201
|
Yang Y, Saatchi SS, Xu L, Yu Y, Choi S, Phillips N, Kennedy R, Keller M, Knyazikhin Y, Myneni RB. Post-drought decline of the Amazon carbon sink. Nat Commun 2018; 9:3172. [PMID: 30093640 PMCID: PMC6085357 DOI: 10.1038/s41467-018-05668-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 07/04/2018] [Indexed: 01/01/2023] Open
Abstract
Amazon forests have experienced frequent and severe droughts in the past two decades. However, little is known about the large-scale legacy of droughts on carbon stocks and dynamics of forests. Using systematic sampling of forest structure measured by LiDAR waveforms from 2003 to 2008, here we show a significant loss of carbon over the entire Amazon basin at a rate of 0.3 ± 0.2 (95% CI) PgC yr−1 after the 2005 mega-drought, which continued persistently over the next 3 years (2005–2008). The changes in forest structure, captured by average LiDAR forest height and converted to above ground biomass carbon density, show an average loss of 2.35 ± 1.80 MgC ha−1 a year after (2006) in the epicenter of the drought. With more frequent droughts expected in future, forests of Amazon may lose their role as a robust sink of carbon, leading to a significant positive climate feedback and exacerbating warming trends. Forests of the Amazon Basin have experienced frequent and severe droughts in recent years with significant impacts on their carbon cycling. Here, using satellite LiDAR samples from 2003 to 2008, the authors show the long-term legacy of these droughts with persistent loss of carbon stocks after the 2005 drought.
Collapse
Affiliation(s)
- Yan Yang
- Institute of Environment and Sustainability, University of California, Los Angeles, CA, USA. .,Department of Earth and Environment, Boston University, Boston, MA, USA. .,Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| | - Sassan S Saatchi
- Institute of Environment and Sustainability, University of California, Los Angeles, CA, USA.,Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Liang Xu
- Institute of Environment and Sustainability, University of California, Los Angeles, CA, USA.,Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Yifan Yu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Sungho Choi
- Department of Earth and Environment, Boston University, Boston, MA, USA
| | - Nathan Phillips
- Department of Earth and Environment, Boston University, Boston, MA, USA
| | - Robert Kennedy
- Dept. of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | - Michael Keller
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.,Int. Institute of Tropical Forestry & Int. Programs, USDA Forest Service, Washington, USA
| | - Yuri Knyazikhin
- Department of Earth and Environment, Boston University, Boston, MA, USA
| | - Ranga B Myneni
- Department of Earth and Environment, Boston University, Boston, MA, USA
| |
Collapse
|
202
|
Couvreur V, Ledder G, Manzoni S, Way DA, Muller EB, Russo SE. Water transport through tall trees: A vertically explicit, analytical model of xylem hydraulic conductance in stems. PLANT, CELL & ENVIRONMENT 2018; 41:1821-1839. [PMID: 29739034 DOI: 10.1111/pce.13322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Trees grow by vertically extending their stems, so accurate stem hydraulic models are fundamental to understanding the hydraulic challenges faced by tall trees. Using a literature survey, we showed that many tree species exhibit continuous vertical variation in hydraulic traits. To examine the effects of this variation on hydraulic function, we developed a spatially explicit, analytical water transport model for stems. Our model allows Huber ratio, stem-saturated conductivity, pressure at 50% loss of conductivity, leaf area, and transpiration rate to vary continuously along the hydraulic path. Predictions from our model differ from a matric flux potential model parameterized with uniform traits. Analyses show that cavitation is a whole-stem emergent property resulting from non-linear pressure-conductivity feedbacks that, with gravity, cause impaired water transport to accumulate along the path. Because of the compounding effects of vertical trait variation on hydraulic function, growing proportionally more sapwood and building tapered xylem with height, as well as reducing xylem vulnerability only at branch tips while maintaining transport capacity at the stem base, can compensate for these effects. We therefore conclude that the adaptive significance of vertical variation in stem hydraulic traits is to allow trees to grow tall and tolerate operating near their hydraulic limits.
Collapse
Affiliation(s)
- Valentin Couvreur
- Earth and Life Institute-Agronomy, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Glenn Ledder
- Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Stefano Manzoni
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Danielle A Way
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Erik B Muller
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Marine Science Institute, University of California, Santa Barbara, CA, USA
| | - Sabrina E Russo
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
203
|
McDowell N, Allen CD, Anderson-Teixeira K, Brando P, Brienen R, Chambers J, Christoffersen B, Davies S, Doughty C, Duque A, Espirito-Santo F, Fisher R, Fontes CG, Galbraith D, Goodsman D, Grossiord C, Hartmann H, Holm J, Johnson DJ, Kassim AR, Keller M, Koven C, Kueppers L, Kumagai T, Malhi Y, McMahon SM, Mencuccini M, Meir P, Moorcroft P, Muller-Landau HC, Phillips OL, Powell T, Sierra CA, Sperry J, Warren J, Xu C, Xu X. Drivers and mechanisms of tree mortality in moist tropical forests. THE NEW PHYTOLOGIST 2018; 219:851-869. [PMID: 29451313 DOI: 10.1111/nph.15027] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/19/2017] [Indexed: 05/22/2023]
Abstract
Tree mortality rates appear to be increasing in moist tropical forests (MTFs) with significant carbon cycle consequences. Here, we review the state of knowledge regarding MTF tree mortality, create a conceptual framework with testable hypotheses regarding the drivers, mechanisms and interactions that may underlie increasing MTF mortality rates, and identify the next steps for improved understanding and reduced prediction. Increasing mortality rates are associated with rising temperature and vapor pressure deficit, liana abundance, drought, wind events, fire and, possibly, CO2 fertilization-induced increases in stand thinning or acceleration of trees reaching larger, more vulnerable heights. The majority of these mortality drivers may kill trees in part through carbon starvation and hydraulic failure. The relative importance of each driver is unknown. High species diversity may buffer MTFs against large-scale mortality events, but recent and expected trends in mortality drivers give reason for concern regarding increasing mortality within MTFs. Models of tropical tree mortality are advancing the representation of hydraulics, carbon and demography, but require more empirical knowledge regarding the most common drivers and their subsequent mechanisms. We outline critical datasets and model developments required to test hypotheses regarding the underlying causes of increasing MTF mortality rates, and improve prediction of future mortality under climate change.
Collapse
Affiliation(s)
- Nate McDowell
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Craig D Allen
- US Geological Survey, Fort Collins Science Center, New Mexico Landscapes Field Station, Los Alamos, NM, 87544, USA
| | - Kristina Anderson-Teixeira
- Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, 20036, USA
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - Paulo Brando
- Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA, 02450, USA
- Instituto de Pesquisa Ambiental de Amazonia, Lago Norte, Brasilia, Brazil
| | - Roel Brienen
- School of Geography, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Jeff Chambers
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Brad Christoffersen
- Department of Biology and School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Stuart Davies
- Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, 20036, USA
| | - Chris Doughty
- SICCS, Northern Arizona University, Flagstaff, AZ, 86001, USA
| | - Alvaro Duque
- Departmento de Ciencias Forestales, Universidad Nacional de Columbia, Medellín, Columbia
| | | | - Rosie Fisher
- National Center for Atmospheric Research, Boulder, CO, 80305, USA
| | - Clarissa G Fontes
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - David Galbraith
- School of Geography, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Devin Goodsman
- Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | | | - Henrik Hartmann
- Department of Biogeochemical Processes, Max Plank Institute for Biogeochemistry, 07745, Jena, Germany
| | - Jennifer Holm
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | | - Abd Rahman Kassim
- Geoinformation Programme, Forestry and Environment Division, Forest Research Institute Malaysia, Selangor, Malaysia
| | - Michael Keller
- International Institute of Tropical Forestry, USDA Jardin Botanico Sur, 1201 Calle Ceiba, San Juan, 00926, Puerto Rico
- Embrapa Agricultural Informatics, Parque Estacao Biologica, Brasilia DF, 70770, Brazil
- Jet Propulsion Laboratory, Pasadena, CA, 91109, USA
| | - Charlie Koven
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lara Kueppers
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Energy and Resources Group, University of California, Berkeley, CA, 94720, USA
| | - Tomo'omi Kumagai
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 7 Chome-3-1 Hongo, Bunkyo, Tokyo, 113-8654, Japan
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 2JD, UK
| | - Sean M McMahon
- Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, 20036, USA
| | - Maurizio Mencuccini
- ICREA, CREAF, University of Barcelona, Gran Via de les Corts Catalenes, 585 08007, Barcelona, Spain
| | - Patrick Meir
- Australian National University, Acton, Canberra, ACT, 2601, Australia
- School of Geosciences, University of Edinburgh, Old College, South Bridge, Edinburgh, EH8 9YL, UK
| | | | - Helene C Muller-Landau
- Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092, Panamá, República de Panamá
| | - Oliver L Phillips
- School of Geography, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Thomas Powell
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Carlos A Sierra
- Department of Biogeochemical Processes, Max Plank Institute for Biogeochemistry, 07745, Jena, Germany
| | - John Sperry
- University of Utah, Salt Lake City, UT, 84112, USA
| | - Jeff Warren
- Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Chonggang Xu
- Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Xiangtao Xu
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
204
|
Miyazawa Y, Du S, Taniguchi T, Yamanaka N, Kumagai T. Gas exchange by the mesic-origin, arid land plantation species Robinia pseudoacacia under annual summer reduction in plant hydraulic conductance. TREE PHYSIOLOGY 2018; 38:1166-1179. [PMID: 29608763 DOI: 10.1093/treephys/tpy032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
The mesic-origin plantation species Robinia pseudoacacia L. has been successfully grown in many arid land plantations around the world but often exhibits dieback and reduced growth due to drought. Therefore, to explore the behavior of this species under changing environmental conditions, we examined the relationship between ecophysiological traits, gas exchange and plant hydraulics over a 3-year period in trees that experienced reduced plant hydraulic conductance (Gp) in summer. We found that the transpiration rate, stomatal conductance (Gs) and minimum leaf water potential (Ψlmin) decreased in early summer in response to a decrease in Gp, and that Gp did not recover until the expansion of new leaves in spring. However, we did not observe any changes in the leaf area index or other ecophysiological traits at the leaf level in response to this reduction in Gp. Furthermore, model simulations based on measured data revealed that the canopy-scale photosynthetic rate (Ac) was 15-25% higher than the simulated Ac when it was assumed that Ψlmin remained constant after spring but almost the same as the simulated Ac when it was assumed that Gp remained high even after spring. These findings indicate that R. pseudoacacia was frequently exposed to a reduced Gp at the study site but offset its effects on Ac by plastically lowering Ψlmin to avoid experiencing any further reduction in Gp or Gs.
Collapse
Affiliation(s)
- Yoshiyuki Miyazawa
- Department of Geography, University of Hawai'i at Manoa, Honolulu, HI, USA
- Research Institute for East Asian Environments, Kyushu University, 744 Motooka, Fukuoka, Japan
| | - Sheng Du
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
| | - Takeshi Taniguchi
- Aridland Research Center, Tottori University, Hamasaka, Tottori, Japan
| | - Norikazu Yamanaka
- Aridland Research Center, Tottori University, Hamasaka, Tottori, Japan
| | - Tomo'omi Kumagai
- Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
205
|
McDowell NG. Deriving pattern from complexity in the processes underlying tropical forest drought impacts. THE NEW PHYTOLOGIST 2018; 219:841-844. [PMID: 29998534 DOI: 10.1111/nph.15341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Nate G McDowell
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| |
Collapse
|
206
|
Bretfeld M, Ewers BE, Hall JS. Plant water use responses along secondary forest succession during the 2015-2016 El Niño drought in Panama. THE NEW PHYTOLOGIST 2018; 219:885-899. [PMID: 29504138 DOI: 10.1111/nph.15071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/22/2018] [Indexed: 05/25/2023]
Abstract
Tropical forests are increasingly being subjected to hotter, drier conditions as a result of global climate change. The effects of drought on forests along successional gradients remain poorly understood. We took advantage of the 2015-2016 El Niño event to test for differences in drought response along a successional gradient by measuring the sap flow in 76 trees, representing 42 different species, in 8-, 25- and 80-yr-old secondary forests in the 15-km2 'Agua Salud Project' study area, located in central Panama. Average sap velocities and sapwood-specific hydraulic conductivities were highest in the youngest forest. During the dry season drought, sap velocities increased significantly in the 80-yr-old forest as a result of higher evaporative demand, but not in younger forests. The main drivers of transpiration shifted from radiation to vapor pressure deficit with progressing forest succession. Soil volumetric water content was a limiting factor only in the youngest forest during the dry season, probably as a result of less root exploration in the soil. Trees in early-successional forests displayed stronger signs of regulatory responses to the 2015-2016 El Niño drought, and the limiting physiological processes for transpiration shifted from operating at the plant-soil interface to the plant-atmosphere interface with progressing forest succession.
Collapse
Affiliation(s)
- Mario Bretfeld
- ForestGEO, Smithsonian Tropical Research Institute, Av. Roosevelt 401, Balboa, Ancón, Panama
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - Brent E Ewers
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Jefferson S Hall
- ForestGEO, Smithsonian Tropical Research Institute, Av. Roosevelt 401, Balboa, Ancón, Panama
| |
Collapse
|
207
|
Longo M, Knox RG, Levine NM, Alves LF, Bonal D, Camargo PB, Fitzjarrald DR, Hayek MN, Restrepo-Coupe N, Saleska SR, da Silva R, Stark SC, Tapajós RP, Wiedemann KT, Zhang K, Wofsy SC, Moorcroft PR. Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts. THE NEW PHYTOLOGIST 2018; 219:914-931. [PMID: 29786858 DOI: 10.1111/nph.15185] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/20/2018] [Indexed: 05/12/2023]
Abstract
The impact of increases in drought frequency on the Amazon forest's composition, structure and functioning remain uncertain. We used a process- and individual-based ecosystem model (ED2) to quantify the forest's vulnerability to increased drought recurrence. We generated meteorologically realistic, drier-than-observed rainfall scenarios for two Amazon forest sites, Paracou (wetter) and Tapajós (drier), to evaluate the impacts of more frequent droughts on forest biomass, structure and composition. The wet site was insensitive to the tested scenarios, whereas at the dry site biomass declined when average rainfall reduction exceeded 15%, due to high mortality of large-sized evergreen trees. Biomass losses persisted when year-long drought recurrence was shorter than 2-7 yr, depending upon soil texture and leaf phenology. From the site-level scenario results, we developed regionally applicable metrics to quantify the Amazon forest's climatological proximity to rainfall regimes likely to cause biomass loss > 20% in 50 yr according to ED2 predictions. Nearly 25% (1.8 million km2 ) of the Amazon forests could experience frequent droughts and biomass loss if mean annual rainfall or interannual variability changed by 2σ. At least 10% of the high-emission climate projections (CMIP5/RCP8.5 models) predict critically dry regimes over 25% of the Amazon forest area by 2100.
Collapse
Affiliation(s)
- Marcos Longo
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA, 02138, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Ryan G Knox
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Naomi M Levine
- University of Southern California, Los Angeles, CA, 90007, USA
| | - Luciana F Alves
- Center for Tropical Research, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, 90095, USA
| | | | - Plinio B Camargo
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13416-000, Brazil
| | | | - Matthew N Hayek
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Natalia Restrepo-Coupe
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, 2007, Australia
- University of Arizona, Tucson, AZ, 85721, USA
| | | | - Rodrigo da Silva
- Universidade Federal do Oeste do Pará, Santarém, PA, 68040-255, USA
| | - Scott C Stark
- Michigan State University, East Lansing, MI, 48824, USA
| | | | - Kenia T Wiedemann
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Ke Zhang
- Hohai University, Nanjing, Jiangsu, 210029, China
| | - Steven C Wofsy
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Paul R Moorcroft
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
208
|
Prendin AL, Mayr S, Beikircher B, von Arx G, Petit G. Xylem anatomical adjustments prioritize hydraulic efficiency over safety as Norway spruce trees grow taller. TREE PHYSIOLOGY 2018; 38:1088-1097. [PMID: 29920598 DOI: 10.1093/treephys/tpy065] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 05/16/2018] [Indexed: 05/23/2023]
Abstract
As a tree grows taller, the increase in gravitational pressure and path length resistance results in lower water potentials at a given flow rate and higher carbon construction costs to transport a given amount of water to the leaves. We investigated how hydraulic safety and efficiency are coordinated under the constraints of higher cavitation risks and higher carbon construction costs with increasing tree height. We combined measurements of xylem tracheid anatomical traits with the vulnerability to drought-induced embolism and hydraulic conductivity of the apical shoots of 2- to 37-m tall Picea abies trees growing at two sites in the Dolomites (Italian Eastern Alps). We found that the theoretical hydraulic conductivity of the apical shoots increased with tree height at both sites (P < 0.001) as a result of an increase in either total tracheid number or mean hydraulic diameter. The xylem water potential inducing 50% loss of apical conductance significantly increased from small (-4.45 ± 0.20 MPa) to tall trees (-3.65 ± 0.03 MPa) (P = 0.007). The more conductive xylem at the treetop of taller trees allows the full compensation for the height-related hydraulic constraints and minimizes the additional carbon costs of transporting water over a longer path length. The corresponding increase in vulnerability to cavitation shows that hydraulic efficiency is prioritized over safety during height growth.
Collapse
Affiliation(s)
- Angela Luisa Prendin
- Department TeSAF-Department of Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, viale dell'Università 16, Legnaro (PD), Italy
| | - Stefan Mayr
- Institut für Botanik, Universität Innsbruck, Sternwartestraße 15, Innsbruck, Austria
| | - Barbara Beikircher
- Institut für Botanik, Universität Innsbruck, Sternwartestraße 15, Innsbruck, Austria
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, Switzerland
- Climatic Change and Climate Impacts, Institute for Environmental Sciences, 66 Boulevard Carl-Vogt, Geneva, Switzerland
| | - Giai Petit
- Department TeSAF-Department of Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, viale dell'Università 16, Legnaro (PD), Italy
| |
Collapse
|
209
|
Pittermann J, Olson ME. Transport efficiency and cavitation resistance in developing shoots: a risk worth taking. TREE PHYSIOLOGY 2018; 38:1085-1087. [PMID: 30137525 DOI: 10.1093/treephys/tpy094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Jarmila Pittermann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Mark E Olson
- Instituto de Biologia, Universidad Nacional Autonoma de Mexico, Tercer Circuito sin de CU, DF, Mexico
| |
Collapse
|
210
|
Meakem V, Tepley AJ, Gonzalez-Akre EB, Herrmann V, Muller-Landau HC, Wright SJ, Hubbell SP, Condit R, Anderson-Teixeira KJ. Role of tree size in moist tropical forest carbon cycling and water deficit responses. THE NEW PHYTOLOGIST 2018; 219:947-958. [PMID: 28585237 DOI: 10.1111/nph.14633] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/27/2017] [Indexed: 05/25/2023]
Abstract
Drought disproportionately affects larger trees in tropical forests, but implications for forest composition and carbon (C) cycling in relation to dry season intensity remain poorly understood. In order to characterize how C cycling is shaped by tree size and drought adaptations and how these patterns relate to spatial and temporal variation in water deficit, we analyze data from three forest dynamics plots spanning a moisture gradient in Panama that have experienced El Niño droughts. At all sites, aboveground C cycle contributions peaked below 50-cm stem diameter, with stems ≥ 50 cm accounting for on average 59% of live aboveground biomass, 45% of woody productivity and 49% of woody mortality. The dominance of drought-avoidance strategies increased interactively with stem diameter and dry season intensity. Although size-related C cycle contributions did not vary systematically across the moisture gradient under nondrought conditions, woody mortality of larger trees was disproportionately elevated under El Niño drought stress. Thus, large (> 50 cm) stems, which strongly mediate but do not necessarily dominate C cycling, have drought adaptations that compensate for their more challenging hydraulic environment, particularly in drier climates. However, these adaptations do not fully buffer the effects of severe drought, and increased large tree mortality dominates ecosystem-level drought responses.
Collapse
Affiliation(s)
- Victoria Meakem
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, Front Royal, VA, 22630, USA
| | - Alan J Tepley
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, Front Royal, VA, 22630, USA
| | - Erika B Gonzalez-Akre
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, Front Royal, VA, 22630, USA
| | - Valentine Herrmann
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, Front Royal, VA, 22630, USA
| | - Helene C Muller-Landau
- Center for Tropical Forest Science, Smithsonian Tropical Research Institute, Balboa Ancon, Panama, Republic of Panama
| | - S Joseph Wright
- Center for Tropical Forest Science, Smithsonian Tropical Research Institute, Balboa Ancon, Panama, Republic of Panama
| | - Stephen P Hubbell
- Center for Tropical Forest Science, Smithsonian Tropical Research Institute, Balboa Ancon, Panama, Republic of Panama
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Richard Condit
- Center for Tropical Forest Science, Smithsonian Tropical Research Institute, Balboa Ancon, Panama, Republic of Panama
| | - Kristina J Anderson-Teixeira
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, Front Royal, VA, 22630, USA
- Center for Tropical Forest Science, Smithsonian Tropical Research Institute, Balboa Ancon, Panama, Republic of Panama
| |
Collapse
|
211
|
Powell TL, Koven CD, Johnson DJ, Faybishenko B, Fisher RA, Knox RG, McDowell NG, Condit R, Hubbell SP, Wright SJ, Chambers JQ, Kueppers LM. Variation in hydroclimate sustains tropical forest biomass and promotes functional diversity. THE NEW PHYTOLOGIST 2018; 219:932-946. [PMID: 29923303 DOI: 10.1111/nph.15271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
The fate of tropical forests under climate change is unclear as a result, in part, of the uncertainty in projected changes in precipitation and in the ability of vegetation models to capture the effects of drought-induced mortality on aboveground biomass (AGB). We evaluated the ability of a terrestrial biosphere model with demography and hydrodynamics (Ecosystem Demography, ED2-hydro) to simulate AGB and mortality of four tropical tree plant functional types (PFTs) that operate along light- and water-use axes. Model predictions were compared with observations of canopy trees at Barro Colorado Island (BCI), Panama. We then assessed the implications of eight hypothetical precipitation scenarios, including increased annual precipitation, reduced inter-annual variation, El Niño-related droughts and drier wet or dry seasons, on AGB and functional diversity of the model forest. When forced with observed meteorology, ED2-hydro predictions capture multiple BCI benchmarks. ED2-hydro predicts that AGB will be sustained under lower rainfall via shifts in the functional composition of the forest, except under the drier dry-season scenario. These results support the hypothesis that inter-annual variation in mean and seasonal precipitation promotes the coexistence of functionally diverse PFTs because of the relative differences in mortality rates. If the hydroclimate becomes chronically drier or wetter, functional evenness related to drought tolerance may decline.
Collapse
Affiliation(s)
- Thomas L Powell
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Charles D Koven
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | | | | - Rosie A Fisher
- National Center for Atmospheric Research, Boulder, CO, 80305, USA
| | - Ryan G Knox
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Nate G McDowell
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Richard Condit
- Field Museum of Natural History, Chicago, IL, 60605, USA
- Morton Arboretum, Lisle, IL, 60532, USA
| | - Stephen P Hubbell
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Republic of Panama
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Republic of Panama
| | | | - Lara M Kueppers
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Energy and Resources Group, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
212
|
Leitold V, Morton DC, Longo M, Dos-Santos MN, Keller M, Scaranello M. El Niño drought increased canopy turnover in Amazon forests. THE NEW PHYTOLOGIST 2018; 219:959-971. [PMID: 29577319 DOI: 10.1111/nph.15110] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/11/2018] [Indexed: 05/28/2023]
Abstract
Amazon droughts, including the 2015-2016 El Niño, may reduce forest net primary productivity and increase canopy tree mortality, thereby altering both the short- and the long-term net forest carbon balance. Given the broad extent of drought impacts, inventory plots or eddy flux towers may not capture regional variability in forest response to drought. We used multi-temporal airborne Lidar data and field measurements of coarse woody debris to estimate patterns of canopy turnover and associated carbon losses in intact and fragmented forests in the central Brazilian Amazon between 2013-2014 and 2014-2016. Average annualized canopy turnover rates increased by 65% during the drought period in both intact and fragmented forests. The average size and height of turnover events was similar for both time intervals, in contrast to expectations that the 2015-2016 El Niño drought would disproportionally affect large trees. Lidar-biomass relationships between canopy turnover and field measurements of coarse woody debris were modest (R2 ≈ 0.3), given similar coarse woody debris production and Lidar-derived changes in canopy volume from single tree and multiple branch fall events. Our findings suggest that El Niño conditions accelerated canopy turnover in central Amazon forests, increasing coarse woody debris production by 62% to 1.22 Mg C ha-1 yr-1 in drought years .
Collapse
Affiliation(s)
- Veronika Leitold
- NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
- Department of Geographical Sciences, University of Maryland, College Park, MD, 20742, USA
| | | | - Marcos Longo
- EMBRAPA Informática Agropecuária, Barão Geraldo, Campinas, 13083-886, SP, Brazil
| | | | - Michael Keller
- EMBRAPA Informática Agropecuária, Barão Geraldo, Campinas, 13083-886, SP, Brazil
- NASA Jet Propulsion Laboratory, Pasadena, CA, 91109, USA
- USDA Forest Service, International Institute of Tropical Forestry, Rio Piedras, PR, 00926, USA
| | - Marcos Scaranello
- EMBRAPA Informática Agropecuária, Barão Geraldo, Campinas, 13083-886, SP, Brazil
| |
Collapse
|
213
|
Mitchard ETA. The tropical forest carbon cycle and climate change. Nature 2018; 559:527-534. [DOI: 10.1038/s41586-018-0300-2] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/11/2018] [Indexed: 12/17/2022]
|
214
|
Olson ME, Soriano D, Rosell JA, Anfodillo T, Donoghue MJ, Edwards EJ, León-Gómez C, Dawson T, Camarero Martínez JJ, Castorena M, Echeverría A, Espinosa CI, Fajardo A, Gazol A, Isnard S, Lima RS, Marcati CR, Méndez-Alonzo R. Plant height and hydraulic vulnerability to drought and cold. Proc Natl Acad Sci U S A 2018; 115:7551-7556. [PMID: 29967148 PMCID: PMC6055177 DOI: 10.1073/pnas.1721728115] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding how plants survive drought and cold is increasingly important as plants worldwide experience dieback with drought in moist places and grow taller with warming in cold ones. Crucial in plant climate adaptation are the diameters of water-transporting conduits. Sampling 537 species across climate zones dominated by angiosperms, we find that plant size is unambiguously the main driver of conduit diameter variation. And because taller plants have wider conduits, and wider conduits within species are more vulnerable to conduction-blocking embolisms, taller conspecifics should be more vulnerable than shorter ones, a prediction we confirm with a plantation experiment. As a result, maximum plant size should be short under drought and cold, which cause embolism, or increase if these pressures relax. That conduit diameter and embolism vulnerability are inseparably related to plant size helps explain why factors that interact with conduit diameter, such as drought or warming, are altering plant heights worldwide.
Collapse
Affiliation(s)
- Mark E Olson
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 04510 Ciudad de México (CDMX), Mexico;
| | - Diana Soriano
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 04510 Ciudad de México (CDMX), Mexico
| | - Julieta A Rosell
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico
| | - Tommaso Anfodillo
- Department Territorio e Sistemi Agro-Forestali, University of Padova, 35020 Legnaro (PD), Italy
| | - Michael J Donoghue
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520-8106;
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520-8106
| | - Calixto León-Gómez
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 04510 Ciudad de México (CDMX), Mexico
| | - Todd Dawson
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3140
| | - J Julio Camarero Martínez
- Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas, 50059 Zaragoza, Spain
| | - Matiss Castorena
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 04510 Ciudad de México (CDMX), Mexico
| | - Alberto Echeverría
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 04510 Ciudad de México (CDMX), Mexico
| | - Carlos I Espinosa
- Universidad Técnica Particular de Loja, San Cayetano Alto sn, Loja, Ecuador
| | - Alex Fajardo
- Centro de Investigación en Ecosistemas de la Patagonia Conicyt-Regional R10C1003, Universidad Austral de Chile, 5951601 Coyhaique, Chile
| | - Antonio Gazol
- Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas, 50059 Zaragoza, Spain
| | - Sandrine Isnard
- Botany and Modelling of Plant Architecture and Vegetation Joint Research Unit, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, 98800 Nouméa, New Caledonia
| | - Rivete S Lima
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, 58051-900 Paraíba, Brazil
| | - Carmen R Marcati
- Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu, 18603970 São Paulo, Brazil
| | - Rodrigo Méndez-Alonzo
- Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de Ensenada, 22860 Baja California, Mexico
| |
Collapse
|
215
|
Ecophysiological plasticity of Amazonian trees to long-term drought. Oecologia 2018; 187:933-940. [DOI: 10.1007/s00442-018-4195-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 06/05/2018] [Indexed: 11/27/2022]
|
216
|
Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE. Triggers of tree mortality under drought. Nature 2018; 558:531-539. [DOI: 10.1038/s41586-018-0240-x] [Citation(s) in RCA: 647] [Impact Index Per Article: 107.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/02/2018] [Indexed: 01/08/2023]
|
217
|
Rowland L, da Costa ACL, Oliveira AAR, Oliveira RS, Bittencourt PL, Costa PB, Giles AL, Sosa AI, Coughlin I, Godlee JL, Vasconcelos SS, Junior JAS, Ferreira LV, Mencuccini M, Meir P. Drought stress and tree size determine stem CO 2 efflux in a tropical forest. THE NEW PHYTOLOGIST 2018; 218:1393-1405. [PMID: 29397028 PMCID: PMC5969101 DOI: 10.1111/nph.15024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/22/2017] [Indexed: 05/10/2023]
Abstract
CO2 efflux from stems (CO2_stem ) accounts for a substantial fraction of tropical forest gross primary productivity, but the climate sensitivity of this flux remains poorly understood. We present a study of tropical forest CO2_stem from 215 trees across wet and dry seasons, at the world's longest running tropical forest drought experiment site. We show a 27% increase in wet season CO2_stem in the droughted forest relative to a control forest. This was driven by increasing CO2_stem in trees 10-40 cm diameter. Furthermore, we show that drought increases the proportion of maintenance to growth respiration in trees > 20 cm diameter, including large increases in maintenance respiration in the largest droughted trees, > 40 cm diameter. However, we found no clear taxonomic influence on CO2_stem and were unable to accurately predict how drought sensitivity altered ecosystem scale CO2_stem , due to substantial uncertainty introduced by contrasting methods previously employed to scale CO2_stem fluxes. Our findings indicate that under future scenarios of elevated drought, increases in CO2_stem may augment carbon losses, weakening or potentially reversing the tropical forest carbon sink. However, due to substantial uncertainties in scaling CO2_stem fluxes, stand-scale future estimates of changes in stem CO2 emissions remain highly uncertain.
Collapse
Affiliation(s)
- Lucy Rowland
- College of Life and Environmental SciencesUniversity of ExeterExeterEX4 4RJUK
| | | | | | | | | | | | | | - Azul I. Sosa
- Instituto de BiologiaUNICAMPCampinasSP13083‐970Brasil
| | - Ingrid Coughlin
- Departamento de BiologiaFFCLRPUniversidade de São PauloRibeirão PretoSP14040‐900Brasil
| | - John L. Godlee
- School of GeoSciencesUniversity of EdinburghEdinburghEH9 3FFUK
| | | | - João A. S. Junior
- Instituto de GeosciênciasUniversidade Federal do ParáBelémPA66075‐110Brasil
| | | | | | - Patrick Meir
- School of GeoSciencesUniversity of EdinburghEdinburghEH9 3FFUK
- Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| |
Collapse
|
218
|
Kannenberg SA, Novick KA, Phillips RP. Coarse roots prevent declines in whole-tree non-structural carbohydrate pools during drought in an isohydric and an anisohydric species. TREE PHYSIOLOGY 2018; 38:582-590. [PMID: 29036648 DOI: 10.1093/treephys/tpx119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/30/2017] [Indexed: 05/17/2023]
Abstract
Predicted increases in the frequency and severity of droughts have led to a renewed focus on how plants physiologically adjust to low water availability. A popular framework for understanding plant responses to drought characterizes species along a spectrum from isohydry to anisohydry based on their regulation of gas exchange and leaf water potential under drying conditions. One prediction that arises from this theory is that plant drought responses may hinge, in part, on their usage of non-structural carbohydrate (NSC) pools. For example, trees that respond to drought by closing stomates (i.e., isohydric) are predicted to deplete NSC reserves to maintain metabolism, whereas plants that keep stomata open during water stress (i.e., anisohydric), may show little change or even increases in NSC concentration. However, empirical tests of this theory largely rely on aboveground measurements of NSC, ignoring the potentially conflicting responses of root NSC pools. We sought to test these predictions by subjecting potted saplings of Quercus alba L. (an anisohydric species) and Liriodendron tulipifera L. (an isohydric species) to a 6 week experimental drought. We found that stem NSC concentrations were depleted in the isohydric L. tulipifera but maintained in the anisohydric Q. alba-as predicted. However, when scaled to whole-plant NSC content, the drought-induced decreases in stem NSCs in L. tulipifera were offset by increases in root NSCs (especially soluble sugars), resulting in no net change to whole-plant NSC content. Similarly, root sugars increased in Q. alba in response to drought. This increase was concurrent with declines in growth, suggesting a potential trade-off between allocation of photoassimilates to root sugars vs biomass during drought. Collectively, our results suggest that the responses of NSC in coarse roots can differ from stems, and indicate a prominent role of coarse roots in mitigating drought-induced declines in whole-tree NSC pools.
Collapse
Affiliation(s)
| | - Kimberly A Novick
- School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
219
|
Why Functional Traits Do Not Predict Tree Demographic Rates. Trends Ecol Evol 2018; 33:326-336. [PMID: 29605086 DOI: 10.1016/j.tree.2018.03.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 11/23/2022]
Abstract
Foundational to trait-based community ecology is the expectation that functional traits determine demographic outcomes. However, trait-demographic rate relationships are frequently weak, particularly in tree communities. The foundation of trait-based tree community ecology may, therefore, appear to be unstable. Here we argue that there are three core reasons why trait-demographic relationships are generally weak in tree communities. Specifically, important contextual information is frequently ignored, there is too much focus on species relative to individuals, and there are dimensions of tree function that are critical for determining tree demographic rates that are not captured by easily measured functional traits. Rather than being evidence that trait-based community ecology is fundamentally flawed, these issues elucidate a pathway towards a more robust research program.
Collapse
|
220
|
Changes in tree resistance, recovery and resilience across three successive extreme droughts in the northeast Iberian Peninsula. Oecologia 2018; 187:343-354. [DOI: 10.1007/s00442-018-4118-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
|
221
|
Klein T, Zeppel MJB, Anderegg WRL, Bloemen J, De Kauwe MG, Hudson P, Ruehr NK, Powell TL, von Arx G, Nardini A. Xylem embolism refilling and resilience against drought-induced mortality in woody plants: processes and trade-offs. Ecol Res 2018. [DOI: 10.1007/s11284-018-1588-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
222
|
Hülsmann L, Bugmann H, Cailleret M, Brang P. How to kill a tree: empirical mortality models for 18 species and their performance in a dynamic forest model. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:522-540. [PMID: 29266516 DOI: 10.1002/eap.1668] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/08/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
Dynamic Vegetation Models (DVMs) are designed to be suitable for simulating forest succession and species range dynamics under current and future conditions based on mathematical representations of the three key processes regeneration, growth, and mortality. However, mortality formulations in DVMs are typically coarse and often lack an empirical basis, which increases the uncertainty of projections of future forest dynamics and hinders their use for developing adaptation strategies to climate change. Thus, sound tree mortality models are highly needed. We developed parsimonious, species-specific mortality models for 18 European tree species using >90,000 records from inventories in Swiss and German strict forest reserves along a considerable environmental gradient. We comprehensively evaluated model performance and incorporated the new mortality functions in the dynamic forest model ForClim. Tree mortality was successfully predicted by tree size and growth. Only a few species required additional covariates in their final model to consider aspects of stand structure or climate. The relationships between mortality and its predictors reflect the indirect influences of resource availability and tree vitality, which are further shaped by species-specific attributes such as maximum longevity and shade tolerance. Considering that the behavior of the models was biologically meaningful, and that their performance was reasonably high and not impacted by changes in the sampling design, we suggest that the mortality algorithms developed here are suitable for implementation and evaluation in DVMs. In the DVM ForClim, the new mortality functions resulted in simulations of stand basal area and species composition that were generally close to historical observations. However, ForClim performance was poorer than when using the original, coarse mortality formulation. The difficulties of simulating stand structure and species composition, which were most evident for Fagus sylvatica L. and in long-term simulations, resulted from feedbacks between simulated growth and mortality as well as from extrapolation to very small and very large trees. Growth and mortality processes and their species-specific differences should thus be revisited jointly, with a particular focus on small and very large trees in relation to their shade tolerance.
Collapse
Affiliation(s)
- Lisa Hülsmann
- Forest Resources and Management, WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- Forest Ecology, Institute of Terrestrial Ecosystems, ETH Zurich, Universitätstrasse 16, 8092, Zürich, Switzerland
- Theoretical Ecology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Harald Bugmann
- Forest Ecology, Institute of Terrestrial Ecosystems, ETH Zurich, Universitätstrasse 16, 8092, Zürich, Switzerland
| | - Maxime Cailleret
- Forest Ecology, Institute of Terrestrial Ecosystems, ETH Zurich, Universitätstrasse 16, 8092, Zürich, Switzerland
- Forest Dynamics, WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Peter Brang
- Forest Resources and Management, WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| |
Collapse
|
223
|
Hoshika Y, Moura B, Paoletti E. Ozone risk assessment in three oak species as affected by soil water availability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8125-8136. [PMID: 28748441 DOI: 10.1007/s11356-017-9786-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
To derive ozone (O3) dose-response relationships for three European oak species (Quercus ilex, Quercus pubescens, and Quercus robur) under a range of soil water availability, an experiment was carried out with 2-year-old potted seedlings exposed to three levels of water availability in the soil and three levels of O3 pollution for one growing season in an ozone free-air controlled exposure (FACE) facility. Total biomass losses were estimated relative to a hypothetical clean air at the pre-industrial age, i.e., at 10 ppb as daily average (M24). A stomatal conductance model was parameterized with inputs from the three species for calculating the stomatal O3 flux. Exposure-based (M24, W126, and AOT40) and flux-based (phytotoxic O3 dose (POD)0-3) dose-response relationships were estimated and critical levels (CL) were calculated for a 5% decline of total biomass. Results show that water availability can significantly affect O3 risk assessment. In fact, dose-response relationships calculated per individual species at each water availability level resulted in very different CLs and best metrics. In a simplified approach where species were aggregated on the basis of their O3 sensitivity, the best metric was POD0.5, with a CL of 6.8 mmol m-2 for the less O3-sensitive species Q. ilex and Q. pubescens and of 3.5 mmol m-2 for the more O3-sensitive species Q. robur. The performance of POD0, however, was very similar to that of POD0.5, and thus a CL of 6.9 mmol m-2 POD0 and 3.6 mmol m-2 POD0 for the less and more O3-sensitive oak species may be also recommended. These CLs can be applied to oak ecosystems at variable water availability in the soil. We conclude that PODy is able to reconcile the effects of O3 and soil water availability on species-specific oak productivity.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Institute of Sustainable Plant Protection, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Barbara Moura
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Elena Paoletti
- Institute of Sustainable Plant Protection, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
224
|
Karavani A, Boer MM, Baudena M, Colinas C, Díaz-Sierra R, Pemán J, de Luis M, Enríquez-de-Salamanca Á, Resco de Dios V. Fire-induced deforestation in drought-prone Mediterranean forests: drivers and unknowns from leaves to communities. ECOL MONOGR 2018. [DOI: 10.1002/ecm.1285] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Asaf Karavani
- Master Course Mediterranean Forestry and Natural Resources Management; Universitat de Lleida; E25198 Lleida Spain
| | - Matthias M. Boer
- Hawkesbury Institute for the Environment; Western Sydney University; Richmond New South Wales 2753 Australia
| | - Mara Baudena
- Copernicus Institute of Sustainable Development, Environmental Science Group; Utrecht University; P.O. Box 80115 3508 TC Utrecht The Netherlands
| | - Carlos Colinas
- Department of Crop and Forest Sciences-AGROTECNIO Center; Universitat de Lleida; E 25198 Lleida Spain
| | - Rubén Díaz-Sierra
- Mathematical and Fluid Physics Department; Faculty of Sciences; Universidad Nacional de Educación a Distancia; Madrid 28040 Spain
| | - Jesús Pemán
- Department of Crop and Forest Sciences-AGROTECNIO Center; Universitat de Lleida; E 25198 Lleida Spain
| | - Martín de Luis
- Department of Geography and Regional Planning; University of Zaragoza; 50009 Zaragoza Spain
| | - Álvaro Enríquez-de-Salamanca
- Mathematical and Fluid Physics Department; Faculty of Sciences; Universidad Nacional de Educación a Distancia; Madrid 28040 Spain
| | - Víctor Resco de Dios
- Department of Crop and Forest Sciences-AGROTECNIO Center; Universitat de Lleida; E 25198 Lleida Spain
| |
Collapse
|
225
|
da Costa ACL, Rowland L, Oliveira RS, Oliveira AAR, Binks OJ, Salmon Y, Vasconcelos SS, Junior JAS, Ferreira LV, Poyatos R, Mencuccini M, Meir P. Stand dynamics modulate water cycling and mortality risk in droughted tropical forest. GLOBAL CHANGE BIOLOGY 2018; 24:249-258. [PMID: 28752626 DOI: 10.1111/gcb.13851] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/09/2017] [Indexed: 05/25/2023]
Abstract
Transpiration from the Amazon rainforest generates an essential water source at a global and local scale. However, changes in rainforest function with climate change can disrupt this process, causing significant reductions in precipitation across Amazonia, and potentially at a global scale. We report the only study of forest transpiration following a long-term (>10 year) experimental drought treatment in Amazonian forest. After 15 years of receiving half the normal rainfall, drought-related tree mortality caused total forest transpiration to decrease by 30%. However, the surviving droughted trees maintained or increased transpiration because of reduced competition for water and increased light availability, which is consistent with increased growth rates. Consequently, the amount of water supplied as rainfall reaching the soil and directly recycled as transpiration increased to 100%. This value was 25% greater than for adjacent nondroughted forest. If these drought conditions were accompanied by a modest increase in temperature (e.g., 1.5°C), water demand would exceed supply, making the forest more prone to increased tree mortality.
Collapse
Affiliation(s)
| | - Lucy Rowland
- Department of Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | | | - Oliver J Binks
- Research School of Biology, Australian National University, Canberra, Australia
| | - Yann Salmon
- Department of Physics, University of Helsinki, Helsinki, Finland
| | | | - João A S Junior
- Instituto de Geosciências, Universidade Federal do Pará, Belém, Brasil
| | | | - Rafael Poyatos
- CREAF, Campus UAB, Cerdanyola del Vallés, Spain
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Patrick Meir
- Research School of Biology, Australian National University, Canberra, Australia
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
226
|
Lin H, Chen Y, Song Q, Fu P, Cleverly J, Magliulo V, Law BE, Gough CM, Hörtnagl L, Di Gennaro F, Matteucci G, Montagnani L, Duce P, Shao C, Kato T, Bonal D, Paul-Limoges E, Beringer J, Grace J, Fan Z. Quantifying deforestation and forest degradation with thermal response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:1286-1292. [PMID: 28732406 DOI: 10.1016/j.scitotenv.2017.07.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/13/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Deforestation and forest degradation cause the deterioration of resources and ecosystem services. However, there are still no operational indicators to measure forest status, especially for forest degradation. In the present study, we analysed the thermal response number (TRN, calculated by daily total net radiation divided by daily temperature range) of 163 sites including mature forest, disturbed forest, planted forest, shrubland, grassland, savanna vegetation and cropland. TRN generally increased with latitude, however the regression of TRN against latitude differed among vegetation types. Mature forests are superior as thermal buffers, and had significantly higher TRN than disturbed and planted forests. There was a clear boundary between TRN of forest and non-forest vegetation (i.e. grassland and savanna) with the exception of shrubland, whose TRN overlapped with that of forest vegetation. We propose to use the TRN of local mature forest as the optimal TRN (TRNopt). A forest with lower than 75% of TRNopt was identified as subjected to significant disturbance, and forests with 66% of TRNopt was the threshold for deforestation within the absolute latitude from 30° to 55°. Our results emphasized the irreplaceable thermal buffer capacity of mature forest. TRN can be used for early warning of deforestation and degradation risk. It is therefore a valuable tool in the effort to protect forests and prevent deforestation.
Collapse
Affiliation(s)
- Hua Lin
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China.
| | - Yajun Chen
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Qinghai Song
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Peili Fu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - James Cleverly
- Terrestrial Ecohydrology Research Group, School of Life Sciences, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | | | - Beverly E Law
- Forest Ecosystems & Society, Oregon State University, Corvallis, OR 97330, USA
| | - Christopher M Gough
- Virginia Commonwealth University, Department of Biology, 1000 W. Cary Street, Richmond, VA 23284-2012, USA
| | - Lukas Hörtnagl
- ETH Zurich, Institute of Agricultural Sciences, Zürich 8092, Switzerland
| | | | | | - Leonardo Montagnani
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy; Forest Services, Autonomous Province of Bolzano, Bolzano, Italy
| | | | - Changliang Shao
- Center for Global Change & Earth Observations (CGCEO), Michigan State University, East Lansing, MI 48823, USA
| | - Tomomichi Kato
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | | | | | - Jason Beringer
- School of Earth and Environment (SEE), The University of Western Australia, Crawley, WA 6009, Australia
| | - John Grace
- School of Geosciences, the University of Edingburgh, Edinburgh EH9 3FF, The United Kingdom
| | - Zexin Fan
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| |
Collapse
|
227
|
Murray-Tortarolo G, Jaramillo VJ, Maass M, Friedlingstein P, Sitch S. The decreasing range between dry- and wet- season precipitation over land and its effect on vegetation primary productivity. PLoS One 2017; 12:e0190304. [PMID: 29284050 PMCID: PMC5746260 DOI: 10.1371/journal.pone.0190304] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/12/2017] [Indexed: 12/04/2022] Open
Abstract
One consequence of climate change is the alteration of global water fluxes, both in amount and seasonality. As a result, the seasonal difference between dry- (p < 100 mm/month) and wet-season (p > 100 mm/month) precipitation (p) has increased over land during recent decades (1980–2005). However, our analysis expanding to a 60-year period (1950–2009) showed the opposite trend. This is, dry-season precipitation increased steadily, while wet-season precipitation remained constant, leading to reduced seasonality at a global scale. The decrease in seasonality was not due to a change in dry-season length, but in precipitation rate; thus, the dry season is on average becoming wetter without changes in length. Regionally, wet- and dry-season precipitations are of opposite sign, causing a decrease in the seasonal variation of the precipitation over 62% of the terrestrial ecosystems. Furthermore, we found a high correlation (r = 0.62) between the change in dry-season precipitation and the trend in modelled net primary productivity (NPP), which is explained based on different ecological mechanisms. This trend is not found with wet-season precipitation (r = 0.04), These results build on the argument that seasonal water availability has changed over the course of the last six decades and that the dry-season precipitation is a key driver of vegetation productivity at the global scale.
Collapse
Affiliation(s)
- Guillermo Murray-Tortarolo
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, México
- Cátedra CONACyT comisionado al Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, México
- * E-mail:
| | - Víctor J. Jaramillo
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, México
| | - Manuel Maass
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, México
| | - Pierre Friedlingstein
- College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - Stephen Sitch
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
228
|
Hu K, Awange JL, Forootan E, Goncalves RM, Fleming K. Hydrogeological characterisation of groundwater over Brazil using remotely sensed and model products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:372-386. [PMID: 28482297 DOI: 10.1016/j.scitotenv.2017.04.188] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
For Brazil, a country frequented by droughts and whose rural inhabitants largely depend on groundwater, reliance on isotope for its monitoring, though accurate, is expensive and limited in spatial coverage. We exploit total water storage (TWS) derived from Gravity Recovery and Climate Experiment (GRACE) satellites to analyse spatial-temporal groundwater changes in relation to geological characteristics. Large-scale groundwater changes are estimated using GRACE-derived TWS and altimetry observations in addition to GLDAS and WGHM model outputs. Additionally, TRMM precipitation data are used to infer impacts of climate variability on groundwater fluctuations. The results indicate that climate variability mainly controls groundwater change trends while geological properties control change rates, spatial distribution, and storage capacity. Granular rocks in the Amazon and Guarani aquifers are found to influence larger storage capability, higher permeability (>10-4 m/s) and faster response to rainfall (1 to 3months' lag) compared to fractured rocks (permeability <10-7 m/s and lags > 3months) found only in Bambui aquifer. Groundwater in the Amazon region is found to rely not only on precipitation but also on inflow from other regions. Areas beyond the northern and southern Amazon basin depict a 'dam-like' pattern, with high inflow and slow outflow rates (recharge slope > 0.75, discharge slope < 0.45). This is due to two impermeable rock layer-like 'walls' (permeability <10-8 m/s) along the northern and southern Alter do Chão aquifer that help retain groundwater. The largest groundwater storage capacity in Brazil is the Amazon aquifer (with annual amplitudes of > 30cm). Amazon's groundwater declined between 2002 and 2008 due to below normal precipitation (wet seasons lasted for about 36 to 47% of the time). The Guarani aquifer and adjacent coastline areas rank second in terms of storage capacity, while the northeast and southeast coastal regions indicate the smallest storage capacity due to lack of rainfall (annual average is rainfall <10cm).
Collapse
Affiliation(s)
- Kexiang Hu
- Department of Spatial Sciences, Curtin University, Perth, Australia
| | - Joseph L Awange
- Department of Spatial Sciences, Curtin University, Perth, Australia
| | - Ehsan Forootan
- School of Earth and Ocean Sciences, Cardiff University, Cardiff, UK
| | - Rodrigo Mikosz Goncalves
- Department of Cartographic Engineering, Geodetic Science and Technology of Geoinformation Post Graduation Program, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Kevin Fleming
- Centre for Early Warning Systems, GFZ German Research Centre for Geosciences, Potsdam, Germany
| |
Collapse
|
229
|
Phillips OL, Brienen RJW. Carbon uptake by mature Amazon forests has mitigated Amazon nations' carbon emissions. CARBON BALANCE AND MANAGEMENT 2017; 12:1. [PMID: 28413845 PMCID: PMC5285296 DOI: 10.1186/s13021-016-0069-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/09/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Several independent lines of evidence suggest that Amazon forests have provided a significant carbon sink service, and also that the Amazon carbon sink in intact, mature forests may now be threatened as a result of different processes. There has however been no work done to quantify non-land-use-change forest carbon fluxes on a national basis within Amazonia, or to place these national fluxes and their possible changes in the context of the major anthropogenic carbon fluxes in the region. Here we present a first attempt to interpret results from ground-based monitoring of mature forest carbon fluxes in a biogeographically, politically, and temporally differentiated way. Specifically, using results from a large long-term network of forest plots, we estimate the Amazon biomass carbon balance over the last three decades for the different regions and nine nations of Amazonia, and evaluate the magnitude and trajectory of these differentiated balances in relation to major national anthropogenic carbon emissions. RESULTS The sink of carbon into mature forests has been remarkably geographically ubiquitous across Amazonia, being substantial and persistent in each of the five biogeographic regions within Amazonia. Between 1980 and 2010, it has more than mitigated the fossil fuel emissions of every single national economy, except that of Venezuela. For most nations (Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname) the sink has probably additionally mitigated all anthropogenic carbon emissions due to Amazon deforestation and other land use change. While the sink has weakened in some regions since 2000, our analysis suggests that Amazon nations which are able to conserve large areas of natural and semi-natural landscape still contribute globally-significant carbon sequestration. CONCLUSIONS Mature forests across all of Amazonia have contributed significantly to mitigating climate change for decades. Yet Amazon nations have not directly benefited from providing this global scale ecosystem service. We suggest that better monitoring and reporting of the carbon fluxes within mature forests, and understanding the drivers of changes in their balance, must become national, as well as international, priorities.
Collapse
|
230
|
O'Brien MJ, Ong R, Reynolds G. Intra-annual plasticity of growth mediates drought resilience over multiple years in tropical seedling communities. GLOBAL CHANGE BIOLOGY 2017; 23:4235-4244. [PMID: 28192618 DOI: 10.1111/gcb.13658] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/28/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
Precipitation patterns are changing across the globe causing more severe and frequent drought for many forest ecosystems. Although research has focused on the resistance of tree populations and communities to these novel precipitation regimes, resilience of forests is also contingent on recovery following drought, which remains poorly understood, especially in aseasonal tropical forests. We used rainfall exclusion shelters to manipulate the interannual frequency of drought for diverse seedling communities in a tropical forest and assessed resistance, recovery and resilience of seedling growth and mortality relative to everwet conditions. We found seedlings exposed to recurrent periods of drought altered their growth rates throughout the year relative to seedlings in everwet conditions. During drought periods, seedlings grew slower than seedlings in everwet conditions (i.e., resistance phase) while compensating with faster growth after drought (i.e., recovery phase). However, the response to frequent drought was species dependent as some species grew significantly slower with frequent drought relative to everwet conditions while others grew faster with frequent drought due to overcompensating growth during the recovery phase. In contrast, mortality was unrelated to rainfall conditions and instead correlated with differences in light. Intra-annual plasticity of growth and increased annual growth of some species led to an overall maintenance of growth rates of tropical seedling communities in response to more frequent drought. These results suggest these communities can potentially adapt to predicted climate change scenarios and that plasticity in the growth of species, and not solely changes in mortality rates among species, may contribute to shifts in community composition under drought.
Collapse
Affiliation(s)
- Michael J O'Brien
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, La Cañada, Almería, Spain
- South East Asia Rainforest Research Partnership (SEARRP), Danum Valley Field Centre, Lahad Datu, Sabah, Malaysia
| | - Robert Ong
- Forest Research Centre, Sepilok, Sandakan, Sabah, Malaysia
| | - Glen Reynolds
- South East Asia Rainforest Research Partnership (SEARRP), Danum Valley Field Centre, Lahad Datu, Sabah, Malaysia
| |
Collapse
|
231
|
Powell TL, Wheeler JK, de Oliveira AAR, da Costa ACL, Saleska SR, Meir P, Moorcroft PR. Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees. GLOBAL CHANGE BIOLOGY 2017; 23:4280-4293. [PMID: 28426175 DOI: 10.1111/gcb.13731] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/23/2017] [Indexed: 05/24/2023]
Abstract
Considerable uncertainty surrounds the impacts of anthropogenic climate change on the composition and structure of Amazon forests. Building upon results from two large-scale ecosystem drought experiments in the eastern Brazilian Amazon that observed increases in mortality rates among some tree species but not others, in this study we investigate the physiological traits underpinning these differential demographic responses. Xylem pressure at 50% conductivity (xylem-P50 ), leaf turgor loss point (TLP), cellular osmotic potential (πo ), and cellular bulk modulus of elasticity (ε), all traits mechanistically linked to drought tolerance, were measured on upper canopy branches and leaves of mature trees from selected species growing at the two drought experiment sites. Each species was placed a priori into one of four plant functional type (PFT) categories: drought-tolerant versus drought-intolerant based on observed mortality rates, and subdivided into early- versus late-successional based on wood density. We tested the hypotheses that the measured traits would be significantly different between the four PFTs and that they would be spatially conserved across the two experimental sites. Xylem-P50 , TLP, and πo , but not ε, occurred at significantly higher water potentials for the drought-intolerant PFT compared to the drought-tolerant PFT; however, there were no significant differences between the early- and late-successional PFTs. These results suggest that these three traits are important for determining drought tolerance, and are largely independent of wood density-a trait commonly associated with successional status. Differences in these physiological traits that occurred between the drought-tolerant and drought-intolerant PFTs were conserved between the two research sites, even though they had different soil types and dry-season lengths. This more detailed understanding of how xylem and leaf hydraulic traits vary between co-occuring drought-tolerant and drought-intolerant tropical tree species promises to facilitate a much-needed improvement in the representation of plant hydraulics within terrestrial ecosystem and biosphere models, which will enhance our ability to make robust predictions of how future changes in climate will affect tropical forests.
Collapse
Affiliation(s)
- Thomas L Powell
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Earth and Environmental Sciences Area, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - James K Wheeler
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Alex A R de Oliveira
- Museu Paraense Emílio Goeldi, Programa de Pós-Graduação em Biodiversidade e Evolução, Belém, Pará, Brazil
| | | | - Scott R Saleska
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Patrick Meir
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Paul R Moorcroft
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
232
|
Osazuwa-Peters OL, Wright SJ, Zanne AE. Linking wood traits to vital rates in tropical rainforest trees: Insights from comparing sapling and adult wood. AMERICAN JOURNAL OF BOTANY 2017; 104:1464-1473. [PMID: 29885221 DOI: 10.3732/ajb.1700242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 09/18/2017] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Wood density is the top predictor of growth and mortality rates (vital rates) but with modest explanatory power at best. Stronger links to vital rates are expected if wood density is decomposed into its anatomical properties at sapling and adult stages, since saplings and adults differ in wood traits and vital rates. We examined whether anatomical determinants of wood density and strength of the relationship between wood traits and vital rates shift between saplings and adults. METHODS Using wood segments from near pith (sapling) and near bark (adult) for 20 tree species (three adults each) from Barro Colorado Island, Panama, we quantified wood traits. Vital rates for saplings and adults were obtained from an earlier study. KEY RESULTS Anatomical predictors of wood density were similar for sapling and adult wood, with wood density variation largely explained by fiber lumen area and fiber wall fraction. In sapling wood only, growth rates decreased with fiber wall fraction and increased with fiber lumen area, while mortality rates increased with vessel area but decreased with fiber wall fraction and vessel density. CONCLUSIONS Wood traits of sapling trees provide functional insight into the growth-mortality tradeoff. Sapling wood with relatively large fiber lumen area and wide vessels, enabling faster hydraulic transport but less mechanical strength, is associated with fast growth and high mortality. Sapling wood with relatively more fiber wall and many narrow vessels, enabling greater mechanical strength but slower hydraulic transport, is associated with slow growth and low mortality.
Collapse
Affiliation(s)
- Oyomoare L Osazuwa-Peters
- Department of Biology, University of Missouri Saint Louis, Saint Louis, Missouri 63121 USA
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, Missouri 63166 USA
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Apartado 0843 - 03092 Balboa, Panama
| | - Amy E Zanne
- Department of Biological Sciences, The George Washington University, Washington, DC DC 20052 USA
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, Missouri 63166 USA
| |
Collapse
|
233
|
Ishii HR, Cavaleri MA. Canopy ecophysiology: exploring the terrestrial ecosystem frontier. TREE PHYSIOLOGY 2017; 37:1263-1268. [PMID: 28981895 DOI: 10.1093/treephys/tpx112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Affiliation(s)
- H Roaki Ishii
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Molly A Cavaleri
- School of Forest Resources & Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
234
|
Resistance of tropical seedlings to drought is mediated by neighbourhood diversity. Nat Ecol Evol 2017; 1:1643-1648. [DOI: 10.1038/s41559-017-0326-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/25/2017] [Indexed: 11/09/2022]
|
235
|
Jaquetti RK, Gonçalves JFC. Carbon and nutrient stocks of three Fabaceae trees used for forest restoration and subjected to fertilization in Amazonia. AN ACAD BRAS CIENC 2017; 89:1761-1771. [PMID: 28876385 DOI: 10.1590/0001-3765201720160734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/16/2017] [Indexed: 11/21/2022] Open
Abstract
Amazonia is crucial to global carbon cycle. Deforestation continues to be one of the main causes of the release of C into the atmosphere, but forest restoration plantations can reverse this scenario. However, there is still diffuse information about the C and nutrient stocks in the vegetation biomass. We investigated the carbon and nutrient stocks of Fabaceae trees (Inga edulis, Schizolobium amazonicum and Dipteryx odorata) subjected to fertilization treatments (T1 - no fertilization; T2 - chemical; T3 - organic; and T4 - organic and chemical fertilization) in a degraded area of the Balbina Hydroelectric Dam, AM - Brazil. As an early successional species, I. edulis stocked more C and nutrients than the other two species independent of the fertilization treatment, and S. amazonicum stocked more C than D. odorata under T1 and T4. The mixed species plantation had the potential to stock 4.1 Mg C ha-1 year-1, while I. edulis alone could stock 9.4 Mg C ha-1 year-1. Mixing species that rapidly assimilate C and are of significant ecological and commercial value (e.g., Fabaceae trees) represents a good way to restore degraded areas. Our results suggest that the tested species be used for forest restoration in Amazonia.
Collapse
Affiliation(s)
- Roberto K Jaquetti
- National Institute for Research in Amazonia (INPA), Laboratory of Plant Physiology and Biochemistry, Ave. André Araújo, 2936, Aleixo, 69011-970 Manaus, AM, Brazil
| | - José Francisco C Gonçalves
- National Institute for Research in Amazonia (INPA), Laboratory of Plant Physiology and Biochemistry, Ave. André Araújo, 2936, Aleixo, 69011-970 Manaus, AM, Brazil
| |
Collapse
|
236
|
Increasing atmospheric humidity and CO 2 concentration alleviate forest mortality risk. Proc Natl Acad Sci U S A 2017; 114:9918-9923. [PMID: 28847949 DOI: 10.1073/pnas.1704811114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Climate-induced forest mortality is being increasingly observed throughout the globe. Alarmingly, it is expected to exacerbate under climate change due to shifting precipitation patterns and rising air temperature. However, the impact of concomitant changes in atmospheric humidity and CO2 concentration through their influence on stomatal kinetics remains a subject of debate and inquiry. By using a dynamic soil-plant-atmosphere model, mortality risks associated with hydraulic failure and stomatal closure for 13 temperate and tropical forest biomes across the globe are analyzed. The mortality risk is evaluated in response to both individual and combined changes in precipitation amounts and their seasonal distribution, mean air temperature, specific humidity, and atmospheric CO2 concentration. Model results show that the risk is predicted to significantly increase due to changes in precipitation and air temperature regime for the period 2050-2069. However, this increase may largely get alleviated by concurrent increases in atmospheric specific humidity and CO2 concentration. The increase in mortality risk is expected to be higher for needleleaf forests than for broadleaf forests, as a result of disparity in hydraulic traits. These findings will facilitate decisions about intervention and management of different forest types under changing climate.
Collapse
|
237
|
Esquivel-Muelbert A, Galbraith D, Dexter KG, Baker TR, Lewis SL, Meir P, Rowland L, Costa ACLD, Nepstad D, Phillips OL. Biogeographic distributions of neotropical trees reflect their directly measured drought tolerances. Sci Rep 2017; 7:8334. [PMID: 28827613 PMCID: PMC5567183 DOI: 10.1038/s41598-017-08105-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/10/2017] [Indexed: 11/09/2022] Open
Abstract
High levels of species diversity hamper current understanding of how tropical forests may respond to environmental change. In the tropics, water availability is a leading driver of the diversity and distribution of tree species, suggesting that many tropical taxa may be physiologically incapable of tolerating dry conditions, and that their distributions along moisture gradients can be used to predict their drought tolerance. While this hypothesis has been explored at local and regional scales, large continental-scale tests are lacking. We investigate whether the relationship between drought-induced mortality and distributions holds continentally by relating experimental and observational data of drought-induced mortality across the Neotropics to the large-scale bioclimatic distributions of 115 tree genera. Across the different experiments, genera affiliated to wetter climatic regimes show higher drought-induced mortality than dry-affiliated ones, even after controlling for phylogenetic relationships. This pattern is stronger for adult trees than for saplings or seedlings, suggesting that the environmental filters exerted by drought impact adult tree survival most strongly. Overall, our analysis of experimental, observational, and bioclimatic data across neotropical forests suggests that increasing moisture-stress is indeed likely to drive significant changes in floristic composition.
Collapse
Affiliation(s)
| | - David Galbraith
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | - Kyle G Dexter
- Royal Botanic Garden of Edinburgh, EH3 5LR, Edinburgh, UK
- School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Timothy R Baker
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | - Simon L Lewis
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
- Department of Geography, University College London, London, UK
| | - Patrick Meir
- School of Geosciences, University of Edinburgh, Edinburgh, UK
- Research School of Biology, Australian National University, Canberra, Australia
| | - Lucy Rowland
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | | | | |
Collapse
|
238
|
Nguyen HT, Meir P, Sack L, Evans JR, Oliveira RS, Ball MC. Leaf water storage increases with salinity and aridity in the mangrove Avicennia marina: integration of leaf structure, osmotic adjustment and access to multiple water sources. PLANT, CELL & ENVIRONMENT 2017; 40:1576-1591. [PMID: 28382635 DOI: 10.1111/pce.12962] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/17/2017] [Accepted: 03/28/2017] [Indexed: 05/20/2023]
Abstract
Leaf structure and water relations were studied in a temperate population of Avicennia marina subsp. australasica along a natural salinity gradient [28 to 49 parts per thousand (ppt)] and compared with two subspecies grown naturally in similar soil salinities to those of subsp. australasica but under different climates: subsp. eucalyptifolia (salinity 30 ppt, wet tropics) and subsp. marina (salinity 46 ppt, arid tropics). Leaf thickness, leaf dry mass per area and water content increased with salinity and aridity. Turgor loss point declined with increase in soil salinity, driven mainly by differences in osmotic potential at full turgor. Nevertheless, a high modulus of elasticity (ε) contributed to maintenance of high cell hydration at turgor loss point. Despite similarity among leaves in leaf water storage capacitance, total leaf water storage increased with increasing salinity and aridity. The time that stored water alone could sustain an evaporation rate of 1 mmol m-2 s-1 ranged from 77 to 126 min from subspecies eucalyptifolia to ssp. marina, respectively. Achieving full leaf hydration or turgor would require water from sources other than the roots, emphasizing the importance of multiple water sources to growth and survival of Avicennia marina across gradients in salinity and aridity.
Collapse
Affiliation(s)
- Hoa T Nguyen
- Plant Science Division, Research School of Biology, The Australian National University, Acton, Australian Capital Territory, 2601, Australia
- Department of Botany, Faculty of Agronomy, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, 131000, Vietnam
| | - Patrick Meir
- Plant Science Division, Research School of Biology, The Australian National University, Acton, Australian Capital Territory, 2601, Australia
- School of GeoSciences, University of Edinburgh, Crew Building, West Mains Road, Edinburgh, EH9 3JN, UK
| | - Lawren Sack
- Department of Ecology and Evolution, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - John R Evans
- Plant Science Division, Research School of Biology, The Australian National University, Acton, Australian Capital Territory, 2601, Australia
| | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, CP6109, Campinas, São Paulo, Brazil
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, The Australian National University, Acton, Australian Capital Territory, 2601, Australia
| |
Collapse
|
239
|
Ni X, Yang W, Qi Z, Liao S, Xu Z, Tan B, Wang B, Wu Q, Fu C, You C, Wu F. Simple additive simulation overestimates real influence: altered nitrogen and rainfall modulate the effect of warming on soil carbon fluxes. GLOBAL CHANGE BIOLOGY 2017; 23:3371-3381. [PMID: 27935178 DOI: 10.1111/gcb.13588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Experiments and models have led to a consensus that there is positive feedback between carbon (C) fluxes and climate warming. However, the effect of warming may be altered by regional and global changes in nitrogen (N) and rainfall levels, but the current understanding is limited. Through synthesizing global data on soil C pool, input and loss from experiments simulating N deposition, drought and increased precipitation, we quantified the responses of soil C fluxes and equilibrium to the three single factors and their interactions with warming. We found that warming slightly increased the soil C input and loss by 5% and 9%, respectively, but had no significant effect on the soil C pool. Nitrogen deposition alone increased the soil C input (+20%), but the interaction of warming and N deposition greatly increased the soil C input by 49%. Drought alone decreased the soil C input by 17%, while the interaction of warming and drought decreased the soil C input to a greater extent (-22%). Increased precipitation stimulated the soil C input by 15%, but the interaction of warming and increased precipitation had no significant effect on the soil C input. However, the soil C loss was not significantly affected by any of the interactions, although it was constrained by drought (-18%). These results implied that the positive C fluxes-climate warming feedback was modulated by the changing N and rainfall regimes. Further, we found that the additive effects of [warming × N deposition] and [warming × drought] on the soil C input and of [warming × increased precipitation] on the soil C loss were greater than their interactions, suggesting that simple additive simulation using single-factor manipulations may overestimate the effects on soil C fluxes in the real world. Therefore, we propose that more multifactorial experiments should be considered in studying Earth systems.
Collapse
Affiliation(s)
- Xiangyin Ni
- Long-Term Research Station of Alpine Forest Ecosystems, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
- Advanced Science Research Center, The City University of New York, New York, NY, 10031, USA
- Department of Earth and Environmental Sciences, Brooklyn College of The City University of New York, New York, NY, 11210, USA
| | - Wanqin Yang
- Long-Term Research Station of Alpine Forest Ecosystems, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
- Collaborative Innovation Center of Ecological Security in the Upper Reaches of the Yangtze River, Chengdu, 611130, China
| | - Zemin Qi
- College of Life Science, Neijiang Normal University, Neijiang, 641199, China
| | - Shu Liao
- Long-Term Research Station of Alpine Forest Ecosystems, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhenfeng Xu
- Long-Term Research Station of Alpine Forest Ecosystems, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
- Collaborative Innovation Center of Ecological Security in the Upper Reaches of the Yangtze River, Chengdu, 611130, China
| | - Bo Tan
- Long-Term Research Station of Alpine Forest Ecosystems, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
- Collaborative Innovation Center of Ecological Security in the Upper Reaches of the Yangtze River, Chengdu, 611130, China
| | - Bin Wang
- Laboratory of Forestry, Department of Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, BE-9090, Gontrode (Melle), Belgium
| | - Qinggui Wu
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, 621000, China
| | - Changkun Fu
- Long-Term Research Station of Alpine Forest Ecosystems, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chengming You
- Long-Term Research Station of Alpine Forest Ecosystems, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fuzhong Wu
- Long-Term Research Station of Alpine Forest Ecosystems, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
- Collaborative Innovation Center of Ecological Security in the Upper Reaches of the Yangtze River, Chengdu, 611130, China
| |
Collapse
|
240
|
Earth System Model Needs for Including the Interactive Representation of Nitrogen Deposition and Drought Effects on Forested Ecosystems. FORESTS 2017. [DOI: 10.3390/f8080267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
241
|
Gao Q, Yu M. Reforestation-induced changes of landscape composition and configuration modulate freshwater supply and flooding risk of tropical watersheds. PLoS One 2017; 12:e0181315. [PMID: 28708878 PMCID: PMC5510846 DOI: 10.1371/journal.pone.0181315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 05/29/2017] [Indexed: 11/19/2022] Open
Abstract
Impact of changes in land cover and land use on hydrological service of tropical watersheds is one of the focal research tropics in both hydrology and Land Cover Land Use Changes (LCLUC). Land fragmentation is an important feature of LCLUC, however, its impact on hydrological service of tropical watershed is unclear despite a few theoretical frameworks. In this paper, we described a simulation study of eight tropical watersheds in Puerto Rico using the Soil Water Assessment Tool. Annual average stream discharge was derived according to the simulations with the land cover maps in 1977, 1991, and 2000. Annual big stream discharge with risks of flooding and severe soil erosion was computed as the sum of daily discharge greater than 95th percentile. The impacts of changes in land cover and fragmentation represented by perimeter-to-area ratio of land patches on annual average and big discharges were further analyzed by means of the linear mixed-effects model. Most mountainous watersheds were characterized by reforestation in 1977-1991 but slight deforestation in 1991-2000. Forest perimeter-to-area ratio was significantly correlated with covers of forest (correlation coefficient of -0.97), pasture (0.94), and urban (0.95). Thus forest fragmentation was reduced by reforestation but increased by deforestation. The annual average and big discharges were significantly reduced by forest cover and forest perimeter-to-area ratio. The enhanced edge effect by forest fragmentation may have incurred more effective interception of the subsurface flow by forest root system, and promoted forest transpiration, thus reduced stream flows. Land cover change plays more important roles in regulating the big discharges than altering the annual average discharges. Due to the negative correlation between forest cover and fragmentation, the decreased forest fragmentation accompanied with reforestation offsets the impact of reforestation on lessening freshwater supply and flooding risk.
Collapse
Affiliation(s)
- Qiong Gao
- Department of Environmental Sciences, University of Puerto Rico - Rio Piedras, San Juan, Puerto Rico, United States of America
| | - Mei Yu
- Department of Environmental Sciences, University of Puerto Rico - Rio Piedras, San Juan, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
242
|
Nguyen HT, Meir P, Wolfe J, Mencuccini M, Ball MC. Plumbing the depths: extracellular water storage in specialized leaf structures and its functional expression in a three-domain pressure -volume relationship. PLANT, CELL & ENVIRONMENT 2017; 40:1021-1038. [PMID: 27362496 DOI: 10.1111/pce.12788] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/25/2016] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
A three-domain pressure-volume relationship (PV curve) was studied in relation to leaf anatomical structure during dehydration in the grey mangrove, Avicennia marina. In domain 1, relative water content (RWC) declined 13% with 0.85 MPa decrease in leaf water potential, reflecting a decrease in extracellular water stored primarily in trichomes and petiolar cisternae. In domain 2, RWC decreased by another 12% with a further reduction in leaf water potential to -5.1 MPa, the turgor loss point. Given the osmotic potential at full turgor (-4.2 MPa) and the effective modulus of elasticity (~40 MPa), domain 2 emphasized the role of cell wall elasticity in conserving cellular hydration during leaf water loss. Domain 3 was dominated by osmotic effects and characterized by plasmolysis in most tissues and cell types without cell wall collapse. Extracellular and cellular water storage could support an evaporation rate of 1 mmol m-2 s-1 for up to 54 and 50 min, respectively, before turgor loss was reached. This study emphasized the importance of leaf anatomy for the interpretation of PV curves, and identified extracellular water storage sites that enable transient water use without substantive turgor loss when other factors, such as high soil salinity, constrain rates of water transport.
Collapse
Affiliation(s)
- Hoa T Nguyen
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Patrick Meir
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
- School of GeoSciences, University of Edinburgh, Crew Building, West Mains Road, Edinburgh, EH9 3JN, UK
| | - Joe Wolfe
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Maurizio Mencuccini
- School of GeoSciences, University of Edinburgh, Crew Building, West Mains Road, Edinburgh, EH9 3JN, UK
- ICREA at CREAF, Universidad Autonoma de Barcelona, Cerdanyola del Valles, 08290, Barcelona, Spain
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
243
|
Cosme LHM, Schietti J, Costa FRC, Oliveira RS. The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest. THE NEW PHYTOLOGIST 2017; 215:113-125. [PMID: 28369998 DOI: 10.1111/nph.14508] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 01/18/2017] [Indexed: 05/18/2023]
Abstract
Species distributions and assemblage composition may be the result of trait selection through environmental filters. Here, we ask whether filtering of species at the local scale could be attributed to their hydraulic architectural traits, revealing the basis of hydrological microhabitat partitioning in a Central Amazonian forest. We analyzed the hydraulic characteristics at tissue (anatomical traits, wood specific gravity (WSG)), organ (leaf area, specific leaf area (SLA), leaf area : sapwood area ratio) and whole-plant (height) levels for 28 pairs of congeneric species from 14 genera restricted to either valleys or plateaus of a terra-firme forest in Central Amazonia. On plateaus, species had higher WSG, but lower mean vessel area, mean vessel hydraulic diameter, sapwood area and SLA than in valleys; traits commonly associated with hydraulic safety. Mean vessel hydraulic diameter and mean vessel area increased with height for both habitats, but leaf area and leaf area : sapwood area ratio investments with tree height declined in valley vs plateau species. [Correction added after online publication 29 March 2017: the preceding sentence has been reworded.] Two strategies for either efficiency or safety were detected, based on vessel size or allocation to sapwood. In conclusion, contrasting hydrological conditions act as environmental filters, generating differences in species composition at the local scale. This has important implications for the prediction of species distributions under future climate change scenarios.
Collapse
Affiliation(s)
- Luiza H M Cosme
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia (INPA), Av. Ephigênio Sales 2239, 69060-20, Manaus, AM, Brazil
| | - Juliana Schietti
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia (INPA), Av. Ephigênio Sales 2239, 69060-20, Manaus, AM, Brazil
- Coordenação de Pesquisas em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Av. Ephigênio Sales 2239, 69060-20, Manaus, AM, Brazil
| | - Flávia R C Costa
- Coordenação de Pesquisas em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Av. Ephigênio Sales 2239, 69060-20, Manaus, AM, Brazil
| | - Rafael S Oliveira
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, 13083-862, Brazil
| |
Collapse
|
244
|
Saiki ST, Ishida A, Yoshimura K, Yazaki K. Physiological mechanisms of drought-induced tree die-off in relation to carbon, hydraulic and respiratory stress in a drought-tolerant woody plant. Sci Rep 2017; 7:2995. [PMID: 28592804 PMCID: PMC5462810 DOI: 10.1038/s41598-017-03162-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/12/2017] [Indexed: 11/09/2022] Open
Abstract
Drought-induced tree die-off related to climate change is occurring worldwide and affects the carbon stocks and biodiversity in forest ecosystems. Hydraulic failure and carbon starvation are two commonly proposed mechanisms for drought-induced tree die-off. Here, we show that inhibited branchlet respiration and soil-to-leaf hydraulic conductance, likely caused by cell damage, occur prior to hydraulic failure (xylem embolism) and carbon starvation (exhaustion of stored carbon in sapwood) in a drought-tolerant woody species, Rhaphiolepis wrightiana Maxim. The ratio of the total leaf area to the twig sap area was used as a health indicator after drought damage. Six adult trees with different levels of tree health and one dead adult tree were selected. Two individuals having the worst and second worst health among the six live trees died three months after our study was conducted. Soil-to-leaf hydraulic conductance and leaf gas exchange rates decreased linearly as tree health declined, whereas xylem cavitation and total non-structural carbon remained unchanged in the branchlets except in the dead and most unhealthy trees. Respiration rates and the number of living cells in the sapwood decreased linearly as tree health declined. This study is the first report on the importance of dehydration tolerance and respiration maintenance in living cells.
Collapse
Affiliation(s)
- Shin-Taro Saiki
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan.
| | - Atsushi Ishida
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan.
| | - Kenichi Yoshimura
- Faculty of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Kenichi Yazaki
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, 305-8687, Japan
| |
Collapse
|
245
|
Venturas MD, Sperry JS, Hacke UG. Plant xylem hydraulics: What we understand, current research, and future challenges. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:356-389. [PMID: 28296168 DOI: 10.1111/jipb.12534] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/09/2017] [Indexed: 05/22/2023]
Abstract
Herein we review the current state-of-the-art of plant hydraulics in the context of plant physiology, ecology, and evolution, focusing on current and future research opportunities. We explain the physics of water transport in plants and the limits of this transport system, highlighting the relationships between xylem structure and function. We describe the great variety of techniques existing for evaluating xylem resistance to cavitation. We address several methodological issues and their connection with current debates on conduit refilling and exponentially shaped vulnerability curves. We analyze the trade-offs existing between water transport safety and efficiency. We also stress how little information is available on molecular biology of cavitation and the potential role of aquaporins in conduit refilling. Finally, we draw attention to how plant hydraulic traits can be used for modeling stomatal responses to environmental variables and climate change, including drought mortality.
Collapse
Affiliation(s)
- Martin D Venturas
- Department of Biology, University of Utah, 257 S 1400E, Salt Lake City, UT, 84112, USA
| | - John S Sperry
- Department of Biology, University of Utah, 257 S 1400E, Salt Lake City, UT, 84112, USA
| | - Uwe G Hacke
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| |
Collapse
|
246
|
Nakamura A, Kitching RL, Cao M, Creedy TJ, Fayle TM, Freiberg M, Hewitt C, Itioka T, Koh LP, Ma K, Malhi Y, Mitchell A, Novotny V, Ozanne CM, Song L, Wang H, Ashton LA. Forests and Their Canopies: Achievements and Horizons in Canopy Science. Trends Ecol Evol 2017; 32:438-451. [DOI: 10.1016/j.tree.2017.02.020] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 11/26/2022]
|
247
|
Sperry JS, Venturas MD, Anderegg WRL, Mencuccini M, Mackay DS, Wang Y, Love DM. Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. PLANT, CELL & ENVIRONMENT 2017; 40:816-830. [PMID: 27764894 DOI: 10.1111/pce.12852] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/28/2016] [Accepted: 10/06/2016] [Indexed: 05/22/2023]
Abstract
Stomatal regulation presumably evolved to optimize CO2 for H2 O exchange in response to changing conditions. If the optimization criterion can be readily measured or calculated, then stomatal responses can be efficiently modelled without recourse to empirical models or underlying mechanism. Previous efforts have been challenged by the lack of a transparent index for the cost of losing water. Yet it is accepted that stomata control water loss to avoid excessive loss of hydraulic conductance from cavitation and soil drying. Proximity to hydraulic failure and desiccation can represent the cost of water loss. If at any given instant, the stomatal aperture adjusts to maximize the instantaneous difference between photosynthetic gain and hydraulic cost, then a model can predict the trajectory of stomatal responses to changes in environment across time. Results of this optimization model are consistent with the widely used Ball-Berry-Leuning empirical model (r2 > 0.99) across a wide range of vapour pressure deficits and ambient CO2 concentrations for wet soil. The advantage of the optimization approach is the absence of empirical coefficients, applicability to dry as well as wet soil and prediction of plant hydraulic status along with gas exchange.
Collapse
Affiliation(s)
- John S Sperry
- Department of Biology, University of Utah, 257 S 1400E, Salt Lake City, UT, 84112, USA
| | - Martin D Venturas
- Department of Biology, University of Utah, 257 S 1400E, Salt Lake City, UT, 84112, USA
| | - William R L Anderegg
- Department of Biology, University of Utah, 257 S 1400E, Salt Lake City, UT, 84112, USA
| | - Maurizio Mencuccini
- School of GeoSciences, University of Edinburgh, West Mains Road, Edinburgh, EH9 3Ju, UK
- ICREA at CREAF, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - D Scott Mackay
- Department of Geography, State University of New York, Buffalo, NY, 14260, USA
| | - Yujie Wang
- Department of Biology, University of Utah, 257 S 1400E, Salt Lake City, UT, 84112, USA
| | - David M Love
- Department of Biology, University of Utah, 257 S 1400E, Salt Lake City, UT, 84112, USA
| |
Collapse
|
248
|
Martínez-Vilalta J, Garcia-Forner N. Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. PLANT, CELL & ENVIRONMENT 2017; 40:962-976. [PMID: 27739594 DOI: 10.1111/pce.12846] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 05/02/2023]
Abstract
In this review, we address the relationship between stomatal behaviour, water potential regulation and hydraulic transport in plants, focusing on the implications for the iso/anisohydric classification of plant drought responses at seasonal timescales. We first revise the history of the isohydric concept and its possible definitions. Then, we use published data to answer two main questions: (1) is greater stomatal control in response to decreasing water availability associated with a tighter regulation of leaf water potential (ΨL ) across species? and (2) is there an association between tighter ΨL regulation (~isohydric behaviour) and lower leaf conductance over time during a drought event? These two questions are addressed at two levels: across species growing in different sites and comparing only species coexisting at a given site. Our analyses show that, across species, a tight regulation of ΨL is not necessarily associated with greater stomatal control or with more constrained assimilation during drought. Therefore, iso/anisohydry defined in terms of ΨL regulation cannot be used as an indicator of a specific mechanism of drought-induced mortality or as a proxy for overall plant vulnerability to drought.
Collapse
Affiliation(s)
- Jordi Martínez-Vilalta
- CREAF, Cerdanyola del Vallès, Barcelona, E-08193, Spain
- Universitat Autònoma Barcelona, Cerdanyola del Vallès, Barcelona, E-08193, Spain
| | | |
Collapse
|
249
|
Taylor PG, Cleveland CC, Wieder WR, Sullivan BW, Doughty CE, Dobrowski SZ, Townsend AR. Temperature and rainfall interact to control carbon cycling in tropical forests. Ecol Lett 2017; 20:779-788. [DOI: 10.1111/ele.12765] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/21/2016] [Accepted: 03/02/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Philip G. Taylor
- Institute for Arctic and Alpine Research University of Colorado Boulder CO USA
| | - Cory C. Cleveland
- Department of Ecosystem and Conservation Sciences University of Montana Missoula MT USA
| | - William R. Wieder
- Institute for Arctic and Alpine Research University of Colorado Boulder CO USA
- National Center for Atmospheric Research TSS, CGD/ NCAR Boulder CO USA
| | - Benjamin W. Sullivan
- Department of Natural Resources & Environmental Science and the Global Water Center University of Nevada‐Reno Reno NV USA
| | - Christopher E. Doughty
- School of Informatics Computing and Cyber systems Northern Arizona University Flagstaff AZ USA
| | | | - Alan R. Townsend
- Institute for Arctic and Alpine Research and Environmental Studies Program University of Colorado Boulder CO USA
| |
Collapse
|
250
|
Cailleret M, Jansen S, Robert EMR, Desoto L, Aakala T, Antos JA, Beikircher B, Bigler C, Bugmann H, Caccianiga M, Čada V, Camarero JJ, Cherubini P, Cochard H, Coyea MR, Čufar K, Das AJ, Davi H, Delzon S, Dorman M, Gea-Izquierdo G, Gillner S, Haavik LJ, Hartmann H, Hereş AM, Hultine KR, Janda P, Kane JM, Kharuk VI, Kitzberger T, Klein T, Kramer K, Lens F, Levanic T, Linares Calderon JC, Lloret F, Lobo-Do-Vale R, Lombardi F, López Rodríguez R, Mäkinen H, Mayr S, Mészáros I, Metsaranta JM, Minunno F, Oberhuber W, Papadopoulos A, Peltoniemi M, Petritan AM, Rohner B, Sangüesa-Barreda G, Sarris D, Smith JM, Stan AB, Sterck F, Stojanović DB, Suarez ML, Svoboda M, Tognetti R, Torres-Ruiz JM, Trotsiuk V, Villalba R, Vodde F, Westwood AR, Wyckoff PH, Zafirov N, Martínez-Vilalta J. A synthesis of radial growth patterns preceding tree mortality. GLOBAL CHANGE BIOLOGY 2017; 23:1675-1690. [PMID: 27759919 DOI: 10.1111/gcb.13535] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/12/2016] [Accepted: 10/11/2016] [Indexed: 05/23/2023]
Abstract
Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the mortality events. The extent and duration of these reductions were highly variable (1-100 years in 96% of events) due to the complex interactions among study species and the source(s) of mortality. Strong and long-lasting declines were found for gymnosperms, shade- and drought-tolerant species, and trees that died from competition. Angiosperms and trees that died due to biotic attacks (especially bark-beetles) typically showed relatively small and short-term growth reductions. Our analysis did not highlight any universal trade-off between early growth and tree longevity within a species, although this result may also reflect high variability in sampling design among sites. The intersite and interspecific variability in growth patterns before mortality provides valuable information on the nature of the mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality. Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or bark-beetle attack, while long-term decrease in growth may be associated with a gradual decline in hydraulic performance coupled with depletion in carbon reserves. Our results imply that growth-based mortality algorithms may be a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angiosperms and in case of intense drought or bark-beetle outbreaks.
Collapse
Affiliation(s)
- Maxime Cailleret
- Forest Ecology, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Universitätstrasse 22, 8092, Zürich, Switzerland
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Elisabeth M R Robert
- CREAF, Campus UAB, 08193, Cerdanyola del Vallès, Spain
- Laboratory of Plant Biology and Nature Management (APNA), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Laboratory of Wood Biology and Xylarium, Royal Museum for Central Africa (RMCA), Leuvensesteenweg 13, 3080, Tervuren, Belgium
| | - Lucía Desoto
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Tuomas Aakala
- Department of Forest Sciences, University of Helsinki, P.O. Box 27 (Latokartanonkaari 7), 00014, Helsinki, Finland
| | - Joseph A Antos
- Department of Biology, University of Victoria, PO Box 3020, STN CSC, Victoria, BC, V8W 3N5, Canada
| | - Barbara Beikircher
- Institute of Botany, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria
| | - Christof Bigler
- Forest Ecology, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Universitätstrasse 22, 8092, Zürich, Switzerland
| | - Harald Bugmann
- Forest Ecology, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Universitätstrasse 22, 8092, Zürich, Switzerland
| | - Marco Caccianiga
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133, Milano, Italy
| | - Vojtěch Čada
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 961/129, 165 21, Praha 6-Suchdol, Czech Republic
| | - Jesus J Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avenida Montañana 1005, 50192, Zaragoza, Spain
| | - Paolo Cherubini
- Swiss Federal Institute for Forest, Snow and Landscape Research - WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Hervé Cochard
- Unité Mixte de Recherche (UMR) 547 PIAF, Institut National de la Recherche Agronomique (INRA), Université Clermont Auvergne, 63100, Clermont-Ferrand, France
| | - Marie R Coyea
- Département des sciences du bois et de la forêt, Centre for Forest Research, Faculté de foresterie, de géographie et de géomatique, Université Laval, 2405 rue de la Terrasse, Québec, QC, G1V 0A6, Canada
| | - Katarina Čufar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Adrian J Das
- U.S. Geological Survey, Western Ecological Research Center, 47050 Generals Highway, Three Rivers, CA, 93271, USA
| | - Hendrik Davi
- Ecologie des Forest Méditerranéennes (URFM), Institut National de la Recherche Agronomique (INRA), Domaine Saint Paul, Site Agroparc, 84914, Avignon Cedex 9, France
| | - Sylvain Delzon
- Unité Mixte de Recherche (UMR) 1202 BIOGECO, Institut National de la Recherche Agronomique (INRA), Université de Bordeaux, 33615, Pessac, France
| | - Michael Dorman
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Guillermo Gea-Izquierdo
- Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera La Coruña km 7.5, 28040, Madrid, Spain
| | - Sten Gillner
- Institute of Forest Botany and Forest Zoology, TU Dresden, 01062, Dresden, Germany
- Fachgebiet Vegetationstechnik und Pflanzenverwendung, Institut für Landschaftsarchitektur und Umweltplanung, TU Berlin, 10623, Berlin, Germany
| | - Laurel J Haavik
- Department of Entomology, University of Arkansas, Fayetteville, AR, 72701, USA
- Department of Ecology and Evolutionary Biology, University of Kansas, 1450 Jayhawk Boulevard, Lawrence, KS, 66045, USA
| | - Henrik Hartmann
- Max-Planck Institute for Biogeochemistry, Hans Knöll Strasse 10, 07745, Jena, Germany
| | - Ana-Maria Hereş
- CREAF, Campus UAB, 08193, Cerdanyola del Vallès, Spain
- Department of Biogeography and Global Change, National Museum of Natural History (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), C/Serrano 115bis, 28006, Madrid, Spain
| | - Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, 1201 N Galvin Parkway, Phoenix, AZ, USA
| | - Pavel Janda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 961/129, 165 21, Praha 6-Suchdol, Czech Republic
| | - Jeffrey M Kane
- Department of Forestry and Wildland Resources, Humboldt State University, 1 Harpst Street, Arcata, CA, 95521, USA
| | - Vyacheslav I Kharuk
- Siberian Division of the Russian Academy of Sciences (RAS), Sukachev Institute of Forest, Krasnoyarsk, 660036, Russia
| | - Thomas Kitzberger
- Department of Ecology, Universidad Nacional del Comahue, Quintral S/N, Barrio Jardín Botánico, 8400, San Carlos de Bariloche, Río Negro, Argentina
- Instituto de Investigaciones de Biodiversidad y Medio Ambiente (INIBOMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina
| | - Tamir Klein
- Institute of Soil, Water, and Environmental Sciences, Volcani Center, Agricultural Research Organization (ARO), PO Box 6, 50250, Beit Dagan, Israel
| | - Koen Kramer
- Alterra - Green World Research, Wageningen University, Droevendaalse steeg 1, 6700AA, Wageningen, The Netherlands
| | - Frederic Lens
- Naturalis Biodiversity Center, Leiden University, PO Box 9517, 2300RA, Leiden, The Netherlands
| | - Tom Levanic
- Department of Yield and Silviculture, Slovenian Forestry Institute, Večna pot 2, 1000, Ljubljana, Slovenia
| | - Juan C Linares Calderon
- Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, Carretera de Utrera km 1, 41013, Seville, Spain
| | - Francisco Lloret
- CREAF, Campus UAB, 08193, Cerdanyola del Vallès, Spain
- Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Raquel Lobo-Do-Vale
- Forest Research Centre, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - Fabio Lombardi
- Department of Agricultural Science, Mediterranean University of Reggio Calabria, loc. Feo di Vito, 89060, Reggio Calabria, Italy
| | - Rosana López Rodríguez
- Forest Genetics and Physiology Research Group, Technical University of Madrid, Calle Ramiro de Maeztu 7, 28040, Madrid, Spain
- Hawkesbury Institute for the Environment, University of Western Sydney, Science Road, Richmond, NSW, 2753, Australia
| | - Harri Mäkinen
- Natural Resources Institute Finland (Luke), Viikinkaari 4, 00790, Helsinki, Finland
| | - Stefan Mayr
- Institute of Botany, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria
| | - Ilona Mészáros
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Juha M Metsaranta
- Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, 5320-122nd Street, Edmonton, AB, T6H 3S5, Canada
| | - Francesco Minunno
- Department of Forest Sciences, University of Helsinki, P.O. Box 27 (Latokartanonkaari 7), 00014, Helsinki, Finland
| | - Walter Oberhuber
- Institute of Botany, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria
| | - Andreas Papadopoulos
- Department of Forestry and Natural Environment Management, Technological Educational Institute (TEI) of Stereas Elladas, Ag Georgiou 1, 36100, Karpenissi, Greece
| | - Mikko Peltoniemi
- Natural Resources Institute Finland (Luke), PO Box 18 (Jokiniemenkuja 1), 01301, Vantaa, Finland
| | - Any M Petritan
- Swiss Federal Institute for Forest, Snow and Landscape Research - WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- National Institute for Research-Development in Forestry ''Marin Dracea'', Eroilor 128, 077190, Voluntari, Romania
| | - Brigitte Rohner
- Forest Ecology, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Universitätstrasse 22, 8092, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research - WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | | | - Dimitrios Sarris
- Faculty of Pure and Applied Sciences, Open University of Cyprus, Latsia, 2252, Nicosia, Cyprus
- Department of Biological Sciences, University of Cyprus, PO Box 20537, 1678, Nicosia, Cyprus
- Division of Plant Biology, Department of Biology, University of Patras, 26500, Patras, Greece
| | - Jeremy M Smith
- Department of Geography, University of Colorado, Boulder, CO, 80309-0260, USA
| | - Amanda B Stan
- Department of Geography, Planning and Recreation, Northern Arizona University, PO Box 15016, Flagstaff, AZ, 86011, USA
| | - Frank Sterck
- Forest Ecology and Forest Management Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PB, Wageningen, The Netherlands
| | - Dejan B Stojanović
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Cehova 13, PO Box 117, 21000, Novi Sad, Serbia
| | - Maria L Suarez
- Instituto de Investigaciones de Biodiversidad y Medio Ambiente (INIBOMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina
| | - Miroslav Svoboda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 961/129, 165 21, Praha 6-Suchdol, Czech Republic
| | - Roberto Tognetti
- Dipartimenti di Bioscienze e Territorio, Università del Molise, C. da Fonte Lappone, 86090, Pesche, Italy
- European Forest Institute (EFI) Project Centre on Mountain Forests (MOUNTFOR), Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - José M Torres-Ruiz
- Unité Mixte de Recherche (UMR) 1202 BIOGECO, Institut National de la Recherche Agronomique (INRA), Université de Bordeaux, 33615, Pessac, France
| | - Volodymyr Trotsiuk
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 961/129, 165 21, Praha 6-Suchdol, Czech Republic
| | - Ricardo Villalba
- Laboratorio de Dendrocronología e Historia Ambiental, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT CONICET Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, Mendoza, CP 5500, Argentina
| | - Floor Vodde
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, 51014, Tartu, Estonia
| | - Alana R Westwood
- Boreal Avian Modelling Project, Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, AB, T6G 2H1, Canada
| | - Peter H Wyckoff
- University of Minnesota, 600 East 4th Street, Morris, MN, 56267, USA
| | - Nikolay Zafirov
- University of Forestry, Kliment Ohridski Street 10, 1756, Sofia, Bulgaria
| | - Jordi Martínez-Vilalta
- CREAF, Campus UAB, 08193, Cerdanyola del Vallès, Spain
- Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| |
Collapse
|