201
|
Ji Y, Yang Y, Wu Z. Programming of metabolic and autoimmune diseases in canine and feline: linkage to the gut microbiome. Microb Pathog 2023; 185:106436. [PMID: 37913827 DOI: 10.1016/j.micpath.2023.106436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
Metabolic and autoimmune disorders have long represented challenging health problems because of their growing prevalence in companion animals. The gut microbiome, made up of trillions of microorganisms, is implicated in multiple physiological and pathological processes. Similar to human beings, the complicated microbiome harbored in the gut of canines and felines emerges as a key factor determining a wide range of normal and disease conditions. Evidence accumulated from recent findings on canine and feline research uncovered that the gut microbiome is actively involved in host metabolism and immunity. Notably, the composition, abundance, activity, and metabolites of the gut microbiome are all elements that shape clinical outcomes concerning metabolism and immune function. This review highlights the implications of the gut microbiome for metabolic disorders (obesity, diabetes, and hepatic lipidosis) and autoimmune diseases (inflammatory bowel disease, osteoarthritis, asthma, and myasthenia gravis) in canine and feline animals, providing novel strategies and therapeutic targets for the prevention and treatment of pet diseases.
Collapse
Affiliation(s)
- Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China.
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
202
|
Islam MM, Islam MM, Rahman MA, Ripon MAR, Hossain MS. Gut microbiota in obesity and related complications: Unveiling the complex interplay. Life Sci 2023; 334:122211. [PMID: 38084672 DOI: 10.1016/j.lfs.2023.122211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023]
Abstract
In recent years, the obesity epidemic has escalated into a serious public health catastrophe that is only getting worse. However, research into the pathophysiological pathways behind the obesity development and the illnesses that it is associated with is ongoing. In the last decades, it is now clear that the gut microbiota plays a significant role in the genesis and progression of obesity and obesity-related illnesses, particularly changes in its metabolites and composition as obesity progresses. Here, we provide a summary of the processes by which variations in gut metabolite levels and the composition of gut microbiota affect obesity and associated disorders. The bacteria residing in the gut release several chemicals that influence the appetite control, metabolism, and other systems. Since it can either encourage or restrict the deposition of fat in several different ways, the gut microbiota's role in obesity is debatable. Additionally, we go over potential therapeutic approaches that could be utilized to alter gut microbiota composition and focus on the important metabolic pathways associated with obesity and metabolic disorders linked to obesity.
Collapse
Affiliation(s)
- Md Monirul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Mahmodul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Abdur Rahman
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Abdur Rahman Ripon
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Mohammad Salim Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| |
Collapse
|
203
|
Ma L, La X, Zhang B, Xu W, Tian C, Fu Q, Wang M, Wu C, Chen Z, Chang H, Li JA. Total Astragalus saponins can reverse type 2 diabetes mellitus-related intestinal dysbiosis and hepatic insulin resistance in vivo. Front Endocrinol (Lausanne) 2023; 14:1190827. [PMID: 38053727 PMCID: PMC10694298 DOI: 10.3389/fendo.2023.1190827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
Objective Intestinal flora homeostasis in rats with type 2 diabetes mellitus (T2DM) was evaluated to explore the effects of total Astragalus saponins (TAS) on hepatic insulin resistance (IR). Methods Six-week-old male Sprague-Dawley rats were fed high-fat and high-sugar diet for 4 weeks and intraperitoneally injected with streptozotocin to induce T2DM, and they were then randomly divided into control, model, metformin, and TAS groups. Stool, serum, colon, and liver samples were collected after 8 weeks of drug administration for relevant analyses. Results TAS reduced fasting blood glucose, 2-hour postprandial blood glucose, area under the curve of oral glucose tolerance test, glycated serum protein, homeostasis model assessment of insulin resistance, total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels in T2DM rats but increased insulin, C-peptide, and high-density lipoprotein cholesterol levels. Moreover, TAS improved the morphology and structure of liver and colon tissues and improved the composition of the intestinal microbiome and bacterial community structure at different taxonomic levels. In addition, TAS increased the protein expression of hepatic IRS-1, PI3K, PDK1, and p-AKT and decreased the protein expression of p-GSK-3β. Meanwhile, TAS increased the mRNA expression of liver PDK1, PI3K, and GS and decreased the mRNA expression of GSK-3β. Conclusion TAS can ameliorate T2DM-related abnormal glucose and blood lipid metabolism, intestinal dysbiosis, and IR.
Collapse
Affiliation(s)
- Leilei Ma
- School of Public Health, North China University of Science and Technology, Tangshan, China
- He Bei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Xiaojin La
- He Bei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Biwei Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China
- He Bei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Wenxuan Xu
- He Bei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Chunyu Tian
- He Bei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Qianru Fu
- He Bei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Meng Wang
- He Bei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Chenxi Wu
- He Bei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Zhen Chen
- Oriental Herbs Korlatolt felelossegu tarsasag, Budapest, Hungary
| | - Hong Chang
- He Bei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Ji-an Li
- School of Public Health, North China University of Science and Technology, Tangshan, China
- He Bei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
204
|
Caldarelli M, Franza L, Rio P, Gasbarrini A, Gambassi G, Cianci R. Gut-Kidney-Heart: A Novel Trilogy. Biomedicines 2023; 11:3063. [PMID: 38002063 PMCID: PMC10669427 DOI: 10.3390/biomedicines11113063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The microbiota represents a key factor in determining health and disease. Its role in inflammation and immunological disorders is well known, but it is also involved in several complex conditions, ranging from neurological to psychiatric, from gastrointestinal to cardiovascular diseases. It has recently been hypothesized that the gut microbiota may act as an intermediary in the close interaction between kidneys and the cardiovascular system, leading to the conceptualization of the "gut-kidney-heart" axis. In this narrative review, we will discuss the impact of the gut microbiota on each system while also reviewing the available data regarding the axis itself. We will also describe the role of gut metabolites in this complex interplay, as well as potential therapeutical perspectives.
Collapse
Affiliation(s)
- Mario Caldarelli
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| | - Laura Franza
- Emergency Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy;
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| |
Collapse
|
205
|
von Süßkind-Schwendi M, Dötsch A, Haberland V, Ferrario P, Krüger R, Louis S, Döring M, Graf D. Addition of soluble fiber to standard purified diets is important for gut morphology in mice. Sci Rep 2023; 13:19340. [PMID: 37935741 PMCID: PMC10630450 DOI: 10.1038/s41598-023-46331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
Purified diets (PD) increase standardization and repeatability in rodent studies but lead to differences in the phenotype of animals compared to grain-based "chow" diets. PD contain less fiber and are often devoid of soluble fiber, which can impact gut health. Thus, the aim of the present study was to modify the PD AIN93G by addition of soluble fiber, to promote more natural gut development as seen with chow diets. One hundred twenty male C57BL/6J mice were fed over 12 weeks either a chow diet, AIN93G or one of three modified AIN93G with increased fiber content and different ratios of soluble fiber to cellulose. Gut health was assessed through histological and immunohistochemical parameters and gut barrier gene expression. Gut microbiota composition was analyzed and its activity characterized through short chain fatty acid (SCFA) quantification. Feeding AIN93G led to tissue atrophy, a less diverse microbiota and a lower production of SCFA compared to chow diet. The addition of soluble fiber mitigated these effects, leading to intermediate colon and caecum crypt lengths and microbiota composition compared to both control diets. In conclusion, the addition of soluble fibers in PDs seems essential for gut morphology as well as a diverse and functional gut microbiome.
Collapse
Affiliation(s)
- Marietta von Süßkind-Schwendi
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI)-Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Andreas Dötsch
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI)-Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Vivien Haberland
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI)-Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Paola Ferrario
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI)-Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Ralf Krüger
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI)-Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Sandrine Louis
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI)-Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Maik Döring
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI)-Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
- National Reference Centre for Authentic Food, Max Rubner-Institut (MRI)-Federal Research Institute of Nutrition and Food, E.-C.-Baumann-Straße 20, 95326, Kulmbach, Germany
| | - Daniela Graf
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI)-Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany.
| |
Collapse
|
206
|
Fan L, Xia Y, Wang Y, Han D, Liu Y, Li J, Fu J, Wang L, Gan Z, Liu B, Fu J, Zhu C, Wu Z, Zhao J, Han H, Wu H, He Y, Tang Y, Zhang Q, Wang Y, Zhang F, Zong X, Yin J, Zhou X, Yang X, Wang J, Yin Y, Ren W. Gut microbiota bridges dietary nutrients and host immunity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2466-2514. [PMID: 37286860 PMCID: PMC10247344 DOI: 10.1007/s11427-023-2346-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/05/2023] [Indexed: 06/09/2023]
Abstract
Dietary nutrients and the gut microbiota are increasingly recognized to cross-regulate and entrain each other, and thus affect host health and immune-mediated diseases. Here, we systematically review the current understanding linking dietary nutrients to gut microbiota-host immune interactions, emphasizing how this axis might influence host immunity in health and diseases. Of relevance, we highlight that the implications of gut microbiota-targeted dietary intervention could be harnessed in orchestrating a spectrum of immune-associated diseases.
Collapse
Affiliation(s)
- Lijuan Fan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyao Xia
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Youxia Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Jiahuan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Leli Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhending Gan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bingnan Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Fu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Congrui Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hui Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yulong Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qingzhuo Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Wang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Fan Zhang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Xin Zong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China.
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Wenkai Ren
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
207
|
Wang B, Zhao Y, Qu Y, Lu J, Yan H, Gu J, Jiang Q, Xu Y, Xia W. Neuroprotective effect of chitosan oligosaccharide on alcohol-induced hippocampal injury using proteomic analysis. J Food Sci 2023; 88:4718-4730. [PMID: 37799098 DOI: 10.1111/1750-3841.16778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023]
Abstract
Alcoholism is a serious public health problem, and the abuse of drinking seriously damages the health of people. Chitosan oligosaccharides (COSs) are small-molecule oligosaccharides with amino groups that have many unique properties. The neuroprotective effect of COS on alcohol-induced hippocampal injury in Sprague-Dawley (SD) rats was investigated. The discrimination ratio of the COS group in the Y-maze experiment was 59.3% higher than that of the ETOH group. Meanwhile, the discrimination index was less than 0 in the ETOH group but greater than 0 in the COS group during the object recognition test. The cells in the COS group were more tightly arranged than those in the ETOH group. Proteomics was used to identify differentially expressed proteins in the hippocampus. There were 27 differentially expressed proteins in the COS and ETOH group for further bioinformatic analysis. There are three enriched pathway categories, namely, primary immunodeficiency, hedgehog signaling, and sulfur relay system. Next, sonic hedgehog signaling pathway-related proteins were verified through western blotting. The protein expression level of β-arrestin-2 in the COS group was 2.85 times higher than that in the ETOH group. This work may contribute to understanding the underlying mechanism of the neuroprotective effect of COS against alcohol-induced hippocampal injury in SD rats.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuke Zhao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Yufei Qu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Jingyu Lu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Hua Yan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Juan Gu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Qiqing Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
208
|
Bellés A, Abad I, Sánchez L, Grasa L. Whey and Buttermilk-Based Formulas Modulate Gut Microbiota in Mice with Antibiotic-Induced Dysbiosis. Mol Nutr Food Res 2023; 67:e2300248. [PMID: 37654048 DOI: 10.1002/mnfr.202300248] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/10/2023] [Indexed: 09/02/2023]
Abstract
SCOPE Diet is one of the main factors that modifies intestinal microbiota composition. The search for foods that can reverse situations of intestinal dysbiosis such as that induced by antibiotics is of great interest. Buttermilk and whey are the main by-products produced by the dairy industry containing bioactive compounds. The aim of this study is to investigate the ability of whey and buttermilk-based formulas supplemented with lactoferrin and milk fat globule membrane (MFGM) to modulate the effects of clindamycin on mouse intestinal microbiota. METHODS AND RESULTS Male C57BL/6 mice are treated with saline (control), clindamycin (Clin), a formula containing whey (F1) or buttermilk (F2), Clin+F1 or Clin+F2, and their fecal microbiota profiles are analyzed by sequencing of 16S rRNA gene using the MinION device. Clin induces alterations in both the composition and metabolic functions of the mice intestinal microbiota. The treatment with F1 or F2 reverses the effects of clindamycin, restoring the levels of Rikenellaceae and Lactobacillaceae families and certain pathways related to short-chain fatty acids production and tetrahydrofolate biosynthesis. CONCLUSION Whey and buttermilk supplemented with lactoferrin and MFGM may be a bioactive formula for functional foods to prevent or restore microbiota alterations induced by antibiotic administration.
Collapse
Affiliation(s)
- Andrea Bellés
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, 50013, Spain
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), Zaragoza, 50013, Spain
| | - Inés Abad
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), Zaragoza, 50013, Spain
- Departamento de Producción Animal y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, 50013, Spain
| | - Lourdes Sánchez
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), Zaragoza, 50013, Spain
- Departamento de Producción Animal y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, 50013, Spain
| | - Laura Grasa
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, 50013, Spain
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), Zaragoza, 50013, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, 50009, Spain
| |
Collapse
|
209
|
Ke W, Flay KJ, Huang X, Hu X, Chen F, Li C, Yang DA. Polysaccharides from Platycodon grandiflorus attenuates high-fat diet induced obesity in mice through targeting gut microbiota. Biomed Pharmacother 2023; 166:115318. [PMID: 37572640 DOI: 10.1016/j.biopha.2023.115318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023] Open
Abstract
The root of Platycodon grandiflorus (PG), abundant in soluble polysaccharides, has a long history in traditional Asian diets and herbal medicine due to its anti-inflammatory activity and anti-obesity effects. Our previous study was the first to establish a link between the beneficial effects of PG and changes in the gut microbiota, and suggested potential roles that the polysaccharide components play. However, more evidence was needed to understand the anti-obesity functions of polysaccharides from PG (PS) and their relationship with the regulation of the gut microbiota. In this study, we first performed an experiment to explore the anti-obesity activities of PS: Male C57BL/6 mice (six-weeks-old) were fed either a standard control diet (CON), or a high-fat diet (HFD) to induce obesity, or a HFD supplemented with PS (HFPS) for 8 weeks. Body weight and food intake were monitored throughout. Lipid metabolism were determined and related gene expression changes in adipose tissues were analyzed by RNA-seq. Amplicon sequencing of the bacterial 16 S rRNA gene was used to explore gut microbiota structure in fecal samples. Then, we performed the second experiment to explore whether the anti-obesity activities of PS were dependent on the regulation of the gut microbiota: Male C57BL/6 mice (six-weeks-old), treated with an antibiotic cocktail to reduce the gut microbial load, were fed either a HFD (A-HFD) or a HFPS (A-HFPS) diet for 8 weeks. Finally, we used in vitro fermentation experiments to verify the effects of PS on the growth and metabolic activities of the gut microbes. We found that PS significantly reduced HFD-induced weight gain and excessive fat accumulation, changed the expression of key genes involved in lipid metabolism, and attenuated HFD-induced changes in the gut microbiota. However, PS did not affect fat accumulation or lipid metabolism in the gut microbiota depleted mice. Overall, our results show that PS has significant effects on the gut microbiota in the mouse model, and the anti-obesity effects of PS are mediated via changes in the gut microbiota composition and metabolic activity.
Collapse
Affiliation(s)
- Weixin Ke
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center of Meat Quality and Safety Control, Nanjing 210095, China; National Key Laboratory of Meat Quality Control and New Resource, Nanjing Agricultural University, Nanjing 210095, China
| | - Kate Jade Flay
- Department of Veterinary Clinical Sciences, City University of Hong Kong, Kowloon 999077, Hong Kong Special Administrative Region of China
| | - Xiaoning Huang
- Department of bioengineering, University of Illinois at Urbana, Champaign 61801, USA
| | - Xiaosong Hu
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chunbao Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center of Meat Quality and Safety Control, Nanjing 210095, China; National Key Laboratory of Meat Quality Control and New Resource, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Aaron Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
210
|
Vasfilova ES. Fructose-Containing Plant Carbohydrates: Biological Activities and Medical Applications. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2023; 512:343-353. [PMID: 38087025 DOI: 10.1134/s0012496623700655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 12/18/2023]
Abstract
The review considers the chemical structure specifics and distribution in plants for fructose-containing carbohydrates (fructans). Various biological activities were observed in fructans and associated with their physicochemical features. Fructans affect many physiological and biochemical processes in the human body, improving health and reducing the risk of various disorders. Prebiotic activity is the most important physiological function of fructans. Fructans improve the microflora composition in the colon and intestinal mucosa by increasing the content of useful bacteria and decreasing the content of potentially harmful microorganisms, stimulate the physiological functions of the microflora, and provide for a better state of the intestine and a better health status. By modifying the intestinal microbiota and utilizing certain additional mechanisms, fructans can favorably affect the immune function, decrease the risk of various inflammatory processes, and to reduce the likelihood of tumorigenesis due to exposure to carcinogens. Fructans improve carbohydrate and lipid metabolism by reducing the blood levels of glucose, total cholesterol, low-density lipoprotein (LDL), and very-low-density lipoprotein (VLDL) and increasing the blood content of high-density lipoprotein (HLD). Fructans are low in calories, and their use in foods reduces the risk of obesity. Fructans facilitate higher calcium absorption and increase the bone density, thus reducing the risk of osteoporosis. Fructants protect the body from oxidative stress, intestinal infections, and parasitic invasions.
Collapse
Affiliation(s)
- E S Vasfilova
- Institute Botanic Garden, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia.
| |
Collapse
|
211
|
Wang S, De Paepe K, Van de Wiele T, Fu X, Wang S, Zhang B, Huang Q. Starch-entrapped microspheres enhance gut microbiome-mediated anti-obesity effects of resistant starch in high-fat diet induced obese C57BL/6J mice. Food Res Int 2023; 172:113215. [PMID: 37689957 DOI: 10.1016/j.foodres.2023.113215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 09/11/2023]
Abstract
The prevalence of obesity is growing worldwide and has been extensively linked to gut microbiota dysbiosis. In addition to exercise and physical activity, fiber-rich foods may be a first-line prophylactic to manage obesity. This study investigated in vivo dietary intervention with high-amylose maize starch (HAMS) and starch-entrapped microspheres (MS) to treat high-fat diet induced metabolic disorder and gut microbiome dysbiosis in mice. MS more efficiently controlled body weight as well as adipose tissue mass compared to HAMS. Furthermore, MS significantly reduced blood glucose, insulin, lipid and pro-inflammatory cytokine levels compared to the high-fat diet, while the effects of HAMS were less pronounced. The MS-altered gut microbiota composition favoring Streptococcaceae, Bacilli, Firmicutes and unclassified Clostridiales was predicted to promote fatty acid, pantothenate and Coenzyme A biosynthesis. In line with this, elevated fecal short chain fatty acid (SCFA), in particular, propionate concentration was observed in MS-fed mice. Our study provides novel insights into the mechanistic action of MS on intestinal homeostasis, providing a basis for future dietary therapeutic applications.
Collapse
Affiliation(s)
- Shaokang Wang
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Kim De Paepe
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Xiong Fu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Bin Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; China-Singapore International Research Institute, Guangzhou 510555, China.
| | - Qiang Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; China-Singapore International Research Institute, Guangzhou 510555, China.
| |
Collapse
|
212
|
Li L, Yan S, Liu S, Wang P, Li W, Yi Y, Qin S. In-depth insight into correlations between gut microbiota and dietary fiber elucidates a dietary causal relationship with host health. Food Res Int 2023; 172:113133. [PMID: 37689844 DOI: 10.1016/j.foodres.2023.113133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 09/11/2023]
Abstract
Dietary fiber exerts a wide range of biological benefits on host health, which not only provides a powerful source of nutrition for gut microbiota but also supplies key microbial metabolites that directly affect host health. This review mainly focuses on the decomposition and metabolism of dietary fiber and the essential genera Bacteroides and Bifidobacterium in dietary fiber fermentation. Dietary fiber plays an essential role in host health by impacting outcomes related to obesity, enteritis, immune health, cancer and neurodegenerative diseases. Additionally, the gut microbiota-independent pathway of dietary fiber affecting host health is also discussed. Personalized dietary fiber intake combined with microbiome, genetics, epigenetics, lifestyle and other factors has been highlighted for development in the future. A higher level of evidence is needed to demonstrate which microbial phenotype benefits from which kind of dietary fiber. In-depth insights into the correlation between gut microbiota and dietary fiber provide strong theoretical support for the precise application of dietary fiber, which elucidates a dietary causal relationship with host health.
Collapse
Affiliation(s)
- Lili Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Shuling Yan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuangjiang Liu
- Shandong University, Qingdao 266237, China; Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ping Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Yuetao Yi
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
213
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
214
|
Jiang L, Xu H, Gu Y, Wei L. A glycosylated Phr1 protein is induced by calcium stress and its expression is positively controlled by the calcium/calcineurin signaling transcription factor Crz1 in Candida albicans. Cell Commun Signal 2023; 21:237. [PMID: 37723578 PMCID: PMC10506259 DOI: 10.1186/s12964-023-01224-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/12/2023] [Indexed: 09/20/2023] Open
Abstract
As one of the most important human fungal pathogens, Candida albicans senses and adapts to host niches with different pH values through the pH-responsive Rim101 pathway. Its transcription factor Rim101 activates the expression of alkaline pH-induced genes including PHR1 that encodes a glycosylphosphatidylinsitol-anchored β(1,3)-glucanosyltransferase critical for hyphal wall formation. The calcium/calcineurin signaling pathway is mediated by the transcription factor Crz1 in yeasts and other lower eukaryotes. Here we report that deletion of PHR1 leads to calcium sensitivity of C. albicans cells. In addition, expression of Phr1 is induced by calcium stress and under the control of Crz1 in C. albicans. EMSA assay demonstrates that Crz1 binds to one CDRE element in the PHR1 promoter. Alkaline treatment induces two species of glycosylated Phr1 proteins with different degrees of glycosylation, which is independent of Crz1. In contrast, only one species of Phr1 protein with a low degree of glycosylation is induced by calcium stress in a Crz1-dependent fashion. Therefore, we have provided an evidence that regulation of cell wall remodeling is integrated through differential degrees of Phr1 glycosylation by both the pH-regulated Rim101 pathway and the calcium/calcineurin signaling pathway in C. albicans. Video Abstract.
Collapse
Affiliation(s)
- Linghuo Jiang
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, 530007, Guangxi, China.
| | - Huihui Xu
- Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Yiying Gu
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, 530007, Guangxi, China
| | - Liudan Wei
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, 530007, Guangxi, China
| |
Collapse
|
215
|
García Cambón TA, Lopez CS, Hanheiser N, Bhatia S, Achazi K, Rivas MV, Spagnuolo CC. Benzoxaborole-grafted high molecular weight chitosan from prawn: Synthesis, characterization, target recognition and antibacterial properties. Carbohydr Polym 2023; 316:120925. [PMID: 37321754 DOI: 10.1016/j.carbpol.2023.120925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 06/17/2023]
Abstract
Boronated polymers are in the focus of dynamic functional materials due to the versatility of the B-O interactions and accessibility of precursors. Polysaccharides are highly biocompatible, and therefore, an attractive platform for anchoring boronic acid groups for further bioconjugation of cis-diol containing molecules. We report for the first time the introduction of benzoxaborole by amidation of the amino groups of chitosan improving solubility and introducing cis-diol recognition at physiological pH. The chemical structures and physical properties of the novel chitosan-benzoxaborole (CS-Bx) as well as two phenylboronic derivatives synthesized for comparison, were characterized by nuclear magnetic resonance (NMR), infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic light scattering (DLS), rheology and optical spectroscopic methods. The novel benzoxaborole grafted chitosan was perfectly solubilized in an aqueous buffer at physiological pH, extending the possibilities of boronated materials derived from polysaccharides. The dynamic covalent interaction between boronated chitosan and model affinity ligands, was studied by means of spectroscopy methods. A glycopolymer derived from poly(isobutylene-alt-anhydride) was also synthesized to study the formation of dynamic assemblies with benzoxaborole-grafted chitosan. A first approximation to apply fluorescence microscale thermophoresis for the interactions of the modified polysaccharide is also discussed. Additionally, the activity of CSBx against bacterial adhesion was studied.
Collapse
Affiliation(s)
- Tomás A García Cambón
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Guiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Cecilia Samaniego Lopez
- CIHIDECAR-UBA-CONICET, Int. Guiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Natalie Hanheiser
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Sumati Bhatia
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Katharina Achazi
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - M Verónica Rivas
- CIHIDECAR-UBA-CONICET, Int. Guiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina; INN - CONICET, Gerencia Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, San Martín, Buenos Aires B1650KNA, Argentina
| | - Carla C Spagnuolo
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Guiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina; CIHIDECAR-UBA-CONICET, Int. Guiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina.
| |
Collapse
|
216
|
Wan J, Song J, Lv Q, Zhang H, Xiang Q, Dai H, Zheng H, Lin X, Zhang W. Alterations in the Gut Microbiome of Young Children with Airway Allergic Disease Revealed by Next-Generation Sequencing. J Asthma Allergy 2023; 16:961-972. [PMID: 37700874 PMCID: PMC10494927 DOI: 10.2147/jaa.s422537] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023] Open
Abstract
Purpose Recent studies had shown that gut microbiota played a significant role in the development of the immune system and may affect the course of airway allergic disease. We conducted this study to determine unique gut microbial associated with allergic disease in children by shotgun gene sequencing. Methods We collected fecal samples from children with allergic asthma (n = 23) and allergic rhinitis (n = 18), and healthy control (n = 19). The gut microbiota of specimens was analyzed by high-throughput metagenomic shotgun gene sequencing. Results The intestinal microbiota of children with allergic asthma and allergic rhinitis was characterized by increased microbial richness and diversity. Simpson and Shannon were significantly elevated in children with allergic asthma. Principal coordinates analysis (PCoA) showed that the gut microbial communities cluster patterns of children with asthma or rhinitis were significantly different from those of healthy controls. However, no significant difference was found between asthma group and rhinitis group At the phylum level, higher relative abundance of Firmicutes was found in the allergic rhinitis group and allergic asthma group, while the level of Bacteroidetes was significantly lower. At the genus level, Corynebacterium, Streptococcus, Dorea, Actinomyces, Bifidobacterium, Blautia, and Rothia were significantly enriched in the allergic asthma group. Finally, a random forest classifier model selected 16 general signatures to discriminate the allergic asthma group from the healthy control group. Conclusion In conclusion, children in the allergic rhinitis group and allergic asthma group had altered gut microbiomes in comparison with the healthy control group. Compared to healthy children, the gut microbiome in children with allergic diseases has higher pro-inflammatory potential and increased production of pro-inflammatory molecules.
Collapse
Affiliation(s)
- Jinyi Wan
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
- Department of Pediatric Internal Medicine, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, 317000, People’s Republic of China
| | - Jingjing Song
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Qingqing Lv
- Department of Pediatric Internal Medicine, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, 317000, People’s Republic of China
| | - Hui Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Qiangwei Xiang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Huan Dai
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Hang Zheng
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Xixi Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| |
Collapse
|
217
|
Wang W, Zhang C, Zhang H, Li L, Fan T, Jin Z. The alleviating effect and mechanism of GLP-1 on ulcerative colitis. Aging (Albany NY) 2023; 15:8044-8060. [PMID: 37595257 PMCID: PMC10496996 DOI: 10.18632/aging.204953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 07/17/2023] [Indexed: 08/20/2023]
Abstract
Ulcerative Colitis (UC) is a major type of chronic inflammatory bowel disease of the colonic mucosa and exhibits progressive morbidity. The incidence and prevalence of UC is increasing worldwide. The global burden of UC, which can substantially reduce quality of life, is clearly increasing. These data highlight the need for research into prevention of UC and innovations in health-care systems to manage this complex and costly disease. Glucagon-like peptide-1 (GLP-1), a new antidiabetic drug, is used to treat Type 2 Diabetes Mellitus (T2DM). Accumulating evidence suggests that GLP-1 has additional roles other than glucose-lowering effects. Despite the abundance of GLP-1 research, studies in UC have been less consistent, especially body weight; for example, body weight, colon length, colon injury score, intestinal microbiota, remain to be studied further. To date, the molecular mechanism of the protective effect of GLP-1 on UC remains obscure. The effect of GLP-1 was studied by using a dextran sulfate sodium (DSS)-induced colitic mice and lipopolysaccharide (LPS) treated RAW264.7 cells (macrophage cell line) under in vivo and in vitro conditions, respectively. Our results indicate that GLP-1 significantly relieves ulcerative colitis as it represses the production of proinflammatory mediators. In addition, GLP-1 blocks the activation of the protein kinase B (AKT)/nuclear factor-κB (NF-κB), and mitogen-activated protein kinase (MAPK) signaling pathways. GLP-1 also alleviates DSS-induced injury to the intestinal mucosa and dysbiosis of gut microbiota. Altogether, GLP-1 has protection effect on ulcerative colitis. Thus, GLP-1 can be considered as a potential therapeutic candidate for the treatment of UC.
Collapse
Affiliation(s)
- Wenrui Wang
- Department of Hepatopancreatobiliary Medicine, Digestive Diseases Center, The Second Hospital, Jilin University, Changchun 130000, PR China
| | - Chuan Zhang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun 130000, PR China
| | - Haolong Zhang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union, Hospital of Jilin University, Changchun 130000, PR China
| | - Luyao Li
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun 130000, PR China
| | - Tingting Fan
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun 130000, PR China
| | - Zhenjing Jin
- Department of Hepatopancreatobiliary Medicine, Digestive Diseases Center, The Second Hospital, Jilin University, Changchun 130000, PR China
| |
Collapse
|
218
|
Li B, Han L, Ma J, Zhao M, Yang B, Xu M, Gao Y, Xu Q, Du Y. Synthesis of acylated derivatives of chitosan oligosaccharide and evaluation of their potential antifungal agents on Fusarium oxysporum. Carbohydr Polym 2023; 314:120955. [PMID: 37173050 DOI: 10.1016/j.carbpol.2023.120955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/16/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Chitosan oligosaccharide (COS) is an important carbohydrate-based biomaterial for synthesizing candidate drugs and biological agents. This study synthesized COS derivatives by grafting acyl chlorides of different alkyl chain lengths (C8, C10, and C12) onto COS molecules and further investigated their physicochemical properties and antimicrobial activity. The COS acylated derivatives were characterized using Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction, and thermogravimetric analysis. COS acylated derivatives were successfully synthesized and possessed high solubility and thermal stability. As for the evaluation of antibacterial activity, COS acylated derivatives did not significantly inhibit Escherichia coli and Staphylococcus aureus, but they significantly inhibited Fusarium oxysporum, which was superior to that of COS. Transcriptomic analysis revealed that COS acylated derivatives exerted antifungal activity mainly by downregulating the expression of efflux pumps, disrupting cell wall integrity, and impeding normal cell metabolism. Our findings provided a fundamental theory for the development of environmentally friendly antifungal agents.
Collapse
Affiliation(s)
- Bing Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Lingyu Han
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Jinlong Ma
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Meijuan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Binghui Yang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Mei Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yujia Gao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Qingsong Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Yuguang Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
219
|
Ma J, Ma H, Zheng S, Yu X, Wang K, Wang J, Pan Y, Yao J. Intestinal flora in the constipation patients before versus after lactulose intervention. Medicine (Baltimore) 2023; 102:e34703. [PMID: 37565923 PMCID: PMC10419342 DOI: 10.1097/md.0000000000034703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023] Open
Abstract
This study aimed to investigate the characteristics of intestinal flora in patients with chronic functional constipation before and after lactulose intervention. Twenty-nine patients with constipation in the treatment group received oral lactulose (15 mL/d) for a month. Twenty healthy subjects served as controls. Stool specimens were collected before and after lactulose treatment. Fecal bacteria were examined by 16SrRNA gene sequencing and bioinformatics analysis. After lactulose treatment, most bacteria in the constipation group, including Bifidobacteria, Bacillus cereus, Prevotella, Bacillus, Anaerostipes, Oribacterium, and Mogibacterium increased as compared to those in the healthy control group. Anaerotruncus declined in the healthy control group after lactulose treatment. Our study shows lactulose can increase the abundance of probiotics, optimize the intestinal microenvironment, and alleviate constipation.
Collapse
Affiliation(s)
- Jianxia Ma
- Department of Gastroenterology, Hua Dong Hospital, Fu Dan University, Shanghai, PR China
| | - Houlian Ma
- Department of Gastroenterology, Hua Dong Hospital, Fu Dan University, Shanghai, PR China
| | - Songbai Zheng
- Department of Gastroenterology, Hua Dong Hospital, Fu Dan University, Shanghai, PR China
| | - Xiaofeng Yu
- Department of Gastroenterology, Hua Dong Hospital, Fu Dan University, Shanghai, PR China
| | - Ke Wang
- Department of Gastroenterology, Hua Dong Hospital, Fu Dan University, Shanghai, PR China
| | - Jun Wang
- Department of Gastroenterology, Hua Dong Hospital, Fu Dan University, Shanghai, PR China
| | - Yiru Pan
- Clinical Laboratory, Hua Dong Hospital, Fu Dan University, Shanghai, PR China
| | - Jianfeng Yao
- Department of Gastroenterology, Hua Dong Hospital, Fu Dan University, Shanghai, PR China
| |
Collapse
|
220
|
Qin S, Tan P, Xie J, Zhou Y, Zhao J. A systematic review of the research progress of traditional Chinese medicine against pulmonary fibrosis: from a pharmacological perspective. Chin Med 2023; 18:96. [PMID: 37537605 PMCID: PMC10398979 DOI: 10.1186/s13020-023-00797-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Pulmonary fibrosis is a chronic progressive interstitial lung disease caused by a variety of etiologies. The disease can eventually lead to irreversible damage to the lung tissue structure, severely affecting respiratory function and posing a serious threat to human health. Currently, glucocorticoids and immunosuppressants are the main drugs used in the clinical treatment of pulmonary fibrosis, but their efficacy is limited and they can cause serious adverse effects. Traditional Chinese medicines have important research value and potential for clinical application in anti-pulmonary fibrosis. In recent years, more and more scientific researches have been conducted on the use of traditional Chinese medicine to improve or reduce pulmonary fibrosis, and some important breakthroughs have been made. This review paper systematically summarized the research progress of pharmacological mechanism of traditional Chinese medicines and their active compounds in improving or reducing pulmonary fibrosis. We conducted a systematic search in several main scientific databases, including PubMed, Web of Science, and Google Scholar, using keywords such as idiopathic pulmonary fibrosis, pulmonary fibrosis, interstitial pneumonia, natural products, herbal medicine, and therapeutic methods. Ultimately, 252 articles were included and systematically evaluated in this analysis. The anti-fibrotic mechanisms of these traditional Chinese medicine studies can be roughly categorized into 5 main aspects, including inhibition of epithelial-mesenchymal transition, anti-inflammatory and antioxidant effects, improvement of extracellular matrix deposition, mediation of apoptosis and autophagy, and inhibition of endoplasmic reticulum stress. The purpose of this article is to provide pharmaceutical researchers with information on the progress of scientific research on improving or reducing Pulmonary fibrosis with traditional Chinese medicine, and to provide reference for further pharmacological research.
Collapse
Affiliation(s)
- Shanbo Qin
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Peng Tan
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China.
| | - Junjie Xie
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Yongfeng Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junning Zhao
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China.
| |
Collapse
|
221
|
Munley JA, Kirkpatrick SL, Gillies GS, Bible LE, Efron PA, Nagpal R, Mohr AM. The Intestinal Microbiome after Traumatic Injury. Microorganisms 2023; 11:1990. [PMID: 37630549 PMCID: PMC10459834 DOI: 10.3390/microorganisms11081990] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
The intestinal microbiome plays a critical role in host immune function and homeostasis. Patients suffering from-as well as models representing-multiple traumatic injuries, isolated organ system trauma, and various severities of traumatic injury have been studied as an area of interest in the dysregulation of immune function and systemic inflammation which occur after trauma. These studies also demonstrate changes in gut microbiome diversity and even microbial composition, with a transition to a pathobiome state. In addition, sex has been identified as a biological variable influencing alterations in the microbiome after trauma. Therapeutics such as fecal transplantation have been utilized to ameliorate not only these microbiome changes but may also play a role in recovery postinjury. This review summarizes the alterations in the gut microbiome that occur postinjury, either in isolated injury or multiple injuries, along with proposed mechanisms for these changes and future directions for the field.
Collapse
Affiliation(s)
- Jennifer A. Munley
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| | - Stacey L. Kirkpatrick
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| | - Gwendolyn S. Gillies
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| | - Letitia E. Bible
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| | - Philip A. Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| | - Ravinder Nagpal
- Department of Nutrition & Integrative Physiology, Florida State University College of Health and Human Sciences, Tallahassee, FL 32306, USA;
| | - Alicia M. Mohr
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| |
Collapse
|
222
|
Vega-Sagardía M, Delgado J, Ruiz-Moyano S, Garrido D. Proteomic analyses of Bacteroides ovatus and Bifidobacterium longum in xylan bidirectional culture shows sugar cross-feeding interactions. Food Res Int 2023; 170:113025. [PMID: 37316088 DOI: 10.1016/j.foodres.2023.113025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
The intestinal microbiome is a community of anaerobic microorganisms whose activities significantly impact human health. Its composition can be modulated by consuming foods rich in dietary fiber, such as xylan, a complex polysaccharide that can be considered an emerging prebiotic. In this work, we evaluated how certain gut bacteria acted as primary degraders, fermenting dietary fibers, and releasing metabolites that other bacteria can further use. Different bacterial strains of Lactobacillus, Bifidobacterium, and Bacteroides were evaluated for their ability to consume xylan and interact with one another. Results from unidirectional assays gave indications of possible cross-feeding between bacteria using xylan as a carbon source. Bidirectional assays showed that Bifidobacterium longum PT4 increased its growth in the presence of Bacteroides ovatus HM222. Proteomic analyses indicated that B. ovatus HM222 synthesizes enzymes facilitating xylan degradation, such as β-xylanase, arabinosidase, L-arabinose isomerase, and xylosidase. Interestingly, the relative abundance of these proteins remains largely unaffected in the presence of Bifidobacterium longum PT4. In the presence of B. ovatus, B. longum PT4 increased the production of enzymes such as α-L-arabinosidase, L-arabinose isomerase, xylulose kinase, xylose isomerase, and sugar transporters. These results show an example of positive interaction between bacteria mediated by xylan consumption. Bacteroides degraded this substrate to release xylooligosaccharides, or monosaccharides (xylose, arabinose), which might support the growth of secondary degraders such as B. longum.
Collapse
Affiliation(s)
- Marco Vega-Sagardía
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
| | - Josué Delgado
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, Universidad de Extremadura, Avenida de las Ciencias s/n, 10003 Caceres, Spain.
| | - Santiago Ruiz-Moyano
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain; Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile.
| |
Collapse
|
223
|
Bisht A, Goh KKT, Matia-Merino L. The fate of mamaku gum in the gut: effect on in vitro gastrointestinal function and colon fermentation by human faecal microbiota. Food Funct 2023; 14:7024-7039. [PMID: 37439088 DOI: 10.1039/d3fo01665j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Mamaku is a fern indigenous to the Pacific Islands with a long history of use for therapeutic benefits such as to combat skin conditions and manage gastrointestinal discomfort; however, the scientific understanding is limited. In this study, we examined the effect of mamaku gum, extracted from different age fronds of the New Zealand Black tree fern (Cyathea medullaris, Mamaku) (stage 1: young, stage 2: fully grown and stage 3: old), on gut function using in vitro models of static digestion, enzyme activity and static colonic fermentation. Under simulated gastric and small intestinal conditions, mamaku polysaccharide (MP) was indigestible as there was no decrease in the molecular weight (Mw) of the polymer. Mamaku gum could reduce the activity of digestive enzymes (α-amylase, pepsin and lipase) in a concentration-dependent manner, with the stage 1 sample showing the highest inhibition and stage 3 the lowest. All three mamaku gum samples could also equally bind bile acids during intestinal digestion. During fermentation, human faecal microbiota utilised the mamaku gum and significantly increased the production of total short-chain fatty acids (SCFAs) and reduced the pH when compared with the blank. However, changes in SCFAs and pH for mamaku groups were less prominent than for inulin and guar gum control groups, suggesting lower fermentability of mamaku gum compared to the latter two. Furthermore, mamaku gum altered the composition of colonic microbiota, specifically reducing the ratio of Firmicutes to Bacteroidetes and increasing the relative abundance of Bacteroides, Enterococcus, Paraprevotella and Parabacteroides genera. No obvious difference between mamaku gum samples from stage 1, 2 and 3 was observed during fermentation. Collectively, these results suggest that mamaku gum may modulate the functionality of the host gut by reducing enzyme activity, binding bile acids, altering the colonic microbial composition and producing SCFAs.
Collapse
Affiliation(s)
- Akshay Bisht
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.
| | - Kelvin K T Goh
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.
| | - Lara Matia-Merino
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
224
|
Han L, Zhai R, Hu B, Yang J, Li Y, Xu Z, Meng Y, Li T. Effects of Octenyl-Succinylated Chitosan-Whey Protein Isolated on Emulsion Properties, Astaxanthin Solubility, Stability, and Bioaccessibility. Foods 2023; 12:2898. [PMID: 37569167 PMCID: PMC10418324 DOI: 10.3390/foods12152898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The synthesis of octenyl-succinylated chitosan with different degrees of substitution resulting from chemical modification of chitosan and controlled addition of octenyl succinic acid was investigated. The modified products were characterized using 1H NMR, FTIR, and XRD, and the degree of substitution was also determined. The properties of the modified chitosan oligosaccharide in solution were evaluated by surface tension and dye solubilization, finding that the molecules self-assembled when they are above the critical aggregation concentration. The two methods yielded consistent results, showing that the self-assembly was reduced with higher levels of substitution. The antimicrobial activity of the octanyl-succinylated chitosan oligosaccharide (OSA-COS) derivatives against Staphylococcus aureus, Escherichia coli, and Fusarium oxysporum f.sp cucumerinum was investigated by the Oxford cup method. While the acetylated COS derivatives were not significantly effective against either E coli or S. aureus, they showed significant antifungal activity toward F. oxysporum that was superior to that of COS. The modified product was found to form a stable emulsion when mixed with whey protein isolate. The emulsion formed by the highly substituted derivatives have a certain stability and loading efficiency, which can be used for the encapsulation and delivery of astaxanthin.
Collapse
Affiliation(s)
- Lingyu Han
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Ruiyi Zhai
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Jixin Yang
- Faculty of Arts, Science and Technology, Wrexham Glyndwr University, Plas Coch, Mold Road, Wrexham LL11 2AW, UK;
| | - Yaoyao Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Zhe Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Yueyue Meng
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| |
Collapse
|
225
|
Ikeda Y, Tsuji A, Matsuda S. Gut Protective Effect from Newly Isolated Bacteria as Probiotics against Dextran Sulfate Sodium and Carrageenan-Induced Ulcerative Colitis. Microorganisms 2023; 11:1858. [PMID: 37513030 PMCID: PMC10386561 DOI: 10.3390/microorganisms11071858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Gut microbiome dysbiosis might be linked to certain diseases such as inflammatory bowel diseases (IBDs), which are categorized by vigorous inflammation of the gastrointestinal tract. Several studies have shown the favorable anti-inflammatory effect of certain probiotics in IBD therapy. In the present investigation, the possible gut protective effects of commensal bacteria were examined in an IBD model mouse that was cost-effectively induced with low molecular weight dextran sulfate sodium (DSS) and kappa carrageenan. Our conclusions show that certain probiotic supplementation could result in the attenuation of the disease condition in the IBD mouse, suggesting a favorable therapeutic capability for considerably improving symptoms of gut inflammation with an impact on the IBD therapy. However, the molecular mechanisms require further investigation.
Collapse
Affiliation(s)
- Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
226
|
Wang Y, Yang Q, Godana EA, Zhang Y, Zhang H. Ultrastructural observation and transcriptome analysis provide insights into mechanisms of Penicillium expansum invading apple wounds. Food Chem 2023; 414:135633. [PMID: 36809724 DOI: 10.1016/j.foodchem.2023.135633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/11/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023]
Abstract
Penicillium expansum is a pathogen causing enormous postharvest losses of fruits, especially apples. In this study, we first investigated the morphological changes of P. expansum within apple wounds during infectious process by microscopic observation. We found that conidia swelled and secreted potential hydrophobin in 4 h, germinated in 8 h, and finally formed conidiophores in 36 h, a critical control time point to prevent the second contamination of spores. We then compared the transcript accumulation of P. expansum in apple tissues and liquid culture at 12 h. In total, 3168 and 1318 up-regulated and down-regulated genes were identified. Among them, genes regarding the biosynthesis of substances such as ergosterol, organic acid, cell wall degrading enzymes, and patulin were induced in expression. Pathways were activated, including autophagy, the mitogen-activated protein kinase, and pectin degradation. Our findings provide insights into the lifestyle and the mechanisms of P. expansum invading apple fruits.
Collapse
Affiliation(s)
- Yiran Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Esa Abiso Godana
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Yu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
227
|
Cao K, Wang X, Sun F, Zhang H, Cui Y, Cao Y, Yao Q, Zhu X, Yao T, Wang M, Meng C, Gao Z. Promoting Heme and Phycocyanin Biosynthesis in Synechocystis sp. PCC 6803 by Overexpression of Porphyrin Pathway Genes with Genetic Engineering. Mar Drugs 2023; 21:403. [PMID: 37504934 PMCID: PMC10382063 DOI: 10.3390/md21070403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Due to their unique biochemical and spectroscopic properties, both heme and phycocyanobilin are widely applied in the medical and food industries. Synechocystis sp. PCC 6803 contains both heme and phycocyanin, and is capable of synthesizing phycocyanin using heme as a precursor. The aim of this study was to uncover viable metabolic targets in the porphyrin pathway from Synechocystis sp. PCC 6803 to promote the accumulation of heme and phycocyanin in the recombinant strains of microalgae. A total of 10 genes related to heme synthesis pathway derived from Synechococcus elongatus PCC 7942 and 12 genes related to endogenous heme synthesis were individually overexpressed in strain PCC 6803. The growth rate and pigment content (heme, phycocyanin, chlorophyll a and carotenoids) of 22 recombinant algal strains were characterized. Quantitative real-time PCR technology was used to investigate the molecular mechanisms underlying the changes in physiological indicators in the recombinant algal strains. Among the 22 mutant strains, the mutant overexpressing the haemoglobin gene (glbN) of strain PCC 6803 had the highest heme content, which was 2.5 times higher than the wild type; the mutant overexpressing the gene of strain PCC 7942 (hemF) had the highest phycocyanin content, which was 4.57 times higher than the wild type. Overall, the results suggest that genes in the porphyrin pathway could significantly affect the heme and phycocyanin content in strain PCC 6803. Our study provides novel crucial targets for promoting the accumulation of heme and phycocyanin in cyanobacteria.
Collapse
Affiliation(s)
- Kai Cao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiaodong Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Hao Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yulin Cui
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yujiao Cao
- School of Foreign Languages, Shandong University of Technology, Zibo 255090, China
| | - Qingshou Yao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiangyu Zhu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Ting Yao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Meng Wang
- Yantai Hongyuan Bio-Fertilizer Co., Ltd., Yantai 264000, China
| | - Chunxiao Meng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Zhengquan Gao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
228
|
Wang X, Niu L, Wang Y, Zhan S, Wang L, Dai D, Cao J, Guo J, Li L, Zhang H, Zhong T. Combining 16S rRNA Sequencing and Metabolomics Data to Decipher the Interactions between Gut Microbiota, Host Immunity, and Metabolites in Diarrheic Young Small Ruminants. Int J Mol Sci 2023; 24:11423. [PMID: 37511183 PMCID: PMC10380214 DOI: 10.3390/ijms241411423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Diarrhea is associated with gut microbiota, immunity, and metabolic alterations in goat kids and lambs. This study used 28 lambs (11 healthy and 17 diarrheic) and 20 goat kids (10 healthy and 10 diarrheic) to investigate the association between diarrhea occurrence and changes in gut microbiota, metabolism, and immunity in goat kids and lambs. The results revealed that Firmicutes, Proteobacteria, and Bacteroidetes were the dominant phyla in goat kids and lambs. In addition, Enterobacteriaceae and Lachnospiraceae families were identified in both diarrheic goat kids and lambs. Furthermore, functional prediction of microbiota showed that it was involved in cell motility and cancer pathways. The identified differential metabolites were implicated in the bile secretion pathway. Lambs had significant differences in immunoglobulin G (IgG), immunoglobulin M (IgM), interleukin-1β (IL-1β), and tumor necrosis factor-alpha (TNF-α) compared to goat kids. IgG and IL-1β were positively correlated to Patescibacteria, Clostridiaceae, and unclassified_Muribaculaceae in both diarrheic goat kids and lambs. In addition, weighted gene co-expression network analysis (WGCNA) revealed that the MEgreen module was positively associated with IgG, IgM, IL-1β, TNF-α, and triglyceride (TG). In conclusion, our results characterized the gut microbiota, metabolism, and immune status of lambs and goat kids suffering from diarrhea.
Collapse
Affiliation(s)
- Xinlu Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yaxuan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dinghui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
229
|
Kaufmann B, Seyfried N, Hartmann D, Hartmann P. Probiotics, prebiotics, and synbiotics in nonalcoholic fatty liver disease and alcohol-associated liver disease. Am J Physiol Gastrointest Liver Physiol 2023; 325:G42-G61. [PMID: 37129252 PMCID: PMC10312326 DOI: 10.1152/ajpgi.00017.2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
The use of probiotics, prebiotics, and synbiotics has become an important therapy in numerous gastrointestinal diseases in recent years. Modifying the gut microbiota, this therapeutic approach helps to restore a healthy microbiome. Nonalcoholic fatty liver disease and alcohol-associated liver disease are among the leading causes of chronic liver disease worldwide. A disrupted intestinal barrier, microbial translocation, and an altered gut microbiome metabolism, or metabolome, are crucial in the pathogenesis of these chronic liver diseases. As pro-, pre-, and synbiotics modulate these targets, they were identified as possible new treatment options for liver disease. In this review, we highlight the current findings on clinical and mechanistic effects of this therapeutic approach in nonalcoholic fatty liver disease and alcohol-associated liver disease.
Collapse
Affiliation(s)
- Benedikt Kaufmann
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Nick Seyfried
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Daniel Hartmann
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Phillipp Hartmann
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States
| |
Collapse
|
230
|
Subramaniam S, Kamath S, Ariaee A, Prestidge C, Joyce P. The impact of common pharmaceutical excipients on the gut microbiota. Expert Opin Drug Deliv 2023; 20:1297-1314. [PMID: 37307224 DOI: 10.1080/17425247.2023.2223937] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Increasing attention is being afforded to understanding the bidirectional relationships that exist between oral medications and the gut microbiota, in an attempt to optimize pharmacokinetic performance and mitigate unwanted side effects. While a wealth of research has investigated the direct impact of active pharmaceutical ingredients (APIs) on the gut microbiota, the interactions between inactive pharmaceutical ingredients (i.e. excipients) and the gut microbiota are commonly overlooked, despite excipients typically representing over 90% of the final dosage form. AREAS COVERED Known excipient-gut microbiota interactions for various classes of inactive pharmaceutical ingredients, including solubilizing agents, binders, fillers, sweeteners, and color additives, are reviewed in detail. EXPERT OPINION Clear evidence indicates that orally administered pharmaceutical excipients directly interact with gut microbes and can either positively or negatively impact gut microbiota diversity and composition. However, these relationships and mechanisms are commonly overlooked during drug formulation, despite the potential for excipient-microbiota interactions to alter drug pharmacokinetics and interfere with host metabolic health. The insights derived from this review will inform pharmaceutical scientists with the necessary design considerations for mitigating potential adverse pharmacomicrobiomic interactions when formulating oral dosage forms, ultimately providing clear avenues for improving therapeutic safety and efficacy.
Collapse
Affiliation(s)
- Santhni Subramaniam
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, Australia
| | - Srinivas Kamath
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, Australia
| | - Amin Ariaee
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, Australia
| | - Clive Prestidge
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, Australia
| | - Paul Joyce
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
231
|
Neri-Rosario D, Martínez-López YE, Esquivel-Hernández DA, Sánchez-Castañeda JP, Padron-Manrique C, Vázquez-Jiménez A, Giron-Villalobos D, Resendis-Antonio O. Dysbiosis signatures of gut microbiota and the progression of type 2 diabetes: a machine learning approach in a Mexican cohort. Front Endocrinol (Lausanne) 2023; 14:1170459. [PMID: 37441494 PMCID: PMC10333697 DOI: 10.3389/fendo.2023.1170459] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction The gut microbiota (GM) dysbiosis is one of the causal factors for the progression of different chronic metabolic diseases, including type 2 diabetes mellitus (T2D). Understanding the basis that laid this association may lead to developing new therapeutic strategies for preventing and treating T2D, such as probiotics, prebiotics, and fecal microbiota transplants. It may also help identify potential early detection biomarkers and develop personalized interventions based on an individual's gut microbiota profile. Here, we explore how supervised Machine Learning (ML) methods help to distinguish taxa for individuals with prediabetes (prediabetes) or T2D. Methods To this aim, we analyzed the GM profile (16s rRNA gene sequencing) in a cohort of 410 Mexican naïve patients stratified into normoglycemic, prediabetes, and T2D individuals. Then, we compared six different ML algorithms and found that Random Forest had the highest predictive performance in classifying T2D and prediabetes patients versus controls. Results We identified a set of taxa for predicting patients with T2D compared to normoglycemic individuals, including Allisonella, Slackia, Ruminococus_2, Megaspgaera, Escherichia/Shigella, and Prevotella, among them. Besides, we concluded that Anaerostipes, Intestinibacter, Prevotella_9, Blautia, Granulicatella, and Veillonella were the relevant genus in patients with prediabetes compared to normoglycemic subjects. Discussion These findings allow us to postulate that GM is a distinctive signature in prediabetes and T2D patients during the development and progression of the disease. Our study highlights the role of GM and opens a window toward the rational design of new preventive and personalized strategies against the control of this disease.
Collapse
Affiliation(s)
- Daniel Neri-Rosario
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | | | | | - Jean Paul Sánchez-Castañeda
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Cristian Padron-Manrique
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
| | - David Giron-Villalobos
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
- Coordinación de la Investigación Científica – Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
232
|
Kadyan S, Park G, Wang B, Nagpal R. Dietary fiber modulates gut microbiome and metabolome in a host sex-specific manner in a murine model of aging. Front Mol Biosci 2023; 10:1182643. [PMID: 37457834 PMCID: PMC10345844 DOI: 10.3389/fmolb.2023.1182643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Emerging evidence reveals the fundamental role of the gut microbiome in human health. Among various factors regulating our gut microbiome, diet is one of the most indispensable and prominent one. Inulin is one of the most widely-studied dietary fiber for its beneficial prebiotic effects by positively modulating the gut microbiome and microbial metabolites. Recent research underscores sexual dimorphism and sex-specific disparities in microbiome and also diet-microbiome interactions. However, whether and how the prebiotic effects of dietary fiber differ among sexes remain underexplored. To this end, we herein examine sex-specific differences in the prebiotic effects of inulin on gut microbiome and metabolome in a humanized murine model of aging i.e., aged mice carrying human fecal microbiota. The findings demonstrate that inulin exerts prebiotic effects, but in a sex-dependent manner. Overall, inulin increases the proportion of Bacteroides, Blautia, and glycine, while decreasing Eggerthella, Lactococcus, Streptococcus, trimethylamine, 3-hydroxyisobutyrate, leucine and methionine in both sexes. However, we note sex-specific effects of inulin including suppression of f_Enteroccaceae:_, Odoribacter, bile acids, malonate, thymine, valine, acetoin, and ethanol while promotion of Dubosiella, pyruvate, and glycine in males. Whereas, suppression of Faecalibaculum, Lachnoclostridium, Schaedlerella, phenylalanine and enhancement of Parasutterella, Phocaeicola, f_Lachnospiraceae;_, Barnesiella, Butyricimonas, glycine, propionate, acetate and glutamate are observed in females. Altogether, the study reveals that prebiotic mechanisms of dietary fiber vary in a sex-dependent manner, underscoring the importance of including both sexes in preclinical/clinical studies to comprehend the mechanisms and functional aspects of dietary interventions for effective extrapolation and translation in precision nutrition milieus.
Collapse
Affiliation(s)
- Saurabh Kadyan
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Gwoncheol Park
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Bo Wang
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
233
|
Korsten SGPJ, Vromans H, Garssen J, Willemsen LEM. Butyrate Protects Barrier Integrity and Suppresses Immune Activation in a Caco-2/PBMC Co-Culture Model While HDAC Inhibition Mimics Butyrate in Restoring Cytokine-Induced Barrier Disruption. Nutrients 2023; 15:2760. [PMID: 37375664 DOI: 10.3390/nu15122760] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Low-grade inflammation and barrier disruption are increasingly acknowledged for their association with non-communicable diseases (NCDs). Short chain fatty acids (SCFAs), especially butyrate, could be a potential treatment because of their combined anti-inflammatory and barrier- protective capacities, but more insight into their mechanism of action is needed. In the present study, non-activated, lipopolysaccharide-activated and αCD3/CD28-activated peripheral blood mononuclear cells (PBMCs) with and without intestinal epithelial cells (IEC) Caco-2 were used to study the effect of butyrate on barrier function, cytokine release and immune cell phenotype. A Caco-2 model was used to compare the capacities of butyrate, propionate and acetate and study their mechanism of action, while investigating the contribution of lipoxygenase (LOX), cyclooxygenase (COX) and histone deacetylase (HDAC) inhibition. Butyrate protected against inflammatory-induced barrier disruption while modulating inflammatory cytokine release by activated PBMCs (interleukin-1 beta↑, tumor necrosis factor alpha↓, interleukin-17a↓, interferon gamma↓, interleukin-10↓) and immune cell phenotype (regulatory T-cells↓, T helper 17 cells↓, T helper 1 cells↓) in the PBMC/Caco-2 co-culture model. Similar suppression of immune activation was shown in absence of IEC. Butyrate, propionate and acetate reduced inflammatory cytokine-induced IEC activation and, in particular, butyrate was capable of fully protecting against cytokine-induced epithelial permeability for a prolonged period. Different HDAC inhibitors could mimic this barrier-protective effect, showing HDAC might be involved in the mechanism of action of butyrate, whereas LOX and COX did not show involvement. These results show the importance of sufficient butyrate levels to maintain intestinal homeostasis.
Collapse
Affiliation(s)
- Sandra G P J Korsten
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Tiofarma B.V., 3261 ME Oud-Beijerland, The Netherlands
| | - Herman Vromans
- Tiofarma B.V., 3261 ME Oud-Beijerland, The Netherlands
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Danone/Nutricia Research B.V., 3584 CT Utrecht, The Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
234
|
Elsyed AFN, Wong GL, Ameen M, Wu MW, Chang CC. Tunable Fluorescence via Self-Assembled Switching of AIE-Active Micelle-like Nanoaggregates. Int J Mol Sci 2023; 24:9941. [PMID: 37373087 DOI: 10.3390/ijms24129941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Chemical structures bearing a combination of aggregation-induced emission enhancement (AIEE) and intramolecular charge transfer (ICT) properties attracted the attention of many researchers. Recently, there is an increasing demand to pose tunable AIEE and ICT fluorophores that could present their conformation changes-related emission colors by adjusting the medium polarity. In this study, we designed and synthesized a series of 4-alkoxyphenyl-substituted 1,8-naphthalic anhydride derivatives NAxC using the Suzuki coupling reaction to construct donor-acceptor (D-A)-type fluorophores with alkoxyl substituents of varying carbon chain lengths (x = 1, 2, 4, 6, 12 in NAxC). To explain the observation that molecules with longer carbon chains revealed unusual fluorescence enhancement in water, we study the optical properties and evaluate their locally excited (LE) and ICT states by solvent effects combined with Lippert-Mataga plots. Then, we explored the self-assembly abilities of these molecules in water-organic (W/O) mixed solutions and observed the morphology of its nanostructure using a fluorescence microscope and SEM. The results show that NAxC, x = 4, 6, 12 show different degrees of self-assembly behaviors and corresponding aggregation-induced emission enhancement (AIEE) progresses. At the same time, different nanostructures and corresponding spectral changes can be obtained by adjusting the water ratio in the mixed solution. That is, NAxC compounds present different transitions between LE, ICT and AIEE based on the polarity, water ratio and time changes. We designed NAxC as the structure-activity relationship (SAR) of the surfactant to demonstrate that AIEE comes from the formation of micelle-like nanoaggregates, which causes a restriction of the transfer from the LE state to the ICT state, and micelle formation results in a blue-shift in emission and enhances the intensity in the aggregate state. Among them, NA12C is most likely to form micelles and the most obvious fluorescence enhancement, which will switch over time due to the nano-aggregation transition.
Collapse
Affiliation(s)
- Amal Farghal Noreldein Elsyed
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan
| | - Gah-Lai Wong
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan
| | - Mohamed Ameen
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan
| | - Min-Wei Wu
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan
| | - Cheng-Chung Chang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan
- Intelligent Minimally-Invasive Device Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
235
|
Yang J, Wang E, Jiang M, Tan Y, Yao F, Sun C, Pan L, Gao L, Yao J. Integrated fecal microbiota and metabolomics analysis of the orlistat intervention effect on polycystic ovary syndrome rats induced by letrozole combined with a high-fat diet. J Ovarian Res 2023; 16:109. [PMID: 37277785 DOI: 10.1186/s13048-023-01193-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND This study aimed to compare the characteristics of the gut microbiota and their metabolite profiles between polycystic ovary syndrome (PCOS) and orlistat-treated PCOS rats (ORL-PCOS), which could help to better understand the underlying mechanism of the effect of orlistat on PCOS. METHODS PCOS rat models were established using letrozole combined with a high-fat diet. Ten rats were randomly selected as a PCOS control group (PCOS). The other three groups (n = 10/group) were additionally supplemented with different doses of orlistat (low, medium, high). Then, fecal samples of the PCOS and ORL-PCOS groups were analysed by 16S rRNA gene sequencing and untargeted metabolomics. Blood samples were collected to detect serum sex hormones and lipids. RESULTS The results showed that orlistat attenuated the body weight gain, decreased the levels of T, LH, the LH/FSH ratio, TC, TG and LDL-C; increased the level of E2; and improved estrous cycle disorder in PCOS rats. The bacterial richness and diversity of the gut microbiota in the ORL-PCOS group were higher than those in the PCOS group. The ratio of Firmicutes to Bacteroidetes was decreased with orlistat treatment. Moreover, orlistat treatment led to a significant decrease in the relative abundance of Ruminococcaceae and Lactobacillaceae, and increases in the abundances of Muribaculaceae and Bacteroidaceae. Metabolic analysis identified 216 differential fecal metabolites in total and 6 enriched KEGG pathways between the two groups, including steroid hormone biosynthesis, neuroactive ligand-receptor interaction and vitamin digestion and absorption. Steroid hormone biosynthesis was the pathway with the most significant enrichment. The correlations between the gut microbiota and differential metabolites were calculated, which may provide a basis for understanding the composition and function of microbial communities. CONCLUSIONS Our data suggested that orlistat exerts a PCOS treatment effect, which may be mediated by modifying the structure and composition of the gut microbiota, as well as the metabolite profiles of PCOS rats.
Collapse
Affiliation(s)
- Jianmei Yang
- Department of Pediatric Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276006, Shandong, China
- Department of Pediatric Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Enli Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276006, Shandong, China
| | - Mingmin Jiang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276006, Shandong, China
| | - Yujun Tan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276006, Shandong, China
| | - Fangfang Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276006, Shandong, China
| | - Chenghong Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276006, Shandong, China
| | - Lihong Pan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276006, Shandong, China
| | - Ling Gao
- Scientific Center, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276006, Shandong, China.
| |
Collapse
|
236
|
Prado C, Espinoza A, Martínez-Hernández JE, Petrosino J, Riquelme E, Martin AJM, Pacheco R. GPR43 stimulation on TCRαβ + intraepithelial colonic lymphocytes inhibits the recruitment of encephalitogenic T-cells into the central nervous system and attenuates the development of autoimmunity. J Neuroinflammation 2023; 20:135. [PMID: 37264394 PMCID: PMC10233874 DOI: 10.1186/s12974-023-02815-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/22/2023] [Indexed: 06/03/2023] Open
Abstract
INTRODUCTION Gut microbiota plays a critical role in the regulation of immune homeostasis. Accordingly, several autoimmune disorders have been associated with dysbiosis in the gut microbiota. Notably, the dysbiosis associated with central nervous system (CNS) autoimmunity involves a substantial reduction of bacteria belonging to Clostridia clusters IV and XIVa, which constitute major producers of short-chain fatty acids (SCFAs). Here we addressed the role of the surface receptor-mediated effects of SCFAs on mucosal T-cells in the development of CNS autoimmunity. METHODS To induce CNS autoimmunity, we used the mouse model of experimental autoimmune encephalomyelitis (EAE) induced by immunization with the myelin oligodendrocyte glycoprotein (MOG)-derived peptide (MOG35-55 peptide). To address the effects of GPR43 stimulation on colonic TCRαβ+ T-cells upon CNS autoimmunity, mucosal lymphocytes were isolated and stimulated with a selective GPR43 agonist ex vivo and then transferred into congenic mice undergoing EAE. Several subsets of lymphocytes infiltrating the CNS or those present in the gut epithelium and gut lamina propria were analysed by flow cytometry. In vitro migration assays were conducted with mucosal T-cells using transwells. RESULTS Our results show a sharp and selective reduction of intestinal propionate at the peak of EAE development, accompanied by increased IFN-γ and decreased IL-22 in the colonic mucosa. Further analyses indicated that GPR43 was the primary SCFAs receptor expressed on T-cells, which was downregulated on colonic TCRαβ+ T-cells upon CNS autoimmunity. The pharmacologic stimulation of GPR43 increased the anti-inflammatory function and reduced the pro-inflammatory features in several TCRαβ+ T-cell subsets in the colonic mucosa upon EAE development. Furthermore, GPR43 stimulation induced the arrest of CNS-autoreactive T-cells in the colonic lamina propria, thus avoiding their infiltration into the CNS and dampening the disease development. Mechanistic analyses revealed that GPR43-stimulation on mucosal TCRαβ+ T-cells inhibits their CXCR3-mediated migration towards CXCL11, which is released from the CNS upon neuroinflammation. CONCLUSIONS These findings provide a novel mechanism involved in the gut-brain axis by which bacterial-derived products secreted in the gut mucosa might control the CNS tropism of autoreactive T-cells. Moreover, this study shows GPR43 expressed on T-cells as a promising therapeutic target for CNS autoimmunity.
Collapse
Affiliation(s)
- Carolina Prado
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile.
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510156, Providencia, Santiago, Chile.
| | - Alexandra Espinoza
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile
| | - J Eduardo Martínez-Hernández
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile
- Agriaquaculture Nutritional Genomic Center, Temuco, Chile
| | - Joseph Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Erick Riquelme
- Respiratory Diseases Department, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Alberto J M Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile
- Escuela de Ingeniería, Facultad de Ingeniería Arquitectura y Diseño, Universidad San Sebastián, Providencia, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile.
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510156, Providencia, Santiago, Chile.
| |
Collapse
|
237
|
Donkers JM, van der Vaart JI, van de Steeg E. Gut-on-a-Chip Research for Drug Development: Implications of Chip Design on Preclinical Oral Bioavailability or Intestinal Disease Studies. Biomimetics (Basel) 2023; 8:226. [PMID: 37366821 PMCID: PMC10296225 DOI: 10.3390/biomimetics8020226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The gut plays a key role in drug absorption and metabolism of orally ingested drugs. Additionally, the characterization of intestinal disease processes is increasingly gaining more attention, as gut health is an important contributor to our overall health. The most recent innovation to study intestinal processes in vitro is the development of gut-on-a-chip (GOC) systems. Compared to conventional in vitro models, they offer more translational value, and many different GOC models have been presented over the past years. Herein, we reflect on the almost unlimited choices in designing and selecting a GOC for preclinical drug (or food) development research. Four components that largely influence the GOC design are highlighted, namely (1) the biological research questions, (2) chip fabrication and materials, (3) tissue engineering, and (4) the environmental and biochemical cues to add or measure in the GOC. Examples of GOC studies in the two major areas of preclinical intestinal research are presented: (1) intestinal absorption and metabolism to study the oral bioavailability of compounds, and (2) treatment-orientated research for intestinal diseases. The last section of this review presents an outlook on the limitations to overcome in order to accelerate preclinical GOC research.
Collapse
Affiliation(s)
- Joanne M. Donkers
- Department of Metabolic Health Research, TNO, Sylviusweg 71, 2333 BE Leiden, The Netherlands; (J.I.v.d.V.); (E.v.d.S.)
| | - Jamie I. van der Vaart
- Department of Metabolic Health Research, TNO, Sylviusweg 71, 2333 BE Leiden, The Netherlands; (J.I.v.d.V.); (E.v.d.S.)
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Evita van de Steeg
- Department of Metabolic Health Research, TNO, Sylviusweg 71, 2333 BE Leiden, The Netherlands; (J.I.v.d.V.); (E.v.d.S.)
| |
Collapse
|
238
|
Ikeda Y, Matsuda S. Gut Protective Effect from D-Methionine or Butyric Acid against DSS and Carrageenan-Induced Ulcerative Colitis. Molecules 2023; 28:4392. [PMID: 37298868 PMCID: PMC10254188 DOI: 10.3390/molecules28114392] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Microbiome dysbiosis resulting in altered metabolite profiles may be associated with certain diseases, including inflammatory bowel diseases (IBD), which are characterized by active intestinal inflammation. Several studies have indicated the beneficial anti-inflammatory effect of metabolites from gut microbiota, such as short-chain fatty acids (SCFAs) and/or D-amino acids in IBD therapy, through orally administered dietary supplements. In the present study, the potential gut protective effects of d-methionine (D-Met) and/or butyric acid (BA) have been investigated in an IBD mouse model. We have also built an IBD mouse model, which was cost-effectively induced with low molecular weight DSS and kappa-carrageenan. Our findings revealed that D-Met and/or BA supplementation resulted in the attenuation of the disease condition as well as the suppression of several inflammation-related gene expressions in the IBD mouse model. The data shown here may suggest a promising therapeutic potential for improving symptoms of gut inflammation with an impact on IBD therapy. However, molecular metabolisms need to be further explored.
Collapse
Affiliation(s)
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan;
| |
Collapse
|
239
|
Rassu G, Sorrenti M, Catenacci L, Pavan B, Ferraro L, Gavini E, Bonferoni MC, Giunchedi P, Dalpiaz A. Conjugation, Prodrug, and Co-Administration Strategies in Support of Nanotechnologies to Improve the Therapeutic Efficacy of Phytochemicals in the Central Nervous System. Pharmaceutics 2023; 15:1578. [PMID: 37376027 DOI: 10.3390/pharmaceutics15061578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Phytochemicals, produced as secondary plant metabolites, have shown interesting potential therapeutic activities against neurodegenerative diseases and cancer. Unfortunately, poor bioavailability and rapid metabolic processes compromise their therapeutic use, and several strategies are currently proposed for overcoming these issues. The present review summarises strategies for enhancing the central nervous system's phytochemical efficacy. Particular attention has been paid to the use of phytochemicals in combination with other drugs (co-administrations) or administration of phytochemicals as prodrugs or conjugates, particularly when these approaches are supported by nanotechnologies exploiting conjugation strategies with appropriate targeting molecules. These aspects are described for polyphenols and essential oil components, which can improve their loading as prodrugs in nanocarriers, or be part of nanocarriers designed for targeted co-delivery to achieve synergistic anti-glioma or anti-neurodegenerative effects. The use of in vitro models, able to simulate the blood-brain barrier, neurodegeneration or glioma, and useful for optimizing innovative formulations before their in vivo administration via intravenous, oral, or nasal routes, is also summarised. Among the described compounds, quercetin, curcumin, resveratrol, ferulic acid, geraniol, and cinnamaldehyde can be efficaciously formulated to attain brain-targeting characteristics, and may therefore be therapeutically useful against glioma or neurodegenerative diseases.
Collapse
Affiliation(s)
- Giovanna Rassu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy
| | - Barbara Pavan
- Department of Neuroscience and Rehabilitation-Section of Physiology, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy
| | | | - Paolo Giunchedi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy
| | - Alessandro Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy
| |
Collapse
|
240
|
Guice JL, Hollins MD, Farmar JG, Tinker KM, Garvey SM. Microbial inulinase promotes fructan hydrolysis under simulated gastric conditions. Front Nutr 2023; 10:1129329. [PMID: 37305092 PMCID: PMC10251236 DOI: 10.3389/fnut.2023.1129329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/28/2023] [Indexed: 06/13/2023] Open
Abstract
Fermentable oligo-, di-, monosaccharides and polyols (FODMAPs) have emerged as key contributors to digestive discomfort and intolerance to certain vegetables, fruits, and plant-based foods. Although strategies exist to minimize FODMAP consumption and exposure, exogenous enzyme supplementation targeting the fructan-type FODMAPs has been underexploited. The objective of this study was to test the hydrolytic efficacy of a food-grade, non-genetically engineered microbial inulinase preparation toward inulin-type fructans in the INFOGEST in vitro static simulation of gastrointestinal (GI) digestion. Purified inulin was shown to undergo acid-mediated hydrolysis at high gastric acidity as well as predominantly inulinase-mediated hydrolysis at lower gastric acidity. Inulinase dose-response simulations of inulin, garlic, and high-fructan meal digestion in the gastric phase suggest that as little as 50 inulinase units (INU) and up to 800 INU per serving promote fructan hydrolysis better than the control simulations without inulinase. Liquid chromatography-mass spectrometry (LC-MS) profiling of fructo-oligosaccharides (FOS) in the gastric digestas following inulinase treatment confirms the fructolytic activity of inulinase under simulated digestive conditions. Altogether, these in vitro digestion data support the use of microbial inulinase as an exogenous enzyme supplement for reducing dietary fructan-type FODMAP exposure.
Collapse
Affiliation(s)
- Justin L. Guice
- Department of Research and Development, BIO-CAT, Inc., Troy, VA, United States
| | | | | | | | - Sean M. Garvey
- Department of Research and Development, BIO-CAT, Inc., Troy, VA, United States
| |
Collapse
|
241
|
Conesa C, Bellés A, Grasa L, Sánchez L. The Role of Lactoferrin in Intestinal Health. Pharmaceutics 2023; 15:1569. [PMID: 37376017 DOI: 10.3390/pharmaceutics15061569] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
The intestine represents one of the first barriers where microorganisms and environmental antigens come into tight contact with the host immune system. A healthy intestine is essential for the well-being of humans and animals. The period after birth is a very important phase of development, as the infant moves from a protected environment in the uterus to one with many of unknown antigens and pathogens. In that period, mother's milk plays an important role, as it contains an abundance of biologically active components. Among these components, the iron-binding glycoprotein, lactoferrin (LF), has demonstrated a variety of important benefits in infants and adults, including the promotion of intestinal health. This review article aims to provide a compilation of all the information related to LF and intestinal health, in infants and adults.
Collapse
Affiliation(s)
- Celia Conesa
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Andrea Bellés
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Laura Grasa
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Lourdes Sánchez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| |
Collapse
|
242
|
Lange O, Proczko-Stepaniak M, Mika A. Short-Chain Fatty Acids-A Product of the Microbiome and Its Participation in Two-Way Communication on the Microbiome-Host Mammal Line. Curr Obes Rep 2023:10.1007/s13679-023-00503-6. [PMID: 37208544 DOI: 10.1007/s13679-023-00503-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 05/21/2023]
Abstract
PURPOSE OF REVIEW The review aims to describe short-chain fatty acids (SCFAs) as metabolites of bacteria, their complex influence on whole-body metabolism, and alterations in the SCFA profile in obesity and after bariatric surgery (BS). RECENT FINDINGS The fecal profile of SCFAs in obese patients differs from that of lean patients, as well as their gut microbiota composition. In obese patients, a lower diversity of bacteria is observed, as well as higher concentrations of SCFAs in stool samples. Obesity is now considered a global epidemic and bariatric surgery (BS) is an effective treatment for severe obesity. BS affects the structure and functioning of the digestive system, and also alters gut microbiota and the concentration of fecal SCFAs. Generally, after BS, SCFA levels are lower but levels of branched short-chain fatty acids (BSCFAs) are elevated, the effect of which is not fully understood. Moreover, changes in the profile of circulating SCFAs are little known and this is an area for further research. Obesity seems to be inherently associated with changes in the SCFA profile. It is necessary to better understand the impact of BS on microbiota and the metabolome in both feces and blood as only a small percentage of SCFAs are excreted. Further research may allow the development of a personalized therapeutic approach to the BS patient in terms of diet and prebiotic intervention.
Collapse
Affiliation(s)
- Oliwia Lange
- Department of Environmental Analysis, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | - Monika Proczko-Stepaniak
- Department of General, Endocrine, and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214, Gdansk, Poland
| | - Adriana Mika
- Department of Environmental Analysis, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland.
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland.
| |
Collapse
|
243
|
Wang W, Wang Y, Guo T, Gao C, Yang Y, Yang L, Cui Z, Mao J, Liu N, An X, Qi J. Blend of Cinnamaldehyde, Eugenol, and Capsicum Oleoresin Improved Rumen Health of Lambs Fed High-Concentrate Diet as Revealed by Fermentation Characteristics, Epithelial Gene Expression, and Bacterial Community. Animals (Basel) 2023; 13:ani13101663. [PMID: 37238093 DOI: 10.3390/ani13101663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
We investigated the effects of CEC on the fermentation characteristics, epithelial gene expression, and bacterial community in the rumen of lambs fed a high-concentrate diet. Twenty-four 3-month-old female crossbred lambs with an initial body weight of 30.37 ± 0.57 kg were randomly allocated to consume a diet supplemented with 80 mg/kg CEC (CEC) or not (CON). The experiment consisted of a 14 d adaptation period and a 60 d data collection period. Compared with the CON group, the CEC group had higher ADG, epithelial cell thickness, ruminal butyrate proportion, and lower ammonia nitrogen concentration. Increases in the mRNA expression of Occludin and Claudin-4, as well as decreases in the mRNA expression of apoptotic protease activating factor-1 (Apaf-1), cytochrome c (Cyt-C), Caspase-8, Caspase-9, Caspase-3, Caspase-7, and toll-like receptor 4 (TLR4), were observed in the CEC group. Moreover, CEC treatment also decreased the concentration of IL-1β, IL-12, and TNF-α. Supplementation with CEC altered the structure and composition of the rumen bacterial community, which was indicated by the increased relative abundances of Firmicutes, Synergistota, Rikenellaceae_RC9_gut_group, Olsenella, Schwartzia, Erysipelotrichaceae_UCG-002, Lachnospiraceae_NK3A20_group, Acetitomaculum, [Eubacterium]_ruminantium_group, Prevotellaceae_UCG-004, Christensenellaceae_R-7_group, Sphaerochaeta, Pyramidobacter, and [Eubacterium]_eligens_group, and the decreased relative abundances of Acidobacteriota, Chloroflexi, Gemmatimonadota, and MND1. Furthermore, Spearman correlation analysis revealed that the altered rumen bacteria were closely correlated with rumen health-related indices. Dietary CEC supplementation improved growth performance, reduced inflammation and apoptosis, protected barrier function, and modulated the bacterial community of lambs fed a high-concentrate diet.
Collapse
Affiliation(s)
- Wenwen Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Yuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Tao Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Chang Gao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Yi Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Lei Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Zhiwei Cui
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Jinju Mao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Na Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Xiaoping An
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Jingwei Qi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| |
Collapse
|
244
|
Wang T, Wu L, Wang S, Shi X, Liu H, Deng W. Chang Wei Qing Decoction enhances the anti-tumor effect of PD-1 inhibitor therapy by regulating the immune microenvironment and gut microbiota in colorectal cancer. Chin J Nat Med 2023; 21:333-345. [PMID: 37245872 DOI: 10.1016/s1875-5364(23)60451-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Indexed: 05/30/2023]
Abstract
The anti-tumor effect of anti-PD-1 antibody has long been shown to be strongly related to the tumor immune microenvironment (TIME). This study aimed to mechanistically assess whether Chang Wei Qing (CWQ) Decoction can enhance the anti-tumor effect of PD-1 inhibitor therapy. PD-1 inhibitor therapy showed the significant anti-tumor effect in patients with mismatch repair-deficient/microsatellite instability-high (dMMR/MSI-H) colorectal cancer (CRC), rather than those with mismatch repair-proficient/microsatellite stable (pMMR/MSS) CRC. Hence, immunofluorescence double-label staining was utilized to explore the difference in the TIME between dMMR/MSI-H and pMMR/MSS CRC patients. Flow cytometry was used to analyze T-lymphocytes in tumors from mice. Western blot was used to measure the expression of PD-L1 protein in mouse tumors. The intestinal mucosal barrier of mice was evaluated by hematoxylin-eosin staining and immunohistochemistry. 16S rRNA-gene sequencing was used to examine the structure of the gut microbiota in mice. Subsequently, Spearmanapos;s correlation analysis was used to analyze the relationship between the gut microbiota and tumor-infiltrating T-lymphocytes. The results showed that dMMR/MSI-H CRC patients had more CD8+T cells and higher expression of PD-1 and PD-L1 proteins. In vivo, CWQ enhanced the anti-tumor effect of anti-PD-1 antibody and increased the infiltration of CD8+ and PD-1+CD8+ T cells in tumors. Additionally, the combination of CWQ with anti-PD-1 antibody resulted in lower inflammation in the intestinal mucosa than that induced by anti-PD-1 antibody alone. CWQ and anti-PD-1 antibody co-treatment upregulated PD-L1 protein and reduced the abundance of Bacteroides in the gut microbiota but increased the abundance of Akkermansia,Firmicutes, andActinobacteria. Additionally, the proportion of infiltrated CD8+PD-1+, CD8+, and CD3+ T cells were found to be positively correlated with the abundance of Akkermansia. Accordingly, CWQ may modulate the TIME by modifying the gut microbiota and consequently enhance the anti-tumor effect of PD-1 inhibitor therapy.
Collapse
Affiliation(s)
- Ting Wang
- Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Linguangjin Wu
- Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuyun Wang
- Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaolan Shi
- Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| | - Hui Liu
- Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| | - Wanli Deng
- Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|
245
|
Liu L, Yin M, Gao J, Yu C, Lin J, Wu A, Zhu J, Xu C, Liu X. Intestinal Barrier Function in the Pathogenesis of Nonalcoholic Fatty Liver Disease. J Clin Transl Hepatol 2023; 11:452-458. [PMID: 36643028 PMCID: PMC9817057 DOI: 10.14218/jcth.2022.00089] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/09/2022] [Accepted: 07/29/2022] [Indexed: 01/18/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. The mechanisms involved in NAFLD onset are complicated and multifactorial. Recent literature has indicated that altered intestinal barrier function is related to the occurrence and progression of liver disease. The intestinal barrier is important for absorbing nutrients and electrolytes and for defending against toxins and antigens in the enteric environment. Major mechanisms by which the intestinal barrier influences the development of NAFLD involve the altered epithelial layer, decreased intracellular junction integrity, and increased intestinal barrier permeability. Increased intestinal permeability leads to luminal dysbiosis and allows the translocation of pathogenic bacteria and metabolites into the liver, inducing inflammation, immune response, and hepatocyte injury in NAFLD. Although research has been directed to NAFLD in recent decades, the pathophysiological changes in NAFLD initiation and progression are still not completely understood, and the therapeutic targets remain limited. A deeper understanding on the correlation between NAFLD pathogenesis and intestinal barrier regulation must be attained. Therefore, in this review, the components of the intestinal barrier and their respective functions and disruptions during the progression of NAFLD are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chunfang Xu
- Correspondence to: Xiaolin Liu and Chunfang Xu, Department of Gastroenterology, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu 215006, China. ORCID: https://orcid.org/0000-0003-4560-7589 (XL) and https://orcid.org/0000-0001-5648-3003 (CX). Tel/Fax: +86-512-65223637, E-mail: (XL) and (CX)
| | - Xiaolin Liu
- Correspondence to: Xiaolin Liu and Chunfang Xu, Department of Gastroenterology, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu 215006, China. ORCID: https://orcid.org/0000-0003-4560-7589 (XL) and https://orcid.org/0000-0001-5648-3003 (CX). Tel/Fax: +86-512-65223637, E-mail: (XL) and (CX)
| |
Collapse
|
246
|
Fernandes R, Campos J, Serra M, Fidalgo J, Almeida H, Casas A, Toubarro D, Barros AIRNA. Exploring the Benefits of Phycocyanin: From Spirulina Cultivation to Its Widespread Applications. Pharmaceuticals (Basel) 2023; 16:592. [PMID: 37111349 PMCID: PMC10144176 DOI: 10.3390/ph16040592] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Large-scale production of microalgae and their bioactive compounds has steadily increased in response to global demand for natural compounds. Spirulina, in particular, has been used due to its high nutritional value, especially its high protein content. Promising biological functions have been associated with Spirulina extracts, mainly related to its high value added blue pigment, phycocyanin. Phycocyanin is used in several industries such as food, cosmetics, and pharmaceuticals, which increases its market value. Due to the worldwide interest and the need to replace synthetic compounds with natural ones, efforts have been made to optimize large-scale production processes and maintain phycocyanin stability, which is a highly unstable protein. The aim of this review is to update the scientific knowledge on phycocyanin applications and to describe the reported production, extraction, and purification methods, including the main physical and chemical parameters that may affect the purity, recovery, and stability of phycocyanin. By implementing different techniques such as complete cell disruption, extraction at temperatures below 45 °C and a pH of 5.5-6.0, purification through ammonium sulfate, and filtration and chromatography, both the purity and stability of phycocyanin have been significantly improved. Moreover, the use of saccharides, crosslinkers, or natural polymers as preservatives has contributed to the increased market value of phycocyanin.
Collapse
Affiliation(s)
- Raquel Fernandes
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Joana Campos
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Mónica Serra
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Javier Fidalgo
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Hugo Almeida
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
- UCIBIO (Research Unit on Applied Molecular Biosciences), REQUIMTE (Rede de Química e Tecnologia), MEDTECH (Medicines and Healthcare Products), Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Casas
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Duarte Toubarro
- CBA and Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus No 13, 9500-321 Ponta Delgada, Portugal
| | - Ana I. R. N. A. Barros
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
247
|
Chen X, de Vos P. Structure-function relationship and impact on the gut-immune barrier function of non-digestible carbohydrates and human milk oligosaccharides applicable for infant formula. Crit Rev Food Sci Nutr 2023; 64:8325-8345. [PMID: 37035930 DOI: 10.1080/10408398.2023.2199072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Human milk oligosaccharides (hMOs) in mothers' milk play a crucial role in guiding the colonization of microbiota and gut-immune barrier development in infants. Non-digestible carbohydrates (NDCs) such as synthetic single hMOs, galacto-oligosaccharides (GOS), inulin-type fructans and pectin oligomers have been added to infant formula to substitute some hMOs' functions. HMOs and NDCs can modulate the gut-immune barrier, which is a multiple-layered functional unit consisting of microbiota, a mucus layer, gut epithelium, and the immune system. There is increasing evidence that the structures of the complex polysaccharides may influence their efficacy in modulating the gut-immune barrier. This review focuses on the role of different structures of individual hMOs and commonly applied NDCs in infant formulas in (i) direct regulation of the gut-immune barrier in a microbiota-independent manner and in (ii) modulation of microbiota composition and microbial metabolites of these polysaccharides in a microbiota-dependent manner. Both have been shown to be essential for guiding the development of an adequate immune barrier, but the effects are very dependent on the structural features of hMO or NDC. This knowledge might lead to tailored infant formulas for specific target groups.
Collapse
Affiliation(s)
- Xiaochen Chen
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
248
|
Wei Y, Qi M, Liu C, Li L. Astragalus polysaccharide attenuates bleomycin-induced pulmonary fibrosis by inhibiting TLR4/ NF-κB signaling pathway and regulating gut microbiota. Eur J Pharmacol 2023; 944:175594. [PMID: 36804541 DOI: 10.1016/j.ejphar.2023.175594] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
PURPOSE Astragalus polysaccharide (APS) is a naturally-occurring compound derived from Astragalus membranaceus with anti-inflammatory and antioxidant properties. However, its beneficial effects and mechanisms on pulmonary fibrosis are unknown. Gut microbiota impact lung diseases via the gut-lung axis. Herein, we investigated APS progression to intervene in pulmonary fibrosis via the toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB) signaling pathway and gut microbiota homeostasis regulation. METHODS We used bleomycin (BLM) to construct an idiopathic pulmonary fibrosis (IPF) mouse model and assessed the pathology with Masson, hematoxylin-eosin (HE), and Sirius red staining. Enzyme-linked immunosorbent assay (ELISA) kits were employed to evaluate the inflammatory cytokine levels. Western blot evaluated TLR4/NF-κB signaling pathway expression. TUNEL staining to detect apoptosis. Mice feces samples were gathered for 16S rRNA gene sequencing. RESULTS Our findings revealed that APS ameliorated the extent of damage and collagen deposition in lung tissues, reduced inflammatory cytokines TNF-α, IL-6, and IL-1β levels, and decreased apoptosis. APS might attenuate the inflammatory response through TLR4/NF-κB signaling pathway inhibition. Meanwhile, the IPF mice model exhibited dysregulation of gut microbiota, and these changes were restored after APS intervention. APS may increase the proportion of probiotics, decrease that of harmful bacteria, and balance the gut microbiota via regulating metabolic pathways. CONCLUSION APS ameliorated lung tissue injury in the IPF mice model, inhibited TLR4/NF-κB signaling pathway, suppressed inflammatory cytokines activation, and reduced apoptosis. Moreover, APS regulated the metabolism of gut microbiota besides beneficial bacteria content elevation.
Collapse
Affiliation(s)
- Yi Wei
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ming Qi
- Department of Primary Healthcare, Qingdao Hospital of Traditional Chinese Medicine, Qingdao, 266014, China
| | - Chao Liu
- Department of Medical Imaging, Qingdao Hospital of Traditional Chinese Medicine, Qingdao, 266014, China.
| | - Lujia Li
- Department of Health Care, People's Liberation Army Navy 971 Hospital, Qingdao, 266071, China.
| |
Collapse
|
249
|
Vallianou NG, Kounatidis D, Tsilingiris D, Panagopoulos F, Christodoulatos GS, Evangelopoulos A, Karampela I, Dalamaga M. The Role of Next-Generation Probiotics in Obesity and Obesity-Associated Disorders: Current Knowledge and Future Perspectives. Int J Mol Sci 2023; 24:ijms24076755. [PMID: 37047729 PMCID: PMC10095285 DOI: 10.3390/ijms24076755] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Obesity and obesity-associated disorders pose a major public health issue worldwide. Apart from conventional weight loss drugs, next-generation probiotics (NGPs) seem to be very promising as potential preventive and therapeutic agents against obesity. Candidate NGPs such as Akkermansia muciniphila, Faecalibacterium prausnitzii, Anaerobutyricum hallii, Bacteroides uniformis, Bacteroides coprocola, Parabacteroides distasonis, Parabacteroides goldsteinii, Hafnia alvei, Odoribacter laneus and Christensenella minuta have shown promise in preclinical models of obesity and obesity-associated disorders. Proposed mechanisms include the modulation of gut flora and amelioration of intestinal dysbiosis, improvement of intestinal barrier function, reduction in chronic low-grade inflammation and modulation of gut peptide secretion. Akkermansia muciniphila and Hafnia alvei have already been administered in overweight/obese patients with encouraging results. However, safety issues and strict regulations should be constantly implemented and updated. In this review, we aim to explore (1) current knowledge regarding NGPs; (2) their utility in obesity and obesity-associated disorders; (3) their safety profile; and (4) their therapeutic potential in individuals with overweight/obesity. More large-scale, multicentric and longitudinal studies are mandatory to explore their preventive and therapeutic potential against obesity and its related disorders.
Collapse
Affiliation(s)
- Natalia G. Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Street, 10676 Athens, Greece
| | - Dimitris Kounatidis
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Street, 10676 Athens, Greece
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Fotis Panagopoulos
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Street, 10676 Athens, Greece
| | - Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
- Department of Microbiology, Sismanogleio General Hospital, 1 Sismanogleiou Street, 15126 Athens, Greece
| | - Angelos Evangelopoulos
- Roche Hellas Diagnostics S.A., 18-20 Amarousiou-Chalandriou Street, 15125 Athens, Greece
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Street, 12462 Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| |
Collapse
|
250
|
Xia Y, Kuda T, Yamamoto M, Yano T, Nakamura A, Takahashi H. The effect of Sichuan pepper on gut microbiota in mice fed a high-sucrose and low-dietary fibre diet. Appl Microbiol Biotechnol 2023; 107:2627-2638. [PMID: 36922439 DOI: 10.1007/s00253-023-12457-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
Sichuan pepper (Zanthoxylum bungeanum, HJ), a spice widely used in China, has antioxidative, anti-inflammatory, antibacterial, and anti-obesity properties. In this study, to confirm the value of HJ as a functional food, the in vitro antioxidant and bile acid-lowering capacities, as well as the effects on caecal microbiota, were compared with those of cumin (Cuminum cyminum, CM) and coriander (Coriandrum sativum, CR) seeds in Institute of Cancer Research (ICR) mice fed a high-sucrose and low-dietary fibre diet. The total phenolic content, superoxide anion radical-scavenging capacity, and Fe-reducing power of the HJ aqueous solution were higher than those of CM and CR (p < 0.05). The bile acid (taurocholic, glycocholic, and deoxycholic acids)-lowering capacity of the HJ suspension was also higher than those of CM and CR. Compared with mice fed a control diet (no fibre, NF), caecal Lactobacillus gasseri- and Muribaculum intestinale-like bacteria were higher in mice fed a diet containing 5% (w/w) of CM, CR, or HJ for 14 days. Bifidobacterium pseudolongum-, Lactobacillus murinus/animalis-, and Faecalibaculum rodentium-like bacteria were significantly increased, while Desulfovibrio-like bacteria were significantly decreased in the HJ group. In addition, CM and HJ may benefit specific metabolic functions of gut microbiota, such as starch, sucrose, and tyrosine metabolism. The tumour necrosis factor (TNF-α) concentration in the spleen tissue of ICR mice was decreased by the intake of spices. However, there were no changes in interleukin-2 (IL-2) and IL-10 levels in HJ fed mice. These results suggested that HJ has potential as a functional food related to gut microbiota. KEY POINTS: • Bididobacterium and Faecalibaculum in mice gut microbiota are increased by Sichuan pepper (HJ). • Desulfovibrionaceae, an inflammatory LPS producer, in mice gut microbiota is decreased by HJ. • HJ decreases pro-inflammatory TNF both in murine spleen tissue and in vitro macrophages.
Collapse
Affiliation(s)
- Yumeng Xia
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477, Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477, Japan.
| | - Mahiro Yamamoto
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477, Japan
| | - Tomoko Yano
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477, Japan
| | - Ayaka Nakamura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477, Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477, Japan
| |
Collapse
|