201
|
Alvarez M, Benhammou JN, Rao S, Mishra L, Pisegna JR, Pajukanta P. Isolation of Nuclei from Human Snap-frozen Liver Tissue for Single-nucleus RNA Sequencing. Bio Protoc 2023; 13:e4601. [PMID: 36874905 PMCID: PMC9976782 DOI: 10.21769/bioprotoc.4601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/03/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
Single-nucleus RNA sequencing (snRNA-seq) provides a powerful tool for studying cell type composition in heterogenous tissues. The liver is a vital organ composed of a diverse set of cell types; thus, single-cell technologies could greatly facilitate the deconvolution of liver tissue composition and various downstream omics analyses at the cell-type level. Applying single-cell technologies to fresh liver biopsies can, however, be very challenging, and snRNA-seq of snap-frozen liver biopsies requires some optimization given the high nucleic acid content of the solid liver tissue. Therefore, an optimized protocol for snRNA-seq specifically targeted for the use of frozen liver samples is needed to improve our understanding of human liver gene expression at the cell-type resolution. We present a protocol for performing nuclei isolation from snap-frozen liver tissues, as well as guidance on the application of snRNA-seq. We also provide guidance on optimizing the protocol to different tissue and sample types.
Collapse
Affiliation(s)
- Marcus Alvarez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jihane N. Benhammou
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine, VA Greater Los Angeles Healthcare System, CA, USA
| | - Shuyun Rao
- Center for Translational Medicine, Department of Surgery, George Washington University, Washington DC, USA
| | - Lopa Mishra
- Center for Translational Medicine, Department of Surgery, George Washington University, Washington DC, USA
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research; Divisions of Gastroenterology and Hepatology, Department of Medicine, Northwell Health, Manhasset, NY, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Joseph R. Pisegna
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine, VA Greater Los Angeles Healthcare System, CA, USA
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA
- Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
202
|
He J, Deng C, Krall L, Shan Z. ScRNA-seq and ST-seq in liver research. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:11. [PMID: 36732412 PMCID: PMC9895469 DOI: 10.1186/s13619-022-00152-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/11/2022] [Indexed: 02/04/2023]
Abstract
Spatial transcriptomics, which combine gene expression data with spatial information, has quickly expanded in recent years. With application of this method in liver research, our knowledge about liver development, regeneration, and diseases have been greatly improved. While this field is moving forward, a variety of problems still need to be addressed, including sensitivity, limited capacity to obtain exact single-cell information, data processing methods, as well as others. Methods like single-cell RNA sequencing (scRNA-seq) are usually used together with spatial transcriptome sequencing (ST-seq) to clarify cell-specific gene expression. In this review, we explore how advances of scRNA-seq and ST-seq, especially ST-seq, will pave the way to new opportunities to investigate fundamental questions in liver research. Finally, we will discuss the strengths, limitations, and future perspectives of ST-seq in liver research.
Collapse
Affiliation(s)
- Jia He
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Chengxiang Deng
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Leonard Krall
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Zhao Shan
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
203
|
Berasain C, Arechederra M, Argemí J, Fernández-Barrena MG, Avila MA. Loss of liver function in chronic liver disease: An identity crisis. J Hepatol 2023; 78:401-414. [PMID: 36115636 DOI: 10.1016/j.jhep.2022.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 01/24/2023]
Abstract
Adult hepatocyte identity is constructed throughout embryonic development and fine-tuned after birth. A multinodular network of transcription factors, along with pre-mRNA splicing regulators, define the transcriptome, which encodes the proteins needed to perform the complex metabolic and secretory functions of the mature liver. Transient hepatocellular dedifferentiation can occur as part of the regenerative mechanisms triggered in response to acute liver injury. However, persistent downregulation of key identity genes is now accepted as a strong determinant of organ dysfunction in chronic liver disease, a major global health burden. Therefore, the identification of core transcription factors and splicing regulators that preserve hepatocellular phenotype, and a thorough understanding of how these networks become disrupted in diseased hepatocytes, is of high clinical relevance. In this context, we review the key players in liver differentiation and discuss in detail critical factors, such as HNF4α, whose impairment mediates the breakdown of liver function. Moreover, we present compelling experimental evidence demonstrating that restoration of core transcription factor expression in a chronically injured liver can reset hepatocellular identity, improve function and ameliorate structural abnormalities. The possibility of correcting the phenotype of severely damaged and malfunctional livers may reveal new therapeutic opportunities for individuals with cirrhosis and advanced liver disease.
Collapse
Affiliation(s)
- Carmen Berasain
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain.
| | - Maria Arechederra
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain
| | - Josepmaria Argemí
- Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain; Liver Unit, Clinica Universidad de Navarra, Pamplona, Spain
| | - Maite G Fernández-Barrena
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain
| | - Matías A Avila
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain.
| |
Collapse
|
204
|
Liver Organoids, Novel and Promising Modalities for Exploring and Repairing Liver Injury. Stem Cell Rev Rep 2023; 19:345-357. [PMID: 36199007 PMCID: PMC9534590 DOI: 10.1007/s12015-022-10456-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2022] [Indexed: 02/07/2023]
Abstract
The past decades have witnessed great advances in organoid technology. Liver is the biggest solid organ, performing multifaceted physiological functions. Nowadays, liver organoids have been applied in many fields including pharmaceutical research, precision medicine and disease models. Compared to traditional 2-dimensional cell line cultures and animal models, liver organoids showed the unique advantages. More importantly, liver organoids can well model the features of the liver and tend to be novel and promising modalities for exploring liver injury, thus finding potential treatment targets and repairing liver injury. In this review, we reviewed the history of the development of liver organoids and summarized the application of liver organoids and recent studies using organoids to explore and further repair the liver injury. These novel modalities could provide new insights about the process of liver injury.
Collapse
|
205
|
Delineating Plasmodium liver infection across space and time. Trends Parasitol 2023; 39:80-82. [PMID: 36567188 DOI: 10.1016/j.pt.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022]
Abstract
The liver is a major entry point and gatekeeper for invasive pathogens. However, high-resolution, spatiotemporal transcriptomic analysis of host-pathogen interactions has remained challenging. Afriat et al. have deconvoluted Plasmodium berghei liver-stage maturation at an unprecedented scale and discovered molecular signatures of heterogeneity during pre-erythrocytic development of malarial parasites.
Collapse
|
206
|
Sarkar A, Jin Y, DeFelice BC, Logan CY, Yang Y, Anbarchian T, Wu P, Morri M, Neff NF, Nguyen H, Rulifson E, Fish M, Kaye AG, Martínez Jaimes AM, Nusse R. Intermittent fasting induces rapid hepatocyte proliferation to restore the hepatostat in the mouse liver. eLife 2023; 12:e82311. [PMID: 36719070 PMCID: PMC9889086 DOI: 10.7554/elife.82311] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/09/2022] [Indexed: 02/01/2023] Open
Abstract
Nutrient availability fluctuates in most natural populations, forcing organisms to undergo periods of fasting and re-feeding. It is unknown how dietary changes influence liver homeostasis. Here, we show that a switch from ad libitum feeding to intermittent fasting (IF) promotes rapid hepatocyte proliferation. Mechanistically, IF-induced hepatocyte proliferation is driven by the combined action of systemic FGF15 and localized WNT signaling. Hepatocyte proliferation during periods of fasting and re-feeding re-establishes a constant liver-to-body mass ratio, thus maintaining the hepatostat. This study provides the first example of dietary influence on adult hepatocyte proliferation and challenges the widely held view that liver tissue is mostly quiescent unless chemically or mechanically injured.
Collapse
Affiliation(s)
- Abby Sarkar
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Yinhua Jin
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | | | - Catriona Y Logan
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Yan Yang
- Stanford Center for Genomics & Personalized Medicine, Stanford University School of MedicineStanfordUnited States
| | - Teni Anbarchian
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Peng Wu
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
| | | | - Norma F Neff
- Chan-Zuckerberg BiohubSan FranciscoUnited States
| | - Huy Nguyen
- Department of Neurology and Neurological Sciences, Stanford University School of MedicineStanfordUnited States
| | - Eric Rulifson
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Matthew Fish
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Avi Gurion Kaye
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Azalia M Martínez Jaimes
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Roel Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
207
|
Nault R, Saha S, Bhattacharya S, Sinha S, Maiti T, Zacharewski T. Single-cell transcriptomics shows dose-dependent disruption of hepatic zonation by TCDD in mice. Toxicol Sci 2023; 191:135-148. [PMID: 36222588 PMCID: PMC9887712 DOI: 10.1093/toxsci/kfac109] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) dose-dependently induces the development of hepatic fat accumulation and inflammation with fibrosis in mice initially in the portal region. Conversely, differential gene and protein expression is first detected in the central region. To further investigate cell-specific and spatially resolved dose-dependent changes in gene expression elicited by TCDD, single-nuclei RNA sequencing and spatial transcriptomics were used for livers of male mice gavaged with TCDD every 4 days for 28 days. The proportion of 11 cell (sub)types across 131 613 nuclei dose-dependently changed with 68% of all portal and central hepatocyte nuclei in control mice being overtaken by macrophages following TCDD treatment. We identified 368 (portal fibroblasts) to 1339 (macrophages) differentially expressed genes. Spatial analyses revealed initial loss of portal identity that eventually spanned the entire liver lobule with increasing dose. Induction of R-spondin 3 (Rspo3) and pericentral Apc, suggested dysregulation of the Wnt/β-catenin signaling cascade in zonally resolved steatosis. Collectively, the integrated results suggest disruption of zonation contributes to the pattern of TCDD-elicited NAFLD pathologies.
Collapse
Affiliation(s)
- Rance Nault
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Satabdi Saha
- Department of Statistics and Probability, Michigan State University, East Lansing, Michigan 48824, USA
| | - Sudin Bhattacharya
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
- Biomedical Engineering Department, Pharmacology & Toxicology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Samiran Sinha
- Department of Statistics, Texas A&M University, College Station, Texas 77840, USA
| | - Tapabrata Maiti
- Department of Statistics and Probability, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tim Zacharewski
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
208
|
Martini T, Naef F, Tchorz JS. Spatiotemporal Metabolic Liver Zonation and Consequences on Pathophysiology. ANNUAL REVIEW OF PATHOLOGY 2023; 18:439-466. [PMID: 36693201 DOI: 10.1146/annurev-pathmechdis-031521-024831] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hepatocytes are the main workers in the hepatic factory, managing metabolism of nutrients and xenobiotics, production and recycling of proteins, and glucose and lipid homeostasis. Division of labor between hepatocytes is critical to coordinate complex complementary or opposing multistep processes, similar to distributed tasks at an assembly line. This so-called metabolic zonation has both spatial and temporal components. Spatial distribution of metabolic function in hepatocytes of different lobular zones is necessary to perform complex sequential multistep metabolic processes and to assign metabolic tasks to the right environment. Moreover, temporal control of metabolic processes is critical to align required metabolic processes to the feeding and fasting cycles. Disruption of this complex spatiotemporal hepatic organization impairs key metabolic processes with both local and systemic consequences. Many metabolic diseases, such as nonalcoholic steatohepatitis and diabetes, are associated with impaired metabolic liver zonation. Recent technological advances shed new light on the spatiotemporal gene expression networks controlling liver function and how their deregulation may be involved in a large variety of diseases. We summarize the current knowledge about spatiotemporal metabolic liver zonation and consequences on liver pathobiology.
Collapse
Affiliation(s)
- Tomaz Martini
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland;
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland;
| | - Jan S Tchorz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland;
| |
Collapse
|
209
|
Murine breast cancers disorganize the liver transcriptome in a zonated manner. Commun Biol 2023; 6:97. [PMID: 36694005 PMCID: PMC9873924 DOI: 10.1038/s42003-023-04479-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
The spatially organized gene expression program within the liver specifies hepatocyte functions according to their relative distances to the bloodstream (i.e., zonation), contributing to liver homeostasis. Despite the knowledge that solid cancers remotely disrupt liver homeostasis, it remains unexplored whether solid cancers affect liver zonation. Here, using spatial transcriptomics, we thoroughly investigate the abundance and zonation of hepatic genes in cancer-bearing mice. We find that breast cancers affect liver zonation in various distinct manners depending on biological pathways. Aspartate metabolism and triglyceride catabolic processes retain relatively intact zonation patterns, but the zonation of xenobiotic catabolic process genes exhibits a strong disruption. The acute phase response is induced in zonated manners. Furthermore, we demonstrate that breast cancers activate innate immune cells in particular neutrophils in distinct zonated manners, rather than in a uniform fashion within the liver. Collectively, breast cancers disorganize hepatic transcriptomes in zonated manners, thereby disrupting zonated functions of the liver.
Collapse
|
210
|
Coassolo L, Liu T, Jung Y, Taylor NP, Zhao M, Charville GW, Nissen SB, Yki-Jarvinen H, Altman RB, Svensson KJ. Mapping transcriptional heterogeneity and metabolic networks in fatty livers at single-cell resolution. iScience 2023; 26:105802. [PMID: 36636354 PMCID: PMC9830221 DOI: 10.1016/j.isci.2022.105802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Non-alcoholic fatty liver disease is a heterogeneous disease with unclear underlying molecular mechanisms. Here, we perform single-cell RNA sequencing of hepatocytes and hepatic non-parenchymal cells to map the lipid signatures in mice with non-alcoholic fatty liver disease (NAFLD). We uncover previously unidentified clusters of hepatocytes characterized by either high or low srebp1 expression. Surprisingly, the canonical lipid synthesis driver Srebp1 is not predictive of hepatic lipid accumulation, suggestive of other drivers of lipid metabolism. By combining transcriptional data at single-cell resolution with computational network analyses, we find that NAFLD is associated with high constitutive androstane receptor (CAR) expression. Mechanistically, CAR interacts with four functional modules: cholesterol homeostasis, bile acid metabolism, fatty acid metabolism, and estrogen response. Nuclear expression of CAR positively correlates with steatohepatitis in human livers. These findings demonstrate significant cellular differences in lipid signatures and identify functional networks linked to hepatic steatosis in mice and humans.
Collapse
Affiliation(s)
- Laetitia Coassolo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Tianyun Liu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yunshin Jung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nikki P. Taylor
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Meng Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Gregory W. Charville
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Silas Boye Nissen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Hannele Yki-Jarvinen
- Department of Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Russ B. Altman
- Departments of Bioengineering, Genetics & Medicine, Stanford University, Stanford, CA, USA
| | - Katrin J. Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| |
Collapse
|
211
|
Diprospero TJ, Brown LG, Fachko TD, Lockett MR. HepaRG cells undergo increased levels of post-differentiation patterning in physiologic conditions when maintained as 3D cultures in paper-based scaffolds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524330. [PMID: 36711996 PMCID: PMC9882149 DOI: 10.1101/2023.01.16.524330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Monolayer cultures of hepatocytes lack many aspects of the liver sinusoid, including a tissue-level organization that results from extracellular matrix interactions and gradients of soluble molecules that span from the portal triad to the central vein. We measured the activity and transcript levels of drug-metabolizing enzymes in HepaRG cells maintained in three different culture configurations: as monolayers, seeded onto paper scaffolds that were pre-loaded with a collagen matrix, and when seeded directly into the paper scaffolds as a cell-laden gel. Drug metabolism was significantly decreased in the presence of the paper scaffolds compared to monolayer configurations when cells were exposed to standard culture conditions. Despite this decreased function, transcript levels suggest the cells undergo increased polarization and adopt a biliary-like character in the paper scaffolds, including the increased expression of transporter proteins (e.g., ABCB11 and SLOC1B1) and the KRT19 cholangiocyte marker. When exposed to representative periportal or perivenous culture conditions, we observed in vivo zonal-like patterns, including increased cytochrome P450 (CYP) activity and transcript levels in the perivenous condition. This increased CYP activity is more pronounced in the laden configuration, supporting the need to include multiple aspects of the liver microenvironment to observe the post-differentiation processing of hepatocytes.
Collapse
Affiliation(s)
- Thomas J. Diprospero
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC 27599-3290, United States
| | - Lauren G. Brown
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC 27599-3290, United States
| | - Trevor D. Fachko
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC 27599-3290, United States
| | - Matthew R. Lockett
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC 27599-3290, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 37599-7295, United States
| |
Collapse
|
212
|
Liver sinusoidal endothelial cells induce BMP6 expression in response to non-transferrin-bound iron. Blood 2023; 141:271-284. [PMID: 36351237 DOI: 10.1182/blood.2022016987] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Homeostatic adaptation to systemic iron overload involves transcriptional induction of bone morphogenetic protein 6 (BMP6) in liver sinusoidal endothelial cells (LSECs). BMP6 is then secreted to activate signaling of the iron hormone hepcidin (HAMP) in neighboring hepatocytes. To explore the mechanism of iron sensing by LSECs, we generated TfrcTek-Cre mice with endothelial cell-specific ablation of transferrin receptor 1 (Tfr1). We also used control Tfrcfl/fl mice to characterize the LSEC-specific molecular responses to iron using single-cell transcriptomics. TfrcTek-Cre animals tended to have modestly increased liver iron content (LIC) compared with Tfrcfl/fl controls but expressed physiological Bmp6 and Hamp messenger RNA (mRNA). Despite a transient inability to upregulate Bmp6, they eventually respond to iron challenges with Bmp6 and Hamp induction, yet occasionally to levels slightly lower relative to LIC. High dietary iron intake triggered the accumulation of serum nontransferrin bound iron (NTBI), which significantly correlated with liver Bmp6 and Hamp mRNA levels and elicited more profound alterations in the LSEC transcriptome than holo-transferrin injection. This culminated in the robust induction of Bmp6 and other nuclear factor erythroid 2-related factor 2 (Nrf2) target genes, as well as Myc target genes involved in ribosomal biogenesis and protein synthesis. LSECs and midzonal hepatocytes were the most responsive liver cells to iron challenges and exhibited the highest expression of Bmp6 and Hamp mRNAs, respectively. Our data suggest that during systemic iron overload, LSECs internalize NTBI, which promotes oxidative stress and thereby transcriptionally induces Bmp6 via Nrf2. Tfr1 appears to contribute to iron sensing by LSECs, mostly under low iron conditions.
Collapse
|
213
|
Diprospero TJ, Brown LG, Fachko TD, Lockett MR. HepaRG cells undergo increased levels of post-differentiation patterning in physiologic conditions when maintained as 3D cultures in paper-based scaffolds. RESEARCH SQUARE 2023:rs.3.rs-2473387. [PMID: 36711963 PMCID: PMC9882668 DOI: 10.21203/rs.3.rs-2473387/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Monolayer cultures of hepatocytes lack many aspects of the liver sinusoid, including a tissue-level organization that results from extracellular matrix interactions and gradients of soluble molecules that span from the portal triad to the central vein. We measured the activity and transcript levels of drug-metabolizing enzymes in HepaRG cells maintained in three different culture configurations: as monolayers, seeded onto paper scaffolds that were pre-loaded with a collagen matrix, and when seeded directly into the paper scaffolds as a cell-laden gel. Drug metabolism was significantly decreased in the presence of the paper scaffolds compared to monolayer configurations when cells were exposed to standard culture conditions. Despite this decreased function, transcript levels suggest the cells undergo increased polarization and adopt a biliary-like character in the paper scaffolds, including the increased expression of transporter proteins (e.g., ABCB11 and SLOC1B1) and the KRT19 cholangiocyte marker. When exposed to representative periportal or perivenous culture conditions, we observed in vivo zonal-like patterns, including increased cytochrome P450 (CYP) activity and transcript levels in the perivenous condition. This increased CYP activity is more pronounced in the laden configuration, supporting the need to include multiple aspects of the liver microenvironment to observe the post-differentiation processing of hepatocytes.
Collapse
|
214
|
Kim HH, Shim YR, Choi SE, Kim MH, Lee G, You HJ, Choi WM, Yang K, Ryu T, Kim K, Kim MJ, Woo C, Chung KPS, Hong SH, Eun HS, Kim SH, Ko G, Park JE, Gao B, Kim W, Jeong WI. Catecholamine induces Kupffer cell apoptosis via growth differentiation factor 15 in alcohol-associated liver disease. Exp Mol Med 2023; 55:158-170. [PMID: 36631664 PMCID: PMC9898237 DOI: 10.1038/s12276-022-00921-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 01/13/2023] Open
Abstract
Chronic alcohol consumption often induces hepatic steatosis but rarely causes severe inflammation in Kupffer cells (KCs) despite the increased hepatic influx of lipopolysaccharide (LPS), suggesting the presence of a veiled tolerance mechanism. In addition to LPS, the liver is affected by several gut-derived neurotransmitters through the portal blood, but the effects of catecholamines on KCs have not been clearly explored in alcohol-associated liver disease (ALD). Hence, we investigated the regulatory roles of catecholamine on inflammatory KCs under chronic alcohol exposure. We discovered that catecholamine levels were significantly elevated in the cecum, portal blood, and liver tissues of chronic ethanol-fed mice. Increased catecholamines induced mitochondrial translocation of cytochrome P450 2E1 in perivenous hepatocytes expressing the β2-adrenergic receptor (ADRB2), leading to the enhanced production of growth differentiation factor 15 (GDF15). Subsequently, GDF15 profoundly increased ADRB2 expression in adjacent inflammatory KCs to facilitate catecholamine/ADRB2-mediated apoptosis. Single-cell RNA sequencing of KCs confirmed the elevated expression of Adrb2 and apoptotic genes after chronic ethanol intake. Genetic ablation of Adrb2 or hepatic Gdf15 robustly decreased the number of apoptotic KCs near perivenous areas, exacerbating alcohol-associated inflammation. Consistently, we found that blood and stool catecholamine levels and perivenous GDF15 expression were increased in patients with early-stage ALD along with an increase in apoptotic KCs. Our findings reveal a novel protective mechanism against ALD, in which the catecholamine/GDF15 axis plays a critical role in KC apoptosis, and identify a unique neuro-metabo-immune axis between the gut and liver that elicits hepatoprotection against alcohol-mediated pathogenic challenges.
Collapse
Affiliation(s)
- Hee-Hoon Kim
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Young-Ri Shim
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Sung Eun Choi
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Myung-Ho Kim
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea ,grid.32224.350000 0004 0386 9924Liver Center, Gastrointestinal Division, Massachusetts General Hospital, Boston, MA USA
| | - Giljae Lee
- grid.31501.360000 0004 0470 5905Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826 Republic of Korea
| | - Hyun Ju You
- grid.31501.360000 0004 0470 5905Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826 Republic of Korea
| | - Won-Mook Choi
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea ,grid.413967.e0000 0001 0842 2126Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Keungmo Yang
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Tom Ryu
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Kyurae Kim
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Min Jeong Kim
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Chaerin Woo
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Katherine Po Sin Chung
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Song Hwa Hong
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Hyuk Soo Eun
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea ,grid.254230.20000 0001 0722 6377Department of Internal Medicine, Chungnam National University, College of Medicine, Daejeon, 35015 Republic of Korea
| | - Seok-Hwan Kim
- grid.254230.20000 0001 0722 6377Department of Surgery, Chungnam National University, College of Medicine, Daejeon, 35015 Republic of Korea
| | - GwangPyo Ko
- grid.31501.360000 0004 0470 5905Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jong-Eun Park
- grid.37172.300000 0001 2292 0500Single-Cell Medical Genomics Laboratory, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Bin Gao
- grid.420085.b0000 0004 0481 4802Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, MD 20892 USA
| | - Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, 07061, Republic of Korea.
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
215
|
Oderberg IM, Goessling W. Biliary epithelial cells are facultative liver stem cells during liver regeneration in adult zebrafish. JCI Insight 2023; 8:163929. [PMID: 36625346 PMCID: PMC9870093 DOI: 10.1172/jci.insight.163929] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023] Open
Abstract
The liver is a highly regenerative organ, yet the presence of a dedicated stem cell population remains controversial. Here, we interrogate a severe hepatocyte injury model in adult zebrafish to define that regeneration involves a stem cell population. After near-total hepatocyte ablation, single-cell transcriptomic and high-resolution imaging analyses throughout the entire regenerative timeline reveal that biliary epithelial cells undergo transcriptional and morphological changes to become hepatocytes. As a population, biliary epithelial cells give rise to both hepatocytes and biliary epithelial cells. Biliary epithelial cells proliferate and dedifferentiate to express hepatoblast transcription factors prior to hepatocyte differentiation. This process is characterized by increased MAPK, PI3K, and mTOR signaling, and chemical inhibition of these pathways impairs biliary epithelial cell proliferation and fate conversion. We conclude that, upon severe hepatocyte ablation in the adult liver, biliary epithelial cells act as facultative liver stem cells in an EGFR-PI3K-mTOR-dependent manner.
Collapse
Affiliation(s)
- Isaac M. Oderberg
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts USA.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Boston, Massachusetts, USA.,Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
216
|
Karri K, Waxman DJ. TCDD dysregulation of lncRNA expression, liver zonation and intercellular communication across the liver lobule. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.523119. [PMID: 36711947 PMCID: PMC9881922 DOI: 10.1101/2023.01.07.523119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The persistent environmental aryl hydrocarbon receptor agonist and hepatotoxin TCDD (2,3,7,8-tetrachlorodibenzo- p -dioxin) induces hepatic lipid accumulation (steatosis), inflammation (steatohepatitis) and fibrosis. Thousands of liver-expressed, nuclear-localized lncRNAs with regulatory potential have been identified; however, their roles in TCDD-induced hepatoxicity and liver disease are unknown. We analyzed single nucleus (sn)RNA-seq data from control and chronic TCDD-exposed mouse liver to determine liver cell-type specificity, zonation and differential expression profiles for thousands of IncRNAs. TCDD dysregulated >4,000 of these lncRNAs in one or more liver cell types, including 684 lncRNAs specifically dysregulated in liver non-parenchymal cells. Trajectory inference analysis revealed major disruption by TCDD of hepatocyte zonation, affecting >800 genes, including 121 IncRNAs, with strong enrichment for lipid metabolism genes. TCDD also dysregulated expression of >200 transcription factors, including 19 Nuclear Receptors, most notably in hepatocytes and Kupffer cells. TCDD-induced changes in cellâ€"cell communication patterns included marked decreases in EGF signaling from hepatocytes to non-parenchymal cells and increases in extracellular matrix-receptor interactions central to liver fibrosis. Gene regulatory networks constructed from the snRNA-seq data identified TCDD-exposed liver network-essential lncRNA regulators linked to functions such as fatty acid metabolic process, peroxisome and xenobiotic metabolic. Networks were validated by the striking enrichments that predicted regulatory IncRNAs showed for specific biological pathways. These findings highlight the power of snRNA-seq to discover functional roles for many xenobiotic-responsive lncRNAs in both hepatocytes and liver non-parenchymal cells and to elucidate novel aspects of foreign chemical-induced hepatotoxicity and liver disease, including dysregulation of intercellular communication within the liver lobule.
Collapse
|
217
|
Chen T, Dalton G, Oh SH, Maeso-Diaz R, Du K, Meyers RA, Guy C, Abdelmalek MF, Henao R, Guarnieri P, Pullen SS, Gregory S, Locker J, Brown JM, Diehl AM. Hepatocyte Smoothened Activity Controls Susceptibility to Insulin Resistance and Nonalcoholic Fatty Liver Disease. Cell Mol Gastroenterol Hepatol 2022; 15:949-970. [PMID: 36535507 PMCID: PMC9957752 DOI: 10.1016/j.jcmgh.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic steatohepatitis (NASH), a leading cause of cirrhosis, strongly associates with the metabolic syndrome, an insulin-resistant proinflammatory state that disrupts energy balance and promotes progressive liver degeneration. We aimed to define the role of Smoothened (Smo), an obligatory component of the Hedgehog signaling pathway, in controlling hepatocyte metabolic homeostasis and, thereby, susceptibility to NASH. METHODS We conditionally deleted Smo in hepatocytes of healthy chow-fed mice and performed metabolic phenotyping, coupled with single-cell RNA sequencing (RNA-seq), to characterize the role of hepatocyte Smo in regulating basal hepatic and systemic metabolic homeostasis. Liver RNA-seq datasets from 2 large human cohorts were also analyzed to define the relationship between Smo and NASH susceptibility in people. RESULTS Hepatocyte Smo deletion inhibited the Hedgehog pathway and promoted fatty liver, hyperinsulinemia, and insulin resistance. We identified a plausible mechanism whereby inactivation of Smo stimulated the mTORC1-SREBP1c signaling axis, which promoted lipogenesis while inhibiting the hepatic insulin cascade. Transcriptomics of bulk and single Smo-deficient hepatocytes supported suppression of insulin signaling and also revealed molecular abnormalities associated with oxidative stress and mitochondrial dysfunction. Analysis of human bulk RNA-seq data revealed that Smo expression was (1) highest in healthy livers, (2) lower in livers with NASH than in those with simple steatosis, (3) negatively correlated with markers of insulin resistance and liver injury, and (4) declined progressively as fibrosis severity worsened. CONCLUSIONS The Hedgehog pathway controls insulin sensitivity and energy homeostasis in adult livers. Loss of hepatocyte Hedgehog activity induces hepatic and systemic metabolic stress and enhances susceptibility to NASH by promoting hepatic lipoxicity and insulin resistance.
Collapse
Affiliation(s)
- Tianyi Chen
- Department of Medicine, Duke University, Durham, North Carolina
| | - George Dalton
- Department of Medicine, Duke University, Durham, North Carolina
| | - Seh-Hoon Oh
- Department of Medicine, Duke University, Durham, North Carolina
| | | | - Kuo Du
- Department of Medicine, Duke University, Durham, North Carolina
| | - Rachel A Meyers
- Department of Medicine, Duke University, Durham, North Carolina
| | - Cynthia Guy
- Department of Medicine, Duke University, Durham, North Carolina
| | | | - Ricardo Henao
- Department of Medicine, Duke University, Durham, North Carolina
| | - Paolo Guarnieri
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut
| | - Steven S Pullen
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut
| | - Simon Gregory
- Department of Medicine, Duke University, Durham, North Carolina
| | - Joseph Locker
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Anna Mae Diehl
- Department of Medicine, Duke University, Durham, North Carolina.
| |
Collapse
|
218
|
Brunetti-Pierri N, Gissen P. A retrograde approach for liver gene transfer. Mol Ther Methods Clin Dev 2022; 27:488-490. [PMID: 36458113 PMCID: PMC9709090 DOI: 10.1016/j.omtm.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, Federico II University, Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| | - Paul Gissen
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
- National Institute of Health Research, Great Ormond Street Biomedical Research Centre, London, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
219
|
Zhou T, Kiran M, Lui KO, Ding Q. Decoding liver fibrogenesis with single-cell technologies. LIFE MEDICINE 2022; 1:333-344. [PMID: 39872749 PMCID: PMC11749458 DOI: 10.1093/lifemedi/lnac040] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/19/2022] [Indexed: 01/30/2025]
Abstract
Liver fibrogenesis is a highly dynamic and complex process that drives the progression of chronic liver disease toward liver failure and end-stage liver diseases. Despite decades of intense studies, the cellular and molecular mechanisms underlying liver fibrogenesis remain elusive, and no approved therapies to treat liver fibrosis are currently available. The rapid development of single-cell RNA sequencing (scRNA-seq) technologies allows the characterization of cellular alterations under healthy and diseased conditions at an unprecedented resolution. In this Review, we discuss how the scRNA-seq studies are transforming our understanding of the regulatory mechanisms of liver fibrosis. We specifically emphasize discoveries on disease-relevant cell subpopulations, molecular events, and cell interactions on cell types including hepatocytes, liver sinusoidal endothelial cells, myofibroblasts, and macrophages. These discoveries have uncovered critical pathophysiological changes during liver fibrogenesis. Further efforts are urged to fully understand the functional contributions of these changes to liver fibrogenesis, and to translate the new knowledge into effective therapeutic approaches.
Collapse
Affiliation(s)
- Tingting Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Musunuru Kiran
- Department of Medicine, and Department of Genetics, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathy O Lui
- Department of Chemical Pathology and Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
220
|
Luo P, Chen J, Zhang Q, Xia F, Wang C, Bai Y, Tang H, Liu D, Gu L, Du Q, Xiao W, Yang C, Wang J. Dissection of cellular and molecular mechanisms of aristolochic acid-induced hepatotoxicity via single-cell transcriptomics. PRECISION CLINICAL MEDICINE 2022; 5:pbac023. [PMID: 36349141 PMCID: PMC9635452 DOI: 10.1093/pcmedi/pbac023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022] Open
Abstract
Background Aristolochic acids (AAs), a class of carcinogenic and mutagenic natural products from Aristolochia and Asarum plants, are well-known to be responsible for inducing nephrotoxicity and urothelial carcinoma. Recently, accumulating evidence suggests that exposure to AAs could also induce hepatotoxicity and even hepatocellular carcinoma, though the mechanisms are poorly defined. Methods Here, we aimed to dissect the underlying cellular and molecular mechanisms of aristolochic acid I (AAI)-induced hepatotoxicity by using advanced single-cell RNA sequencing (scRNA-seq) and proteomics techniques. We established the first single-cell atlas of mouse livers in response to AAI. Results In hepatocytes, our results indicated that AAI activated NF-κB and STAT3 signaling pathways, which may contribute to the inflammatory response and apoptosis. In liver sinusoidal endothelial cells (LSECs), AAI activated multiple oxidative stress and inflammatory associated signaling pathways and induced apoptosis. Importantly, AAI induced infiltration of cytotoxic T cells and activation of proinflammatory macrophage and neutrophil cells in the liver to produce inflammatory cytokines to aggravate inflammation. Conclusions Collectively, our study provides novel knowledge of AAs-induced molecular characteristics of hepatotoxicity at a single-cell level and suggests future treatment options for AAs associated hepatotoxicity.
Collapse
Affiliation(s)
- Piao Luo
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiayun Chen
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qian Zhang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Fei Xia
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chen Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yunmeng Bai
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Huan Tang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dandan Liu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liwei Gu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qingfeng Du
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wei Xiao
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Chuanbin Yang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Jigang Wang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan 523125, China
| |
Collapse
|
221
|
Li J, Diamante G, Ahn IS, Wijaya D, Wang X, Chang CH, Ha SM, Immadisetty K, Meng H, Nel A, Yang X, Xia T. Determination of the nanoparticle- and cell-specific toxicological mechanisms in 3D liver spheroids using scRNAseq analysis. NANO TODAY 2022; 47:101652. [PMID: 36911538 PMCID: PMC10004129 DOI: 10.1016/j.nantod.2022.101652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Engineered nanomaterials (ENMs) are commonly used in consumer products, allowing exposure to target organs such as the lung, liver, and skin that could lead to adverse health effects in humans. To better reflect on toxicological effects in liver cells, it is important to consider the contribution of hepatocyte morphology, function, and intercellular interactions in a dynamic 3D microenvironment. Herein, we used a 3D liver spheroid model containing hepatocyte and Kupffer cells (KCs) to study the effects of three different material compositions, namely vanadium pentoxide (V2O5), titanium dioxide (TiO2), or graphene oxide (GO). Additionally, we used single-cell RNA sequencing (scRNAseq) to determine the nanoparticle (NP) and cell-specific toxicological responses. A general finding was that hepatocytes exhibit more variation in gene expression and adaptation of signaling pathways than KCs. TNF-α production tied to the NF-κB pathway was a commonly affected pathway by all NPs while impacts on the metabolic function of hepatocytes were unique to V2O5. V2O5 NPs also showed the largest number of differentially expressed genes in both cell types, many of which are related to pro-inflammatory and apoptotic response pathways. There was also evidence of mitochondrial ROS generation and caspase-1 activation after GO and V2O5 treatment, in association with cytokine production. All considered, this study provides insight into the impact of nanoparticles on gene responses in key liver cell types, providing us with a scRNAseq platform that can be used for high-content screening of nanomaterial impact on the liver, for use in biosafety and biomedical applications.
Collapse
Affiliation(s)
- Jiulong Li
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Darren Wijaya
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Xiang Wang
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Chong Hyun Chang
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Sung-min Ha
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Kavya Immadisetty
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Huan Meng
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
| | - André Nel
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xia Yang
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Tian Xia
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
222
|
Björkström NK. Immunobiology of the biliary tract system. J Hepatol 2022; 77:1657-1669. [PMID: 36116989 PMCID: PMC7615184 DOI: 10.1016/j.jhep.2022.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 12/04/2022]
Abstract
The biliary tract is a complex tubular organ system spanning from the liver to the duodenum. It is the site of numerous acute and chronic disorders, many of unknown origin, that are often associated with cancer development and for which there are limited treatment options. Cholangiocytes with proinflammatory capacities line the lumen and specialised types of immune cells reside in close proximity. Recent technological breakthroughs now permit spatiotemporal assessments of immune cells within distinct niches and have increased our understanding of immune cell tissue residency. In this review, a comprehensive overview of emerging knowledge on the immunobiology of the biliary tract system is provided, with a particular emphasis on the role of distinct immune cells in biliary disorders.
Collapse
Affiliation(s)
- Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
223
|
Yuan Z, Li Y, Shi M, Yang F, Gao J, Yao J, Zhang MQ. SOTIP is a versatile method for microenvironment modeling with spatial omics data. Nat Commun 2022; 13:7330. [PMID: 36443314 PMCID: PMC9705407 DOI: 10.1038/s41467-022-34867-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
The rapidly developing spatial omics generated datasets with diverse scales and modalities. However, most existing methods focus on modeling dynamics of single cells while ignore microenvironments (MEs). Here we present SOTIP (Spatial Omics mulTIPle-task analysis), a versatile method incorporating MEs and their interrelationships into a unified graph. Based on this graph, spatial heterogeneity quantification, spatial domain identification, differential microenvironment analysis, and other downstream tasks can be performed. We validate each module's accuracy, robustness, scalability and interpretability on various spatial omics datasets. In two independent mouse cerebral cortex spatial transcriptomics datasets, we reveal a gradient spatial heterogeneity pattern strongly correlated with the cortical depth. In human triple-negative breast cancer spatial proteomics datasets, we identify molecular polarizations and MEs associated with different patient survivals. Overall, by modeling biologically explainable MEs, SOTIP outperforms state-of-art methods and provides some perspectives for spatial omics data exploration and interpretation.
Collapse
Affiliation(s)
- Zhiyuan Yuan
- Institute of Science and Technology for Brain-Inspired Intelligence; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.
- Tencent AI Lab, Shenzhen, China.
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Yisi Li
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Minglei Shi
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, School of Medicine, Tsinghua University, Beijing, 100084, China
| | | | - Juntao Gao
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University, Beijing, 100084, China
| | | | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University, Beijing, 100084, China.
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, School of Medicine, Tsinghua University, Beijing, 100084, China.
- Department of Biological Sciences, Center for Systems Biology, The University of Texas, Richardson, TX, 75080-3021, USA.
| |
Collapse
|
224
|
Chen Y, Tang L. The crosstalk between parenchymal cells and macrophages: A keeper of tissue homeostasis. Front Immunol 2022; 13:1050188. [PMID: 36505488 PMCID: PMC9732730 DOI: 10.3389/fimmu.2022.1050188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Non-parenchymal cells (NPCs) and parenchymal cells (PCs) collectively perform tissue-specific functions. PCs play significant roles and continuously adjust the intrinsic functions and metabolism of organs. Tissue-resident macrophages (TRMs) are crucial members of native NPCs in tissues and are essential for immune defense, tissue repair and development, and homeostasis maintenance. As a plastic-phenotypic and prevalent cluster of NPCs, TRMs dynamically assist PCs in functioning by producing cytokines, inflammatory and anti-inflammatory signals, growth factors, and proteolytic enzymes. Furthermore, the PCs of tissues modulate the functional activity and polarization of TRMs. Dysregulation of the PC-TRM crosstalk axis profoundly impacts many essential physiological functions, including synaptogenesis, gastrointestinal motility and secretion, cardiac pulsation, gas exchange, blood filtration, and metabolic homeostasis. This review focuses on the PC-TRM crosstalk in mammalian vital tissues, along with their interactions with tissue homeostasis maintenance and disorders. Thus, this review highlights the fundamental biological significance of the regulatory network of PC-TRM in tissue homeostasis.
Collapse
|
225
|
Xu Z, Luo J, Xiong Z. scSemiGAN: a single-cell semi-supervised annotation and dimensionality reduction framework based on generative adversarial network. Bioinformatics 2022; 38:5042-5048. [PMID: 36193998 DOI: 10.1093/bioinformatics/btac652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/05/2022] [Accepted: 10/02/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Cell-type annotation plays a crucial role in single-cell RNA-seq (scRNA-seq) data analysis. As more and more well-annotated scRNA-seq reference data are publicly available, automatical label transference algorithms are gaining popularity over manual marker gene-based annotation methods. However, most existing methods fail to unify cell-type annotation with dimensionality reduction and are unable to generate deep latent representation from the perspective of data generation. RESULTS In this article, we propose scSemiGAN, a single-cell semi-supervised cell-type annotation and dimensionality reduction framework based on a generative adversarial network, to overcome these challenges, modeling scRNA-seq data from the aspect of data generation. Our proposed scSemiGAN is capable of performing deep latent representation learning and cell-type label prediction simultaneously. Through extensive comparison with four state-of-the-art annotation methods on diverse simulated and real scRNA-seq datasets, scSemiGAN achieves competitive or superior performance in multiple downstream tasks including cell-type annotation, latent representation visualization, confounding factor removal and enrichment analysis. AVAILABILITY AND IMPLEMENTATION The code and data of scSemiGAN are available on GitHub: https://github.com/rafa-nadal/scSemiGAN. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zhongyuan Xu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Zehao Xiong
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
226
|
Host-parasite dynamics in the liver stage of malaria. Nature 2022:10.1038/d41586-022-03332-0. [PMID: 36352107 DOI: 10.1038/d41586-022-03332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
227
|
Calcagno DM, Taghdiri N, Ninh VK, Mesfin JM, Toomu A, Sehgal R, Lee J, Liang Y, Duran JM, Adler E, Christman KL, Zhang K, Sheikh F, Fu Z, King KR. Single-cell and spatial transcriptomics of the infarcted heart define the dynamic onset of the border zone in response to mechanical destabilization. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1039-1055. [PMID: 39086770 PMCID: PMC11290420 DOI: 10.1038/s44161-022-00160-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/03/2022] [Indexed: 08/02/2024]
Abstract
The border zone (BZ) of the infarcted heart is a geographically complex and biologically enigmatic interface separating poorly perfused infarct zones (IZs) from remote zones (RZs). The cellular and molecular mechanisms of myocardial BZs are not well understood because microdissection inevitably combines them with uncontrolled amounts of RZs and IZs. Here, we use single-cell/nucleus RNA sequencing, spatial transcriptomics and multiplexed RNA fluorescence in situ hybridization to redefine the BZ based on cardiomyocyte transcriptomes. BZ1 (Nppa + Xirp2 -) forms a hundreds-of-micrometer-thick layer of morphologically intact cells adjacent to RZs that are detectable within an hour of injury. Meanwhile, BZ2 (Nppa + Xirp2 +) forms a near-single-cell-thick layer of morphologically distorted cardiomyocytes at the IZ edge that colocalize with matricellular protein-expressing myofibroblasts and express predominantly mechanotransduction genes. Surprisingly, mechanical injury alone is sufficient to induce BZ genes. We propose a 'loss of neighbor' hypothesis to explain how ischemic cell death mechanically destabilizes the BZ to induce its transcriptional response.
Collapse
Affiliation(s)
- D. M. Calcagno
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- These authors contributed equally: D.M. Calcagno, N. Taghdiri
| | - N. Taghdiri
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- These authors contributed equally: D.M. Calcagno, N. Taghdiri
| | - V. K. Ninh
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - J. M. Mesfin
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - A. Toomu
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - R. Sehgal
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - J. Lee
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Y. Liang
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - J. M. Duran
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - E. Adler
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - K. L. Christman
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - K. Zhang
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - F. Sheikh
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Z. Fu
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - K. R. King
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
228
|
Afriat A, Zuzarte-Luís V, Bahar Halpern K, Buchauer L, Marques S, Chora ÂF, Lahree A, Amit I, Mota MM, Itzkovitz S. A spatiotemporally resolved single-cell atlas of the Plasmodium liver stage. Nature 2022; 611:563-569. [PMID: 36352220 DOI: 10.1038/s41586-022-05406-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/03/2022] [Indexed: 11/10/2022]
Abstract
Malaria infection involves an obligatory, yet clinically silent liver stage1,2. Hepatocytes operate in repeating units termed lobules, exhibiting heterogeneous gene expression patterns along the lobule axis3, but the effects of hepatocyte zonation on parasite development at the molecular level remain unknown. Here we combine single-cell RNA sequencing4 and single-molecule transcript imaging5 to characterize the host and parasite temporal expression programmes in a zonally controlled manner for the rodent malaria parasite Plasmodium berghei ANKA. We identify differences in parasite gene expression in distinct zones, including potentially co-adaptive programmes related to iron and fatty acid metabolism. We find that parasites develop more rapidly in the pericentral lobule zones and identify a subpopulation of periportally biased hepatocytes that harbour abortive infections, reduced levels of Plasmodium transcripts and parasitophorous vacuole breakdown. These 'abortive hepatocytes', which appear predominantly with high parasite inoculum, upregulate immune recruitment and key signalling programmes. Our study provides a resource for understanding the liver stage of Plasmodium infection at high spatial resolution and highlights the heterogeneous behaviour of both the parasite and the host hepatocyte.
Collapse
Affiliation(s)
- Amichay Afriat
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Vanessa Zuzarte-Luís
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Keren Bahar Halpern
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lisa Buchauer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sofia Marques
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ângelo Ferreira Chora
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Aparajita Lahree
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Maria M Mota
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
229
|
Pita-Juarez Y, Karagkouni D, Kalavros N, Melms JC, Niezen S, Delorey TM, Essene AL, Brook OR, Pant D, Skelton-Badlani D, Naderi P, Huang P, Pan L, Hether T, Andrews TS, Ziegler CGK, Reeves J, Myloserdnyy A, Chen R, Nam A, Phelan S, Liang Y, Amin AD, Biermann J, Hibshoosh H, Veregge M, Kramer Z, Jacobs C, Yalcin Y, Phillips D, Slyper M, Subramanian A, Ashenberg O, Bloom-Ackermann Z, Tran VM, Gomez J, Sturm A, Zhang S, Fleming SJ, Warren S, Beechem J, Hung D, Babadi M, Padera RF, MacParland SA, Bader GD, Imad N, Solomon IH, Miller E, Riedel S, Porter CBM, Villani AC, Tsai LTY, Hide W, Szabo G, Hecht J, Rozenblatt-Rosen O, Shalek AK, Izar B, Regev A, Popov Y, Jiang ZG, Vlachos IS. A single-nucleus and spatial transcriptomic atlas of the COVID-19 liver reveals topological, functional, and regenerative organ disruption in patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.27.514070. [PMID: 36324805 PMCID: PMC9628199 DOI: 10.1101/2022.10.27.514070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The molecular underpinnings of organ dysfunction in acute COVID-19 and its potential long-term sequelae are under intense investigation. To shed light on these in the context of liver function, we performed single-nucleus RNA-seq and spatial transcriptomic profiling of livers from 17 COVID-19 decedents. We identified hepatocytes positive for SARS-CoV-2 RNA with an expression phenotype resembling infected lung epithelial cells. Integrated analysis and comparisons with healthy controls revealed extensive changes in the cellular composition and expression states in COVID-19 liver, reflecting hepatocellular injury, ductular reaction, pathologic vascular expansion, and fibrogenesis. We also observed Kupffer cell proliferation and erythrocyte progenitors for the first time in a human liver single-cell atlas, resembling similar responses in liver injury in mice and in sepsis, respectively. Despite the absence of a clinical acute liver injury phenotype, endothelial cell composition was dramatically impacted in COVID-19, concomitantly with extensive alterations and profibrogenic activation of reactive cholangiocytes and mesenchymal cells. Our atlas provides novel insights into liver physiology and pathology in COVID-19 and forms a foundational resource for its investigation and understanding.
Collapse
Affiliation(s)
- Yered Pita-Juarez
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dimitra Karagkouni
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nikolaos Kalavros
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Spatial Technologies Unit, HMS Initiative for RNA Medicine / Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Johannes C Melms
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Center for Translational Immunology, New York, NY, USA
| | - Sebastian Niezen
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
| | - Toni M Delorey
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam L Essene
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core, Boston, MA, USA
| | - Olga R Brook
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Deepti Pant
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core, Boston, MA, USA
| | - Disha Skelton-Badlani
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
| | - Pourya Naderi
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Pinzhu Huang
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
| | - Liuliu Pan
- NanoString Technologies, Inc., Seattle, WA, USA
| | | | - Tallulah S Andrews
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Carly G K Ziegler
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Program in Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Andriy Myloserdnyy
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
| | - Rachel Chen
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
| | - Andy Nam
- NanoString Technologies, Inc., Seattle, WA, USA
| | | | - Yan Liang
- NanoString Technologies, Inc., Seattle, WA, USA
| | - Amit Dipak Amin
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Center for Translational Immunology, New York, NY, USA
| | - Jana Biermann
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Center for Translational Immunology, New York, NY, USA
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Molly Veregge
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core, Boston, MA, USA
| | - Zachary Kramer
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Christopher Jacobs
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core, Boston, MA, USA
| | - Yusuf Yalcin
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
| | - Devan Phillips
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Michal Slyper
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | | | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zohar Bloom-Ackermann
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Victoria M Tran
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James Gomez
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexander Sturm
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shuting Zhang
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen J Fleming
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Deborah Hung
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Mehrtash Babadi
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robert F Padera
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Sonya A MacParland
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, Toronto, ON, Canada
| | - Nasser Imad
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Isaac H Solomon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Eric Miller
- NanoString Technologies, Inc., Seattle, WA, USA
| | - Stefan Riedel
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Caroline B M Porter
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexandra-Chloé Villani
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Linus T-Y Tsai
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core, Boston, MA, USA
| | - Winston Hide
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Gyongyi Szabo
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
| | - Jonathan Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Alex K Shalek
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Program in Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin Izar
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Center for Translational Immunology, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Program for Mathematical Genomics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Yury Popov
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Z Gordon Jiang
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
| | - Ioannis S Vlachos
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Spatial Technologies Unit, HMS Initiative for RNA Medicine / Beth Israel Deaconess Medical Center, Boston, MA, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA
| |
Collapse
|
230
|
Pita-Juarez Y, Karagkouni D, Kalavros N, Melms JC, Niezen S, Delorey TM, Essene AL, Brook OR, Pant D, Skelton-Badlani D, Naderi P, Huang P, Pan L, Hether T, Andrews TS, Ziegler CGK, Reeves J, Myloserdnyy A, Chen R, Nam A, Phelan S, Liang Y, Amin AD, Biermann J, Hibshoosh H, Veregge M, Kramer Z, Jacobs C, Yalcin Y, Phillips D, Slyper M, Subramanian A, Ashenberg O, Bloom-Ackermann Z, Tran VM, Gomez J, Sturm A, Zhang S, Fleming SJ, Warren S, Beechem J, Hung D, Babadi M, Padera RF, MacParland SA, Bader GD, Imad N, Solomon IH, Miller E, Riedel S, Porter CBM, Villani AC, Tsai LTY, Hide W, Szabo G, Hecht J, Rozenblatt-Rosen O, Shalek AK, Izar B, Regev A, Popov Y, Jiang ZG, Vlachos IS. A single-nucleus and spatial transcriptomic atlas of the COVID-19 liver reveals topological, functional, and regenerative organ disruption in patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022. [PMID: 36324805 DOI: 10.1101/2022.08.06.503037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The molecular underpinnings of organ dysfunction in acute COVID-19 and its potential long-term sequelae are under intense investigation. To shed light on these in the context of liver function, we performed single-nucleus RNA-seq and spatial transcriptomic profiling of livers from 17 COVID-19 decedents. We identified hepatocytes positive for SARS-CoV-2 RNA with an expression phenotype resembling infected lung epithelial cells. Integrated analysis and comparisons with healthy controls revealed extensive changes in the cellular composition and expression states in COVID-19 liver, reflecting hepatocellular injury, ductular reaction, pathologic vascular expansion, and fibrogenesis. We also observed Kupffer cell proliferation and erythrocyte progenitors for the first time in a human liver single-cell atlas, resembling similar responses in liver injury in mice and in sepsis, respectively. Despite the absence of a clinical acute liver injury phenotype, endothelial cell composition was dramatically impacted in COVID-19, concomitantly with extensive alterations and profibrogenic activation of reactive cholangiocytes and mesenchymal cells. Our atlas provides novel insights into liver physiology and pathology in COVID-19 and forms a foundational resource for its investigation and understanding.
Collapse
|
231
|
Qin R, Zhao H, He Q, Li F, Li Y, Zhao H. Advances in single-cell sequencing technology in the field of hepatocellular carcinoma. Front Genet 2022; 13:996890. [PMID: 36303541 PMCID: PMC9592975 DOI: 10.3389/fgene.2022.996890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Tumors are a class of diseases characterized by altered genetic information and uncontrolled growth. Sequencing technology provide researchers with a better way to explore specific tumor pathogenesis. In recent years, single-cell sequencing technology has shone in tumor research, especially in the study of liver cancer, revealing phenomena that were unexplored by previous studies. Single-cell sequencing (SCS) is a technique for sequencing the cellular genome, transcriptome, epigenome, proteomics, or metabolomics after dissociation of tissues into single cells. Compared with traditional bulk sequencing, single-cell sequencing can dissect human tumors at single-cell resolution, finely delineate different cell types, and reveal the heterogeneity of tumor cells. In view of the diverse pathological types and complex pathogenesis of hepatocellular carcinoma (HCC), the study of the heterogeneity among tumor cells can help improve its clinical diagnosis, treatment and prognostic judgment. On this basis, SCS has revolutionized our understanding of tumor heterogeneity, tumor immune microenvironment, and clonal evolution of tumor cells. This review summarizes the basic process and development of single-cell sequencing technology and its increasing role in the field of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Rongyi Qin
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Haichao Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Qizu He
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Feng Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yanjun Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Yanjun Li, ; Haoliang Zhao,
| | - Haoliang Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Yanjun Li, ; Haoliang Zhao,
| |
Collapse
|
232
|
Van Treeck BJ, Moreira RK, Mounajjed T, Ferrell L, Xue Y, Jessen E, Davila J, Graham RP. Transcriptomic Analysis of Cirrhosis-Like Hepatocellular Carcinoma Reveals Distinct Molecular Characteristics and Pathologic Staging Implications. Am J Clin Pathol 2022; 158:750-758. [PMID: 36197918 DOI: 10.1093/ajcp/aqac125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/06/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Cirrhosis-like hepatocellular carcinoma (CL-HCC) is a rare hepatocellular malignancy characterized by multiple tumor nodules that clinically, radiologically, macroscopically, and microscopically mimic cirrhosis. We aimed to elucidate the molecular biology of CL-HCC and determine tumor nodule clonality. METHODS We performed RNA sequencing on formalin-fixed, paraffin-embedded tissue from confirmed CL-HCC cases (n = 6), along with corresponding nonneoplastic hepatic tissue (n = 4) when available. Transcriptomes from our previous work on steatohepatitic hepatocellular carcinoma and The Cancer Genome Atlas (TCGA) were used for comparison purposes. RESULTS Histologically, CL-HCC displayed innumerable nodules and extensive vascular invasion. Intratumoral nodule comparison indicated that the multiple nodules were all clonally related, not independent primaries. The unique histomorphologic appearance corresponded with a distinct transcriptome compared with other HCCs, including fibrolamellar HCC (n = 6), steatohepatitic HCC (n = 8), and conventional HCC in TCGA (n = 424). Tumor-normal gene expression analysis revealed consistent overexpression of several genes involved in degradation of tissue matrix. No recurrent translocations or point mutations were identified. CL-HCC showed a gene expression profile indicative of zone 2 hepatocytes. CONCLUSIONS CL-HCC's distinctive clinicopathologic features correspond to a unique gene expression profile, increased expression of invasive markers, features of zone 2 hepatocytes, and features suggestive of intratumoral nodule monoclonality.
Collapse
Affiliation(s)
| | - Roger K Moreira
- Departments of Laboratory Medicine and Pathology, Rochester, MN, USA
| | - Taofic Mounajjed
- Departments of Laboratory Medicine and Pathology, Rochester, MN, USA
| | - Linda Ferrell
- Department of Laboratory Medicine and Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Yue Xue
- Department of Laboratory Medicine and Pathology, Northwestern University, Chicago, IL, USA
| | - Erik Jessen
- Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jaime Davila
- Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Rondell P Graham
- Departments of Laboratory Medicine and Pathology, Rochester, MN, USA
| |
Collapse
|
233
|
Li H, Perino A, Huang Q, Von Alvensleben GVG, Banaei-Esfahani A, Velazquez-Villegas LA, Gariani K, Korbelius M, Bou Sleiman M, Imbach J, Sun Y, Li X, Bachmann A, Goeminne LJE, Gallart-Ayala H, Williams EG, Ivanisevic J, Auwerx J, Schoonjans K. Integrative systems analysis identifies genetic and dietary modulators of bile acid homeostasis. Cell Metab 2022; 34:1594-1610.e4. [PMID: 36099916 PMCID: PMC9534359 DOI: 10.1016/j.cmet.2022.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
Bile acids (BAs) are complex and incompletely understood enterohepatic-derived hormones that control whole-body metabolism. Here, we profiled postprandial BAs in the liver, feces, and plasma of 360 chow- or high-fat-diet-fed BXD male mice and demonstrated that both genetics and diet strongly influence BA abundance, composition, and correlation with metabolic traits. Through an integrated systems approach, we mapped hundreds of quantitative trait loci that modulate BAs and identified both known and unknown regulators of BA homeostasis. In particular, we discovered carboxylesterase 1c (Ces1c) as a genetic determinant of plasma tauroursodeoxycholic acid (TUDCA), a BA species with established disease-preventing actions. The association between Ces1c and plasma TUDCA was validated using data from independent mouse cohorts and a Ces1c knockout mouse model. Collectively, our data are a unique resource to dissect the physiological importance of BAs as determinants of metabolic traits, as underscored by the identification of CES1C as a master regulator of plasma TUDCA levels.
Collapse
Affiliation(s)
- Hao Li
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alessia Perino
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Qingyao Huang
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Giacomo V G Von Alvensleben
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Amir Banaei-Esfahani
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Laura A Velazquez-Villegas
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Karim Gariani
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Melanie Korbelius
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jéromine Imbach
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Yu Sun
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alexis Bachmann
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ludger J E Goeminne
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Evan G Williams
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
234
|
Gasper W, Rossi F, Ligorio M, Ghersi D. Variant calling enhances the identification of cancer cells in single-cell RNA sequencing data. PLoS Comput Biol 2022; 18:e1010576. [PMID: 36191033 PMCID: PMC9560611 DOI: 10.1371/journal.pcbi.1010576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/13/2022] [Accepted: 09/15/2022] [Indexed: 12/14/2022] Open
Abstract
Single-cell RNA-sequencing is an invaluable research tool that allows for the investigation of gene expression in heterogeneous cancer cell populations in ways that bulk RNA-seq cannot. However, normal (i.e., non tumor) cells in cancer samples have the potential to confound the downstream analysis of single-cell RNA-seq data. Existing methods for identifying cancer and normal cells include copy number variation inference, marker-gene expression analysis, and expression-based clustering. This work aims to extend the existing approaches for identifying cancer cells in single-cell RNA-seq samples by incorporating variant calling and the identification of putative driver alterations. We found that putative driver alterations can be detected in single-cell RNA-seq data obtained with full-length transcript technologies and noticed that a subset of cells in tumor samples are enriched for putative driver alterations as compared to normal cells. Furthermore, we show that the number of putative driver alterations and inferred copy number variation are not correlated in all samples. Taken together, our findings suggest that augmenting existing cancer-cell filtering methods with variant calling and analysis can increase the number of tumor cells that can be confidently included in downstream analyses of single-cell full-length transcript RNA-seq datasets.
Collapse
Affiliation(s)
- William Gasper
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
| | - Francesca Rossi
- Department of Surgery, University of Texas Southwestern, Dallas, Texas, United States of America
| | - Matteo Ligorio
- Department of Surgery, University of Texas Southwestern, Dallas, Texas, United States of America
| | - Dario Ghersi
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
| |
Collapse
|
235
|
Bresciani N, Demagny H, Lemos V, Pontanari F, Li X, Sun Y, Li H, Perino A, Auwerx J, Schoonjans K. The Slc25a47 locus is a novel determinant of hepatic mitochondrial function implicated in liver fibrosis. J Hepatol 2022; 77:1071-1082. [PMID: 35714811 DOI: 10.1016/j.jhep.2022.05.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/27/2022] [Accepted: 05/17/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Transporters of the SLC25 mitochondrial carrier superfamily bridge cytoplasmic and mitochondrial metabolism by channeling metabolites across mitochondrial membranes and are pivotal for metabolic homeostasis. Despite their physiological relevance as gatekeepers of cellular metabolism, most of the SLC25 family members remain uncharacterized. We undertook a comprehensive tissue distribution analysis of all Slc25 family members across metabolic organs and identified SLC25A47 as a liver-specific mitochondrial carrier. METHODS We used a murine loss-of-function model to unravel the role of this transporter in mitochondrial and hepatic homeostasis. We performed extensive metabolic phenotyping and molecular characterization of newly generated Slc25a47hep-/- and Slc25a47-Fgf21hep-/- mice. RESULTS Slc25a47hep-/- mice displayed a wide variety of metabolic abnormalities, as a result of sustained energy deficiency in the liver originating from impaired mitochondrial respiration. This mitochondrial phenotype was associated with an activation of the mitochondrial stress response (MSR) in the liver, and the development of fibrosis, which was exacerbated upon feeding a high-fat high-sucrose diet. The MSR induced the secretion of several mitokines, amongst which FGF21 played a preponderant role on systemic physiology. To dissect the FGF21-dependent and -independent physiological changes induced in Slc25a47hep-/- mice, we generated a double Slc25a47-Fgf21hep-/- mouse model and demonstrated that several aspects of the hypermetabolic state were driven by hepatic secretion of FGF21. On the other hand, the metabolic fuel inflexibility observed in Slc25a47hep-/- mice could not be rescued with the genetic removal of Fgf21. CONCLUSION Collectively, our data place the Slc25a47 locus at the center of mitochondrial homeostasis, which upon dysfunction triggers robust liver-specific and systemic adaptive stress responses. The prominent role of the Slc25a47 locus in hepatic fibrosis identifies this carrier, or its transported metabolite, as a potential target for therapeutic intervention. LAY SUMMARY Herein, we report the importance of a locus containing a liver-specific gene coding for a mitochondrial transport protein called SLC25A47. Mitochondria are the powerhouses of cells. They are crucial for metabolism and energy generation. We show that mice with genetic disruption of the Slc25a47 locus cannot maintain mitochondrial homeostasis (balance), leading to wide-ranging problems in the liver that have far-reaching physiological consequences.
Collapse
Affiliation(s)
- Nadia Bresciani
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Hadrien Demagny
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Vera Lemos
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Francesca Pontanari
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Yu Sun
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Hao Li
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; Laboratory of Integrative Systems Physiology, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Alessia Perino
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
236
|
Paris J, Henderson NC. Liver zonation, revisited. Hepatology 2022; 76:1219-1230. [PMID: 35175659 PMCID: PMC9790419 DOI: 10.1002/hep.32408] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/31/2022]
Abstract
The concept of hepatocyte functional zonation is well established, with differences in metabolism and xenobiotic processing determined by multiple factors including oxygen and nutrient levels across the hepatic lobule. However, recent advances in single-cell genomics technologies, including single-cell and nuclei RNA sequencing, and the rapidly evolving fields of spatial transcriptomic and proteomic profiling have greatly increased our understanding of liver zonation. Here we discuss how these transformative experimental strategies are being leveraged to dissect liver zonation at unprecedented resolution and how this new information should facilitate the emergence of novel precision medicine-based therapies for patients with liver disease.
Collapse
Affiliation(s)
- Jasmin Paris
- Centre for Inflammation ResearchThe Queen’s Medical Research InstituteEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Neil C. Henderson
- Centre for Inflammation ResearchThe Queen’s Medical Research InstituteEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
- MRC Human Genetics UnitInstitute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
237
|
Zhang MJ, Hou K, Dey KK, Sakaue S, Jagadeesh KA, Weinand K, Taychameekiatchai A, Rao P, Pisco AO, Zou J, Wang B, Gandal M, Raychaudhuri S, Pasaniuc B, Price AL. Polygenic enrichment distinguishes disease associations of individual cells in single-cell RNA-seq data. Nat Genet 2022; 54:1572-1580. [PMID: 36050550 PMCID: PMC9891382 DOI: 10.1038/s41588-022-01167-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 07/19/2022] [Indexed: 02/03/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) provides unique insights into the pathology and cellular origin of disease. We introduce single-cell disease relevance score (scDRS), an approach that links scRNA-seq with polygenic disease risk at single-cell resolution, independent of annotated cell types. scDRS identifies cells exhibiting excess expression across disease-associated genes implicated by genome-wide association studies (GWASs). We applied scDRS to 74 diseases/traits and 1.3 million single-cell gene-expression profiles across 31 tissues/organs. Cell-type-level results broadly recapitulated known cell-type-disease associations. Individual-cell-level results identified subpopulations of disease-associated cells not captured by existing cell-type labels, including T cell subpopulations associated with inflammatory bowel disease, partially characterized by their effector-like states; neuron subpopulations associated with schizophrenia, partially characterized by their spatial locations; and hepatocyte subpopulations associated with triglyceride levels, partially characterized by their higher ploidy levels. Genes whose expression was correlated with the scDRS score across cells (reflecting coexpression with GWAS disease-associated genes) were strongly enriched for gold-standard drug target and Mendelian disease genes.
Collapse
Affiliation(s)
- Martin Jinye Zhang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Kangcheng Hou
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Kushal K Dey
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Saori Sakaue
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Karthik A Jagadeesh
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kathryn Weinand
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Aris Taychameekiatchai
- Department of Medicine and Liver Center, University of California, San Francisco, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Poorvi Rao
- Department of Medicine and Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | | | - James Zou
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Electrical Engineering, Stanford University, Palo Alto, CA, USA
- Department of Biomedical Data Science, Stanford University, Palo Alto, CA, USA
| | - Bruce Wang
- Department of Medicine and Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Michael Gandal
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Soumya Raychaudhuri
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Bogdan Pasaniuc
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Alkes L Price
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
238
|
Chen KW, Chen YS, Chen PJ, Yeh SH. Androgen receptor functions in pericentral hepatocytes to decrease gluconeogenesis and avoid hyperglycemia and obesity in male mice. Metabolism 2022; 135:155269. [PMID: 35914621 DOI: 10.1016/j.metabol.2022.155269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/13/2022] [Accepted: 07/24/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although the impact of hepatic androgen receptor (AR) pathway on liver pathogenesis was documented, its physiological function in normal liver is remained unclear. This study aims to investigate if hepatic AR acts on metabolism, the major liver function, using a hepatic-specific AR-transgenic (H-ARTG) mouse model. METHODS We established the albumin promoter driven H-ARTG mice and included wild type (WT) and H-ARKO mice for study. The body weight, specific metabolic parameters and results from various tolerance tests were compared in different groups of mice fed a chow diet, from 2 to 18 months of age. Glucose feeding and insulin treatment were used to study the expression and zonal distribution pattern of AR and related genes in liver at different prandial stages. RESULTS The body weight of H-ARTG mice fed a chow diet was 15 % lower than that of wild-type mice, preceded by lower blood glucose and liver triglyceride levels caused by AR reduced hepatic gluconeogenesis. The opposite phenotypes identified in H-ARKO and castrated H-ARTG mice support the critical role of activated AR in decreasing gluconeogenesis and triglyceride levels in liver. Hepatic AR acting by enhancing the expression of cytosolic glycerol-3-phosphate dehydrogenase (cGPDH), a key of glycerophosphate shuttle, was identified as one mechanism to decrease gluconeogenesis from glycerol. We further found AR normally expressed in zone 3 of hepatic lobules. Its level fluctuates dependent on the demand of glucose, decreased by fasting but increased by glucose uptake or insulin stimulation. CONCLUSION AR is a newly identified zone 3 hepatic gene with function in reducing blood glucose and body weight in mice. It suggests that stabilization of hepatic AR is a new direction to prevent hyperglycemia, obesity and nonalcoholic fatty liver disease (NAFLD) in males.
Collapse
Affiliation(s)
- Kai-Wei Chen
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Shan Chen
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Jer Chen
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan; NTU Centers of Genomic and Precision Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shiou-Hwei Yeh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan; NTU Centers of Genomic and Precision Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
239
|
Maeda K, Hagimori S, Sugimoto M, Sakai Y, Nishikawa M. Simulation of the crosstalk between glucose and acetaminophen metabolism in a liver zonation model. Front Pharmacol 2022; 13:995597. [PMID: 36210818 PMCID: PMC9537759 DOI: 10.3389/fphar.2022.995597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The liver metabolizes a variety of substances that sometimes interact and regulate each other. The modeling of a single cell or a single metabolic pathway does not represent the complexity of the organ, including metabolic zonation (heterogeneity of functions) along with liver sinusoids. Here, we integrated multiple metabolic pathways into a single numerical liver zonation model, including drug and glucose metabolism. The model simulated the time-course of metabolite concentrations by the combination of dynamic simulation and metabolic flux analysis and successfully reproduced metabolic zonation and localized hepatotoxicity induced by acetaminophen (APAP). Drug metabolism was affected by nutritional status as the glucuronidation reaction rate changed. Moreover, sensitivity analysis suggested that the reported metabolic characteristics of obese adults and healthy infants in glucose metabolism could be associated with the metabolic features of those in drug metabolism. High activities of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphate phosphatase in obese adults led to increased APAP oxidation by cytochrome P450 2E1. In contrast, the high activity of glycogen synthase and low activities of PEPCK and glycogen phosphorylase in healthy infants led to low glucuronidation and high sulfation rates of APAP. In summary, this model showed the effects of glucose metabolism on drug metabolism by integrating multiple pathways into a single liver metabolic zonation model.
Collapse
Affiliation(s)
- Kazuhiro Maeda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
| | - Shuta Hagimori
- Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| | - Masahiro Sugimoto
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
- *Correspondence: Masahiro Sugimoto,
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| |
Collapse
|
240
|
Liver group 2 innate lymphoid cells regulate blood glucose levels through IL-13 signaling and suppression of gluconeogenesis. Nat Commun 2022; 13:5408. [PMID: 36109558 PMCID: PMC9478157 DOI: 10.1038/s41467-022-33171-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 09/04/2022] [Indexed: 12/12/2022] Open
Abstract
The liver stores glycogen and releases glucose into the blood upon increased energy demand. Group 2 innate lymphoid cells (ILC2) in adipose and pancreatic tissues are known for their involvement in glucose homeostasis, but the metabolic contribution of liver ILC2s has not been studied in detail. Here we show that liver ILC2s are directly involved in the regulation of blood glucose levels. Mechanistically, interleukin (IL)-33 treatment induces IL-13 production in liver ILC2s, while directly suppressing gluconeogenesis in a specific Hnf4a/G6pc-high primary hepatocyte cluster via Stat3. These hepatocytes significantly interact with liver ILC2s via IL-13/IL-13 receptor signaling. The results of transcriptional complex analysis and GATA3-ChIP-seq, ATAC-seq, and scRNA-seq trajectory analyses establish a positive regulatory role for the transcription factor GATA3 in IL-13 production by liver ILC2s, while AP-1 family members are shown to suppress IL-13 release. Thus, we identify a regulatory role and molecular mechanism by which liver ILC2s contribute to glucose homeostasis. Besides hepatocytes, resident immune cells of the liver are also contributing to the body’s energy homeostasis. Here authors show that group 2 innate lymphoid cells interact with a specific set of hepatocytes in suppressing gluconeogenesis and regulate blood glucose levels via Interleukin-13 signalling.
Collapse
|
241
|
Guilliams M, Scott CL. Liver macrophages in health and disease. Immunity 2022; 55:1515-1529. [PMID: 36103850 DOI: 10.1016/j.immuni.2022.08.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 12/30/2022]
Abstract
Single-cell and spatial transcriptomic technologies have revealed an underappreciated heterogeneity of liver macrophages. This has led us to rethink the involvement of macrophages in liver homeostasis and disease. Identification of conserved gene signatures within these cells across species and diseases is enabling the correct identification of specific macrophage subsets and the generation of more specific tools to track and study the functions of these cells. Here, we discuss what is currently known about the definitions of these different macrophage populations, the markers that can be used to identify them, how they are wired within the liver, and their functional specializations in health and disease.
Collapse
Affiliation(s)
- Martin Guilliams
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium.
| | - Charlotte L Scott
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Chemical Sciences, Bernal Institute, University of Limerick, Castletroy, County Limerick, Ireland.
| |
Collapse
|
242
|
Stopka SA, van der Reest J, Abdelmoula WM, Ruiz DF, Joshi S, Ringel AE, Haigis MC, Agar NYR. Spatially resolved characterization of tissue metabolic compartments in fasted and high-fat diet livers. PLoS One 2022; 17:e0261803. [PMID: 36067168 PMCID: PMC9447892 DOI: 10.1371/journal.pone.0261803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
Cells adapt their metabolism to physiological stimuli, and metabolic heterogeneity exists between cell types, within tissues, and subcellular compartments. The liver plays an essential role in maintaining whole-body metabolic homeostasis and is structurally defined by metabolic zones. These zones are well-understood on the transcriptomic level, but have not been comprehensively characterized on the metabolomic level. Mass spectrometry imaging (MSI) can be used to map hundreds of metabolites directly from a tissue section, offering an important advance to investigate metabolic heterogeneity in tissues compared to extraction-based metabolomics methods that analyze tissue metabolite profiles in bulk. We established a workflow for the preparation of tissue specimens for matrix-assisted laser desorption/ionization (MALDI) MSI that can be implemented to achieve broad coverage of central carbon, nucleotide, and lipid metabolism pathways. Herein, we used this approach to visualize the effect of nutrient stress and excess on liver metabolism. Our data revealed a highly organized metabolic tissue compartmentalization in livers, which becomes disrupted under high fat diet. Fasting caused changes in the abundance of several metabolites, including increased levels of fatty acids and TCA intermediates while fatty livers had higher levels of purine and pentose phosphate-related metabolites, which generate reducing equivalents to counteract oxidative stress. This spatially conserved approach allowed the visualization of liver metabolic compartmentalization at 30 μm pixel resolution and can be applied more broadly to yield new insights into metabolic heterogeneity in vivo.
Collapse
Affiliation(s)
- Sylwia A. Stopka
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United Statees of America
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United Statees of America
| | - Jiska van der Reest
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United Statees of America
- Department of Cell Biology, Blavatnik Institute, Ludwig Center, Harvard Medical School, Boston, MA, United Statees of America
| | - Walid M. Abdelmoula
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United Statees of America
| | - Daniela F. Ruiz
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United Statees of America
- Bouvé College of Health Sciences, Northeastern University, Boston, MA, United Statees of America
| | - Shakchhi Joshi
- Department of Cell Biology, Blavatnik Institute, Ludwig Center, Harvard Medical School, Boston, MA, United Statees of America
| | - Alison E. Ringel
- Department of Cell Biology, Blavatnik Institute, Ludwig Center, Harvard Medical School, Boston, MA, United Statees of America
| | - Marcia C. Haigis
- Department of Cell Biology, Blavatnik Institute, Ludwig Center, Harvard Medical School, Boston, MA, United Statees of America
- * E-mail: (MCH); (NYRA)
| | - Nathalie Y. R. Agar
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United Statees of America
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United Statees of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United Statees of America
- * E-mail: (MCH); (NYRA)
| |
Collapse
|
243
|
Zhang P, Chen Z, Kuang H, Liu T, Zhu J, Zhou L, Wang Q, Xiong X, Meng Z, Qiu X, Jacks R, Liu L, Li S, Lumeng CN, Li Q, Zhou X, Lin JD. Neuregulin 4 suppresses NASH-HCC development by restraining tumor-prone liver microenvironment. Cell Metab 2022; 34:1359-1376.e7. [PMID: 35973424 PMCID: PMC9458631 DOI: 10.1016/j.cmet.2022.07.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/20/2022] [Accepted: 07/20/2022] [Indexed: 12/13/2022]
Abstract
The mammalian liver comprises heterogeneous cell types within its tissue microenvironment that undergo pathophysiological reprogramming in disease states, such as non-alcoholic steatohepatitis (NASH). Patients with NASH are at an increased risk for the development of hepatocellular carcinoma (HCC). However, the molecular and cellular nature of liver microenvironment remodeling that links NASH to liver carcinogenesis remains obscure. Here, we show that diet-induced NASH is characterized by the induction of tumor-associated macrophage (TAM)-like macrophages and exhaustion of cytotoxic CD8+ T cells in the liver. The adipocyte-derived endocrine factor Neuregulin 4 (NRG4) serves as a hormonal checkpoint that restrains this pathological reprogramming during NASH. NRG4 deficiency exacerbated the induction of tumor-prone liver immune microenvironment and NASH-related HCC, whereas transgenic NRG4 overexpression elicited protective effects in mice. In a therapeutic setting, recombinant NRG4-Fc fusion protein exhibited remarkable potency in suppressing HCC and prolonged survival in the treated mice. These findings pave the way for therapeutic intervention of liver cancer by targeting the NRG4 hormonal checkpoint.
Collapse
Affiliation(s)
- Peng Zhang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Zhimin Chen
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Henry Kuang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Tongyu Liu
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jiaqiang Zhu
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Linkang Zhou
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Qiuyu Wang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Xuelian Xiong
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Ziyi Meng
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Xiaoxue Qiu
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Ramiah Jacks
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Lu Liu
- Department of Internal Medicine and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Siming Li
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Carey N Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Qing Li
- Department of Internal Medicine and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA; Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
244
|
Calcagno D, Chu A, Gaul S, Taghdiri N, Toomu A, Leszczynska A, Kaufmann B, Papouchado B, Wree A, Geisler L, Hoffman HM, Feldstein AE, King KR. NOD-like receptor protein 3 activation causes spontaneous inflammation and fibrosis that mimics human NASH. Hepatology 2022; 76:727-741. [PMID: 34997987 PMCID: PMC10176600 DOI: 10.1002/hep.32320] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS The NOD-like receptor protein 3 (NLRP3) inflammasome is a central contributor to human acute and chronic liver disease, yet the molecular and cellular mechanisms by which its activation precipitates injury remain incompletely understood. Here, we present single cell transcriptomic profiling of livers from a global transgenic tamoxifen-inducible constitutively activated Nlrp3A350V mutant mouse, and we investigate the changes in parenchymal and nonparenchymal liver cell gene expression that accompany inflammation and fibrosis. APPROACH AND RESULTS Our results demonstrate that NLRP3 activation causes chronic extramedullary myelopoiesis marked by myeloid progenitors that differentiate into proinflammatory neutrophils, monocytes, and monocyte-derived macrophages. We observed prominent neutrophil infiltrates with increased Ly6gHI and Ly6gINT cells exhibiting transcriptomic signatures of granulopoiesis typically found in the bone marrow. This was accompanied by a marked increase in Ly6cHI monocytes differentiating into monocyte-derived macrophages that express transcriptional programs similar to macrophages of NASH models. NLRP3 activation also down-regulated metabolic pathways in hepatocytes and shifted hepatic stellate cells toward an activated profibrotic state based on expression of collagen and extracellular matrix regulatory genes. CONCLUSIONS These results define the single cell transcriptomes underlying hepatic inflammation and fibrosis precipitated by NLRP3 activation. Clinically, our data support the notion that NLRP3-induced mechanisms should be explored as therapeutic target in NASH-like inflammation.
Collapse
Affiliation(s)
- David Calcagno
- University of California San Diego, Department of Bioengineering, San Diego, United States
| | - Angela Chu
- University of California San Diego, Department of Pediatrics, San Diego, United States
| | - Susanne Gaul
- University of California San Diego, Department of Pediatrics, San Diego, United States
- Leipzig University, Clinic and Polyclinic of Cardiology, Leipzig, Germany
| | - Nika Taghdiri
- University of California San Diego, Department of Bioengineering, San Diego, United States
| | - Avinash Toomu
- University of California San Diego, Department of Bioengineering, San Diego, United States
| | | | - Benedikt Kaufmann
- University of California San Diego, Department of Pediatrics, San Diego, United States
| | - Bettina Papouchado
- Department of Pathology, University of California San Diego, La Jolla, USA
| | - Alexander Wree
- Charité University Medicine, Department of Hepatology and Gastroenterology, Berlin, Germany
| | - Lukas Geisler
- Charité University Medicine, Department of Hepatology and Gastroenterology, Berlin, Germany
| | - Hal M. Hoffman
- University of California San Diego, Department of Pediatrics, San Diego, United States
| | - Ariel E. Feldstein
- University of California San Diego, Department of Pediatrics, San Diego, United States
| | - Kevin R. King
- University of California San Diego, Department of Bioengineering, San Diego, United States
- University of California San Diego, School of Medicine, San Diego, United States
| |
Collapse
|
245
|
Zhu B. Logic of the Temporal Compartmentalization of the Hepatic Metabolic Cycle. Physiology (Bethesda) 2022; 37:0. [PMID: 35658626 PMCID: PMC9394779 DOI: 10.1152/physiol.00003.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/05/2022] [Accepted: 05/28/2022] [Indexed: 12/25/2022] Open
Abstract
The mammalian liver must cope with various metabolic and physiological changes that normally recur every day and result primarily from rest-activity and fasting-feeding cycles. In this article, I present evidence supporting a temporal compartmentalization of rhythmic hepatic metabolic processes into four main clusters: regulation of energy homeostasis, maintenance of information integrity, immune response, and genetic information flow. I further review literatures and discuss how both the circadian and the newly discovered 12-h ultradian clock work together to regulate these four temporally separated processes in mouse liver, which, interestingly, is largely uncoupled from the liver zonation regulation.
Collapse
Affiliation(s)
- Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
246
|
Dynamics of hepatocyte-cholangiocyte cell-fate decisions during liver development and regeneration. iScience 2022; 25:104955. [PMID: 36060070 PMCID: PMC9437857 DOI: 10.1016/j.isci.2022.104955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/17/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
The immense regenerative potential of the liver is attributed to the ability of its two key cell types – hepatocytes and cholangiocytes – to trans-differentiate to one another either directly or through intermediate progenitor states. However, the dynamic features of decision-making between these cell-fates during liver development and regeneration remains elusive. Here, we identify a core gene regulatory network comprising c/EBPα, TGFBR2, and SOX9 which is multistable in nature, enabling three distinct cell states – hepatocytes, cholangiocytes, and liver progenitor cells (hepatoblasts/oval cells) – and stochastic switching among them. Predicted expression signature for these three states are validated through multiple bulk and single-cell transcriptomic datasets collected across developmental stages and injury-induced liver repair. This network can also explain the experimentally observed spatial organization of phenotypes in liver parenchyma and predict strategies for efficient cellular reprogramming. Our analysis elucidates how the emergent dynamics of underlying regulatory networks drive diverse cell-fate decisions in liver development and regeneration. Identified minimal regulatory network to model liver development and regeneration Changes in phenotypic landscapes by in-silico perturbations of regulatory networks Ability to explain physiological spatial patterning of liver cell types Decoded strategies for efficient reprogramming among liver cell phenotypes
Collapse
|
247
|
Young mice administered adult doses of AAV5-hFVIII-SQ achieve therapeutic factor VIII expression into adulthood. MOLECULAR THERAPY - METHODS & CLINICAL DEVELOPMENT 2022; 26:519-531. [PMID: 36092364 PMCID: PMC9440360 DOI: 10.1016/j.omtm.2022.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022]
Abstract
Valoctocogene roxaparvovec (AAV5-hFVIII-SQ) gene transfer provided reduced bleeding for adult clinical trial participants with severe hemophilia A. However, pediatric outcomes are unknown. Using a mouse model of hemophilia A, we investigated the effect of vector dose and age at treatment on transgene production and persistence. We dosed AAV5-hFVIII-SQ to neonatal and adult mice based on body weight or at a fixed dose and assessed human factor VIII-SQ variant (hFVIII-SQ) expression through 16 weeks. AAV5-hFVIII-SQ dosed per body weight in neonatal mice did not result in meaningful plasma hFVIII-SQ protein levels in adulthood. When treated with the same total vector genomes per mouse as adult mice, neonates maintained hFVIII-SQ expression into adulthood, although plasma levels were 3- to 4-fold lower versus mice dosed as adults. Mice <1 week old initially exhibited high hFVIII-SQ plasma levels and maintained meaningful levels into adulthood, despite a partial decline potentially due to age-related body mass and blood volume increases. Spatial transduction patterns differed between mice dosed as neonates versus adults. No features of hepatotoxicity or endoplasmic reticulum stress were observed with dosing at any age. These data suggest that young mice require the same total vector genomes as adult mice to sustain hFVIII-SQ plasma levels.
Collapse
|
248
|
Tarnow G, Matrenec R, Oropeza CE, Maienschein-Cline M, McLachlan A. Distinct phenotypic spectra of hepatocellular carcinoma in liver-specific tumor suppressor-deficient hepatitis B virus transgenic mice. Virology 2022; 574:84-95. [PMID: 35961146 DOI: 10.1016/j.virol.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022]
Abstract
The hepatitis B virus (HBV) transgenic mouse model was used to interrogate the origins of HCC heterogeneity. HBV biosynthesis was used as a marker of liver tumor heterogeneity. Principal component and correlation analysis of HBV and cellular transcript levels demonstrated major differences within and between the gene expression profiles of Apc-deficient, Apc-deficient Pten-deficient, and Pten-deficient HCC. Hence, both oncogenic stimuli and zonal hepatocyte properties determine heterogeneous HCC phenotypes. Additionally, Apc-deficient HCC display decreased expression of Apob, Otc and Tet2 relative to Pten-deficient HCC and control liver tissue suggesting their gene products may represent markers of Apc-deficient HCC. A subset of human HCC with mutations in the β-catenin gene (CTNNB1) displayed a gene expression profile similar to that observed in the mouse Apc-deficient HCC indicating this model of liver cancer may be useful for interrogating the molecular properties of these tumors and their potential therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Grant Tarnow
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, Chicago, IL, 60612, USA
| | - Rachel Matrenec
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, Chicago, IL, 60612, USA
| | - Claudia E Oropeza
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, Chicago, IL, 60612, USA
| | - Mark Maienschein-Cline
- Research Resources Center, College of Medicine, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, IL, 60612, USA
| | - Alan McLachlan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, Chicago, IL, 60612, USA.
| |
Collapse
|
249
|
Lin Y, Dong M, Liu Z, Xu M, Huang Z, Liu H, Gao Y, Zhou W. A strategy of vascular-targeted therapy for liver fibrosis. Hepatology 2022; 76:660-675. [PMID: 34940991 PMCID: PMC9543235 DOI: 10.1002/hep.32299] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS No effective treatments are available for liver fibrosis. Angiogenesis is deeply involved in liver fibrogenesis. However, current controversial results suggest it is difficult to treat liver fibrosis through vascular targeting. There are three different microvessels in liver: portal vessels, liver sinusoids, and central vessels. The changes and roles for each of the three different vessels during liver fibrogenesis are unclear. We propose that they play different roles during liver fibrogenesis, and a single vascular endothelial cell (EC) regulator is not enough to fully regulate these three vessels to treat liver fibrosis. Therefore, a combined regulation of multiple different EC regulatory signaling pathway may provide new strategies for the liver fibrosis therapy. Herein, we present a proof-of-concept strategy by combining the regulation of leukocyte cell-derived chemotaxin 2 (LECT2)/tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 1 signaling with that of vascular endothelial growth factor (VEGF)/recombinant VEGF (rVEGF) signaling. APPROACH AND RESULTS The CCl4 -induced mouse liver fibrosis model and NASH model were both used. During fibrogenesis, vascular changes occurred at very early stage, and different liver vessels showed different changes and played different roles: decreased portal vessels, increased sinusoid capillarization and the increased central vessels the increase of portal vessels alleviates liver fibrosis, the increase of central vessels aggravates liver fibrosis, and the increase of sinusoid capillarization aggravates liver fibrosis. The combinational treatment of adeno-associated viral vector serotype 9 (AAV9)-LECT2-short hairpin RNA (shRNA) and rVEGF showed improved therapeutic effects, but it led to serious side effects. The combination of AAV9-LECT2-shRNA and bevacizumab showed both improved therapeutic effects and decreased side effects. CONCLUSIONS Liver vascular changes occurred at very early stage of fibrogenesis. Different vessels play different roles in liver fibrosis. The combinational treatment of AAV9-LECT2-shRNA and bevacizumab could significantly improve the therapeutic effects on liver fibrosis.
Collapse
Affiliation(s)
- Yuan Lin
- Department of PathologyShunde HospitalSouthern Medical University (The First People’s Hospital of Shunde Foshan)FoshanChina,State Key Laboratory of Organ Failure ResearchDepartment of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Meng‐Qi Dong
- State Key Laboratory of Organ Failure ResearchDepartment of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Zhi‐Min Liu
- State Key Laboratory of Organ Failure ResearchDepartment of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Meng Xu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorNanfang HospitalFirst Clinical Medical CollegeSouthern Medical UniversityGuangzhouChina
| | - Zhi‐Hao Huang
- State Key Laboratory of Organ Failure ResearchDepartment of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Hong‐Juan Liu
- Department of BioinformationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Yi Gao
- General Surgery CenterDepartment of Hepatobiliary Surgery IIGuangdong ProvincialResearch Center for Artificial Organ and Tissue EngineeringGuangzhou Clinical Research and Transformation Center for Artificial LiverInstitute of Regenerative MedicineZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Wei‐Jie Zhou
- Department of PathologyShunde HospitalSouthern Medical University (The First People’s Hospital of Shunde Foshan)FoshanChina,State Key Laboratory of Organ Failure ResearchDepartment of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina,Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorNanfang HospitalFirst Clinical Medical CollegeSouthern Medical UniversityGuangzhouChina,General Surgery CenterDepartment of Hepatobiliary Surgery IIGuangdong ProvincialResearch Center for Artificial Organ and Tissue EngineeringGuangzhou Clinical Research and Transformation Center for Artificial LiverInstitute of Regenerative MedicineZhujiang HospitalSouthern Medical UniversityGuangzhouChina,Microbiome Medicine CenterZhujiang HospitalSouthern Medical UniversityGuangzhouChina,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| |
Collapse
|
250
|
Zhang C, Chen R, Zhang Y. Accurate inference of genome-wide spatial expression with iSpatial. SCIENCE ADVANCES 2022; 8:eabq0990. [PMID: 36026447 PMCID: PMC9417177 DOI: 10.1126/sciadv.abq0990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Spatially resolved transcriptomic analyses can reveal molecular insights underlying tissue structure and context-dependent cell-cell or cell-environment interaction. Because of the current technical limitation, obtaining genome-wide spatial transcriptome at single-cell resolution is challenging. Here, we developed a new algorithm named iSpatial to derive the spatial pattern of the entire transcriptome by integrating spatial transcriptomic and single-cell RNA-seq datasets. Compared to other existing methods, iSpatial has higher accuracy in predicting gene expression and spatial distribution. Furthermore, it reduces false-positive and false-negative signals in the original datasets. By testing iSpatial with multiple spatial transcriptomic datasets, we demonstrate its wide applicability to datasets from different tissues and by different techniques. Thus, we provide a computational approach to reveal spatial organization of the entire transcriptome at single-cell resolution. With numerous high-quality datasets available in the public domain, iSpatial provides a unique way to understand the structure and function of complex tissues and disease processes.
Collapse
Affiliation(s)
- Chao Zhang
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Renchao Chen
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|