201
|
Iwabu M, Okada-Iwabu M, Kadowaki T, Yamauchi T. Elucidating exercise-induced skeletal muscle signaling pathways and applying relevant findings to preemptive therapy for lifestyle-related diseases. Endocr J 2022; 69:1-8. [PMID: 34511589 DOI: 10.1507/endocrj.ej21-0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
While it is well recognized that exercise represents a radical preventive and therapeutic measure for lifestyle-related diseases, it is clear that contemporary lifestyles abound with situations where exercise may be found difficult to implement on a continuous basis. Indeed, this has led to global expectations for elucidation of the exercise-activated skeletal muscle signaling pathways as well as for development of exercise mimics that effectively activate such pathways. It is shown that exercise activates the transcriptional coactivator PGC-1α via AMPK/SIRT1 in muscle, thereby not only enhancing mitochondrial function and muscle endurance but upregulating energy metabolism. Further, adipocyte-derived adiponectin is also shown to activate AMPK/SIRT1/PGC-1α via its receptor AdipoR1 in skeletal muscles. Thus, adiponectin/AdipoR1 signaling is thought to constitute exercise-mimicking signaling. Indeed, it has become clear that AMPK, SIRT1 and AdipoR activators act as exercise mimetics. With the crystal structures of AdipoR elucidated and humanized AdipoR mice generated toward optimization of candidate AdipoR-activators for human use, expectations are mounting for the clinical application in the near future of AdipoR activators as exercise mimetics in humans. This review provides an overview of molecules activated by exercise and compounds activating these molecules, with a focus on the therapeutic potential of AdipoR activators as exercise mimetics.
Collapse
Affiliation(s)
- Masato Iwabu
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miki Okada-Iwabu
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Advanced Research on Pathophysiology of Metabolic Diseases, The University of Tokyo, Tokyo, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Toranomon Hospital, Tokyo, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
202
|
Jin SW, Lee GH, Kim JY, Kim CY, Choo YM, Cho W, Han EH, Hwang YP, Kim YA, Jeong HG. Effect of Porcine Whole Blood Protein Hydrolysate on Slow-Twitch Muscle Fiber Expression and Mitochondrial Biogenesis via the AMPK/SIRT1 Pathway. Int J Mol Sci 2022; 23:ijms23031229. [PMID: 35163153 PMCID: PMC8835758 DOI: 10.3390/ijms23031229] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is a heterogeneous tissue composed of a variety of functionally different fiber types. Slow-twitch type I muscle fibers are rich with mitochondria, and mitochondrial biogenesis promotes a shift towards more slow fibers. Leucine, a branched-chain amino acid (BCAA), regulates slow-twitch muscle fiber expression and mitochondrial function. The BCAA content is increased in porcine whole-blood protein hydrolysates (PWBPH) but the effect of PWBPH on muscle fiber type conversion is unknown. Supplementation with PWBPH (250 and 500 mg/kg for 5 weeks) increased time to exhaustion in the forced swimming test and the mass of the quadriceps femoris muscle but decreased the levels of blood markers of exercise-induced fatigue. PWBPH also promoted fast-twitch to slow-twitch muscle fiber conversion, elevated the levels of mitochondrial biogenesis markers (SIRT1, p-AMPK, PGC-1α, NRF1 and TFAM) and increased succinate dehydrogenase and malate dehydrogenase activities in ICR mice. Similarly, PWBPH induced markers of slow-twitch muscle fibers and mitochondrial biogenesis in C2C12 myotubes. Moreover, AMPK and SIRT1 inhibition blocked the PWBPH-induced muscle fiber type conversion in C2C12 myotubes. These results indicate that PWBPH enhances exercise performance by promoting slow-twitch muscle fiber expression and mitochondrial function via the AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Sun Woo Jin
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (G.H.L.); (J.Y.K.); (C.Y.K.); (Y.A.K.)
- Department of R&D, Jinju Bioindustry Foundation, Jinju 52839, Korea;
| | - Gi Ho Lee
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (G.H.L.); (J.Y.K.); (C.Y.K.); (Y.A.K.)
| | - Ji Yeon Kim
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (G.H.L.); (J.Y.K.); (C.Y.K.); (Y.A.K.)
| | - Chae Yeon Kim
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (G.H.L.); (J.Y.K.); (C.Y.K.); (Y.A.K.)
| | - Young Moo Choo
- Department of R&D, Jinju Bioindustry Foundation, Jinju 52839, Korea;
| | - Whajung Cho
- R&D Institute, AMINOLAB Co., Ltd., Seoul 06774, Korea;
| | - Eun Hee Han
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Korea;
| | | | - Yong An Kim
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (G.H.L.); (J.Y.K.); (C.Y.K.); (Y.A.K.)
| | - Hye Gwang Jeong
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (G.H.L.); (J.Y.K.); (C.Y.K.); (Y.A.K.)
- Correspondence: ; Tel.: +82-42-821-5936
| |
Collapse
|
203
|
Wang Q, Qiu X, Liu T, Ahn C, Horowitz JF, Lin JD. The hepatokine TSK maintains myofiber integrity and exercise endurance and contributes to muscle regeneration. JCI Insight 2022; 7:154746. [PMID: 35025761 PMCID: PMC8876464 DOI: 10.1172/jci.insight.154746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Mammalian skeletal muscle contains heterogenous myofibers with different contractile and metabolic properties that sustain muscle mass and endurance capacity. The transcriptional regulators that govern these myofiber gene programs have been elucidated. However, the hormonal cues that direct the specification of myofiber types and muscle endurance remain largely unknown. Here we uncover the secreted factor Tsukushi (TSK) as an extracellular signal that is required for maintaining muscle mass, strength, and endurance capacity, and contributes to muscle regeneration. Mice lacking TSK exhibited reduced grip strength and impaired exercise capacity. Muscle transcriptomic analysis revealed that TSK deficiency results in a remarkably selective impairment in the expression of myofibrillar genes characteristic of slow-twitch muscle fibers that is associated with abnormal neuromuscular junction formation. AAV-mediated overexpression of TSK failed to rescue these myofiber defects in adult mice, suggesting that the effects of TSK on myofibers are likely restricted to certain developmental stages. Finally, mice lacking TSK exhibited diminished muscle regeneration following cardiotoxin-induced muscle injury. These findings support a crucial role of TSK as a hormonal cue in the regulation of contractile gene expression, endurance capacity, and muscle regeneration.
Collapse
Affiliation(s)
- Qiuyu Wang
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, United States of America
| | - Xiaoxue Qiu
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, United States of America
| | - Tongyu Liu
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, United States of America
| | - Cheehoon Ahn
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, United States of America
| | | | - Jiandie D Lin
- University of Michigan, Ann Arbor, United States of America
| |
Collapse
|
204
|
Murray J, Ehsani A, Najjar L, Zhang G, Itakura K. Muscle-specific deletion of Arid5b causes metabolic changes in skeletal muscle that affect adipose tissue and liver. Front Endocrinol (Lausanne) 2022; 13:1083311. [PMID: 36743919 PMCID: PMC9891308 DOI: 10.3389/fendo.2022.1083311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
Emerging evidence suggests that AT-Rich Interaction Domain 5b (Arid5b) may play a role in energy metabolism in various tissues. To study the metabolic function of Arid5b in skeletal muscle, we generated skeletal muscle-specific Arid5b knockout (Arid5b MKO) mice. We found that Arid5b MKO skeletal muscles preferentially utilized fatty acids for energy generation with a corresponding increase in FABP4 expression. Interestingly, in Arid5b MKO mice, the adipose tissue weight decreased significantly. One possible mechanism for the decrease in adipose tissue weight could be the increase in phospho-HSL and HSL expression in white adipose tissue. While glucose uptake increased in an insulin-independent manner in Arid5b MKO skeletal muscle, glucose oxidation was reduced in conjunction with downregulation of the mitochondrial pyruvate carrier (MPC). We found that glucose was diverted into the pentose phosphate pathway as well as converted into lactate through glycolysis for export to the bloodstream, fueling the Cori cycle. Our data show that muscle-specific deletion of Arid5b leads to changes in fuel utilization in skeletal muscle that influences metabolism in other tissues. These results suggest that Arid5b regulates systemic metabolism by modulating fuel selection.
Collapse
|
205
|
Nuclear Receptors in Energy Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:61-82. [DOI: 10.1007/978-3-031-11836-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
206
|
Li P, Xu R, Shi Y, Shi X, Zhang X, Li J, Kou G. Luteolin increases slow muscle fibers via FLCN-AMPK-PGC-1α signaling pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
207
|
Wang D, Jiang DM, Yu RR, Zhang LL, Liu YZ, Chen JX, Chen HC, Liu YP. The Effect of Aerobic Exercise on the Oxidative Capacity of Skeletal Muscle Mitochondria in Mice with Impaired Glucose Tolerance. J Diabetes Res 2022; 2022:3780156. [PMID: 35712028 PMCID: PMC9197611 DOI: 10.1155/2022/3780156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/05/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022] Open
Abstract
METHODS Male C57BL/6J mice were randomly divided into six different experimental groups (8 animals/group): (1) normal group (NOR), (2) normal control group (NC), (3) normal + exercise group (NE), (4) IGT group (IGT), (5) IGT control group (IC), and (6) IGT+ exercise group (IE).The exercise group received aerobic exercise for 8 weeks. After the intervention, a blood glucose meter was used to detect the level of glucose tolerance in the mouse's abdominal cavity; a biochemical kit was used to detect serum lipid metabolism indicators, malondialdehyde, and superoxide dismutase levels; the ELISA method was used to detect serum insulin and mouse gastrocnemius homogenate LDH, PDH, SDH, and CCO levels. Western blot method was used to detect the protein expression levels of NOX4, PGC-1α, and Mfn2 in the gastrocnemius muscle of mice. RESULTS (1) Mice with high-fat diet for 30 weeks showed impaired glucose tolerance, insulin resistance, and lipid metabolism disorders. The level of LDH, PDH, SDH, and CCO in the gastrocnemius homogenate of mice was reduced. The expressions of NOX4 protein were significantly upregulated, while the expressions of PGC-1α and Mfn2 proteins were significantly downregulated. (2) 8-week aerobic exercise improved the disorders of glucose and lipid metabolism in IGT mice and increased homogenized LDH, PDH, SDH, and CCO levels, and the expressions of NOX4, PGC-1α, and Mfn2 proteins in the gastrocnemius muscle of mice were reversed. It is speculated that aerobic exercise can accelerate energy metabolism. CONCLUSION (1) C57BL/6 mice were fed high fat for 30 weeks and successfully constructed a mouse model of reduced diabetes; the mice with reduced diabetes have impaired glucose tolerance, insulin resistance, and lipid metabolism disorders; (2) 8 weeks of aerobic exercise improve glucose tolerance, reduce glucose tolerance in mice, reduce insulin resistance, improve lipid metabolism disorders, and reduce oxidative stress; (3) 8-week aerobic exercise reduces skeletal muscle NOX4 expression and increases glucose tolerance; reduces the expression of LDH, PDH, SDH, and CCO in mouse skeletal muscle; increases the expression level of mitochondrial fusion protein 2 and PGC-1α; improves glucose tolerance; reduces energy metabolism of mouse skeletal muscle; reduces oxidative stress; and reduces insulin resistance. It is speculated that aerobic exercise can accelerate energy metabolism. This process may involve two aspects: firstly, increase the expression level of oxidative metabolism enzymes and promote the tricarboxylic acid cycle; secondly, increase the expression of Mfn2 and accelerate mitochondria fission or fusion to regulate energy metabolism, thereby reducing oxidative stress and insulin resistance.
Collapse
Affiliation(s)
- Dan Wang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Dong-Mou Jiang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Rong-Rong Yu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Lin-Lin Zhang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Yan-Zhong Liu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Jia-Xin Chen
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Hai-Chun Chen
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Yi-Ping Liu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| |
Collapse
|
208
|
Supriya R, Singh KP, Gao Y, Gu Y, Baker JS. Effect of Exercise on Secondary Sarcopenia: A Comprehensive Literature Review. BIOLOGY 2021; 11:biology11010051. [PMID: 35053049 PMCID: PMC8773430 DOI: 10.3390/biology11010051] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 01/01/2023]
Abstract
Simple Summary Sarcopenia is an inevitable component of aging. It is officially recognized as a muscle disease with an ICD-10-MC diagnosis code that can be used to bill for care in some countries. Sarcopenia can be classified into primary or age-related sarcopenia and secondary sarcopenia. The condition is referred to as secondary sarcopenia when any other comorbidities are present in conjunction with aging. Secondary sarcopenia is more prevalent than primary sarcopenia and requires special attention. Exercise interventions may help in our understanding and prevention of sarcopenia with a specific morbidity Glomerular filtration rate that exercise improves muscle mass, quality or physical function in elderly subjects with cancer, type 2 diabetes, kidney diseases and lung diseases. In this review, we summarize recent research that has studied the impact of exercise on patients with secondary sarcopenia, specifically those with one comorbid condition. We did not discover any exercise intervention specifically for subjects with secondary sarcopenia (with one comorbidity). Even though there is a strong argument for using exercise to improve muscle mass, quality or physical function in subjects with cancer, type 2 diabetes, kidney diseases, lung diseases and many more, very few studies have reported baseline sarcopenia assessments. Based on the trials summarized in this review, we may propose but not conclude that resistance, aerobic, balance training or even walking can be useful in subjects with secondary sarcopenia with only one comorbidity due to the limited number of trials. This review is significant because it reveals the need for broad-ranging research initiatives involving secondary sarcopenic patients and highlights a large secondary sarcopenia research gap. Abstract Background: Sarcopenia has been recognized as an inevitable part of aging. However, its severity and the age at which it begins cannot be predicted by age alone. The condition can be categorized into primary or age-related sarcopenia and secondary sarcopenia. Sarcopenia is diagnosed as primary when there are no other specific causes. However, secondary sarcopenia occurs if other factors, including malignancy or organ failure, are evident in addition to aging. The prevalence of secondary sarcopenia is far greater than that of primary sarcopenia and requires special attention. To date, nutrition and exercise have proven to be the best methods to combat this disease. The impact of exercise on subjects suffering from sarcopenia with a specific morbidity is worthy of examination for understanding and prevention. The purpose of this review, therefore, is to summarize recent research that has investigated the impact of exercise in patients with secondary sarcopenia, specifically with one comorbidity. Methods: Pubmed, Web of Science, Embase and Medline databases were searched comprehensively with no date limit for randomized controlled trials. The literature was specifically searched for clinical trials in which subjects were sarcopenic with only one comorbidity participating in an exercise intervention. The most visible comorbidities identified and used in the search were lung disease, kidney disease, heart disease, type 2 diabetes, cancer, neurological diseases, osteoporosis and arthritis. Results: A total of 1752 studies were identified that matched the keywords. After removing duplicates, there were 1317 articles remaining. We extracted 98 articles for full screening. Finally, we included 21 relevant papers that were used in this review. Conclusion: Despite a strong rationale for using exercise to improve muscle mass, quality or physical function in subjects with cancer, type 2 diabetes, kidney disease, lung disease and many more, baseline sarcopenia evaluation has been reported in very few trials. The limited number of studies does not allow us to conclude that exercise can improve sarcopenia in patients with other comorbidities. This review highlights the necessity for wide-ranging research initiatives involving secondary sarcopenic patients.
Collapse
Affiliation(s)
- Rashmi Supriya
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (Y.G.); (Y.G.); (J.S.B.)
- Centre for Health and Exercise Science Research, Sarcopenia Research Unit, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong
- Correspondence:
| | - Kumar Purnendu Singh
- FEBT, School of Environment, Resources and Development, Asian Institute of Technology, Klong Luang, Pathum Thani 12120, Thailand;
| | - Yang Gao
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (Y.G.); (Y.G.); (J.S.B.)
- Centre for Health and Exercise Science Research, Sarcopenia Research Unit, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (Y.G.); (Y.G.); (J.S.B.)
| | - Julien S. Baker
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (Y.G.); (Y.G.); (J.S.B.)
- Centre for Health and Exercise Science Research, Sarcopenia Research Unit, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong
| |
Collapse
|
209
|
Ehrlich KC, Deng HW, Ehrlich M. Epigenetics of Mitochondria-Associated Genes in Striated Muscle. EPIGENOMES 2021; 6:1. [PMID: 35076500 PMCID: PMC8788487 DOI: 10.3390/epigenomes6010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/04/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Striated muscle has especially large energy demands. We identified 97 genes preferentially expressed in skeletal muscle and heart, but not in aorta, and found significant enrichment for mitochondrial associations among them. We compared the epigenomic and transcriptomic profiles of the 27 genes associated with striated muscle and mitochondria. Many showed strong correlations between their tissue-specific transcription levels, and their tissue-specific promoter, enhancer, or open chromatin as well as their DNA hypomethylation. Their striated muscle-specific enhancer chromatin was inside, upstream, or downstream of the gene, throughout much of the gene as a super-enhancer (CKMT2, SLC25A4, and ACO2), or even overlapping a neighboring gene (COX6A2, COX7A1, and COQ10A). Surprisingly, the 3' end of the 1.38 Mb PRKN (PARK2) gene (involved in mitophagy and linked to juvenile Parkinson's disease) displayed skeletal muscle/myoblast-specific enhancer chromatin, a myoblast-specific antisense RNA, as well as brain-specific enhancer chromatin. We also found novel tissue-specific RNAs in brain and embryonic stem cells within PPARGC1A (PGC-1α), which encodes a master transcriptional coregulator for mitochondrial formation and metabolism. The tissue specificity of this gene's four alternative promoters, including a muscle-associated promoter, correlated with nearby enhancer chromatin and open chromatin. Our in-depth epigenetic examination of these genes revealed previously undescribed tissue-specific enhancer chromatin, intragenic promoters, regions of DNA hypomethylation, and intragenic noncoding RNAs that give new insights into transcription control for this medically important set of genes.
Collapse
Affiliation(s)
- Kenneth C. Ehrlich
- Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA; (K.C.E.); (H.-W.D.)
| | - Hong-Wen Deng
- Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA; (K.C.E.); (H.-W.D.)
| | - Melanie Ehrlich
- Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA; (K.C.E.); (H.-W.D.)
- Tulane Cancer Center and Hayward Genetics Center, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
210
|
Takaragawa M, Tobina T, Shiose K, Kakigi R, Tsuzuki T, Ichinoseki-Sekine N, Kumagai H, Zempo H, Miyamoto-Mikami E, Kobayashi H, Naito H, Fuku N. Genotype Score for Iron Status Is Associated with Muscle Fiber Composition in Women. Genes (Basel) 2021; 13:genes13010005. [PMID: 35052344 PMCID: PMC8775127 DOI: 10.3390/genes13010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/01/2023] Open
Abstract
Human muscle fiber composition is heterogeneous and mainly determined by genetic factors. A previous study reported that experimentally induced iron deficiency in rats increases the proportion of fast-twitch muscle fibers. Iron status has been reported to be affected by genetic factors. As the TMPRSS6 rs855791 T/C and HFE rs1799945 C/G polymorphisms are strongly associated with iron status in humans, we hypothesized that the genotype score (GS) based on these polymorphisms could be associated with the muscle fiber composition in humans. Herein, we examined 214 Japanese individuals, comprising of 107 men and 107 women, for possible associations of the GS for iron status with the proportion of myosin heavy chain (MHC) isoforms (I, IIa, and IIx) as markers of muscle fiber composition. No statistically significant correlations were found between the GS for iron status and the proportion of MHC isoforms in all participants. When the participants were stratified based on sex, women showed positive and negative correlations of the GS with MHC-IIa (age-adjusted p = 0.020) and MHC-IIx (age-adjusted p = 0.011), respectively. In contrast, no correlation was found in men. In women, a 1-point increase in the GS was associated with 2.42% higher MHC-IIa level and 2.72% lower MHC-IIx level. Our results suggest that the GS based on the TMPRSS6 rs855791 T/C and HFE rs1799945 C/G polymorphisms for iron status is associated with muscle fiber composition in women.
Collapse
Affiliation(s)
- Mizuki Takaragawa
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan; (M.T.); (N.I.-S.); (H.K.); (E.M.-M.); (H.K.); (H.N.)
| | - Takuro Tobina
- Faculty of Nursing and Nutrition, University of Nagasaki, Nagasaki 851-2195, Japan;
| | - Keisuke Shiose
- Faculty of Education, University of Miyazaki, Miyazaki 889-2192, Japan;
| | - Ryo Kakigi
- Faculty of Management & Information Science, Josai International University, Chiba 283-8555, Japan;
| | | | - Noriko Ichinoseki-Sekine
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan; (M.T.); (N.I.-S.); (H.K.); (E.M.-M.); (H.K.); (H.N.)
- Faculty of Liberal Arts, The Open University of Japan, Chiba 261-8586, Japan
| | - Hiroshi Kumagai
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan; (M.T.); (N.I.-S.); (H.K.); (E.M.-M.); (H.K.); (H.N.)
| | - Hirofumi Zempo
- Faculty of Health and Nutrition, Tokyo Seiei College, Tokyo 124-8530, Japan;
| | - Eri Miyamoto-Mikami
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan; (M.T.); (N.I.-S.); (H.K.); (E.M.-M.); (H.K.); (H.N.)
| | - Hiroyuki Kobayashi
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan; (M.T.); (N.I.-S.); (H.K.); (E.M.-M.); (H.K.); (H.N.)
- Mito Medical Center, Tsukuba University Hospital, Ibaraki 310-0015, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan; (M.T.); (N.I.-S.); (H.K.); (E.M.-M.); (H.K.); (H.N.)
| | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan; (M.T.); (N.I.-S.); (H.K.); (E.M.-M.); (H.K.); (H.N.)
- Correspondence: ; Tel.: +81-476-98-1001 (ext. 9203)
| |
Collapse
|
211
|
Yeh CC, Liu HM, Lee MC, Leu YL, Chiang WH, Chang HH, Lee TY. Phytochemical‑rich herbal formula ATG‑125 protects against sucrose‑induced gastrocnemius muscle atrophy by rescuing Akt signaling and improving mitochondrial dysfunction in young adult mice. Mol Med Rep 2021; 25:57. [PMID: 34913071 PMCID: PMC8711025 DOI: 10.3892/mmr.2021.12572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/18/2021] [Indexed: 11/06/2022] Open
Abstract
The antioxidant capability of herbal remedies has attracted widespread attention, but their molecular mechanisms in a muscle atrophy model have not been explored. The aim of the present study was to compare the bioactivity of sucrose challenged mice following treatment with ATG‑125. Here, through a combination of transcriptomic and biomedical analysis, herbal formula ATG‑125, a phytochemical‑rich formula, was identified as a protective factor against muscle atrophy in sucrose challenged mice. Gene ontology (GO) identified differentially expressed genes that were primarily enriched in the 'negative regulation of proteolysis', 'cellular amino acid metabolic process', 'lipoprotein particle' and 'cell cycle', all of which were associated with the ATG‑125‑mediated prevention of muscle atrophy, particularly with regard to mitochondrial biogenesis. In skeletal muscle, a set of mitochondrial‑related genes, including angiopoietin‑like 4, nicotinamide riboside kinase 2 (Nmrk2), pyruvate dehydrogenase lipoamide kinase isozyme 4, Asc‑type amino acid transporter 1 and mitochondrial uncoupling protein 3 (Ucp3) were markedly upregulated following ATG‑125 intervention. An increase in Nmrk2 and Ucp3 expression were noted after ATG‑125 treatment, in parallel with upregulation of the 'nicotinate and nicotinamide metabolism' pathway, as determined using the Kyoto Encyclopedia of Genes and Genomes (KEGG). Furthermore, KEGG pathway analysis revealed the downregulation of 'complement and coagulation cascades', 'cholesterol metabolism', 'biosynthesis of amino acids' and 'PPAR signaling pathway', which were associated with the downregulation of serine (or cysteine) peptidase inhibitor clade A member (Serpina)3, Serpina1b, Serpina1d, Serpina1e, apolipoprotein (Apo)a1 and Apoa2, all of which were cardiovascular and diabetes‑associated risk factors and were regulated by ATG‑125. In addition, ATG‑125 treatment resulted in downregulated mRNA expression levels of ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2, troponin‑I1, troponin‑C1 and troponin‑T1 in young adult gastrocnemius muscle compared with the sucrose group. Nuclear factor‑κB‑hypoxia inducible factor‑1α‑TGFβ receptor type‑II‑vascular endothelial growth factor staining indicated that ATG‑125 decreased sucrose‑induced chronic inflammation. ATG‑125 was sufficient to prevent muscle atrophy, and this protective effect may be mediated through upregulation of AKT phosphorylation, upregulating the insulin growth factor‑1R‑insulin receptor substrate‑PI3K‑AKT pathway, which in turn resulted in a forkhead box O‑dependent decrease in protein degradation pathways, including regulation of atrogin1 and E3 ubiquitin‑protein ligase TRIM63. Peroxisome‑proliferator activated receptor γ coactivator 1α (PGC1α) was decreased in young adult mice challenged with sucrose. ATG‑125 treatment significantly increased PGC1α and significantly increased UCP‑1,2,3 expression levels, which suggested ATG‑125 poised the mitochondria for uncoupling of respiration. This effect is consistent with the increased SIRT1 levels and may explain an increase in mitochondria biogenesis. Taken together, the present study showed that ATG‑125, as an integrator of protein synthesis and degradative pathways, prevented muscle wasting.
Collapse
Affiliation(s)
- Ching-Chuan Yeh
- Graduate Institute of Traditional Chinese Medicine, School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| | - Hsuan-Miao Liu
- Graduate Institute of Traditional Chinese Medicine, School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| | - Ming-Chung Lee
- Brion Research Institute of Taiwan, New Taipei City 23143, Taiwan, R.O.C
| | - Yann-Lii Leu
- Graduate Institute of Nature Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| | - Wei-Han Chiang
- Department of Rehabilitation, Cheng‑Hsin General Hospital, Taipei 11283, Taiwan, R.O.C
| | - Hen-Hong Chang
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| |
Collapse
|
212
|
Acute RyR1 Ca 2+ leak enhances NADH-linked mitochondrial respiratory capacity. Nat Commun 2021; 12:7219. [PMID: 34893614 PMCID: PMC8664928 DOI: 10.1038/s41467-021-27422-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/18/2021] [Indexed: 12/25/2022] Open
Abstract
Sustained ryanodine receptor (RyR) Ca2+ leak is associated with pathological conditions such as heart failure or skeletal muscle weakness. We report that a single session of sprint interval training (SIT), but not of moderate intensity continuous training (MICT), triggers RyR1 protein oxidation and nitrosylation leading to calstabin1 dissociation in healthy human muscle and in in vitro SIT models (simulated SIT or S-SIT). This is accompanied by decreased sarcoplasmic reticulum Ca2+ content, increased levels of mitochondrial oxidative phosphorylation proteins, supercomplex formation and enhanced NADH-linked mitochondrial respiratory capacity. Mechanistically, (S-)SIT increases mitochondrial Ca2+ uptake in mouse myotubes and muscle fibres, and decreases pyruvate dehydrogenase phosphorylation in human muscle and mouse myotubes. Countering Ca2+ leak or preventing mitochondrial Ca2+ uptake blunts S-SIT-induced adaptations, a result supported by proteomic analyses. Here we show that triggering acute transient Ca2+ leak through RyR1 in healthy muscle may contribute to the multiple health promoting benefits of exercise.
Collapse
|
213
|
Exercise Inhibits NLRP3 Inflammasome Activation in Obese Mice via the Anti-Inflammatory Effect of Meteorin-like. Cells 2021; 10:cells10123480. [PMID: 34943988 PMCID: PMC8700724 DOI: 10.3390/cells10123480] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity is associated with chronic low-grade inflammation. The benefits of exercise are partly attributed to its anti-inflammatory effect, but whether exercise can regulate NLRP3 inflammasome activation in obese adipose tissue remains unknown. Meteorin-like (METRNL), a recently discovered myokine, has been implicated in mediating the effect of exercise on metabolism. Herein, we examined the effect of exercise and METRNL on NLRP3 inflammasome activation. High-fat diet (HFD)-induced obese mice were subjected to treadmill exercise for 8 weeks. A subgroup of HFD mice was switched to normal chow with the exercise intervention. Exercise and diet attenuated weight gain, fat accumulation, and insulin resistance in obese mice. In addition, exercise downregulated gene and protein levels of inflammasome markers, including NLRP3 and caspase-1, in adipose tissue. In isolated bone marrow-derived macrophages, activation of NLRP3 inflammasome was suppressed in the exercise group, as confirmed by the downregulation of IL-1β and IL-18. Exercise significantly enhanced the expression of METRNL in various muscle depots, and further in vitro analysis revealed that recombinant METRNL treatment inhibited IL-1β secretion in macrophages. In conclusion, exercise exerts its anti-inflammatory action by suppressing adipose tissue NLRP3 inflammasome, and this is, in part, associated with METRNL induction in muscle and its anti-inflammatory effects in macrophages.
Collapse
|
214
|
Guo Z, Chen X, Huang Z, Chen D, Yu B, He J, Yan H, Zheng P, Luo Y, Yu J, Chen H. Effect of dietary dihydromyricetin supplementation on lipid metabolism, antioxidant capacity and skeletal muscle fiber type transformation in mice. Anim Biotechnol 2021; 33:555-562. [PMID: 34866549 DOI: 10.1080/10495398.2021.2006204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study aimed to investigate the effect of dietary dihydromyricetin (DHM) supplementation on lipid metabolism, antioxidant capacity and muscle fiber type transformation. Twenty-four male Kunming mice were randomly allotted to either control (basal diet) or DHM diets (supplemented with 300 mg/kg DHM). Our data showed that DHM administration decreased the triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) contents, and increased the catalase (CAT), total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) activities in serum. In the liver, DHM decreased the TG and malondialdehyde (MDA) levels and increased the T-SOD and GSH-Px activities. For the tibialis anterior (TA) muscle, DHM increased the total antioxidant capacity (T-AOC) level and T-SOD activities. Western blotting and real-time quantitative PCR analysis showed that DHM increased the protein and mRNA levels of MyHC I and MyHC IIa and decreased the protein and mRNA levels of MyHC IIb in TA muscle, which may be achieved by activating the AMP-activated protein kinase (AMPK) signal. The mRNA levels of several regulatory factors related to mitochondrial function were up-regulated by DHM. In conclusion, dietary 300 mg/kg DHM supplementation improved lipid metabolism and antioxidant capacity and promoted the transformation of muscle fiber type from glycolysis to oxidation in mice.
Collapse
Affiliation(s)
- Zhongyang Guo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, P. R. China
| |
Collapse
|
215
|
Bennett S, Tiollier E, Brocherie F, Owens DJ, Morton JP, Louis J. Three weeks of a home-based "sleep low-train low" intervention improves functional threshold power in trained cyclists: A feasibility study. PLoS One 2021; 16:e0260959. [PMID: 34855913 PMCID: PMC8639084 DOI: 10.1371/journal.pone.0260959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/21/2021] [Indexed: 11/24/2022] Open
Abstract
Background “Sleep Low-Train Low” is a training-nutrition strategy intended to purposefully reduce muscle glycogen availability around specific exercise sessions, potentially amplifying the training stimulus via augmented cell signalling. The aim of this study was to assess the feasibility of a 3-week home-based “sleep low-train low” programme and its effects on cycling performance in trained athletes. Methods Fifty-five trained athletes (Functional Threshold Power [FTP]: 258 ± 52W) completed a home-based cycling training program consisting of evening high-intensity training (6 × 5 min at 105% FTP), followed by low-intensity training (1 hr at 75% FTP) the next morning, three times weekly for three consecutive weeks. Participant’s daily carbohydrate (CHO) intake (6 g·kg-1·d-1) was matched but timed differently to manipulate CHO availability around exercise: no CHO consumption post- HIT until post-LIT sessions [Sleep Low (SL), n = 28] or CHO consumption evenly distributed throughout the day [Control (CON), n = 27]. Sessions were monitored remotely via power data uploaded to an online training platform, with performance tests conducted pre-, post-intervention. Results LIT exercise intensity reduced by 3% across week 1, 3 and 2% in week 2 (P < 0.01) with elevated RPE in SL vs. CON (P < 0.01). SL enhanced FTP by +5.5% vs. +1.2% in CON (P < 0.01). Comparable increases in 5-min peak power output (PPO) were observed between groups (P < 0.01) with +2.3% and +2.7% in SL and CON, respectively (P = 0.77). SL 1-min PPO was unchanged (+0.8%) whilst CON improved by +3.9% (P = 0.0144). Conclusion Despite reduced relative training intensity, our data demonstrate short-term “sleep low-train low” intervention improves FTP compared with typically “normal” CHO availability during exercise. Importantly, training was completed unsupervised at home (during the COVID-19 pandemic), thus demonstrating the feasibility of completing a “sleep low-train low” protocol under non-laboratory conditions.
Collapse
Affiliation(s)
- Samuel Bennett
- Research Institute for Sport and Exercise Science (RISES), Liverpool John Moores University, Liverpool, United Kingdom
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| | - Eve Tiollier
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| | - Daniel J. Owens
- Research Institute for Sport and Exercise Science (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - James P. Morton
- Research Institute for Sport and Exercise Science (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Julien Louis
- Research Institute for Sport and Exercise Science (RISES), Liverpool John Moores University, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
216
|
Aboouf MA, Armbruster J, Thiersch M, Gassmann M, Gödecke A, Gnaiger E, Kristiansen G, Bicker A, Hankeln T, Zhu H, Gorr TA. Myoglobin, expressed in brown adipose tissue of mice, regulates the content and activity of mitochondria and lipid droplets. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159026. [PMID: 34384891 DOI: 10.1016/j.bbalip.2021.159026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/19/2022]
Abstract
The identification of novel physiological regulators that stimulate energy expenditure through brown adipose tissue (BAT) activity in substrate catalysis is of utmost importance to understand and treat metabolic diseases. Myoglobin (MB), known to store or transport oxygen in heart and skeletal muscles, has recently been found to bind fatty acids with physiological constants in its oxygenated form (i.e., MBO2). Here, we investigated the in vivo effect of MB expression on BAT activity. In particular, we studied mitochondrial function and lipid metabolism as essential determinants of energy expenditure in this tissue. We show in a MB-null (MBko) mouse model that MB expression in BAT impacts on the activity of brown adipocytes in a twofold manner: i) by elevating mitochondrial density plus maximal respiration capacity, and through that, by stimulating BAT oxidative metabolism along with the organelles` uncoupled respiration; and ii) by influencing the free fatty acids pool towards a palmitate-enriched composition and shifting the lipid droplet (LD) equilibrium towards higher counts of smaller droplets. These metabolic changes were accompanied by the up-regulated expression of thermogenesis markers UCP1, CIDEA, CIDEC, PGC1-α and PPAR-α in the BAT of MB wildtype (MBwt) mice. Along with the emergence of the "browning" BAT morphology, MBwt mice exhibited a leaner phenotype when compared to MBko littermates at 20 weeks of age. Our data shed novel insights into MB's role in linking oxygen and lipid-based thermogenic metabolism. The findings suggest potential new strategies of targeting the MB pathway to treat metabolic disorders related to diminishing energy expenditure.
Collapse
Affiliation(s)
- Mostafa A Aboouf
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Molecular and Translational Biomedicine PhD Program, Life Science Zurich Graduate School, 8057 Zurich, Switzerland; Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Julia Armbruster
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Molecular and Translational Biomedicine PhD Program, Life Science Zurich Graduate School, 8057 Zurich, Switzerland
| | - Markus Thiersch
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Axel Gödecke
- Institute of Cardiovascular Physiology (A.G.), Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Erich Gnaiger
- Department of Visceral, Transplant and Thoracic Surgery, D. Swarovski Research Laboratory, Medical University Innsbruck, Innrain 66/6, A-6020 Innsbruck, Austria
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, University of Bonn, D-53127 Bonn, Germany
| | - Anne Bicker
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, D-55099 Mainz, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, D-55099 Mainz, Germany
| | - Hao Zhu
- Department of Clinical Laboratory Sciences, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Thomas A Gorr
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
217
|
Xu H, Ranjit R, Richardson A, Van Remmen H. Muscle mitochondrial catalase expression prevents neuromuscular junction disruption, atrophy, and weakness in a mouse model of accelerated sarcopenia. J Cachexia Sarcopenia Muscle 2021; 12:1582-1596. [PMID: 34559475 PMCID: PMC8718066 DOI: 10.1002/jcsm.12768] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/22/2021] [Accepted: 07/10/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Oxidative stress and damage are associated with a number of ageing phenotypes, including age-related loss of muscle mass and reduced contractile function (sarcopenia). Our group and others have reported loss of neuromuscular junction (NMJ) integrity and increased denervation as initiating factors in sarcopenia, leading to mitochondrial dysfunction, generation of reactive oxygen species and peroxides, and loss of muscle mass and weakness. Previous studies from our laboratory show that denervation-induced skeletal muscle mitochondrial peroxide generation is highly correlated to muscle atrophy. Here, we directly test the impact of scavenging muscle mitochondrial hydrogen peroxide on the structure and function of the NMJ and muscle mass and function in a mouse model of denervation-induced muscle atrophy CuZnSOD (Sod1-/- mice, Sod1KO). METHODS Whole-body Sod1KO mice were crossed to mice with increased expression of human catalase (MCAT) targeted specifically to mitochondria in skeletal muscle (mMCAT mice) to determine the impact of reduced hydrogen peroxide levels on key targets of sarcopenia, including mitochondrial function, NMJ structure and function, and indices of muscle mass and function. RESULTS Female adult (~12-month-old) Sod1KO mice show a number of sarcopenia-related phenotypes in skeletal muscle including reduced mitochondrial oxygen consumption and elevated reactive oxygen species generation, fragmentation, and loss of innervated NMJs (P < 0.05), a 30% reduction in muscle mass (P < 0.05), a 36% loss of force generation (P < 0.05), and a loss of exercise capacity (305 vs. 709 m in wild-type mice, P < 0.05). Muscle from Sod1KO mice also shows a 35% reduction in sarco(endo)plasmic reticulum ATPase activity (P < 0.05), changes in the amount of calcium-regulating proteins, and altered fibre-type composition. In contrast, increased catalase expression in the mMCAT × Sod1KO mice completely prevents the mitochondrial and NMJ-related phenotypes and maintains muscle mass and force generation. The reduction in exercise capacity is also partially inhibited (~35%, P < 0.05), and the loss of fibre cross-sectional area is inhibited by ~50% (P < 0.05). CONCLUSIONS Together, these striking findings suggest that scavenging of mitochondrial peroxide generation by mMCAT expression efficiently prevents mitochondrial dysfunction and NMJ disruption associated with denervation-induced atrophy and weakness, supporting mitochondrial H2 O2 as an important effector of NMJ alterations that lead to phenotypes associated with sarcopenia.
Collapse
Affiliation(s)
- Hongyang Xu
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Rojina Ranjit
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Arlan Richardson
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Holly Van Remmen
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
218
|
Girgis J, Yang D, Chakroun I, Liu Y, Blais A. Six1 promotes skeletal muscle thyroid hormone response through regulation of the MCT10 transporter. Skelet Muscle 2021; 11:26. [PMID: 34809717 PMCID: PMC8607597 DOI: 10.1186/s13395-021-00281-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The Six1 transcription factor is implicated in controlling the development of several tissue types, notably skeletal muscle. Six1 also contributes to muscle metabolism and its activity is associated with the fast-twitch, glycolytic phenotype. Six1 regulates the expression of certain genes of the fast muscle program by directly stimulating their transcription or indirectly acting through a long non-coding RNA. We hypothesized that additional mechanisms of action of Six1 might be at play. METHODS A combined analysis of gene expression profiling and genome-wide location analysis data was performed. Results were validated using in vivo RNA interference loss-of-function assays followed by measurement of gene expression by RT-PCR and transcriptional reporter assays. RESULTS The Slc16a10 gene, encoding the thyroid hormone transmembrane transporter MCT10, was identified as a gene with a transcriptional enhancer directly bound by Six1 and requiring Six1 activity for full expression in adult mouse tibialis anterior, a predominantly fast-twitch muscle. Of the various thyroid hormone transporters, MCT10 mRNA was found to be the most abundant in skeletal muscle, and to have a stronger expression in fast-twitch compared to slow-twitch muscle groups. Loss-of-function of MCT10 in the tibialis anterior recapitulated the effect of Six1 on the expression of fast-twitch muscle genes and led to lower activity of a thyroid hormone receptor-dependent reporter gene. CONCLUSIONS These results shed light on the molecular mechanisms controlling the tissue expression profile of MCT10 and identify modulation of the thyroid hormone signaling pathway as an additional mechanism by which Six1 influences skeletal muscle metabolism.
Collapse
Affiliation(s)
- John Girgis
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada.,Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dabo Yang
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Imane Chakroun
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Yubing Liu
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Alexandre Blais
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada. .,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada. .,University of Ottawa Centre for Inflammation, Immunity and Infection (CI3), Ottawa, Ontario, Canada.
| |
Collapse
|
219
|
Tomczyk M, Braczko A, Jablonska P, Mika A, Przyborowski K, Jedrzejewska A, Krol O, Kus F, Sledzinski T, Chlopicki S, Slominska EM, Smolenski RT. Enhanced Muscle Strength in Dyslipidemic Mice and Its Relation to Increased Capacity for Fatty Acid Oxidation. Int J Mol Sci 2021; 22:12251. [PMID: 34830135 PMCID: PMC8620496 DOI: 10.3390/ijms222212251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Dyslipidemia is commonly linked to skeletal muscle dysfunction, accumulation of intramyocellular lipids, and insulin resistance. However, our previous research indicated that dyslipidemia in apolipoprotein E and low-density lipoprotein receptor double knock-out mice (ApoE/LDLR -/-) leads to improvement of exercise capacity. This study aimed to investigate in detail skeletal muscle function and metabolism in these dyslipidemic mice. We found that ApoE/LDLR -/- mice showed an increased grip strength as well as increased troponins, and Mhc2 levels in skeletal muscle. It was accompanied by the increased skeletal muscle mitochondria numbers (judged by increased citrate synthase activity) and elevated total adenine nucleotides pool. We noted increased triglycerides contents in skeletal muscles and increased serum free fatty acids (FFA) levels in ApoE/LDLR -/- mice. Importantly, Ranolazine mediated inhibition of FFA oxidation in ApoE/LDLR -/- mice led to the reduction of exercise capacity and total adenine nucleotides pool. Thus, this study demonstrated that increased capacity for fatty acid oxidation, an adaptive response to dyslipidemia leads to improved cellular energetics that translates to increased skeletal muscle strength and contributes to increased exercise capacity in ApoE/LDLR -/- mice.
Collapse
Affiliation(s)
- Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.B.); (P.J.); (A.J.); (O.K.); (F.K.); (E.M.S.)
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.B.); (P.J.); (A.J.); (O.K.); (F.K.); (E.M.S.)
| | - Patrycja Jablonska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.B.); (P.J.); (A.J.); (O.K.); (F.K.); (E.M.S.)
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.M.); (T.S.)
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics, 30-348 Krakow, Poland; (K.P.); (S.C.)
| | - Agata Jedrzejewska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.B.); (P.J.); (A.J.); (O.K.); (F.K.); (E.M.S.)
| | - Oliwia Krol
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.B.); (P.J.); (A.J.); (O.K.); (F.K.); (E.M.S.)
| | - Filip Kus
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.B.); (P.J.); (A.J.); (O.K.); (F.K.); (E.M.S.)
- Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.M.); (T.S.)
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics, 30-348 Krakow, Poland; (K.P.); (S.C.)
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Ewa M. Slominska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.B.); (P.J.); (A.J.); (O.K.); (F.K.); (E.M.S.)
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.B.); (P.J.); (A.J.); (O.K.); (F.K.); (E.M.S.)
| |
Collapse
|
220
|
Mitochondrial Dysfunction in Cancer Cachexia: Impact on Muscle Health and Regeneration. Cells 2021; 10:cells10113150. [PMID: 34831373 PMCID: PMC8621344 DOI: 10.3390/cells10113150] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer cachexia is a frequently neglected debilitating syndrome that, beyond representing a primary cause of death and cancer therapy failure, negatively impacts on patients' quality of life. Given the complexity of its multisystemic pathogenesis, affecting several organs beyond the skeletal muscle, defining an effective therapeutic approach has failed so far. Revamped attention of the scientific community working on cancer cachexia has focused on mitochondrial alterations occurring in the skeletal muscle as potential triggers of the complex metabolic derangements, eventually leading to hypercatabolism and tissue wasting. Mitochondrial dysfunction may be simplistically viewed as a cause of energy failure, thus inducing protein catabolism as a compensatory mechanism; however, other peculiar cachexia features may depend on mitochondria. On the one side, chemotherapy also impacts on muscle mitochondrial function while, on the other side, muscle-impaired regeneration may result from insufficient energy production from damaged mitochondria. Boosting mitochondrial function could thus improve the energetic status and chemotherapy tolerance, and relieve the myogenic process in cancer cachexia. In the present work, a focused review of the available literature on mitochondrial dysfunction in cancer cachexia is presented along with preliminary data dissecting the potential role of stimulating mitochondrial biogenesis via PGC-1α overexpression in distinct aspects of cancer-induced muscle wasting.
Collapse
|
221
|
Wang L, Li J, Di LJ. Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med Res Rev 2021; 42:946-982. [PMID: 34729791 PMCID: PMC9298385 DOI: 10.1002/med.21867] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/01/2021] [Accepted: 10/24/2021] [Indexed: 12/19/2022]
Abstract
Glycogen synthase kinase‐3 (GSK3) is a highly evolutionarily conserved serine/threonine protein kinase first identified as an enzyme that regulates glycogen synthase (GS) in response to insulin stimulation, which involves GSK3 regulation of glucose metabolism and energy homeostasis. Both isoforms of GSK3, GSK3α, and GSK3β, have been implicated in many biological and pathophysiological processes. The various functions of GSK3 are indicated by its widespread distribution in multiple cell types and tissues. The studies of GSK3 activity using animal models and the observed effects of GSK3‐specific inhibitors provide more insights into the roles of GSK3 in regulating energy metabolism and homeostasis. The cross‐talk between GSK3 and some important energy regulators and sensors and the regulation of GSK3 in mitochondrial activity and component function further highlight the molecular mechanisms in which GSK3 is involved to regulate the metabolic activity, beyond its classical regulatory effect on GS. In this review, we summarize the specific roles of GSK3 in energy metabolism regulation in tissues that are tightly associated with energy metabolism and the functions of GSK3 in the development of metabolic disorders. We also address the impacts of GSK3 on the regulation of mitochondrial function, activity and associated metabolic regulation. The application of GSK3 inhibitors in clinical tests will be highlighted too. Interactions between GSK3 and important energy regulators and GSK3‐mediated responses to different stresses that are related to metabolism are described to provide a brief overview of previously less‐appreciated biological functions of GSK3 in energy metabolism and associated diseases through its regulation of GS and other functions.
Collapse
Affiliation(s)
- Li Wang
- Proteomics, Metabolomics, and Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Jiajia Li
- Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Li-Jun Di
- Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| |
Collapse
|
222
|
Correia JC, Kelahmetoglu Y, Jannig PR, Schweingruber C, Shvaikovskaya D, Zhengye L, Cervenka I, Khan N, Stec M, Oliveira M, Nijssen J, Martínez-Redondo V, Ducommun S, Azzolini M, Lanner JT, Kleiner S, Hedlund E, Ruas JL. Muscle-secreted neurturin couples myofiber oxidative metabolism and slow motor neuron identity. Cell Metab 2021; 33:2215-2230.e8. [PMID: 34592133 DOI: 10.1016/j.cmet.2021.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 05/28/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023]
Abstract
Endurance exercise promotes skeletal muscle vascularization, oxidative metabolism, fiber-type switching, and neuromuscular junction integrity. Importantly, the metabolic and contractile properties of the muscle fiber must be coupled to the identity of the innervating motor neuron (MN). Here, we show that muscle-derived neurturin (NRTN) acts on muscle fibers and MNs to couple their characteristics. Using a muscle-specific NRTN transgenic mouse (HSA-NRTN) and RNA sequencing of MN somas, we observed that retrograde NRTN signaling promotes a shift toward a slow MN identity. In muscle, NRTN increased capillary density and oxidative capacity and induced a transcriptional reprograming favoring fatty acid metabolism over glycolysis. This combination of effects on muscle and MNs makes HSA-NRTN mice lean with remarkable exercise performance and motor coordination. Interestingly, HSA-NRTN mice largely recapitulate the phenotype of mice with muscle-specific expression of its upstream regulator PGC-1ɑ1. This work identifies NRTN as a myokine that couples muscle oxidative capacity to slow MN identity.
Collapse
Affiliation(s)
- Jorge C Correia
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Yildiz Kelahmetoglu
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Paulo R Jannig
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Christoph Schweingruber
- Department of Neuroscience, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden; Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Dasha Shvaikovskaya
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Liu Zhengye
- Molecular Muscle Physiology and Pathophysiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Igor Cervenka
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Naveen Khan
- Regeneron Pharmaceuticals, Tarrytown, NY 10 591, USA
| | - Michael Stec
- Regeneron Pharmaceuticals, Tarrytown, NY 10 591, USA
| | - Mariana Oliveira
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Jik Nijssen
- Department of Neuroscience, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Vicente Martínez-Redondo
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Serge Ducommun
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Michele Azzolini
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Johanna T Lanner
- Molecular Muscle Physiology and Pathophysiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | | | - Eva Hedlund
- Department of Neuroscience, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden; Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Jorge L Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden.
| |
Collapse
|
223
|
Ju X, Liu Y, Shan Y, Ji G, Zhang M, Tu Y, Zou J, Chen X, Geng Z, Shu J. Analysis of potential regulatory LncRNAs and CircRNAs in the oxidative myofiber and glycolytic myofiber of chickens. Sci Rep 2021; 11:20861. [PMID: 34675224 PMCID: PMC8531282 DOI: 10.1038/s41598-021-00176-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
SART and PMM are mainly composed of oxidative myofibers and glycolytic myofibers, respectively, and myofiber types profoundly influence postnatal muscle growth and meat quality. SART and PMM are composed of lncRNAs and circRNAs that participate in myofiber type regulation. To elucidate the regulatory mechanism of myofiber type, lncRNA and circRNA sequencing was used to systematically compare the transcriptomes of the SART and PMM of Chinese female Qingyuan partridge chickens at their marketing age. The luminance value (L*), redness value (a*), average diameter, cross-sectional area, and density difference between the PMM and SART were significant (p < 0.05). ATPase staining results showed that PMMs were all darkly stained and belonged to the glycolytic type, and the proportion of oxidative myofibers in SART was 81.7%. A total of 5 420 lncRNAs were identified, of which 365 were differentially expressed in the SART compared with the PMM (p < 0.05). The cis-regulatory analysis identified target genes that were enriched for specific GO terms and KEGG pathways (p < 0.05), including striated muscle cell differentiation, regulation of cell proliferation, regulation of muscle cell differentiation, myoblast differentiation, regulation of myoblast differentiation, and MAPK signaling pathway. Pathways and coexpression network analyses suggested that XR_003077811.1, XR_003072304.1, XR_001465942.2, XR_001465741.2, XR_001470487.1, XR_003077673.1 and XR_003074785.1 played important roles in regulating oxidative myofibers by TBX3, QKI, MYBPC1, CALM2, and PPARGC1A expression. A total of 10 487 circRNAs were identified, of which 305 circRNAs were differentially expressed in the SART compared with the PMM (p < 0.05). Functional enrichment analysis showed that differentially expressed circRNAs were involved in host gene expression and were enriched in the AMPK, calcium signaling pathway, FoxO signaling pathway, p53 signaling pathway, and cellular senescence. Novel_circ_004282 and novel_circ_002121 played important roles in regulating oxidative myofibers by PPP3CA and NFATC1 expression. Using lncRNA-miRNA/circRNA-miRNA integrated analysis, we identified many candidate interaction networks that might affect muscle fiber performance. Important lncRNA-miRNA-mRNA networks, such as lncRNA-XR_003074785.1/miR-193-3p/PPARGC1A, regulate oxidative myofibers. This study reveals that lncXR_003077811.1, lncXR_003072304.1, lncXR_001465942.2, lncXR_001465741.2, lncXR_001470487.1, lncXR_003077673.1, XR_003074785.1, novel_circ_004282 and novel_circ_002121 might regulate oxidative myofibers. The lncRNA-XR_003074785.1/miR-193-3p/PPARGC1A pathway might regulate oxidative myofibers. All these findings provide rich resources for further in-depth research on the regulatory mechanism of lncRNAs and circRNAs in myofibers.
Collapse
Affiliation(s)
- Xiaojun Ju
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yifan Liu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, Jiangsu, China
| | - Yanju Shan
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, Jiangsu, China
| | - Gaige Ji
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, Jiangsu, China
| | - Ming Zhang
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, Jiangsu, China
| | - Yunjie Tu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, Jiangsu, China
| | - Jianmin Zou
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, Jiangsu, China
| | - Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| | - Jingting Shu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, Jiangsu, China.
| |
Collapse
|
224
|
Li P, Zhang S, Song H, Traore SS, Li J, Raubenheimer D, Cui Z, Kou G. Naringin Promotes Skeletal Muscle Fiber Remodeling by the AdipoR1-APPL1-AMPK Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11890-11899. [PMID: 34586803 DOI: 10.1021/acs.jafc.1c04481] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Naringin, a natural flavonoid mainly found in citrus fruit, has been reported to exert a positive effect on improving skeletal muscle health. However, the effects and potential mechanisms of naringin on skeletal muscle fiber switching is still unclear. Here, we discovered that oral administration of naringin increased the low-speed running time, four-limb hanging time, body oxygen consumption in mice, enhanced aerobic enzyme activity, MyHC I expression, and slow-twitch fiber percentage in mice skeletal muscle. By contrast, naringin decreased α-GPDH enzyme activity, MyHC IIb expression, and fast-twitch fiber percentage. Moreover, naringin increased the concentration of serum adiponectin and activated the expression of AdipoR1, APPL1, AMPK, and PGC-1α. Furthermore, by the in vitro experiment and AdipoR1 knockdown, we found that inhibition of the AdipoR1 signaling pathway significantly reduced the effect of naringin on slow-twitch fiber-/fast-twitch fiber-related gene and protein expression. In conclusion, our results indicated that naringin could induce skeletal muscle fiber transition from fast twitch to slow twitch via the AdipoR1 signaling pathway. This study may provide new strategy for improving exercise endurance and slow muscle fiber deficiency-related diseases.
Collapse
Affiliation(s)
- Peiyuan Li
- Centre of Sport Nutrition and Health, School of Physical Education, Zhengzhou University, Zhengzhou 450001, China
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Sha Zhang
- Medical School of Chinese PLA, Beijing 100853, China
| | - Hui Song
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Stanislav Seydou Traore
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jiangtao Li
- Centre of Sport Nutrition and Health, School of Physical Education, Zhengzhou University, Zhengzhou 450001, China
| | - David Raubenheimer
- Centre of Sport Nutrition and Health, School of Physical Education, Zhengzhou University, Zhengzhou 450001, China
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhenwei Cui
- Centre of Sport Nutrition and Health, School of Physical Education, Zhengzhou University, Zhengzhou 450001, China
| | - Guangning Kou
- Centre of Sport Nutrition and Health, School of Physical Education, Zhengzhou University, Zhengzhou 450001, China
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
225
|
Seo BR, Payne CJ, McNamara SL, Freedman BR, Kwee BJ, Nam S, de Lázaro I, Darnell M, Alvarez JT, Dellacherie MO, Vandenburgh HH, Walsh CJ, Mooney DJ. Skeletal muscle regeneration with robotic actuation-mediated clearance of neutrophils. Sci Transl Med 2021; 13:eabe8868. [PMID: 34613813 DOI: 10.1126/scitranslmed.abe8868] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Bo Ri Seo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Christopher J Payne
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Viam Inc., New York, NY 10023, USA
| | - Stephanie L McNamara
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Brian J Kwee
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Sungmin Nam
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Irene de Lázaro
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Max Darnell
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jonathan T Alvarez
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Maxence O Dellacherie
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Herman H Vandenburgh
- Department of Pathology and Lab Medicine, Brown University, Providence, RI 02912, USA
| | - Conor J Walsh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
226
|
Roberts FL, Markby GR. New Insights into Molecular Mechanisms Mediating Adaptation to Exercise; A Review Focusing on Mitochondrial Biogenesis, Mitochondrial Function, Mitophagy and Autophagy. Cells 2021; 10:cells10102639. [PMID: 34685618 PMCID: PMC8533934 DOI: 10.3390/cells10102639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022] Open
Abstract
Exercise itself is fundamental for good health, and when practiced regularly confers a myriad of metabolic benefits in a range of tissues. These benefits are mediated by a range of adaptive responses in a coordinated, multi-organ manner. The continued understanding of the molecular mechanisms of action which confer beneficial effects of exercise on the body will identify more specific pathways which can be manipulated by therapeutic intervention in order to prevent or treat various metabolism-associated diseases. This is particularly important as exercise is not an available option to all and so novel methods must be identified to confer the beneficial effects of exercise in a therapeutic manner. This review will focus on key emerging molecular mechanisms of mitochondrial biogenesis, autophagy and mitophagy in selected, highly metabolic tissues, describing their regulation and contribution to beneficial adaptations to exercise.
Collapse
|
227
|
Fujimaki T, Ando T, Hata T, Takayama Y, Ohba T, Ichikawa J, Takiyama Y, Tatsuno R, Koyama K, Haro H. Exogenous parathyroid hormone attenuates ovariectomy-induced skeletal muscle weakness in vivo. Bone 2021; 151:116029. [PMID: 34111645 DOI: 10.1016/j.bone.2021.116029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Osteoporosis commonly affects the elderly and is associated with significant morbidity and mortality. Loss of bone mineral density induces muscle atrophy and increases fracture risk. However, muscle lipid content and droplet size are increased by aging and mobility impairments, inversely correlated with muscle function, and a cause of reduced motor function. Teriparatide, the synthetic form of human parathyroid hormone (PTH) 1-34, has been widely used to treat osteoporosis. Although PTH positively affects muscle differentiation in vitro, the precise function and mechanisms of muscle mass and power preservation are still poorly understood, especially in vivo. In this study, we investigated the effect of PTH on skeletal muscle atrophy and dysfunction using an ovariectomized murine model. Eight-week-old female C57BL/6J mice were ovariectomized or sham-operated. Within each surgical group, the mice were divided into PTH injection or control subgroups. Motor function was evaluated based on grip strength, treadmill running, and lactic acid concentration. PTH receptor was expressed in skeletal muscle cells and myoblasts. PTH inhibited ovariectomy-induced bone loss but not uterine atrophy or increased body weight; PTH not only abolished ovariectomy-induced reduction in grip strength and maximum running speed, but also significantly reduced the ovariectomy-induced increase in lactic acid concentration (compared with that observed in the vehicle control). PTH also abrogated the ovariectomy-induced reduction in the oxidative capacity of muscle fibers, their cross-sectional area, and intramyocellular lipid content, and induced cell proliferation, cell migration, and muscle differentiation, while reducing lipid secretion by C2C12 myoblasts via the Wnt/β-catenin pathway. PTH significantly ameliorated muscle weakness and attenuated exercise-induced lactate levels in ovariectomized mice. Our in vitro study demonstrated that PTH/Wnt signaling regulated the proliferation, migration, and differentiation of myoblasts and also reduced lipid secretion in myoblasts. Thus, PTH could regulate several aspects of muscle function and physiology, and may represent a novel therapeutic strategy for patients with osteoporosis.
Collapse
Affiliation(s)
- Taro Fujimaki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takashi Ando
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Takanori Hata
- Department of Neurology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yoshihiro Takayama
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Tetsuro Ohba
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Jiro Ichikawa
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yoshihisa Takiyama
- Department of Neurology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Rikito Tatsuno
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Katsuhiro Koyama
- Graduate School Department of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Hirotaka Haro
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
228
|
von Walden F, Vechetti IJ, Englund D, Figueiredo VC, Fernandez-Gonzalo R, Murach K, Pingel J, Mccarthy JJ, Stål P, Pontén E. Reduced mitochondrial DNA and OXPHOS protein content in skeletal muscle of children with cerebral palsy. Dev Med Child Neurol 2021; 63:1204-1212. [PMID: 34176131 DOI: 10.1111/dmcn.14964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
AIM To provide a detailed gene and protein expression analysis related to mitochondrial biogenesis and assess mitochondrial content in skeletal muscle of children with cerebral palsy (CP). METHOD Biceps brachii muscle samples were collected from 19 children with CP (mean [SD] age 15y 4mo [2y 6mo], range 9-18y, 16 males, three females) and 10 typically developing comparison children (mean [SD] age 15y [4y], range 7-21y, eight males, two females). Gene expression (quantitative reverse transcription polymerase chain reaction [PCR]), mitochondrial DNA (mtDNA) to genomic DNA ratio (quantitative PCR), and protein abundance (western blotting) were analyzed. Microarray data sets (CP/aging/bed rest) were analyzed with a focused query investigating metabolism- and mitochondria-related gene networks. RESULTS The mtDNA to genomic DNA ratio was lower in the children with CP compared to the typically developing group (-23%, p=0.002). Out of five investigated complexes in the mitochondrial respiratory chain, we observed lower protein levels of all complexes (I, III, IV, V, -20% to -37%; p<0.05) except complex II. Total peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) messenger RNA (p<0.004), isoforms PGC1α1 (p=0.05), and PGC1α4 (p<0.001) were reduced in CP. Transcriptional similarities were observed between CP, aging, and 90 days' bed rest. INTERPRETATION Mitochondrial biogenesis, mtDNA, and oxidative phosphorylation protein content are reduced in CP muscle compared with typically developing muscle. Transcriptional pathways shared between aging and long-term unloading suggests metabolic dysregulation in CP, which may guide therapeutic strategies for combatting CP muscle pathology. What this paper adds Cerebral palsy (CP) muscle contains fewer energy-generating organelles than typically developing muscle. Gene expression in CP muscle is similar to aging and long-term bed rest.
Collapse
Affiliation(s)
- Ferdinand von Walden
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Physiology, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Ivan J Vechetti
- Department of Physiology, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Davis Englund
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Vandré C Figueiredo
- Department of Physiology, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Rodrigo Fernandez-Gonzalo
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Kevin Murach
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Jessica Pingel
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - John J Mccarthy
- Department of Physiology, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Per Stål
- Department of Integrative Medical Biology, Laboratory of Muscle Biology, Umeå University, Umeå, Sweden
| | - Eva Pontén
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
229
|
Morales PE, Monsalves-Álvarez M, Tadinada SM, Harris MP, Ramírez-Sagredo A, Ortiz-Quintero J, Troncoso MF, De Gregorio N, Calle X, Pereira RO, Lira VA, Espinosa A, Abel ED, Lavandero S. Skeletal muscle type-specific mitochondrial adaptation to high-fat diet relies on differential autophagy modulation. FASEB J 2021; 35:e21933. [PMID: 34555201 DOI: 10.1096/fj.202001593rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/11/2022]
Abstract
In obesity, skeletal muscle mitochondrial activity changes to cope with increased nutrient availability. Autophagy has been proposed as an essential mechanism involved in the regulation of mitochondrial metabolism. Still, the contribution of autophagy to mitochondrial adaptations in skeletal muscle during obesity is unknown. Here, we show that in response to high-fat diet (HFD) feeding, distinct skeletal muscles in mice exhibit differentially regulated autophagy that may modulate mitochondrial activity. We observed that after 4 and 40 weeks of high-fat diet feeding, OXPHOS subunits and mitochondrial DNA content increased in the oxidative soleus muscle. However, in gastrocnemius muscle, which has a mixed fiber-type composition, the mitochondrial mass increased only after 40 weeks of HFD feeding. Interestingly, fatty acid-supported mitochondrial respiration was enhanced in gastrocnemius, but not in soleus muscle after a 4-week HFD feeding. This increased metabolic profile in gastrocnemius was paralleled by preserving autophagy flux, while autophagy flux in soleus was reduced. To determine the role of autophagy in this differential response, we used an autophagy-deficient mouse model with partial deletion of Atg7 specifically in skeletal muscle (SkM-Atg7+/- mice). We observed that Atg7 reduction resulted in diminished autophagic flux in skeletal muscle, alongside blunting the HFD-induced increase in fatty acid-supported mitochondrial respiration observed in gastrocnemius. Remarkably, SkM-Atg7+/- mice did not present increased mitochondria accumulation. Altogether, our results show that HFD triggers specific mitochondrial adaptations in skeletal muscles with different fiber type compositions, and that Atg7-mediated autophagy modulates mitochondrial respiratory capacity but not its content in response to an obesogenic diet.
Collapse
Affiliation(s)
- Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Matías Monsalves-Álvarez
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Satya Murthy Tadinada
- Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Matthew P Harris
- Department of Health & Human Physiology, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Andrea Ramírez-Sagredo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jafet Ortiz-Quintero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioanálisis e Inmunología, Escuela de Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Mayarling Francisca Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Nicole De Gregorio
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ximena Calle
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Renata O Pereira
- Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Vitor A Lira
- Department of Health & Human Physiology, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Alejandra Espinosa
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - E Dale Abel
- Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Corporacion Centro de Estudios Cientificos de las Enfermedades Cronicas (CECEC), Santiago, Chile
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
230
|
Rasmussen M, Jin JP. Troponin Variants as Markers of Skeletal Muscle Health and Diseases. Front Physiol 2021; 12:747214. [PMID: 34733179 PMCID: PMC8559874 DOI: 10.3389/fphys.2021.747214] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022] Open
Abstract
Ca2 +-regulated contractility is a key determinant of the quality of muscles. The sarcomeric myofilament proteins are essential players in the contraction of striated muscles. The troponin complex in the actin thin filaments plays a central role in the Ca2+-regulation of muscle contraction and relaxation. Among the three subunits of troponin, the Ca2+-binding subunit troponin C (TnC) is a member of the calmodulin super family whereas troponin I (TnI, the inhibitory subunit) and troponin T (TnT, the tropomyosin-binding and thin filament anchoring subunit) are striated muscle-specific regulatory proteins. Muscle type-specific isoforms of troponin subunits are expressed in fast and slow twitch fibers and are regulated during development and aging, and in adaptation to exercise or disuse. TnT also evolved with various alternative splice forms as an added capacity of muscle functional diversity. Mutations of troponin subunits cause myopathies. Owing to their physiological and pathological importance, troponin variants can be used as specific markers to define muscle quality. In this focused review, we will explore the use of troponin variants as markers for the fiber contents, developmental and differentiation states, contractile functions, and physiological or pathophysiological adaptations of skeletal muscle. As protein structure defines function, profile of troponin variants illustrates how changes at the myofilament level confer functional qualities at the fiber level. Moreover, understanding of the role of troponin modifications and mutants in determining muscle contractility in age-related decline of muscle function and in myopathies informs an approach to improve human health.
Collapse
Affiliation(s)
- Monica Rasmussen
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
231
|
Wang Z, Xia T, Jin S, Liu X, Pan R, Yan M, Chang Q. Chronic Restraint Stress-Induced Muscle Atrophy Leads to Fatigue in Mice by Inhibiting the AMPK Signaling Pathway. Biomedicines 2021; 9:biomedicines9101321. [PMID: 34680438 PMCID: PMC8533263 DOI: 10.3390/biomedicines9101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Currently, an increasing number of people are suffering from fatigue due to the state of their lifestyles, such as sedentary work in a relatively small space, irregular sleep patterns, or the lack of movement and exercise. The present study was designed to simulate the occurrence of fatigue in the above populations through a chronic restraint stress (CRS) model, and to reveal its dynamic processes and potential underlying molecular mechanisms. ICR mice were subjected to 8 h of restraint stress each day for 5, 10, or 15 days. It was found that the weight-loaded swimming performance, grip strength, and locomotor activity of the mice all decreased under CRS treatment, and that up to 15 days of CRS induced notable fatigue. Gastrocnemius muscle atrophy and some abnormal biochemical parameters related to fatigue under CRS were observed. Furthermore, transcriptome data showed that the changes in muscle cell metabolism and mitochondrial dysfunction were associated with the AMPK signaling pathway in CRS-treated mice. Western blotting analysis of the AMPK/PGC-1α signaling pathway revealed that CRS could decrease mitochondrial biogenesis and reduce the numbers of type I skeletal muscle fibers in the gastrocnemius of mice. CRS could also block the protective mitophagic flux to inhibit the abnormal clearance of damaged mitochondria. Our study suggests a critical link between muscle atrophy and CRS-induced fatigue in mice, suggesting that the pharmacological promotion of muscle and mitochondrial function can be used as a treatment for stress-induced fatigue.
Collapse
Affiliation(s)
| | | | | | | | | | - Mingzhu Yan
- Correspondence: (M.Y.); (Q.C.); Tel.: +86-10-5783-3468 (M.Y.); +86-10-5783-3224 (Q.C.)
| | - Qi Chang
- Correspondence: (M.Y.); (Q.C.); Tel.: +86-10-5783-3468 (M.Y.); +86-10-5783-3224 (Q.C.)
| |
Collapse
|
232
|
Wang S, Zhang K, Yao Y, Li J. Autophagy and Mitochondrial Homeostasis During Infection: A Double-Edged Sword. Front Cell Dev Biol 2021; 9:738932. [PMID: 34540852 PMCID: PMC8448420 DOI: 10.3389/fcell.2021.738932] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
Autophagy, an essential biological process that affects immunity, is a powerful tool that host cells can use to defend against infections caused by pathogenic microorganisms. Autophagy can not only initiate innate immune responses but also degrade the cellular components that provide the conditions for removing the invaders. However, hyperactivated or inhibited autophagy leads to mitochondrial dysfunction, which is harmful to the host itself and is involved in many types of diseases. Mitochondria perform the functions of biological oxidation and energy exchange. In addition, mitochondrial functions are closely related to cell death, oxygen radical formation, and disease. Accumulation of mitochondrial metabolites affects survival of intracellular pathogens. In this mini-review, we focus on the crosstalk between autophagy and mitochondrial homeostasis during infection.
Collapse
Affiliation(s)
- Sutian Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kunli Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Livestock Disease Prevention Guangdong Province, Guangzhou, China
| | - Yuchang Yao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jianhao Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
233
|
Chen X, Xiang L, Huang Z, Jia G, Liu G, Zhao H. Effect of dietary leucine supplementation on skeletal muscle fiber type transformation in weaning piglets. Anim Biotechnol 2021; 33:546-554. [PMID: 34543141 DOI: 10.1080/10495398.2021.1977309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
To investigate the effects of dietary leucine supplementation on muscle fiber type transformation in weaning piglets, 54 21-day-old male DLY (Duroc × Landrace × Yorkshire) weaned piglets were randomly divided into control, 0.25% and 0.5% leucine groups. The experiment lasted for 42 d. The results showed that dietary supplementation of 0.25% leucine significantly increased the protein expressions of slow MyHC, myoglobin and Troponin I-SS and the mRNA expressions of MyHC I, MyHC IIa, Tnni1, Tnnc1, Tnnt1 and myoglobin, while decreased the protein level of fast MyHC and the mRNA level of MyHC IIb in longissimus dorsi (LD) muscle. Furthermore, 0.25% leucine significantly increased succinic dehydrogenase (SDH) activity and decreased lactate dehydrogenase (LDH) activity. In addition, our data found that 0.25% leucine significantly increased serum adiponectin (AdipoQ) concentration, and the protein levels of AdipoQ, adiponectin receptor 1 (AdipoR1), phosphorylated AMP-activated protein kinase (p-AMPK) and PPAR-γ coactivator-1α (PGC-1α) and the mRNA levels of AdipoQ, AdipoR1 and AMPKα2. Together, our findings indicate that leucine promotes porcine skeletal muscle fiber type transformation from fast-twitch to slow-twitch, and the effect may be mediated by AdipoQ-AMPK-PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Lu Xiang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, People's Republic of China
| |
Collapse
|
234
|
Ponticelli C, Favi E. Physical Inactivity: A Modifiable Risk Factor for Morbidity and Mortality in Kidney Transplantation. J Pers Med 2021; 11:927. [PMID: 34575704 PMCID: PMC8470604 DOI: 10.3390/jpm11090927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/29/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022] Open
Abstract
In patients with chronic kidney disease, sedentary behavior is widely recognized as a significant risk factor for cardiovascular disease, diabetes, obesity, osteoporosis, cancer, and depression. Nevertheless, the real impact of physical inactivity on the health of kidney transplant (KT) recipients remains uncertain. Over the last decade, there has been a renewed interest in exploring the effects of regular physical exercise on transplant-related outcomes. There is now mounting evidence that physical activity may reduce the burden of cardiovascular risk factors, preserve allograft function, minimize immunosuppression requirement, and ameliorate the quality of life of KT recipients. Many positive feedbacks can be detected in the early stages of the interventions and with a minimal exercise load. Despite these encouraging results, the perceived role of physical activity in the management of KT candidates and recipients is often underrated. The majority of trials on exercise training are small, relatively short, and focused on surrogate outcomes. While waiting for larger studies with longer follow-up, these statistical limitations should not discourage patients and doctors from initiating exercise and progressively increasing intensity and duration. This narrative review summarizes current knowledge about the deleterious effects of physical inactivity after KT. The benefits of regular physical exercise are also outlined.
Collapse
Affiliation(s)
| | - Evaldo Favi
- Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
235
|
Abstract
Human physiology is likely to have been selected for endurance physical activity. However, modern humans have become largely sedentary, with physical activity becoming a leisure-time pursuit for most. Whereas inactivity is a strong risk factor for disease, regular physical activity reduces the risk of chronic disease and mortality. Although substantial epidemiological evidence supports the beneficial effects of exercise, comparatively little is known about the molecular mechanisms through which these effects operate. Genetic and genomic analyses have identified genetic variation associated with human performance and, together with recent proteomic, metabolomic and multi-omic analyses, are beginning to elucidate the molecular genetic mechanisms underlying the beneficial effects of physical activity on human health.
Collapse
Affiliation(s)
- Daniel Seung Kim
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew T Wheeler
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Euan A Ashley
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA. .,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA. .,Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
236
|
Abbadi D, Andrews JJ, Katsara O, Schneider RJ. AUF1 gene transfer increases exercise performance and improves skeletal muscle deficit in adult mice. Mol Ther Methods Clin Dev 2021; 22:222-236. [PMID: 34485607 PMCID: PMC8399044 DOI: 10.1016/j.omtm.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022]
Abstract
Muscle function and mass begin declining in adults long before evidence of sarcopenia and include reduced mitochondrial function, although much remains to be characterized. We found that mRNA decay factor AU-rich mRNA binding factor 1 (AUF1), which stimulates myogenesis, is strongly reduced in skeletal muscle of adult and older mice in the absence of evidence of sarcopenia. Muscle-specific adeno-associated virus (AAV)8-AUF1 gene therapy increased expression of AUF1, muscle function, and mass. AAV8 AUF1 muscle gene transfer in 12-month-old mice increased the levels of activated muscle stem (satellite) cells, increased muscle mass, reduced markers of muscle atrophy, increased markers of mitochondrial content and muscle fiber oxidative capacity, and enhanced exercise performance to levels of 3-month-old mice. With wild-type and AUF1 knockout mice and cultured myoblasts, AUF1 supplementation of muscle fibers was found to increase expression of Peroxisome Proliferator-activated Receptor Gamma Co-activator 1-alpha (PGC1α), a major effector of skeletal muscle mitochondrial oxidative metabolism. AUF1 stabilized and increased translation of the pgc1α mRNA, which is strongly reduced in adult muscle in the absence of AUF1 supplementation. Skeletal muscle-specific gene transfer of AUF1 therefore restores muscle mass, increases exercise endurance, and may provide a therapeutic strategy for age-related muscle loss.
Collapse
Affiliation(s)
- Dounia Abbadi
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - John J. Andrews
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Olga Katsara
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Robert J. Schneider
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
237
|
Sahenk Z, Ozes B, Murrey D, Myers M, Moss K, Yalvac ME, Ridgley A, Chen L, Mendell JR. Systemic delivery of AAVrh74.tMCK.hCAPN3 rescues the phenotype in a mouse model for LGMD2A/R1. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:401-414. [PMID: 34514031 PMCID: PMC8413669 DOI: 10.1016/j.omtm.2021.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022]
Abstract
Limb girdle muscular dystrophy (LGMD) 2A/R1, caused by mutations in the CAPN3 gene and CAPN3 loss of function, is known to play a role in disease pathogenicity. In this study, AAVrh74.tMCK.CAPN3 was delivered systemically to two different age groups of CAPN3 knockout (KO) mice; each group included two treatment cohorts receiving low (1.17 × 1014 vg/kg) and high (2.35 × 1014 vg/kg) doses of the vector and untreated controls. Treatment efficacy was tested 20 weeks after gene delivery using functional (treadmill), physiological (in vivo muscle contractility assay), and histopathological outcomes. AAV.CAPN3 gene therapy resulted in significant, robust improvements in functional outcomes and muscle physiology at low and high doses in both age groups. Histological analyses of skeletal muscle showed remodeling of muscle, a switch to fatigue-resistant oxidative fibers in females, and fiber size increases in both sexes. Safety studies revealed no organ tissue abnormalities; specifically, there was no histopathological evidence of cardiotoxicity. These results show that CAPN3 gene replacement therapy improved the phenotype in the CAPN3 KO mouse model at both doses independent of age at the time of vector administration. The improvements were supported by an absence of cardiotoxicity, showing the efficacy and safety of the AAV.CAPN3 vector as a potential gene therapy for LGMDR1.
Collapse
Affiliation(s)
- Zarife Sahenk
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA.,Department of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH 43205, USA.,Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Burcak Ozes
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA
| | - Darren Murrey
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA
| | - Morgan Myers
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA
| | - Kyle Moss
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA
| | - Mehmet E Yalvac
- Department of Neurology, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Alicia Ridgley
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA
| | - Lei Chen
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA
| | - Jerry R Mendell
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA.,Department of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
238
|
Pérez-Schindler J, Kohl B, Schneider-Heieck K, Leuchtmann AB, Henríquez-Olguín C, Adak V, Maier G, Delezie J, Sakoparnig T, Vargas-Fernández E, Karrer-Cardel B, Ritz D, Schmidt A, Hondele M, Jensen TE, Hiller S, Handschin C. RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates. Proc Natl Acad Sci U S A 2021; 118:e2105951118. [PMID: 34465622 PMCID: PMC8433555 DOI: 10.1073/pnas.2105951118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plasticity of cells, tissues, and organs is controlled by the coordinated transcription of biological programs. However, the mechanisms orchestrating such context-specific transcriptional networks mediated by the dynamic interplay of transcription factors and coregulators are poorly understood. The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a prototypical master regulator of adaptive transcription in various cell types. We now uncovered a central function of the C-terminal domain of PGC-1α to bind RNAs and assemble multiprotein complexes including proteins that control gene transcription and RNA processing. These interactions are important for PGC-1α recruitment to chromatin in transcriptionally active liquid-like nuclear condensates. Notably, such a compartmentalization of active transcription mediated by liquid-liquid phase separation was observed in mouse and human skeletal muscle, revealing a mechanism by which PGC-1α regulates complex transcriptional networks. These findings provide a broad conceptual framework for context-dependent transcriptional control of phenotypic adaptations in metabolically active tissues.
Collapse
Affiliation(s)
| | - Bastian Kohl
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | | | - Carlos Henríquez-Olguín
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Volkan Adak
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Julien Delezie
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | | | | | - Danilo Ritz
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Maria Hondele
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | | |
Collapse
|
239
|
Wang Y, Chen X, Huang Z, Chen D, Yu B, Chen H, Yu J, Luo Y, Zheng P, He J. Effects of dietary ferulic acid supplementation on growth performance and skeletal muscle fiber type conversion in weaned piglets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5116-5123. [PMID: 33583040 DOI: 10.1002/jsfa.11157] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Ferulic acid (FA) is a common polyphenolic compound. The purpose of this study was to explore the effect of dietary FA supplementation on growth performance and muscle fiber type conversion in weaned piglets. In this study, eighteen 21-day-old DLY (Duroc × Landrace × Yorkshire) weaned piglets were randomly divided into control, 0.05% FA, and 0.45% FA groups. RESULTS Our study showed that dietary FA supplementation had no effect on growth performance, but it could upregulate the expression of slow myosin heavy chain (MyHC) protein, increase the activities of succinic dehydrogenase and malate dehydrogenase, and downregulate the expression of fast MyHC protein. Dietary FA supplementation also increased the expression levels of phosphorylated AMP-activated protein kinase, sirtuin 1 (Sirt1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), myocyte enhancer factor 2C, and troponin I-SS, increased the proportion of slow-twitch fiber, and decreased the proportion of fast-twitch fiber. In addition, our results showed that dietary FA supplementation increased the messenger RNA abundance of mitochondrial nuclear transcription genes, including ATP synthase membrane subunit c locus 1, cytochrome oxidase subunit 1, nuclear respiratory factor 1, mitochondrial transcription factor A, mitochondrial transcription factor B1, and cytochrome c. CONCLUSION We provided the first evidence that FA could promote muscle fiber type conversion from fast-twitch to slow-twitch via the Sirt1/AMP-activated protein kinase/PGC-1α signaling pathway and could improve the mitochondrial function in weaned piglets. This means that FA can be used as a dietary supplement to improve the quality of pork. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Youxia Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, 625014, People's Republic of China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| |
Collapse
|
240
|
Sjögren RJO, Rizo-Roca D, Chibalin AV, Chorell E, Furrer R, Katayama S, Harada J, Karlsson HKR, Handschin C, Moritz T, Krook A, Näslund E, Zierath JR. Branched-chain amino acid metabolism is regulated by ERRα in primary human myotubes and is further impaired by glucose loading in type 2 diabetes. Diabetologia 2021; 64:2077-2091. [PMID: 34131782 PMCID: PMC8382616 DOI: 10.1007/s00125-021-05481-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/12/2021] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS Increased levels of branched-chain amino acids (BCAAs) are associated with type 2 diabetes pathogenesis. However, most metabolomic studies are limited to an analysis of plasma metabolites under fasting conditions, rather than the dynamic shift in response to a metabolic challenge. Moreover, metabolomic profiles of peripheral tissues involved in glucose homeostasis are scarce and the transcriptomic regulation of genes involved in BCAA catabolism is partially unknown. This study aimed to identify differences in circulating and skeletal muscle BCAA levels in response to an OGTT in individuals with normal glucose tolerance (NGT) or type 2 diabetes. Additionally, transcription factors involved in the regulation of the BCAA gene set were identified. METHODS Plasma and vastus lateralis muscle biopsies were obtained from individuals with NGT or type 2 diabetes before and after an OGTT. Plasma and quadriceps muscles were harvested from skeletal muscle-specific Ppargc1a knockout and transgenic mice. BCAA-related metabolites and genes were assessed by LC-MS/MS and quantitative RT-PCR, respectively. Small interfering RNA and adenovirus-mediated overexpression techniques were used in primary human skeletal muscle cells to study the role of PPARGC1A and ESRRA in the expression of the BCAA gene set. Radiolabelled leucine was used to analyse the impact of oestrogen-related receptor α (ERRα) knockdown on leucine oxidation. RESULTS Impairments in BCAA catabolism in people with type 2 diabetes under fasting conditions were exacerbated after a glucose load. Branched-chain keto acids were reduced 37-56% after an OGTT in the NGT group, whereas no changes were detected in individuals with type 2 diabetes. These changes were concomitant with a stronger correlation with glucose homeostasis biomarkers and downregulated expression of branched-chain amino acid transaminase 2, branched-chain keto acid dehydrogenase complex subunits and 69% of downstream BCAA-related genes in skeletal muscle. In primary human myotubes overexpressing peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α, encoded by PPARGC1A), 61% of the analysed BCAA genes were upregulated, while 67% were downregulated in the quadriceps of skeletal muscle-specific Ppargc1a knockout mice. ESRRA (encoding ERRα) silencing completely abrogated the PGC-1α-induced upregulation of BCAA-related genes in primary human myotubes. CONCLUSIONS/INTERPRETATION Metabolic inflexibility in type 2 diabetes impacts BCAA homeostasis and attenuates the decrease in circulating and skeletal muscle BCAA-related metabolites after a glucose challenge. Transcriptional regulation of BCAA genes in primary human myotubes via PGC-1α is ERRα-dependent.
Collapse
Affiliation(s)
- Rasmus J O Sjögren
- Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - David Rizo-Roca
- Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Elin Chorell
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Jun Harada
- Cardiovascular-Metabolics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Håkan K R Karlsson
- Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | | | - Thomas Moritz
- Swedish Metabolomics Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Erik Näslund
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.
- Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
241
|
Chow LS, Bosnakovski D, Mashek DG, Kyba M, Perlingeiro RCR, Magli A. Chromatin accessibility profiling identifies evolutionary conserved loci in activated human satellite cells. Stem Cell Res 2021; 55:102496. [PMID: 34411972 PMCID: PMC8917817 DOI: 10.1016/j.scr.2021.102496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/04/2022] Open
Abstract
Satellite cells represent the main myogenic population accounting for skeletal muscle homeostasis and regeneration. While our knowledge of the signaling pathways controlling satellite cell regenerative capability is increasing, the underlying epigenetic mechanisms are still not clear, especially in the case of human satellite cells. Here, by performing chromatin accessibility profiling (ATAC-seq) in samples isolated from human and murine muscles, we investigated the changes in the epigenetic landscape occurring during the transition from activated satellite cells to myoblasts. Our analysis identifies a compendium of putative regulatory elements defining human activated satellite cells and myoblasts, respectively. A subset of these differentially accessible loci is shared by both murine and human satellite cells, includes elements associated with known self-renewal regulators, and is enriched for motifs bound by transcription factors participating in satellite cell regulation. Integration of transcriptional and epigenetic data reveals that known regulators of metabolic gene expression, such as PPARGC1A, represent potential PAX7 targets. Through characterization of genomic networks and the underlying effectors, our data represent an important starting point for decoding and manipulating the molecular mechanisms underlying human satellite cell muscle regenerative potential.
Collapse
Affiliation(s)
- Lisa S Chow
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Darko Bosnakovski
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; University Goce Delcev - Shtip, Faculty of Medical Sciences, Shtip, Macedonia
| | - Douglas G Mashek
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA; Division of Cardiology, Department of Medicine, University of Minnesota, Minneapolis, MN USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Alessandro Magli
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA; Division of Cardiology, Department of Medicine, University of Minnesota, Minneapolis, MN USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
242
|
Bock T, Türk C, Aravamudhan S, Keufgens L, Bloch W, Rozsivalova DH, Romanello V, Nogara L, Blaauw B, Trifunovic A, Braun T, Krüger M. PERM1 interacts with the MICOS-MIB complex to connect the mitochondria and sarcolemma via ankyrin B. Nat Commun 2021; 12:4900. [PMID: 34385433 PMCID: PMC8361071 DOI: 10.1038/s41467-021-25185-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle subsarcolemmal mitochondria (SSM) and intermyofibrillar mitochondria subpopulations have distinct metabolic activity and sensitivity, though the mechanisms that localize SSM to peripheral areas of muscle fibers are poorly understood. A protein interaction study and complexome profiling identifies PERM1 interacts with the MICOS-MIB complex. Ablation of Perm1 in mice reduces muscle force, decreases mitochondrial membrane potential and complex I activity, and reduces the numbers of SSM in skeletal muscle. We demonstrate PERM1 interacts with the intracellular adaptor protein ankyrin B (ANKB) that connects the cytoskeleton to the plasma membrane. Moreover, we identify a C-terminal transmembrane helix that anchors PERM1 into the outer mitochondrial membrane. We conclude PERM1 functions in the MICOS-MIB complex and acts as an adapter to connect the mitochondria with the sarcolemma via ANKB.
Collapse
Affiliation(s)
- Theresa Bock
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Clara Türk
- BASF SE, Metabolomics and Proteomics, Ludwigshafen am Rhein, Germany
| | | | - Lena Keufgens
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Sport Medicine and Cardiovascular Research, German Sport University Cologne, Cologne, Germany
| | - Dieu Hien Rozsivalova
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Vanina Romanello
- Venetian Institute of Molecular Medicine (VIMM), Department of Biomedical Sciences Padova, University of Padova, Padova, Italy
| | - Leonardo Nogara
- Venetian Institute of Molecular Medicine (VIMM), Department of Biomedical Sciences Padova, University of Padova, Padova, Italy
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM), Department of Biomedical Sciences Padova, University of Padova, Padova, Italy
| | - Aleksandra Trifunovic
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
243
|
Xue Y, Huang Z, Chen X, Jia G, Zhao H, Liu G. Naringin induces skeletal muscle fiber type transformation via AMPK/PGC-1α signaling pathway in mice and C2C12 myotubes. Nutr Res 2021; 92:99-108. [PMID: 34284270 DOI: 10.1016/j.nutres.2021.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 01/14/2023]
Abstract
A large number of studies have shown that polyphenols can regulate skeletal muscle fiber type transformation through AMPK signal. However, the effects and mechanism of naringin (a natural polyphenol) on muscle fiber type transformation still remains unclear. Thus, we hypothesized that naringin would induce the transformation of skeletal muscle fibers from type II to type I by AMPK signaling. C2C12 myotubes and BALB/c mice models were used to test this hypothesis. We found that naringin significantly increased the protein expression of slow myosin heavy chain (MyHC), myoglobin and troponin I type I slow skeletal (Troponin I-SS) and the activities of succinate dehydrogenase (SDH) and malate dehydrogenase (MDH), and significantly decreased fast MyHC protein expression and lactate dehydrogenase (LDH) activity, accompanied by the activation of AMPK and the activity of peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α) in mice and C2C12 myotubes. Further inhibition of AMPK activity by compound C showed that the above effects were significantly inhibited in C2C12 myotubes. In conclusion, naringin promotes the transformation of skeletal muscle fibers from type II to type I through AMPK/PGC-1α signaling pathway, which not only enriches the nutritional and physiological functions of naringin, but also provides a theoretical basis for the regulation of muscle fiber type transformation by nutritional approaches.
Collapse
Affiliation(s)
- Yonghong Xue
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
244
|
Abstract
The beneficial effects of exercise on the brain are well known. In general, exercise offers an effective way to improve cognitive function in all ages, particularly in the elderly, who are considered the most vulnerable to neurodegenerative disorders. In this regard, myokines, hormones secreted by muscle in response to exercise, have recently gained attention as beneficial mediators. Irisin is a novel exercise-induced myokine, that modulates several bodily processes, such as glucose homeostasis, and reduces systemic inflammation. Irisin is cleaved from fibronectin type III domain containing 5 (FNDC5), a transmembrane precursor protein expressed in muscle under the control of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). The FNDC5/irisin system is also expressed in the hippocampus, where it stimulates the expression of the neurotrophin brain-derived neurotrophic factor in this area that is associated with learning and memory. In this review, we aimed to discuss the role of irisin as a key mediator of the beneficial effects of exercise on synaptic plasticity and memory in the elderly, suggesting its roles within the main promoters of the beneficial effects of exercise on the brain.
Collapse
|
245
|
Gras S, Blasco A, Mòdol-Caballero G, Tarabal O, Casanovas A, Piedrafita L, Barranco A, Das T, Rueda R, Pereira SL, Navarro X, Esquerda JE, Calderó J. Beneficial effects of dietary supplementation with green tea catechins and cocoa flavanols on aging-related regressive changes in the mouse neuromuscular system. Aging (Albany NY) 2021; 13:18051-18093. [PMID: 34319911 PMCID: PMC8351677 DOI: 10.18632/aging.203336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022]
Abstract
Besides skeletal muscle wasting, sarcopenia entails morphological and molecular changes in distinct components of the neuromuscular system, including spinal cord motoneurons (MNs) and neuromuscular junctions (NMJs); moreover, noticeable microgliosis has also been observed around aged MNs. Here we examined the impact of two flavonoid-enriched diets containing either green tea extract (GTE) catechins or cocoa flavanols on age-associated regressive changes in the neuromuscular system of C57BL/6J mice. Compared to control mice, GTE- and cocoa-supplementation significantly improved the survival rate of mice, reduced the proportion of fibers with lipofuscin aggregates and central nuclei, and increased the density of satellite cells in skeletal muscles. Additionally, both supplements significantly augmented the number of innervated NMJs and their degree of maturity compared to controls. GTE, but not cocoa, prominently increased the density of VAChT and VGluT2 afferent synapses on MNs, which were lost in control aged spinal cords; conversely, cocoa, but not GTE, significantly augmented the proportion of VGluT1 afferent synapses on aged MNs. Moreover, GTE, but not cocoa, reduced aging-associated microgliosis and increased the proportion of neuroprotective microglial phenotypes. Our data indicate that certain plant flavonoids may be beneficial in the nutritional management of age-related deterioration of the neuromuscular system.
Collapse
Affiliation(s)
- Sílvia Gras
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Alba Blasco
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Guillem Mòdol-Caballero
- Grup de Neuroplasticitat i Regeneració, Institut de Neurociències, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona and CIBERNED, Bellaterra, Spain
| | - Olga Tarabal
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Anna Casanovas
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Lídia Piedrafita
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Alejandro Barranco
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| | - Tapas Das
- Abbott Nutrition, Research and Development, Columbus, OH 43215, USA
| | - Ricardo Rueda
- Abbott Nutrition, Research and Development, Granada, Spain
| | | | - Xavier Navarro
- Grup de Neuroplasticitat i Regeneració, Institut de Neurociències, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona and CIBERNED, Bellaterra, Spain
| | - Josep E. Esquerda
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Jordi Calderó
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| |
Collapse
|
246
|
Battey E, Furrer R, Ross J, Handschin C, Ochala J, Stroud MJ. PGC-1α regulates myonuclear accretion after moderate endurance training. J Cell Physiol 2021; 237:696-705. [PMID: 34322871 DOI: 10.1002/jcp.30539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022]
Abstract
The transcriptional demands of skeletal muscle fibres are high and require hundreds of nuclei (myonuclei) to produce specialised contractile machinery and multiple mitochondria along their length. Each myonucleus spatially regulates gene expression in a finite volume of cytoplasm, termed the myonuclear domain (MND), which positively correlates with fibre cross-sectional area (CSA). Endurance training triggers adaptive responses in skeletal muscle, including myonuclear accretion, decreased MND sizes and increased expression of the transcription co-activator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Previous work has shown that overexpression of PGC-1α in skeletal muscle regulates mitochondrial biogenesis, myonuclear accretion and MND volume. However, whether PGC-1α is critical for these processes in adaptation to endurance training remained unclear. To test this, we evaluated myonuclear distribution and organisation in endurance-trained wild-type mice and mice lacking PGC-1α in skeletal muscle (PGC-1α mKO). Here, we show a differential myonuclear accretion response to endurance training that is governed by PGC-1α and is dependent on muscle fibre size. The positive relationship of MND size and muscle fibre CSA trended towards a stronger correlation in PGC-1a mKO versus control after endurance training, suggesting that myonuclear accretion was slightly affected with increasing fibre CSA in PGC-1α mKO. However, in larger fibres, the relationship between MND and CSA was significantly altered in trained versus sedentary PGC-1α mKO, suggesting that PGC-1α is critical for myonuclear accretion in these fibres. Accordingly, there was a negative correlation between the nuclear number and CSA, suggesting that in larger fibres myonuclear numbers fail to scale with CSA. Our findings suggest that PGC-1α is an important contributor to myonuclear accretion following moderate-intensity endurance training. This may contribute to the adaptive response to endurance training by enabling a sufficient rate of transcription of genes required for mitochondrial biogenesis.
Collapse
Affiliation(s)
- Edmund Battey
- Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.,British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | | | - Jacob Ross
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | | | - Julien Ochala
- Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.,Randall Centre for Cell and Molecular Biophysics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, Guy's Campus, King's College London, London, UK.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew J Stroud
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
247
|
Pelosi L, Berardinelli MG, Forcina L, Ascenzi F, Rizzuto E, Sandri M, De Benedetti F, Scicchitano BM, Musarò A. Sustained Systemic Levels of IL-6 Impinge Early Muscle Growth and Induce Muscle Atrophy and Wasting in Adulthood. Cells 2021; 10:1816. [PMID: 34359985 PMCID: PMC8306542 DOI: 10.3390/cells10071816] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
IL-6 is a pleiotropic cytokine that can exert different and opposite effects. The muscle-induced and transient expression of IL-6 can act in an autocrine or paracrine manner, stimulating anabolic pathways associated with muscle growth, myogenesis, and with regulation of energy metabolism. In contrast, under pathologic conditions, including muscular dystrophy, cancer associated cachexia, aging, chronic inflammatory diseases, and other pathologies, the plasma levels of IL-6 significantly increase, promoting muscle wasting. Nevertheless, the specific physio-pathological role exerted by IL-6 in the maintenance of differentiated phenotype remains to be addressed. The purpose of this study was to define the role of increased plasma levels of IL-6 on muscle homeostasis and the mechanisms contributing to muscle loss. Here, we reported that increased plasma levels of IL-6 promote alteration in muscle growth at early stage of postnatal life and induce muscle wasting by triggering a shift of the slow-twitch fibers toward a more sensitive fast fiber phenotype. These findings unveil a role for IL-6 as a potential biomarker of stunted growth and skeletal muscle wasting.
Collapse
Affiliation(s)
- Laura Pelosi
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161 Rome, Italy; (L.P.); (M.G.B.); (L.F.)
| | - Maria Grazia Berardinelli
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161 Rome, Italy; (L.P.); (M.G.B.); (L.F.)
| | - Laura Forcina
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161 Rome, Italy; (L.P.); (M.G.B.); (L.F.)
| | - Francesca Ascenzi
- Department of Clinical and Molecular Medicine, Risk Management Q and A, Sant’Andrea Hospital, “Sapienza” University, 00161 Rome, Italy;
| | - Emanuele Rizzuto
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy;
| | - Marco Sandri
- Veneto Institute of Molecular Medicine, 35129 Padua, Italy;
- Department of Biomedical Sciences, University of Padova, 35121 Padua, Italy
| | - Fabrizio De Benedetti
- Division of Rheumatology and Immuno-Rheumatology Research Laboratories, Bambino Gesù Children’s Hospital, 00146 Rome, Italy;
| | - Bianca Maria Scicchitano
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy;
| | - Antonio Musarò
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via Antonio Scarpa, 14, 00161 Rome, Italy
- Scuola Superiore di Studi Avanzati Sapienza (SSAS), Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
248
|
Ihsan M, Abbiss CR, Allan R. Adaptations to Post-exercise Cold Water Immersion: Friend, Foe, or Futile? Front Sports Act Living 2021; 3:714148. [PMID: 34337408 PMCID: PMC8322530 DOI: 10.3389/fspor.2021.714148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
In the last decade, cold water immersion (CWI) has emerged as one of the most popular post-exercise recovery strategies utilized amongst athletes during training and competition. Following earlier research on the effects of CWI on the recovery of exercise performance and associated mechanisms, the recent focus has been on how CWI might influence adaptations to exercise. This line of enquiry stems from classical work demonstrating improved endurance and mitochondrial development in rodents exposed to repeated cold exposures. Moreover, there was strong rationale that CWI might enhance adaptations to exercise, given the discovery, and central role of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) in both cold- and exercise-induced oxidative adaptations. Research on adaptations to post-exercise CWI have generally indicated a mode-dependant effect, where resistance training adaptations were diminished, whilst aerobic exercise performance seems unaffected but demonstrates premise for enhancement. However, the general suitability of CWI as a recovery modality has been the focus of considerable debate, primarily given the dampening effect on hypertrophy gains. In this mini-review, we highlight the key mechanisms surrounding CWI and endurance exercise adaptations, reiterating the potential for CWI to enhance endurance performance, with support from classical and contemporary works. This review also discusses the implications and insights (with regards to endurance and strength adaptations) gathered from recent studies examining the longer-term effects of CWI on training performance and recovery. Lastly, a periodized approach to recovery is proposed, where the use of CWI may be incorporated during competition or intensified training, whilst strategically avoiding periods following training focused on improving muscle strength or hypertrophy.
Collapse
Affiliation(s)
- Mohammed Ihsan
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Research and Scientific Support, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Chris R Abbiss
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Robert Allan
- School of Sport and Health Sciences, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|
249
|
Tanaka M, Ikeji T, Nakanishi R, Hirabayashi T, Ono K, Hirayama Y, Tategaki A, Kondo H, Ishihara A, Fujino H. Protective effects of Enterococcus faecium strain R30 supplementation on decreased muscle endurance under disuse in rats. Exp Physiol 2021; 106:1961-1970. [PMID: 34216158 DOI: 10.1113/ep089677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/01/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does Enterococcus faecium strain R30 (R30), a new lactic acid bacterial strain for supplementation, attenuate shifts in the typology of whole muscle fibres from slow- to fast-twitch by altering the autonomic nervous system in atrophied skeletal muscles? What is the main finding and its importance? R30 supplementation may attenuate the shifts in the typology of whole muscle fibres from slow- to fast-twitch fibres by upregulating peroxisome proliferator-activated receptor-γ coactivator-1α and activating the calcineurin-nuclear factor of activated T-cells signalling pathway, thus ameliorating the decrease in muscle endurance associated with disuse. ABSTRACT Enterococcus faecium strain R30 (R30), a new lactic acid bacterial strain for supplementation, was hypothesized to attenuate shifts in the typology of whole muscle fibres from slow- to fast-twitch fibres in atrophied skeletal muscles. We further postulated that the prevention of slow-to-fast fibre shifts would suppress the decreased muscle endurance associated with atrophy. To evaluate the protective effects of R30, we analysed slow-to-fast fibre shifts and disuse-associated reduced muscle endurance. R30 was administered to rats with an acclimation period of 7 days before hindlimb unloading (HU) for 2 weeks. The composition ratio of the fibre type and the expression levels of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), calcineurin and nuclear factor of activated T-cells (NFAT) were measured. Muscle endurance was evaluated at the end of the 2-week HU period in an in situ environment. R30 supplementation suppressed the slow-to-fast fibre switch and decreased the HU-induced expression of PGC-1α proteins and the deactivation of the calcineurin-NFAT pathway. Furthermore, R30 prevented a decrease in HU-associated muscle endurance in calf muscles. These results indicate that R30 supplementation may attenuate the shifts in the typology of whole muscle fibres from slow- to fast-twitch fibres via the upregulation of PGC-1α and the activation of the calcineurin-NFAT signalling pathway, thereby ameliorating the decrease in muscle endurance associated with disuse.
Collapse
Affiliation(s)
- Minoru Tanaka
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan.,Department of Rehabilitation Science, Osaka Health Science University, Osaka, Japan
| | - Takuya Ikeji
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Ryosuke Nakanishi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan.,Faculty of Rehabilitation, Department of Physical Therapy, Kobe international University, Kobe, Japan
| | - Takumi Hirabayashi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Kohei Ono
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yusuke Hirayama
- Biotechnology Research Laboratories, Kaneka Corporation, Takasago, Japan
| | - Airo Tategaki
- Biotechnology Research Laboratories, Kaneka Corporation, Takasago, Japan
| | - Hiroyo Kondo
- Department of Food Science and Nutrition, Nagoya Women's University, Nagoya, Japan
| | - Akihiko Ishihara
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
250
|
Nguyen TH, Conotte S, Belayew A, Declèves AE, Legrand A, Tassin A. Hypoxia and Hypoxia-Inducible Factor Signaling in Muscular Dystrophies: Cause and Consequences. Int J Mol Sci 2021; 22:7220. [PMID: 34281273 PMCID: PMC8269128 DOI: 10.3390/ijms22137220] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
Muscular dystrophies (MDs) are a group of inherited degenerative muscle disorders characterized by a progressive skeletal muscle wasting. Respiratory impairments and subsequent hypoxemia are encountered in a significant subgroup of patients in almost all MD forms. In response to hypoxic stress, compensatory mechanisms are activated especially through Hypoxia-Inducible Factor 1 α (HIF-1α). In healthy muscle, hypoxia and HIF-1α activation are known to affect oxidative stress balance and metabolism. Recent evidence has also highlighted HIF-1α as a regulator of myogenesis and satellite cell function. However, the impact of HIF-1α pathway modifications in MDs remains to be investigated. Multifactorial pathological mechanisms could lead to HIF-1α activation in patient skeletal muscles. In addition to the genetic defect per se, respiratory failure or blood vessel alterations could modify hypoxia response pathways. Here, we will discuss the current knowledge about the hypoxia response pathway alterations in MDs and address whether such changes could influence MD pathophysiology.
Collapse
Affiliation(s)
- Thuy-Hang Nguyen
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Stephanie Conotte
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Alexandra Belayew
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Anne-Emilie Declèves
- Department of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium;
| | - Alexandre Legrand
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Alexandra Tassin
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| |
Collapse
|