201
|
Ijaz M, Nadeem N, Hamza A, Almutairi M, Atique U. Didymin protects against polystyrene nanoplastic-induced hepatic damage in male albino rats by modulation of Nrf-2/Keap-1 pathway. Braz J Med Biol Res 2024; 57:e13173. [PMID: 38265346 PMCID: PMC10802227 DOI: 10.1590/1414-431x2023e13173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024] Open
Abstract
Polystyrene nanoplastics (PS-NPs) are ubiquitous environmental pollutants that can cause oxidative stress in various organs, including the liver. Didymin is a dietary flavanone that displays multiple pharmacological activities. Therefore, the present study evaluated the palliative role of didymin against PS-NPs-induced hepatic damage in rats. Albino rats (n=48) were randomly distributed into 4 groups: control, PS-NPs treated group, PS-NPs + didymin co-administered group, and didymin supplemented group. After 30 days, PS-NPs intoxication lowered the expression of Nrf-2 and anti-oxidant genes [catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GSR), glutathione-S-transferase (GST), and heme oxygenase-1 (HO-1)], whereas the expression of KEAP1 kelch like ECH associated protein 1 (Keap-1) was increased. PS-NPs exposure also reduced the activities of anti-oxidants enzymes (CAT, SOD, GPx, GSR, GST, GSH, and OH-1), while malondialdehyde (MDA) and reactive oxygen species (ROS) levels were increased. The levels of alanine transaminase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were increased in PS-NPs-exposed rats. Moreover, inflammatory indices [interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), nuclear factor-kappa B (NF-κB), and cyclooxygenase-2 (COX-2)] were increased in PS-NPs-exposed rats. Furthermore, PS-NPs intoxication increased the expressions of apoptotic markers including Bax and Caspase-3, as well as reducing Bcl-2 expression. The histopathological analysis showed significant damage in PS-NPs-treated rats. However, didymin supplementation ameliorated all the PS-NPs-induced damage in the liver of rats. Therefore, it was concluded that didymin can act as a remedy against PS-NPs-induced liver toxicity due to its anti-apoptotic, anti-oxidant, and anti-inflammatory activities.
Collapse
Affiliation(s)
- M.U. Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - N. Nadeem
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - A. Hamza
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - M.H. Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - U. Atique
- College of Biological Systems, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
202
|
Garcia BREV, Makiyama EN, Sampaio GR, Soares-Freitas RAM, Bonvini A, Amaral AG, Bordin S, Fock RA, Rogero MM. Effects of Branched-Chain Amino Acids on the Inflammatory Response Induced by LPS in Caco-2 Cells. Metabolites 2024; 14:76. [PMID: 38276311 PMCID: PMC10821323 DOI: 10.3390/metabo14010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/09/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Branched-chain amino acids (BCAA) are essential for maintaining intestinal mucosal integrity. However, only a few studies have explored the role of BCAA in the modulation of intestinal inflammation. In this study, we investigated in vitro effects of BCAA on the inflammatory response induced by lipopolysaccharide (LPS) (1 µg/mL) in Caco-2 cells. Caco-2 cells were assigned to six groups: control without BCAA (CTL0), normal BCAA (CTL; 0.8 mM leucine, 0.8 mM isoleucine, and 0.8 mM valine); leucine (LEU; 2 mM leucine), isoleucine (ISO; 2 mM isoleucine), valine (VAL; 2 mM valine), and high BCAA (LIV; 2 mM leucine, 2 mM isoleucine, and 2 mM valine). BCAA was added to the culture medium 24 h before LPS stimulation. Our results indicated that BCAA supplementation did not impair cell viability. The amino acids leucine and isoleucine attenuated the synthesis of IL-8 and JNK and NF-kB phosphorylation induced by LPS. Furthermore, neither BCAA supplementation nor LPS treatment modulated the activity of glutathione peroxidase or the intracellular reduced glutathione/oxidized glutathione ratio. Therefore, leucine and isoleucine exert anti-inflammatory effects in Caco-2 cells exposed to LPS by modulating JNK and NF-kB phosphorylation and IL-8 production. Further in vivo studies are required to validate these findings and gather valuable information for potential therapeutic or dietary interventions.
Collapse
Affiliation(s)
- Bruna Ruschel Ewald Vega Garcia
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil; (B.R.E.V.G.); (G.R.S.); (R.A.M.S.-F.)
| | - Edson Naoto Makiyama
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (E.N.M.); (R.A.F.)
| | - Geni Rodrigues Sampaio
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil; (B.R.E.V.G.); (G.R.S.); (R.A.M.S.-F.)
| | | | - Andrea Bonvini
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, São Paulo 05508-000, Brazil;
| | - Andressa Godoy Amaral
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508-000, Brazil; (A.G.A.); (S.B.)
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508-000, Brazil; (A.G.A.); (S.B.)
| | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (E.N.M.); (R.A.F.)
| | - Marcelo Macedo Rogero
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil; (B.R.E.V.G.); (G.R.S.); (R.A.M.S.-F.)
- Food Research Center (FoRC), CEPID-FAPESP (Research Innovation and Dissemination Centers São Paulo Research Foundation), São Paulo 05508-000, Brazil
| |
Collapse
|
203
|
Abdel-Latif MA, El-Hamid HSA, Emam M, Noreldin AE, Helmy YA, El-Far AH, Elbestawy AR. Dietary lysozyme and avilamycin modulate gut health, immunity, and growth rate in broilers. BMC Vet Res 2024; 20:28. [PMID: 38245745 PMCID: PMC10799510 DOI: 10.1186/s12917-023-03871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Attempts to use dietary lysozyme (LYZ) as an alternative to antibiotics in broilers have been successful, but further research is needed for effective use. Here, we compared the differences between LYZ and avilamycin (AVI) feed additives for growth performance, gut health and immunity of broilers. One-day old, one hundred and twenty broiler chicks (Ross 308) were randomly allocated into three groups consisting forty birds in each group. Standard diet without supplementation was applied as the control group (I), while the chicks of the other groups were supplemented with 100 mg of AVI per kg diet (AVI, group II), and 90 mg LYZ per kg diet (LYZ, group III) for five consecutive weeks. RESULTS Body weight, feed conversion ratio, body weight gain, and European production efficiency factor were markedly (p < 0.05) increased in both AVI and LYZ groups in relation to CON group, but the feed intake and protein efficiency ratio were not affected. Both AVI and LYZ significantly (p < 0.001) upregulated the mRNA expression of ileal interleukin-18 (IL-18), interferon-gamma (IFN-γ), and interleukin-10 (IL-10), interleukin-2 (IL-2), and glutathione peroxidase (GSH-PX) genes compared to CON group. However, IL-2, IL-10, IL-18, and GSH-PX genes were markedly (p < 0.01) upregulated in LYZ compared to the AVI group. LYZ treated group had a significant increase (p < 0.05) in the serological haemagglutination inhibition titers of H5N1 vaccination and a significant decrease (p < 0.0001) in coliform counts compared to control and AVI groups, but all growth parameters were nearly similar between AVI and LYZ groups. The VH and VH/CD were markedly higher in LYZ than AVI and control groups. CONCLUSION Exogenous dietary lysozyme supplementation by a dose of 90 mg/kg broilers' diet induced better effects on intestinal integrity, fecal bacterial counts, immune response, and growth performance which were comparable to avilamycin. Therefore, dietary lysozyme could safely replace avilamycin in the broiler chickens' diet. However, further experimental studies regarding the use of lysozyme in commercial broilers, both in vitro and in vivo, targeting more communities of intestinal microbiome and explaining more details about its beneficial effects need to be conducted.
Collapse
Affiliation(s)
- Mervat A Abdel-Latif
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| | - Hatem S Abd El-Hamid
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Mohamed Emam
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Yosra A Helmy
- Department of Animal Hygiene, Zoonoses and Animal Ethology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Ahmed R Elbestawy
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| |
Collapse
|
204
|
Silva FDD, Galiciolli MEDA, Irioda AC, Oliveira CS, Piccoli BC, Prestes ADS, Borin BC, Schuch AP, Ochoa-Rodríguez E, Nuñez-Figueredo Y, Rocha JBTD. Investigation of the cytotoxicity, genotoxicity and antioxidant prospects of JM-20 on human blood cells: A multi-target compound with potential therapeutic applications. Blood Cells Mol Dis 2024; 106:102827. [PMID: 38301450 DOI: 10.1016/j.bcmd.2024.102827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
JM-20 is a 1,5-benzodiazepine compound fused to a dihydropyridine fraction with different pharmacological properties. However, its potential toxic effects on blood cells have not yet been reported. Thus, the present study aimed to investigate, for the first time, the possible cytotoxicity of JM-20 through cell viability, cell cycle, morphology changes, reactive species (RS) to DCFH-DA, and lipid peroxidation in human leukocytes, its hemolytic effect on human erythrocytes, and its potential DNA genotoxicity using plasmid DNA in vitro. Furthermore, the compound's ability to reduce the DPPH radical was also measured. Human blood was obtained from healthy volunteers (30 ± 10 years old), and the leukocytes or erythrocytes were immediately isolated and treated with different concentrations of JM-20. A cytoprotective effect was exhibited by 10 μM JM-20 against 1 mM tert-butyl hydroperoxide (t-but-OOH) in the leukocytes. However, the highest tested concentrations of the compound (20 and 50 μM) changed the morphology and caused a significant decrease in the cell viability of leukocytes (p < 0.05, in comparison with Control). All tested concentrations of JM-20 also resulted in a significant increase in intracellular RS as measured by DCFH-DA in these cells (p < 0.05, in comparison with Control). On the other hand, the results point out a potent antioxidant effect of JM-20, which was similar to the classical antioxidant α-tocopherol. The IC50 value of JM-20 against the lipid peroxidation induced by (FeII) was 1.051 μM ± 0.21, while the IC50 value of α-tocopherol in this parameter was 1.065 μM ± 0.34. Additionally, 50 and 100 μM JM-20 reduced the DPPH radical in a statistically similar way to the 100 μM α-tocopherol (p < 0.05, in comparison with the control). No significant hemolysis in erythrocytes, no cell cycle changes in leukocytes, and no genotoxic effects in plasmid DNA were induced by JM-20 at any tested concentration. The in silico pharmacokinetic and toxicological properties of JM-20, derivatives, and nifedipine were also studied. Here, our findings demonstrate that JM-20 and its putative metabolites exhibit similar characteristics to nifedipine, and the in vitro and in silico data support the low toxicity of JM-20 to mammals.
Collapse
Affiliation(s)
- Fernanda D'Avila da Silva
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Maria Eduarda de Andrade Galiciolli
- Programa de Pós-Graduação Stricto Sensu em Biotecnologia Aplicada a Saúde da Criança e do Adolescente, Instituto de Pesquisa Pelé Pequeno Príncipe, Rua Silva Jardim, 1632 Curitiba, Paraná, Brazil; Faculdade Pequeno Príncipe, Avenida Iguaçu, 333 Curitiba, Paraná, Brazil
| | - Ana Carolina Irioda
- Programa de Pós-Graduação Stricto Sensu em Biotecnologia Aplicada a Saúde da Criança e do Adolescente, Instituto de Pesquisa Pelé Pequeno Príncipe, Rua Silva Jardim, 1632 Curitiba, Paraná, Brazil; Faculdade Pequeno Príncipe, Avenida Iguaçu, 333 Curitiba, Paraná, Brazil
| | - Cláudia Sirlene Oliveira
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil; Programa de Pós-Graduação Stricto Sensu em Biotecnologia Aplicada a Saúde da Criança e do Adolescente, Instituto de Pesquisa Pelé Pequeno Príncipe, Rua Silva Jardim, 1632 Curitiba, Paraná, Brazil; Faculdade Pequeno Príncipe, Avenida Iguaçu, 333 Curitiba, Paraná, Brazil
| | - Bruna Candia Piccoli
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Alessandro de Souza Prestes
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Bruna Cogo Borin
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Andre Passaglia Schuch
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Estael Ochoa-Rodríguez
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, N° 1605,e /Boyeros y Puentes Grandes, CP10600 La Habana, Cuba
| | - Yanier Nuñez-Figueredo
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, N° 1605,e /Boyeros y Puentes Grandes, CP10600 La Habana, Cuba
| | - João Batista Teixeira da Rocha
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
205
|
Chen T, Jiang H, He Y, Shen Y, Fang J, Huang Z, Shen Y, Chen X. Histopathological, physiological, and multi-omics insights into the hepatotoxicity mechanism of nanopolystyrene and/or diclofenac in Mylopharyngodon piceus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122894. [PMID: 37944890 DOI: 10.1016/j.envpol.2023.122894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/08/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Nanopolystyrene (NP) and diclofenac (DCF) are common environmental contaminants in the aquatic ecosystem; therefore, the present study aimed to investigate the hepatotoxicity of NP and/or DCF exposure on aquatic organisms and the underlying mechanisms. Juvenile Mylopharyngodon piceus were used as a model organism to study the effects of NP and/or DCF exposure at environmentally relevant concentrations for 21 days. Subchronic exposure to NP and/or DCF resulted in liver histological damage. In the NP group, the presence of large lipid droplets was observed, whereas the DCF group exhibited marked hepatic sinusoidal dilatation accompanied by inflammation. Additionally, this exposure induced liver oxidative stress, as evidenced by the changes in several physiological parameters, including catalase (CAT), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), reactive oxygen species (ROS), and malondialdehyde (MDA). Integrated transcriptomic and metabolomic analysis was performed to further investigate the molecular mechanism underlying hepatotoxicity. Multi-omics analysis demonstrated, for the first time to our knowledge, that NP induced hepatic steatosis mainly through activating the glycerol-3-phosphate pathway and inhibiting VLDL assembly by targeting several key enzyme genes including GPAT, DGAT, ACSL, APOB, and MTTP. Furthermore, NP exposure disrupted arachidonic acid metabolism, which induced the release of inflammatory factors and inhibited the release of anti-inflammatory factors, ultimately causing liver inflammation in M. piceus. In contrast, DCF induced interleukin production and downregulated KLF2, causing hepatic sinusoidal dilatation with inflammation in juvenile M. piceus, which is consistent with the finding of JAK-STAT signaling pathway activation. In addition, the upregulated AMPK signaling pathway in the DCF group suggested perturbation of energy metabolism. Collectively, these findings provide novel insights into the molecular mechanism of the multiple hepatotoxicity endpoints of NP and/or DCF exposure in aquatic organisms.
Collapse
Affiliation(s)
- Tiantian Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hewei Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaoji He
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yawei Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiajie Fang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zequn Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yubang Shen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaowu Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
206
|
Raghuram GV, Tripathy BK, Avadhani K, Shabrish S, Khare NK, Lopes R, Pal K, Mittra I. Cell-free chromatin particles released from dying cells inflict mitochondrial damage and ROS production in living cells. Cell Death Discov 2024; 10:30. [PMID: 38225229 PMCID: PMC10789803 DOI: 10.1038/s41420-023-01728-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 01/17/2024] Open
Abstract
Mitochondrial damage and the resultant oxidative stress are associated with neurodegenerative diseases, ageing, and cancer. However, the triggers of mitochondrial damage remain unclear. We previously reported that cell-free chromatin particles (cfChPs) released from the billions of cells that die in the body every day can readily enter healthy cells and damage their DNA. Here, we show that cfChPs isolated from the sera of healthy individuals, when applied to NIH3T3 mouse fibroblast cells, cause physical damage to mitochondrial DNA (mtDNA). cfChPs also induce ultrastructural changes, increase mitochondrial mass, alter mitochondrial shape, upregulate mitochondrial outer membrane protein translocase of the outer membrane 20, and change mitochondrial membrane potential. Furthermore, a marked increase was observed in mitochondrial superoxide (ROS) production, as detected by MitoSOX Red, and intracellular superoxide dismutase-1 activation. ROS production was also activated when a conditioned medium containing cfChPs released from hypoxia-induced dying NIH3T3 cells was applied to healthy NIH3T3 cells. ROS activation was significantly reduced when the conditioned medium was pre-treated with three different cfChP-deactivating agents: anti-histone antibody-complexed nanoparticles, DNase I, and the novel pro-oxidant combination of the nutraceuticals resveratrol and copper. Given that 1 × 109-1 × 1012 cells die in the body every day, we hypothesise that cfChPs from dying cells are the major physiological triggers for mtDNA damage and ROS production. Deactivation of cfChPs may provide a novel therapeutic approach to retard ageing and associated degenerative conditions linked to oxidative stress.
Collapse
Affiliation(s)
- Gorantla V Raghuram
- Translational Research Laboratory Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Bhabesh Kumar Tripathy
- Translational Research Laboratory Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Kartikeya Avadhani
- Translational Research Laboratory Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Snehal Shabrish
- Translational Research Laboratory Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Naveen Kumar Khare
- Translational Research Laboratory Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Relestina Lopes
- Translational Research Laboratory Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Kavita Pal
- Translational Research Laboratory Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Indraneel Mittra
- Translational Research Laboratory Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India.
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
207
|
Kunjiappan S, Ramasamy LK, Kannan S, Pavadai P, Theivendren P, Palanisamy P. Optimization of ultrasound-aided extraction of bioactive ingredients from Vitis vinifera seeds using RSM and ANFIS modeling with machine learning algorithm. Sci Rep 2024; 14:1219. [PMID: 38216594 PMCID: PMC10786918 DOI: 10.1038/s41598-023-49839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024] Open
Abstract
Plant materials are a rich source of polyphenolic compounds with interesting health-beneficial effects. The present study aimed to determine the optimized condition for maximum extraction of polyphenols from grape seeds through RSM (response surface methodology), ANFIS (adaptive neuro-fuzzy inference system), and machine learning (ML) algorithm models. Effect of five independent variables and their ranges, particle size (X1: 0.5-1 mm), methanol concentration (X2: 60-70% in distilled water), ultrasound exposure time (X3: 18-28 min), temperature (X4: 35-45 °C), and ultrasound intensity (X5: 65-75 W cm-2) at five levels (- 2, - 1, 0, + 1, and + 2) concerning dependent variables, total phenolic content (y1; TPC), total flavonoid content (y2; TFC), 2, 2-diphenyl-1-picrylhydrazyl free radicals scavenging (y3; %DPPH*sc), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) free radicals scavenging (y4; %ABTS*sc) and Ferric ion reducing antioxidant potential (y5; FRAP) were selected. The optimized condition was observed at X1 = 0.155 mm, X2 = 65% methanol in water, X3 = 23 min ultrasound exposure time, X4 = 40 °C, and X5 = 70 W cm-2 ultrasound intensity. Under this situation, the optimal yields of TPC, TFC, and antioxidant scavenging potential were achieved to be 670.32 mg GAE/g, 451.45 mg RE/g, 81.23% DPPH*sc, 77.39% ABTS*sc and 71.55 μg mol (Fe(II))/g FRAP. This optimal condition yielded equal experimental and expected values. A well-fitted quadratic model was recommended. Furthermore, the validated extraction parameters were optimized and compared using the ANFIS and random forest regressor-ML algorithm. Gas chromatography-mass spectroscopy (GC-MS) and liquid chromatography-mass spectroscopy (LC-MS) analyses were performed to find the existence of the bioactive compounds in the optimized extract.
Collapse
Affiliation(s)
- Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, 626126, India.
| | - Lokesh Kumar Ramasamy
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Suthendran Kannan
- Department of Information Technology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, 626126, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, 560054, India
| | - Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Tiruchengode, Tamilnadu, 637205, India
| | - Ponnusamy Palanisamy
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
208
|
Dash UC, Swain SK, Jena AB, Dandapat J, Sahoo AK. The ameliorative effect of Piper trioicum in attenuating cognitive deficit in scopolamine induced neurotoxicity in experimental rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116911. [PMID: 37451488 DOI: 10.1016/j.jep.2023.116911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional system of medicine, Piper species, or its components are widely used to treat many diseases including memory improvement. One of the wild species Piper trioicum Roxb. (Piperaceae) is found in South Asian countries. The whole plant is used as folk medicine to improve memory. AIM OF THE STUDY To our knowledge, no previous research has investigated the neuroprotective activities of P. trioicum. So, we studied the ameliorative effect of P. trioicum in attenuating cognitive deficit in scopolamine induced neurotoxicity in experimental rats. MATERIALS AND METHODS Wistar rats were exposed to scopolamine (3 mg/kg, i. p.) for 14 consecutive days, and the effect of P. trioicum (HAPT; oral, 300, 400 mg/kg) on scopolamine-invoked neurotoxicity in brain were studied. During the experimental period, behaviour analyses of rats were observed 30 min post-drug administration. The role of antioxidants of HAPT in scavenging cellular oxygen/peroxyl radicals were studied. Acetylcholinesterase and butyrylcholinesterase inhibitions, and mode of inhibition kinetics of HAPT were studied. Pathogenic cellular oxidative (MDA, GSH, SOD, and CAT), DNA damage (8-oxodG), neurochemical (acetyl- and, butyryl-cholinesterase), β-secretase (BACE-1 and 2), MAPτ, and neuroinflammation (IL-6, TNF-α) biomarkers in extension to the histopathological observation of brain cortex were studied. GC-MS/MS analysis was carried out to investigate the presence of bioactive constituents in HAPT. RESULTS HAPT, a rich source of phenol and flavonoid type antioxidants were responsible in quenching oxygen/peroxyl radicals and protected the cellular membrane, and lipoproteins against ROS in DPPH, ORAC, and CAPe tests. HAPT inhibited acetylcholinesterase and butyrylcholinesterase activities, and showed competitive-inhibition (reversible) towards cholinesterase activities. HAPT-400 significantly improved the learning and memory-impairment by restoring oxidative MDA, GSH, SOD, CAT, and DNA damage (8-oxodG) markers of serum, and cortex. It also improved acetyl- and, butyryl-cholinesterase, β-secretase, and MAPτ level in brain by restoring proinflammatory cytokines IL-6, and TNF-α indicators in neurotoxic rats. GC-MS/MS reported therapeutic significance active compounds were molecular-docked towards target proteins, found that proscillaridin showed the highest affinity towards AChE, BuChE, BACE1, and BACE2 with binding energy of ΔGb -9.1, ΔGb -10.2, ΔGb -11.4 and ΔGb -11.5 Kcal/mol, respectively. Cymarin and morphine-3-glucuronide showed the second highest binding affinity towards AChE (ΔGb -8.8) and BuChE (ΔGb -10.0), respectively. In BACE-1, betulin showed the second highest binding affinity ΔGb -10.7 Kcal/mol and in BACE-2, morphine-3-glucuronide showed the second highest binding affinity ΔGb -9.8 Kcal/mol. CONCLUSIONS Synergistic impact of proscillaridin, Cymarin, morphine-3-glucuronide, betulin like compounds in HAPT improved memory impairment, healing of tissue architecture of cortex with the restoration of neurochemical, neuroinflammation, and oxidative indicators in neurotoxic rats.
Collapse
Affiliation(s)
- Umesh Chandra Dash
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Sandeep Kumar Swain
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Atala Bihari Jena
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, 751004, India
| | - Jagneshwar Dandapat
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, 751004, India
| | - Atish Kumar Sahoo
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India.
| |
Collapse
|
209
|
Mararajah S, Giribabu N, Salleh N. Chlorophytum borivilianum aqueous root extract prevents deterioration of testicular function in mice and preserves human sperm function in hydrogen peroxide (H 2O 2)-induced oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117026. [PMID: 37572930 DOI: 10.1016/j.jep.2023.117026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chlorophytum borivilianum (C. borivilianum) (CB) has traditionally been used to treat male sexual dysfunctions and has been claimed to possess aphrodisiac properties. AIM OF THE STUDY To investigate the ability of CB to ameliorate H2O2-induced oxidative stress in testes and sperm in mice and prevent H2O2-induced oxidative in human sperm. MATERIALS AND METHODS Oxidative stress was induced in male mice by pre-exposure to 2% H2O2 orally for seven consecutive days, followed by 100 and 200 mg/kg b. w. administration. CB for another seven days. At the end of treatment, mice were sacrificed and testes and epididymal sperm were harvested. Serum FSH, LH and testosterone levels were measured and sperm parameters were obtained. Meanwhile, oxidative stress levels in mice testes and sperm, steroidogenesis and spermatogenesis markers in mice testes were assessed by molecular biological techniques. In another experiment, sperm from thirty-two healthy fertile men were incubated with 200 μM H2O2 and CB (100 and 200 μg/ml) simultaneously and were then evaluated for sperm parameter changes. RESULTS In mice, CB administration ameliorates persistent increases in oxidative stress and decreases in anti-oxidative enzyme levels in testes and sperm following H2O2 pre-exposure. Additionally, CB also helps to ameliorate deterioration in sperm parameters and testicular steroidogenesis and spermatogenesis and restores the serum FSH, LH and testosterone levels near normal in mice. In humans, CB helps to prevent deterioration in sperm parameters following H2O2 exposure. CONCLUSION CB is potentially useful to preserve the male reproductive capability and subsequently male fertility in high oxidative stress conditions.
Collapse
Affiliation(s)
- Selvakumar Mararajah
- Department of Physiology, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia; Centre for Natural Products and Drug Discovery (CENAR), Faculty of Science, University Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia; Centre for Natural Products and Drug Discovery (CENAR), Faculty of Science, University Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
210
|
Mattos LMM, Hottum HM, Pires DC, Segat BB, Horn A, Fernandes C, Pereira MD. Exploring the antioxidant activity of Fe(III), Mn(III)Mn(II), and Cu(II) compounds in Saccharomyces cerevisiae and Galleria mellonella models of study. FEMS Yeast Res 2024; 24:foad052. [PMID: 38124682 PMCID: PMC10776354 DOI: 10.1093/femsyr/foad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/19/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
Reactive oxygen species (ROS) are closely related to oxidative stress, aging, and the onset of human diseases. To mitigate ROS-induced damages, extensive research has focused on examining the antioxidative attributes of various synthetic/natural substances. Coordination compounds serving as synthetic antioxidants have emerged as a promising approach to attenuate ROS toxicity. Herein, we investigated the antioxidant potential of a series of Fe(III) (1), Mn(III)Mn(II) (2) and Cu(II) (3) coordination compounds synthesized with the ligand N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)[(3-chloro)(2-hydroxy)]-propylamine in Saccharomyces cerevisiae exposed to oxidative stress. We also assessed the antioxidant potential of these complexes in the alternative model of study, Galleria mellonella. DPPH analysis indicated that these complexes presented moderate antioxidant activity. However, treating Saccharomyces cerevisiae with 1, 2 and 3 increased the tolerance against oxidative stress and extended yeast lifespan. The treatment of yeast cells with these complexes decreased lipid peroxidation and catalase activity in stressed cells, whilst no change in SOD activity was observed. Moreover, these complexes induced the Hsp104 expression. In G. mellonella, complex administration extended larval survival under H2O2 stress and did not affect the insect's life cycle. Our results suggest that the antioxidant potential exhibited by these complexes could be further explored to mitigate various oxidative stress-related disorders.
Collapse
Affiliation(s)
- Larissa M M Mattos
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, RJ, Brazil
- Rede de Micologia RJ - FAPERJ
| | - Hyan M Hottum
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, RJ, Brazil
- Rede de Micologia RJ - FAPERJ
| | - Daniele C Pires
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, RJ, Brazil
- Rede de Micologia RJ - FAPERJ
| | - Bruna B Segat
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Adolfo Horn
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Christiane Fernandes
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Marcos D Pereira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, RJ, Brazil
- Rede de Micologia RJ - FAPERJ
| |
Collapse
|
211
|
Yadav A, Singh S, Yadav V. Screening herbal extracts as biostimulant to increase germination, plant growth and secondary metabolite production in wheatgrass. Sci Rep 2024; 14:607. [PMID: 38182633 PMCID: PMC10770375 DOI: 10.1038/s41598-023-50513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024] Open
Abstract
Recently it has been recognized that herbal plants contain endogenous molecules with biostimulant properties, capable of inducing morphological and biochemical changes in crop plants. Therefore, the present experiment was conducted to screen herbal samples for their plant growth promoting properties. Twenty-five herbal extracts were tested for their biostimulating activity on wheat crop (Triticum aestivum) through seed priming. Morphological parameters chosen for evaluation include: percent seed germination, length and weight of seedling, wheat grass length and biomass. Biochemical parameters include: total phenolic and flavonoid, enzymatic activity of catalase and phenylalanine ammonium lyase and antioxidant activity. Results indicated an increase in the tested parameters by the extracts, however the biostimulant property varied between the selected herbal samples. Some of the samples, such as Phyllanthus emblica, Plumbago zeylanica, Catharanthus roseus and Baccopa monnieri, were highly effective in inducing plant growth promoting parameters. Principal component analysis was performed and herbal samples were grouped into categories based on their activity.
Collapse
Affiliation(s)
- Anjali Yadav
- Department of Botany, MMV, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Shachi Singh
- Department of Botany, MMV, Banaras Hindu University, Varanasi, UP, 221005, India.
| | - Vidushi Yadav
- Bioinformatics, MMV, Banaras Hindu University, Varanasi, UP, 221005, India
| |
Collapse
|
212
|
Perez-Araluce M, Jüngst T, Sanmartin C, Prosper F, Plano D, Mazo MM. Biomaterials-Based Antioxidant Strategies for the Treatment of Oxidative Stress Diseases. Biomimetics (Basel) 2024; 9:23. [PMID: 38248597 PMCID: PMC10813727 DOI: 10.3390/biomimetics9010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Oxidative stress is characterized by an increase in reactive oxygen species or a decrease in antioxidants in the body. This imbalance leads to detrimental effects, including inflammation and multiple chronic diseases, ranging from impaired wound healing to highly impacting pathologies in the neural and cardiovascular systems, or the bone, amongst others. However, supplying compounds with antioxidant activity is hampered by their low bioavailability. The development of biomaterials with antioxidant capacity is poised to overcome this roadblock. Moreover, in the treatment of chronic inflammation, material-based strategies would allow the controlled and targeted release of antioxidants into the affected tissue. In this review, we revise the main causes and effects of oxidative stress, and survey antioxidant biomaterials used for the treatment of chronic wounds, neurodegenerative diseases, cardiovascular diseases (focusing on cardiac infarction, myocardial ischemia-reperfusion injury and atherosclerosis) and osteoporosis. We anticipate that these developments will lead to the emergence of new technologies for tissue engineering, control of oxidative stress and prevention of diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Maria Perez-Araluce
- Biomedical Engineering Program, Enabling Technologies Division, CIMA Universidad de Navarra, 31008 Pamplona, Spain;
| | - Tomasz Jüngst
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, D-97070 Würzburg, Germany
- Bavarian Polymer Institute, University of Bayreuth, 95447 Bayreuth, Germany
| | - Carmen Sanmartin
- Department of Pharmaceutical Science, Universidad de Navarra, 31008 Pamplona, Spain;
| | - Felipe Prosper
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC) CB16/12/00489, 28029 Madrid, Spain
- Hemato-Oncology Program, Cancer Division, CIMA Universidad de Navarra, 31008 Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Science, Universidad de Navarra, 31008 Pamplona, Spain;
| | - Manuel M. Mazo
- Biomedical Engineering Program, Enabling Technologies Division, CIMA Universidad de Navarra, 31008 Pamplona, Spain;
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| |
Collapse
|
213
|
Beegam S, Al-Salam S, Zaaba NE, Elzaki O, Ali BH, Nemmar A. Effects of Waterpipe Smoke Exposure on Experimentally Induced Chronic Kidney Disease in Mice. Int J Mol Sci 2024; 25:585. [PMID: 38203756 PMCID: PMC10778784 DOI: 10.3390/ijms25010585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Tobacco smoking is an independent risk factor in the onset of kidney disease. To date, there have been no reports on the influence of waterpipe smoke (WPS) in experimentally induced chronic kidney disease (CKD) models. We studied the effects and mechanisms of actions of WPS on a mouse model of adenine-induced CKD. Mice fed either a normal diet, or an adenine-added diet and were exposed to either air or WPS (30 min/day and 5 days/week) for four consecutive weeks. Plasma creatinine, urea and indoxyl sulfate increased and creatinine clearance decreased in adenine + WPS versus either WPS or adenine + saline groups. The urinary concentrations of kidney injury molecule-1 and adiponectin and the activities of neutrophil gelatinase-associated lipocalin and N-acetyl-β-D-glucosaminidase were augmented in adenine + WPS compared with either adenine + air or WPS groups. In the kidney tissue, several markers of oxidative stress and inflammation were higher in adenine + WPS than in either adenine + air or WPS groups. Compared with the controls, WPS inhalation in mice with CKD increased DNA damage, and urinary concentration of 8-hydroxy-2-deoxyguanosine. Furthermore, the expressions of nuclear factor κB (NF-κB) and mitogen-activated protein kinases (MAPKs) (ERK and p38) were elevated in the kidneys of adenine + WPS group, compared with the controls. Likewise, the kidneys of adenine + WPS group revealed more marked histological tubular injury, chronic inflammation and interstitial fibrosis. In conclusion, WPS inhalation aggravates kidney injury, oxidative stress, inflammation, DNA damage and fibrosis in mice with adenine-induced CKD, indicating that WPS exposure intensifies CKD. These effects were associated with a mechanism involving NF-κB, ERK and p38 activations.
Collapse
Affiliation(s)
- Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
| | | | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
214
|
Priyadarshini NP, Gopamma D, Srinivas N, Malla RR, Kumar KS. Particulate Matter and Its Impact on Macrophages: Unraveling the Cellular Response for Environmental Health. Crit Rev Oncog 2024; 29:33-42. [PMID: 38989736 DOI: 10.1615/critrevoncog.2024053305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Particulate matter (PM) imposes a significant impact to environmental health with deleterious effects on the human pulmonary and cardiovascular systems. Macrophages (Mφ), key immune cells in lung tissues, have a prominent role in responding to inhaled cells, accommodating inflammation, and influencing tissue repair processes. Elucidating the critical cellular responses of Mφ to PM exposure is essential to understand the mechanisms underlying PM-induced health effects. The present review aims to give a glimpse on literature about the PM interaction with Mφ, triggering the cellular events causing the inflammation, oxidative stress (OS) and tissue damage. The present paper reviews the different pathways involved in Mφ activation upon PM exposure, including phagocytosis, intracellular signaling cascades, and the release of pro-inflammatory mediators. Potential therapeutic strategies targeting Mφ-mediated responses to reduce PM-induced health effects are also discussed. Overall, unraveling the complex interplay between PM and Mφ sheds light on new avenues for environmental health research and promises to develop targeted interventions to reduce the burden of PM-related diseases on global health.
Collapse
Affiliation(s)
- Nyayapathi Priyanka Priyadarshini
- Department of Environmental Science, GITAM School of Science, GITAM Deemed to be University, Visakhapatnam, Andhra Pradesh 530045, India
| | - Daka Gopamma
- Department of Environmental Science, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Namuduri Srinivas
- Department of Environmental Science, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Kolli Suresh Kumar
- Department of Environmental Science, GITAM School of Science, GITAM Deemed to be University, Visakhapatnam, Andhra Pradesh 530045, India
| |
Collapse
|
215
|
Hussain Y, Abdullah, Khan F, Alam W, Sardar H, Khan MA, Shen X, Khan H. Role of Quercetin in DNA Repair: Possible Target to Combat Drug Resistance in Diabetes. Curr Drug Targets 2024; 25:670-682. [PMID: 38752634 DOI: 10.2174/0113894501302098240430164446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 10/03/2024]
Abstract
Diabetes Mellitus (DM) is referred to as hyperglycemia in either fasting or postprandial phases. Oxidative stress, which is defined by an excessive amount of reactive oxygen species (ROS) production, increased exposure to external stress, and an excessive amount of the cellular defense system against them, results in cellular damage. Increased DNA damage is one of the main causes of genomic instability, and genetic changes are an underlying factor in the emergence of cancer. Through covalent connections with DNA and proteins, quercetin has been demonstrated to offer protection against the creation of oxidative DNA damage. It has been found that quercetin shields DNA from possible oxidative stress-related harm by reducing the production of ROS. Therefore, Quercetin helps to lessen DNA damage and improve the ability of DNA repair mechanisms. This review mainly focuses on the role of quercetin in repairing DNA damage and compensating for drug resistance in diabetic patients. Data on the target topic was obtained from major scientific databases, including SpringerLink, Web of Science, Google Scholar, Medline Plus, PubMed, Science Direct, and Elsevier. In preclinical studies, quercetin guards against DNA deterioration by regulating the degree of lipid peroxidation and enhancing the antioxidant defense system. By reactivating antioxidant enzymes, decreasing ROS levels, and decreasing the levels of 8-hydroxydeoxyguanosine, Quercetin protects DNA from oxidative damage. In clinical studies, it was found that quercetin supplementation was related to increased antioxidant capacity and decreased risk of type 2 diabetes mellitus in the experimental group as compared to the placebo group. It is concluded that quercetin has a significant role in DNA repair in order to overcome drug resistance in diabetes.
Collapse
Affiliation(s)
- Yaseen Hussain
- Lab of Controlled Release and Drug Delivery System, College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, China
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Abdullah
- Department of Pharmacy, University of Malakand, Chakdara 18800, Pakistan
| | - Fazlullah Khan
- Faculty of Pharmacy, Capital University of Science & Technology, Islamabad 44000, Pakistan
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Haseeba Sardar
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Muhammad Ajmal Khan
- Division of Life Sciences, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong
| | - Xiaoyan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
216
|
Ramakrishnan P, Joshi A, Fazil M, Yadav P. A comprehensive review on therapeutic potentials of photobiomodulation for neurodegenerative disorders. Life Sci 2024; 336:122334. [PMID: 38061535 DOI: 10.1016/j.lfs.2023.122334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
A series of experimental trials over the past two centuries has put forth Photobiomodulation (PBM) as a treatment modality that utilizes colored lights for various conditions. While in its cradle, PBM was used for treating simple conditions such as burns and wounds, advancements in recent years have extended the use of PBM for treating complex neurodegenerative diseases (NDDs). PBM has exhibited the potential to curb several symptoms and signs associated with NDDs. While several of the currently used therapeutics cause adverse side effects alongside being highly invasive, PBM on the contrary, seems to be broad-acting, less toxic, and non-invasive. Despite being projected as an ideal therapeutic for NDDs, PBM still isn't considered a mainstream treatment modality due to some of the challenges and knowledge gaps associated with it. Here, we review the advantages of PBM summarized above with an emphasis on the common mechanisms that underlie major NDDs and how PBM helps tackle them. We also discuss important questions such as whether PBM should be considered a mainstay treatment modality for these conditions and if PBM's properties can be harnessed to develop prophylactic therapies for high-risk individuals and also highlight important animal studies that underscore the importance of PBM and the challenges associated with it. Overall, this review is intended to bring the major advances made in the field to the spotlight alongside addressing the practicalities and caveats to develop PBM as a major therapeutic for NDDs.
Collapse
Affiliation(s)
- Pooja Ramakrishnan
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| | - Aradhana Joshi
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| | - Mohamed Fazil
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India; School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India
| | - Pankaj Yadav
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
217
|
Song X, Wang L, Liu M, Pan R, Song J, Kong J. Atractylenolide II ameliorates myocardial fibrosis and oxidative stress in spontaneous hypertension rats. Technol Health Care 2024; 32:131-142. [PMID: 37483026 DOI: 10.3233/thc-220601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
BACKGROUND Hypertension is a well-recognized risk factor for cardiovascular, which is also a critical factor in causing myocardial fibrosis (MF). OBJECTIVE The study aimed to explore the effect of Atractylenolide II (ATL-II) on MF and oxidative stress in spontaneous hypertension rats (SHR). METHODS The body weight of rats after injection of ATL-II was quantitatively analyzed. The left ventricular function of SHR was evaluated by Echocardiographic. HE staining, Masson trichrome staining, left ventricular mass index (LVMI) and immunofluorescence was applied to investigate the effects of ATL-II on MF. RT qPCR was used to detect the Collagen I, α-SMA, Fibronectin, and Vimentin mRNA expression levels in myocardial slices. The effect ATL-II on cardiomyocyte apoptosis was detected by TUNEL staining and western blot. An immunohistochemistry assay was conducted to detect α-SMA protein and TGF-β1 protein. The contents of H2O2, GSH-PX, SOD, and MDA were measured by colorimetry. RESULTS ATL-II could dose-dependently improve the BW of SHRs (P< 0.05) and enhance myocardial function. Moreover, ATL-II effectively reduced cardiomyocyte apoptosis in SHRs. Alternatively, ATL-II could inhibit the Collagen I, α-SMA, Fibronectin, and Vimentin mRNA and protein expression levels in SHRs. ATL-II could ameliorate oxidative stress by improving the activities of SOD and GSH-PX and lowering the contents of H2O2 and MDA in ATL-II-treated SHRs, which reach about 80%. CONCLUSION ATL-II could exert an inhibiting effect on MF and oxidative stress in SHRs. Hence, ATL-II may hold promise for the treatment of MF and oxidative stress in Spontaneous Hypertension.
Collapse
Affiliation(s)
- Xiaolong Song
- Department of Cardiology, Yancheng Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
| | - Lei Wang
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Min Liu
- Department of Integrated Traditional and Western Medicine, The Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Renyou Pan
- Department of Cardiology, Yancheng Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
| | - Jun Song
- Department of Cardiology, Yancheng Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
| | - Junhong Kong
- Department of Treating disease center, Changzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, China
| |
Collapse
|
218
|
Fanfarillo F, Ferraguti G, Lucarelli M, Francati S, Barbato C, Minni A, Ceccanti M, Tarani L, Petrella C, Fiore M. The Impact of ROS and NGF in the Gliomagenesis and their Emerging Implications in the Glioma Treatment. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:449-462. [PMID: 37016521 DOI: 10.2174/1871527322666230403105438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/19/2022] [Accepted: 02/01/2023] [Indexed: 04/06/2023]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules derived from molecular oxygen (O2). ROS sources can be endogenous, such as cellular organelles and inflammatory cells, or exogenous, such as ionizing radiation, alcohol, food, tobacco, chemotherapeutical agents and infectious agents. Oxidative stress results in damage of several cellular structures (lipids, proteins, lipoproteins, and DNA) and is implicated in various disease states such as atherosclerosis, diabetes, cancer, neurodegeneration, and aging. A large body of studies showed that ROS plays an important role in carcinogenesis. Indeed, increased production of ROS causes accumulation in DNA damage leading to tumorigenesis. Various investigations demonstrated the involvement of ROS in gliomagenesis. The most common type of primary intracranial tumor in adults is represented by glioma. Furthermore, there is growing attention on the role of the Nerve Growth Factor (NGF) in brain tumor pathogenesis. NGF is a growth factor belonging to the family of neurotrophins. It is involved in neuronal differentiation, proliferation and survival. Studies were conducted to investigate NGF pathogenesis's role as a pro- or anti-tumoral factor in brain tumors. It has been observed that NGF can induce both differentiation and proliferation in cells. The involvement of NGF in the pathogenesis of brain tumors leads to the hypothesis of a possible implication of NGF in new therapeutic strategies. Recent studies have focused on the role of neurotrophin receptors as potential targets in glioma therapy. This review provides an updated overview of the role of ROS and NGF in gliomagenesis and their emerging role in glioma treatment.
Collapse
Affiliation(s)
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Antonio Minni
- Department of Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell'Alcolismo e le sue Complicanze, Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| |
Collapse
|
219
|
Singh K, Gupta JK, Sethi P, Mathew S, Bhatt A, Sharma MC, Saha S, Shamim, Kumar S. Recent Advances in the Synthesis of Antioxidant Derivatives: Pharmacological Insights for Neurological Disorders. Curr Top Med Chem 2024; 24:1940-1959. [PMID: 39108007 DOI: 10.2174/0115680266305736240725052825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 10/19/2024]
Abstract
Neurological disorders, characterized by oxidative stress (OS) and inflammation, have become a major global health concern. Redox reactions play a vital role in regulating the balance of the neuronal microenvironment. Specifically, the imbalance leads to a significant weakening of the organism's natural defensive mechanisms. This, in turn, causes the development of harmful oxidative stress, which plays a crucial role in the onset and progression of neurodegenerative diseases. The quest for effective therapeutic agents has led to significant advancements in the synthesis of antioxidant derivatives. This review provides a comprehensive overview of the recent developments in the use of novel antioxidant compounds with potential pharmacological applications in the management of neurological disorders. The discussed compounds encompass a diverse range of chemical structures, including polyphenols, vitamins, flavonoids, and hybrid molecules, highlighting their varied mechanisms of action. This review also focuses on the mechanism of oxidative stress in developing neurodegenerative disease. The neuroprotective effects of these antioxidant derivatives are explored in the context of specific neurological disorders, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. The ultimate goal is to provide effective treatments for these debilitating conditions and improve the quality of life for patients.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura Uttar Pradesh, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura Uttar Pradesh, India
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, Uttar Pradesh, India
| | - Sojomon Mathew
- Department of Zoology, Government College, Kottayam, Kerala, India
| | - Alok Bhatt
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, Uttarakhand, India
| | | | - Sunam Saha
- Department of Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura Uttar Pradesh, India
| | - Shamim
- IIMT College of Medical Sciences, IIMT University, Meerut, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| |
Collapse
|
220
|
Nagarajan M, Maadurshni GB, Manivannan J. Exposure to low dose of Bisphenol A (BPA) intensifies kidney oxidative stress, inflammatory factors expression and modulates Angiotensin II signaling under hypertensive milieu. J Biochem Mol Toxicol 2024; 38:e23533. [PMID: 37718616 DOI: 10.1002/jbt.23533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/18/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
Humans are constantly exposed to low concentrations of ubiquitous environmental pollutant, Bisphenol A (BPA). Due to the prevalence of hypertension (one of the major risk factors of cardiovascular disease [CVD]) in the population, it is necessary to explore the adverse effect of BPA under hypertension associated pathogenic milieu. The current study exposed the Nω-nitro-l-arginine methyl ester (L-NAME) induced hypertensive Wistar rats to low dose BPA (50 μg/kg) for 30 days period. In tissue samples immunohistochemistry, real-time quantitative polymerase chain reaction and enzymatic assays were conducted. Moreover, studies on primary kidney cell culture were employed to explore the impact of low dose of BPA exposure at nanomolar level (20-80 nM range) on renal cells through various fluorescence assays. The observed results illustrate that BPA exposure potentiates/aggravates hypertension induced tissue abnormalities (renal fibrosis), oxidative stress (ROS generation), elevated angiotensin-converting enzyme activity, malfunction of the antioxidant and tricarboxylic acid cycle enzymes, tissue lipid abnormalities and inflammatory factor expression (both messenger RNA and protein level of TNF-α and IL-6). Further, in vitro exposure of nM levels of BPA to primary kidney cells modulates oxidative stress (both superoxide and total ROS), mitochondrial physiology (reduced mitochondrial transmembrane potential-∆ψm) and lipid peroxidation in a dose dependent manner. In addition, angiotensin II induced ROS generation was aggravated further by BPA during coexposure in kidney cells. Therefore, during risk assessment, a precise investigation on BPA exposure in hypertensive (CVD vulnerable) populations is highly suggested.
Collapse
Affiliation(s)
- Manigandan Nagarajan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Jeganathan Manivannan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
221
|
Aslani MR, Saadat S, Boskabady MH. Comprehensive and updated review on anti-oxidant effects of Nigella sativa and its constituent, thymoquinone, in various disorders. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:923-951. [PMID: 38911247 PMCID: PMC11193497 DOI: 10.22038/ijbms.2024.75985.16453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/24/2024] [Indexed: 06/25/2024]
Abstract
Several pharmacological effects were described for Nigella sativa (N. sativa) seed and it has been used traditionally to treat various diseases. In this review article, the updated and comprehensive anti-oxidant effects of N. sativa and its main constituent, thymoquinone (TQ), on various disorders are described. The relevant articles were retrieved through PubMed, Science Direct, and Scopus up to December 31, 2023. Various extracts and essential oils of N. sativa showed anti-oxidant effects on cardiovascular, endocrine, gastrointestinal and liver, neurologic, respiratory, and urogenital diseases by decreasing and increasing various oxidant and anti-oxidant marketers, respectively. The main constituent of the plant, TQ, also showed similar anti-oxidant effects as the plant itself. The anti-oxidant effects of different extracts and essential oils of N. sativa were demonstrated in various studies which were perhaps due to the main constituent of the plant, TQ. The findings of this review article suggest the possible therapeutic effect of N. sativa and TQ in oxidative stress disorders.
Collapse
Affiliation(s)
- Mohammad Reza Aslani
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Lung Inflammatory Diseases Research Center, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saeideh Saadat
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
222
|
Benchabane S, Sour S, Zidi S, Hadjimi Z, Nabila L, Acheli D, Bouzenad A, Belguendouz H, Touil-Boukoffa C. Exploring the relationship between oxidative stress status and inflammatory markers during primary Sjögren's syndrome: A new approach for patient monitoring. Int J Immunopathol Pharmacol 2024; 38:3946320241263034. [PMID: 38901876 PMCID: PMC11191624 DOI: 10.1177/03946320241263034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024] Open
Abstract
INTRODUCTION Primary Sjögren's syndrome (pSS) is a chronic inflammatory disease primarily affects exocrine glands dysfunction. Oxidative stress (OS) is a phenomenon occurring as a result of an imbalance between the generation of free radicals and antioxidant defense system. Hence, we aimed to establish the status of OS and inflammatory response according to the pSS disease activity index. In this context, we investigated malondialdehyde (MDA), and antioxidant enzymes during pSS. The possible association between MDA and nitric oxide (NO) levels and between MDA and some pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and IL-33). METHODS The study has been conducted on 53 pSS patients. The antioxidant enzymes, represented by glutathione peroxidase (GSH-Px), catalase (CAT) and superoxide dismutase (SOD), were estimated by a colorimetric activity kit. Whereas, MDA value was assessed by measuring thiobarbituric acid reactive substances. Moreover, pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and IL-33) and NO were respectively quantified by enzyme-linked immunosorbent assays (ELISA) and the modified Griess. RESULTS Interestingly, we report a notable reduction in our pSS patients' antioxidant enzyme activity, while NO, MDA and proinflammatory cytokines values were significantly increased. pSS patients with higher disease activity had much stronger increases in NO and MDA levels. No significant difference was assessed in CRP level. Additionally, substantial significant correlations between plasmatic NO and MDA levels and between MDA, NO and IL-1β, IL-6, TNF-α cytokines were reported. However, no significant association was found between NO, MDA and IL-33 concentrations. CONCLUSION Collectively, our data showed altered oxidant-antioxidant balance in pSS patients. MDA, NO, IL-1β, IL-6, TNF-α seem to be good indicators in monitoring disease activity. Oxidative stress was closely related to inflammation in pSS. Exploiting this relationship might provide valuable indicators in the follow-up and prognosis of pSS with a potential therapeutic value.
Collapse
Affiliation(s)
- Sarah Benchabane
- Laboratory of Cellular and Molecular Biology (LBCM), Cytokines and NO Synthases Team, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
- Faculty of Natural Sciences and Life, Department of Biology, Saad Dahlab’s University of Blida, Blida, Algeria
| | - Souad Sour
- Faculty of Natural Sciences and Life, Department of Biology, Saad Dahlab’s University of Blida, Blida, Algeria
| | - Sourour Zidi
- Laboratory of Cellular and Molecular Biology (LBCM), Cytokines and NO Synthases Team, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
- Department of Natural Sciences, Guelma University, Guelma, Algeria
| | - Zohra Hadjimi
- Laboratory of Cellular and Molecular Biology (LBCM), Cytokines and NO Synthases Team, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Lyazidi Nabila
- Internal Medicine Department, Issad Hassani Hospital- Algiers 1 University of Medicine, Algiers, Algeria
| | - Dahbia Acheli
- Internal Medicine Department, Douera Hospital- Algiers 1 University of Medicine, Algiers, Algeria
| | - Amel Bouzenad
- Medical Biology Laboratory, Pasteur Institut- Algiers 1 University of Medicine, Algiers, Algeria
| | - Houda Belguendouz
- Laboratory of Cellular and Molecular Biology (LBCM), Cytokines and NO Synthases Team, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Chafia Touil-Boukoffa
- Laboratory of Cellular and Molecular Biology (LBCM), Cytokines and NO Synthases Team, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| |
Collapse
|
223
|
Espírito-Santo C, Alburquerque C, Guardiola FA, Ozório ROA, Magnoni LJ. Induced swimming modified the antioxidant status of gilthead seabream (Sparus aurata). Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110893. [PMID: 37604407 DOI: 10.1016/j.cbpb.2023.110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Swimming has relevant physiological changes in farmed fish, although the potential link between swimming and oxidative stress remains poorly studied. We investigated the effects of different medium-term moderate swimming conditions for 6 h on the antioxidant status of gilthead seabream (Sparus aurata), analyzing the activity of enzymes related to oxidative stress in the liver and skeletal red and white muscle. Forty fish were induced to swim individually with the following conditions: steady low (SL, 0.8 body length (BL)·s-1), steady high (SH, 2.3 BL·s-1), oscillating low (OL, 0.2-0.8 BL·s-1) and oscillating high (OH, 0.8-2.3 BL·s-1) velocities, and a non-exercised group with minimal water flow (MF, < 0.1 BL·s-1). All swimming conditions resulted in lower activities of superoxide dismutase (SOD), glutathione reductase (GR), and glutathione-S-transferase (GST) in the liver compared to the MF group, while steady swimming (SL and SH) led to higher reduced glutathione/oxidized glutathione ratio (GSH/GSSG) compared to the MF condition. Swimming also differently modulated the antioxidant enzyme activities in red and white muscles. The OH condition increased lipid peroxidation (LPO), catalase (CAT) and glutathione peroxidase (GPx) activities in the red muscle, decreasing the GSH/GSSG ratio, whereas the SL condition led to increased GSH. Oscillating swimming conditions (OL and OH) led to lower CAT activity in the white muscle, although GPx activity was increased. The GSH/GSSG ratio in white muscle was increased in all swimming conditions. Liver and skeletal muscle antioxidant status was modulated by exercise, highlighting the importance of adequate swimming conditions to minimize oxidative stress in gilthead seabream.
Collapse
Affiliation(s)
- Carlos Espírito-Santo
- Faculty of Sciences (FCUP), University of Porto, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Portugal.
| | - Carmen Alburquerque
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Spain
| | - Rodrigo O A Ozório
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Portugal
| | - Leonardo J Magnoni
- The New Zealand Institute for Plant and Food Research Limited, Nelson, New Zealand
| |
Collapse
|
224
|
Razaqtania R, Pertiwi D, Trisnadi S, Sarosa H, Kusumarawati T, Chodijah, Putra A. Ameliorating Effect of Apium graveolens (Celery) Extracts on IL-6 Plasma Level and Expression of Caspase 3 on Liver in Animal Model of Lead Intoxication. Pak J Biol Sci 2024; 27:52-58. [PMID: 38516746 DOI: 10.3923/pjbs.2024.52.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
<b>Background and Objective:</b> Lead poisoning (Pb) is a big problem because it is found in almost all objects in daily life such as vehicle fuel, water pipes, ceramics, cosmetics and others. Continuous lead exposure can increase ROS resulting in an increase in hepatic IL-6 and caspase 3 which replaces hepatic cell apoptosis. The objective of this study was to determine the effect of <i>Apium graveolens</i> (celery) extract on plasma IL-6 and hepatic caspase 3 levels. <b>Materials and Methods:</b> This study used a post-test control group design. The research subjects were 20 Wistar rats that met the inclusion criteria and were divided into 4 groups randomly, namely (a) Sham group that had no treatment, (b) Negative control group was induced with lead acetate 200 mg kg<sup>1</sup> body weight/day without any treatment (c) Positive control group and (d) Treated group. On the 15th day, blood was taken to check IL-6 levels and tissue was taken for liver caspase 3 examination by immunohistochemical method. Data analysis used the one-way ANOVA test and continued with the <i>post hoc</i> LSD test. <b>Results:</b> The highest mean caspase 3 expression was in the control group 45.84±4.39 pg mL<sup>1</sup>, while the mean of IL-6 plasma level was highest in the P1 641.33±39.72 pg mL<sup>1</sup> group. The Mann-Whitney test showed a significant difference in IL-6 levels between the study groups (p = 0.000). The Mann-Whitney test showed a significant difference in caspase 3 levels between the study groups (p = 0.000). <b>Conclusion:</b> Giving celery extract 300 mg kg<sup>1</sup> body weight/day affects plasma IL-6 and hepatic caspase 3 levels in lead acetate-induced rats.
Collapse
|
225
|
Benhalima H, Sbartai H, Sbartai I. Evaluation the Toxicity of Heavy Metal Mixtures in Anecic Earthworms (Aporrectodea giardi). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:13-24. [PMID: 37971513 DOI: 10.1007/s00244-023-01034-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/12/2023] [Indexed: 11/19/2023]
Abstract
Using earthworms as bioindicators of heavy metal contamination in soils is a relevant tool for environmental risk monitoring. This study examines the combined effects of four distinct concentrations mixtures (M1, M2, M3 and M4) containing Cd, Cr, Cu, Ni, Fe and Mn on Aporrectodea giardi earthworms after 12 and 24 days (12 D/24 D) of exposure via the monitoring of certain biomarkers of stress including total protein content, glutathione (GSH), metallothionein (MT), catalase and lipoxygenase (LOX) activities. The results show a decrease in the total protein level for the M3 mixture after 24 D, whereas it increases for all other treatments regardless of exposure time. Glutathione and metallothionine levels increased for M2 and M3 and decreased for M1 and M4 after 12 D; they increased after 24 D for all the mixtures. Regarding enzyme activities, catalase activity was decreased for all the treatments unless for M3 (P > 0.05). However, LOX increased for M1, M2 and M4 except for M3 after 12 D, when inhibition of this biomarker was observed. LOX activity was inhibited for all the mixtures at the end of the treatment. All the mixtures generated oxidative stress in Aporrectodea giardi, which is minimized by increasing MT levels to remove the metal ions and triggering the antioxidant system, composed primarily of GSH and LOX to restore cellular homeostasis. These findings suggest that the species Aporrectodea giardi could be an excellent candidate for ecotoxicological risk assessment of soils contaminated by metal mixtures and it can be used in bioremediation for its fitness which allows it to tolerate high concentrations of metal mixtures.
Collapse
Affiliation(s)
- Hadia Benhalima
- Laboratory of Cellular Toxicology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| | - Hana Sbartai
- Laboratory of Cellular Toxicology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria.
| | - Ibtissem Sbartai
- Laboratory of Cellular Toxicology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| |
Collapse
|
226
|
Azhamuthu T, Kathiresan S, Senkuttuvan I, Abulkalam Asath NA, Ravichandran P. Usnic acid attenuates 7,12-dimethylbenz[a] anthracene (DMBA) induced oral carcinogenesis through inhibiting oxidative stress, inflammation, and cell proliferation in male golden Syrian hamster model. J Biochem Mol Toxicol 2024; 38:e23553. [PMID: 37840363 DOI: 10.1002/jbt.23553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
In this study, we investigated the chemopreventive efficacy of usnic acid (UA), an effective secondary metabolite component of lichens, against 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral squamous cell carcinoma (OSCC) in the hamster model. Initially, the buccal pouch carcinogenesis was induced by administering 0.5% DMBA to the HBP (hamster buccal pouch) region about three times a week until the 10th week. Then, UA was orally treated with different concentrations (25, 50, 100 mg/kg b.wt) on alternative days of DMBA exposure, and the experimental process ended in the 16th week. After animal experimentation, we observed 100% tumor incidence with well-differentiated OSCC, dysplasia, and hyperplasia lesions in the DMBA-induced HBP region. Furthermore, the UA treatment of DMBA-induced hamster effectively inhibited tumor growth. In addition, UA upregulated antioxidant levels, interfered with the elevated lipid peroxidation by-product of thiobarbituric acid reactive substances, and changed the activities of the liver detoxification enzyme (Phase I and II) in DMBA-induced hamsters. Furthermore, immunohistochemical staining of inflammatory markers (iNOS and COX-2) and proliferative cell markers (cyclin-D1 and PCNA) were upregulated in the buccal pouch part of hamster animals induced with DMBA. Notably, the oral administration of UA significantly suppressed these markers during DMBA-induced hamsters. Collectively, our findings revealed that UA exhibits antioxidant, anti-inflammatory, antitumor, and apoptosis-inducing characteristics, demonstrating UA's protective properties against DMBA-induced HBP carcinogenesis.
Collapse
Affiliation(s)
- Theerthu Azhamuthu
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Suresh Kathiresan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Ilanchitchenni Senkuttuvan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Nihal Ahamed Abulkalam Asath
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Pugazhendhi Ravichandran
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| |
Collapse
|
227
|
Concato-Lopes VM, Silva TF, Detoni MB, Cruz EMS, Gonçalves MD, da Silva Bortoleti BT, Tomiotto-Pellissier F, Carloto ACM, Madureira MB, Rodrigues ACJ, Schirmann JG, Barbosa-Dekker AM, Dekker RFH, Conchon-Costa I, Panis C, Lazarin-Bidóia D, Miranda-Sapla MM, Mantovani MS, Pavanelli WR. 3,3',5,5'-Tetramethoxybiphenyl-4,4'diol triggers oxidative stress, metabolic changes, and apoptosis-like process by reducing the PI3K/AKT/NF-κB pathway in the NCI-H460 lung cancer cell line. Biomed Pharmacother 2024; 170:115979. [PMID: 38061138 DOI: 10.1016/j.biopha.2023.115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths in men and women worldwide. Current treatments have limited efficacy, cause significant side effects, and cells can develop drug resistance. New therapeutic strategies are needed to discover alternative anticancer agents with high efficacy and low-toxicity. TMBP, a biphenyl obtained by laccase-biotransformation of 2,6-dimethoxyphenol, possesses antitumor activity against A549 adenocarcinoma cells. Without causing damage to sheep erythrocytes and mouse peritoneal macrophages of BALB/c mice. In addition to being classified as a good oral drug according to in-silico studies. This study evaluated the in-vitro cytotoxic effect of TMBP on lung-cancer cell-line NCI-H460 and reports mechanisms on immunomodulation and cell death. TMBP treatment (12.5-200 μM) inhibited cell proliferation at 24, 48, and 72 h. After 24-h treatment, TMBP at IC50 (154 μM) induced various morphological and ultrastructural changes in NCI-H460, reduced migration and immunofluorescence staining of N-cadherin and β-catenin, induced increased reactive oxygen species and nitric oxide with reduced superoxide radical-anion, increased superoxide dismutase activity and reduced glutathione reductase. Treatment also caused metabolic stress, reduced glucose-uptake, intracellular lactate dehydrogenase and lactate levels, mitochondrial depolarization, increased lipid droplets, and autophagic vacuoles. TMBP induced cell-cycle arrest in the G2/M phase, death by apoptosis, increased caspase-3/7, and reduced STAT-3 immunofluorescence staining. The anticancer effect was accompanied by decreasing PI3K, AKT, ARG-1, and NF-κB levels, and increasing iNOS. These results suggest its potential as a candidate for use in future lung anticancer drug design studies.
Collapse
Affiliation(s)
- Virginia Marcia Concato-Lopes
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR, Brazil.
| | - Taylon Felipe Silva
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR, Brazil
| | - Mariana Barbosa Detoni
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR, Brazil
| | - Ellen Mayara Souza Cruz
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR, Brazil
| | - Manoela Daiele Gonçalves
- Laboratory of Biotransformation and Phytochemical, Department of Chemistry, Center of Exact Sciences, State University of Londrina, PR, Brazil
| | - Bruna Taciane da Silva Bortoleti
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR, Brazil; Graduate Program in Biosciences and Biotechnology, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, PR, Brazil
| | - Fernanda Tomiotto-Pellissier
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR, Brazil; Graduate Program in Biosciences and Biotechnology, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, PR, Brazil; Department of Medical Pathology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Amanda Cristina Machado Carloto
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR, Brazil
| | - Maria Beatriz Madureira
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR, Brazil
| | - Ana Carolina Jacob Rodrigues
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR, Brazil; Graduate Program in Biosciences and Biotechnology, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, PR, Brazil
| | - Jéseka Gabriela Schirmann
- Laboratory Research of Bioactive Molecules, Department of Chemistry, Center of Exact Sciences, State University of Londrina, PR, Brazil
| | - Aneli M Barbosa-Dekker
- Laboratory Research of Bioactive Molecules, Department of Chemistry, Center of Exact Sciences, State University of Londrina, PR, Brazil
| | - Robert F H Dekker
- Federal Technological University of Paraná, Graduate Program in Environmental Engineering, Campus Londrina, Londrina, PR, Brazil
| | - Ivete Conchon-Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR, Brazil
| | - Carolina Panis
- Laboratory of Tumor Biology, State University of West Paraná, Unioeste, Francisco Beltrao, Brazil
| | - Danielle Lazarin-Bidóia
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR, Brazil
| | - Milena Menegazzo Miranda-Sapla
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR, Brazil
| | - Mário Sérgio Mantovani
- Laboratory of Toxicological Genetics, Department of General Biology, Center of Biological Sciences, State University of Londrina, PR, Brazil
| | - Wander R Pavanelli
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR, Brazil
| |
Collapse
|
228
|
Keshavarzi F, Salehi MS, Pandamooz S, Zare R, Zamani M, Mostafavi-Pour Z, Pooneh Mokarram P. Valproic acid and/or rapamycin preconditioning protects hair follicle stem cells from oxygen glucose serum deprivation-induced oxidative injury via activating Nrf2 pathway. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2024; 13:103-116. [PMID: 38915453 PMCID: PMC11194030 DOI: 10.22099/mbrc.2024.49302.1922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Among leading causes of the ischemic stroke pathogenesis, oxidative stress strongly declines rate of stem cell engraftment at the injury site, and disables stem cell-based therapy as a key treatment for ischemia stroke. To overcome this therapeutic limitation, preconditioning has been represented a possible approach to augment the adaptation and viability of stem cells to oxidative stress. Here, we illustrated protective impacts of valproic acid (VPA) and/or rapamycin (RAPA) preconditioning unto oxygen glucose and serum deprivation (OGSD)-stimulated cell damage in hair follicle-derived stem cells (HFSCs) and surveyed the plausible inducement mechanisms. OGSD, as an in vitro cell injury model, was established and HFSCs viability was observed using MTT assay after VPA, RAPA, and VPA-RAPA preconditioning under OGSD. ROS and MDA production was assessed to reflect oxidative stress. Real-time PCR and western blotting were employed to investigate Nrf2 expression. The activity of Nrf2-related antioxidant enzymes including NQO1, GPx and GSH level were examined. VEGF and BDNF mRNA expression levels were analyzed. Our results showed that VPA and/or RAPA preconditioning ameliorated OGSD-induced decline in HFSCs viability. In addition, they considerably prohibited ROS and MDA generation in the OGSD-treated HFSCs. Furthermore, VPA and/or RAPA preconditioning stimulated Nrf2 nuclear repositioning and NQO1 and GPx activity and GSH amount, as well as expression of paracrine factors VEGF and BDNF in OGSD-treated HFSCs. Thus, the protective effects afforded by VPA and/or RAPA preconditioning, which involved Nrf2-modulated oxidant stress and regulation of VEGF and BDNF expression, display a simple strategy to augment cell-transplantation efficiency for ischemic stroke.
Collapse
Affiliation(s)
- Fatemeh Keshavarzi
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Zare
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohreh Mostafavi-Pour
- Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Pooneh Mokarram
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
229
|
Nagarajan M, Maadurshni GB, Manivannan J. Bisphenol A (BPA) exposure aggravates hepatic oxidative stress and inflammatory response under hypertensive milieu - Impact of low dose on hepatocytes and influence of MAPK and ER stress pathways. Food Chem Toxicol 2024; 183:114197. [PMID: 38029875 DOI: 10.1016/j.fct.2023.114197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
Human exposure to the hazardous chemical, Bisphenol A (BPA), is almost ubiquitous. Due to the prevalence of hypertension (CVD risk factor) in the aged human population, it is necessary to explore its adverse effect in hypertensive subjects. The current study exposed the Nω-nitro-l-arginine methyl ester (L-NAME) induced hypertensive Wistar rats to human exposure relevant low dose of BPA (50 μg/kg) for 30 days period. The liver biochemical parameters, histopathology, immunohistochemistry, gene expression (RT-qPCR), trace elements (ICP-MS), primary rat hepatocytes cell culture and metabolomic (1H NMR) assessments were performed. Results illustrate that BPA exposure potentiates/aggravates hypertension induced tissue abnormalities (hepatic fibrosis), oxidative stress, ACE activity, malfunction of the antioxidant system, lipid abnormalities and inflammatory factor (TNF-α and IL-6) expression. Also, in cells, BPA increased ROS generation, mitochondrial dysfunction and lipid peroxidation without any impact on cytotoxicity and caspase 3 and 9 activation. Notably, BPA exposure modulate lipid metabolism (cholesterol and fatty acid) in primary hepatocytes. Finally, the influence of ERK1/2, p38MAPK, ER stress and oxidative stress during relatively high dose of BPA elicited cytotoxicity was observed. Therefore, a precise hazardous risk investigation of BPA exposure in hypertensive populations is highly recommended.
Collapse
Affiliation(s)
- Manikandan Nagarajan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Jeganathan Manivannan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
230
|
Sharma KR, Adhikari S. Phytochemical analysis and biological activities of Artemisia vulgaris grown in different altitudes of Nepal. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2166954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Khaga Raj Sharma
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Saroj Adhikari
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
231
|
Ravindra J, Ug Y, Pandyanda Nanjappa D, Kalladka K, Dhakal R, Chakraborty A, Chakraborty G. Allicin extracted from Allium sativum shows potent anti-cancer and antioxidant properties in zebrafish. Biomed Pharmacother 2023; 169:115854. [PMID: 37951024 DOI: 10.1016/j.biopha.2023.115854] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/26/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023] Open
Abstract
Garlic (Allium sativum) is an important flavouring component in Indian cuisine. Allicin, a sulphur containing compound, is the most abundant component of garlic and has been widely studied for its antimicrobial and antioxidant properties. It is also known to play a role in the regulation of blood pressure and cholesterol levels. Despite the known health benefits associated with allicin, systematic studies on its anti-cancer properties using animal models are very limited. This study aimed to develop a simple method for the extraction of allicin from fresh garlic, study the stability of the extracted compound at various temperatures, and evaluate the antioxidant, anti-proliferative, pro-apoptotic and anti-angiogenic properties in zebrafish. A five-month stability study indicated that allicin remains significantly stable at temperatures 4 °C and below but shows extensive degradation if stored at room temperature. The in vivo studies in zebrafish using a combination of mutants and transgenic lines demonstrated the antioxidant, anti-proliferative, apoptotic and anti-angiogenic properties of allicin. The study highlights the importance of natural bioactive compounds as potential anti-cancer agents that can be studied further.
Collapse
Affiliation(s)
- Jeshma Ravindra
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Kotekar-Beeri Road, Deralakatte, Mangalore 575018, India
| | - Yathisha Ug
- Department of Food Safety and Nutrition, Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Mangalore 575018, India
| | - Dechamma Pandyanda Nanjappa
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Kotekar-Beeri Road, Deralakatte, Mangalore 575018, India
| | - Krithika Kalladka
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Kotekar-Beeri Road, Deralakatte, Mangalore 575018, India
| | - Rasik Dhakal
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Kotekar-Beeri Road, Deralakatte, Mangalore 575018, India
| | - Anirban Chakraborty
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Kotekar-Beeri Road, Deralakatte, Mangalore 575018, India.
| | - Gunimala Chakraborty
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Kotekar-Beeri Road, Deralakatte, Mangalore 575018, India.
| |
Collapse
|
232
|
Štursová P, Budinská X, Nováková Z, Dobšák P, Babula P. Sports activities and cardiovascular system change. Physiol Res 2023; 72:S429-S444. [PMID: 38165749 PMCID: PMC10861254 DOI: 10.33549/physiolres.935238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/24/2023] [Indexed: 02/01/2024] Open
Abstract
Sports activity is generally considered to be beneficial to health. The World Health Organization (WHO) recommends physical activity as part of a healthy lifestyle. Sports activities significantly affect the cardiovascular system. A number of studies show that they significantly reduce the risk of cardiovascular disease as well as decrease cardiovascular mortality. This review discusses changes in various cardiovascular parameters in athletes - vagotonia/bradycardia, hypertrophy of heart, ECG changes, blood pressure, and variability of cardiovascular parameters. Because of its relationship to the cardiovascular system, VO2max, which is widely used as an indicator of cardiorespiratory fitness, is also discussed. The review concludes with a discussion of reactive oxygen species (ROS) and oxidative stress, particularly in relation to changes in the cardiovascular system in athletes. The review appropriately summarizes the above issues and points out some new implications.
Collapse
Affiliation(s)
- P Štursová
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
233
|
Shi Y, Wu Z, Qi M, Liu C, Dong W, Sun W, Wang X, Jiang F, Zhong Y, Nan D, Zhang Y, Li C, Wang L, Bai X. Multiscale Bioresponses of Metal Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310529. [PMID: 38145555 DOI: 10.1002/adma.202310529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/21/2023] [Indexed: 12/27/2023]
Abstract
Metal nanoclusters (NCs) are well-recognized novel nano-agents that hold great promise for applications in nanomedicine because of their ultrafine size, low toxicity, and high renal clearance. As foreign substances, however, an in-depth understanding of the bioresponses to metal NCs is necessary but is still far from being realized. Herein, this review is deployed to summarize the biofates of metal NCs at various biological levels, emphasizing their multiscale bioresponses at the molecular, cellular, and organismal levels. In the parts-to-whole schema, the interactions between biomolecules and metal NCs are discussed, presenting typical protein-dictated nano-bio interfaces, hierarchical structures, and in vivo trajectories. Then, the accumulation, internalization, and metabolic evolution of metal NCs in the cellular environment and as-imparted theranostic functionalization are demonstrated. The organismal metabolism and transportation processes of the metal NCs are subsequently distilled. Finally, this review ends with the conclusions and perspectives on the outstanding issues of metal NC-mediated bioresponses in the near future. This review is expected to provide inspiration for tailoring the customization of metal NC-based nano-agents to meet practical requirements in different sectors of nanomedicine.
Collapse
Affiliation(s)
- Yujia Shi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Manlin Qi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Chengyu Liu
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Weinan Dong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Wenyue Sun
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Feng Jiang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yuan Zhong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Di Nan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Chunyan Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
234
|
Miles TK, Odle AK, Byrum SD, Lagasse A, Haney A, Ortega VG, Bolen CR, Banik J, Reddick MM, Herdman A, MacNicol MC, MacNicol AM, Childs GV. Anterior Pituitary Transcriptomics Following a High-Fat Diet: Impact of Oxidative Stress on Cell Metabolism. Endocrinology 2023; 165:bqad191. [PMID: 38103263 PMCID: PMC10771268 DOI: 10.1210/endocr/bqad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/18/2023]
Abstract
Anterior pituitary cell function requires a high level of protein synthesis and secretion which depend heavily on mitochondrial adenosine triphosphate production and functional endoplasmic reticula. Obesity adds stress to tissues, requiring them to adapt to inflammation and oxidative stress, and adding to their allostatic load. We hypothesized that pituitary function is vulnerable to the stress of obesity. Here, we utilized a 10- to 15-week high-fat diet (HFD, 60%) in a thermoneutral environment to promote obesity, testing both male and female FVB.129P mice. We quantified serum hormones and cytokines, characterized the metabolic phenotype, and defined changes in the pituitary transcriptome using single-cell RNA-sequencing analysis. Weight gain was significant by 3 weeks in HFD mice, and by 10 weeks all HFD groups had gained 20 g. HFD females (15 weeks) had increased energy expenditure and decreased activity. All HFD groups showed increases in serum leptin and decreases in adiponectin. HFD caused increased inflammatory markers: interleukin-6, resistin, monocyte chemoattractant protein-1, and tumor necrosis factorα. HFD males and females also had increased insulin and increased TSH, and HFD females had decreased serum prolactin and growth hormone pulse amplitude. Pituitary single-cell transcriptomics revealed modest or no changes in pituitary cell gene expression from HFD males after 10 or 15 weeks or from HFD females after 10 weeks. However, HFD females (15 weeks) showed significant numbers of differentially expressed genes in lactotropes and pituitary stem cells. Collectively, these studies reveal that pituitary cells from males appear to be more resilient to the oxidative stress of obesity than females and identify the most vulnerable pituitary cell populations in females.
Collapse
Affiliation(s)
- Tiffany K Miles
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Angela K Odle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biomedical informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alex Lagasse
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Anessa Haney
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Victoria G Ortega
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Cole R Bolen
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jewel Banik
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Milla M Reddick
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ashley Herdman
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Gwen V Childs
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
235
|
Mircheva A, Vangrieken P, Al-Nasiry S, van Schooten FJ, Godschalk RWL, Langie SAS. Optimizing the Comet Assay-Based In Vitro DNA Repair Assay for Placental Tissue: A Pilot Study with Pre-Eclamptic Patients. Int J Mol Sci 2023; 25:187. [PMID: 38203356 PMCID: PMC10779140 DOI: 10.3390/ijms25010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The comet assay-based in vitro DNA repair assay has become a common tool for quantifying base excision repair (BER) activity in human lymphocytes or cultured cells. Here, we optimized the protocol for studying BER in human placental tissue because the placenta is a non-invasive tissue for biomonitoring of early-life exposures, and it can be used to investigate molecular mechanisms associated with prenatal disorders. The optimal protein concentration of placental protein extracts for optimal damage recognition and incision was 2 mg protein/mL. The addition of aphidicolin did not lead to reduced non-specific incisions and was, therefore, not included in the optimized protocol. The interval between sample collection and analysis did not affect BER activity up to 70 min. Finally, this optimized protocol was tested on pre-eclamptic (PE) placental tissues (n = 11) and significantly lower BER activity in PE placentas compared to controls (n = 9) was observed. This was paralleled by a significant reduction in the expression of BER-related genes and increased DNA oxidation in PE placentas. Our study indicates that BER activity can be determined in placentas, and lower activity is present in PE compared with healthy. These findings should be followed up in prospective clinical investigations to examine BER's role in the advancement of PE.
Collapse
Affiliation(s)
- Anastasiya Mircheva
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (A.M.); (R.W.L.G.)
| | - Philippe Vangrieken
- Department of Internal Medicine, School of Cardiovascular diseases (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Salwan Al-Nasiry
- Department of Obstetrics and Gynecology, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (A.M.); (R.W.L.G.)
| | - Roger W. L. Godschalk
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (A.M.); (R.W.L.G.)
| | - Sabine A. S. Langie
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (A.M.); (R.W.L.G.)
| |
Collapse
|
236
|
Afzal O, Ahsan MJ. An Efficient Synthesis of 1-(1,3-Dioxoisoindolin-2-yl)-3-aryl Urea Analogs as Anticancer and Antioxidant Agents: An Insight into Experimental and In Silico Studies. Molecules 2023; 29:67. [PMID: 38202650 PMCID: PMC10779787 DOI: 10.3390/molecules29010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The present investigation reports the efficient multistep synthesis of 1-(1,3-dioxoisoindolin-2-yl)-3-aryl urea analogs (7a-f) in good yields. All the 1-(1,3-dioxoisoindolin-2-yl)-3-aryl urea analogs (7a-f) were characterized by spectroscopic techniques. Five among the six compounds were tested against 56 cancer cell lines at 10 µM as per the standard protocol. 1-(4-Bromophenyl)-3-(1,3-dioxoisoindolin-2-yl)urea (7c) exhibited moderate but significant anticancer activity against EKVX, CAKI-1, UACC-62, MCF7, LOX IMVI, and ACHN with percentage growth inhibitions (PGIs) of 75.46, 78.52, 80.81, 83.48, 84.52, and 89.61, respectively. Compound 7c was found to exhibit better anticancer activity than thalidomide against non-small cell lung, CNS, melanoma, renal, prostate, and breast cancer cell lines. It was also found to exhibit superior anticancer activity against melanoma cancer compared to imatinib. Among the tested compounds, the 4-bromosubstitution (7c) on the phenyl ring demonstrated good anticancer activity. Docking scores ranging from -6.363 to -7.565 kcal/mol were observed in the docking studies against the molecular target EGFR. The ligand 7c displayed an efficient binding against the EGFR with a docking score of -7.558 kcal/mol and displayed an H-bond interaction with Lys745 and the carbonyl functional group. Compound 7c demonstrated a moderate inhibition of EGFR with an IC50 of 42.91 ± 0.80 nM, in comparison to erlotinib (IC50 = 26.85 ± 0.72 nM), the standard drug. The antioxidant potential was also calculated for the compounds (7a-f), which exhibited good to low activity. 1-(2-Methoxyphenyl)-3-(1,3-dioxoisoindolin-2-yl)urea (7f) and 1-(4-Methoxyphenyl)-3-(1,3-dioxoisoindolin-2-yl)urea (7d) demonstrated significant antioxidant activity with IC50 values of 15.99 ± 0.10 and 16.05 ± 0.15 µM, respectively. The 2- and 4-methoxysubstitutions on the N-phenyl ring showed good antioxidant activity among the series of compounds (7a-f). An in silico ADMET prediction studies showed the compounds' adherence to Lipinski's rule of five: they were free from toxicities, including mutagenicity, cytotoxicity, and immunotoxicity, but not for hepatotoxicity. The toxicity prediction demonstrated LD50 values between 1000 and 5000 mg/Kg, putting the compounds either in class IV or class V toxicity classes. Our findings might create opportunities for more advancements in cancer therapeutics.
Collapse
Affiliation(s)
- Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jahangirabad Institute of Technology (JIT), Jahangirabad Fort, Jahangirabad 225203, Uttar Pradesh, India;
| |
Collapse
|
237
|
Iqbal N, Czékus Z, Ördög A, Poór P. Fusaric acid-evoked oxidative stress affects plant defence system by inducing biochemical changes at subcellular level. PLANT CELL REPORTS 2023; 43:2. [PMID: 38108938 PMCID: PMC10728271 DOI: 10.1007/s00299-023-03084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/05/2023] [Indexed: 12/19/2023]
Abstract
Fusaric acid (FA) is one of the most harmful phytotoxins produced in various plant-pathogen interactions. Fusarium species produce FA as a secondary metabolite, which can infect many agronomic crops at all stages of development from seed to fruit, and FA production can further compromise plant survival because of its phytotoxic effects. FA exposure in plant species adversely affects plant growth, development and crop yield. FA exposure in plants leads to the generation of reactive oxygen species (ROS), which cause cellular damage and ultimately cell death. Therefore, FA-induced ROS accumulation in plants has been a topic of interest for many researchers to understand the plant-pathogen interactions and plant defence responses. In this study, we reviewed the FA-mediated oxidative stress and ROS-induced defence responses of antioxidants, as well as hormonal signalling in plants. The effects of FA phytotoxicity on lipid peroxidation, physiological changes and ultrastructural changes at cellular and subcellular levels were reported. Additionally, DNA damage, cell death and adverse effects on photosynthesis have been explained. Some possible approaches to overcome the harmful effects of FA in plants were also discussed. It is concluded that FA-induced ROS affect the enzymatic and non-enzymatic antioxidant system regulated by phytohormones. The effects of FA are also associated with other photosynthetic, ultrastructural and genotoxic modifications in plants.
Collapse
Affiliation(s)
- Nadeem Iqbal
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary
- Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Attila Ördög
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary
| | - Péter Poór
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary.
| |
Collapse
|
238
|
Lee J, Kwon J, Jo YJ, Yoon SB, Hyeon JH, Park BJ, You HJ, Youn C, Kim Y, Choi HW, Kim JS. Particulate matter 10 induces oxidative stress and apoptosis in rhesus macaques skin fibroblast. PeerJ 2023; 11:e16589. [PMID: 38130933 PMCID: PMC10734408 DOI: 10.7717/peerj.16589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Background Particulate matter (PM) is a major air pollutant that affects human health worldwide. PM can pass through the skin barrier, thus causing skin diseases such as heat rash, allergic reaction, infection, or inflammation. However, only a few studies have been conducted on the cytotoxic effects of PM exposure on large-scale animals. Therefore, herein, we investigated whether and how PM affects rhesus macaque skin fibroblasts. Methods Rhesus macaque skin fibroblasts were treated with various concentrations of PM10 (1, 5, 10, 50, and 100 μg/mL) and incubated for 24, 48, and 72 h. Then, cell viability assay, TUNEL assay, and qRT-PCR were performed on the treated cells. Further, the reactive oxygen species, glutathione, and cathepsin B levels were determined. The MTT assay revealed that PM10 (>50 μg/mL) proportionately reduced the cell proliferation rate. Results PM10 treatment increased TUNEL-positive cell numbers, following the pro-apoptosis-associated genes (CASP3 and BAX) and tumor suppressor gene TP53 were significantly upregulated. PM10 treatment induced reactive oxidative stress. Cathepsin B intensity was increased, whereas GSH intensity was decreased. The mRNA expression levels of antioxidant enzyme-related genes (CAT, GPX1 and GPX3) were significantly upregulated. Furthermore, PM10 reduced the mitochondrial membrane potential. The mRNA expression of mitochondrial complex genes, such as NDUFA1, NDUFA2, NDUFAC2, NDUFS4, and ATP5H were also significantly upregulated. In conclusion, these results showed that PM10 triggers apoptosis and mitochondrial damage, thus inducing ROS accumulation. These findings provide potential information on the cytotoxic effects of PM10 treatment and help to understand the mechanism of air pollution-induced skin diseases.
Collapse
Affiliation(s)
- Jiin Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
- Department of Animal Science, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Jeongwoo Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Yu-Jin Jo
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Seung-Bin Yoon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Jae-Hwan Hyeon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Beom-Jin Park
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Hyeong-Ju You
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Changsic Youn
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Yejin Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Hyun Woo Choi
- Department of Animal Science, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| |
Collapse
|
239
|
Jafni S, Sathya S, Arunkumar M, Kiruthiga C, Jeyakumar M, Murugesh E, Devi KP. Hesperidin Methyl Chalcone reduces extracellular Aβ (25-35) peptide aggregation and fibrillation and also protects Neuro 2a cells from Aβ (25-35) induced neuronal dysfunction. Bioorg Med Chem 2023; 96:117536. [PMID: 38016411 DOI: 10.1016/j.bmc.2023.117536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023]
Abstract
In the present study, we evaluated the neuroprotective potential of Hesperidin Methyl Chalcone (HMC) against the neurotoxicity induced by Aβ(25-35) peptide. HMC demonstrated higher free-radical scavenging activity than Hesperidin in initial cell-free studies. Investigations using the fluorescent dye thioflavin T with Aβ(25-35) peptide showed that HMC has the ability to combat extracellular amyloid aggregation by possessing anti-aggregation property against oligomers and by disaggregating mature fibrils. Also, the results of the molecular simulation studies show that HMC ameliorated oligomer formation. Further, the anti-Alzheimer's property of HMC was investigated in in vitro cell conditions by pre-treating the neuro 2a (N2a) cells with HMC before inducing Aβ(25-35) toxicity. The findings demonstrate that HMC increased cell viability, reduced oxidative stress, prevented macromolecular damage, allayed mitochondrial dysfunction, and exhibited anticholinesterase activity. HMC also reduced Aβ induced neuronal cell death by modulating caspase-3 activity, Bax expression and Bcl2 overexpression, demonstrating that HMC pre-treatment reduced mitochondrial damage and intrinsic apoptosis induced by Aβ(25-35).In silico evaluation against potential AD targets reveal that HMC could be a potent inhibitor of BACE-1, inhibiting the formation of toxic Aβ peptides. Overall, the findings imply that the neuroprotective efficacy of HMC has high prospects for addressing a variety of pathogenic consequences caused by amyloid beta in AD situations and alleviating cognitive impairments.
Collapse
Affiliation(s)
- Sakthivel Jafni
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Sethuraman Sathya
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Malaisamy Arunkumar
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | | | - Mahalingam Jeyakumar
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Easwaran Murugesh
- Research Scientist, Bioinformatics Centre, GRC - Ganga Hospital, Coimbatore, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| |
Collapse
|
240
|
Piwowar A, Żurawska-PŁaksej E, BizoŃ A, Sawicka E, PŁaczkowska S, Prescha A. The impact of dietary nitrates and acrylamide intake on systemic redox status in healthy young adults. Int J Occup Med Environ Health 2023; 36:773-787. [PMID: 37997682 PMCID: PMC10743351 DOI: 10.13075/ijomeh.1896.02246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/10/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVES The nitrogen-containing xenobiotics, such as nitrates and acrylamide may potentially influence systemic redox status and contribute to the generation of oxidative stress (OS) in the human body, but there is still a lack of studies that would evaluate the various parameters assessing the oxidative-antioxidant balance. The aim of this study was to evaluate the exposure to nitrates and acrylamide derived from daily diet and to analyze the impact of these nitrate-containing xenobiotics on the parameters of systemic redox status in healthy young adults. MATERIAL AND METHODS To assess nitrate and acrylamide intake in the study population, a semi-quantitative food frequency questionnaire was used. Systemic redox status was evaluated by measurement of a panel of biochemical parameters: enzymatic (glutathione S-transferase, glutathione reductase, glutathione peroxidase [GPx]) and non-enzymatic (uric acid, bilirubin and albumin), thiol/disulphide homeostasis parameters (total thiol, native thiol, and disulfide) and oxidative/ antioxidant balance indicators (total antioxidant status, total oxidant status, OS index). RESULTS The average consumption of nitrates and acrylamide in the study population was 1.24 mg/kg b.w./day and 0.23 μg/kg b.w./day, respectively, which is within the normal value range. Of 12 measured parameters, significant differences were revealed for disulfide and total thiol levels, which were increased in the subgroup with the highest daily intake of nitrates compared to the subgroup with the lowest intake; for GPx, which was highest in the subgroup of the lowest daily intake of acrylamide; and for native thiols in the subgroup with the highest daily intake. CONCLUSIONS The intake of nitrogen-containing xenobiotics within the range considered as normal does not markedly influence redox state parameters in healthy young adults. Some significant changes were revealed only for thiol/disulphide homeostasis parameters, which may be the first line of antioxidant defense, as well as for GPx activity. Compensative mechanisms in healthy young people are efficient enough to neutralize OS induced by slightly increased exposure to nitrogen-containing xenobiotics delivered with food. Int J Occup Med Environ Health. 2023;36(6):773-87.
Collapse
Affiliation(s)
- Agnieszka Piwowar
- Wroclaw Medical University, Faculty of Pharmacy, Department of Toxicology, Wrocław, Poland
| | - Ewa Żurawska-PŁaksej
- Wroclaw Medical University, Faculty of Pharmacy, Department of Toxicology, Wrocław, Poland
| | - Anna BizoŃ
- Wroclaw Medical University, Faculty of Pharmacy, Department of Toxicology, Wrocław, Poland
| | - Ewa Sawicka
- Wroclaw Medical University, Faculty of Pharmacy, Department of Toxicology, Wrocław, Poland
| | - Sylwia PŁaczkowska
- Wroclaw Medical University, Faculty of Pharmacy, Diagnostics Laboratory for Teaching and Research, Department of Laboratory Diagnostics, Wrocław, Poland
| | - Anna Prescha
- Wroclaw Medical University, Faculty of Pharmacy, Department of Food Science and Dietetics, Wrocław, Poland
| |
Collapse
|
241
|
Mohamed HRH, Elbasiouni SH, Farouk AH, Nasif KA, Nasraldin K, Safwat G. Alleviation of calcium hydroxide nanoparticles induced genotoxicity and gastritis by coadministration of calcium titanate and yttrium oxide nanoparticles in mice. Sci Rep 2023; 13:22011. [PMID: 38086889 PMCID: PMC10716372 DOI: 10.1038/s41598-023-49303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Diverse applications of nanoparticles due to their unique properties has rapidly increased human exposure to numerous nanoparticles such as calcium hydroxide (Ca(OH)2), calcium titanate (CaTiO3), and yttrium oxide (Y2O3) nanoparticles almost in all aspect of daily life. However, very limited data are available on the effect of these nanoparticles on genomic DNA integrity and inflammation induction in the gastric tissues. Hence, this study estimated the effect of Ca(OH)2, CaTiO3, or/and Y2O3 nanoparticles multiple oral administration on the genomic DNA damage and inflammation induction in the mice gastric tissues. A suspension containing 50 mg/kg b.w of Ca(OH)2, CaTiO3, or Y2O3 nanoparticles were given orally to male mice separately or together simultaneously three times a week for two consecutive weeks. Multiple oral administration of Ca(OH)2 nanoparticles led to significant elevations in DNA damage induction and ROS generation, in contrast to the non-significant changes observed in the level of induced DNA damage and generated ROS after administration of CaTiO3 or Y2O3 nanoparticles separately or in combination with Ca(OH)2 nanoparticles. Oral administration of Ca(OH)2 nanoparticles alone also highly upregulated INOS and COX-2 genes expression and extremely decreased eNOS gene expression. However, high elevations in eNOS gene expression were detected after multiple administration of CaTiO3 and Y2O3 nanoparticles separately or together simultaneously with Ca(OH)2 nanoparticles. Meanwhile, non-remarkable changes were noticed in the expression level of INOS and COX-2 genes after administration of CaTiO3 and Y2O3 nanoparticles separately or simultaneously together with Ca(OH)2 nanoparticles. In conclusion: genomic DNA damage and inflammation induced by administration of Ca(OH)2 nanoparticles alone at a dose of 50 mg/kg were mitigated by about 100% when CaTiO3 and Y2O3 nanoparticles were coadministered with Ca(OH)2 nanoparticles until they reached the negative control level through altering the expression level of eNOS, INOS and COX-2 genes and scavenging gastric ROS. Therefore, further studies are recommended to investigate the toxicological properties of Ca(OH)2, CaTiO3 and Y2O3 nanoparticles and possibility of using CaTiO3 and Y2O3 nanoparticles to mitigate genotoxicity and inflammation induction by Ca(OH)2 nanoparticles.
Collapse
Affiliation(s)
- Hanan R H Mohamed
- Zoology Department Faculty of Science, Cairo University, Giza, Egypt.
| | - Salma H Elbasiouni
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th of October City, Egypt
| | - Ahmed H Farouk
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th of October City, Egypt
| | - Kirolls A Nasif
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th of October City, Egypt
| | - Karima Nasraldin
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th of October City, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th of October City, Egypt
| |
Collapse
|
242
|
Darijani MH, Aminzadeh A, Rahimi HR, Mandegary A, Heidari MR, Karami-Mohajeri S, Jafari E. Evaluating the protective effect of metformin against diclofenac-induced oxidative stress and hepatic damage: In vitro and in vivo studies. Biochem Biophys Res Commun 2023; 685:149168. [PMID: 37907013 DOI: 10.1016/j.bbrc.2023.149168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Diclofenac (DIC) is one of the most commonly prescribed non-steroidal anti-inflammatory drugs and has been shown to cause oxidative stress and liver injury. The current study investigated protective effects of metformin against DIC-induced hepatic toxicity in both in vitro and in vivo models. For the in vitro study, HepG2 cells were exposed to DIC in the presence or absence of metformin. The effect of metformin on cell viability was evaluated by MTT assay. Oxidative stress parameters (malondialdehyde (MDA), total thiol molecules (TTM), and total antioxidant capacity (TAC)) were assessed. For the in vivo study, thirty-six male Wistar rats were randomly divided into 6 groups. These groups were normal saline, metformin (200 mg/kg), DIC (50 mg/kg/day), DIC + metformin (50, 100, and 200 mg/kg/day). Histopathological studies and serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), albumin, direct and total bilirubin were measured. Also, oxidative stress parameters were assessed in liver tissue. Furthermore, expression of glutathione peroxidase (GPX)-1, -3, and -4, catalase (CAT), superoxide dismutase (SOD)-1, and -3 was examined using the real-time PCR method in hepatic tissue. In the in vitro study, metformin significantly prevented DIC-induced loss in cell viability in HepG2 cells. Metformin markedly reduced DIC-induced elevation of MDA levels and increased the TAC and TTM levels. In the in vivo study, metformin significantly prevented DIC-induced changes in hematological and histological markers. Administration of metformin significantly improved oxidative stress parameters in liver tissue. In addition, metformin increased the expression of antioxidant enzymes. Our results suggest that metformin exerts a significant protective effect against DIC-induced hepatic toxicity.
Collapse
Affiliation(s)
- Mohammad Hossein Darijani
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Azadeh Aminzadeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hamid-Reza Rahimi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mandegary
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahmoud-Reza Heidari
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayyeh Karami-Mohajeri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Department of Pathology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
243
|
Liu S, Xiao G, Wang Q, Tian J, Feng X, Zhang Q, Gong L. Effects of dietary Astragalus membranaceus and Codonopsis pilosula extracts on growth performance, antioxidant capacity, immune status, and intestinal health in broilers. Front Vet Sci 2023; 10:1302801. [PMID: 38144468 PMCID: PMC10748503 DOI: 10.3389/fvets.2023.1302801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
The objective of this study was to examine the effects of dietary Chinese herbal medicine (CHM) consisting of Astragalus membranaceus (Fisch.) Bunge (AMT) and Codonopsis pilosula (Franch.) Nannf (CPO) extracts on growth performance, antioxidant capacity, immune status, and intestinal health of broiler chickens. Two groups were formed, each consisting of six replicates of 12 one-day-old healthy male 817 white feather broilers. Broilers were fed either a basal diet (CON group) or a basal diet supplemented with 500 mg/kg CHM. The trial lasted 50 days. The results showed that CHM supplementation resulted in enhanced feed efficiency and antioxidant capacity in both the serum and liver, while it reduced uric acid and endotoxin levels, as well as diamine oxidase activity (p < 0.05). Additionally, CHM treatment increased the height of jejunum villi and upregulated Claudin-1 expression in the jejunal mucosa accompanied by an increase in the mRNA levels of interleukin-6 (IL-6), interferon-γ (IFN-γ), interferon-β (IFN-β), tumor necrosis factor-α (TNF-α), and anti-inflammatory cytokine interleukin-10 (IL-10) (p < 0.05). The presence of dietary CHM caused an increase in the proportions of Bacteroidetes and unclassified Bacteroidales but led to a decrease in those of Firmicutes and Alistipes (p < 0.05). The composition of the jejunal mucosa microbiota was correlated with the feed conversion ratio, serum metabolites, and gene expression based on Spearman correlation analysis. The findings indicated that the consumption of dietary CHM improved the utilization of feed, increased the mRNA expression of pro-inflammatory cytokines in the jejunal mucosa, and decreased the endotoxin level and activities of diamine oxidase and lactate dehydrogenase in the serum, which could potentially be linked to changes in the gut microbiota of broiler chickens.
Collapse
Affiliation(s)
- Shun Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Gengsheng Xiao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Jinpeng Tian
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Xin Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Qingyang Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Li Gong
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| |
Collapse
|
244
|
Bastin A, Abbasi F, Roustaei N, Abdesheikhi J, Karami H, Gholamnezhad M, Eftekhari M, Doustimotlagh A. Severity of oxidative stress as a hallmark in COVID-19 patients. Eur J Med Res 2023; 28:558. [PMID: 38049886 PMCID: PMC10696844 DOI: 10.1186/s40001-023-01401-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/27/2023] [Indexed: 12/06/2023] Open
Abstract
INTRODUCTION Understanding the mechanisms and identifying effective treatments for the COVID-19 outbreak are imperative. Therefore, this study aimed to assess the antioxidant status and oxidative stress parameters as potential pivotal mechanisms in asymptomatic, non-severe, and severe COVID-19 patients. METHODS This study is a case-control study that was performed on patients referred to the Persian Gulf Martyrs Hospital of Bushehr University of Medical Sciences, Bushehr, Iran, from May 2021 to September 2021. A total of 600 COVID-19 patients (non-severe and severe group) and 150 healthy volunteers of the same age and sex were selected during the same period. On the first day of hospitalization, 10 ml of venous blood was taken from subjects. Then, hematological, biochemical, serological, antioxidant and oxidative stress parameters were determined. RESULTS Our results indicated that ESR, CRP, AST, ALT, and LDH significantly augmented in the severe group as compared to the non-severe and normal groups (P ≤ 0.05). It was observed that the levels of FRAP, G6PD activity, and SOD activity significantly reduced in the non-severe patients in comparison with the severe and normal groups (P ≤ 0.05). We found that MDA content and NO metabolite markedly increased in severe patients as compared to the non-severe group. CONCLUSIONS Taken together, it seems that the balance between antioxidants and oxidants was disturbed in COVID-19 patients in favor of oxidant markers. In addition, this situation caused more aggravation in severe patients as compared to the non-severe group.
Collapse
Affiliation(s)
- Alireza Bastin
- Clinical Research Development Center, "The Persian Gulf Martyrs" Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Fatemeh Abbasi
- Department of Infectious Disease, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Narges Roustaei
- Department of Biostatistics and Epidemiology, School of Health, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Jahangir Abdesheikhi
- Department of Clinical Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hossein Karami
- Clinical Research Development Center, "The Persian Gulf Martyrs" Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Gholamnezhad
- Department of Infectious Disease, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahdieh Eftekhari
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Amirhossein Doustimotlagh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
245
|
Thonusin C, Pantiya P, Kongkaew A, Nawara W, Arunsak B, Sriwichaiin S, Chattipakorn N, Chattipakorn SC. Exercise and Caloric Restriction Exert Different Benefits on Skeletal Muscle Metabolism in Aging Condition. Nutrients 2023; 15:5004. [PMID: 38068862 PMCID: PMC10708263 DOI: 10.3390/nu15235004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Exercise and caloric restriction improve skeletal muscle metabolism. However, the benefits of exercise and caloric restriction on skeletal muscle metabolism in aging have never been compared. Seven-week-old male Wistar rats (n = 24) were divided into 4 groups (n = 6 per group) to receive either normal saline solution for 28 weeks, 150 mg/kg/day of D-galactose for 28 weeks to induce premature aging, 150 mg/kg/day of D-galactose for 28 weeks plus exercise for 16 weeks (week 13-28), or 150 mg/kg/day of D-galactose for 28 weeks plus 30% caloric restriction for 16 weeks (week 13-28). The 17-month-old rats (n = 6) were also injected with normal saline solution for 28 weeks as the naturally aged controls. At the end of week 28, total walking distance and fatty acid and carbohydrate oxidation during physical activity were determined. Then, all rats were euthanized for the collection of blood and tibialis anterior muscle. The results showed that D-galactose successfully mimicked the natural aging of skeletal muscle. Exercise and caloric restriction equally improved carbohydrate oxidation during physical activity and myogenesis. However, exercise was superior to caloric restriction in terms of improving fatty acid oxidation and oxidative phosphorylation. Interestingly, caloric restriction decreased oxidative stress, whereas exercise increased oxidative stress of skeletal muscle. All of these findings indicated that the benefits of exercise and caloric restriction on skeletal muscle metabolism during aging were different, and therefore the combination of exercise and caloric restriction might provide greater efficacy in ameliorating skeletal muscle aging.
Collapse
Affiliation(s)
- Chanisa Thonusin
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.T.); (P.P.); (S.S.); (N.C.)
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.N.); (B.A.)
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patcharapong Pantiya
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.T.); (P.P.); (S.S.); (N.C.)
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.N.); (B.A.)
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Wichwara Nawara
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.N.); (B.A.)
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.N.); (B.A.)
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirawit Sriwichaiin
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.T.); (P.P.); (S.S.); (N.C.)
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.N.); (B.A.)
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.T.); (P.P.); (S.S.); (N.C.)
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.N.); (B.A.)
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.T.); (P.P.); (S.S.); (N.C.)
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.N.); (B.A.)
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
246
|
Olopade JO, Mustapha OA, Fatola OI, Ighorodje E, Folarin OR, Olopade FE, Omile IC, Obasa AA, Oyagbemi AA, Olude MA, Thackray AM, Bujdoso R. Neuropathological profile of the African Giant Rat brain (Cricetomys gambianus) after natural exposure to heavy metal environmental pollution in the Nigerian Niger Delta. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120496-120514. [PMID: 37945948 DOI: 10.1007/s11356-023-30619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Pollution by heavy metals is a threat to public health because of the adverse effects on multiple organ systems including the brain. Here, we used the African giant rat (AGR) as a novel sentinel host to assess the effect of heavy metal accumulation and consequential neuropathology upon the brain. For this study, AGR were collected from distinct geographical regions of Nigeria: the rain forest region of south-west Nigeria (Ibadan), the central north of Nigeria (Abuja), and in oil-polluted areas of south Nigeria (Port-Harcourt). We found that zinc, copper, and iron were the major heavy metals that accumulated in the brain and serum of sentinel AGR, with the level of iron highest in animals from Port-Harcourt and least in animals from Abuja. Brain pathology, determined by immunohistochemistry markers of inflammation and oxidative stress, was most severe in animals from Port Harcourt followed by those from Abuja and those from Ibadan were the least affected. The brain pathologies were characterized by elevated brain advanced oxidation protein product (AOPP) levels, neuronal depletion in the prefrontal cortex, severe reactive astrogliosis in the hippocampus and cerebellar white matter, demyelination in the subcortical white matter and cerebellar white matter, and tauopathies. Selective vulnerabilities of different brain regions to heavy metal pollution in the AGR collected from the different regions of the country were evident. In conclusion, we propose that neuropathologies associated with redox dyshomeostasis because of environmental pollution may be localized and contextual, even in a heavily polluted environment. This novel study also highlights African giant rats as suitable epidemiological sentinels for use in ecotoxicological studies.
Collapse
Affiliation(s)
- James Olukayode Olopade
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Oluwaseun Ahmed Mustapha
- Neuroscience Unit, Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State, Nigeria
| | - Olanrewaju Ifeoluwa Fatola
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ejiro Ighorodje
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Oluwabusayo Racheal Folarin
- Department of Biomedical Laboratory Science, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Irene Chizubelu Omile
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adedunsola Ajike Obasa
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Matthew Ayokunle Olude
- Neuroscience Unit, Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State, Nigeria
| | - Alana Maureen Thackray
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Raymond Bujdoso
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| |
Collapse
|
247
|
Madrid E, Pino JA, Muñoz S, Cardemil F, Martinez F, Berasaluce M, San Martín S, Reyes J, González-Miranda I. Oxidative damage associated with exposure to heavy metals present in topsoils in central Chile. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9891-9901. [PMID: 37882916 DOI: 10.1007/s10653-023-01771-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Exposure to heavy metals may cause the overproduction of reactive oxygen species, generating oxidative stress and consequently, various harms to human health. The soil surrounding the Ventanas Industrial Complex, in Puchuncaví and Quintero municipal districts on the central Chilean coast, contains heavy metal concentrations (As, Cu, Pb, Zn, among others) that far exceed the maximum permissible levels established by Italian soil standards (used as a reference). This study aimed to investigate the potential association between heavy metal exposure in humans and the levels of oxidative stress biomarkers in inhabitants of these locations. We took blood samples from 140 adults living in sites with high concentrations of heavy metals in the soil and compared them with blood samples from 140 adults living in areas with normal heavy metal concentrations. We assessed lipid peroxidation, damage to genetic material, and Total Antioxidant Capacity in these blood samples. Our results indicate an association between oxidative damage and heavy metal exposure, where the inhabitants living in exposed areas have a higher level of DNA damage compared with those living in control areas. Given that DNA damage is one of the main factors in carcinogenesis, these results are of interest, both for public health and for public policies aimed at limiting human exposure to environmental pollution.
Collapse
Affiliation(s)
- Eva Madrid
- Interdisciplinary Center for Health Studies (CIESAL), Escuela de Medicina, Universidad de Valparaíso, Viña del Mar, Chile
| | - José A Pino
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
- Departamento de Medicina, Facultad de Medicina, Universidad de Atacama, Copiapó, Chile
| | - Sergio Muñoz
- Department of Public Health-CIGES, Universidad de La Frontera, Temuco, Chile
| | - Felipe Cardemil
- Department of Basic and Clinical Oncology, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Felipe Martinez
- Facultad de Medicina, Escuela de Medicina, Universidad Andrés Bello, Viña del Mar, Chile
| | - Maite Berasaluce
- Interdisciplinary Center for Health Studies (CIESAL), Escuela de Medicina, Universidad de Valparaíso, Viña del Mar, Chile
| | - Sebastián San Martín
- Biomedical Research Center (CIB), Escuela de Medicina, Universidad de Valparaíso, Viña del Mar, Chile
| | - Juan Reyes
- Instituto de Química, Facultad de de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Isabel González-Miranda
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales (Ceres), Quillota, Chile.
- Vicerrectoría de Investigación y Estudios Avanzados, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
248
|
Rusetskaya NY, Loginova NY, Pokrovskaya EP, Chesovskikh YS, Titova LE. Redox regulation of the NLRP3-mediated inflammation and pyroptosis. BIOMEDITSINSKAIA KHIMIIA 2023; 69:333-352. [PMID: 38153050 DOI: 10.18097/pbmc20236906333] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The review considers modern data on the mechanisms of activation and redox regulation of the NLRP3 inflammasome and gasdermins, as well as the role of selenium in these processes. Activation of the inflammasome and pyroptosis represent an evolutionarily conserved mechanism of the defense against pathogens, described for various types of cells and tissues (macrophages and monocytes, microglial cells and astrocytes, podocytes and parenchymal cells of the kidneys, periodontal tissues, osteoclasts and osteoblasts, as well as cells of the digestive and urogenital systems, etc.). Depending on the characteristics of redox regulation, the participants of NLRP3 inflammation and pyroptosis can be subdivided into 2 groups. Members of the first group block the mitochondrial electron transport chain, promote the formation of reactive oxygen species and the development of oxidative stress. This group includes granzymes, the mitochondrial antiviral signaling protein MAVS, and others. The second group includes thioredoxin interacting protein (TXNIP), erythroid-derived nuclear factor-2 (NRF2), Kelch-like ECH-associated protein 1 (Keap1), ninjurin (Ninj1), scramblase (TMEM16), inflammasome regulatory protein kinase NLRP3 (NEK7), caspase-1, gasdermins GSDM B, D and others. They have redox-sensitive domains and/or cysteine residues subjected to redox regulation, glutathionylation/deglutathionylation or other types of regulation. Suppression of oxidative stress and redox regulation of participants in NLRP3 inflammation and pyroptosis depends on the activity of the antioxidant enzymes glutathione peroxidase (GPX) and thioredoxin reductase (TRXR), containing a selenocysteine residue Sec in the active site. The expression of GPX and TRXR is regulated by NRF2 and depends on the concentration of selenium in the blood. Selenium deficiency causes ineffective translation of the Sec UGA codon, translation termination, and, consequently, synthesis of inactive selenoproteins, which can cause various types of programmed cell death: apoptosis of nerve cells and sperm, necroptosis of erythrocyte precursors, pyroptosis of infected myeloid cells, ferroptosis of T- and B-lymphocytes, kidney and pancreatic cells. In addition, suboptimal selenium concentrations in the blood (0.86 μM or 68 μg/l or less) have a significant impact on expression of more than two hundred and fifty genes as compared to the optimal selenium concentration (1.43 μM or 113 μg/l). Based on the above, we propose to consider blood selenium concentrations as an important parameter of redox homeostasis in the cell. Suboptimal blood selenium concentrations (or selenium deficiency states) should be used for assessment of the risk of developing inflammatory processes.
Collapse
Affiliation(s)
- N Yu Rusetskaya
- V.I. Razumovsky Saratov State Medical University, Saratov, Russia
| | - N Yu Loginova
- V.I. Razumovsky Saratov State Medical University, Saratov, Russia
| | - E P Pokrovskaya
- V.I. Razumovsky Saratov State Medical University, Saratov, Russia
| | - Yu S Chesovskikh
- V.I. Razumovsky Saratov State Medical University, Saratov, Russia
| | - L E Titova
- V.I. Razumovsky Saratov State Medical University, Saratov, Russia
| |
Collapse
|
249
|
Park JE, Han JS. Scopoletin protects INS-1 pancreatic β cells from glucotoxicity by reducing oxidative stress and apoptosis. Toxicol In Vitro 2023; 93:105665. [PMID: 37619648 DOI: 10.1016/j.tiv.2023.105665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/01/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
This study investigated whether scopoletin could protect INS-1 pancreatic β cells from apoptosis and oxidative stress caused by high glucose. Cells were pretreated with glucose (5.5 or 30 mM) and then treated with 0, 5, 10, 25, or 50 μM Scopoletin. Cell viability and insulin secretion were measured in addition to ROS, TBARS, NO and antioxidant enzymes. Western blot analysis and flow cytometric assessment of apoptosis were also carried out. High glucose of 30 mM caused glucotoxicity and cell death in INS-1 pancreatic β cells. However, 5, 10, 25 or 50 μM scopoletin increased the level of cell viability as concentrations increased. The levels of ROS, TBARS, and NO increased by high glucose were significantly decreased after scopoletin treatment. Scopoletin also raised antioxidant enzyme activities up against oxidative stress produced by high glucose. These effects influenced the apoptosis pathway, raising levels of anti-apoptotic protein, Bcl-2, and reducing levels of pro-apoptotic proteins, including JNK, Bax, cytochrome C, and caspase 9. Annexin V/propidium staining indicated that scopoletin significantly lowered high glucose-produced apoptosis. These results indicate that scopoletin can protect INS-1 pancreatic β cells from glucotoxicity caused by high glucose and have potential as a pharmaceutical material to protect the pancreatic β cells.
Collapse
Affiliation(s)
- Jae Eun Park
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Ji Sook Han
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
250
|
Sayin D, Gundogdu G, Kilic-Erkek O, Gundogdu K, Coban HS, Abban-Mete G. Silk protein sericin: a promising therapy for Achilles tendinopathy-evidence from an experimental rat model. Clin Rheumatol 2023; 42:3361-3373. [PMID: 37733079 DOI: 10.1007/s10067-023-06767-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVE This study investigated the efficacy of sericin in treating experimental Achilles tendinopathy (AT) in rats via the transforming growth factor-beta (TGF-β)/mothers against decapentaplegic (Smad) pathway compared with diclofenac sodium (DS). METHOD An AT model was induced in rats using collagenase enzyme type I and divided into 5 groups: C (control), AT (diseased control), ATS (AT treated with sericin), ATN (AT treated with DS), and ATSN (AT treated with sericin and DS). Sericin injection was given on the 3rd and 6th days by intratendinous injection (0.8 g/kg/mL), and DS was administered for 14 days by oral gavage (1.1 mg/kg/day). Serum concentrations of total oxidant-antioxidant status (TOS-TAS), TGF-β1, decorin, Smad2, and connective tissue growth factor (CTGF) were measured. Histopathologic and immunohistochemical (IHC) studies were conducted on Achilles tendon samples. RESULTS The TOS, oxidative stress index (OSI), TGF-β1, Smad2, CTGF, and decorin serum concentrations were significantly higher in AT than in C and significantly lower in ATS than in AT (P<0.05). Histopathological examination revealed that irregular fibers, degeneration, and round cell nuclei were significantly elevated in AT. Spindle-shaped fibers were similar to those in C, and degeneration was reduced in ATS. TGF-β1 and Smad2/3 expression was increased, and collagen type I alpha-1 (Col1A1) expression was decreased in AT vs. C (P=0.001). In the ATS, TGF-β1 and Smad2/3 expression decreased, and Col1A1 expression increased. The Bonar score significantly increased in the AT group (P =0.001) and significantly decreased in the ATS group (P =0.027). CONCLUSION Sericin shows potential efficacy in reducing oxidative stress and modulating the TGF-β/Smad pathway in experimental AT models in rats. It may be a promising therapeutic agent for AT, warranting further clinical studies for validation. Key Points • This study revealed that sericin mitigates AT-induced damage through the TGF-β/Smad pathway in an AT rat model. • ELISA and IHC investigations corroborated the effectiveness of sericin via the pivotal TGF-β/Smad pathway in tissue repair. • Evidence indicates that sericin enhances collagen synthesis,shapes tendon fiber structure, and diminishes histopathological degeneration. • Sericin's antioxidant properties were reaffirmed in its AT treatment application.
Collapse
Affiliation(s)
- Dilek Sayin
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Gulsah Gundogdu
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| | - Ozgen Kilic-Erkek
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Koksal Gundogdu
- Department of Orthopedics and Traumatology, Denizli State Hospital, Denizli, Turkey
| | - Hatice Siyzen Coban
- Department of Histology and Embryology, Zeynep Kamil Women and Children Diseases Training and Research Hospital, Istanbul, Turkey
| | - Gulcin Abban-Mete
- Department of Histology and Embryology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|