada
| | - Charles Morin
- Centre Intégré Universitaire de Santé et de Services Sociaux du Saguenay-Lac-Saint-Jean, Hôpital Universitaire de Chicoutimi, Saguenay, QC G7H 7K9, Canada
| | - Audrey Dupéré
- Centre Intégré Universitaire de Santé et de Services Sociaux du Saguenay-Lac-Saint-Jean, Hôpital Universitaire de Chicoutimi, Saguenay, QC G7H 7K9, Canada
| | - Catherine Laprise
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada
- Centre Intersectoriel en Santé Durable, Saguenay, QC G7H 2B1, Canada
| |
Collapse
|
206
|
Shan L, Matloubi M, Okwor I, Kung S, Almiski MS, Basu S, Halayko A, Koussih L, Gounni AS. CD11c+ dendritic cells PlexinD1 deficiency exacerbates airway hyperresponsiveness, IgE and mucus production in a mouse model of allergic asthma. PLoS One 2024; 19:e0309868. [PMID: 39213301 PMCID: PMC11364237 DOI: 10.1371/journal.pone.0309868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Dendritic cells (DCs) are pivotal in regulating allergic asthma. Our research has shown that the absence of Sema3E worsens asthma symptoms in acute and chronic asthma models. However, the specific role of PlexinD1 in these processes, particularly in DCs, remains unclear. This study investigates the role of PlexinD1 in CD11c+ DCs using a house dust mite (HDM) model of asthma. We generated CD11c+ DC-specific PlexinD1 knockout (CD11cPLXND1 KO) mice and subjected them, alongside wild-type controls (PLXND1fl/fl), to an HDM allergen protocol. Airway hyperresponsiveness (AHR) was measured using FlexiVent, and immune cell populations were analyzed via flow cytometry. Cytokine levels and immunoglobulin concentrations were assessed using mesoscale and ELISA, while collagen deposition and mucus production were examined through Sirius-red and periodic acid Schiff (PAS) staining respectively. Our results indicate that CD11cPLXND1 KO mice exhibit significantly exacerbated AHR, characterized by increased airway resistance and tissue elastance. Enhanced mucus production and collagen gene expression were observed in these mice compared to wild-type counterparts. Flow cytometry revealed higher CD11c+ MHCIIhigh CD11b+ cell recruitment into the lungs, and elevated total and HDM-specific serum IgE levels in CD11cPLXND1 KO mice. Mechanistically, co-cultures of B cells with DCs from CD11cPLXND1 KO mice showed significantly increased IgE production compared to wild-type mice.These findings highlight the critical regulatory role of the plexinD1 signaling pathway in CD11c+ DCs in modulating asthma features.
Collapse
Affiliation(s)
- Lianyu Shan
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mojdeh Matloubi
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ifeoma Okwor
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sam Kung
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mohamed Sadek Almiski
- Department of Anatomy, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sujata Basu
- Depertment of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew Halayko
- Depertment of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Latifa Koussih
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Experimental Biology, Université de Saint-Boniface, Winnipeg, Manitoba
| | - Abdelilah S. Gounni
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
207
|
Limonta P, Chiaramonte R, Casati L. Unveiling the Dynamic Interplay between Cancer Stem Cells and the Tumor Microenvironment in Melanoma: Implications for Novel Therapeutic Strategies. Cancers (Basel) 2024; 16:2861. [PMID: 39199632 PMCID: PMC11352669 DOI: 10.3390/cancers16162861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Cutaneous melanoma still represents a significant health burden worldwide, being responsible for the majority of skin cancer deaths. Key advances in therapeutic strategies have significantly improved patient outcomes; however, most patients experience drug resistance and tumor relapse. Cancer stem cells (CSCs) are a small subpopulation of cells in different tumors, including melanoma, endowed with distinctive capacities of self-renewal and differentiation into bulk tumor cells. Melanoma CSCs are characterized by the expression of specific biomarkers and intracellular pathways; moreover, they play a pivotal role in tumor onset, progression and drug resistance. In recent years, great efforts have been made to dissect the molecular mechanisms underlying the protumor activities of melanoma CSCs to provide the basis for novel CSC-targeted therapies. Herein, we highlight the intricate crosstalk between melanoma CSCs and bystander cells in the tumor microenvironment (TME), including immune cells, endothelial cells and cancer-associated fibroblasts (CAFs), and its role in melanoma progression. Specifically, we discuss the peculiar capacities of melanoma CSCs to escape the host immune surveillance, to recruit immunosuppressive cells and to educate immune cells toward an immunosuppressive and protumor phenotype. We also address currently investigated CSC-targeted strategies that could pave the way for new promising therapeutic approaches for melanoma care.
Collapse
Affiliation(s)
- Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences “R. Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy
| | - Raffaella Chiaramonte
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy;
| | - Lavinia Casati
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy;
| |
Collapse
|
208
|
Wang J, Luo C, Wang Z, Liu T, Bai C, Wang Y, Tian Y, Li Q, Wang Z, Wu L, Wang S, Gu X. Clinical management of children with tic disorder: insights from therapeutic visits in China-a real-world study. Front Pediatr 2024; 12:1360470. [PMID: 39188641 PMCID: PMC11345627 DOI: 10.3389/fped.2024.1360470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/05/2024] [Indexed: 08/28/2024] Open
Abstract
Objective This retrospective study aims to investigate the treatment of tic disorder (TD) in Dongfang Hospital affiliated with Beijing University of Chinese Medicine, explore its underlying mechanism, and provide valuable insights for future research and clinical management of TD. Methods The electronic medical records of children with TD, from 2015 to 2021, were extracted from the information system of Dongfang Hospital affiliated with Beijing University of Chinese Medicine. The clinical characteristics of TD, utilization patterns of Chinese herbal medicine and synthetic drugs in prescriptions, as well as their pharmacological effects, were statistically described and categorized. In addition, association rules and network pharmacology were employed to identify core prescriptions (CPs) and elucidate their microscopic molecular mechanisms in treating TD. Results The age range of the children was from 6 to 11 years, with a higher proportion of male participants than female ones. The average duration of treatment was 6 weeks. Regimen Z for the treatment of TD can be summarized as follows: Chinese herbal medicine [Saposhnikoviae Radix (FangFeng), Puerariae Lobatae Radix (GeGen), Uncariae Ramulus cum Uncis (GouTeng), Acori Tatarinowii Rhizoma (ShiChangPu), Chuanxiong Rhizoma (ChuanXiong)] and vitamins [lysine, inosite, and vitamin B12 oral solution] form the basic treatment, combined with immunomodulators, antibiotics, electrolyte-balancing agents, and antiallergic agents. CPs primarily exerted their effects through the modulation of gene expression (transcription), the immune system, and signal transduction pathways, with interleukin-4 and interleukin-13 pathways being particularly crucial. Among the lysine synthetic drugs used, inosite and vitamin B12 oral solution were the most frequently prescribed. Conclusion The regimen Z drug treatment holds significant importance in the field, as it exerts its therapeutic effects through a multitude of pathways and intricate interventions. Chinese herbal medicine primarily regulates immune system-related pathways, while synthetic drugs predominantly consist of vitamins.
Collapse
Affiliation(s)
- Jing Wang
- Pediatric Department, Wangjing Hospital of CACMS, Beijing, China
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Changyong Luo
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhendong Wang
- Gulou Hospital of Traditional Chinese Medicine of Beijing, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tiegang Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chen Bai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Wang
- Department of Chinese Medicine, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yuanshuo Tian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qianqian Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaoxin Wang
- Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Liqun Wu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Sumei Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohong Gu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
209
|
Roslund MI, Nurminen N, Oikarinen S, Puhakka R, Grönroos M, Puustinen L, Kummola L, Parajuli A, Cinek O, Laitinen OH, Hyöty H, Sinkkonen A. Skin exposure to soil microbiota elicits changes in cell-mediated immunity to pneumococcal vaccine. Sci Rep 2024; 14:18573. [PMID: 39127736 PMCID: PMC11316737 DOI: 10.1038/s41598-024-68235-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
A resilient immune system is characterized by its capacity to respond appropriately to challenges, such as infections, and it is crucial in vaccine response. Here we report a paired randomized intervention-control trial in which we evaluated the effect of microbially rich soil on immune resilience and pneumococcal vaccine response. Twenty-five age and sex matched pairs of volunteers were randomized to intervention and control groups. The intervention group rubbed hands three times a day in microbially rich soil until participants received a pneumococcal vaccine on day 14. Vaccine response, skin and gut bacteriome and blood cytokine levels were analyzed on days 0, 14 and 35. Peripheral blood mononuclear cells (PBMCs) were stimulated with vaccine components and autoclaved soil for cytokine production. Commensal bacterial community shifted only in the intervention group during the 14-day intervention period. When PBMCs collected on day 14 before the vaccination were stimulated with the vaccine components, IFN-y production increased in the intervention but not in the control group. On day 35, vaccination induced a robust antibody response in both groups. In parallel, gut bacterial community was associated with TGF-β plasma levels and TGF-β decrease in plasma was lower in the intervention group. The results indicate that exposure to microbially rich soil can modulate the cell-mediated immunity to components in pneumococcal vaccine.
Collapse
Affiliation(s)
- Marja I Roslund
- Natural Resources Institute Finland, Luke, Viikki and Turku, Finland
| | - Noora Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Riikka Puhakka
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - Mira Grönroos
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - Leena Puustinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Laura Kummola
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Anirudra Parajuli
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Ondřej Cinek
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, V Úvalu 84, Praha 5, 150 06, Prague, Czech Republic
| | - Olli H Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Aki Sinkkonen
- Natural Resources Institute Finland, Luke, Viikki and Turku, Finland.
| |
Collapse
|
210
|
Wu K, Zhang Y, Mao D, Iberg CA, Yin-Declue H, Sun K, Keeler SP, Wikfors HA, Young D, Yantis J, Austin SR, Byers DE, Brody SL, Crouch EC, Romero AG, Holtzman MJ. MAPK13 controls structural remodeling and disease after epithelial injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596863. [PMID: 38895360 PMCID: PMC11185504 DOI: 10.1101/2024.05.31.596863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
All living organisms are charged with repair after injury particularly at epithelial barrier sites, but in some cases this response leads instead to structural remodeling and long-term disease. Identifying the molecular and cellular control of this divergence is key to disease modification. In that regard, stress kinase control of epithelial stem cells is a rational entry point for study. Here we examine the potential for mitogen-activated protein kinase 13 (MAPK13) regulation of epithelial stem cells using models of respiratory viral injury and post-viral lung disease. We show that Mapk13 gene-knockout mice handle acute infectious illness as expected but are protected against structural remodeling manifest as basal-epithelial stem cell (basal-ESC) hyperplasia-metaplasia, immune activation, and mucinous differentiation. In corresponding cell models, Mapk13-deficiency directly attenuates basal-ESC growth and organoid formation. Extension to human studies shows marked induction/activation of basal-cell MAPK13 in clinical samples of comparable remodeling found in asthma and COPD. Here again, MAPK13 gene-knockdown inhibits human basal-ESC growth in culture. Together, the data identify MAPK13 as a control for structural remodeling and disease after epithelial injury and as a suitable target for down-regulation as a disease-modifying strategy.
Collapse
Affiliation(s)
- Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Dailing Mao
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Courtney A. Iberg
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Huiqing Yin-Declue
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Kelly Sun
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamus P. Keeler
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Hallie A. Wikfors
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Deanna Young
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jennifer Yantis
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Stephen R. Austin
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Derek E Byers
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven L. Brody
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Erika C. Crouch
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Arthur G. Romero
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J. Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
- NuPeak Therapeutics Inc., St. Louis, MO 63105
| |
Collapse
|
211
|
Zheng Y, Chen Q, Shi X, Lei L, Wang D. Causality between various cytokines and asthma: a bidirectional two-sample Mendelian randomization analysis. Front Med (Lausanne) 2024; 11:1447673. [PMID: 39175819 PMCID: PMC11338859 DOI: 10.3389/fmed.2024.1447673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Background Many studies have shown that cytokines play an important role in the pathogenesis of asthma, but their biological effects on asthma remain unclear. The Mendelian randomization (MR) method was used to evaluate the causal relationship between various cytokines [such as interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), colony-stimulating factors (CSFs), transforming growth factor (TGF), etc.,] and asthma. Methods In this study, inverse variance weighting was used to evaluate the causal relationship between asthma and cytokines. In addition, the reliability of the results is ensured by multiple methods such as MR-Egger, weighted median, MR-Raps, MR-Presso, and RadialMR, as well as sensitivity analysis. Results The results showed that none of the 11 cytokines was associated with the risk of asthma. In contrast, asthma can increase levels of IL-5 [odds ratio (OR) = 1.112, 95% confidence interval (CI): 1.009-1.224, P = 0.032] and IL-9 (OR = 1.111, 95% CI: 1.013-1.219, P = 0.025). Conclusion Genetically predicted asthma was positively associated with elevated levels of IL-5 and IL-9, indicating the downstream effects of IL-5 and IL-9 on asthma. Medical treatments can thus be designed to target IL-5 and IL-9 to prevent asthma exacerbations.
Collapse
Affiliation(s)
- Yansen Zheng
- Medical School, Huanghe Science and Technology College, Zhengzhou, China
| | - Qi Chen
- Jice Medical Institute, Xi’an, Shaanxi, China
| | - Xiaqing Shi
- Jice Medical Institute, Xi’an, Shaanxi, China
| | - Lei Lei
- Jice Medical Institute, Xi’an, Shaanxi, China
| | - Donglin Wang
- Medical School, Huanghe Science and Technology College, Zhengzhou, China
| |
Collapse
|
212
|
Luo L, Zeng H, Hu Y, Jiang L, Fu C, Huang J, Chen J, Zeng Q. The amino acid transporter SLC16A10 promotes melanogenesis by facilitating the transportation of phenylalanine. Exp Dermatol 2024; 33:e15165. [PMID: 39171634 DOI: 10.1111/exd.15165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
Phenylalanine is a crucial amino acid in the process of melanogenesis. However, the exact mechanism by which it is transported into melanocytes has not been disclosed. The aim of this study was to identify and examine the key transporters that are responsible for phenylalanine transportation and evaluate their significance in melanogenesis. The amino acid transporter SLC16A10 was found to be up-regulated in both melasma (GSE72140) and sun-exposed skin (GSE67098). The protein levels of SLC16A10 were proportional to the melanin content in melanocytic nevi, indicating that SLC16A10 was related to melanogenesis. After SLC16A10 overexpression, melanin increased significantly in MNT1 cells. Meanwhile, the expression of melanogenesis-related proteins such as TYR and TYRP1 increased, while their RNA levels did not change. Transcriptomics data indicated that SLC16A10 can enhance the function of ribosome. Furthermore, targeted metabolomics data and ELISA results demonstrated SLC16A10 mainly affected the transport of phenylalanine into the cells. Then, phenylalanine was added to the cell culture medium after SLC16A10 overexpression, melanin synthesis in cells furtherly increased, which verified that SLC16A10 enhances melanogenesis by promoting the uptake of phenylalanine. Finally, we found that SLC16A10 expression increased after UVB irradiation. Knockdown SLC16A10 reduced UVB-induced melanin production and phenylalanine uptake by cells. In summary, SLC16A10 enhances melanogenesis by promoting the uptake of phenylalanine, and upregulation SLC16A10 is likely responsible for the UVB-induced hyperpigmentation as well.
Collapse
Affiliation(s)
- Liping Luo
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongliang Zeng
- Center of Medical Laboratory Animal, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Yibo Hu
- Clinical Research Center, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
213
|
AbuJabal R, Ramakrishnan RK, Bajbouj K, Hamid Q. Role of IL-5 in asthma and airway remodelling. Clin Exp Allergy 2024; 54:538-549. [PMID: 38938056 DOI: 10.1111/cea.14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 06/29/2024]
Abstract
Asthma is a common and burdensome chronic inflammatory airway disease that affects both children and adults. One of the main concerns with asthma is the manifestation of irreversible tissue remodelling of the airways due to the chronic inflammatory environment that eventually disrupts the whole structure of the airways. Most people with troublesome asthma are treated with inhaled corticosteroids. However, the development of steroid resistance is a commonly encountered issue, necessitating other treatment options for these patients. Biological therapies are a promising therapeutic approach for people with steroid-resistant asthma. Interleukin 5 is recently gaining a lot of attention as a biological target relevant to the tissue remodelling process. Since IL-5-neutralizing monoclonal antibodies (mepolizumab, reslizumab and benralizumab) are currently available for clinical use, this review aims to revisit the role of IL-5 in asthma pathogenesis at large and airway remodelling in particular, in addition to exploring its role as a target for biological treatments.
Collapse
Affiliation(s)
- Rola AbuJabal
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rakhee K Ramakrishnan
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qutayba Hamid
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, McGill University, Montreal, Québec, Canada
| |
Collapse
|
214
|
Danescu S, Negrutiu M, Has C. Treatment of Epidermolysis Bullosa and Future Directions: A Review. Dermatol Ther (Heidelb) 2024; 14:2059-2075. [PMID: 39090514 PMCID: PMC11333680 DOI: 10.1007/s13555-024-01227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Epidermolysis bullosa (EB) comprises rare genetic disorders characterized by skin and mucosal membrane blistering induced by mechanical trauma. Molecularly, pathogenic variants affect genes encoding proteins crucial for epidermal-dermal adhesion and stability. Management of severe EB is multidisciplinary, focusing on wound healing support, ensuring that patients thrive, and complication treatment. Despite extensive research over 30 years, novel therapeutic approaches face challenges. Gene therapy and protein therapy struggle with efficacy, while regenerative cell-based therapies show limited effects. Drug repurposing to target various pathogenic mechanisms has gained attention, as has in vivo gene therapy with drugs for dystrophic and junctional EB that were recently approved by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA). However, their high cost limits global accessibility. This review examines therapeutic advancements made over the past 5 years, exploiting a systematic literature review and clinical trial data.
Collapse
Affiliation(s)
- Sorina Danescu
- Department of Dermatology, University of Medicine Iuliu Hatieganu Cluj-Napoca, Cluj-Napoca, Romania
| | - Mircea Negrutiu
- Department of Dermatology, University of Medicine Iuliu Hatieganu Cluj-Napoca, Cluj-Napoca, Romania
| | - Cristina Has
- Department of Dermatology, Medical Center University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
215
|
Aflouk Y, Saoud H, Inoubli O, Yacoub S, Zaafrane F, Gaha L, Bel Hadj Jrad B. TLR4 Polymorphisms (T399I/D299G) Association with Schizophrenia and Bipolar Disorder in a Tunisian Population. Biochem Genet 2024; 62:2418-2436. [PMID: 37947916 DOI: 10.1007/s10528-023-10553-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Immune dysregulation has been widely described in the pathophysiology of schizophrenia (SCZ) and bipolar disorder (BD). Particularly, TLR4-altered activation was proposed as one of the underlying processes of psychosis onset. Since TLR4 activation was altered by T399I and D299G polymorphisms, we hypothesized that those variants could present common genetic factors of SCZ and BD. A total of 293 healthy volunteers and 335 psychotic patients were genotyped using PCR-RFLP. Genotype, allele, and haplotype distribution between controls and patients were evaluated according to clinical parameters. Statistical analyses were adjusted by logistic regression. In dominant model, T399I CT + TT and allele frequency were significantly higher in controls compared to psychotic population (p = 0.004, p = 0.002, respectively), SCZ (p = 0.02, p = 0.01, respectively), and BD (p = 0.03, p = 0.02, respectively). Similarly, D299G AG + GG and allele frequency were significantly higher in controls compared to psychotic population (p = 0.04, p = 0.04, respectively) and SCZ (p = 0.04, p = 0.03, respectively). T399I CT + TT and T allele were overrepresented in controls compared to paranoid subgroup (Padjusted = 0.04, p = 0.04, respectively) and type I BD (p = 0.04). Moreover, T399I and D299G were less prevalent in SCZ late-onset age (p = 0.03, p = 0.02, respectively). TA haplotype was associated with protection from psychoses (p = 0.02) and particularly from schizophrenia (p = 0.04). In conclusion, TLR4 polymorphisms could present a preventive genetic background against psychoses onset in a Tunisian population. While T399I could be associated with protection against SCZ and BD, presenting an overlapping genetic factor between those psychoses, D299G was suggested to be associated with protection only from schizophrenia.
Collapse
Affiliation(s)
- Youssef Aflouk
- Laboratory of Genetics, Biodiversity and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Avenue Taher Haded, 5000, Monastir, Tunisia.
| | - Hana Saoud
- Laboratory of Genetics, Biodiversity and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Avenue Taher Haded, 5000, Monastir, Tunisia
| | - Oumaima Inoubli
- Laboratory of Genetics, Biodiversity and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Avenue Taher Haded, 5000, Monastir, Tunisia
| | - Saloua Yacoub
- Regional Center of Blood Transfusion, University Hospital Farhat Hached, 4000, Sousse, Tunisia
| | - Ferid Zaafrane
- Department of Psychiatry and Vulnerability to Psychoses Laboratory-CHU Fattouma Bourguiba Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Lotfi Gaha
- Department of Psychiatry and Vulnerability to Psychoses Laboratory-CHU Fattouma Bourguiba Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Besma Bel Hadj Jrad
- Laboratory of Genetics, Biodiversity and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Avenue Taher Haded, 5000, Monastir, Tunisia
| |
Collapse
|
216
|
Sant'Anna‐Silva ACB, Botton T, Rossi A, Dobner J, Bzioueche H, Thach N, Blot L, Pagnotta S, Kleszczynski K, Steinbrink K, Mazure NM, Rocchi S, Krutmann J, Passeron T, Tulic MK. Vitiligo auto-immune response upon oxidative stress-related mitochondrial DNA release opens up new therapeutic strategies. Clin Transl Med 2024; 14:e1810. [PMID: 39113238 PMCID: PMC11306283 DOI: 10.1002/ctm2.1810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/11/2024] Open
Affiliation(s)
| | | | - Andrea Rossi
- IUF‐Leibniz Research Institute for Environmental MedicineDüsseldorfGermany
| | - Jochen Dobner
- IUF‐Leibniz Research Institute for Environmental MedicineDüsseldorfGermany
| | | | - Nguyen Thach
- IUF‐Leibniz Research Institute for Environmental MedicineDüsseldorfGermany
| | | | - Sophie Pagnotta
- Common Centre of Applied Microscopy (CCMA)Université Côte d'AzurNiceFrance
| | | | | | | | | | - Jean Krutmann
- IUF‐Leibniz Research Institute for Environmental MedicineDüsseldorfGermany
- Medical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Thierry Passeron
- Université Côte d'Azur, INSERM U1065, C3MNiceFrance
- Department of DermatologyUniversité Côte d'Azur, CHU NiceNiceFrance
| | | |
Collapse
|
217
|
Jangra S, Gulia H, Singh J, Dang AS, Giri SK, Singh G, Priya K, Kumar A. Chemical leukoderma: An insight of pathophysiology and contributing factors. Toxicol Ind Health 2024; 40:479-495. [PMID: 38814634 DOI: 10.1177/07482337241257273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Chemical leukoderma, or chemical-based vitiligo, is a dermal disease triggered by exposure to chemicals and characterized by the emergence of depigmentation or hypopigmentation of the skin. The etiology of this condition is associated with exposure to various chemical substances present in both occupational and non-occupational settings. The precise mechanism that underlies chemical leukoderma remains elusive and is believed to result from the demise of melanocytes, which are responsible for producing skin pigments. This condition has gained particular prominence in developing countries like India. An interesting connection between chemical leukoderma and vitiligo has been identified; studies suggest that exposure to many household chemicals, which are derivatives of phenols and catechol, may serve as a primary etiological factor for the condition. Similar to autoimmune diseases, its pathogenesis involves contributions from both genetic and environmental factors. Furthermore, over the last few decades, various studies have demonstrated that exposure to chemicals plays a crucial role in initiating and progressing chemical leukoderma, including cases stemming from occupational exposure.
Collapse
Affiliation(s)
- Soniya Jangra
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Heena Gulia
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Jagphool Singh
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Amita S Dang
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Shiv K Giri
- Department of Biotechnology, Maharaja Agrasen University, Solan, India
| | - Gulab Singh
- Department of Bioscience, School of Liberal Arts and Sciences, Mody University, Lakshmangarh, India
| | - Kanu Priya
- Department of Life Sciences, Sharda University, Greater Noida, India
| | - Anil Kumar
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
218
|
Risemberg EL, Smeekens JM, Cruz Cisneros MC, Hampton BK, Hock P, Linnertz CL, Miller DR, Orgel K, Shaw GD, de Villena FPM, Burks AW, Valdar W, Kulis MD, Ferris MT. A mutation in Themis contributes to anaphylaxis severity following oral peanut challenge in CC027 mice. J Allergy Clin Immunol 2024; 154:387-397. [PMID: 38670234 PMCID: PMC11323216 DOI: 10.1016/j.jaci.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND The development of peanut allergy is due to a combination of genetic and environmental factors, although specific genes have proven difficult to identify. Previously, we reported that peanut-sensitized Collaborative Cross strain CC027/GeniUnc (CC027) mice develop anaphylaxis upon oral challenge to peanut, in contrast to C3H/HeJ (C3H) mice. OBJECTIVE This study aimed to determine the genetic basis of orally induced anaphylaxis to peanut in CC027 mice. METHODS A genetic mapping population between CC027 and C3H mice was designed to identify the genetic factors that drive oral anaphylaxis. A total of 356 CC027xC3H backcrossed mice were generated, sensitized to peanut, then challenged to peanut by oral gavage. Anaphylaxis and peanut-specific IgE were quantified for all mice. T-cell phenotyping was conducted on CC027 mice and 5 additional Collaborative Cross strains. RESULTS Anaphylaxis to peanut was absent in 77% of backcrossed mice, with 19% showing moderate anaphylaxis and 4% having severe anaphylaxis. There were 8 genetic loci associated with variation in response to peanut challenge-6 associated with anaphylaxis (temperature decrease) and 2 associated with peanut-specific IgE levels. There were 2 major loci that impacted multiple aspects of the severity of acute anaphylaxis, at which the CC027 allele was associated with worse outcome. At one of these loci, CC027 has a private genetic variant in the Themis gene. Consistent with described functions of Themis, we found that CC027 mice have more immature T cells with fewer CD8+, CD4+, and CD4+CD25+CD127- regulatory T cells. CONCLUSIONS Our results demonstrate a key role for Themis in the orally reactive CC027 mouse model of peanut allergy.
Collapse
Affiliation(s)
- Ellen L Risemberg
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Johanna M Smeekens
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Marta C Cruz Cisneros
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Brea K Hampton
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Pablo Hock
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Colton L Linnertz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Darla R Miller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kelly Orgel
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ginger D Shaw
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Fernando Pardo Manuel de Villena
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - A Wesley Burks
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - William Valdar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Michael D Kulis
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Martin T Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| |
Collapse
|
219
|
Seong SH, Oh SH. Up-and-Coming Drugs for the Treatment of Vitiligo. Ann Dermatol 2024; 36:197-208. [PMID: 39082655 PMCID: PMC11291099 DOI: 10.5021/ad.24.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Accepted: 06/02/2024] [Indexed: 08/03/2024] Open
Abstract
Vitiligo is a chronic autoimmune disease that causes depigmented patches on the skin. It affects 0.5%-2.0% of the global population. It goes beyond physical appearance, often leading to stigmatization, low self-esteem, and depression, burdening patients with psychosocial challenges. The pathogenesis of vitiligo involves the loss of melanocytes due to autoreactive CD8+ T cells, triggered by environmental stressors and exacerbated by cellular vulnerabilities and immune responses. The release of danger signals and pro-inflammatory factors initiates an immune cascade perpetuating melanocyte destruction, mainly driven by interferon-γ and the C-X-C motif chemokine ligand 9/10-chemokine receptor 3 axis. Long-lasting tissue-resident memory T cells (Trms) and cytokines contribute to lesion persistence. Current treatments focus on topical steroids and tacrolimus, systemic steroids, and phototherapies, but their efficacy remains suboptimal, necessitating the development of new therapeutic options. Building on recent advancements in understanding the immunological mechanisms in vitiligo pathogenesis, with the initiation of Food and Drug Administration approval of topical ruxolitinib, various potential treatment options such as JAK inhibitors, cytokine blockers, and Trm or regulatory T cell targeting agents are being clinically researched and anticipated for vitiligo based on both preclinical and clinical data. This review aims to categorize and summarize the diverse investigational drugs currently undergoing clinical trials for vitiligo. By examining clinical outcomes, it is anticipated that this review will bring hope to dermatologists and patients regarding vitiligo, a condition that has historically posed challenges and transform it into a realm of potential possibilities.
Collapse
Affiliation(s)
- Seol Hwa Seong
- Department of Dermatology, Kosin University College of Medicine, Busan, Korea
| | - Sang Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
220
|
Ergun P, Kipcak S, Gunel NS, Bor S, Sozmen EY. Roles of Cytokines in Pathological and Physiological Gastroesophageal Reflux Exposure. J Neurogastroenterol Motil 2024; 30:290-302. [PMID: 37957115 PMCID: PMC11238103 DOI: 10.5056/jnm22186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/29/2023] [Accepted: 04/10/2023] [Indexed: 11/15/2023] Open
Abstract
Background/Aims Gastroesophageal reflux disease is frequently observed and has no definitive treatment. There are 2 main views on the pathogenesis of gastroesophageal reflux disease. The first is that epithelial damage starts from the mucosa by acidic-peptic damage and the inflammatory response of granulocytes. The other view is that T-lymphocytes attract chemoattractants from the basal layer to the mucosa, and granulocytes do not migrate until damage occurs. We aim to investigate the inflammatory processes occurring in the esophageal epithelium of the phenotypes at the molecular level. We also examined the effects of these changes on tissue integrity. Methods Patients with mild and severe erosive reflux, nonerosive reflux, reflux hypersensitivity, and functional heartburn were included. Inflammatory gene expressions (JAK/STAT Signaling and NFKappaB Primer Libraries), chemokine protein levels, and tissue integrity were examined in the esophageal biopsies. Results There was chronic inflammation in the severe erosion group, the acute response was also triggered. In the mild erosion group, these 2 processes worked together, but homeostatic cytokines were also secreted. In nonerosive groups, T-lymphocytes were more dominant. In addition, the inflammatory response was highly triggered in the reflux hypersensitivity and functional heartburn groups, and it was associated with physiological reflux exposure and sensitivity. Conclusions "Microinflammation" in physiological acid exposure groups indicates that even a mild trigger is sufficient for the initiation and progression of inflammatory activity. Additionally, the anti-inflammatory cytokines were highly increased. The results may have a potential role in the treatment of heartburn symptoms and healing of the mucosa.
Collapse
Affiliation(s)
- Pelin Ergun
- Departments of Medical Biochemistry, Faculty of Medicine, Ege University, Izmir, Turkey
- Division of Gastroenterology, Faculty of Medicine, Ege University, Ege Reflux Study Group, Izmir, Turkey
| | - Sezgi Kipcak
- Departments of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
- Division of Gastroenterology, Faculty of Medicine, Ege University, Ege Reflux Study Group, Izmir, Turkey
| | - Nur S Gunel
- Departments of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Serhat Bor
- Division of Gastroenterology, Faculty of Medicine, Ege University, Ege Reflux Study Group, Izmir, Turkey
| | - Eser Y Sozmen
- Departments of Medical Biochemistry, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
221
|
Gutiérrez-Romero KJ, Falfán-Valencia R, Ramírez-Venegas A, Hernández-Zenteno RDJ, Flores-Trujillo F, Sansores-Martínez R, Ramos-Martínez E, Pérez-Rubio G. Altered levels of IFN-γ, IL-4, and IL-5 depend on the TLR4 rs4986790 genotype in COPD smokers but not those exposed to biomass-burning smoke. Front Immunol 2024; 15:1411408. [PMID: 39139567 PMCID: PMC11319291 DOI: 10.3389/fimmu.2024.1411408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) is associated with tobacco smoking and biomass-burning smoke exposure. Toll-like receptor 4 (TLR4) single-nucleotide polymorphisms (SNPs) may contribute to its pathogenesis. The study aimed to assess the association of rs4986790 and rs4986791 in the TLR4 gene in a Mexican mestizo population with COPD secondary to tobacco smoking (COPD-TS) and biomass-burning smoke (COPD-BBS) and to evaluate whether the genotypes of risk affect cytokine serum levels. Materials and methods We enrolled 2,092 participants and divided them into two comparisons according to their environmental exposure. SNPs were genotyped using TaqMan probes. Serum cytokine levels (IL-4, IL-5, IL-6, IL-10, and INF-γ) were quantified by ELISA. Results The rs4986790 AA genotype in COPD-TS was associated with a higher COPD risk (OR = 3.53). Haplotype analysis confirmed this association, identifying a block containing the rs4986790 allele (A-C, OR = 3.11). COPD-TS exhibited elevated IL-6, IL-4, and IL-5 levels compared with smokers without COPD (SWOC), whereas COPD-BBS displayed higher IFN-γ, IL-6, and IL-10 levels. The AA carriers in the COPD-TS group had elevated IL-4, IL-5, and IFN-γ compared with carriers of AG or GG. Conclusion The rs4986790 common allele and the A-C haplotype (rs4986790-rs4986791) were associated with a higher COPD risk in smokers; COPD patients carrying the AA genotype showed increased pro-inflammatory cytokines.
Collapse
Affiliation(s)
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alejandra Ramírez-Venegas
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Rafael De Jesus Hernández-Zenteno
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Fernando Flores-Trujillo
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | | - Espiridión Ramos-Martínez
- Experimental Medicine Research Unit, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
222
|
Ptaschinski C, Gibbs BF. Early-life risk factors which govern pro-allergic immunity. Semin Immunopathol 2024; 46:9. [PMID: 39066790 PMCID: PMC11283399 DOI: 10.1007/s00281-024-01020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Allergic diseases affect up to 40% of the global population with a substantial rise in food allergies, in particular, over the past decades. For the majority of individuals with allergy fundamental programming of a pro-allergic immune system largely occurs in early childhood where it is crucially governed by prenatal genetic and environmental factors, including their interactions. These factors include several genetic aberrations, such as filaggrin loss-of-function mutations, early exposure to respiratory syncytial virus, and various chemicals such as plasticizers, as well as the influence of the gut microbiome and numerous lifestyle circumstances. The effects of such a wide range of factors on allergic responses to an array of potential allergens is complex and the severity of these responses in a clinical setting are subsequently not easy to predict at the present time. However, some parameters which condition a pro-allergic immune response, including severe anaphylaxis, are becoming clearer. This review summarises what we currently know, and don't know, about the factors which influence developing pro-allergic immunity particularly during the early-life perinatal period.
Collapse
Affiliation(s)
- Catherine Ptaschinski
- Department of Pathology, University of Michigan, Ann Arbor, USA
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, USA
| | - Bernhard F Gibbs
- School of Psychology and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, Kent, CT1 1QU, UK.
| |
Collapse
|
223
|
Wan J, Zhang S, Li G, Huang S, Li J, Zhang Z, Liu J. Ceramide Ehux-C22 Targets the miR-199a-3p/mTOR Signaling Pathway to Regulate Melanosomal Autophagy in Mouse B16 Cells. Int J Mol Sci 2024; 25:8061. [PMID: 39125630 PMCID: PMC11312279 DOI: 10.3390/ijms25158061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Melanosomes are specialized membrane-bound organelles where melanin is synthesized and stored. The levels of melanin can be effectively reduced by inhibiting melanin synthesis or promoting melanosome degradation via autophagy. Ceramide, a key component in the metabolism of sphingolipids, is crucial for preserving the skin barrier, keeping it hydrated, and warding off the signs of aging. Our preliminary study indicated that a long-chain C22-ceramide compound (Ehux-C22) isolated from the marine microalga Emiliania huxleyi, reduced melanin levels via melanosomal autophagy in B16 cells. Recently, microRNAs (miRNAs) were shown to act as melanogenesis-regulating molecules in melanocytes. However, whether the ceramide Ehux-C22 can induce melanosome autophagy at the post-transcriptional level, and which potential autophagy-dependent mechanisms are involved, remains unknown. Here, miR-199a-3p was screened and identified as a novel upregulated miRNA in Ehux-C22-treated B16 cells. An in vitro high melanin expression model in cultured mouse melanoma cells (B16 cells) was established by using 0.2 μM alpha-melanocyte-stimulating hormone(α-MSH) and used for subsequent analyses. miR-199a-3p overexpression significantly enhanced melanin degradation, as indicated by a reduction in the melanin level and an increase in melanosome autophagy. Further investigation demonstrated that in B16 cells, Ehux-C22 activated miR-199a-3p and inhibited mammalian target of rapamycin(mTOR) level, thus activating the mTOR-ULK1 signaling pathway by promoting the expression of unc-51-like autophagy activating kinase 1 (ULK1), B-cell lymphoma-2 (Bcl-2), Beclin-1, autophagy-related gene 5 (ATG5), and microtubule-associated protein light chain 3 (LC3-II) and degrading p62. Therefore, the roles of Ehux-C22-regulated miR-199a-3p and the mTOR pathway in melanosomal autophagy were elucidated. This research may provide novel perspectives on the post-translational regulation of melanin metabolism, which involves the coordinated control of melanosomes.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhengxiao Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jingwen Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| |
Collapse
|
224
|
Li SZ, Wu QY, Fan Y, Guo F, Hu XM, Zuo YG. Gut Microbiome Dysbiosis in Patients with Pemphigus and Correlation with Pathogenic Autoantibodies. Biomolecules 2024; 14:880. [PMID: 39062594 PMCID: PMC11274803 DOI: 10.3390/biom14070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Pemphigus is a group of potentially life-threatening autoimmune bullous diseases induced by pathogenic autoantibodies binding to the surface of epidermal cells. The role of the gut microbiota (GM) has been described in various autoimmune diseases. However, the impact of the GM on pemphigus is less understood. This study aimed to investigate whether there was alterations in the composition and function of the GM in pemphigus patients compared to healthy controls (HCs). METHODS Fecal samples were collected from 20 patients with active pemphigus (AP), 11 patients with remission pemphigus (PR), and 47 HCs. To sequence the fecal samples, 16S rRNA was applied, and bioinformatic analyses were performed. RESULTS We found differences in the abundance of certain bacterial taxa among the three groups. At the family level, the abundance of Prevotellaceae and Coriobacteriaceae positively correlated with pathogenic autoantibodies. At the genus level, the abundance of Klebsiella, Akkermansia, Bifidobacterium, Collinsella, Gemmiger, and Prevotella positively correlated with pathogenic autoantibodies. Meanwhile, the abundance of Veillonella and Clostridium_XlVa negatively correlated with pathogenic autoantibodies. A BugBase analysis revealed that the sum of potentially pathogenic bacteria was elevated in the AP group in comparison to the PR group. Additionally, the proportion of Gram-negative bacteria in the PR group was statistically significantly lower in comparison to the HC group. CONCLUSION The differences in GM composition among the three groups, and the correlation between certain bacterial taxa and pathogenic autoantibodies of pemphigus, support a linkage between the GM and pemphigus.
Collapse
Affiliation(s)
- Si-Zhe Li
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (S.-Z.L.); (F.G.)
| | - Qing-Yang Wu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (Q.-Y.W.); (Y.F.)
| | - Yue Fan
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (Q.-Y.W.); (Y.F.)
| | - Feng Guo
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (S.-Z.L.); (F.G.)
| | - Xiao-Min Hu
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (S.-Z.L.); (F.G.)
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ya-Gang Zuo
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (S.-Z.L.); (F.G.)
| |
Collapse
|
225
|
Wang L, Lv Z. Causal associations among gut microbiota, 1400 plasma metabolites, and asthma: a two-sample Mendelian randomization study. Front Mol Biosci 2024; 11:1370919. [PMID: 39104371 PMCID: PMC11298384 DOI: 10.3389/fmolb.2024.1370919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/21/2024] [Indexed: 08/07/2024] Open
Abstract
Background Emerging evidence indicates a correlation between imbalances in intestinal microbiota and changes in plasma metabolites in the progression of asthma. However, the causal link between these factors remains unclear. Methods A two-sample Mendelian randomization (MR) study was employed to evaluate the potential causal connection between gut microbiota, plasma metabolites, and asthma susceptibility. Gut microbiota data from expansive genome-wide genotype studies and 16S fecal microbiome datasets were examined by the MiBioGen Alliance. Asthma data were procured from the FinnGen biobank analysis, while comprehensive Genome-Wide Association Studies (GWAS) summary statistics for plasma metabolites were derived from the NHGRI-EBI GWAS Catalog. Fluctuations in intestinal flora and plasma metabolites in asthma patients were evaluated using the weighted mode method. Additionally, pleiotropic and heterogeneity analyses were performed to ascertain the reliability of the findings. Results Upon examining the gut microbiota through MR with the IVW method, alongside tests for heterogeneity and pleiotropy, findings reveal a negative association between the abundance of the Christensenellaceae R.7 group and asthma risk. In contrast, the Bifidobacterium and Prevotella 7 genera exhibit a positive association with asthma risk, indicating they may be potential risk factors (p < 0.05). Furthermore, MR analysis of 1,400 metabolites employing Weighted median, IVW, and Weighted mode methods resulted in p-values below 0.05. Subsequent tests for pleiotropy and heterogeneity showed that the levels of 3,5-dichloro-2,6-dihydroxybenzoic acid have a negative correlation with asthma, whereas the phenylalanine to phosphate ratio has a positive correlation, suggesting their potential as risk factors for asthma (p < 0.05). Conclusion The current Mendelian randomization study provides evidence supporting a potential causal link between specific gut microbiota taxa, plasma metabolites, and asthma. These findings offer novel perspectives for future research and the development of treatment and prevention strategies for asthma.
Collapse
Affiliation(s)
- Lizhu Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhe Lv
- Air Force Medical University Tangdu Hospital, Xi’an, China
| |
Collapse
|
226
|
Sahadevan G, Shaj K. Paediatrics and genetics. Clin Exp Dermatol 2024; 49:939-940. [PMID: 38570369 DOI: 10.1093/ced/llae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
A 3-month-old child presented with cutaneous and mucosal erosions and blisters since birth. There was a history of the mother having similar lesions.
Collapse
Affiliation(s)
- Geethanjali Sahadevan
- Department of Dermatology, Government Medical College Kottayam, Kottayam, Kerala, India
| | - Kiran Shaj
- Department of Dermatology, Government Medical College Kottayam, Kottayam, Kerala, India
| |
Collapse
|
227
|
Maywald M, Rink L. Zinc Deficiency and Zinc Supplementation in Allergic Diseases. Biomolecules 2024; 14:863. [PMID: 39062576 PMCID: PMC11274920 DOI: 10.3390/biom14070863] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
In recent decades, it has become clear that allergic diseases are on the rise in both Western and developing countries. The exact reason for the increase in prevalence has not been conclusively clarified yet. Multidimensional approaches are suspected in which diet and nutrition seem to play a particularly important role. Allergic diseases are characterized by a hyper-reactive immune system to usually harmless allergens, leading to chronic inflammatory diseases comprising respiratory diseases like asthma and allergic rhinitis (AR), allergic skin diseases like atopic dermatitis (AD), and food allergies. There is evidence that diet can have a positive or negative influence on both the development and severity of allergic diseases. In particular, the intake of the essential trace element zinc plays a very important role in modulating the immune response, which was first demonstrated around 60 years ago. The most prevalent type I allergies are mainly based on altered immunoglobulin (Ig)E and T helper (Th)2 cytokine production, leading to type 2 inflammation. This immune status can also be observed during zinc deficiency and can be positively influenced by zinc supplementation. The underlying immunological mechanisms are very complex and multidimensional. Since zinc supplements vary in dose and bioavailability, and clinical trials often differ in design and structure, different results can be observed. Therefore, different results are not surprising. However, the current literature suggests a link between zinc deficiency and the development of allergies, and shows positive effects of zinc supplementation on modulating the immune system and reducing allergic symptoms, which are discussed in more detail in this review.
Collapse
Affiliation(s)
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| |
Collapse
|
228
|
Hlača N, Vičić M, Kaštelan M, Dekanić A, Prpić-Massari L. Analysis of granulysin expression in vitiligo and halo-nevus. Sci Rep 2024; 14:16580. [PMID: 39020008 PMCID: PMC11254913 DOI: 10.1038/s41598-024-67494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024] Open
Abstract
Vitiligo and halo nevus are immune-mediated skin diseases that have a similar pathogenesis and involve cellular cytotoxicity mechanisms that are not yet fully understood. In this study, we investigated the expression patterns of the cytolytic molecule granulysin (GNLY) in different cytotoxic cells in skin samples of vitiligo and halo nevus. Skin biopsies were taken from perilesional and lesional skin of ten vitiligo patients, eight patients with halo nevus and ten healthy controls. We analysed the expression of GNLY by immunohistochemistry in CD8+ and CD56+ NK cells. A significantly higher accumulation of GNLY+, CD8+ GNLY+ and fewer CD56+ GNLY+ cells was found in the lesional skin of vitiligo and halo nevus than in the healthy skin. These cells were localised in the basal epidermis and papillary dermis, suggesting that GNLY may be involved in the immune response against melanocytes. Similarly, but to a lesser extent, upregulation of GNLY+ and CD8+ GNLY+ cells was observed in the perilesional skin of vitiligo and halo nevus compared to healthy controls. In this study, we demonstrated for the first time an increased expression of CD8+ GNLY+ T lymphocytes and CD56+ GNLY+ NK cells in lesions of vitiligo and halo nevus, indicating the role of GNLY in the pathogenesis of both diseases.
Collapse
Affiliation(s)
- Nika Hlača
- Department of Dermatovenerology, Faculty of Medicine, University of Rijeka, Clinical Hospital Center Rijeka, Krešimirova 42, 51000, Rijeka, Croatia
| | - Marijana Vičić
- Department of Dermatovenerology, Faculty of Medicine, University of Rijeka, Clinical Hospital Center Rijeka, Krešimirova 42, 51000, Rijeka, Croatia.
| | - Marija Kaštelan
- Department of Dermatovenerology, Faculty of Medicine, University of Rijeka, Clinical Hospital Center Rijeka, Krešimirova 42, 51000, Rijeka, Croatia
| | - Andrea Dekanić
- Department of Pathology, Faculty of Medicine, University of Rijeka, Clinical Hospital Center Rijeka, Krešimirova 42, 51000, Rijeka, Croatia
| | - Larisa Prpić-Massari
- Department of Dermatovenerology, Faculty of Medicine, University of Rijeka, Clinical Hospital Center Rijeka, Krešimirova 42, 51000, Rijeka, Croatia
| |
Collapse
|
229
|
Pirker AL, Vogl T. Development of systemic and mucosal immune responses against gut microbiota in early life and implications for the onset of allergies. FRONTIERS IN ALLERGY 2024; 5:1439303. [PMID: 39086886 PMCID: PMC11288972 DOI: 10.3389/falgy.2024.1439303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
The early microbial colonization of human mucosal surfaces is essential for the development of the host immune system. Already during pregnancy, the unborn child is prepared for the postnatal influx of commensals and pathogens via maternal antibodies, and after birth this protection is continued with antibodies in breast milk. During this critical window of time, which extends from pregnancy to the first year of life, each encounter with a microorganism can influence children's immune response and can have a lifelong impact on their life. For example, there are numerous links between the development of allergies and an altered gut microbiome. However, the exact mechanisms behind microbial influences, also extending to how viruses influence host-microbe interactions, are incompletely understood. In this review, we address the impact of infants' first microbial encounters, how the immune system develops to interact with gut microbiota, and summarize how an altered immune response could be implied in allergies.
Collapse
Affiliation(s)
| | - Thomas Vogl
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
230
|
Sun M, Lu F, Yu D, Wang Y, Chen P, Liu S. Respiratory diseases and gut microbiota: relevance, pathogenesis, and treatment. Front Microbiol 2024; 15:1358597. [PMID: 39081882 PMCID: PMC11286581 DOI: 10.3389/fmicb.2024.1358597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Preclinical evidence has firmly established a bidirectional interaction among the lung, gut, and gut microbiome. There are many complex communication pathways between the lung and intestine, which affect each other's balance. Some metabolites produced by intestinal microorganisms, intestinal immune cells, and immune factors enter lung tissue through blood circulation and participate in lung immune function. Altered gut-lung-microbiome interactions have been identified in rodent models and humans of several lung diseases such as pulmonary fibrosis, chronic obstructive pulmonary disease, lung cancer, asthma, etc. Emerging evidence suggests that microbial therapies can prevent and treat respiratory diseases, but it is unclear whether this association is a simple correlation with the pathological mechanisms of the disease or the result of causation. In this review, we summarize the complex and critical link between the gut microbiota and the lung, as well as the influence and mechanism of the gut microbiota on respiratory diseases, and discuss the role of interventions such as prebiotics and fecal bacteria transplantation on respiratory diseases. To provide a reference for the rational design of large-scale clinical studies, the direct application of microbial therapy to respiratory-related diseases can reduce the incidence and severity of diseases and accompanying complications.
Collapse
Affiliation(s)
- Mengdi Sun
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Donghua Yu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Pingping Chen
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
231
|
Lukacova E, Hanzlikova Z, Podlesnyi P, Sedlackova T, Szemes T, Grendar M, Samec M, Hurtova T, Malicherova B, Leskova K, Budis J, Burjanivova T. Novel liquid biopsy CNV biomarkers in malignant melanoma. Sci Rep 2024; 14:15786. [PMID: 38982214 PMCID: PMC11233564 DOI: 10.1038/s41598-024-65928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
Malignant melanoma (MM) is known for its abundance of genetic alterations and a tendency for rapid metastasizing. Identification of novel plasma biomarkers may enhance non-invasive diagnostics and disease monitoring. Initially, we examined copy number variations (CNV) in CDK genes (CDKN2A, CDKN2B, CDK4) using MLPA (gDNA) and ddPCR (ctDNA) analysis. Subsequently, low-coverage whole genome sequencing (lcWGS) was used to identify the most common CNV in plasma samples, followed by ddPCR verification of chosen biomarkers. CNV alterations in CDK genes were identified in 33.3% of FFPE samples (Clark IV, V only). Detection of the same genes in MM plasma showed no significance, neither compared to healthy plasmas nor between pre- versus post-surgery plasma. Sequencing data showed the most common CNV occurring in 6q27, 4p16.1, 10p15.3, 10q22.3, 13q34, 18q23, 20q11.21-q13.12 and 22q13.33. CNV in four chosen genes (KIF25, E2F1, DIP2C and TFG) were verified by ddPCR using 2 models of interpretation. Model 1 was concordant with lcWGS results in 54% of samples, for model 2 it was 46%. Although CDK genes have not been proven to be suitable CNV liquid biopsy biomarkers, lcWGS defined the most frequently affected chromosomal regions by CNV. Among chosen genes, DIP2C demonstrated a potential for further analysis.
Collapse
Affiliation(s)
- E Lukacova
- Department of Molecular Biology and Genomics, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia
| | | | - P Podlesnyi
- Instituto de Investigaciones Biomedicas de Barcelona (IIBB), CSIC /Centro Investigacion Biomedica en Red Enfermedades Neurodegenerativas (CiberNed), Barcelona, Spain
| | - T Sedlackova
- Geneton Ltd., Bratislava, Slovakia
- Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - T Szemes
- Geneton Ltd., Bratislava, Slovakia
- Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - M Grendar
- Laboratory of Bioinformatics and Biostatistics, Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia
| | - M Samec
- Department of Medical Biology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - T Hurtova
- Department of Dermatovenereology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - B Malicherova
- Department of Clinical Biochemistry, University Hospital in Martin and Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - K Leskova
- Department of Pathological Anatomy, Jessenius Faculty of Medicine and University Hospital in Martin, Comenius University, Martin, Slovakia
| | - J Budis
- Geneton Ltd., Bratislava, Slovakia
- Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - T Burjanivova
- Department of Molecular Biology and Genomics, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia.
| |
Collapse
|
232
|
li W, Pang Y, He Q, Song Z, Xie X, Zeng J, Guo J. Exosome-derived microRNAs: emerging players in vitiligo. Front Immunol 2024; 15:1419660. [PMID: 39040109 PMCID: PMC11260631 DOI: 10.3389/fimmu.2024.1419660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Exosome-derived microRNAs (miRNAs) are biomacromolecules and nanoscale extracellular vesicles originating from intracellular compartments that are secreted by most cells into the extracellular space. This review examines the formation and function of exosomal miRNAs in biological information transfer, explores the pathogenesis of vitiligo, and highlights the relationship between exosomal miRNAs and vitiligo. The aim is to deepen the understanding of how exosomal miRNAs influence immune imbalance, oxidative stress damage, melanocyte-keratinocyte interactions, and melanogenesis disorders in the development of vitiligo. This enhanced understanding may contribute to the development of potential diagnostic and therapeutic options for vitiligo.
Collapse
Affiliation(s)
- Wenquan li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaobin Pang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingying He
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zongzou Song
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Xie
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
233
|
Chanie ES, Zhang G, Le Souef P. The serum level of vitamin D and prevalence of vitamin D deficiency among children with asthma in Asia and Africa: a systematic review and meta-analysis. Arch Public Health 2024; 82:103. [PMID: 38970116 PMCID: PMC11225331 DOI: 10.1186/s13690-024-01321-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/09/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Several studies on the serum level of vitamin D and the percentage of vitamin D deficiency in children with asthma have been conducted in Asia and Africa, but the results have been inconsistent and inconclusive, requiring a systematic review and meta-analysis to assess the strength of the evidence. OBJECTIVE The objective of this review is to synthesize evidence on serum levels of vitamin D and the percentage of vitamin D deficiency among children with asthma in Asia and Africa. METHODS To identify relevant articles, a comprehensive search was conducted across various databases and repositories such as PubMed, Google Scholar, Hinary, Web of Science, ResearchGate, as well as gray literature sources. The Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines were followed during the retrieval process. Data extraction was performed following a standardized format based on the JBI (Joanna Briggs Institute) data extraction guidelines. Microsoft Excel was utilized for data extraction, and subsequently, the data was exported to STATA 17 for further analysis. To assess the heterogeneity among the included studies, Cochrane Q-statistics and the I2 tests were employed. Publication bias was assessed using the Egger test and funnel plot. RESULT This meta-analysis investigated 33 articles encompassing a total of 3432 children diagnosed with asthma. The findings demonstrated that in low- or middle-income countries across Africa and Asia, children with asthma had an average serum vitamin D level of 21.9 ng/ml (95% confidence interval [CI]: 18.0-25.9 ng/ml), with 53.7% (95% CI: 40.5-66.9) experiencing vitamin D deficiency. Additionally, when considering the continent, children with asthma in Asia had an average serum vitamin D level of 18.5 ng/ml (95% CI: 13.8-23.3), while those in Africa had a level of 28.7 ng/ml (95% CI: 22.7-34.8). The analysis further explored different sub-group analyses. Depending on the study design, case-control studies yielded an average serum vitamin D level of 20.3 ng/ml (95% CI: 18.2-22.4), whereas cross-sectional studies resulted in 23.8 ng/ml (95% CI: 17.5-30.1). Based on publication year, studies published on or before 2015 had an average serum level of 21.0 ng/ml (95% CI: 18.0-24.0), while those published after 2015 had a level of 22.4 ng/ml (95% CI: 17.2-27.7). Moreover, when considering sample size, studies with 100 participants or less had an average serum level of 21.7 ng/ml (95% CI: 17.3-26.1), while studies with more than 100 participants had a level of 22.1 ng/ml (95% CI: 18.6-25.6). CONCLUSION Children with asthma in Asia and Africa were found to have low serum levels of vitamin D and a high percentage of vitamin D deficiency. This highlights the importance of early detection and monitoring of vitamin D levels in these children to prevent potential complications associated with vitamin D deficiency. Taking proactive measures to address and manage vitamin D deficiency is crucial for the well-being of children with asthma in these regions.
Collapse
Affiliation(s)
- Ermias Sisay Chanie
- Department of Paediatric and Child Health, Debre Tabor University, Debre Tabor, Ethiopia.
| | - Guicheng Zhang
- School of Population Health, Curtin University, Perth, WA, 6102, Australia
- School of Medicine, The University of Western Australia, Perth, WA, 6008, Australia
| | - Peter Le Souef
- School of Medicine, The University of Western Australia, Perth, WA, 6008, Australia
| |
Collapse
|
234
|
Zhang P, Xu Q, Zhu R. Vitamin D and allergic diseases. Front Immunol 2024; 15:1420883. [PMID: 39026686 PMCID: PMC11254667 DOI: 10.3389/fimmu.2024.1420883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
In recent years, the relationship between vitamin D and allergic diseases has received widespread attention. As a fat-soluble vitamin, vitamin D plays a crucial role in regulating the immune system and may influence the onset and progression of diseases such as atopic dermatitis, allergic rhinitis, and asthma. To understand the underlying mechanisms, we have summarized the current research on the association between vitamin D and allergic diseases. We also discuss the impact of vitamin D on the immune system and its role in the course of allergic diseases, particularly focusing on how vitamin D supplementation affects the treatment outcomes of these conditions. We aim to provide a theoretical basis and practical guidance for optimizing the management and treatment of allergic diseases by modulating vitamin D levels.
Collapse
Affiliation(s)
- Panyu Zhang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingxiu Xu
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongfei Zhu
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
235
|
Martino D, Schultz N, Kaur R, van Haren SD, Kresoje N, Hoch A, Diray-Arce J, Su JL, Levy O, Pichichero M. Respiratory infection- and asthma-prone, low vaccine responder children demonstrate distinct mononuclear cell DNA methylation pathways. Clin Epigenetics 2024; 16:85. [PMID: 38961479 PMCID: PMC11223352 DOI: 10.1186/s13148-024-01703-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Infants with frequent viral and bacterial respiratory infections exhibit compromised immunity to routine immunizations. They are also more likely to develop chronic respiratory diseases in later childhood. This study investigated the feasibility of epigenetic profiling to reveal endotype-specific molecular pathways with potential for early identification and immuno-modulation. Peripheral blood mononuclear cells from respiratory infection allergy/asthma-prone (IAP) infants and non-infection allergy/asthma prone (NIAP) were retrospectively selected for genome-wide DNA methylation and single nucleotide polymorphism analysis. The IAP infants were enriched for the low vaccine responsiveness (LVR) phenotype (Fisher's exact p-value = 0.02). RESULTS An endotype signature of 813 differentially methylated regions (DMRs) comprising 238 lead CpG associations (FDR < 0.05) emerged, implicating pathways related to asthma, mucin production, antigen presentation and inflammasome activation. Allelic variation explained only a minor portion of this signature. Stimulation of mononuclear cells with monophosphoryl lipid A (MPL), a TLR agonist, partially reversed this signature at a subset of CpGs, suggesting the potential for epigenetic remodeling. CONCLUSIONS This proof-of-concept study establishes a foundation for precision endotyping of IAP children and highlights the potential for immune modulation strategies using adjuvants for future investigation.
Collapse
Affiliation(s)
- David Martino
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| | - Nikki Schultz
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Ravinder Kaur
- Centre for Infectious Disease and Vaccine Immunology, Research Institute, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA
| | - Simon D van Haren
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave, BCH 3104, Boston, MA, 02115, USA
| | - Nina Kresoje
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Annmarie Hoch
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave, BCH 3104, Boston, MA, 02115, USA
| | - Joann Diray-Arce
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave, BCH 3104, Boston, MA, 02115, USA
| | - Jessica Lasky Su
- Channing Division of Network Medicine and Harvard Medical School, Boston, MA, 02115, USA
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave, BCH 3104, Boston, MA, 02115, USA
- Channing Division of Network Medicine and Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA
| | - Michael Pichichero
- Centre for Infectious Disease and Vaccine Immunology, Research Institute, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA
| |
Collapse
|
236
|
JohnBritto JS, Di Ciaula A, Noto A, Cassano V, Sciacqua A, Khalil M, Portincasa P, Bonfrate L. Gender-specific insights into the irritable bowel syndrome pathophysiology. Focus on gut dysbiosis and permeability. Eur J Intern Med 2024; 125:10-18. [PMID: 38467533 DOI: 10.1016/j.ejim.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disorder involving the brain-gut interaction. IBS is characterized by persistent abdominal pain and changes in bowel habits. IBS exerts significant impacts on quality of life and imposes huge economic costs. Global epidemiological data reveal variations in IBS prevalence, both globally and between genders, necessitating comprehensive studies to uncover potential societal and cultural influences. While the exact pathophysiology of IBS remains incompletely understood, the mechanism involves a dysregulation of the brain-gut axis, leading to disturbed intestinal motility, local inflammation, altered intestinal permeability, visceral sensitivity, and gut microbiota composition. We reviewed several gender-related pathophysiological aspects of IBS pathophysiology, by focusing on gut dysbiosis and intestinal permeability. This perspective paves the way to personalized and multidimensional clinical management of individuals with IBS.
Collapse
Affiliation(s)
- Jerlin Stephy JohnBritto
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Antonino Noto
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Velia Cassano
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy.
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
237
|
Chen Y, Lin S, Wang L, Zhang Y, Chen H, Fu Z, Zhang M, Luo H, Liu J. Reinforcement of the intestinal mucosal barrier via mucus-penetrating PEGylated bacteria. Nat Biomed Eng 2024; 8:823-841. [PMID: 38839928 DOI: 10.1038/s41551-024-01224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/05/2024] [Indexed: 06/07/2024]
Abstract
The breakdown of the gut's mucosal barrier that prevents the infiltration of microorganisms, inflammatory cytokines and toxins into bodily tissues can lead to inflammatory bowel disease and to metabolic and autoimmune diseases. Here we show that the intestinal mucosal barrier can be reinforced via the oral administration of commensal bacteria coated with poly(ethylene glycol) (PEG) to facilitate their penetration into mucus. In mice with intestinal homoeostatic imbalance, mucus-penetrating PEGylated bacteria preferentially localized in mucus at the lower gastrointestinal tract, inhibited the invasion of pathogenic bacteria, maintained homoeostasis of the gut microbiota, stimulated the secretion of mucus and the expression of tight junctions, and prevented the mice from developing colitis and diabetes. Orally delivered PEGylated bacteria may help prevent and treat gastrointestinal disorders.
Collapse
Affiliation(s)
- Yanmei Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huan Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenzhen Fu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengmeng Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huilong Luo
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
238
|
Pujalte‐Martin M, Belaïd A, Bost S, Kahi M, Peraldi P, Rouleau M, Mazure NM, Bost F. Targeting cancer and immune cell metabolism with the complex I inhibitors metformin and IACS-010759. Mol Oncol 2024; 18:1719-1738. [PMID: 38214418 PMCID: PMC11223609 DOI: 10.1002/1878-0261.13583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024] Open
Abstract
Metformin and IACS-010759 are two distinct antimetabolic agents. Metformin, an established antidiabetic drug, mildly inhibits mitochondrial complex I, while IACS-010759 is a new potent mitochondrial complex I inhibitor. Mitochondria is pivotal in the energy metabolism of cells by providing adenosine triphosphate through oxidative phosphorylation (OXPHOS). Hence, mitochondrial metabolism and OXPHOS become a vulnerability when targeted in cancer cells. Both drugs have promising antitumoral effects in diverse cancers, supported by preclinical in vitro and in vivo studies. We present evidence of their direct impact on cancer cells and their immunomodulatory effects. In clinical studies, while observational epidemiologic studies on metformin were encouraging, actual trial results were not as expected. However, IACS-01075 exhibited major adverse effects, thereby causing a metabolic shift to glycolysis and elevated lactic acid concentrations. Therefore, the future outlook for these two drugs depends on preventive clinical trials for metformin and investigations into the plausible toxic effects on normal cells for IACS-01075.
Collapse
Affiliation(s)
- Marc Pujalte‐Martin
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Amine Belaïd
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Simon Bost
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Michel Kahi
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Pascal Peraldi
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Matthieu Rouleau
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
- CNRS UMR7370, LP2MNiceFrance
| | - Nathalie M. Mazure
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Frédéric Bost
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| |
Collapse
|
239
|
Short AK, Weber R, Kamei N, Wilcox Thai C, Arora H, Mortazavi A, Stern HS, Glynn L, Baram TZ. Individual longitudinal changes in DNA-methylome identify signatures of early-life adversity and correlate with later outcome. Neurobiol Stress 2024; 31:100652. [PMID: 38962694 PMCID: PMC11219970 DOI: 10.1016/j.ynstr.2024.100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Adverse early-life experiences (ELA) affect a majority of the world's children. Whereas the enduring impact of ELA on cognitive and emotional health is established, there are no tools to predict vulnerability to ELA consequences in an individual child. Epigenetic markers including peripheral-cell DNA-methylation profiles may encode ELA and provide predictive outcome markers, yet the interindividual variance of the human genome and rapid changes in DNA methylation in childhood pose significant challenges. Hoping to mitigate these challenges we examined the relation of several ELA dimensions to DNA methylation changes and outcome using a within-subject longitudinal design and a high methylation-change threshold. DNA methylation was analyzed in buccal swab/saliva samples collected twice (neonatally and at 12 months) in 110 infants. We identified CpGs differentially methylated across time for each child and determined whether they associated with ELA indicators and executive function at age 5. We assessed sex differences and derived a sex-dependent 'impact score' based on sites that most contributed to methylation changes. Changes in methylation between two samples of an individual child reflected age-related trends and correlated with executive function years later. Among tested ELA dimensions and life factors including income to needs ratios, maternal sensitivity, body mass index and infant sex, unpredictability of parental and household signals was the strongest predictor of executive function. In girls, high early-life unpredictability interacted with methylation changes to presage executive function. Thus, longitudinal, within-subject changes in methylation profiles may provide a signature of ELA and a potential predictive marker of individual outcome.
Collapse
Affiliation(s)
- Annabel K. Short
- Department of Anatomy and Neurobiology, ersity of California- Irvine, Irvine, CA, 92697, USA
- Departments of Pediatrics and Neurology, University of California-Irvine, Irvine, CA, 92697, USA
| | - Ryan Weber
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, CA, 92697, USA
| | - Noriko Kamei
- Department of Anatomy and Neurobiology, ersity of California- Irvine, Irvine, CA, 92697, USA
| | - Christina Wilcox Thai
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, CA, 92697, USA
| | - Hina Arora
- Department of Statistics, University of California-Irvine, Irvine, CA, 92697, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, CA, 92697, USA
| | - Hal S. Stern
- Department of Statistics, University of California-Irvine, Irvine, CA, 92697, USA
| | - Laura Glynn
- Department of Psychology, Chapman University, Orange, CA, 92866, USA
| | - Tallie Z. Baram
- Department of Anatomy and Neurobiology, ersity of California- Irvine, Irvine, CA, 92697, USA
- Departments of Pediatrics and Neurology, University of California-Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
240
|
Passeron T, Ezzedine K, Hamzavi I, van Geel N, Schlosser BJ, Wu X, Huang X, Soliman AM, Rosmarin D, Harris JE, Camp HS, Pandya AG. Once-daily upadacitinib versus placebo in adults with extensive non-segmental vitiligo: a phase 2, multicentre, randomised, double-blind, placebo-controlled, dose-ranging study. EClinicalMedicine 2024; 73:102655. [PMID: 38873632 PMCID: PMC11169949 DOI: 10.1016/j.eclinm.2024.102655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Background Janus kinase (JAK) inhibition is a promising approach for treating vitiligo. We aimed to assess the efficacy and safety of upadacitinib, an oral selective JAK inhibitor, in adults with non-segmental vitiligo. Methods This was a phase 2, multicentre, randomised, double-blind, placebo-controlled, dose-ranging study completed at 33 clinical centres in the United States, Canada, France, and Japan. Eligible patients were aged 18-65 years with non-segmental vitiligo and had a Facial Vitiligo Area Scoring Index (F-VASI) ≥0.5 and a Total Vitiligo Area Scoring Index (T-VASI) ≥5. Patients were randomly assigned (2:2:2:1:1) using an interactive response technology to receive upadacitinib 6 mg (UPA6), upadacitinib 11 mg (UPA11), upadacitinib 22 mg (UPA22), or placebo (PBO; preassigned to switch to either UPA11 or UPA22 in period 2) once daily for 24 weeks (period 1). For weeks 24-52 (period 2), patients randomly assigned to upadacitinib continued their treatment, and patients receiving PBO switched to their preassigned upadacitinib dose in a blinded fashion. The primary endpoint was the percent change from baseline in F-VASI at week 24. Efficacy was analysed in the intention-to-treat population, and safety was examined in all randomly assigned patients who received at least one dose of study drug. This study is registered with ClinicalTrials.gov, number NCT04927975. Findings Between June 16, 2021, and June 27, 2022, 185 patients (including 115 [62%] who were female and 70 [38%] who were male) were randomly assigned to UPA6 (n = 49), UPA11 (n = 47), UPA22 (n = 43), or PBO (n = 46). At week 24, the LS mean difference versus PBO in the percent change from baseline in F-VASI was -7.60 (95% CI -22.18 to 6.97; p = 0.3037) for UPA6, -21.27 (95% CI -36.02 to -6.52; p = 0.0051) for UPA11, and -19.60 (95% CI -35.04 to -4.16; p = 0.0132) for UPA22. The LS mean difference versus PBO in the percent change from baseline in T-VASI was -7.45 (95% CI -16.86 to 1.96; p = 0.1198) for UPA6, -10.84 (95% CI -20.37 to -1.32; p = 0.0259) for UPA11 and -14.27 (95% CI -24.24 to -4.30; p = 0.0053) for UPA22. Ongoing treatment with upadacitinib induced continuous skin repigmentation over time without reaching a plateau through week 52. The rates for study drug discontinuation and serious treatment-emergent adverse events (TEAEs) were higher in the UPA22 group than in the UPA11 and UPA6 groups. Eight serious TEAEs, including one death of unknown cause and one case of infiltrating lobular breast carcinoma, were reported through 52 weeks; only two serious TEAEs (coronary artery arteriosclerosis [UPA6 (n = 1)] and non-fatal ischemic stroke [UPA11 (n = 1)]) were deemed by the investigator to have a reasonable possibility of being related to study drug. The one case of breast cancer in the UPA11 group was deemed unrelated to study drug, and the one death of unknown cause in the UPA22 group was reviewed and adjudicated and was deemed to be unrelated to study drug. The most common TEAEs were COVID-19, headache, acne, and fatigue. No new safety signals were observed. Interpretation Upadacitinib monotherapy led to substantial repigmentation of both facial and total body vitiligo lesions and may offer an effective treatment option for adults with extensive non-segmental vitiligo. Based on these findings, upadacitinib 15 mg is being investigated in adults and adolescents with non-segmental vitiligo in an ongoing phase 3 randomised controlled trial. Funding AbbVie Inc.
Collapse
Affiliation(s)
- Thierry Passeron
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Côte d’Azur University, Nice, France
- Department of Dermatology, Centre Hospitalier Universitaire de Nice, Côte d’Azur University, Nice, France
| | - Khaled Ezzedine
- Department of Dermatology, AP-HP, Henri Mondor University Hospital, UPEC, Créteil, France
- EA 7379 EpidermE, Université Paris-Est Créteil, UPEC, Créteil, France
| | - Iltefat Hamzavi
- Department of Dermatology, Photomedicine and Photobiology Unit, Henry Ford Hospital, Detroit, MI, USA
| | - Nanja van Geel
- Department of Dermatology, Gent University Hospital, Gent, Belgium
| | | | | | | | | | - David Rosmarin
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John E. Harris
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Amit G. Pandya
- Palo Alto Foundation Medical Group, Sunnyvale, CA, USA
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
241
|
Liang J, Dai W, Liu C, Wen Y, Chen C, Xu Y, Huang S, Hou S, Li C, Chen Y, Wang W, Tang H. Gingerenone A Attenuates Ulcerative Colitis via Targeting IL-17RA to Inhibit Inflammation and Restore Intestinal Barrier Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400206. [PMID: 38639442 PMCID: PMC11267284 DOI: 10.1002/advs.202400206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/27/2024] [Indexed: 04/20/2024]
Abstract
Ulcerative colitis (UC) is a complicated and recurrent intestinal disease. Currently available drugs for UC treatment are scarce, therefore, novel therapeutic drugs for the UC are urgently to be developed. Gingerenone A (GA) is a phenolic compound known for its anti-inflammatory effect, but its effect on UC remains unknown. Here, it is shown that GA protects mice against UC, which is closely associated with inhibiting intestinal mucosal inflammation and enhancing intestinal barrier integrity in vivo and in vitro. Of note, RNA sequencing analysis demonstrates an evident correlation with IL-17 signaling pathway after GA treatment, and this effect is further corroborated by Western blot. Mechanistically, GA directly interacts with IL-17RA protein through pull-down, surface plasmon resonance analysis and molecular dynamics simulation. Importantly, lentivirus-mediated IL-17RA/Act1 knock-down or GA co-treatment with brodalumab/ixekizumab significantly impairs the protective effects of GA against DSS-induced inflammation and barrier dysfunction, suggesting a critical role of IL-17RA signaling for GA-mediated protection against UC. Overall, these results indicate that GA is an effective agent against UC mainly through the direct binding of IL-17RA to inhibit inflammatory signaling activation.
Collapse
Affiliation(s)
- Jian Liang
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhou510060China
- Dongguan Institute of Guangzhou University of Chinese MedicineDongguan523808China
| | - Weigang Dai
- Center of Ganstric CancerThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510062China
| | - Chuanghui Liu
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Yifan Wen
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Chen Chen
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Yifei Xu
- Shenzhen Traditional Chinese Medicine HospitalThe Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen518033China
| | - Song Huang
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
- Dongguan Institute of Guangzhou University of Chinese MedicineDongguan523808China
| | - Shaozhen Hou
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Chun Li
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Yongming Chen
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhou510060China
| | - Wei Wang
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Hailin Tang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
242
|
Oprițescu S, Nițescu GV, Cîrnațu D, Trifunschi S, Munteanu M, Golumbeanu M, Boghițoiu D, Dărăban AM, Ilie EI, Moroșan E. Elevated Immunoglobulin E Serum Levels: Possible Underlying Factors That Can Cause an Inborn Error of Immunity in the Pediatric Population with Recurrent Infections. Antibodies (Basel) 2024; 13:47. [PMID: 38920971 PMCID: PMC11201012 DOI: 10.3390/antib13020047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Elevated immunoglobulin E (IgE) levels are commonly associated with allergies. However, high IgE levels are also found in several other infectious and non-infectious disorders. Elevated IgE levels typically suggest allergies, eczema, or recurrent skin infections. Hyperimmunoglobulin E (hyper-IgE) levels typically reflect a monogenic atopic condition or inborn immune defects with an atopic phenotype. The aim of our research is to investigate and observe the clinical characteristics of children with increased IgE levels who have previously manifested infectious diseases. Furthermore, the retrospective study considers other factors, such as demographic characteristics (sex, area/environment, and age), and their effect on IgE serum levels. To answer this question, we conducted a one-year hospital-based retrospective study that included 200 hospitalized children who had at least two viral or bacterial infections in the six months preceding hospitalization. Measurements of IgE and allergen panels (respiratory and digestive) using blood samples revealed that individuals who tested positive for the body's synthesis of hyper-IgE were not observably allergic to any potential allergens despite having higher total serum IgE. According to the results, there was a strong correlation between elevated IgE serum levels and a history of infectious diseases among the patients.
Collapse
Affiliation(s)
- Sînziana Oprițescu
- Discipline of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.O.)
| | - Gabriela Viorela Nițescu
- Discipline of Pediatrics, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- “Grigore Alexandrescu” Clinical Emergency Hospital for Children, 017443 Bucharest, Romania
| | - Daniela Cîrnațu
- Faculty of Pharmacy, “Vasile Goldiș” Western University Arad, 310025 Arad, Romania
| | - Svetlana Trifunschi
- Faculty of Pharmacy, “Vasile Goldiș” Western University Arad, 310025 Arad, Romania
| | - Melania Munteanu
- Faculty of Pharmacy, “Vasile Goldiș” Western University Arad, 310025 Arad, Romania
| | - Mihaela Golumbeanu
- “Grigore Alexandrescu” Clinical Emergency Hospital for Children, 017443 Bucharest, Romania
| | - Dora Boghițoiu
- Discipline of Pediatrics, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- “Grigore Alexandrescu” Clinical Emergency Hospital for Children, 017443 Bucharest, Romania
| | - Adriana Maria Dărăban
- Pharmaceutical Science Department Dermatocosmetology and Cosmetics, “Vasile Goldiș” Western University of Arad, 310025 Arad, Romania
| | - Elena Iuliana Ilie
- Discipline of Pharmacognosy, Phytochemistry and Phytotherapy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Elena Moroșan
- Discipline of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.O.)
| |
Collapse
|
243
|
Wrześniewska M, Wołoszczak J, Świrkosz G, Szyller H, Gomułka K. The Role of the Microbiota in the Pathogenesis and Treatment of Atopic Dermatitis-A Literature Review. Int J Mol Sci 2024; 25:6539. [PMID: 38928245 PMCID: PMC11203945 DOI: 10.3390/ijms25126539] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition with a high prevalence worldwide. AD pathogenesis is complex and consists of immune system dysregulation and impaired skin barrier, influenced by genetic and environmental factors. The purpose of the review is to show the complex interplay between atopic dermatitis and the microbiota. Human microbiota plays an important role in AD pathogenesis and the course of the disease. Dysbiosis is an important factor contributing to the development of atopic diseases, including atopic dermatitis. The gut microbiota can influence the composition of the skin microbiota, strengthening the skin barrier and regulating the immune response via the involvement of bacterial metabolites, particularly short-chain fatty acids, in signaling pathways of the gut-skin axis. AD can be modulated by antibiotic intake, dietary adjustments, hygiene, and living conditions. One of the promising strategies for modulating the course of AD is probiotics. This review offers a summary of how the microbiota influences the development and treatment of AD, highlighting aspects that warrant additional investigation.
Collapse
Affiliation(s)
- Martyna Wrześniewska
- Student Scientific Group of Internal Medicine and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (J.W.); (G.Ś.); (H.S.)
| | - Julia Wołoszczak
- Student Scientific Group of Internal Medicine and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (J.W.); (G.Ś.); (H.S.)
| | - Gabriela Świrkosz
- Student Scientific Group of Internal Medicine and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (J.W.); (G.Ś.); (H.S.)
| | - Hubert Szyller
- Student Scientific Group of Internal Medicine and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (J.W.); (G.Ś.); (H.S.)
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
244
|
Zhang Z, Li W, Han X, Tian D, Yan W, Liu M, Cao L. Circadian rhythm disruption-mediated downregulation of Bmal1 exacerbates DSS-induced colitis by impairing intestinal barrier. Front Immunol 2024; 15:1402395. [PMID: 38895112 PMCID: PMC11183104 DOI: 10.3389/fimmu.2024.1402395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Background Circadian rhythm disruption (CRD) is thought to increase the risk of inflammatory bowel disease. The deletion of Bmal1, a core transcription factor, leads to a complete loss of the circadian rhythm and exacerbates the severity of dextran sodium sulfate (DSS)-induced colitis in mice. However, the underlying mechanisms by which CRD and Bmal1 mediate IBD are still unclear. Methods We used a CRD mouse model, a mouse colitis model, and an in vitro model of colonic epithelial cell monolayers. We also knocked down and overexpressed Bmal1 in Caco-2 cells by transfecting lentivirus in vitro. The collected colon tissue and treated cells were assessed and analyzed using immunohistochemistry, immunofluorescence staining, quantitative reverse transcription-polymerase chain reaction, western blot, flow cytometry, transmission electron microscopy, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling staining. Results We found that CRD mice with downregulated Bmal1 expression were more sensitive to DSS-induced colitis and had more severely impaired intestinal barrier function than wild-type mice. Bmal1-/- mice exhibited more severe colitis, accompanied by decreased tight junction protein levels and increased apoptosis of intestinal epithelial cells compared with wild-type mice, which were alleviated by using the autophagy agonist rapamycin. Bmal1 overexpression attenuated Lipopolysaccharide-induced apoptosis of intestinal epithelial cells and impaired intestinal epithelial cells barrier function in vitro, while inhibition of autophagy reversed this protective effect. Conclusion This study suggests that CRD leads to the downregulation of Bmal1 expression in the colon, which may exacerbate DSS-induced colitis in mice, and that Bmal1 may serve as a novel target for treating inflammatory bowel disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Mei Liu
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Cao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
245
|
Yang F, Zhang X, Xie Y, Yuan J, Gao J, Chen H, Li X. The pathogenesis of food allergy and protection offered by dietary compounds from the perspective of epigenetics. J Nutr Biochem 2024; 128:109593. [PMID: 38336123 DOI: 10.1016/j.jnutbio.2024.109593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Food allergy is a global food safety concern, with an increasing prevalence in recent decades. However, the immunological and cellular mechanisms involved in allergic reactions remain incompletely understood, which impedes the development of effective prevention and treatment strategies. Current evidence supports those epigenetic modifications regulate the activation of immune cells, and their dysregulation can contribute to the development of food allergies. Patients with food allergy show epigenetic alterations that lead to the onset, duration and recovery of allergic disease. Moreover, many preclinical studies have shown that certain dietary components exert nutriepigenetic effects in changing the course of food allergies. In this review, we provide an up-to-date overview of DNA methylation, noncoding RNA and histone modification, with a focus on their connections to food allergies. Following this, we discuss the epigenetic mechanisms that regulate the activation and differentiation of innate and adapted immune cell in the context of food allergies. Subsequently, this study specifically focuses on the multidimensional epigenetic effects of dietary components in modulating the immune response, which holds promise for preventing food allergies in the future.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xing Zhang
- State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Yanhai Xie
- Sino-German Joint Research Institute, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Juanli Yuan
- State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- Sino-German Joint Research Institute, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
246
|
Rao F, Xue T. Circadian-independent light regulation of mammalian metabolism. Nat Metab 2024; 6:1000-1007. [PMID: 38831000 DOI: 10.1038/s42255-024-01051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/16/2024] [Indexed: 06/05/2024]
Abstract
The daily light-dark cycle is a key zeitgeber (time cue) for entraining an organism's biological clock, whereby light sensing by retinal photoreceptors, particularly intrinsically photosensitive retinal ganglion cells, stimulates the suprachiasmatic nucleus of the hypothalamus, a central pacemaker that in turn orchestrates the rhythm of peripheral metabolic activities. Non-rhythmic effects of light on metabolism have also been long known, and their transduction mechanisms are only beginning to unfold. Here, we summarize emerging evidence that, in mammals, light exposure or deprivation profoundly affects glucose homeostasis, thermogenesis and other metabolic activities in a clock-independent manner. Such light regulation could involve melanopsin-based, intrinsically photosensitive retinal ganglion cell-initiated brain circuits via the suprachiasmatic nucleus of the hypothalamus and other nuclei, or direct stimulation of opsins expressed in the hypothalamus, adipose tissue, blood vessels and skin to regulate sympathetic tone, lipolysis, glucose uptake, mitochondrial activation, thermogenesis, food intake, blood pressure and melanogenesis. These photic signalling events may coordinate with circadian-based mechanisms to maintain metabolic homeostasis, with dysregulation of this system underlying metabolic diseases caused by aberrant light exposure, such as environmental night light and shift work.
Collapse
Affiliation(s)
- Feng Rao
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Tian Xue
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
247
|
Jo JY, Chae SJ, Ryu HJ. Update on Melasma Treatments. Ann Dermatol 2024; 36:125-134. [PMID: 38816973 PMCID: PMC11148313 DOI: 10.5021/ad.23.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/12/2024] [Accepted: 03/04/2024] [Indexed: 06/01/2024] Open
Abstract
Melasma is a prevalent hyperpigmentation condition known for its challenging treatment due to its resemblance to photoaged skin disorders. Numerous studies have shed light on the intricate nature of melasma, which often bears similarity to photoaging disorders. Various therapeutic approaches, encompassing topical and systemic treatments, chemical peeling, and laser therapy, have exhibited efficacy in managing melasma in previous research. However, melasma often reoccurs despite successful treatment, primarily due to its inherent photoaged properties. Given that melasma shares features with photoaging disorders, including disruptions in the basement membrane, solar elastosis, angiogenesis, and mast cell infiltration in the dermal layer, a comprehensive treatment strategy is imperative. Such an approach might involve addressing epidermal hyperpigmentation while concurrently restoring dermal components. In this article, we provide a comprehensive review of conventional treatment methods frequently employed in clinical practice, as well as innovative treatments currently under development for melasma management. Additionally, we offer an extensive overview of the pathogenesis of melasma.
Collapse
Affiliation(s)
- Ju Young Jo
- Department of Dermatology, Korea University Ansan Hospital, Ansan, Korea
| | - Su Ji Chae
- Department of Dermatology, Korea University Ansan Hospital, Ansan, Korea
| | - Hwa Jung Ryu
- Department of Dermatology, Korea University Ansan Hospital, Ansan, Korea.
| |
Collapse
|
248
|
Nong H, Yuan H, Lin Y, Chen S, Li Y, Luo Z, Yang W, Zhang T, Chen Y. IL-22 promotes occludin expression by activating autophagy and treats ulcerative colitis. Mol Cell Biochem 2024; 479:1443-1450. [PMID: 37440121 DOI: 10.1007/s11010-023-04806-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Abstract
IL-22 serves a protective function in the intestinal barrier. These protective properties of IL-22 may offer a potential treatment for ulcerative colitis (UC). However, the exact mechanisms of action remain unclear. Autophagy plays an important protective role in stabilizing the intestinal barrier. We aimed to explore the role of autophagy in the IL-22-mediated-protective effects in UC. Dextran sulfate sodium (DSS) was administrated via drinking water over 7 days to induce acute UC in BALB/c mice. Treatments with IL-22 (0.25 μg/10 g bodyweight) were started by intraperitoneal injection on days 1, 3, and 5. Weight, disease activity index, histological score, and myeloperoxidase (MPO) activity were used to evaluate the severity of colitis. The expressions of occludin and autophagy-related proteins LC3BII/I were measured by western blot analysis. The lipopolysaccharide-induced HT-29 cell model was used to explore the mechanism. In vivo, IL-22 significantly alleviated DSS-induced clinical manifestations, reduced histological injury, and inhibited MPO activity. IL-22 upregulated the expression of occludin and the LC3B II/I ratio in the colon. In vitro, IL-22 significantly lowered TNF-α levels and enhanced the expression of occludin and the LC3B II/I ratio. Importantly, inhibiting autophagy in vitro by 3-Methyladenine (3-MA) attenuated the occludin protective effects of IL-22. In summary, our findings demonstrate that IL-22 ameliorates DSS-induced ulcerative colitis, which may be attributable to activating autophagy and then promoting occludin expression.
Collapse
Affiliation(s)
- Hui Nong
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Haifeng Yuan
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Yiting Lin
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Siyu Chen
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Yanbo Li
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Zhaoqiong Luo
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Wen Yang
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Tao Zhang
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China.
| | - Yuanneng Chen
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China.
| |
Collapse
|
249
|
Ma Y, Wei X, Xu J, Ji S, Yang F, Zeng A, Li Y, Cao J, Zhang J, Luo Z, Fu Q. Development of double-layer poly (amino acid) modified electrochemical sensor for sensitive and direct detection of betamethasone in cosmetics. Talanta 2024; 273:125855. [PMID: 38461643 DOI: 10.1016/j.talanta.2024.125855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/25/2023] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Screening for illegal use of glucocorticoids (GCs) in cosmetics by electrochemical methods is extremely challenging due to the poor electrochemical activity of GCs. In this study, poly-L-Serine/poly-Taurine modified electrode (P(Tau)/P(L-Ser)/GCE) was prepared for sensitive and direct determination of betamethasone in cosmetics by a simple two-step in situ electropolymerization reaction. The relevant parameters of preparation and electroanalytical conditions were respectively studied, including the concentration of polymerization solution, the number of scanning circles and the scanning rate. The SEM and EDS mapping demonstrated successful preparation of P(Tau)/P(L-Ser)/GCE. The electro-catalytic properties of the obtained electrodes were investigated using cyclic voltammetry and differential pulse voltammetry methods, showing a remarkable improvement of sensitivity for the detection of betamethasone due to the synergic effect of both P(L-Ser) and P(Tau). In addition, we investigated the electrochemical reduction of betamethasone on the surface of modified electrode. It was found that the process was controlled by diffusion effect and involved the transfer of two electrons and two protons. Then the electrochemical sensor method based on P(Tau)/P(L-Ser)/GCE was established and delivered a linear response to betamethasone concentration from 0.5 to 20 μg mL-1 with a limit of detection of 32.2 ng mL-1, with excellent recoveries (98.1%-106.8%) and relative standard deviations (<4.8%). Furthermore, the established electrochemical sensor method was compared with conventional HPLC method. The results showed that both of them were comparable. Moreover, the established electrochemical sensor method was with the merits of short analysis time, environmentally friendly, low cost and easy to achieve in-site detection.
Collapse
Affiliation(s)
- Yirong Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinran Wei
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiameng Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shuhua Ji
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fan Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Aiguo Zeng
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yunzhe Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiliang Cao
- Department of Pharmaceutical Analysis, College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Jia Zhang
- Shaanxi Hanjiang Pharmaceutical Group Co., Ltd, Hanzhong, 723000, China
| | - Zhimin Luo
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Qiang Fu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China; Department of Pharmaceutical Analysis, College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China.
| |
Collapse
|
250
|
Ford AC, Vanner S, Kashyap PC, Nasser Y. Chronic Visceral Pain: New Peripheral Mechanistic Insights and Resulting Treatments. Gastroenterology 2024; 166:976-994. [PMID: 38325759 PMCID: PMC11102851 DOI: 10.1053/j.gastro.2024.01.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/15/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
Chronic visceral pain is one of the most common reasons for patients with gastrointestinal disorders, such as inflammatory bowel disease or disorders of brain-gut interaction, to seek medical attention. It represents a substantial burden to patients and is associated with anxiety, depression, reductions in quality of life, and impaired social functioning, as well as increased direct and indirect health care costs to society. Unfortunately, the diagnosis and treatment of chronic visceral pain is difficult, in part because our understanding of the underlying pathophysiologic basis is incomplete. In this review, we highlight recent advances in peripheral pain signaling and specific physiologic and pathophysiologic preclinical mechanisms that result in the sensitization of peripheral pain pathways. We focus on preclinical mechanisms that have been translated into treatment approaches and summarize the current evidence base for directing treatment toward these mechanisms of chronic visceral pain derived from clinical trials. The effective management of chronic visceral pain remains of critical importance for the quality of life of suffers. A deeper understanding of peripheral pain mechanisms is necessary and may provide the basis for novel therapeutic interventions.
Collapse
Affiliation(s)
- Alexander C Ford
- Leeds Institute of Medical Research at St. James's, University of |Leeds, Leeds, United Kingdom; Leeds Gastroenterology Institute, Leeds Teaching Hospitals National Health Service Trust, Leeds, United Kingdom
| | - Stephen Vanner
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Yasmin Nasser
- Snyder Institute for Chronic Diseases, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|