201
|
Hu H, Yokobori K, Negishi M. PXR phosphorylated at Ser350 transduces a glucose signal to repress the estrogen sulfotransferase gene in human liver cells and fasting signal in mouse livers. Biochem Pharmacol 2020; 180:114197. [PMID: 32798464 DOI: 10.1016/j.bcp.2020.114197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022]
Abstract
Hepatic estrogen sulfotransferase (SULT1E1), the enzyme that inactivates estrogen, regulates metabolic estrogen homeostasis. Here, we have demonstrated how nuclear receptor PXR regulated the SULT1E1 gene in response to glucose in human hepatoma-derived cells and in response to fasting in mouse livers. The SULT1E1 gene was activated by a nuclear receptor HNF4α-RORα complex binding on an upstream enhancer of the SULT1E1 promoter in cells cultured in high glucose medium (Hu and Negishi, 2020). The SULT1E1 gene was repressed in cells cultured in low glucose medium, in which PXR was phosphorylated at Ser350 by vaccinia virus-related kinase 1. Phosphorylated PXR interacted with this complex, retaining HNF4α on and dissociating RORα from the enhancer as a phosphorylated PXR complex. Therefore, in response to low glucose, phosphorylated PXR transduced a low glucose signal to repress the SULT1E1 gene in cells. Hepatic Sult1e1 mRNA was induced in PXR wild type (WT) male mice in response to fasting, whereas this induction was synergistically increased in phosphorylation-blocking PXR Ser347Ala (Ser350 in human) KI males over that observed in PXR WT males. As phosphorylated PXR repressed the Sult1e1 gene, it increased its binding to the Sult1e1 promoter in WT males. The absence of phosphorylated PXR resulted in the synergistic activation of the Sult1e1 gene in PXR KI males. Apparently, phosphorylated PXR functioned as a transcriptional repressor to the SULT1E1/Sult1e1 gene in human liver cells and mouse livers.
Collapse
Affiliation(s)
- Hao Hu
- Pharmacogenetics, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - Kosuke Yokobori
- Pharmacogenetics, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - Masahiko Negishi
- Pharmacogenetics, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
202
|
Perino A, Demagny H, Velazquez-Villegas L, Schoonjans K. Molecular Physiology of Bile Acid Signaling in Health, Disease, and Aging. Physiol Rev 2020; 101:683-731. [PMID: 32790577 DOI: 10.1152/physrev.00049.2019] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the past two decades, bile acids (BAs) have become established as important signaling molecules that enable fine-tuned inter-tissue communication from the liver, their site of production, over the intestine, where they are modified by the gut microbiota, to virtually any organ, where they exert their pleiotropic physiological effects. The chemical variety of BAs, to a large extent determined by the gut microbiome, also allows for a complex fine-tuning of adaptive responses in our body. This review provides an overview of the mechanisms by which BA receptors coordinate several aspects of physiology and highlights new therapeutic strategies for diseases underlying pathological BA signaling.
Collapse
Affiliation(s)
- Alessia Perino
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Hadrien Demagny
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Laura Velazquez-Villegas
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Kristina Schoonjans
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| |
Collapse
|
203
|
Wei S, Ma X, Zhao Y. Mechanism of Hydrophobic Bile Acid-Induced Hepatocyte Injury and Drug Discovery. Front Pharmacol 2020; 11:1084. [PMID: 32765278 PMCID: PMC7378542 DOI: 10.3389/fphar.2020.01084] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
Cholestatic liver disease is caused by the obstruction of bile synthesis, transport, and excretion in or outside the liver by a variety of reasons. Long-term persistent cholestasis in the liver can trigger inflammation, necrosis, or apoptosis of hepatocytes. Bile acid nuclear receptors have received the most attention for the treatment of cholestasis, while the drug development for bile acid nuclear receptors has made considerable progress. However, the targets regulated by bile acid receptor drugs are limited. Thus, as anticipated, intervention in the expression of bile acid nuclear receptors alone will not yield satisfactory clinical results. Therefore, this review comprehensively summarized the literature related to cholestasis, analyzed the molecular mechanism that bile acid damages cells, and status of drug development. It is hoped that this review will provide some reference for the research and development of drugs for cholestasis treatment in the future.
Collapse
Affiliation(s)
- Shizhang Wei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Xiao Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, PLA General Hospital, Beijing, China
| |
Collapse
|
204
|
Fiorucci S, Baldoni M, Ricci P, Zampella A, Distrutti E, Biagioli M. Bile acid-activated receptors and the regulation of macrophages function in metabolic disorders. Curr Opin Pharmacol 2020; 53:45-54. [DOI: 10.1016/j.coph.2020.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
|
205
|
Han LW, Wang L, Shi Y, Dempsey JL, Pershutkina OV, Dutta M, Bammler TK, Cui JY, Mao Q. Impact of Microbiome on Hepatic Metabolizing Enzymes and Transporters in Mice during Pregnancy. Drug Metab Dispos 2020; 48:708-722. [PMID: 32499338 PMCID: PMC7434050 DOI: 10.1124/dmd.120.000039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022] Open
Abstract
The microbiome and pregnancy are known to alter drug disposition, yet the interplay of the two physiologic factors on the expression and/or activity of drug metabolizing enzymes and transporters (DMETs) is unknown. This study investigated the effects of microbiome on host hepatic DMETs in mice during pregnancy by comparing four groups of conventional (CV) and germ-free (GF) female mice and pregnancy status, namely, CV nonpregnant, GF non-pregnant, CV pregnant, and GF pregnant mice. Transcriptomic and targeted proteomics of hepatic DMETs were profiled by using multiomics. Plasma bile acid and steroid hormone levels were quantified by liquid chromatography tandem mass spectrometry. CYP3A activities were measured by mouse liver microsome incubations. The trend of pregnancy-induced changes in the expression or activity of hepatic DMETs in CV and GF mice was similar; however, the magnitude of change was noticeably different. For certain DMETs, pregnancy status had paradoxical effects on mRNA and protein expression in both CV and GF mice. For instance, the mRNA levels of Cyp3a11, the murine homolog of human CYP3A4, were decreased by 1.7-fold and 3.3-fold by pregnancy in CV and GF mice, respectively; however, the protein levels of CYP3A11 were increased similarly ∼twofold by pregnancy in both CV and GF mice. Microsome incubations revealed a marked induction of CYP3A activity by pregnancy that was 10-fold greater in CV mice than that in GF mice. This is the first study to show that the microbiome can alter the expression and/or activity of hepatic DMETs in pregnancy. SIGNIFICANCE STATEMENT: We demonstrated for the first time that microbiome and pregnancy can interplay to alter the expression and/or activity of hepatic drug metabolizing enzymes and transporters. Though the trend of pregnancy-induced changes in the expression or activity of hepatic drug metabolizing enzymes and transporters in conventional and germ-free mice was similar, the magnitude of change was noticeably different.
Collapse
Affiliation(s)
- Lyrialle W Han
- Departments of Pharmaceutics (L.W.H., Q.M.) and Medicinal Chemistry (Y.S.), School of Pharmacy, Departments of Environmental and Occupational Health Sciences, School of Public Health (L.W., J.L.D., M.D., T.K.B., J.Y.C.), and Department of Comparative Medicine, School of Medicine (O.V.P.), University of Washington, Seattle, Washington
| | - Lu Wang
- Departments of Pharmaceutics (L.W.H., Q.M.) and Medicinal Chemistry (Y.S.), School of Pharmacy, Departments of Environmental and Occupational Health Sciences, School of Public Health (L.W., J.L.D., M.D., T.K.B., J.Y.C.), and Department of Comparative Medicine, School of Medicine (O.V.P.), University of Washington, Seattle, Washington
| | - Yuanyuan Shi
- Departments of Pharmaceutics (L.W.H., Q.M.) and Medicinal Chemistry (Y.S.), School of Pharmacy, Departments of Environmental and Occupational Health Sciences, School of Public Health (L.W., J.L.D., M.D., T.K.B., J.Y.C.), and Department of Comparative Medicine, School of Medicine (O.V.P.), University of Washington, Seattle, Washington
| | - Joseph L Dempsey
- Departments of Pharmaceutics (L.W.H., Q.M.) and Medicinal Chemistry (Y.S.), School of Pharmacy, Departments of Environmental and Occupational Health Sciences, School of Public Health (L.W., J.L.D., M.D., T.K.B., J.Y.C.), and Department of Comparative Medicine, School of Medicine (O.V.P.), University of Washington, Seattle, Washington
| | - Olesya V Pershutkina
- Departments of Pharmaceutics (L.W.H., Q.M.) and Medicinal Chemistry (Y.S.), School of Pharmacy, Departments of Environmental and Occupational Health Sciences, School of Public Health (L.W., J.L.D., M.D., T.K.B., J.Y.C.), and Department of Comparative Medicine, School of Medicine (O.V.P.), University of Washington, Seattle, Washington
| | - Moumita Dutta
- Departments of Pharmaceutics (L.W.H., Q.M.) and Medicinal Chemistry (Y.S.), School of Pharmacy, Departments of Environmental and Occupational Health Sciences, School of Public Health (L.W., J.L.D., M.D., T.K.B., J.Y.C.), and Department of Comparative Medicine, School of Medicine (O.V.P.), University of Washington, Seattle, Washington
| | - Theo K Bammler
- Departments of Pharmaceutics (L.W.H., Q.M.) and Medicinal Chemistry (Y.S.), School of Pharmacy, Departments of Environmental and Occupational Health Sciences, School of Public Health (L.W., J.L.D., M.D., T.K.B., J.Y.C.), and Department of Comparative Medicine, School of Medicine (O.V.P.), University of Washington, Seattle, Washington
| | - Julia Y Cui
- Departments of Pharmaceutics (L.W.H., Q.M.) and Medicinal Chemistry (Y.S.), School of Pharmacy, Departments of Environmental and Occupational Health Sciences, School of Public Health (L.W., J.L.D., M.D., T.K.B., J.Y.C.), and Department of Comparative Medicine, School of Medicine (O.V.P.), University of Washington, Seattle, Washington
| | - Qingcheng Mao
- Departments of Pharmaceutics (L.W.H., Q.M.) and Medicinal Chemistry (Y.S.), School of Pharmacy, Departments of Environmental and Occupational Health Sciences, School of Public Health (L.W., J.L.D., M.D., T.K.B., J.Y.C.), and Department of Comparative Medicine, School of Medicine (O.V.P.), University of Washington, Seattle, Washington
| |
Collapse
|
206
|
Wagle SR, Kovacevic B, Walker D, Ionescu CM, Jones M, Stojanovic G, Kojic S, Mooranian A, Al-Salami H. Pharmacological and Advanced Cell Respiration Effects, Enhanced by Toxic Human-Bile Nano-Pharmaceuticals of Probucol Cell-Targeting Formulations. Pharmaceutics 2020; 12:pharmaceutics12080708. [PMID: 32751051 PMCID: PMC7463437 DOI: 10.3390/pharmaceutics12080708] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/18/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
Bile acids have recently been studied for potential applications as formulation excipients and enhancers for drug release; however, some bile acids are not suitable for this application. Unconjugated lithocholic acid (ULCA) has recently shown drug formulation-stabilizing and anti-inflammatory effects. Lipophilic drugs have poor gut absorption after an oral dose, which necessitates the administration of high doses and causes subsequent side effects. Probucol (PB) is a highly lipophilic drug with poor oral absorption that resulted in restrictions on its clinical prescribing. Hence, this study aimed to design new delivery systems for PB using ULCA-based matrices and to test drug formulation, release, temperature, and biological effects. ULCA-based matrices were formulated for PB oral delivery by applying the jet-flow microencapsulation technique using sodium alginate as a polymer. ULCA addition to new PB matrices improved the microcapsule’s stability, drug release in vitro (formulation study), and showed a promising effect in ex vivo study (p < 0.05), suggesting that ULCA can optimize the oral delivery of PB and support its potential application in diabetes treatment.
Collapse
Affiliation(s)
- Susbin Raj Wagle
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6102, Australia; (S.R.W.); (B.K.); (D.W.); (C.M.I.); (M.J.); (A.M.)
| | - Bozica Kovacevic
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6102, Australia; (S.R.W.); (B.K.); (D.W.); (C.M.I.); (M.J.); (A.M.)
| | - Daniel Walker
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6102, Australia; (S.R.W.); (B.K.); (D.W.); (C.M.I.); (M.J.); (A.M.)
| | - Corina Mihaela Ionescu
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6102, Australia; (S.R.W.); (B.K.); (D.W.); (C.M.I.); (M.J.); (A.M.)
| | - Melissa Jones
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6102, Australia; (S.R.W.); (B.K.); (D.W.); (C.M.I.); (M.J.); (A.M.)
| | - Goran Stojanovic
- Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia; (G.S.); (S.K.)
| | - Sanja Kojic
- Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia; (G.S.); (S.K.)
| | - Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6102, Australia; (S.R.W.); (B.K.); (D.W.); (C.M.I.); (M.J.); (A.M.)
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6102, Australia; (S.R.W.); (B.K.); (D.W.); (C.M.I.); (M.J.); (A.M.)
- Correspondence: ; Tel.: +61-8-9266-9816; Fax: +61-8-9266-2769
| |
Collapse
|
207
|
Yao H, Gu J, Shan Y, Wang Y, Chen X, Sun D, Guo Y. Type 2 diabetes mellitus decreases systemic exposure of clopidogrel active metabolite through upregulation of P-glycoprotein in rats. Biochem Pharmacol 2020; 180:114142. [PMID: 32653591 DOI: 10.1016/j.bcp.2020.114142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022]
Abstract
Patients with diabetic mellitus tend to have a poor response to clopidogrel (Clop) due to reduced generation of active metabolite (Clop-AM). However, the underlying mechanism is not elucidated. A type 2 diabetic mellitus (T2DM) rat model was established by combining high-fat diet feeding and low-dose streptozotocin (STZ) injection. The reduced Clop-AM exposure was observed in T2DM rats after oral administration of Clop. However, in vitro liver microsomes incubated with Clop exhibited increased Clop-AM levels in T2DM rats due to a significant decrease in carboxylesterase (CES)1 expression and activity and a significant increase in the expression or activity of CYP1A2 and CYP3A. Interestingly, different from oral administration, the significantly increased Cmax of Clop-AM was observed in T2DM rats after intravenous injection, with no difference in AUC0-t and t1/2 values between the two strains. Meanwhile, in situ single -pass intestinal perfusion study showed lower absorption rate constant (Ka) and effective apparent permeability values (Peff) of Clop in T2DM rats than in control rats. It is explained by the increased expression or function of P-glycoprotein (P-gp) and pregnane X receptor (PXR) in duodenum and jejunum of T2DM rats. Moreover, the decreased Clop-AM level in T2DM rats was eliminated by the pretreatment of cyclosporin A, a P-gp inhibitor. It suggests that intestinal absorption, not hepatic metabolism is responsible for the reduced Clop-AM exposure in T2DM rats. P-gp might be the key factor causing the reduction of Clop absorption, consequently making less Clop available for Clop-AM formation.
Collapse
Affiliation(s)
- Hongwei Yao
- School of Life Sciences, Jilin University, Changchun, China
| | - Jingkai Gu
- Research Center for Drug Metabolism, School of Life Science, Jilin University, Changchun, China
| | - Yuqin Shan
- Research Center for Drug Metabolism, School of Life Science, Jilin University, Changchun, China
| | - Yani Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Xue Chen
- School of Life Sciences, Jilin University, Changchun, China
| | - Dong Sun
- Research Center for Drug Metabolism, School of Life Science, Jilin University, Changchun, China; Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Yingjie Guo
- School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
208
|
Tian Y, Gui W, Koo I, Smith PB, Allman EL, Nichols RG, Rimal B, Cai J, Liu Q, Patterson AD. The microbiome modulating activity of bile acids. Gut Microbes 2020; 11:979-996. [PMID: 32138583 PMCID: PMC7524280 DOI: 10.1080/19490976.2020.1732268] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bile acids are potent antibacterial compounds and play an important role in shaping the microbial ecology of the gut. Here, we combined flow cytometry, growth rate measurements (OD600), and NMR- and mass spectrometry-based metabolomics to systematically profile the impact of bile acids on the microbiome using in vitro and in vivo models. This study confirmed that (1) unconjugated bile acids possess more potent antibacterial activity than conjugated bile acids; (2) Gram-positive bacteria are more sensitive to bile acids than Gram-negative bacteria; (3) some probiotic bacteria such as Lactobacillus and Bifidobacterium and 7α-dehydroxylating bacteria such as Clostridium scindens show bile acid resistance that is associated with activation of glycolysis. Moreover, we demonstrated that (4) as one of most hydrophobic bile acids, lithocholic acid (LCA) shows reduced toxicity to bacteria in the cecal microbiome in both in vivo and in vitro models; (5) bile acids directly and rapidly affect bacterial global metabolism including membrane damage, disrupted amino acid, nucleotide, and carbohydrate metabolism; and (6) in vivo, short-term exposure to bile acids significantly affected host metabolism via alterations of the bacterial community structure. This study systematically profiled interactions between bile acids and gut bacteria providing validation of previous observation and new insights into the interaction of bile acids with the microbiome and mechanisms related to bile acid tolerance.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA,CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, P. R. China
| | - Wei Gui
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Philip B. Smith
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Erik L. Allman
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Robert G. Nichols
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Qing Liu
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA,CONTACT Andrew D. Patterson 322 Life Science Bldg, University Park16802
| |
Collapse
|
209
|
Zeng C, Tan H. Gut Microbiota and Heart, Vascular Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1238:107-141. [PMID: 32323183 DOI: 10.1007/978-981-15-2385-4_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gut microbiota plays an important role in maintaining human health. Accumulating evidence has indicated an intimate relationship between gut microbiota and cardiovascular diseases (CVD) which has become the leading cause of death worldwide. The alteration of gut microbial composition (gut dysbiosis) has been proven to contribute to atherosclerosis, the basic pathological process of CVD. In addition, the metabolites of gut microbiota have been found to be closely related to the development of CVD. For example, short-chain fatty acids are widely acclaimed beneficial effect against CVD, whereas trimethylamine-N-oxide is considered as a contributing factor in the development of CVD. In this chapter, we mainly discuss the gut microbial metabolite-involved mechanisms of CVD focusing on atherosclerosis, hypertension, diabetes, obesity, and heart failure. Targeting gut microbiota and related metabolites are novel and promising strategies for the treatment of CVD.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hongmei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
210
|
Kumari A, Pal Pathak D, Asthana S. Bile acids mediated potential functional interaction between FXR and FATP5 in the regulation of Lipid Metabolism. Int J Biol Sci 2020; 16:2308-2322. [PMID: 32760200 PMCID: PMC7378638 DOI: 10.7150/ijbs.44774] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023] Open
Abstract
Perturbation in lipid homeostasis is one of the major bottlenecks in metabolic diseases, especially Non-alcoholic Fatty Liver Disease (NAFLD), which has emerged as a leading global cause of chronic liver disease. The bile acids (BAs) and their derivatives exert a variety of metabolic effects through complex and intertwined pathways, thus becoming the attractive target for metabolic syndrome treatment. To modulate the lipid homeostasis, the role of BAs, turn out to be paramount as it is essential for the absorption, transport of dietary lipids, regulation of metabolic enzymes and transporters that are essential for lipid modulation, flux, and excretion. The synthesis and transport of BAs (conjugated and unconjugated) is chiefly controlled by nuclear receptors and the uptake of long-chain fatty acids (LCFA) and BA conjugation via transporters. Among them, from in-vivo studies, farnesoid X receptor (FXR) and liver-specific fatty acid transport protein 5 (FATP5) have shown convincing evidence for their key roles in lipid homeostasis and reversal of fatty liver disease substantially. BAs have a wider range of biological effects as they are identified as modulators for FXR and FATP5 both and therefore hold a significant promise for altering the lipid content in the treatment of a metabolic disorder. BAs also have received noteworthy interest in drug delivery research due to its peculiar physicochemical properties and biocompatibility. Here, we are highlighting the connecting possibility of BAs as an agonist for FXR and antagonist for FATP5, paving an avenue to target them for designing synthetic small molecules for lipid homeostasis.
Collapse
Affiliation(s)
- Anita Kumari
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.,Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Dharam Pal Pathak
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), New Delhi, India.,Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| |
Collapse
|
211
|
Guo K, Ge J, Zhang C, Lv MW, Zhang Q, Talukder M, Li JL. `Cadmium induced cardiac inflammation in chicken (Gallus gallus) via modulating cytochrome P450 systems and Nrf2 mediated antioxidant defense. CHEMOSPHERE 2020; 249:125858. [PMID: 32062552 DOI: 10.1016/j.chemosphere.2020.125858] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) has been implicated in the pathogenesis of inflammation, myocardial infarction, angiocardiopathy, even cancers. However, it is unknown that Cd-induced cardiac toxicity through Nrf2-mediate antioxidant defense and Cytochrome P450 (CYP450) system. To ascertain the chemoprevention of Cd-induced cardiac toxicity, total 60 newborn chicks were fed with different doses of Cd (0 mg/kg, 35 mg/kg and 70 mg/kg) for a period of 90 days feed administration. Results indicated Cd exposure caused cardiac histopathology changed and functions abnormal, induced NOS activities raised and cardiac inflammation, triggering inflammation factors (IL-6, IL-8, TNF-α, and NF-κb) upregulation and inhabitation of IL-10. Cd caused increase of total CYP450 and Cytochrome b5 (Cyt b5) contents, while erythromycin N-demethylase (ERND), aminopyrin N-demethylase (APND), aniline-4-hydeoxylase (AH) and NADPH-cytochrome c reductase (NCR) indicated opposite situations with different degrees of reduction in microsomes. The mRNA level of most CYP450s isoforms (CYP1A1, CYP1A2, CYP1A5, CYP1B1, CYP2C18, CYP2C45, CYP3A4, CYP3A7 and CYP3A9) were significantly increase but CYP2D6 expression level changed not obvious. Furthermore, Cd treatment caused increased the peroxidation product (MDA) and H2O2 over accumulation, the decreased of T-AOC accompanied by decreased activity of antioxidant enzymes (T-SOD, GST and GPX). Over accumulation of Cd lead to oxidative stress and activated Nrf2 signal pathway through upregulating pivotal target genes (HO-1, NQO1, GCLC, GCLM and SOD). These findings suggested Cd exposure caused cardiotoxicity through CYP450s enzymes homeostasis disturbance and Nrf2-mediated oxidative stress signal pathways defense. These results may provide new evidence on molecular mechanism of Cd-induced cardiac toxicity.
Collapse
Affiliation(s)
- Kai Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Chifeng Animal Health Supervision Institute, Chifeng County, 024000, PR China.
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Qi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
212
|
Cui W, Shen X, Agbas E, Tompkins B, Cameron-Carter H, Staudinger JL. Phosphorylation Modulates the Coregulatory Protein Exchange of the Nuclear Receptor Pregnane X Receptor. J Pharmacol Exp Ther 2020; 373:370-380. [PMID: 32205367 PMCID: PMC7228503 DOI: 10.1124/jpet.119.264762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/10/2020] [Indexed: 01/09/2023] Open
Abstract
The pregnane X receptor (PXR), or nuclear receptor (NR) 1I2, is a ligand-activated NR superfamily member that is enriched in liver and intestine in mammals. Activation of PXR regulates the expression of genes encoding key proteins involved in drug metabolism, drug efflux, and drug transport. Recent mechanistic investigations reveal that post-translational modifications (PTMs), such as phosphorylation, play a critical role in modulating the bimodal function of PXR-mediated transrepression and transactivation of target gene transcription. Upon ligand binding, PXR undergoes a conformational change that promotes dissociation of histone deacetylase-containing multiprotein corepressor protein complexes while simultaneously favoring recruitment histone acetyl transferase-containing complexes. Here we describe a novel adenoviral vector used to deliver and recover recombinant human PXR protein from primary cultures of hepatocytes. Using liquid chromatography and tandem mass spectrometry we report here that PXR is phosphorylated at amino acid residues threonine 135 (T135) and serine 221 (S221). Biochemical analysis reveals that these two residues play an important regulatory role in the cycling of corepressor and coactivator multiprotein complexes. These data further our foundational knowledge regarding the specific role of PTMs, namely phosphorylation, in regulating the biology of PXR. Future efforts are focused on using the novel tools described here to identify additional PTMs and protein partners of PXR in primary cultures of hepatocytes, an important experimental model system. SIGNIFICANCE STATEMENT: Pregnane X receptor (PXR), or nuclear receptor 1I2, is a key master regulator of drug-inducible CYP gene expression in liver and intestine in mammals. The novel biochemical tools described in this study demonstrate for the first time that in cultures of primary hepatocytes, human PXR is phosphorylated at amino acid residues threonine 135 (T135) and serine 221 (S221). Moreover, phosphorylation of PXR promotes the transrepression of its prototypical target gene CYP3A4 through modulating its interactions with coregulatory proteins.
Collapse
Affiliation(s)
- Wenqi Cui
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Xunan Shen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Emre Agbas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Brandon Tompkins
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Hadley Cameron-Carter
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Jeff L Staudinger
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| |
Collapse
|
213
|
Kriegermeier A, Green R. Pediatric Cholestatic Liver Disease: Review of Bile Acid Metabolism and Discussion of Current and Emerging Therapies. Front Med (Lausanne) 2020; 7:149. [PMID: 32432119 PMCID: PMC7214672 DOI: 10.3389/fmed.2020.00149] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/06/2020] [Indexed: 02/06/2023] Open
Abstract
Cholestatic liver diseases are a significant cause of morbidity and mortality and the leading indication for pediatric liver transplant. These include diseases such as biliary atresia, Alagille syndrome, progressive intrahepatic cholestasis entities, ductal plate abnormalities including Caroli syndrome and congenital hepatic fibrosis, primary sclerosing cholangitis, bile acid synthesis defects, and certain metabolic disease. Medical management of these patients typically includes supportive care for complications of chronic cholestasis including malnutrition, pruritus, and portal hypertension. However, there are limited effective interventions to prevent progressive liver damage in these diseases, leaving clinicians to ultimately rely on liver transplantation in many cases. Agents such as ursodeoxycholic acid, bile acid sequestrants, and rifampicin have been mainstays of treatment for years with the understanding that they may decrease or alter the composition of the bile acid pool, though clinical response to these medications is frequently insufficient and their effects on disease progression remain limited. Recently, animal and human studies have identified potential new therapeutic targets which may disrupt the enterohepatic circulation of bile acids, alter the expression of bile acid transporters or decrease the production of bile acids. In this article, we will review bile formation, bile acid signaling, and the relevance for current and newer therapies for pediatric cholestasis. We will also highlight further areas of potential targets for medical intervention for pediatric cholestatic liver diseases.
Collapse
Affiliation(s)
- Alyssa Kriegermeier
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL, United States
| | - Richard Green
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
214
|
Yuan X, Lu H, Zhao A, Ding Y, Min Q, Wang R. Transcriptional regulation of CYP3A4 by nuclear receptors in human hepatocytes under hypoxia. Drug Metab Rev 2020; 52:225-234. [PMID: 32270716 DOI: 10.1080/03602532.2020.1733004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 02/17/2020] [Indexed: 02/08/2023]
Abstract
The human hepatic cytochrome P-450 3A4 (CYP3A4), recognized as a multifunctional enzyme, has a wide range of substrates including commonly used drugs. Previous investigations demonstrated that the expression of CYP3A4 in human hepatocytes could be regulated by some nuclear receptors (NRs) at transcriptional level under diverse situations. The significance of oxygen on CYP3A4-mediated metabolism seems notable while the regulatory mode of CYP3A4 in the particular case still remains elusive. Recently, striking evidence has emerged that both CYP3A4 and its regulator NR could be inhibited by exposure to hypoxia. Therefore, it is of great importance to elucidate whether and how these NRs act in the transcriptional regulation of CYP3A4 in human hepatocytes under hypoxic conditions. In this review, we mainly summarized transcriptional regulation of the pivotal enzyme CYP3A4 by NRs and explored the possible regulatory pathways of CYP3A4 via these major NRs under hypoxia, expecting to provide favorable evidence for further clinical guidance under such pathological situations.
Collapse
Affiliation(s)
- Xuechun Yuan
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hui Lu
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Anpeng Zhao
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Yidan Ding
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qiong Min
- Pharmacy department, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Rong Wang
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
- College of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
215
|
Differential activation of human pregnane X receptor PXR by isomeric mono-methylated indoles in intestinal and hepatic in vitro models. Toxicol Lett 2020; 324:104-110. [DOI: 10.1016/j.toxlet.2020.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/27/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
|
216
|
Dvořák Z, Kopp F, Costello CM, Kemp JS, Li H, Vrzalová A, Štěpánková M, Bartoňková I, Jiskrová E, Poulíková K, Vyhlídalová B, Nordstroem LU, Karunaratne CV, Ranhotra HS, Mun KS, Naren AP, Murray IA, Perdew GH, Brtko J, Toporova L, Schön A, Wallace BD, Walton WG, Redinbo MR, Sun K, Beck A, Kortagere S, Neary MC, Chandran A, Vishveshwara S, Cavalluzzi MM, Lentini G, Cui JY, Gu H, March JC, Chatterjee S, Matson A, Wright D, Flannigan KL, Hirota SA, Sartor RB, Mani S. Targeting the pregnane X receptor using microbial metabolite mimicry. EMBO Mol Med 2020; 12:e11621. [PMID: 32153125 PMCID: PMC7136958 DOI: 10.15252/emmm.201911621] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/18/2022] Open
Abstract
The human PXR (pregnane X receptor), a master regulator of drug metabolism, has essential roles in intestinal homeostasis and abrogating inflammation. Existing PXR ligands have substantial off-target toxicity. Based on prior work that established microbial (indole) metabolites as PXR ligands, we proposed microbial metabolite mimicry as a novel strategy for drug discovery that allows exploiting previously unexplored parts of chemical space. Here, we report functionalized indole derivatives as first-in-class non-cytotoxic PXR agonists as a proof of concept for microbial metabolite mimicry. The lead compound, FKK6 (Felix Kopp Kortagere 6), binds directly to PXR protein in solution, induces PXR-specific target gene expression in cells, human organoids, and mice. FKK6 significantly represses pro-inflammatory cytokine production cells and abrogates inflammation in mice expressing the human PXR gene. The development of FKK6 demonstrates for the first time that microbial metabolite mimicry is a viable strategy for drug discovery and opens the door to underexploited regions of chemical space.
Collapse
|
217
|
Li DS, Huang QF, Guan LH, Zhang HZ, Li X, Fu KL, Chen YX, Wan JB, Huang M, Bi HC. Targeted bile acids and gut microbiome profiles reveal the hepato-protective effect of WZ tablet (Schisandra sphenanthera extract) against LCA-induced cholestasis. Chin J Nat Med 2020; 18:211-218. [PMID: 32245591 DOI: 10.1016/s1875-5364(20)30023-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 02/09/2023]
Abstract
Cholestasis is caused by the obstacle of bile formation or secretion and can develop into severe liver diseases. We previously reported the ethanol extract of Schisandra sphenanthera (Wuzhi tablet, WZ) can significantly protect against lithocholic acid (LCA)-induced intrahepatic cholestasis in mice, partially due to the activation of PXR pathway and promotion of liver regeneration. However, the effect of WZ on the bile acids profile and gut microbiome in cholestastic mice remain unknown. In this study, the effect of WZ against LCA-induced liver injury was evaluated and its effect on the bile acids metabolome and gut microbiome profiles in cholestastic mice was further investigated. Targeted metabolomics analysis was performed to examine the change of bile acids in the serum, liver, intestine and feces. The change of intestinal flora were detected by the genomics method. Targeted metabolomics analysis revealed that WZ enhanced the excretion of bile acids from serum and liver to intestine and feces. Genomics analysis of gut microbiome showed that WZ can reverse LCA-induced gut microbiome disorder to the normal level. In conclusion, WZ protects against LCA-induced cholestastic liver injury by reversing abnormal bile acids profiles and alteration of gut microbiome.
Collapse
Affiliation(s)
- Dong-Shun Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510000, China
| | - Quan-Fei Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510000, China
| | - Li-Huan Guan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510000, China
| | - Hui-Zhen Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510000, China
| | - Xi Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510000, China
| | - Kai-Li Fu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510000, China
| | - Yi-Xin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510000, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510000, China
| | - Hui-Chang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510000, China.
| |
Collapse
|
218
|
Effects of ursodeoxycholic acid on rilpivirine plasma trough concentrations: a case report. Eur J Clin Pharmacol 2020; 76:605-606. [DOI: 10.1007/s00228-019-02825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/22/2019] [Indexed: 10/25/2022]
|
219
|
Li T, Chiang JYL. Bile acid-based therapies for non-alcoholic steatohepatitis and alcoholic liver disease. Hepatobiliary Surg Nutr 2020; 9:152-169. [PMID: 32355674 PMCID: PMC7188552 DOI: 10.21037/hbsn.2019.09.03] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
Bile acids are synthesized from cholesterol only in hepatocytes. Bile acids circulating in the enterohepatic system act as physiological detergent molecules to help solubilize biliary cholesterol and emulsify dietary lipids and fat-soluble vitamins in small intestine. Bile acids are signaling molecules that activate nuclear receptor farnesoid X receptor (FXR) and cell surface G protein-coupled receptor TGR5. FXR critically regulates bile acid homeostasis by mediating bile acid feedback inhibition of hepatic bile acid synthesis. In addition, bile acid-activated cellular signaling pathways regulate metabolic homeostasis, immunity, and cell proliferation in various metabolically active organs. In the small and large intestine, gut bacterial enzymes modify primary bile acids to generate secondary bile acids to help shape the bile acid pool composition and subsequent biological effects. In turn, bile acids exhibit anti-microbial properties and modulate gut microbiota to influence host metabolism and immunity. Currently, bile acid-based therapies including systemic and intestine-restricted FXR agonists, TGR5 agonists, fibroblast growth factor 19 analogue, intestine FXR antagonists, and intestine apical sodium-bile acid transporter (ASBT) inhibitors have been developed as promising treatments for non-alcoholic steatohepatitis (NASH). These pharmacological agents improved metabolic and inflammatory disorders via distinct mechanisms of action that are subjects of extensive research interest. More recently, human and experimental alcoholic liver disease (ALD) has been associated with disrupted bile acid homeostasis. In additional, new findings showed that targeting bile acid metabolism and signaling may be promising therapeutic approaches for treating ALD.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - John Y. L. Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
220
|
Jena PK, Sheng L, Li Y, Wan YJY. Probiotics VSL#3 are effective in reversing non-alcoholic steatohepatitis in a mouse model. Hepatobiliary Surg Nutr 2020; 9:170-182. [PMID: 32355675 DOI: 10.21037/hbsn.2019.09.07] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Probiotic VSL#3 is used to treat ulcerative colitis. This study examines the effect of VSL#3 in non-alcoholic steatohepatitis (NASH) that has liver carcinogenic potential. Methods Western diet (WD)-fed wild-type (WT) mice that do not have hepatic inflammation with lymphocyte infiltration and carcinogenic potential were used for baseline comparison. Age-, sex-, and diet-matched bile acid (BA) receptor farnesoid X receptor (FXR) knockout (KO) mice, which developed severe NASH and had the potential for liver cancer development, were supplemented with and without VSL#3 for 7 months. All the mice were euthanized when they were 10 months old. Results Supplementation with VSL#3 completely abolished hepatic lymphocyte infiltration, reduced hepatic fat content, and improved insulin sensitivity in WD-fed FXR KO mice. In addition, VSL#3 normalized dysregulated BA homoeostasis by inhibiting the classical BA synthesis pathway, inducing the alternative BA pathway, and activating ileal G-protein coupled BA receptor 1 (GPBAR1)-regulated signaling. Moreover, VSL#3 reconstructed the gut microbiota by reducing Bacteroidaceae, Porphyromonadaceae, and Helicobacteraceae as well as increasing Lachnospiraceae. Further, VSL#3 enriched the abundance of Ruminococcus and Faecalibacterium, which generate butyrate, at the genus level. It also increased the copy number of the butyrate-producing genes bcoA and buk, suggesting their anti-inflammatory and metabolic effects. Conclusions VSL#3 is useful in reversing NASH that occurred due to dysregulated BA synthesis and dysbiosis, suggesting its potential in liver cancer prevention.
Collapse
Affiliation(s)
- Prasant Kumar Jena
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Lili Sheng
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Yongchun Li
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA.,Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.,Department of Infectious Diseases, Nanhai Hospital, Southern Medical University, Foshan 528200, China
| | - Yui-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
221
|
Geng W, Long SL, Chang YJ, Saxton AM, Joyce SA, Lin J. Evaluation of bile salt hydrolase inhibitor efficacy for modulating host bile profile and physiology using a chicken model system. Sci Rep 2020; 10:4941. [PMID: 32188876 PMCID: PMC7080769 DOI: 10.1038/s41598-020-61723-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 02/27/2020] [Indexed: 11/24/2022] Open
Abstract
Gut microbial enzymes, bile salt hydrolases (BSHs) are the gateway enzymes for bile acid (BA) modification in the gut. This activity is a promising target for developing innovative non-antibiotic growth promoters to enhance animal production and health. Compelling evidence has shown that inhibition of BSH activity should enhance weight gain by altering the BA pool, host signalling and lipid metabolism. We recently identified a panel of promising BSH inhibitors. Here, we address the potential of them as alternative, effective, non-antibiotic feed additives, for commercial application, to promote animal growth using a chicken model. In this study, the in vivo efficacy of three BSH inhibitors (caffeic acid phenethylester, riboflavin, carnosic acid) were evaluated. 7-day old chicks (10 birds/group) were either untreated or they received one of the specific BSH inhibitors (25 mg/kg body weight) via oral gavage for 17 days. The chicks in treatment groups consistently displayed higher body weight gain than the untreated chicks. Metabolomic analysis demonstrated that BSH inhibitor treatment led to significant changes in both circulating and intestinal BA signatures in support of blunted intestinal BSH activity. Consistent with this finding, liver and intestinal tissue RNA-Seq analysis showed that carnosic acid treatment significantly altered expression of genes involved in lipid and bile acid metabolism. Taken together, this study validates microbial BSH activity inhibition as an alternative target and strategy to antibiotic treatment for animal growth promotion.
Collapse
Affiliation(s)
- Wenjing Geng
- Department of Animal Science, The University of Tennessee, 2506, River Drive, Knoxville, USA
| | - Sarah L Long
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Yun-Juan Chang
- Department of High Performance Computing and Research, University of Rutgers, Newark, USA
| | - Arnold M Saxton
- Department of Animal Science, The University of Tennessee, 2506, River Drive, Knoxville, USA
| | - Susan A Joyce
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, 2506, River Drive, Knoxville, USA.
| |
Collapse
|
222
|
Impaired bile acid metabolism with defectives of mitochondrial-tRNA taurine modification and bile acid taurine conjugation in the taurine depleted cats. Sci Rep 2020; 10:4915. [PMID: 32188916 PMCID: PMC7080809 DOI: 10.1038/s41598-020-61821-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/03/2020] [Indexed: 11/28/2022] Open
Abstract
Taurine that conjugates with bile acid (BA) and mitochondrial-tRNA (mt-tRNA) is a conditional essential amino acid in humans, similarly to cats. To better understand the influence of acquired depletion of taurine on BA metabolism, the profiling of BAs and its intermediates, BA metabolism-enzyme expression, and taurine modified mt-tRNAs were evaluated in the taurine deficient diet-supplemented cats. In the taurine depleted cats, taurine-conjugated bile acids in bile and taurine-modified mt-tRNA in liver were significantly decreased, whereas unconjugated BA in serum was markedly increased. Impaired bile acid metabolism in the liver was induced accompanied with the decreases of mitochondrial cholesterol 27-hydroxylase expression and mitochondrial activity. Consequently, total bile acid concentration in bile was significantly decreased by the low activity of mitochondrial bile acid synthesis. These results implied that the insufficient dietary taurine intake causes impaired bile acid metabolism, and in turn, a risk for the various diseases similar to the mitochondrial diseases would be enhanced.
Collapse
|
223
|
Comprehensive evaluation of the metabolic effects of insect meal from Tenebrio molitor L. in growing pigs by transcriptomics, metabolomics and lipidomics. J Anim Sci Biotechnol 2020; 11:20. [PMID: 32158542 PMCID: PMC7055059 DOI: 10.1186/s40104-020-0425-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022] Open
Abstract
Background The hypothesis was tested that insect meal (IM) as protein source influences intermediary metabolism of growing pigs. To test this, 30 male, 5-week-old crossbred pigs were randomly assigned to 3 groups of 10 pigs each with similar body weights (BW) and fed isonitrogenous diets either without (CON) or with 5% IM (IM5) or 10% IM (IM10) from Tenebrio molitor L. for 4 weeks and key metabolic tissues (liver, muscle, plasma) were analyzed using omics-techniques. Results Most performance parameters did not differ across the groups, whereas ileal digestibilities of most amino acids were 6.7 to 15.6%-units lower in IM10 than in CON (P < 0.05). Transcriptomics of liver and skeletal muscle revealed a total of 166 and 198, respectively, transcripts differentially expressed between IM10 and CON (P < 0.05). Plasma metabolomics revealed higher concentrations of alanine, citrulline, glutamate, proline, serine, tyrosine and valine and a lower concentration of asparagine in IM10 than in CON (P < 0.05). Only one out of fourteen quantifiable amino acid metabolites, namely methionine sulfoxide (MetS), in plasma was elevated by 45% and 71% in IM5 and IM10, respectively, compared to CON (P < 0.05). Plasma concentrations of both, major carnitine/acylcarnitine species and bile acids were not different across groups. Lipidomics of liver and plasma demonstrated no differences in the concentrations of triacylglycerols, cholesterol and the main phospholipids, lysophospholipids and sphingolipids between groups. The percentages of all individual phosphatidylcholine (PC) and phosphatidylethanolamine (PE) species in the liver showed no differences between groups, except those with 6 double bonds (PC 38:6, PC 40:6, PE 38:6, PE 40:6), which were markedly lower in IM10 than in CON (P < 0.05). In line with this, the percentage of C22:6n-3 in hepatic total lipids was lower in IM10 than in the other groups (P < 0.05). Conclusions Comprehensive analyzes of the transcriptome, lipidome and metabolome of key metabolic tissues indicate that partial or complete replacement of a conventional protein source by IM in the diet has only a weak impact on the intermediary metabolism of growing pigs. Thus, it is concluded that IM from Tenebrio molitor L. can be used as a dietary source of protein in pigs without causing adverse effects on metabolism.
Collapse
|
224
|
Wilson A, Almousa A, Teft WA, Kim RB. Attenuation of bile acid-mediated FXR and PXR activation in patients with Crohn's disease. Sci Rep 2020; 10:1866. [PMID: 32024859 PMCID: PMC7002620 DOI: 10.1038/s41598-020-58644-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
Bile acids are endogenous ligands of nuclear receptors pregnane X (PXR) and farnesoid X (FXR). PXR and FXR regulate pathways that are impaired in inflammatory bowel disease (IBD). Decreases in PXR and FXR activity are documented in IBD; however reasons for this are unknown. We aimed to assess the effect of Crohn's disease (CD) on the plasma bile acid composition in vivo and the resultant impact on PXR and FXR activation. A cross-sectional study evaluated the plasma concentrations of 12 bile acids in addition to 4β-hydroxycholesterol (4βOHC), an in vivo probe of the PXR target-gene cytochrome 3A4 (CYP3A4) and the FXR target-gene, fibroblast growth factor (FGF) 19 in individuals with (n = 74) and without (n = 71) CD. An in vitro model was used to assess the impact of CD-specific changes in the plasma bile acid composition on PXR and FXR activation. Decreases in glycochenodeoxycholic acid, taurocholic acid and lithocholic acid were seen in CD with increases in glycodeoxycholic acid and glycocholic acid relative to the total plasma bile acid profile. In vitro, increasing concentrations of bile acids applied in the same ratio as seen in the study cohorts resulted in decreased activation of both PXR and FXR in the CD model. In vivo, plasma 4βOHC (CD = 18.68 ng/ml ± 13.02 ng/ml, non-CD = 46.38 ng/ml ± 40.70 ng/ml, p ≤ 0.0001) and FGF19 (CD = 0.276 pg/L ± 0.189 pg/L, non-CD = 0.485 pg/L ± 0.42 pg/L, p = 0.0002) concentrations were lower in CD versus controls. Ultimately, CD-specific changes in the plasma bile acid composition lead to reduced activation of FXR and PXR target genes in vitro and in vivo.
Collapse
Affiliation(s)
- Aze Wilson
- Clinical Pharmacology, Department of Medicine, Western University, 339 Windermere Rd, London, ON, N6A 5A5, Canada. .,Gastroenterology, Department of Medicine, Western University, 339 Windermere Rd, London, ON, N6A 5A5, Canada. .,Department of Physiology & Pharmacology, Western University, Medical Sciences Building, Rm 216, London, ON, N6A 5C1, Canada.
| | - Ahmed Almousa
- Clinical Pharmacology, Department of Medicine, Western University, 339 Windermere Rd, London, ON, N6A 5A5, Canada
| | - Wendy A Teft
- Clinical Pharmacology, Department of Medicine, Western University, 339 Windermere Rd, London, ON, N6A 5A5, Canada
| | - Richard B Kim
- Clinical Pharmacology, Department of Medicine, Western University, 339 Windermere Rd, London, ON, N6A 5A5, Canada.,Department of Physiology & Pharmacology, Western University, Medical Sciences Building, Rm 216, London, ON, N6A 5C1, Canada
| |
Collapse
|
225
|
Gulamhusein AF, Hirschfield GM, Milovanovic J, Arsenijevic D, Arsenijevic N, Milovanovic M. Primary biliary cholangitis: pathogenesis and therapeutic opportunities. Nat Rev Gastroenterol Hepatol 2020; 17:93-110. [PMID: 31819247 DOI: 10.1038/s41575-019-0226-7] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2019] [Indexed: 02/08/2023]
Abstract
Primary biliary cholangitis is a chronic, seropositive and female-predominant inflammatory and cholestatic liver disease, which has a variable rate of progression towards biliary cirrhosis. Substantial progress has been made in patient risk stratification with the goal of personalized care, including early adoption of next-generation therapy with licensed use of obeticholic acid or off-label fibrate derivatives for those with insufficient benefit from ursodeoxycholic acid, the current first-line drug. The disease biology spans genetic risk, epigenetic changes, dysregulated mucosal immunity and altered biliary epithelial cell function, all of which interact and arise in the context of ill-defined environmental triggers. A current focus of research on nuclear receptor pathway modulation that specifically and potently improves biliary excretion, reduces inflammation and attenuates fibrosis is redefining therapy. Patients are benefiting from pharmacological agonists of farnesoid X receptor and peroxisome proliferator-activated receptors. Immunotherapy remains a challenge, with a lack of target definition, pleiotropic immune pathways and an interplay between hepatic immune responses and cholestasis, wherein bile acid-induced inflammation and fibrosis are dominant clinically. The management of patient symptoms, particularly pruritus, is a notable goal reflected in the development of rational therapy with apical sodium-dependent bile acid transporter inhibitors.
Collapse
Affiliation(s)
- Aliya F Gulamhusein
- Toronto Centre for Liver Disease, University Health Network and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gideon M Hirschfield
- Toronto Centre for Liver Disease, University Health Network and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia.,Department of Histology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Dragana Arsenijevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| |
Collapse
|
226
|
Abualsunun WA, Sahin C, Cummins CL, Piquette-Miller M. Essential role of STAT-3 dependent NF-κB activation on IL-6-mediated downregulation of hepatic transporters. Eur J Pharm Sci 2020; 143:105151. [DOI: 10.1016/j.ejps.2019.105151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/14/2019] [Accepted: 11/14/2019] [Indexed: 11/16/2022]
|
227
|
Lu P, Cai X, Guo Y, Xu M, Tian J, Locker J, Xie W. Constitutive Activation of the Human Aryl Hydrocarbon Receptor in Mice Promotes Hepatocarcinogenesis Independent of Its Coactivator Gadd45b. Toxicol Sci 2020; 167:581-592. [PMID: 30346592 DOI: 10.1093/toxsci/kfy263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), or dioxin, is a potent liver cancer promoter through its sustained activation of the aryl hydrocarbon receptor (Ahr) in rodents. However, the carcinogenic effect of TCDD and AHR in humans has been controversial. It has been suggested that the inter-species difference in the carcinogenic activity of AhR is largely due to different ligand affinity in that TCDD has a 10-fold lower affinity for the human AHR compared with the mouse Ahr. It remains unclear whether the activation of human AHR is sufficient to promote hepatocellular carcinogenesis. The goal of this study is to clarify whether activation of human AHR can promote hepatocarcinogenesis. Here we reported the oncogenic activity of human AHR in promoting hepatocellular carcinogenesis. Constitutive activation of the human AHR in transgenic mice was as efficient as its mouse counterpart in promoting diethylnitrosamine (DEN)-initiated hepatocellular carcinogenesis. The growth arrest and DNA damage-inducible gene 45 β (Gadd45b), a signaling molecule inducible by external stress and UV irradiation, is highly induced upon AHR activation. Further analysis revealed that Gadd45b is a novel AHR target gene and a transcriptional coactivator of AHR. Interestingly, ablation of Gadd45b in mice did not abolish the tumor promoting effects of the human AHR. Collectively, our findings suggested that constitutive activation of human AHR was sufficient to promote hepatocarcinogenesis.
Collapse
Affiliation(s)
- Peipei Lu
- Center for Pharmacogenetics.,Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Xinran Cai
- Center for Pharmacogenetics.,Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Yan Guo
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China 200025
| | - Meishu Xu
- Center for Pharmacogenetics.,Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | | | | | - Wen Xie
- Center for Pharmacogenetics.,Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
228
|
Mohandas S, Vairappan B. Pregnane X receptor activation by its natural ligand Ginkgolide-A improves tight junction proteins expression and attenuates bacterial translocation in cirrhosis. Chem Biol Interact 2020; 315:108891. [PMID: 31697926 DOI: 10.1016/j.cbi.2019.108891] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/02/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Pregnane X receptor (PXR) is a ligand-activated transcription factor and nuclear receptor expressed ubiquitously along gut-liver-axis. Inflammatory bowel disorders have been reported to implicate PXR in maintaining tight junction (TJ) integrity and countering inflammation. However, the hepatoprotective role of PXR activation in soothing bacterial translocation in liver cirrhosis has not been explored. Ginkgolide A (GA), a terpene trilactone from Ginkgo Biloba extract, is a natural ligand of rodent and human PXR. This study aims to investigate the effect of GA in activating PXR and improving associated tight junction integrity and reducing bacterial translocation in gut-liver axis of CCl4 induced cirrhosis model. METHODS Swiss albino mice were administered with CCl4 (0.5 ml/kg body weight, i.p) in corn oil for 12 weeks at an interval of two times a week. Following ascites induction, mice were randomized & administered 100 mg/kg body weight of GA through oral gavage for 2 weeks. At termination, blood, gut and liver tissues were collected for biochemical and molecular studies. RESULTS When compared to naïve mice, protein expression of hepatic and small intestinal PXR, CYP3A, ZO-1 and occludin were found to be significantly (p < 0.01) decreased in CCl4 induced cirrhotic mice. Treatment with GA to cirrhotic mice significantly (p < 0.05) induced the expression of both hepatic and small intestinal PXR, CYP3A, ZO-1 and Occludin. Furthermore, increased (p < 0.01) hepatic and small intestinal NFκB was observed in CCl4 induced cirrhotic mice that was significantly (p < 0.05) lowered following GA treatment. Over expression of TLR4/MyD88/NFκB axis and its downstream pro-inflammatory mediators TNF-α, IL6 and IFN-γ were observed in CCl4 induced mice, and these indices were abrogated significantly after GA treatment. Furthermore, significantly increased plasma levels of bacterial translocation markers LBP and procalcitonin were found in CCl4 mice, which were reduced significantly (p < 0.05 & p < 0.0001) after GA treatment. CONCLUSION In conclusion, our data supports the hypothesis that, GA treatment to CCl4 induced cirrhotic mice, activated hepatic and small intestinal PXR and diminished inflammation, thereby improving tight junction integrity and attenuating bacterial translocation.
Collapse
Affiliation(s)
- Sundhar Mohandas
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India.
| |
Collapse
|
229
|
Brønden A, Knop FK. Gluco-Metabolic Effects of Pharmacotherapy-Induced Modulation of Bile Acid Physiology. J Clin Endocrinol Metab 2020; 105:5601203. [PMID: 31630179 DOI: 10.1210/clinem/dgz025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/04/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023]
Abstract
CONTEXT The discovery and characterization of the bile acid specific receptors farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5) have facilitated a wealth of research focusing on the link between bile acid physiology and glucose metabolism. Modulation of FXR and TGR5 activation have been demonstrated to affect the secretion of glucagon-like peptide 1, insulin, and glucagon as well as energy expenditure and gut microbiota composition, with potential beneficial effects on glucose metabolism. EVIDENCE ACQUISITION A search strategy based on literature searches in on PubMed with various combinations of the key words FXR, TGR5, agonist, apical sodium-dependent bile acid transporter (ASBT), bile acid sequestrant, metformin, and glucose metabolism has been applied to obtain material for the present review. Furthermore, manual searches including scanning of reference lists in relevant papers and conference proceedings have been performed. EVIDENCE SYNTHESIS This review provides an outline of the link between bile acid and glucose metabolism, with a special focus on the gluco-metabolic impact of treatment modalities with modulating effects on bile acid physiology; including FXR agonists, TGR5 agonists, ASBT inhibitors, bile acid sequestrants, and metformin. CONCLUSIONS Any potential beneficial gluco-metabolic effects of FXR agonists remain to be established, whereas the clinical relevance of TGR5-based treatment modalities seems limited because of substantial safety concerns of TGR5 agonists observed in animal models. The glucose-lowering effects of ASBT inhibitors, bile acid sequestrants, and metformin are at least partly mediated by modulation of bile acid circulation, which might allow an optimization of these bile acid-modulating treatment modalities. (J Clin Endocrinol Metab XX: 00-00, 2019).
Collapse
Affiliation(s)
- Andreas Brønden
- Center for Clinical M etabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Filip K Knop
- Center for Clinical M etabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Novo Nordisk Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Steno Diabetes Copenhagen, DK-2820 Gentofte, Denmark
| |
Collapse
|
230
|
Emerging therapies in primary sclerosing cholangitis: pathophysiological basis and clinical opportunities. J Gastroenterol 2020; 55:588-614. [PMID: 32222826 PMCID: PMC7242240 DOI: 10.1007/s00535-020-01681-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/05/2020] [Indexed: 02/04/2023]
Abstract
Primary sclerosing cholangitis (PSC) is a progressive liver disease, histologically characterized by inflammation and fibrosis of the bile ducts, and clinically leading to multi-focal biliary strictures and with time cirrhosis and liver failure. Patients bear a significant risk of cholangiocarcinoma and colorectal cancer, and frequently have concomitant inflammatory bowel disease and autoimmune disease manifestations. To date, no medical therapy has proven significant impact on clinical outcomes and most patients ultimately need liver transplantation. Several treatment strategies have failed in the past and whilst prescription of ursodeoxycholic acid (UDCA) prevails, controversy regarding benefits remains. Lack of statistical power, slow and variable disease progression, lack of surrogate biomarkers for disease severity and other challenges in trial design serve as critical obstacles in the development of effective therapy. Advances in our understanding of PSC pathogenesis and biliary physiology over recent years has however led to a surge of clinical trials targeting various mechanistic compartments and currently raising hopes for imminent changes in patient management. Here, in light of pathophysiology, we outline and critically evaluate emerging treatment strategies in PSC, as tested in recent or ongoing phase II and III trials, stratified per a triad of targets of nuclear and membrane receptors regulating bile acid metabolism, immune modulators, and effects on the gut microbiome. Furthermore, we revisit the UDCA trials of the past and critically discuss relevant aspects of clinical trial design, including how the choice of endpoints, alkaline phosphatase in particular, may affect the future path to novel, effective PSC therapeutics.
Collapse
|
231
|
Wei S, Ma X, Zhao Y. Mechanism of Hydrophobic Bile Acid-Induced Hepatocyte Injury and Drug Discovery. Front Pharmacol 2020. [PMID: 32765278 DOI: 10.3389/fphar.2020.01084/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Cholestatic liver disease is caused by the obstruction of bile synthesis, transport, and excretion in or outside the liver by a variety of reasons. Long-term persistent cholestasis in the liver can trigger inflammation, necrosis, or apoptosis of hepatocytes. Bile acid nuclear receptors have received the most attention for the treatment of cholestasis, while the drug development for bile acid nuclear receptors has made considerable progress. However, the targets regulated by bile acid receptor drugs are limited. Thus, as anticipated, intervention in the expression of bile acid nuclear receptors alone will not yield satisfactory clinical results. Therefore, this review comprehensively summarized the literature related to cholestasis, analyzed the molecular mechanism that bile acid damages cells, and status of drug development. It is hoped that this review will provide some reference for the research and development of drugs for cholestasis treatment in the future.
Collapse
Affiliation(s)
- Shizhang Wei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Xiao Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, PLA General Hospital, Beijing, China
| |
Collapse
|
232
|
Siemienowicz KJ, Filis P, Shaw S, Douglas A, Thomas J, Mulroy S, Howie F, Fowler PA, Duncan WC, Rae MT. Fetal androgen exposure is a determinant of adult male metabolic health. Sci Rep 2019; 9:20195. [PMID: 31882954 PMCID: PMC6934666 DOI: 10.1038/s41598-019-56790-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Androgen signalling is a critical driver of male development. Fetal steroid signalling can be dysregulated by a range of environmental insults and clinical conditions. We hypothesised that poor adult male health was partially attributable to aberrant androgen exposure during development. Testosterone was directly administered to developing male ovine fetuses to model excess prenatal androgenic overexposure associated with conditions such as polycystic ovary syndrome (PCOS). Such in utero androgen excess recreated the dyslipidaemia and hormonal profile observed in sons of PCOS patients. 1,084 of 15,134 and 408 of 2,766 quantifiable genes and proteins respectively, were altered in the liver during adolescence, attributable to fetal androgen excess. Furthermore, prenatal androgen excess predisposed to adolescent development of an intrahepatic cholestasis-like condition with attendant hypercholesterolaemia and an emergent pro-fibrotic, pro-oxidative stress gene and protein expression profile evident in both liver and circulation. We conclude that prenatal androgen excess is a previously unrecognised determinant of lifelong male metabolic health.
Collapse
Affiliation(s)
| | - Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Sophie Shaw
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Alex Douglas
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Jennifer Thomas
- School of Applied Science, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Sally Mulroy
- School of Applied Science, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Forbes Howie
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - W Colin Duncan
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Mick T Rae
- School of Applied Science, Edinburgh Napier University, Edinburgh, EH11 4BN, UK.
| |
Collapse
|
233
|
Busnelli M, Manzini S, Chiesa G. The Gut Microbiota Affects Host Pathophysiology as an Endocrine Organ: A Focus on Cardiovascular Disease. Nutrients 2019; 12:E79. [PMID: 31892152 PMCID: PMC7019666 DOI: 10.3390/nu12010079] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
It is widely recognized that the microorganisms inhabiting our gastrointestinal tract-the gut microbiota-deeply affect the pathophysiology of the host. Gut microbiota composition is mostly modulated by diet, and gut microorganisms communicate with the different organs and tissues of the human host by synthesizing hormones and regulating their release. Herein, we will provide an updated review on the most important classes of gut microbiota-derived hormones and their sensing by host receptors, critically discussing their impact on host physiology. Additionally, the debated interplay between microbial hormones and the development of cardiovascular disease will be thoroughly analysed and discussed.
Collapse
Affiliation(s)
| | | | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy;
| |
Collapse
|
234
|
Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal Absorption of Bile Acids in Health and Disease. Compr Physiol 2019; 10:21-56. [PMID: 31853951 PMCID: PMC7171925 DOI: 10.1002/cphy.c190007] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intestinal reclamation of bile acids is crucial for the maintenance of their enterohepatic circulation. The majority of bile acids are actively absorbed via specific transport proteins that are highly expressed in the distal ileum. The uptake of bile acids by intestinal epithelial cells modulates the activation of cytosolic and membrane receptors such as the farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (GPBAR1), which has a profound effect on hepatic synthesis of bile acids as well as glucose and lipid metabolism. Extensive research has focused on delineating the processes of bile acid absorption and determining the contribution of dysregulated ileal signaling in the development of intestinal and hepatic disorders. For example, a decrease in the levels of the bile acid-induced ileal hormone FGF15/19 is implicated in bile acid-induced diarrhea (BAD). Conversely, the increase in bile acid absorption with subsequent overload of bile acids could be involved in the pathophysiology of liver and metabolic disorders such as fatty liver diseases and type 2 diabetes mellitus. This review article will attempt to provide a comprehensive overview of the mechanisms involved in the intestinal handling of bile acids, the pathological implications of disrupted intestinal bile acid homeostasis, and the potential therapeutic targets for the treatment of bile acid-related disorders. Published 2020. Compr Physiol 10:21-56, 2020.
Collapse
Affiliation(s)
- Alexander L. Ticho
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pooja Malhotra
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
235
|
Avalos-de León CG, Jiménez-Castro MB, Cornide-Petronio ME, Gulfo J, Rotondo F, Gracia-Sancho J, Casillas-Ramírez A, Peralta C. The Effect of Fibroblast Growth Factor 15 Signaling in Non-Steatotic and Steatotic Liver Transplantation from Cardiocirculatory Death. Cells 2019; 8:1640. [PMID: 31847428 PMCID: PMC6952771 DOI: 10.3390/cells8121640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
We elucidate the relevance of fibroblast growth factor 15 (FGF15) in liver transplantation (LT) using rats with both steatotic and non-steatotic organs from donors after cardiocirculatory death (DCD). Compared to LT from non-DCDs, the induction of cardiocirculatory death (CD) increases hepatic damage, proliferation, and intestinal and circulatory FGF15. This is associated with high levels of FGF15, bilirubin and bile acids (BAs), and overexpression of the enzyme involved in the alternative BA synthesis pathway, CYP27A1, in non-steatotic livers. Furthermore, CD activates the proliferative pathway, Hippo/YAP, in these types of liver. Blocking FGF15 action in LT from DCDs does not affect CYP27A1 but causes an overexpression of CYP7A, an enzyme from the classic BA synthesis pathway, and this is related to further accumulation of BAs and exacerbated damage. FGF15 inhibition also impairs proliferation without changing Hippo/YAP. In spite of worse damage, steatosis prevents a proliferative response in livers from DCDs. In steatotic grafts, CD does not modify CYP7A1, CYP27A1, BA, or the Hippo/YAP pathway, and FGF15 is not involved in damage or proliferation. Thus, endogenous FGF15 protects against BA accumulation and damage and promotes regeneration independently of the Hippo/YAP pathway, in non-steatotic LT from DCDs. Herein we show a minor role of FGF15 in steatotic LT from DCDs.
Collapse
Affiliation(s)
- Cindy G. Avalos-de León
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.); (J.G.); (F.R.)
| | - Mónica B. Jiménez-Castro
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.); (J.G.); (F.R.)
| | - María Eugenia Cornide-Petronio
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.); (J.G.); (F.R.)
| | - José Gulfo
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.); (J.G.); (F.R.)
| | - Floriana Rotondo
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.); (J.G.); (F.R.)
| | - Jordi Gracia-Sancho
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain;
- Liver Vascular Biology Research Group, IDIBAPS, 08036 Barcelona, Spain
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.); (J.G.); (F.R.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain;
| |
Collapse
|
236
|
Fan S, Liu C, Jiang Y, Gao Y, Chen Y, Fu K, Yao X, Huang M, Bi H. Lignans from Schisandra sphenanthera protect against lithocholic acid-induced cholestasis by pregnane X receptor activation in mice. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112103. [PMID: 31336134 DOI: 10.1016/j.jep.2019.112103] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/15/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cholestasis is a clinical syndrome caused by toxic bile acid retention that will lead to serious liver diseases. Ursodeoxycholic acid (UDCA) and obeticholic acid (OCA) are the only two FDA-approved drugs for its treatment. Thus, there is a clear need to develop new therapeutic approaches for cholestasis. Here, anti-cholestasis effects of the lignans from a traditional Chinese herbal medicine, Schisandra sphenanthera, were investigated as well as the involved mechanisms. MATERIALS AND METHODS Adult male C57BL/6J mice were randomly divided into 9 groups including the control group, LCA group, LCA with specific lignan treatment of Schisandrin A (SinA), Schisandrin B (SinB), Schisandrin C (SinC), Schisandrol A (SolA), Schisandrol B (SolB), Schisantherin A (StnA) and Schisantherin B (StnB), respectively. Mice were treated with each drug (qd) for 7 days, while the administration of lithocholic acid (LCA) (bid) was launched from the 4th day. Twelve hours after the last LCA injection, mice were sacrificed and samples were collected. Serum biochemical measurement and histological analysis were conducted. Metabolomics analysis of serum, liver, intestine and feces were performed to study the metabolic profile of bile acids. RT-qPCR and Western blot analysis were conducted to determine the hepatic expression of genes and proteins related to bile acid homeostasis. Dual-luciferase reporter gene assay was performed to investigate the transactivation effect of lignans on human pregnane X receptor (hPXR). RT-qPCR analysis was used to detect induction effects of lignans on hPXR-targeted genes in HepG2 cells. RESULTS Lignans including SinA, SinB, SinC, SolA, SolB, StnA, StnB were found to significantly protect against LCA-induced intrahepatic cholestasis, as evidenced by significant decrease in liver necrosis, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) activity. More importantly, serum total bile acids (TBA) and total bilirubin (Tbili) were also significantly reduced. Metabolomics analysis revealed these lignans accelerated the metabolism of bile acids and increased the bile acid efflux from liver into the intestine or feces. Gene analysis revealed these lignans induced the hepatic expressions of PXR-target genes such as Cyp3a11 and Ugt1a1. Luciferase reporter gene assays illustrated that these bioactive lignans can activate hPXR. Additionally, they can all upregulate hPXR-regulate genes such as CYP3A4, UGT1A1 and OATP2. CONCLUSION These results clearly demonstrated the lignans from Schisandra sphenanthera exert hepatoprotective effects against LCA-induced cholestasis by activation of PXR. These lignans may provide an effective approach for the prevention and treatment of cholestatic liver injury.
Collapse
Affiliation(s)
- Shicheng Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Conghui Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yiming Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yue Gao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yixin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Kaili Fu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xinpeng Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
237
|
Dempsey JL, Cui JY. Microbiome is a functional modifier of P450 drug metabolism. CURRENT PHARMACOLOGY REPORTS 2019; 5:481-490. [PMID: 33312848 PMCID: PMC7731899 DOI: 10.1007/s40495-019-00200-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Host cytochrome P450s (P450s) play important roles in the bioactivation and detoxification of numerous therapeutic drugs, environmental toxicants, dietary factors, as well as endogenous compounds. Gut microbiome is increasingly recognized as our "second genome" that contributes to the xenobiotic biotransformation of the host, and the first pass metabolism of many orally exposed chemicals is a joint effort between host drug metabolizing enzymes including P450s and gut microbiome. Gut microbiome contributes to the drug metabolism via two distinct mechanisms: direct mechanism refers to the metabolism of drugs by microbial enzymes, among which reduction and hydrolysis (or deconjugation) are among the most important reactions; whereas indirect mechanism refers to the influence of host receptors and signaling pathways by microbial metabolites. Many types of microbial metabolites, such as secondary bile acids (BAs), short chain fatty acids (SCFAs), and tryptophan metabolites, are known regulators of human diseases through modulating host xenobiotic-sensing receptors. To study the roles of gut microbiome in regulating host drug metabolism including P450s, several models including germ free mice, antibiotics or probiotics treatments, have been widely used. The present review summarized the current information regarding the interactions between microbiome and the host P450s in xenobiotic biotransformation organs such as liver, intestine, and kidney, highlighting the remote sensing mechanisms underlying gut microbiome mediated regulation of host xenobiotic biotransformation. In addition, the roles of bacterial, fungal, and other microbiome kingdom P450s, which is an understudied area of research in pharmacology and toxicology, are discussed.
Collapse
Affiliation(s)
- Joseph L Dempsey
- Department of Environmental and Occupational Health Sciences, University of Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington
| |
Collapse
|
238
|
Cheng SL, Li X, Lehmler HJ, Phillips B, Shen D, Cui JY. Gut Microbiota Modulates Interactions Between Polychlorinated Biphenyls and Bile Acid Homeostasis. Toxicol Sci 2019; 166:269-287. [PMID: 30496569 DOI: 10.1093/toxsci/kfy208] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The gut microbiome is increasingly recognized as a second genome that contributes to the health and diseases of the host. A major function of the gut microbiota is to convert primary bile acids (BAs) produced from cholesterol in the liver into secondary BAs that activate distinct host receptors to modulate xenobiotic metabolism and energy homeostasis. The goal of this study was to investigate to what extent oral exposure to an environmentally relevant polychlorinated biphenyl (PCBs mixture), namely the Fox River mixture, impacts gut microbiome and BA homeostasis. Ninety-day-old adult female conventional (CV) and germ-free (GF) C57BL/6 mice were orally exposed to corn oil (vehicle), or the Fox River mixture at 6 or 30 mg/kg once daily for 3 consecutive days. The PCB low dose profoundly increased BA metabolism related bacteria Akkermansia (A.) muciniphila, Clostridium (C.) scindens, and Enterococcus in the large intestinal pellet (LIP) of CV mice (16S rRNA sequencing/qPCR). This correlated with a PCB low dose-mediated increase in multiple BAs in serum and small intestinal content (SIP) in a gut microbiota-dependent manner (UPLC-MS/MS). Conversely, at PCB high dose, BA levels remained stable in CV mice correlated with an increase in hepatic efflux transporters and ileal Fgf15. Interestingly, lack of gut microbiota potentiated the PCB-mediated increase in taurine conjugated α and β muricholic acids in liver, SIP, and LIP. Pearson's correlation identified positive correlations between 5 taxa and most secondary BAs. In conclusion, PCBs dose-dependently altered BA homeostasis through a joint effort between host gut-liver axis and intestinal bacteria.
Collapse
Affiliation(s)
- Sunny Lihua Cheng
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Xueshu Li
- Department of Occupational & Environmental Health, University of Iowa, Iowa City, Iowa 52242
| | - Hans-Joachim Lehmler
- Department of Occupational & Environmental Health, University of Iowa, Iowa City, Iowa 52242
| | - Brian Phillips
- Department of Pharmaceutical Sciences, University of Washington, Seattle, Washington, 98105
| | - Danny Shen
- Department of Pharmaceutical Sciences, University of Washington, Seattle, Washington, 98105
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| |
Collapse
|
239
|
Hassani-Nezhad-Gashti F, Kummu O, Karpale M, Rysä J, Hakkola J. Nutritional status modifies pregnane X receptor regulated transcriptome. Sci Rep 2019; 9:16728. [PMID: 31723190 PMCID: PMC6853963 DOI: 10.1038/s41598-019-53101-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/24/2019] [Indexed: 12/25/2022] Open
Abstract
Pregnane X receptor (PXR) regulates glucose and lipid metabolism, but little is known of the nutritional regulation of PXR function. We investigated the genome wide effects of the nutritional status on the PXR mediated gene regulation in the liver. Mice were treated with a PXR ligand pregnenolone 16α-carbonitrile (PCN) for 4 days and subsequently either fasted for 5 hours or after 4-hour fast treated with intragastric glucose 1 hour before sample collection. Gene expression microarray study indicated that PCN both induced and repressed much higher number of genes in the glucose fed mice and the induction of multiple well-established PXR target genes was potentiated by glucose. A subset of genes, including bile acid synthesis gene Cyp8b1, responded in an opposite direction during fasting and after glucose feeding. PXR knockout abolished these effects. In agreement with the Cyp8b1 regulation, PCN also modified the bile acid composition in the glucose fed mice. Contribution of glucose, insulin and glucagon on the observed nutritional effects was investigated in primary hepatocytes. However, only mild impact on PXR function was observed. These results show that nutritional status modifies the PXR regulated transcriptome both qualitatively and quantitatively and reveal a complex crosstalk between PXR and energy homeostasis.
Collapse
Affiliation(s)
- Fatemeh Hassani-Nezhad-Gashti
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Outi Kummu
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Mikko Karpale
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jaana Rysä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland. .,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| |
Collapse
|
240
|
Ringseis R, Gessner DK, Eder K. The Gut-Liver Axis in the Control of Energy Metabolism and Food Intake in Animals. Annu Rev Anim Biosci 2019; 8:295-319. [PMID: 31689373 DOI: 10.1146/annurev-animal-021419-083852] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent research has convincingly demonstrated a bidirectional communication axis between the gut and liver that enables the gut microbiota to strongly affect animals' feeding behavior and energy metabolism. As such, the gut-liver axis enables the host to control and shape the gut microbiota and to protect the intestinal barrier. Gut microbiota-host communication is based on several gut-derived compounds, such as short-chain fatty acids, bile acids, methylamines, amino acid-derived metabolites, and microbial-associated molecular patterns, which act as communication signals, and multiple host receptors, which sense the signals, thereby stimulating signaling and metabolic pathways in all key tissues of energy metabolism and food intake regulation. Disturbance in the microbial ecosystem balance, or microbial dysbiosis, causes profound derangements in the regulation of appetite and satiety in the hypothalamic centers of the brain and in key metabolic pathways in peripheral tissues owing to intestinal barrier disruption and subsequent induction of hepatic and hypothalamic inflammation.
Collapse
Affiliation(s)
- Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany;
| | - Denise K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany;
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany;
| |
Collapse
|
241
|
Honda A, Miyazaki T, Iwamoto J, Hirayama T, Morishita Y, Monma T, Ueda H, Mizuno S, Sugiyama F, Takahashi S, Ikegami T. Regulation of bile acid metabolism in mouse models with hydrophobic bile acid composition. J Lipid Res 2019; 61:54-69. [PMID: 31645370 DOI: 10.1194/jlr.ra119000395] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
The bile acid (BA) composition in mice is substantially different from that in humans. Chenodeoxycholic acid (CDCA) is an end product in the human liver; however, mouse Cyp2c70 metabolizes CDCA to hydrophilic muricholic acids (MCAs). Moreover, in humans, the gut microbiota converts the primary BAs, cholic acid and CDCA, into deoxycholic acid (DCA) and lithocholic acid (LCA), respectively. In contrast, the mouse Cyp2a12 reverts this action and converts these secondary BAs to primary BAs. Here, we generated Cyp2a12 KO, Cyp2c70 KO, and Cyp2a12/Cyp2c70 double KO (DKO) mice using the CRISPR-Cas9 system to study the regulation of BA metabolism under hydrophobic BA composition. Cyp2a12 KO mice showed the accumulation of DCAs, whereas Cyp2c70 KO mice lacked MCAs and exhibited markedly increased hepatobiliary proportions of CDCA. In DKO mice, not only DCAs or CDCAs but also DCAs, CDCAs, and LCAs were all elevated. In Cyp2c70 KO and DKO mice, chronic liver inflammation was observed depending on the hepatic unconjugated CDCA concentrations. The BA pool was markedly reduced in Cyp2c70 KO and DKO mice, but the FXR was not activated. It was suggested that the cytokine/c-Jun N-terminal kinase signaling pathway and the pregnane X receptor-mediated pathway are the predominant mechanisms, preferred over the FXR/small heterodimer partner and FXR/fibroblast growth factor 15 pathways, for controlling BA synthesis under hydrophobic BA composition. From our results, we hypothesize that these KO mice can be novel and useful models for investigating the roles of hydrophobic BAs in various human diseases.
Collapse
Affiliation(s)
- Akira Honda
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan; Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan.
| | - Teruo Miyazaki
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Junichi Iwamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Takeshi Hirayama
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Yukio Morishita
- Diagnostic Pathology Division, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Tadakuni Monma
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Hajime Ueda
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, Ibaraki, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, University of Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, Ibaraki, Japan
| | - Tadashi Ikegami
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| |
Collapse
|
242
|
Deferm N, De Vocht T, Qi B, Van Brantegem P, Gijbels E, Vinken M, de Witte P, Bouillon T, Annaert P. Current insights in the complexities underlying drug-induced cholestasis. Crit Rev Toxicol 2019; 49:520-548. [PMID: 31589080 DOI: 10.1080/10408444.2019.1635081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-induced cholestasis (DIC) poses a major challenge to the pharmaceutical industry and regulatory agencies. It causes both drug attrition and post-approval withdrawal of drugs. DIC represents itself as an impaired secretion and flow of bile, leading to the pathological hepatic and/or systemic accumulation of bile acids (BAs) and their conjugate bile salts. Due to the high number of mechanisms underlying DIC, predicting a compound's cholestatic potential during early stages of drug development remains elusive. A profound understanding of the different molecular mechanisms of DIC is, therefore, of utmost importance. Although many knowledge gaps and caveats still exist, it is generally accepted that alterations of certain hepatobiliary membrane transporters and changes in hepatocellular morphology may cause DIC. Consequently, liver models, which represent most of these mechanisms, are valuable tools to predict human DIC. Some of these models, such as membrane-based in vitro models, are exceptionally well-suited to investigate specific mechanisms (i.e. transporter inhibition) of DIC, while others, such as liver slices, encompass all relevant biological processes and, therefore, offer a better representation of the in vivo situation. In the current review, we highlight the principal molecular mechanisms associated with DIC and offer an overview and critical appraisal of the different liver models that are currently being used to predict the cholestatic potential of drugs.
Collapse
Affiliation(s)
- Neel Deferm
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Tom De Vocht
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Bing Qi
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Pieter Van Brantegem
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Eva Gijbels
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Thomas Bouillon
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| |
Collapse
|
243
|
Carazo A, Mladěnka P, Pávek P. Marine Ligands of the Pregnane X Receptor (PXR): An Overview. Mar Drugs 2019; 17:md17100554. [PMID: 31569349 PMCID: PMC6836225 DOI: 10.3390/md17100554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
Pregnane X Receptor (PXR) is a ligand-activated transcription factor which binds many structurally different molecules. The receptor is able to regulate the expression of a wide array of genes and is involved in cancer and different key physiological processes such as the metabolism of drugs/xenobiotics and endogenous compounds including lipids and carbohydrates, and inflammation. Algae, sponges, sea squirts, and other marine organisms are some of the species from which structurally new molecules have been isolated that have been subsequently identified in recent decades as ligands for PXR. The therapeutic potential of these natural compounds is promising in different areas and has recently resulted in the registration of trabectedin by the FDA as a novel antineoplastic drug. Apart from being potentially novel drugs, these compounds can also serve as models for the development of new molecules with improved activity. The aim of this review is to succinctly summarize the currently known natural molecules isolated from marine organisms with a proven ability to interact with PXR.
Collapse
Affiliation(s)
- Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové 500 05, Czech Republic.
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové 500 05, Czech Republic.
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové 500 05, Czech Republic.
| |
Collapse
|
244
|
Okazaki F, Tsuji Y, Seto Y, Ogami C, Yamamoto Y, To H. Effects of a rifampicin pre-treatment on linezolid pharmacokinetics. PLoS One 2019; 14:e0214037. [PMID: 31518346 PMCID: PMC6743782 DOI: 10.1371/journal.pone.0214037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/24/2019] [Indexed: 12/15/2022] Open
Abstract
Linezolid is an oxazolidinone antibiotic that effectively treats methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). Since rifampicin induces other antibiotic effects, it is combined with linezolid in therapeutic regimes. However, linezolid blood concentrations are reduced by this combination, which increases the risk of the emergence of antibiotic-resistant bacteria. We herein demonstrated that the combination of linezolid with rifampicin inhibited its absorption and promoted its elimination, but not through microsomal enzymes. Our results indicate that the combination of linezolid with rifampicin reduces linezolid blood concentrations via metabolic enzymes.
Collapse
Affiliation(s)
- Fumiyasu Okazaki
- Department of Medical Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yasuhiro Tsuji
- Center for Pharmacist Education, School of Pharmacy, Nihon University, Chiba, Japan
| | - Yoshihiro Seto
- Department of Medical Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Chika Ogami
- Department of Medical Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshihiro Yamamoto
- Department of Clinical Infectious Diseases, Graduate School of Medicine and Pharmaceutical Sciences for Research University of Toyama, Toyama, Japan
| | - Hideto To
- Department of Medical Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
245
|
Hagan T, Cortese M, Rouphael N, Boudreau C, Linde C, Maddur MS, Das J, Wang H, Guthmiller J, Zheng NY, Huang M, Uphadhyay AA, Gardinassi L, Petitdemange C, McCullough MP, Johnson SJ, Gill K, Cervasi B, Zou J, Bretin A, Hahn M, Gewirtz AT, Bosinger SE, Wilson PC, Li S, Alter G, Khurana S, Golding H, Pulendran B. Antibiotics-Driven Gut Microbiome Perturbation Alters Immunity to Vaccines in Humans. Cell 2019; 178:1313-1328.e13. [PMID: 31491384 PMCID: PMC6750738 DOI: 10.1016/j.cell.2019.08.010] [Citation(s) in RCA: 418] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 06/21/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
Abstract
Emerging evidence indicates a central role for the microbiome in immunity. However, causal evidence in humans is sparse. Here, we administered broad-spectrum antibiotics to healthy adults prior and subsequent to seasonal influenza vaccination. Despite a 10,000-fold reduction in gut bacterial load and long-lasting diminution in bacterial diversity, antibody responses were not significantly affected. However, in a second trial of subjects with low pre-existing antibody titers, there was significant impairment in H1N1-specific neutralization and binding IgG1 and IgA responses. In addition, in both studies antibiotics treatment resulted in (1) enhanced inflammatory signatures (including AP-1/NR4A expression), observed previously in the elderly, and increased dendritic cell activation; (2) divergent metabolic trajectories, with a 1,000-fold reduction in serum secondary bile acids, which was highly correlated with AP-1/NR4A signaling and inflammasome activation. Multi-omics integration revealed significant associations between bacterial species and metabolic phenotypes, highlighting a key role for the microbiome in modulating human immunity.
Collapse
Affiliation(s)
- Thomas Hagan
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mario Cortese
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Decatur, GA 30030, USA
| | - Carolyn Boudreau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Caitlin Linde
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Mohan S Maddur
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Jishnu Das
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Hong Wang
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Jenna Guthmiller
- Department of Medicine, Section of Rheumatology, Knapp Center for Lupus and Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Nai-Ying Zheng
- Department of Medicine, Section of Rheumatology, Knapp Center for Lupus and Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Min Huang
- Department of Medicine, Section of Rheumatology, Knapp Center for Lupus and Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Amit A Uphadhyay
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Luiz Gardinassi
- Department of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Caroline Petitdemange
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | | | - Sara Jo Johnson
- Hope Clinic of the Emory Vaccine Center, Decatur, GA 30030, USA
| | - Kiran Gill
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Barbara Cervasi
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Jun Zou
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Alexis Bretin
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Megan Hahn
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Steve E Bosinger
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Patrick C Wilson
- Department of Medicine, Section of Rheumatology, Knapp Center for Lupus and Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Shuzhao Li
- Department of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
246
|
Yang H, Shi Z, Wang XX, Cheng R, Lu M, Zhu J, Deng W, Zeng Y, Zhao LY, Zhang SY. Phenanthrene, but not its isomer anthracene, effectively activates both human and mouse nuclear receptor constitutive androstane receptor (CAR) and induces hepatotoxicity in mice. Toxicol Appl Pharmacol 2019; 378:114618. [DOI: 10.1016/j.taap.2019.114618] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/31/2023]
|
247
|
Kompella P, Vasquez KM. Obesity and cancer: A mechanistic overview of metabolic changes in obesity that impact genetic instability. Mol Carcinog 2019; 58:1531-1550. [PMID: 31168912 PMCID: PMC6692207 DOI: 10.1002/mc.23048] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/16/2022]
Abstract
Obesity, defined as a state of positive energy balance with a body mass index exceeding 30 kg/m2 in adults and 95th percentile in children, is an increasing global concern. Approximately one-third of the world's population is overweight or obese, and in the United States alone, obesity affects one in six children. Meta-analysis studies suggest that obesity increases the likelihood of developing several types of cancer, and with poorer outcomes, especially in children. The contribution of obesity to cancer risk requires a better understanding of the association between obesity-induced metabolic changes and its impact on genomic instability, which is a major driving force of tumorigenesis. In this review, we discuss how molecular changes during adipose tissue dysregulation can result in oxidative stress and subsequent DNA damage. This represents one of the many critical steps connecting obesity and cancer since oxidative DNA lesions can result in cancer-associated genetic instability. In addition, the by-products of the oxidative degradation of lipids (e.g., malondialdehyde, 4-hydroxynonenal, and acrolein), and gut microbiota-mediated secondary bile acid metabolites (e.g., deoxycholic acid and lithocholic acid), can function as genotoxic agents and tumor promoters. We also discuss how obesity can impact DNA repair efficiency, potentially contributing to cancer initiation and progression. Finally, we outline obesity-related epigenetic changes and identify the gaps in knowledge to be addressed for the development of better therapeutic strategies for the prevention and treatment of obesity-related cancers.
Collapse
Affiliation(s)
- Pallavi Kompella
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| | - Karen M. Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| |
Collapse
|
248
|
Barretto SA, Lasserre F, Fougerat A, Smith L, Fougeray T, Lukowicz C, Polizzi A, Smati S, Régnier M, Naylies C, Bétoulières C, Lippi Y, Guillou H, Loiseau N, Gamet-Payrastre L, Mselli-Lakhal L, Ellero-Simatos S. Gene Expression Profiling Reveals that PXR Activation Inhibits Hepatic PPARα Activity and Decreases FGF21 Secretion in Male C57Bl6/J Mice. Int J Mol Sci 2019; 20:ijms20153767. [PMID: 31374856 PMCID: PMC6696478 DOI: 10.3390/ijms20153767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 01/25/2023] Open
Abstract
The pregnane X receptor (PXR) is the main nuclear receptor regulating the expression of xenobiotic-metabolizing enzymes and is highly expressed in the liver and intestine. Recent studies have highlighted its additional role in lipid homeostasis, however, the mechanisms of these regulations are not fully elucidated. We investigated the transcriptomic signature of PXR activation in the liver of adult wild-type vs. Pxr-/- C57Bl6/J male mice treated with the rodent specific ligand pregnenolone 16α-carbonitrile (PCN). PXR activation increased liver triglyceride accumulation and significantly regulated the expression of 1215 genes, mostly xenobiotic-metabolizing enzymes. Among the down-regulated genes, we identified a strong peroxisome proliferator-activated receptor α (PPARα) signature. Comparison of this signature with a list of fasting-induced PPARα target genes confirmed that PXR activation decreased the expression of more than 25 PPARα target genes, among which was the hepatokine fibroblast growth factor 21 (Fgf21). PXR activation abolished plasmatic levels of FGF21. We provide a comprehensive signature of PXR activation in the liver and identify new PXR target genes that might be involved in the steatogenic effect of PXR. Moreover, we show that PXR activation down-regulates hepatic PPARα activity and FGF21 circulation, which could participate in the pleiotropic role of PXR in energy homeostasis.
Collapse
Affiliation(s)
- Sharon Ann Barretto
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Frédéric Lasserre
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Anne Fougerat
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Lorraine Smith
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Tiffany Fougeray
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Céline Lukowicz
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Arnaud Polizzi
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Sarra Smati
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Marion Régnier
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Claire Naylies
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Colette Bétoulières
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Yannick Lippi
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Hervé Guillou
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Nicolas Loiseau
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Laurence Gamet-Payrastre
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Laila Mselli-Lakhal
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Sandrine Ellero-Simatos
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France.
| |
Collapse
|
249
|
Kemis JH, Linke V, Barrett KL, Boehm FJ, Traeger LL, Keller MP, Rabaglia ME, Schueler KL, Stapleton DS, Gatti DM, Churchill GA, Amador-Noguez D, Russell JD, Yandell BS, Broman KW, Coon JJ, Attie AD, Rey FE. Genetic determinants of gut microbiota composition and bile acid profiles in mice. PLoS Genet 2019; 15:e1008073. [PMID: 31465442 PMCID: PMC6715156 DOI: 10.1371/journal.pgen.1008073] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/14/2019] [Indexed: 02/03/2023] Open
Abstract
The microbial communities that inhabit the distal gut of humans and other mammals exhibit large inter-individual variation. While host genetics is a known factor that influences gut microbiota composition, the mechanisms underlying this variation remain largely unknown. Bile acids (BAs) are hormones that are produced by the host and chemically modified by gut bacteria. BAs serve as environmental cues and nutrients to microbes, but they can also have antibacterial effects. We hypothesized that host genetic variation in BA metabolism and homeostasis influence gut microbiota composition. To address this, we used the Diversity Outbred (DO) stock, a population of genetically distinct mice derived from eight founder strains. We characterized the fecal microbiota composition and plasma and cecal BA profiles from 400 DO mice maintained on a high-fat high-sucrose diet for ~22 weeks. Using quantitative trait locus (QTL) analysis, we identified several genomic regions associated with variations in both bacterial and BA profiles. Notably, we found overlapping QTL for Turicibacter sp. and plasma cholic acid, which mapped to a locus containing the gene for the ileal bile acid transporter, Slc10a2. Mediation analysis and subsequent follow-up validation experiments suggest that differences in Slc10a2 gene expression associated with the different strains influences levels of both traits and revealed novel interactions between Turicibacter and BAs. This work illustrates how systems genetics can be utilized to generate testable hypotheses and provide insight into host-microbe interactions.
Collapse
Affiliation(s)
- Julia H. Kemis
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Vanessa Linke
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Kelsey L. Barrett
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Frederick J. Boehm
- Department of Statistics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Lindsay L. Traeger
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Mary E. Rabaglia
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Kathryn L. Schueler
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Donald S. Stapleton
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Daniel M. Gatti
- Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Jason D. Russell
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Brian S. Yandell
- Department of Statistics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Karl W. Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Federico E. Rey
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
250
|
Zeng H, Lin Y, Gong J, Lin S, Gao J, Li C, Feng Z, Zhang H, Zhang J, Li Y, Yu C. CYP3A suppression during diet-induced nonalcoholic fatty liver disease is independent of PXR regulation. Chem Biol Interact 2019; 308:185-193. [PMID: 31132328 DOI: 10.1016/j.cbi.2019.05.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Cytochrome P450 3A (CYP3A) activity is inhibited, and its expression is suppressed during many diseases, including nonalcoholic fatty liver disease (NAFLD). However, the mechanism is controversial. Here, we report that PXR may not take part in the downregulation of CYP3A during NAFLD. Hepatic CYP3A11 (major subtype of mouse CYP3A) mRNA and protein expression was significantly decreased in both mice fed a high-fat diet (HFD) for 8 weeks and palmitate (PA)-treated mouse primary hepatocytes. Similarly, in HepG2 cells, PA treatment significantly suppressed the CYP3A4 (major subtype of human CYP3A) mRNA level and promoter transcription activity. However, Western blotting analysis found an induction of PXR nuclear translocation during NAFLD in both in vivo and in vitro models. Moreover, immunofluorescence determination also found nuclear translocation effect of PXR by PA stimulation in HepG2 cells. In addition, the siRNA knockdown of PXR did not affect the suppressive effects of PA on the CYP3A4 promoter transcription activity and mRNA levels in HepG2 cells. Similarly, PXR knockdown also did not affect the suppressive effects of PA on CYP3A11 mRNA and protein expression levels in mouse primary hepatoctyes. Taken together, the results showed that the suppressive effect of CYP3A transcription was independent of PXR regulation.
Collapse
Affiliation(s)
- Hang Zeng
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yiming Lin
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jiande Gong
- Department of Gastroenterology, Yinzhou People's Hospital, Ningbo, 315040, China
| | - Sisi Lin
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Jianguo Gao
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Chunxiao Li
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zemin Feng
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hong Zhang
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jie Zhang
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Youming Li
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Chaohui Yu
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|