201
|
Pérez Fernández MR, Martínez Lede I, Fernández-Varela MM, Fariñas-Valiña N, Calvo Ayuso N, Rodríguez-Garrido JI. [Depressive symptoms in a sample of women with subclinical hypothyroidism and their relationship to chlorates in tap water]. NUTR HOSP 2024. [PMID: 38328922 DOI: 10.20960/nh.04919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
INTRODUCTION depressive symptoms may develop in subclinical hypothyroidism and their presence usually facilitates recognition and the establishment of replacement treatment; however, recent studies have found no association between the two. Be-sides, thyroid function can be affected by endocrine disruptors and some of them, such as chlorates, can be found in the water we drink. OBJECTIVES to know if the type of water consumed may influence the development of depressive symptoms in patients with subclinical hypothyroidism. METHODS 96 women with subclinical hypothyroidism, without thyroid treatment, par-ticipated from a health area in Spain. We studied, among other variables, the presence of depressive symptoms, type of water consumption (tap, bottled or spring) and the level of chlorates in the tap water. RESULTS 41.7 % (40) of women presented depressive symptoms and these were related to the consumption of tap water (p = 0.001), resulting in a reliable predictor (OR, 27.79; p = 0.007). Chlorate level in the tap water was 250 µg/L, a value within the maximum limit allowed by law. CONCLUSIONS chronic exposure to chlorates in water, in women with subclinical hypo-thyroidism, at levels authorized by law, could favor the inhibition of iodine transport and the appearance of depressive symptoms. It would be interesting to test this hy-pothesis as well as its possible effect on other population profiles.
Collapse
|
202
|
Forner-Piquer I, Baig AH, Kortenkamp A. Disruption of the thyroid hormone system and patterns of altered thyroid hormones after gestational chemical exposures in rodents - a systematic review. Front Endocrinol (Lausanne) 2024; 14:1323284. [PMID: 38352246 PMCID: PMC10863050 DOI: 10.3389/fendo.2023.1323284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 02/16/2024] Open
Abstract
We present a comprehensive overview of changes in thyroxine (T4) and thyroid stimulating hormone (TSH) serum concentrations after pre-gestational, gestational and/or lactation exposures of rodents to various chemicals that affect the thyroid hormone system. We show that T4 and TSH changes consistent with the idealized view of the hypothalamic-pituitary-thyroid (HPT) feedback loop (T4 decrements accompanied by TSH increases) are observed with only a relatively small set of chemicals. Most substances affect concentrations of various thyroid hormones without increasing TSH. Studies of altered T4 concentrations after gestational exposures are limited to a relatively small set of chemicals in which pesticides, pharmaceuticals and industrial chemicals are under-represented. Our risk-of-bias analysis exposed deficits in T4/TSH analytics as a problem area. By relating patterns of T4 - TSH changes to mode-of-action (MOA) information, we found that chemicals capable of disrupting the HPT feedback frequently affected thyroid hormone synthesis, while substances that produced T4 serum decrements without accompanying TSH increases lacked this ability, but often induced liver enzyme systems responsible for the elimination of TH by glucuronidation. Importantly, a multitude of MOA leads to decrements of serum T4. The current EU approaches for identifying thyroid hormone system-disrupting chemicals, with their reliance on altered TH serum levels as indicators of a hormonal mode of action and thyroid histopathological changes as indicators of adversity, will miss chemicals that produce T4/T3 serum decreases without accompanying TSH increases. This is of concern as it may lead to a disregard for chemicals that produce developmental neurotoxicity by disrupting adequate T4/T3 supply to the brain, but without increasing TSH.
Collapse
Affiliation(s)
| | | | - Andreas Kortenkamp
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
203
|
Xu CY, Cui YY, Yang CX. Fabrication of magnetic Fe 3O 4 doped β-cyclodextrin microporous organic network for the efficient extraction of endocrine disrupting chemicals from food takeaway boxes. J Chromatogr A 2024; 1715:464625. [PMID: 38171066 DOI: 10.1016/j.chroma.2023.464625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/24/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Endocrine disrupting chemicals (EDCs) are a typical class of natural or man-made endogenous hormone agonists or antagonists that can directly or potentially interfere with human endocrine system. However, it is still difficult to analyze trace EDCs directly from complex environment and food matrices. Therefore, the proper sample pretreatment is highly desired and the preparation of efficient adsorbents is of great challenge and importance. Herein, we report the facile one-pot solvothermal synthesis of Fe3O4 nanoparticle doped magnetic β-cyclodextrin microporous organic network composites (MCD-MONs) for the magnetic solid phase extraction (MSPE) of four phenolic EDCs in water and food takeaway boxes prior to the high-performance liquid chromatography analysis. The sheet-like Fe3O4 doped MCD-MONs offered good magnetic property (16.5 emu g-1) and stability, and provided numerous hydrogen bonding, hydrophobic, π-π, and host-guest interaction sites for EDCs. Under the optimal experimental conditions, the established method was successfully verified with wide linear range (2.0-1000 µg L-1), low limits of detection (0.6-1.0 µg L-1), good precisions (intra-day and inter-day RSDs < 5.2 %, n = 3), large enrichment factors (88-98) and adsorption capacity (90.3-255.8 mg g-1), short extraction time (6 min), less adsorbent consumption (3 mg), and good reusability (at least 8 times) for EDCs. The proposed method was successfully applied to detect the trace EDCs in real samples with the recovery of 84.0-99.7 %. This work demonstrated the great potential of MCD-MONs for the efficient MSPE of trace EDCs from complex food takeaway boxes and water samples and uncovered the prospect of CD-based MONs in sample pretreatment.
Collapse
Affiliation(s)
- Chun-Ying Xu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yuan-Yuan Cui
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
204
|
Roger C, Paul A, Fort E, Lamouroux C, Samal A, Spinosi J, Charbotel B. Changes in the European Union definition for endocrine disruptors: how many molecules remain a cause for concern? The example of crop protection products used in agriculture in France in the six last decades. Front Public Health 2024; 11:1343047. [PMID: 38292391 PMCID: PMC10826603 DOI: 10.3389/fpubh.2023.1343047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024] Open
Abstract
Background The endocrine-disrupting effects of phytopharmaceutical active substances (PAS) on human health are a public health concern. The CIPATOX-PE database, created in 2018, listed the PAS authorized in France between 1961 and 2014 presenting endocrine-disrupting effects for humans according to data from official international organizations. Since the creation of CIPATOX-PE, European regulations have changed, and new initiatives identifying substances with endocrine-disrupting effects have been implemented and new PAS have been licensed. Objectives The study aimed to update the CIPATOX-PE database by considering new 2018 European endocrine-disrupting effect identification criteria as well as the new PAS authorized on the market in France since 2015. Methods The endocrine-disrupting effect assessment of PAS from five international governmental and non-governmental initiatives was reviewed, and levels of evidence were retained by these initiatives for eighteen endocrine target organs. Results The synthesis of the identified endocrine-disrupting effects allowed to assign an endocrine-disrupting effect level of concern for 241 PAS among 980 authorized in France between 1961 and 2021. Thus, according to the updated CIPATOX-PE data, 44 PAS (18.3%) had an endocrine-disrupting effect classified as "high concern," 133 PAS (55.2%) "concern," and 64 PAS (26.6%) "unknown effect" in the current state of knowledge. In the study, 42 PAS with an endocrine-disrupting effect of "high concern" are similarly classified in CIPATOX-PE-2018 and 2021, and 2 new PAS were identified as having an endocrine-disrupting effect of "high concern" in the update, and both were previously classified with an endocrine-disrupting effect of "concern" in CIPATOX-PE-2018. Finally, a PAS was identified as having an endocrine-disrupting effect of "high concern" in CIPATOX-PE-2018 but is now classified as a PAS not investigated for endocrine-disrupting effects in CIPATOX-PE-2021. The endocrine target organs associated with the largest number of PAS with an endocrine-disrupting effect of "high concern" is the reproductive system with 31 PAS. This is followed by the thyroid with 25 PAS and the hypothalamic-pituitary axis (excluding the gonadotropic axis) with 5 PAS. Discussion The proposed endocrine-disrupting effect indicator, which is not a regulatory classification, can be used as an epidemiological tool for occupational risks and surveillance.
Collapse
Affiliation(s)
- Cloé Roger
- University Lyon, Umrestte UMR T 9405 (University Claude Bernard Lyon 1 and Gustave Eiffel), Lyon, France
| | - Adèle Paul
- University Lyon, Umrestte UMR T 9405 (University Claude Bernard Lyon 1 and Gustave Eiffel), Lyon, France
| | - Emmanuel Fort
- University Lyon, Umrestte UMR T 9405 (University Claude Bernard Lyon 1 and Gustave Eiffel), Lyon, France
| | - Céline Lamouroux
- University Lyon, Umrestte UMR T 9405 (University Claude Bernard Lyon 1 and Gustave Eiffel), Lyon, France
- CRPPE de Lyon, Hospices Civils de Lyon, Hôpital Lyon Sud, Lyon, France
| | - Areejit Samal
- The Institute of Mathematical Sciences, A CI of Homi Bhabha National Institute, Chennai, India
| | - Johan Spinosi
- Santé Publique France, French National Public Health Agency, Paris, France
| | - Barbara Charbotel
- University Lyon, Umrestte UMR T 9405 (University Claude Bernard Lyon 1 and Gustave Eiffel), Lyon, France
- CRPPE de Lyon, Hospices Civils de Lyon, Hôpital Lyon Sud, Lyon, France
| |
Collapse
|
205
|
Tran-Lam TT, Quan TC, Bui MQ, Dao YH, Le GT. Endocrine-disrupting chemicals in Vietnamese marine fish: Occurrence, distribution, and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168305. [PMID: 37935261 DOI: 10.1016/j.scitotenv.2023.168305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/14/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
The release of endocrine-disrupting chemicals (EDCs) into the aquatic environment, specifically the oceans, is increasing, leading to adverse effects on the marine ecosystem. Using optimized QuEChERS extraction methods, the study created the first contamination profiles of 44 EDCs, including organic ultraviolet compounds, pharmaceutically active compounds, hormones, and phthalate esters, in 114 fish muscle samples from five species collected along the Vietnamese coast. The study found that largehead hairtail exhibited the highest total EDCs at 208.3 ng g-1 lipid weight (lw), while Indian catfish displayed the lowest concentration at 105.5 ng g-1 lw. Besides, the study observed notable variations in the total EDCs across distinct fish species. This study hypothesized that the marine economic characteristics of each research location have a significant role in shaping the pollution profile of EDCs found in fish specimens taken from the corresponding area. As a result, a notable disparity in the composition of organic ultraviolet compounds has been observed among the three regions of North, Central, and South Vietnam (Mann-Whitney U test, p < 0.05). Despite these findings, EDC-contaminated fish did not pose any health risks to Vietnam's coastal population.
Collapse
Affiliation(s)
- Thanh-Thien Tran-Lam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam; Institute of Mechanics and Applied Informatics, VAST, 291 Dien Bien Phu, Ward 7, District 3, Ho Chi Minh City, 70000, Viet Nam
| | - Thuy Cam Quan
- Viet Tri University of Industry, 9 Tien Son, Tien Cat, Viet Tri, Phu Tho 75000, Viet Nam
| | - Minh Quang Bui
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam
| | - Yen Hai Dao
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000, Viet Nam.
| | - Giang Truong Le
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000, Viet Nam
| |
Collapse
|
206
|
Green-Ojo B, Botelho MT, Umbuzeiro GDA, Gomes V, Parker MO, Grinsted L, Ford AT. Evaluation of precopulatory pairing behaviour and male fertility in a marine amphipod exposed to plastic additives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122946. [PMID: 37977364 DOI: 10.1016/j.envpol.2023.122946] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Plastics contain a mixture of chemical additives that can leach into the environment and potentially cause harmful effects on reproduction and the endocrine system. Two of these chemicals, N-butyl benzenesulfonamide (NBBS) and triphenyl phosphate (TPHP), are among the top 30 organic chemicals detected in surface and groundwater and are currently placed on international watchlist for evaluation. Although bans have been placed on legacy pollutants such as diethylhexyl phthalate (DEHP) and dibutyl phthalate (DBP), their persistence remains a concern. This study aimed to examine the impact of plastic additives, including NBBS, TPHP, DBP, and DEHP, on the reproductive behaviour and male fertility of the marine amphipod Echinogammarus marinus. Twenty precopulatory pairs of E. marinus were exposed to varying concentrations of the four test chemicals to assess their pairing behaviour. A high-throughput methodology was developed and optimised to record the contact time and re-pair time within 15 min and additional point observations for 96 h. The study found that low levels of NBBS, TPHP, and DEHP prolonged the contact and re-pairing time of amphipods and the proportion of pairs reduced drastically with re-pairing success ranging from 75% to 100% in the control group and 0%-85% in the exposed groups at 96 h. Sperm count declined by 40% and 60% in the 50 μg/l and 500 μg/l DBP groups, respectively, whereas TPHP resulted in significantly lower sperms in 50 μg/l exposed group. Animals exposed to NBBS and DEHP showed high interindividual variability in all exposed groups. Overall, this study provides evidence that plastic additives can disrupt the reproductive mechanisms and sperm counts of amphipods at environmentally relevant concentrations. Our research also demonstrated the usefulness of the precopulatory pairing mechanism as a sensitive endpoint in ecotoxicity assessments to proactively mitigate population-level effects in the aquatic environment.
Collapse
Affiliation(s)
- Bidemi Green-Ojo
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, UK
| | - Marina Tenório Botelho
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, UK; Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191, 05508-120, São Paulo, Brazil
| | | | - Vicente Gomes
- Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191, 05508-120, São Paulo, Brazil
| | - Mathew O Parker
- School of Pharmacy & Biomedical Science, White Swan Road, St. Michael's Building, Portsmouth, UK; Surrey Sleep Research Centre, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Lena Grinsted
- School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry 1 Street, Portsmouth, UK
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, UK.
| |
Collapse
|
207
|
Alizadeh-Fanalou S, Mehdipour S, Rokhsartalb-Azar S, Mohammadi F, Ghorban K, Asri S, Mousavi SH, Karami M. Evaluation of novel biomarkers for early diagnosis of bisphenol A-induced coronary artery disease. Heliyon 2024; 10:e23768. [PMID: 38234885 PMCID: PMC10792579 DOI: 10.1016/j.heliyon.2023.e23768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Bisphenol A (BPA), a ubiquitous synthetic monomer primarily used in the manufacture of polycarbonate plastic and epoxy resins and as a non-polymer additive to other plastics, can leach into the food and water supply and has been linked to cardiovascular disease (CVD). This study aimed to analyze BPA levels in patients with varying numbers of coronary artery stenosis and evaluate the prognostic value of new biomarkers cluster of differentiation 36 (CD36) and heart-type fatty acid-binding protein (H-FABP), compared to troponin I and creatine kinase (CK) MB, for detecting myocardial injury. Method Eighty nine patients undergoing angiography at Urmia Hospital from March 2019 to 2020 were included. Serum levels of BPA, CD36, H-FABP, troponin I, and CK-M were measured. Results When comparing CD36 and H-FABP with troponin I and CK-MB across coronary occlusion classes, receiver operating characteristic curves indicated CD36 and H-FABP had higher accuracy than troponin I and CK-MB for detecting stenosis stages. In patients with occlusion, significant alterations were detected in age, sex, BMI, hypertension, diabetes, dyslipidemia, and smoking. BPA serum concentration significantly increased compared to normal subjects. Conclusions Our study revealed that serum biomarkers were valuable for prognosticating myocardial injury. Among these, CD36 and H-FABP were more accurate. BPA concentration correlated with myocardial necrosis, underlying disease, and occlusion stage, suggesting BPA's harmful effects.
Collapse
Affiliation(s)
- Shahin Alizadeh-Fanalou
- Department of Biochemistry, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sara Mehdipour
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Rokhsartalb-Azar
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran
| | - Forogh Mohammadi
- Department of Veterinary, Agriculture Faculty, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Khodayar Ghorban
- Department of Medical Immunology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Siamak Asri
- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Seyyed Hosein Mousavi
- Department of Cardiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Masoumeh Karami
- Department of Biochemistry, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
208
|
Zhang M, Liu XY, Deng YL, Liu C, Zeng JY, Miao Y, Wu Y, Li CR, Li YJ, Liu AX, Zhu JQ, Zeng Q. Associations between urinary biomarkers of exposure to disinfection byproducts and semen parameters: A repeated measures analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132638. [PMID: 37774606 DOI: 10.1016/j.jhazmat.2023.132638] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Toxicological studies have demonstrated that disinfection byproducts (DBPs), particularly haloacetic acids, cause testicular toxicity. However, evidence from human studies is sparse and inconclusive. This study included 1230 reproductive-aged men from the Tongji Reproductive and Environmental (TREE) cohort to investigate the associations between repeated measures of DBP exposures and semen parameters. Urinary dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) as biomarkers of DBP exposures and semen parameters in up to three samples from each man were assessed. The linear mixed effect models were applied to explore the associations between urinary biomarkers of DBP exposures and semen parameters. We found inverse associations of urinary DCAA with sperm count, progressive motility, and total motility (e.g., -14.86%; 95% CI: -19.33%, -10.15% in sperm total motility for the highest vs. lowest quartiles; all P for trends < 0.05). Moreover, urinary TCAA modeled as a continuous variable was negatively associated with sperm progressive motility and total motility, while the inverse associations across increasing urinary TCAA quartiles were seen among leaner men (BMI < 25 kg/m2). Exposure to DBPs reflected by urinary DCAA and TCAA was inversely associated with sperm motility and such effects were more evident among leaner men.
Collapse
Affiliation(s)
- Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiao-Ying Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yang Wu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Cheng-Ru Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yang-Juan Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - A-Xue Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jin-Qin Zhu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
209
|
Habiballah S, Heath LS, Reisfeld B. A deep-learning approach for identifying prospective chemical hazards. Toxicology 2024; 501:153708. [PMID: 38104655 DOI: 10.1016/j.tox.2023.153708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
With the aim of helping to set safe exposure limits for the general population, various techniques have been implemented to conduct risk assessments for chemicals and other environmental stressors; however, none of these tools facilitate the identification of completely new chemicals that are likely hazardous and elicit an adverse biological effect. Here, we detail a novel in silico, deep-learning framework that is designed to systematically generate structures for new chemical compounds that are predicted to be chemical hazards. To assess the utility of the framework, we applied the tool to four endpoints related to environmental toxicants and their impacts on human and animal health: (i) toxicity to honeybees, (ii) immunotoxicity, (iii) endocrine disruption via ER-α antagonism, and (iv) mutagenicity. In addition, we characterized the predicted potency of these compounds and examined their structural relationship to existing chemicals of concern. As part of the array of emerging new approach methodologies (NAMs), we anticipate that such a framework will be a significant asset to risk assessors and other environmental scientists when planning and forecasting. Though not in the scope of the present study, we expect that the methodology detailed here could also be useful in the de novo design of more environmentally-friendly industrial chemicals.
Collapse
Affiliation(s)
- Sohaib Habiballah
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523-1370, USA
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061-0106, USA
| | - Brad Reisfeld
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523-1370, USA; Colorado School of Public Health, Colorado State University, Fort Collins, CO 80523-1612, USA.
| |
Collapse
|
210
|
Abdulzahra IS, Al-Dujaily SS, Zabbon AA. Novel combination with maca improves sperm parameters in vitro of asthenozoospermic men. Hum Antibodies 2024; 32:221-227. [PMID: 39240631 DOI: 10.3233/hab-240032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
BACKGROUND Infertility is an inability to conceive after a reasonable period of time (12 months) without the use of contraception or due to a person's incapacity to procreate, whether independently or with a spouse. Problems with the production and maturation of sperm are the most common causes of male infertility additionally; the motility is the major functional character that determines the fertilizing ability of spermatozoa. Therefore the goal of this study is to get better certain sperm function parameters in vitro of asthenozoospermic patient. OBJECTIVE The World Health Organization (WHO) and many studies considered the infertility as a disease and so many couples complaining from unsuccessful assisted reproductive technologies (ART) procedures to overcome their problem. The goal of this study is to improve certain sperm function feature in vitro of asthenozoospermic semen patients by using combination of motility inducing namely; Maca, L-carnitine and Pentoxifylline that enhance the medium to improve certain sperm characters that might be utilized for ART centers. METHODOLOGY Semen aliquots were collected from ninety patients with asthenozoospermia who participated in present study, the volume of semen samples with normal ejaculate when was ranged between 1.4-6ml and can be measured by using a measure pipette or conical graduated tube; Inclusion criteria was Asthenozoospermia, oligozoospermia and teratozoospermia men, Infertile idiopathic men also, fertile normozoospermic men. While Exclusion criteria was Azoospermic men, Alcoholic, Patients under treatment with antibiotics and men with Varicocele.The samples split into two equal groups at random. Using Ham's F12 medium, one portion served as the control group, and the other was the treatment group, which was mixing by combining the following ingredients, Maca powder extracts (Lepidium meyenii) (M) 1 mg/ml, 0.5 mg/ml of L-Carnitine (LC), and 10 mg/ml of Pentoxifylline (PTX). The data were analyzed using Statistical Package for Social Sciences (SPSS) version 23.0. The descriptive statistics including frequency, range, mean and standard error, Data from treated and control groups were expressed as mean ± SEM and to compare value between experimental and control groups using Students t-test. Layering approach is used to investigate sperm parameters before and after in vitro activation. RESULTS The information showed a very large (p< 0.001) increase in active sperm motility grade A, percentage of progressive motility with significant increase in morphologically normal sperm (MNS) with decreased in DNA fragmentation index after activation by layering technique with novel combination medium compared to Hams F12 medium and before activation. CONCLUSION The present work stated that novel combination medium (LC, maca and PXT) have potential effects to improve sperm characters in male infertility factors and suggested to be used for sperm preparation and activation in ART programs.
Collapse
Affiliation(s)
| | - Saad Salih Al-Dujaily
- Department of Physiology, High Institute of Infertility Diagnosis and Art, Al-Nahrain University, Baghdad, Iraq
| | - Areej Abbas Zabbon
- Department of Biology, College of Science, Mustanceryia University, Baghdad, Iraq
| |
Collapse
|
211
|
Kay JE, Brody JG, Schwarzman M, Rudel RA. Application of the Key Characteristics Framework to Identify Potential Breast Carcinogens Using Publicly Available in Vivo, in Vitro, and in Silico Data. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:17002. [PMID: 38197648 PMCID: PMC10777819 DOI: 10.1289/ehp13233] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Chemicals that induce mammary tumors in rodents or activate estrogen or progesterone signaling are likely to increase breast cancer (BC) risk. Identifying chemicals with these activities can prompt steps to protect human health. OBJECTIVES We compiled data on rodent tumors, endocrine activity, and genotoxicity to assess the key characteristics (KCs) of rodent mammary carcinogens (MCs), and to identify other chemicals that exhibit these effects and may therefore increase BC risk. METHODS Using authoritative databases, including International Agency for Research on Cancer (IARC) Monographs and the US Environmental Protection's (EPA) ToxCast, we selected chemicals that induce mammary tumors in rodents, stimulate estradiol or progesterone synthesis, or activate the estrogen receptor (ER) in vitro. We classified these chemicals by their genotoxicity and strength of endocrine activity and calculated the overrepresentation (enrichment) of these KCs among MCs. Finally, we evaluated whether these KCs predict whether a chemical is likely to induce mammary tumors. RESULTS We identified 279 MCs and an additional 642 chemicals that stimulate estrogen or progesterone signaling. MCs were significantly enriched for steroidogenicity, ER agonism, and genotoxicity, supporting the use of these KCs to predict whether a chemical is likely to induce rodent mammary tumors and, by inference, increase BC risk. More MCs were steroidogens than ER agonists, and many increased both estradiol and progesterone. Enrichment among MCs was greater for strong endocrine activity vs. weak or inactive, with a significant trend. DISCUSSION We identified hundreds of compounds that have biological activities that could increase BC risk and demonstrated that these activities are enriched among MCs. We argue that many of these should not be considered low hazard without investigating their ability to affect the breast, and chemicals with the strongest evidence can be targeted for exposure reduction. We describe ways to strengthen hazard identification, including improved assessments for mammary effects, developing assays for more KCs, and more comprehensive chemical testing. https://doi.org/10.1289/EHP13233.
Collapse
Affiliation(s)
| | | | - Megan Schwarzman
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Family and Community Medicine, University of California, San Francisco, San Francisco, California, USA
| | | |
Collapse
|
212
|
Jacobson MH, Hamra GB, Monk C, Crum RM, Upadhyaya S, Avalos LA, Bastain TM, Barrett ES, Bush NR, Dunlop AL, Ferrara A, Firestein MR, Hipwell AE, Kannan K, Lewis J, Meeker JD, Ruden DM, Starling AP, Watkins DJ, Zhao Q, Trasande L. Prenatal Exposure to Nonpersistent Environmental Chemicals and Postpartum Depression. JAMA Psychiatry 2024; 81:67-76. [PMID: 37728908 PMCID: PMC10512164 DOI: 10.1001/jamapsychiatry.2023.3542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/20/2023] [Indexed: 09/22/2023]
Abstract
Importance Postpartum depression (PPD) affects up to 20% of childbearing individuals, and a significant limitation in reducing its morbidity is the difficulty in modifying established risk factors. Exposure to synthetic environmental chemicals found in plastics and personal care products, such as phenols, phthalates, and parabens, are potentially modifiable and plausibly linked to PPD and have yet to be explored. Objective To evaluate associations of prenatal exposure to phenols, phthalates, parabens, and triclocarban with PPD symptoms. Design, Setting, and Participants This was a prospective cohort study from 5 US sites, conducted from 2006 to 2020, and included pooled data from 5 US birth cohorts from the National Institutes of Health Environmental Influences on Child Health Outcomes (ECHO) consortium. Participants were pregnant individuals with data on urinary chemical concentrations (phenols, phthalate metabolites, parabens, or triclocarban) from at least 1 time point in pregnancy and self-reported postnatal depression screening assessment collected between 2 weeks and 12 months after delivery. Data were analyzed from February to May 2022. Exposures Phenols (bisphenols and triclosan), phthalate metabolites, parabens, and triclocarban measured in prenatal urine samples. Main Outcomes and Measures Depression symptom scores were assessed using the Edinburgh Postnatal Depression Scale (EPDS) or the Center for Epidemiologic Studies Depression Scale (CES-D), harmonized to the Patient-Reported Measurement Information System (PROMIS) Depression scale. Measures of dichotomous PPD were created using both sensitive (EPDS scores ≥10 and CES-D scores ≥16) and specific (EPDS scores ≥13 and CES-D scores ≥20) definitions. Results Among the 2174 pregnant individuals eligible for analysis, nearly all (>99%) had detectable levels of several phthalate metabolites and parabens. PPD was assessed a mean (SD) of 3 (2.5) months after delivery, with 349 individuals (16.1%) and 170 individuals (7.8%) screening positive for PPD using the sensitive and specific definitions, respectively. Linear regression results of continuous PROMIS depression T scores showed no statistically significant associations with any chemical exposures. Models examining LMW and HMW phthalates and di (2-ethylhexyl) phthalate had estimates in the positive direction whereas all others were negative. A 1-unit increase in log-transformed LMW phthalates was associated with a 0.26-unit increase in the PROMIS depression T score (95% CI, -0.01 to 0.53; P = .06). This corresponded to an odds ratio (OR) of 1.08 (95% CI, 0.98-1.19) when modeling PPD as a dichotomous outcome and using the sensitive PPD definition. HMW phthalates were associated with increased odds of PPD (OR, 1.11; 95% CI, 1.00-1.23 and OR, 1.10; 95% CI, 0.96-1.27) for the sensitive and specific PPD definitions, respectively. Sensitivity analyses produced stronger results. Conclusions and Relevance Phthalates, ubiquitous chemicals in the environment, may be associated with PPD and could serve as important modifiable targets for preventive interventions. Future studies are needed to confirm these observations.
Collapse
Affiliation(s)
- Melanie H. Jacobson
- Department of Pediatrics, Division of Environmental Pediatrics, NYU Grossman School of Medicine, New York, New York
| | - Ghassan B. Hamra
- Johns Hopkins University, Department of Epidemiology, Baltimore, Maryland
| | - Catherine Monk
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York
- Department of Psychiatry, Columbia University Irving Medical Center, Division of Behavioral Medicine, New York State Psychiatric Institute, New York, New York
| | - Rosa M. Crum
- Johns Hopkins University, Department of Epidemiology, Baltimore, Maryland
| | | | - Lyndsay A. Avalos
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Theresa M. Bastain
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles
| | - Emily S. Barrett
- Rutgers School of Public Health, Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey
- University of Rochester Medical Center School of Medicine and Dentistry, Rochester, New York
| | - Nicole R. Bush
- Department of Psychiatry, University of California, San Francisco
- Department of Pediatrics, University of California, San Francisco
| | - Anne L. Dunlop
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, Georgia
| | - Assiamira Ferrara
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Morgan R. Firestein
- Department of Psychiatry, Columbia University Irving Medical Center, Division of Behavioral Medicine, New York State Psychiatric Institute, New York, New York
| | - Alison E. Hipwell
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kurunthachalam Kannan
- Department of Pediatrics, Division of Environmental Pediatrics, NYU Grossman School of Medicine, New York, New York
| | - Johnnye Lewis
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque
| | - John D. Meeker
- University of Michigan, Department of Environmental Health Sciences, Ann Arbor
| | - Douglas M. Ruden
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan
| | - Anne P. Starling
- Center for Lifecourse Epidemiology of Adiposity and Diabetes, University of Colorado Anschutz Medical Campus, Aurora
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill
| | - Deborah J. Watkins
- University of Michigan, Department of Environmental Health Sciences, Ann Arbor
| | - Qi Zhao
- The University of Tennessee Health Science Center, Memphis
| | - Leonardo Trasande
- Department of Pediatrics, Division of Environmental Pediatrics, NYU Grossman School of Medicine, New York, New York
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- Division of Environmental Medicine, NYU Grossman School of Medicine, New York, New York
- NYU Wagner School of Public Service, New York, New York
- NYU College of Global Public Health, New York, New York
| |
Collapse
|
213
|
Szabo GK, Mogus JP, Vandenberg LN. Effects of perinatal exposures to a TAML catalyst on the mammary gland and hormone-sensitive outcomes in male mice. Reprod Toxicol 2024; 123:108517. [PMID: 38040386 DOI: 10.1016/j.reprotox.2023.108517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Estrogenic chemicals are common pollutants in wastewater and current effluent treatment processes are not typically effective in removing these compounds. Tetra-amido macrocyclic ligands (TAMLs) are catalysts that mimic endogenous peroxidases that may provide a solution to remove environmental pollutants including low concentrations of estrogenic compounds. Yet relatively little is known about the toxicity of TAMLs, and few studies have evaluated whether they may have endocrine disrupting properties. We administered one of three doses of a TAML, NT7, to mice via drinking water throughout pregnancy and lactation. Two pharmacologically active compounds, ethinyl estradiol (EE2) and flutamide were also included to give comparator data for estrogen receptor agonist and androgen receptor antagonist activities. Male pups were evaluated for several outcomes at weaning, puberty, and early adulthood. We found that EE2 exposures during gestation and the perinatal period induced numerous effects that were observed across the three ages including changes to spleen and testis weight and drastic effects on the morphology of the mammary gland. Flutamide had fewer effects but altered anogenital distance at weaning as well as spleen, liver, and kidney weight. In contrast, relatively few effects of NT7 were observed, but included alterations to spleen weight and modest changes to adult testis weight and morphology of the mammary gland at weaning. Collectively, these results provide some of the first evidence suggesting that NT7 may alter some hormone-sensitive outcomes, but that the effects were distinct from either EE2 or flutamide. Additional studies are needed to characterize the biological activity of this and other TAML catalysts.
Collapse
Affiliation(s)
- Gillian K Szabo
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA.
| |
Collapse
|
214
|
Pötzl B, Kürzinger L, Stopper H, Fassnacht M, Kurlbaum M, Dischinger U. Endocrine Disruptors: Focus on the Adrenal Cortex. Horm Metab Res 2024; 56:78-90. [PMID: 37884032 PMCID: PMC10764154 DOI: 10.1055/a-2198-9307] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/24/2023] [Indexed: 10/28/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous substances known to interfere with endocrine homeostasis and promote adverse health outcomes. Their impact on the adrenal cortex, corticosteroids and their physiological role in the organism has not yet been sufficiently elucidated. In this review, we collect experimental and epidemiological evidence on adrenal disruption by relevant endocrine disruptors. In vitro data suggest significant alterations of gene expression, cell signalling, steroid production, steroid distribution, and action. Additionally, morphological studies revealed disturbances in tissue organization and development, local inflammation, and zone-specific hyperplasia. Finally, endocrine circuits, such as the hypothalamic-pituitary-adrenal axis, might be affected by EDCs. Many questions regarding the detection of steroidogenesis disruption and the effects of combined toxicity remain unanswered. Not only due to the diverse mode of action of adrenal steroids and their implication in many common diseases, there is no doubt that further research on endocrine disruption of the adrenocortical system is needed.
Collapse
Affiliation(s)
- Benedikt Pötzl
- Department of Internal Medicine I, Division of Endocrinology and
Diabetes, University Hospital of Würzburg, Würzburg,
Germany
| | - Lydia Kürzinger
- Department of Internal Medicine I, Division of Endocrinology and
Diabetes, University Hospital of Würzburg, Würzburg,
Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of
Würzburg, Würzburg, Germany
| | - Martin Fassnacht
- Department of Internal Medicine I, Division of Endocrinology and
Diabetes, University Hospital of Würzburg, Würzburg,
Germany
| | - Max Kurlbaum
- Department of Internal Medicine I, Division of Endocrinology and
Diabetes, University Hospital of Würzburg, Würzburg,
Germany
- Central Laboratory, Core Unit Clinical Mass Spectrometry, University
Hospital of Würzburg, Würzburg, Germany
| | - Ulrich Dischinger
- Department of Internal Medicine I, Division of Endocrinology and
Diabetes, University Hospital of Würzburg, Würzburg,
Germany
| |
Collapse
|
215
|
Santoro A, Marino M, Vandenberg LN, Szychlinska MA, Lamparelli EP, Scalia F, Della Rocca N, D’Auria R, Pastorino GMG, Della Porta G, Operto FF, Viggiano A, Cappello F, Meccariello R. PLASTAMINATION: Outcomes on the Central Nervous System and Reproduction. Curr Neuropharmacol 2024; 22:1870-1898. [PMID: 38549522 PMCID: PMC11284724 DOI: 10.2174/1570159x22666240216085947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Environmental exposures to non-biodegradable and biodegradable plastics are unavoidable. Microplastics (MPs) and nanoplastics (NPs) from the manufacturing of plastics (primary sources) and the degradation of plastic waste (secondary sources) can enter the food chain directly or indirectly and, passing biological barriers, could target both the brain and the gonads. Hence, the worldwide diffusion of environmental plastic contamination (PLASTAMINATION) in daily life may represent a possible and potentially serious risk to human health. OBJECTIVE This review provides an overview of the effects of non-biodegradable and the more recently introduced biodegradable MPs and NPs on the brain and brain-dependent reproductive functions, summarizing the molecular mechanisms and outcomes on nervous and reproductive organs. Data from in vitro, ex vivo, non-mammalian and mammalian animal models and epidemiological studies have been reviewed and discussed. RESULTS MPs and NPs from non-biodegradable plastics affect organs, tissues and cells from sensitive systems such as the brain and reproductive organs. Both MPs and NPs induce oxidative stress, chronic inflammation, energy metabolism disorders, mitochondrial dysfunction and cytotoxicity, which in turn are responsible for neuroinflammation, dysregulation of synaptic functions, metabolic dysbiosis, poor gamete quality, and neuronal and reproductive toxicity. In spite of this mechanistic knowledge gained from studies of non-biodegradable plastics, relatively little is known about the adverse effects or molecular mechanisms of MPs and NPs from biodegradable plastics. CONCLUSION The neurological and reproductive health risks of MPs/NPs exposure warrant serious consideration, and further studies on biodegradable plastics are recommended.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Marianna Marino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Marta Anna Szychlinska
- Faculty of Medicine and Surgery, Kore University of Enna, Cittadella Universitaria 94100 Enna (EN), Italy
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Federica Scalia
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Natalia Della Rocca
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Raffaella D’Auria
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Grazia Maria Giovanna Pastorino
- Child and Adolescence Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of 84100 Salerno, Salerno, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Francesca Felicia Operto
- Department of Science of Health School of Medicine, University Magna Graecia 88100 Catanzaro, Italy
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, 90127, Italy
| | - Rosaria Meccariello
- Department of Movement and Wellness Sciences, Parthenope University of Naples, 80133 Naples, Italy
| |
Collapse
|
216
|
Omolaoye TS, Skosana BT, Ferguson LM, Ramsunder Y, Ayad BM, Du Plessis SS. Implications of Exposure to Air Pollution on Male Reproduction: The Role of Oxidative Stress. Antioxidants (Basel) 2024; 13:64. [PMID: 38247488 PMCID: PMC10812603 DOI: 10.3390/antiox13010064] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 01/23/2024] Open
Abstract
Air pollution, either from indoor (household) or outdoor (ambient) sources, occurs when there is presence of respirable particles in the form of chemical, physical, or biological agents that modify the natural features of the atmosphere or environment. Today, almost 2.4 billion people are exposed to hazardous levels of indoor pollution, while 99% of the global population breathes air pollutants that exceed the World Health Organization guideline limits. It is not surprising that air pollution is the world's leading environmental cause of diseases and contributes greatly to the global burden of diseases. Upon entry, air pollutants can cause an increase in reactive oxygen species (ROS) production by undergoing oxidation to generate quinones, which further act as oxidizing agents to yield more ROS. Excessive production of ROS can cause oxidative stress, induce lipid peroxidation, enhance the binding of polycyclic aromatic hydrocarbons (PAHs) to their receptors, or bind to PAH to cause DNA strand breaks. The continuous and prolonged exposure to air pollutants is associated with the development or exacerbation of pathologies such as acute or chronic respiratory and cardiovascular diseases, neurodegenerative and skin diseases, and even reduced fertility potential. Males and females contribute to infertility equally, and exposure to air pollutants can negatively affect reproduction. In this review, emphasis will be placed on the implications of exposure to air pollutants on male fertility potential, bringing to light its effects on semen parameters (basic and advanced) and male sexual health. This study will also touch on the clinical implications of air pollution on male reproduction while highlighting the role of oxidative stress.
Collapse
Affiliation(s)
- Temidayo S. Omolaoye
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates;
| | - Bongekile T. Skosana
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7602, South Africa; (B.T.S.); (L.M.F.); (Y.R.)
| | - Lisa Marie Ferguson
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7602, South Africa; (B.T.S.); (L.M.F.); (Y.R.)
| | - Yashthi Ramsunder
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7602, South Africa; (B.T.S.); (L.M.F.); (Y.R.)
| | - Bashir M. Ayad
- Department of Physiology, Faculty of Medicine, Misurata University, Misratah P.O. Box 2478, Libya;
| | - Stefan S. Du Plessis
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates;
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7602, South Africa; (B.T.S.); (L.M.F.); (Y.R.)
| |
Collapse
|
217
|
Piir G, Sild S, Maran U. Interpretable machine learning for the identification of estrogen receptor agonists, antagonists, and binders. CHEMOSPHERE 2024; 347:140671. [PMID: 37951393 DOI: 10.1016/j.chemosphere.2023.140671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
An abnormal hormonal activity or exposure to endocrine-disrupting chemicals (EDCs) can cause endocrine system malfunction. Among the many interactions EDCs can affect is the disruption of estrogen signalling, which can lead to adverse health effects such as cancer, osteoporosis, neurodegenerative diseases, cardiovascular disease, insulin resistance, and obesity. Knowing which chemical can act as an EDC is a significant advantage and a practical necessity. New Approach Methodologies (NAM) computational models offer a quick and cost-effective solution for preliminary hazard assessment of chemicals without animal testing. Therefore, a machine learning approach was used to investigate the relationships between estrogen receptor (ER) activity and chemical structure to identify chemicals that can interact with ER. For this purpose, the consolidated in vitro assay data from ToxCast/Tox21 projects was used for developing Random Forest classification models for ER binding, agonists, and antagonists. The overall classification prediction accuracy reaches up to 82%, depending on whether the model predicted agonists, antagonists, or compounds that bind to the active site. Given the imbalance in endocrine disruption data, the derived models are good candidates for deprioritising chemicals and reducing animal testing. The interpretation of theoretical molecular descriptors of the models was consistent with the molecular interactions known in the ligand binding pocket. The estimated class probabilities enabled the analysis of the applicability domain of the developed models and the assessment of the predictions' reliability, followed by the guidelines for interpreting prediction results. The models are openly accessible and useable at QsarDB.org (http://dx.doi.org/10.15152/QDB.259) according to the FAIR (Findable, Accessible, Interoperable, Reusable) principles.
Collapse
Affiliation(s)
- Geven Piir
- Institute of Chemistry, University of Tartu, Ravila 14A, Tartu, 50411, Estonia
| | - Sulev Sild
- Institute of Chemistry, University of Tartu, Ravila 14A, Tartu, 50411, Estonia
| | - Uko Maran
- Institute of Chemistry, University of Tartu, Ravila 14A, Tartu, 50411, Estonia.
| |
Collapse
|
218
|
Wang PW, Huang YF, Wang CH, Fang LJ, Chen ML. Prenatal to preschool exposure of nonylphenol and bisphenol A exposure and neurodevelopment in young children. Pediatr Neonatol 2024; 65:76-84. [PMID: 37679260 DOI: 10.1016/j.pedneo.2023.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Nonylphenol (NP) and bisphenol A (BPA) are produced in large quantities worldwide as multipurpose agents. However, studies on relations between NP and BPA exposure and childhood neurodevelopment are few, and the results are inconsistent. This study aimed to investigate associations between prenatal and early childhood NP and BPA exposure and neurodevelopment in mother-child pairs. METHODS Pregnant women at 27-38 weeks' gestation were recruited, as were children 2-3 years of age (n = 94) and 4-6 years of age (n = 56) years. Urine was collected to assess NP and BPA exposure. Bayley Scales of Infant and Toddler Development (3rd edition; Bayley-III), Wechsler Preschool and Primary Scale of Intelligence (4th edition), and the Full Scale Intelligence Quotient (WPPSI-IV-FSIQ) were used to assess the neurodevelopment of the children. RESULTS The detection rate and concentration of NP and BPA in the urine of children 4-6 years old were higher than in those 2-3 years old. Children were divided into a high concentration group (3rd tertile) and a reference group (1st and 2nd tertiles) based on natural log-transformed urine concentration of NP and BPA. Girls' Bayley-III motor scores in the high concentration group were higher than those of the BPA reference group of urine of mothers (β = 6.85, 95% confidence interval [CI]: 1.58-12.13). Boys' FSIQ in the higher concentration group were significantly lower than those in children 2-3 years old in the NP reference group (β = -11.29, 95% CI: -18.62 to -3.96) (all, p < 0.05). CONCLUSIONS Prenatal and childhood exposure to NP and BPA may have different effects on the neurodevelopment of young children, and there are no consistent effects between boys and girls.
Collapse
Affiliation(s)
- Pei-Wei Wang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, Yangming Campus, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Pediatrics, Heping Fuyou Branch, Taipei City Hospital, Taipei, Taiwan
| | - Yu-Fang Huang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, Yangming Campus, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Chung-Hao Wang
- Department of Pediatrics, Heping Fuyou Branch, Taipei City Hospital, Taipei, Taiwan
| | - Li-Jung Fang
- Department of Pediatrics, Heping Fuyou Branch, Taipei City Hospital, Taipei, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, Yangming Campus, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
219
|
Ham D, Ha M, Park H, Hong YC, Kim Y, Ha E, Bae S. Association of postnatal exposure to mixture of bisphenol A, Di-n-butyl phthalate and Di-(2-ethylhexyl) phthalate with Children's IQ at 5 Years of age: Mothers and Children's environmental health (MOCEH) study. CHEMOSPHERE 2024; 347:140626. [PMID: 37939933 DOI: 10.1016/j.chemosphere.2023.140626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Early childhood is important for neurodevelopment, and exposure to endocrine disruptors such as bisphenol A (BPA) and phthalates in this period may cause neurodevelopmental disorders and delays. The present study examined the association between exposure to mixtures of BPA and three metabolites of phthalates in early childhood and IQ at 5 years of age. The Mother and Children's Environmental Health (MOCEH) study is a prospective birth cohort study conducted in Korea with 1751 pregnant women enrolled from 2006 to 2010. After excluding those without relevant data, 47 children were included in the final analysis. We measured children's urinary concentrations of metabolites of endocrine-disrupting chemicals (Bisphenol A, mono-(2-ethyl-5-oxohexyl) phthalate, mono-(2-ethyl-5-hydroxyhexyl) phthalate and mono-(2-ethyl-5-butyl) phthalate) at ages of 24 and 36 months. We evaluated the children's IQ with the Korean Wechsler Intelligence Test at the age of 5 years. After adjusting for potential confounders, a multiple linear regression was conducted to examine the associations between individual endocrine-disrupting chemicals and the IQ of the children. Weighted Quantile Sum (WQS) regression and quantile-based g-computation were used to assess the association between IQ at age 5 and exposure to mixtures of BPA and phthalates. In the single-chemical analyses, mono-(2-ethyl-5-butyl) phthalate exposure at 36 months was adversely associated with children's IQ (β = -4.93, 95% confidence interval (CI): -9.22, -0.64). In the WQS regression and quantile-based g-computation analyses, exposure to the mixture of BPA and phthalates was associated with lower IQ [β = -9.13 (P-value = 0.05) and β = -9.18 (P-value = 0.05), respectively]. The largest contributor to the overall association was exposure to mono-(2-ethyl-5-butyl) phthalate at 36 months. In the present study, postnatal exposure to mixtures of BPA and three metabolites of phthalates was associated with decreased IQ of children at age 5.
Collapse
Affiliation(s)
- Dajeong Ham
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Mina Ha
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Hyesook Park
- Department of Preventive Medicine, College of Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yangho Kim
- Department of Occupational and Environmental Medicine, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Eunhee Ha
- Department of Occupational and Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Sanghyuk Bae
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Environmental Health Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
220
|
Bonfiglio R, Sisto R, Casciardi S, Palumbo V, Scioli MP, Palumbo A, Trivigno D, Giacobbi E, Servadei F, Melino G, Mauriello A, Scimeca M. The impact of toxic metal bioaccumulation on colorectal cancer: Unravelling the unexplored connection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167667. [PMID: 37813250 DOI: 10.1016/j.scitotenv.2023.167667] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Colorectal cancer is a major public health concern, with increasing incidence and mortality rates worldwide. Environmental factors, including exposure to toxic metals, such as lead, chromium, cadmium, aluminium, copper, arsenic and mercury, have been suggested to play a significant role in the development and progression of this neoplasia. In particular, the bioaccumulation of toxic metals can play a significant role in colorectal cancer by regulating biological phenomenon associated to both cancer occurrence and progression, such as cell death and proliferation. Also, frequently these metals can induce DNA mutations in well-known oncogenes. This review provides a critical analysis of the current evidence, highlighting the need for further research to fully grasp the complex interplay between toxic metal bioaccumulation and colorectal cancer. Understanding the contribution of toxic metals to colorectal cancer occurrence and progression is essential for the development of targeted preventive strategies and social interventions, with the ultimate goal of reducing the burden of this disease.
Collapse
Affiliation(s)
- Rita Bonfiglio
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents at Work (INAIL), Rome, Italy.
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents at Work (INAIL), Rome, Italy.
| | - Valeria Palumbo
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Alessia Palumbo
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Donata Trivigno
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Manuel Scimeca
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
221
|
Zhang S, Dai L, Wan Z, Huang Z, Zou M, Guan H. Sex-specific associations of bisphenol A and its substitutes with body fat distribution among US adults: NHANES 2011-2016. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7948-7958. [PMID: 38172318 DOI: 10.1007/s11356-023-31589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
Bisphenol A (BPA) and its structural analogs (bisphenol S (BPS) and bisphenol F (BPF)) are widely consumed endocrine disrupting chemicals that may contribute to the etiology of obesity. To date, few studies have directly investigated the sex-related associations between bisphenols and body fat distribution in adults. In this study, we included 2669 participants from the National Health and Nutrition Examination Survey (NHANES) 2011-2016 to evaluate and compare sex-specific differences of the associations of BPA, BPS, and BPF with body fat distribution. We found that there were significant positive correlations between BPS and body fat indices (STFAT [adjustedβ=1.94, 95% CI: (0.24, 3.64)], TAF [0.18 (0.04, 0.32)], SAT [0.15 (0.03, 0.27)], android fat mass [0.20 (0.004, 0.40)], BMI [1.63 (0.61, 2.65)], and WC [3.19 (0.64, 5.73)] in the highest quartiles of BPS), but not in BPA and BPF. Stratified analyses suggested that the significant associations of BPS with body fat indices were stronger in women than men (STFAT [adjustedβ=3.75, 95% CI: (1.04, 6.45) vs. adjustedβ=-0.06, 95% CI: (-2.23, 2.11), P for interaction < 0.001], TAF [ 0.32 (0.09, 0.54) vs. 0.01 (-0.17, 0.19), P for interaction < 0.001], SAT [0.27 (0.09, 0.45) vs. 0.01 (-0.14, 0.16), P for interaction < 0.001], android fat mass [0.41 (0.12, 0.71) vs. -0.02 (-0.28, 0.24), P for interaction < 0.001], gynoid fat mass [0.56 (0.11, 1.01) vs. -0.05 (-0.41, 0.31), P for interaction = 0.002], BMI [2.76 (1.08, 4.44) vs. 0.47 (-0.80, 1.74), P for interaction < 0.001], and WC [5.51 (1.44, 9.58) vs. 0.61 (-2.67, 3.88), P for interaction < 0.001]), and positive associations between BPS with fat distribution were also observed in non-smoking women. Our study indicated that in women, higher concentration of urinary BPS was associated with increased body fat accumulation, except for visceral adipose tissue mass. These findings emphasize the role of environmental BPS exposure in the increasing fat deposits, and confirm the need for more prospective cohort studies on a sex-specific manner.
Collapse
Affiliation(s)
- Shili Zhang
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Lingyan Dai
- Global Health Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Ziyu Wan
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zhiwei Huang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Mengchen Zou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haixia Guan
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
222
|
Baskaran S, Sahoo AK, Chivukula N, Kumar K, Samal A. Cheminformatics Analysis of the Multitarget Structure-Activity Landscape of Environmental Chemicals Binding to Human Endocrine Receptors. ACS OMEGA 2023; 8:49383-49395. [PMID: 38162763 PMCID: PMC10753715 DOI: 10.1021/acsomega.3c07920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
In human exposome, environmental chemicals can target and disrupt different endocrine axes, ultimately leading to several endocrine disorders. Such chemicals, termed endocrine disrupting chemicals, can promiscuously bind to different endocrine receptors and lead to varying biological end points. Thus, understanding the complexity of molecule-receptor binding of environmental chemicals can aid in the development of robust toxicity predictors. Toward this, the ToxCast project has generated the largest resource on the chemical-receptor activity data for environmental chemicals that were screened across various endocrine receptors. However, the heterogeneity in the multitarget structure-activity landscape of such chemicals is not yet explored. In this study, we systematically curated the chemicals targeting eight human endocrine receptors, their activity values, and biological end points from the ToxCast chemical library. We employed dual-activity difference and triple-activity difference maps to identify single-, dual-, and triple-target cliffs across different target combinations. We annotated the identified activity cliffs through the matched molecular pair (MMP)-based approach and observed that a small fraction of activity cliffs form MMPs. Further, we structurally classified the activity cliffs and observed that R-group cliffs form the highest fraction among the cliffs identified in various target combinations. Finally, we leveraged the mechanism of action (MOA) annotations to analyze structure-mechanism relationships and identified strong MOA-cliffs and weak MOA-cliffs, for each of the eight endocrine receptors. Overall, insights from this first study analyzing the structure-activity landscape of environmental chemicals targeting multiple human endocrine receptors will likely contribute toward the development of better toxicity prediction models for characterizing the human chemical exposome.
Collapse
Affiliation(s)
- Shanmuga
Priya Baskaran
- The
Institute of Mathematical Sciences (IMSc), Chennai 600113, India
- Homi
Bhabha National Institute (HBNI), Mumbai 400094, India
| | - Ajaya Kumar Sahoo
- The
Institute of Mathematical Sciences (IMSc), Chennai 600113, India
- Homi
Bhabha National Institute (HBNI), Mumbai 400094, India
| | - Nikhil Chivukula
- The
Institute of Mathematical Sciences (IMSc), Chennai 600113, India
- Homi
Bhabha National Institute (HBNI), Mumbai 400094, India
| | - Kishan Kumar
- The
Institute of Mathematical Sciences (IMSc), Chennai 600113, India
| | - Areejit Samal
- The
Institute of Mathematical Sciences (IMSc), Chennai 600113, India
- Homi
Bhabha National Institute (HBNI), Mumbai 400094, India
| |
Collapse
|
223
|
Vitku J, Skodova T, Varausova A, Gadus L, Michnova L, Horackova L, Kolatorova L, Simkova M, Heracek J. Endocrine Disruptors and Estrogens in Human Prostatic Tissue. Physiol Res 2023; 72:S411-S422. [PMID: 38116777 DOI: 10.33549/physiolres.935246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Endocrine disruptors (EDs) are ubiquitous substances both in the environment and everyday products that interfere with the hormonal system. Growing evidence demonstrates their adverse effects on the organism, including the reproductive system and the prostate, owing to their (anti)estrogenic or antiandrogenic effects. Since EDs can interact with steroid hormone actions on-site, understanding the levels of intraprostatic EDs in conjunction with steroids may hold particular significance. The aim of this study was to develop and validate a method for determining estrogens, various groups of EDs (bisphenols, parabens, oxybenzone and nonylphenol) and phytoestrogens in their unconjugated and conjugated forms in prostate tissue by liquid chromatography-tandem mass spectrometry, and subsequently analyze 20 human prostate tissue samples. The method enabled 20 compounds to be analyzed: estrogens (estrone, estradiol, estriol), bisphenols (bisphenol A- BPA, BPS, BPF, BPAF, BPAP, BPZ, BPP), parabens (methyl-, ethyl-, propyl-, butyl-, benzyl- paraben), oxybenzone, nonylphenol and phytoestrogens (daidzein, genistein, equol) with LLOQs between 0.017-2.86 pg/mg of tissue. The most frequently detected EDs in prostate tissues were propylparaben (conjugated and unconjugated forms in 100 % of tissues), methylparaben (unconjugated in 45 % and conjugated in 100 %), ethylparaben (unconjugated in 25 % and conjugated in 100 % BPA (unconjugated in 35 % and conjugated in 60 % and oxybenzone (both forms in 45 % To the best of our knowledge, this is the first study detecting EDs, phytoestrogens and estriol conjugate (E3C) in the prostate. E3C was the most abundant estrogen in prostatic tissue. This highlights the need for further explorations into estrogen metabolism within the prostate.
Collapse
Affiliation(s)
- J Vitku
- Institute of Endocrinology, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Liang D, Cai X, Guan Q, Ou Y, Zheng X, Lin X. Burden of type 1 and type 2 diabetes and high fasting plasma glucose in Europe, 1990-2019: a comprehensive analysis from the global burden of disease study 2019. Front Endocrinol (Lausanne) 2023; 14:1307432. [PMID: 38152139 PMCID: PMC10752242 DOI: 10.3389/fendo.2023.1307432] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/23/2023] [Indexed: 12/29/2023] Open
Abstract
Introduction With population aging rampant globally, Europe faces unique challenges and achievements in chronic disease prevention. Despite this, comprehensive studies examining the diabetes burden remain absent. We investigated the burden of type 1 and type 2 diabetes, alongside high fasting plasma glucose (HFPG), in Europe from 1990-2019, to provide evidence for global diabetes strategies. Methods Disease burden estimates due to type 1 and type 2 diabetes and HFPG were extracted from the GBD 2019 across Eastern, Central, and Western Europe. We analyzed trends from 1990 to 2019 by Joinpoint regression, examined correlations between diabetes burden and Socio-demographic indices (SDI), healthcare access quality (HAQ), and prevalence using linear regression models. The Population Attributable Fraction (PAF) was used to described diabetes risks. Results In Europe, diabetes accounted for 596 age-standardized disability-adjusted life years (DALYs) per 100,000 people in 2019, lower than globally. The disease burden from type 1 and type 2 diabetes was markedly higher in males and escalated with increasing age. Most DALYs were due to type 2 diabetes, showing regional inconsistency, highest in Central Europe. From 1990-2019, age-standardized DALYs attributable to type 2 diabetes rose faster in Eastern and Central Europe, slower in Western Europe. HFPG led to 2794 crude DALYs per 100,000 people in 2019. Type 1 and type 2 diabetes burdens correlated positively with diabetes prevalence and negatively with SDI and HAQ. High BMI (PAF 60.1%) and dietary risks (PAF 34.6%) were significant risk factors. Conclusion Europe's diabetes burden was lower than the global average, but substantial from type 2 diabetes, reflecting regional heterogeneity. Altered DALYs composition suggested increased YLDs. Addressing the heavy burden of high fasting plasma glucose and the increasing burden of both types diabetes necessitate region-specific interventions to reduce type 2 diabetes risk, improve healthcare systems, and offer cost-effective care.
Collapse
Affiliation(s)
- Dong Liang
- The School of Health Management, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiuli Cai
- The School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Qing Guan
- The School of Health Management, Fujian Medical University, Fuzhou, Fujian, China
| | - Yangjiang Ou
- “The 14th Five-Year Plan” Application Characteristic Discipline of Hunan Province (Clinical Medicine), Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Xiaoxin Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Xiuquan Lin
- The School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Department for Chronic and Noncommunicable Disease Control and Prevention, Fujian Provincial Center for Disease Control and Prevention, Fuzhou, Fujian, China
| |
Collapse
|
225
|
Tosi M, Montanari C, Bona F, Tricella C, Agostinelli M, Dolor J, Chillemi C, Di Profio E, Tagi VM, Vizzuso S, Fiore G, Zuccotti G, Verduci E. Dietary Inflammatory Potential in Pediatric Diseases: A Narrative Review. Nutrients 2023; 15:5095. [PMID: 38140353 PMCID: PMC10745369 DOI: 10.3390/nu15245095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammatory status is one of the main drivers in the development of non-communicable diseases (NCDs). Specific unhealthy dietary patterns and the growing consumption of ultra-processed foods (UPFs) may influence the inflammation process, which negatively modulates the gut microbiota and increases the risk of NCDs. Moreover, several chronic health conditions require special long-term dietary treatment, characterized by altered ratios of the intake of nutrients or by the consumption of disease-specific foods. In this narrative review, we aimed to collect the latest evidence on the pro-inflammatory potential of dietary patterns, foods, and nutrients in children affected by multifactorial diseases but also on the dietetic approaches used as treatment for specific diseases. Considering multifactorial diet-related diseases, the triggering effect of pro-inflammatory diets has been addressed for metabolic syndrome and inflammatory bowel diseases, and the latter for adults only. Future research is required on multiple sclerosis, type 1 diabetes, and pediatric cancer, in which the role of inflammation is emerging. For diseases requiring special diets, the role of single or multiple foods, possibly associated with inflammation, was assessed, but more studies are needed. The evidence collected highlighted the need for health professionals to consider the entire dietary pattern, providing balanced and healthy diets not only to permit the metabolic control of the disease itself, but also to prevent the development of NCDs in adolescence and adulthood. Personalized nutritional approaches, in close collaboration between the hospital, country, and families, must always be promoted together with the development of new methods for the assessment of pro-inflammatory dietary habits in pediatric age and the implementation of telemedicine.
Collapse
Affiliation(s)
- Martina Tosi
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
| | - Chiara Montanari
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| | - Federica Bona
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Chiara Tricella
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Marta Agostinelli
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Jonabell Dolor
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Claudia Chillemi
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
| | - Veronica Maria Tagi
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
| | - Sara Vizzuso
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| | - Elvira Verduci
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
- Metabolic Diseases Unit, Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy
| |
Collapse
|
226
|
Varde M, Newman RB, Wenzel AG, Kucklick JR, Wineland RJ, Brock JW, Bloom MS. Racial disparities affect the association between gestational urinary phthalate mixtures and infant genital measures. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1304725. [PMID: 38146361 PMCID: PMC10749323 DOI: 10.3389/frph.2023.1304725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/22/2023] [Indexed: 12/27/2023] Open
Abstract
Background Phthalates are ubiquitous anti-androgenic endocrine disrupting chemicals found in personal care products, medications, and many plastics. Studies have shown a racial disparity in phthalates exposure among U.S. women, which may also impact fetal development. Methods We conducted a prospective cohort study of gestational exposure to a phthalates mixture in a racially-diverse population to determine their association with genital development. Mid-gestation (18-22 weeks) urine was collected from 152 women who self-identified as non-Hispanic Black and 158 women who self-identified as non-Hispanic White in Charleston, South Carolina between 2011 and 2014. We measured eight phthalate monoester metabolites in urine using liquid chromatography tandem-mass spectrometry. Mid-gestational penile dimensions were measured using ultrasound and anogenital distances were measured postnatally. We used Bayesian kernel machine regression to estimate the associations among the mixture of phthalate metabolites and mid-gestation penile dimensions and postnatal anogenital distance measures among singleton male (n = 179) and female (n = 131) infants, adjusted for urinary specific gravity, maternal age, body mass index, education level, cigarette smoking, and gestational age at enrollment or birth weight z-score. Results We found a stronger association between greater phthalates and decreased anopenile distance among infants born to women who self-identified as Black. Mono (2-ethylhexyl) phthalate (MEHP) was the driving mixture component among Black women, and monobutyl phthalate (MBP) and monoethyl phthalate (MEP) were drivers among White women. We also identified a non-linear association between phthalates and lesser ultrasound penile volume among women who self-identified as Black with monoisobutyl phthalate (MiBP) and MBP being most important. We also found an association between greater phthalates and shorter anoclitoral distance among infants born to women who self-identified as Black, with MEP and monobenzyl phthalate (MBzP) contributing most to this association. Conclusion Our results suggest a disparity in the association between gestational exposure to a mixture of phthalates and fetal genital development among women who self-identified as Black compared to White.
Collapse
Affiliation(s)
- Meghana Varde
- Department of Global and Community Health, George Mason University, Fairfax, VA, United States
| | - Roger B. Newman
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, United States
| | - Abby G. Wenzel
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, United States
| | - John R. Kucklick
- Hollings Marine Laboratory, National Institute of Standards and Technology, Charleston, SC, United States
| | - Rebecca J. Wineland
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, United States
| | - John W. Brock
- Department of Chemistry, University of North Carolina Asheville, Asheville, NC, United States
| | - Michael S. Bloom
- Department of Global and Community Health, George Mason University, Fairfax, VA, United States
| |
Collapse
|
227
|
Wu X, Tian Y, Zhu H, Xu P, Zhang J, Hu Y, Ji X, Yan R, Yue H, Sang N. Invisible Hand behind Female Reproductive Disorders: Bisphenols, Recent Evidence and Future Perspectives. TOXICS 2023; 11:1000. [PMID: 38133401 PMCID: PMC10748066 DOI: 10.3390/toxics11121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Reproductive disorders are considered a global health problem influenced by physiological, genetic, environmental, and lifestyle factors. The increased exposure to bisphenols, a chemical used in large quantities for the production of polycarbonate plastics, has raised concerns regarding health risks in humans, particularly their endocrine-disrupting effects on female reproductive health. To provide a basis for future research on environmental interference and reproductive health, we reviewed relevant studies on the exposure patterns and levels of bisphenols in environmental matrices and humans (including susceptible populations such as pregnant women and children). In addition, we focused on in vivo, in vitro, and epidemiological studies evaluating the effects of bisphenols on the female reproductive system (the uterus, ovaries, fallopian tubes, and vagina). The results indicate that bisphenols cause structural and functional damage to the female reproductive system by interfering with hormones; activating receptors; inducing oxidative stress, DNA damage, and carcinogenesis; and triggering epigenetic changes, with the damaging effects being intergenerational. Epidemiological studies support the association between bisphenols and diseases such as cancer of the female reproductive system, reproductive dysfunction, and miscarriage, which may negatively affect the establishment and maintenance of pregnancy. Altogether, this review provides a reference for assessing the adverse effects of bisphenols on female reproductive health.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yuchai Tian
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huizhen Zhu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Pengchong Xu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Jiyue Zhang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yangcheng Hu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China;
| | - Ruifeng Yan
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huifeng Yue
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Nan Sang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| |
Collapse
|
228
|
Mustieles V, Lascouts A, Pozo OJ, Haro N, Lyon-Caen S, Jedynak P, Bayat S, Thomsen C, Sakhi AK, Sabaredzovic A, Slama R, Ouellet-Morin I, Philippat C. Longitudinal Associations between Prenatal Exposure to Phthalates and Steroid Hormones in Maternal Hair Samples from the SEPAGES Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19202-19213. [PMID: 37931007 PMCID: PMC10702498 DOI: 10.1021/acs.est.3c03401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 11/08/2023]
Abstract
We assessed phthalate-hormone associations in 382 pregnant women of the new-generation SEPAGES cohort (2014-2017, France) using improved exposure and outcome assessments. Metabolites from seven phthalate compounds and the replacement di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH) were measured in within-subject pools of repeated urine samples collected at the second and third pregnancy trimesters (≈21 samples/trimester). Metabolites from five steroid hormones were measured in maternal hair samples collected at delivery, reflecting cumulative levels over the previous weeks to months. Adjusted linear regression and Bayesian weighted quantile sum (BWQS) mixture models were performed. Each doubling in third-trimester urinary mono-benzyl phthalate (MBzP) concentrations was associated with an average increase of 13.3% (95% CI: 2.65, 24.9) for ∑cortisol, 10.0% (95% CI: 0.26, 20.7) for ∑cortisone, 17.3% (95% CI: 1.67, 35.4) for 11-dehydrocorticosterone, and 16.2% (95% CI: 2.20, 32.1) for testosterone, together with a suggestive 10.5% (95% CI: -1.57, 24.1) increase in progesterone levels. Each doubling in second-trimester urinary di-isononyl phthalate (DiNP) concentrations was inversely associated with testosterone levels (-11.6%; 95% CI: -21.6, -0.31). For most hormones, a nonsignificant trend toward a positive phthalate mixture effect was observed in the third but not in the second trimester. Our study showed that exposure to some phthalate metabolites, especially MBzP, may affect adrenal and reproductive hormone levels during pregnancy.
Collapse
Affiliation(s)
- Vicente Mustieles
- University
Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental
Epidemiology applied to Development and Respiratory Health (EDES),
Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Aurélien Lascouts
- University
Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental
Epidemiology applied to Development and Respiratory Health (EDES),
Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Oscar J. Pozo
- Applied
Metabolomics Research Group, Hospital del Mar Research Institute (IMIM), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Noemí Haro
- Applied
Metabolomics Research Group, Hospital del Mar Research Institute (IMIM), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Sarah Lyon-Caen
- University
Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental
Epidemiology applied to Development and Respiratory Health (EDES),
Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Paulina Jedynak
- University
Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental
Epidemiology applied to Development and Respiratory Health (EDES),
Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Sam Bayat
- Department
of Pulmonology and Physiology, CHU Grenoble
Alpes, 38700 Grenoble, France
- Grenoble
Alpes University - Inserm UA07, 38400 Grenoble, France
| | - Cathrine Thomsen
- Department
of Food Safety, Norwegian Institute of Public
Health, 0213 Oslo, Norway
| | - Amrit K. Sakhi
- Department
of Food Safety, Norwegian Institute of Public
Health, 0213 Oslo, Norway
| | - Azemira Sabaredzovic
- Department
of Food Safety, Norwegian Institute of Public
Health, 0213 Oslo, Norway
| | - Rémy Slama
- University
Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental
Epidemiology applied to Development and Respiratory Health (EDES),
Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Isabelle Ouellet-Morin
- Research
Center, Institut Universitaire en Santé Mentale de Montréal,
H1N 3M5 Québec, Canada; School of Criminology, Université de Montréal, H3C 3J7 Québec, Canada
| | - Claire Philippat
- University
Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental
Epidemiology applied to Development and Respiratory Health (EDES),
Institute for Advanced Biosciences, 38000 Grenoble, France
| |
Collapse
|
229
|
Kim HS, Cheon YP, Lee SH. Effects of Nonylphenol on the Secretion of Catecholamines and Adrenocortical Hormones from Short-Term Incubated Rat Adrenal Glands. Dev Reprod 2023; 27:213-220. [PMID: 38292238 PMCID: PMC10824570 DOI: 10.12717/dr.2023.27.4.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 11/18/2023] [Indexed: 02/01/2024]
Abstract
Previously, we showed that a chronic-low-dose nonylphenol (NP) exposure resulted in histological changes with sexually dimorphic pattern in rat adrenal glands. We hypothesized that such structural changes are closely related to the hormonal secretory patterns. To test this hypothesis, we developed the short-term adrenal incubation method, and measured the levels of catecholamines and cortical steroids using the high-performance liquid chromatography with electrochemical detection (HPLC-ECD) and specific enzyme-linked immunosorbent assay, respectively. The norepinephrine (NE) levels in media from NP-treated female adrenal, except 100 pM NP, were significantly increased [control (CTL) vs 1 nM NP, p<0.001; vs 10 nM NP, p<0.05; vs 100 nM NP, p<0.001; vs 1 μM NP, p<0.01]. The NE secretion from male adrenal was higher when treated with 100 nM and 1 μM NP (CTL vs 100 nM NP, p<0.05; vs 1 μM NP, p<0.05, respectively). The aldosterone level in the female adrenal media treated with 100 pM NP was significantly decreased, on the other hand, that of media treated with 10 nM NP was significantly increased (CTL vs 100 pM NP, p<0.05; vs 10 nM NP, p<0.01). In male adrenal media, the aldosterone levels of 10 nM, 100 nM and 1 μM NP-treated media were significantly declined (CTL vs 10 nM NP, p<0.001; vs 100 nM NP, p<0.001; vs 1 μM NP, p<0.001). These results showed the NP treatment altered secretory pattern of aldosterone from adrenals of both sexes, showing sexual dimorphism. It may be helpful for understanding possible adrenal pathophysiology, and endocrine disrupting chemicals-related sexually dimorphic phenomena in adrenals.
Collapse
Affiliation(s)
- Hee-Su Kim
- Department of Biotechnology, Sangmyung
University, Seoul 03016, Korea
| | - Yong-Pil Cheon
- Division of Developmental Biology and
Physiology, School of Biological Sciences and Chemistry, Sungshin
University, Seoul 02844, Korea
| | - Sung-Ho Lee
- Department of Biotechnology, Sangmyung
University, Seoul 03016, Korea
| |
Collapse
|
230
|
Fernandez MO, Trasande L. The Global Plastics Treaty: An Endocrinologist's Assessment. J Endocr Soc 2023; 8:bvad141. [PMID: 38045875 PMCID: PMC10690721 DOI: 10.1210/jendso/bvad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Indexed: 12/05/2023] Open
Abstract
Plastics are everywhere. They are in many goods that we use every day. However, they are also a source of pollution. In 2022, at the resumed fifth session of the United Nations Environment Assembly, a historic resolution was adopted with the aim of convening an Intergovernmental Negotiating Committee to develop an international legally binding instrument on plastic pollution, including in the marine environment, with the intention to focus on the entire life cycle of plastics. Plastics, in essence, are composed of chemicals. According to a recent report from the secretariat of the Basel, Rotterdam, and Stockholm conventions, around 13 000 chemicals are associated with plastics and plastic pollution. Many of these chemicals are endocrine-disrupting chemicals and, according to reports by members of the Endocrine Society and others, exposure to some of these chemicals causes enormous costs due to the development of preventable diseases. The global plastics treaty brings the opportunity for harmonized, international regulation of chemicals with endocrine disrupting properties present in plastic products.
Collapse
Affiliation(s)
- Marina Olga Fernandez
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, C1428ADN, Argentina
| | - Leonardo Trasande
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA
- NYU Wagner Graduate School of Public Service, New York, NY 10016, USA
| |
Collapse
|
231
|
Murphy CC, Betts AC, Pruitt SL, Cohn BA, Shay LA, Allicock MA, Wang JS, Lupo PJ. Birth Defects in Offspring of Adolescent and Young Adults with a History of Cancer: A Population-Based Study of 27,000 Women. Cancer Epidemiol Biomarkers Prev 2023; 32:1699-1706. [PMID: 37707371 PMCID: PMC10842971 DOI: 10.1158/1055-9965.epi-23-0743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/03/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND We examined birth defects in offspring of adolescent and young adult (AYA) women with a history of cancer (age 15-39 years at diagnosis). METHODS We identified AYA women diagnosed with cancer between January 1, 1999, and December 31, 2015 using population-based data from the Texas Cancer Registry; data were linked with live birth and fetal death certificates through December 31, 2016 to identify singleton births to AYA women after diagnosis. Birth defects in offspring through age 12 months were ascertained from the Texas Birth Defects Registry. We estimated risk of birth defects in offspring of AYA women and women without cancer (matched 3:1 by maternal race/ethnicity, maternal age, and offspring year of birth) and compared risk using log binomial regression models. RESULTS There were 6,882 singleton births to AYA women after diagnosis. Common cancer types were thyroid (28.9%), lymphoma (12.5%), and breast (10.7%). Risk of any birth defect was higher in offspring of AYA women (6.0%) compared with offspring of women without cancer [n = 20,646; 4.8%; risk ratio (RR) 1.24; 95% confidence interval (CI), 1.11-1.38]. Risk of eye or ear (RR, 1.39; 95% CI, 1.03-1.90), heart and circulatory (RR, 1.32; 95% CI, 1.09-1.60), genitourinary (RR, 1.38; 95% CI, 1.12-1.69), and musculoskeletal (RR, 1.37; 95% CI, 1.13-1.66) defects was also higher. CONCLUSIONS Risk of birth defects was elevated in liveborn and stillborn offspring of AYA women. IMPACT Although birth defects are rare, AYA women making decisions about pregnancy and prenatal care should receive appropriate counseling and surveillance.
Collapse
Affiliation(s)
- Caitlin C. Murphy
- Department of Health Promotion & Behavioral Sciences, UTHealth Houston School of Public Health, Houston, TX, USA
| | - Andrea C. Betts
- Department of Health Promotion & Behavioral Sciences, UTHealth Houston School of Public Health, Houston, TX, USA
| | - Sandi L. Pruitt
- Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Barbara A. Cohn
- Child Health and Development Studies, Public Health Institute, Berkeley, CA, USA
| | - L. Aubree Shay
- Department of Health Promotion & Behavioral Sciences, UTHealth Houston School of Public Health, Houston, TX, USA
| | - Marlyn A. Allicock
- Department of Health Promotion & Behavioral Sciences, UTHealth Houston School of Public Health, Houston, TX, USA
| | - Jennifer S. Wang
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth Houston School of Public Health, Houston, TX, USA
| | - Philip J. Lupo
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
232
|
Vinnars MT, Bixo M, Damdimopoulou P. Pregnancy-related maternal physiological adaptations and fetal chemical exposure. Mol Cell Endocrinol 2023; 578:112064. [PMID: 37683908 DOI: 10.1016/j.mce.2023.112064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/15/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Prenatal life represents a susceptible window of development during which chemical exposures can permanently alter fetal development, leading to an increased likelihood of disease later in life. Therefore, it is essential to assess exposure in the fetus. However, direct assessment in human fetuses is challenging, so most research measures maternal exposure. Pregnancy induces a range of significant physiological changes in women that may affect chemical metabolism and responses. Moreover, placental function, fetal sex, and pregnancy complications may further modify these exposures. The purpose of this narrative review is to give an overview of major pregnancy-related physiological changes, including placental function and impacts of pregnancy complications, to summarize existing studies assessing chemical exposure in human fetal organs, and to discuss possible interactions between physiological changes and exposures. Our review reveals major knowledge gaps in factors affecting fetal chemical exposure, highlighting the need to develop more sophisticated tools for chemical health risk assessment in fetuses.
Collapse
Affiliation(s)
- Marie-Therese Vinnars
- Department of Clinical Sciences, Division of Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| | - Marie Bixo
- Department of Clinical Sciences, Division of Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| |
Collapse
|
233
|
Kolesnyk S, Prodanchuk M, Zhminko P, Kolianchuk Y, Bubalo N, Odermatt A, Smieško M. A battery of in silico models application for pesticides exerting reproductive health effects: Assessment of performance and prioritization of mechanistic studies. Toxicol In Vitro 2023; 93:105706. [PMID: 37802305 DOI: 10.1016/j.tiv.2023.105706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
Given the high attention to endocrine disrupting chemicals (EDC), there is an urgent need for the development of rapid and reliable approaches for the screening of large numbers of chemicals with respect to their endocrine disruption potential. This study aimed at the assessment of the correlation between the predicted results of a battery of in silico tools and the reported observed adverse effects from in vivo reproductive toxicity studies. We used VirtualToxLab (VTL) software and the EndocrineDisruptome (ED) online tool to evaluate the binding affinities to nuclear receptors of 17 pesticides, 7 of which were classified as reprotoxic substances under Regulation (EC) No 1272/2008 on the classification, labelling and packaging of substances and mixtures (CLP). Then, we aligned the results of the in silico modelling with data from ToxCast assays and in vivo reproductive toxicity studies. We combined results from different in silico tools in two different ways to improve the characteristics of their predictive performance. Reproductive toxicity can be caused by various mechanisms; however, in this study, we demonstrated that the use of a battery of in silico tools for assessing the binding to nuclear receptors can be useful for identifying hazardous compounds and for prioritizing further studies.
Collapse
Affiliation(s)
- Serhii Kolesnyk
- L.I. Medved's Research Center of Preventive Toxicology, Food and Chemical Safety, Kyiv, Ukraine; Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland; Swiss Centre for Human Applied Toxicology, University of Basel, Missionsstrasse 64, Basel 4055, Switzerland.
| | - Mykola Prodanchuk
- L.I. Medved's Research Center of Preventive Toxicology, Food and Chemical Safety, Kyiv, Ukraine
| | - Petro Zhminko
- L.I. Medved's Research Center of Preventive Toxicology, Food and Chemical Safety, Kyiv, Ukraine
| | - Yana Kolianchuk
- L.I. Medved's Research Center of Preventive Toxicology, Food and Chemical Safety, Kyiv, Ukraine
| | - Nataliia Bubalo
- L.I. Medved's Research Center of Preventive Toxicology, Food and Chemical Safety, Kyiv, Ukraine
| | - Alex Odermatt
- Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland; Swiss Centre for Human Applied Toxicology, University of Basel, Missionsstrasse 64, Basel 4055, Switzerland
| | - Martin Smieško
- Swiss Centre for Human Applied Toxicology, University of Basel, Missionsstrasse 64, Basel 4055, Switzerland; Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland
| |
Collapse
|
234
|
Armeni E. Environment and menopause: The best time for action is now. Maturitas 2023; 178:107802. [PMID: 37500313 DOI: 10.1016/j.maturitas.2023.107802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Affiliation(s)
- Eleni Armeni
- Royal Free Hospital NHS Foundation Trust, Medical School, University College London, London, UK; 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece.
| |
Collapse
|
235
|
Cheng F, Chen X, Fan J, Qiao J, Jia H. Sex-specific association of exposure to a mixture of phenols, parabens, and phthalates with thyroid hormone and antibody levels in US adolescents and adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121207-121223. [PMID: 37950782 DOI: 10.1007/s11356-023-30739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/25/2023] [Indexed: 11/13/2023]
Abstract
Individuals are exposed to multiple phenols, parabens, and phthalates simultaneously since they are important endocrine-disrupting compounds (EDCs) and share common exposure pathways. It is necessary to assess the effects of the co-exposure of these EDCs on thyroid hormones (THs). In this study, data included 704 adolescents and 2911 adults from the 2007-2012 National Health and Nutrition Examination Survey (NHANES). Serum THs measured total triiodothyronine (T3), total thyroxine (T4), free forms of T3 (FT3) and T4 (FT4), thyroid-stimulating hormone (TSH), thyroglobulin (Tg), thyroid peroxidase antibody (TPOAb), and thyroglobulin antibody (TgAb). And 16 EDCs (3 phenols, 2 parabens, and 11 phthalates) were measured from urine. The relationship between single EDCs and single THs was analyzed using generalized linear regression. And results showed that several EDCs were positively associated with serum T3 and FT3 levels in boys but negatively associated with serum T4 and FT4 levels in girls. And in adults, five EDCs were negatively associated with T3, T4, or FT4. The effects of co-exposure to 16 EDCs on THs were calculated using Bayesian kernel machine regression and quantile-based g-computational modeling, confirmed that co-exposure was related to the increase of T3 in adolescents and the decrease of T4 in both adolescents and adults. Besides, nonlinear and linear relationships were identified between co-exposure and the risk of positive TPOAb and TgAb in girls and adult females, respectively. In conclusion, phenols, parabens, and phthalates as a mixture might interfere the concentrations of THs and thyroid autoantibodies, and the interfering effect varies significantly by sex as well as by age. Further prospective research is warranted to investigate the causal effects and underlying mechanisms of co-exposure on thyroid dysfunction.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- Center of Evidence-Based Medicine, the Second Hospital of Shandong University, Shandong University, Jinan, 250012, China
| | - Xueyu Chen
- Center of Evidence-Based Medicine, the Second Hospital of Shandong University, Shandong University, Jinan, 250012, China
| | - Jiaxu Fan
- Center of Evidence-Based Medicine, the Second Hospital of Shandong University, Shandong University, Jinan, 250012, China
| | - Junpeng Qiao
- Center of Evidence-Based Medicine, the Second Hospital of Shandong University, Shandong University, Jinan, 250012, China
| | - Hongying Jia
- Shenzhen Research Institute of Shandong University, Shandong University, Shenzhen, China.
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Center of Evidence-Based Medicine, the Second Hospital of Shandong University, Shandong University, Jinan, 250012, China.
| |
Collapse
|
236
|
Park S, Chung C. How do mothers with young children perceive endocrine-disrupting chemicals?: an exploratory qualitative study. KOREAN JOURNAL OF WOMEN HEALTH NURSING 2023; 29:337-347. [PMID: 38204393 PMCID: PMC10788387 DOI: 10.4069/kjwhn.2023.11.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
PURPOSE Despite the health impacts of endocrine-disrupting chemicals (EDCs) beginning in the early stages of life, there is little research on the perception of EDCs among Korean mothers, who are primarily responsible for protecting children. This study aimed to explore how mothers with young children perceived EDCs for their concerns, the issues they faced, and the way they dealt with them. METHODS An exploratory qualitative design was utilized. Twelve mothers who were recruited from snowball sampling participated in voluntary interviews. Individual in-depth interviews lasting approximately 47 to 60 minutes were recorded and transcribed verbatim. The data were analyzed using qualitative content analysis as suggested by Graneheim and Lundman. RESULTS Four categories, 10 subcategories, and 25 condensed meaning units were identified by interpreting mothers' underlying meanings. The four categories were 'Knowledgeable yet contrasting ideas regarding EDCs,' 'Negative health impact, but more so for children,' 'Inaction or trying to minimize exposure,' and 'Need for early, reliable resources and social change.' Mothers were knowledgeable about EDCs and actively needed further education and support. While they tended to focus more on the health impact of EDCs on their children and were optimistic about their health risks, paying less attention to their preventive behaviors. CONCLUSION Healthcare professionals must consider mothers' perceptions of EDCs in future education and interventions regarding EDCs impact on women's life stages such as puberty, pregnancy, and childrearing. Also preventive strategies that can be applied to their daily lives are needed.
Collapse
Affiliation(s)
- SoMi Park
- Wonju College of Nursing, Yonsei University, Wonju, Korea
| | - ChaeWeon Chung
- College of Nursing, Research Institute of Nursing Science, Seoul National University, Seoul, Korea
| |
Collapse
|
237
|
Zhang W, Yang Y, Mao J, Zhang Q, Fan W, Chai G, Shi Q, Zhu C, Zhang S, Xie J. Quinoline Bridging Hyperconjugated Covalent Organic Framework as Solid-Phase Microextraction Coating for Ultrasensitive Determination of Phthalate Esters in Water Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17999-18009. [PMID: 37904272 DOI: 10.1021/acs.jafc.3c02859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Phthalate esters (PAEs) are widely distributed in the environment, and this has caused serious health and safety concerns. Development of rapid and ultrasensitive identification and analysis methods for phthalate esters is urgent and highly desirable. In this work, a novel nitrogen-rich covalent organic framework (N-TTI) derived quinoline bridging covalent organic framework (N-QTTI) was fabricated and used as a solid-phase microextraction (SPME) coating for the ultrasensitive determination of phthalate esters in water samples. The physical and chemical properties of N-QTTI were investigated sufficiently. The N-QTTI-coated fiber demonstrates a superior enrichment performance than either the N-TTI-coated fiber or commercial fibers under the optimized SPME conditions. For the first time, we propose a semi-immersion strategy for the extraction of PAEs from water samples based on N-QTTI-coated SPME fibers. Combined with gas chromatography-mass spectrometry (GC-MS), the developed method N-QTTI-SPME-GC-MS exhibits a wide linear range with a satisfactory linearity (R2 ≥ 0.995). The limits of detection (LOD, S/N = 3) and the limits of quantification (LOQs, S/N = 10) were 0.17-1.70 and 0.57-5.60 ng L-1, respectively. The repeatability of the new method was examined using relative standard deviations (RSDs) between intraday and interday data, which were 0.38-7.98% and 1.22-6.60%, respectively. The spiked recoveries at three levels of 10, 100, and 1000 ng L-1 were in the range of 90.0-106.2% with RSDs of less than 7.48%. The enrichment factors ranged from 291 to 17180. When compared to previously published works, the LODs of the newly established method were improved 5-5400 times, and the enrichment factors were increased by at least 8 times. The absorption mechanism was investigated by X-ray photoelectron spectroscopy and noncovalent interaction force analysis. The technique was successfully employed for detecting PAEs in water samples.
Collapse
Affiliation(s)
- Wenfen Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Yuan Yang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Jian Mao
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Qidong Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Wu Fan
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Guobi Chai
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Qingzhao Shi
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Shusheng Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Jianping Xie
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|
238
|
Chauhan R, Archibong AE, Ramesh A. Imprinting and Reproductive Health: A Toxicological Perspective. Int J Mol Sci 2023; 24:16559. [PMID: 38068882 PMCID: PMC10706004 DOI: 10.3390/ijms242316559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
This overview discusses the role of imprinting in the development of an organism, and how exposure to environmental chemicals during fetal development leads to the physiological and biochemical changes that can have adverse lifelong effects on the health of the offspring. There has been a recent upsurge in the use of chemical products in everyday life. These chemicals include industrial byproducts, pesticides, dietary supplements, and pharmaceutical products. They mimic the natural estrogens and bind to estradiol receptors. Consequently, they reduce the number of receptors available for ligand binding. This leads to a faulty signaling in the neuroendocrine system during the critical developmental process of 'imprinting'. Imprinting causes structural and organizational differentiation in male and female reproductive organs, sexual behavior, bone mineral density, and the metabolism of exogenous and endogenous chemical substances. Several studies conducted on animal models and epidemiological studies provide profound evidence that altered imprinting causes various developmental and reproductive abnormalities and other diseases in humans. Altered metabolism can be measured by various endpoints such as the profile of cytochrome P-450 enzymes (CYP450's), xenobiotic metabolite levels, and DNA adducts. The importance of imprinting in the potentiation or attenuation of toxic chemicals is discussed.
Collapse
Affiliation(s)
- Ritu Chauhan
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA;
| | - Anthony E. Archibong
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA;
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
239
|
Yu Z, Wu Z, Zhou M, Cao K, Li W, Liu G, Tang Y. EDC-Predictor: A Novel Strategy for Prediction of Endocrine-Disrupting Chemicals by Integrating Pharmacological and Toxicological Profiles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18013-18025. [PMID: 37053516 DOI: 10.1021/acs.est.2c08558] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Identification of endocrine-disrupting chemicals (EDCs) is crucial in the reduction of human health risks. However, it is hard to do so because of the complex mechanisms of the EDCs. In this study, we propose a novel strategy named EDC-Predictor to integrate pharmacological and toxicological profiles for the prediction of EDCs. Different from conventional methods that only focus on a few nuclear receptors (NRs), EDC-Predictor considers more targets. It uses computational target profiles from network-based and machine learning-based methods to characterize compounds, including both EDCs and non-EDCs. The best model constructed by these target profiles outperformed those models by molecular fingerprints. In a case study to predict NR-related EDCs, EDC-Predictor showed a wider applicability domain and higher accuracy than four previous tools. Another case study further demonstrated that EDC-Predictor could predict EDCs targeting other proteins rather than NRs. Finally, a free web server was developed to make EDC prediction easier (http://lmmd.ecust.edu.cn/edcpred/). In summary, EDC-Predictor would be a powerful tool in EDC prediction and drug safety assessment.
Collapse
Affiliation(s)
- Zhuohang Yu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zengrui Wu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Moran Zhou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Kangjia Cao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
240
|
Pumarega J, Gasull M, Koponen J, Campi L, Rantakokko P, Henríquez-Hernández LA, Aguilar R, Donat-Vargas C, Zumbado M, Villar-García J, Rius C, Santiago-Díaz P, Vidal M, Jimenez A, Iglesias M, Dobaño C, Moncunill G, Porta M. Prepandemic personal concentrations of per- and polyfluoroalkyl substances (PFAS) and other pollutants: Specific and combined effects on the incidence of COVID-19 disease and SARS-CoV-2 infection. ENVIRONMENTAL RESEARCH 2023; 237:116965. [PMID: 37652221 DOI: 10.1016/j.envres.2023.116965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVE To investigate the specific and combined effects of personal concentrations of some per- and polyfluoroalkyl substances (PFAS), other persistent organic pollutants (POPs), and chemical elements -measured in individuals' blood several years before the pandemic- on the development of SARS-CoV-2 infection and COVID-19 disease in the general population. METHODS We conducted a prospective cohort study in 240 individuals from the general population of Barcelona. PFAS, other POPs, and chemical elements were measured in plasma, serum, and whole blood samples, respectively, collected in 2016-2017. PFAS were analyzed by liquid chromatography-triple quadrupole mass spectrometry. SARS-CoV-2 infection was detected by rRT-PCR in nasopharyngeal swabs and/or antibody serology in blood samples collected in 2020-2021. RESULTS No individual PFAS nor their mixtures were significantly associated with SARS-CoV-2 seropositivity or COVID-19 disease. Previously identified mixtures of POPs and elements (Porta et al., 2023) remained significantly associated with seropositivity and COVID-19 when adjusted for PFAS (all OR > 4 or p < 0.05). Nine chemicals comprised mixtures associated with COVID-19: thallium, ruthenium, lead, benzo[b]fluoranthene, DDD, other DDT-related compounds, manganese, tantalum, and aluminium. And nine chemicals comprised the mixtures more consistently associated with SARS-CoV-2 seropositivity: thallium, ruthenium, lead, benzo[b]fluoranthene, DDD, gold, and (protectively) selenium, indium, and iron. CONCLUSIONS The PFAS studied were not associated with SARS-CoV-2 seropositivity or COVID-19. The results confirm the associations between personal blood concentrations of some POPs and chemical elements and the risk of COVID-19 and SARS-CoV-2 infection in what remains the only prospective and population-based cohort study on the topic. Mixtures of POPs and chemical elements may contribute to explain the heterogeneity in the risks of SARS-CoV-2 infection and COVID-19 in the general population.
Collapse
Affiliation(s)
- José Pumarega
- School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Hospital del Mar Research Institute, Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
| | - Magda Gasull
- Hospital del Mar Research Institute, Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Jani Koponen
- Finnish Institute for Health and Welfare (THL), Kuopio, Finland
| | - Laura Campi
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Panu Rantakokko
- Finnish Institute for Health and Welfare (THL), Kuopio, Finland
| | - Luis A Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Carolina Donat-Vargas
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; ISGlobal, Campus Mar, Barcelona, Spain; Cardiovascular and Nutritonal Epidemiology Unit, Institut of Enviornmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | | | - Cristina Rius
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Catalonia, Spain; Agència de Salut Pública de Barcelona, Barcelona, Spain
| | | | - Marta Vidal
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Alfons Jimenez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Mar Iglesias
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Miquel Porta
- School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Hospital del Mar Research Institute, Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
| |
Collapse
|
241
|
Huang S, Wang K, Huang D, Su X, Yang R, Shao C, Jiang J, Wu J. Bisphenol AF Induces Prostatic Dorsal Lobe Hyperplasia in Rats through Activation of the NF-κB Signaling Pathway. Int J Mol Sci 2023; 24:16221. [PMID: 38003411 PMCID: PMC10671145 DOI: 10.3390/ijms242216221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Bisphenol AF (BPAF) represents a common environmental estrogenic compound renowned for its capacity to induce endocrine disruptions. Notably, BPAF exhibits an enhanced binding affinity to estrogen receptors, which may have more potent estrogenic activity compared with its precursor bisphenol A (BPA). Notwithstanding, the existing studies on BPAF-induced prostate toxicity remain limited, with related toxicological research residing in the preliminary stage. Our previous studies have confirmed the role of BPAF in the induction of ventral prostatic hyperplasia, but its role in the dorsal lobe is not clear. In this study, BPAF (10, 90 μg/kg) and the inhibitor of nuclear transcription factor-κB (NF-κB), pyrrolidinedithiocarbamate (PDTC, 100 mg/kg), were administered intragastrically in rats for four weeks. Through comprehensive anatomical and pathological observations, as well as the assessment of PCNA over-expression, we asserted that BPAF at lower doses may foster dorsal prostatic hyperplasia in rats. The results of IHC and ELISA indicated that BPAF induced hyperplastic responses in the dorsal lobe of the prostate by interfering with a series of biomarkers in NF-κB signaling pathways, containing NF-κB p65, COX-2, TNF-α, and EGFR. These findings confirm the toxic effect of BPAF on prostate health and emphasize the potential corresponding mechanisms.
Collapse
Affiliation(s)
- Sisi Huang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Kaiyue Wang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Dongyan Huang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Xin Su
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Rongfu Yang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Congcong Shao
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Juan Jiang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Jianhui Wu
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| |
Collapse
|
242
|
Sun X, Du T. Trends in weight change patterns across life course among US adults, 1988-2018: population-based study. BMC Public Health 2023; 23:2168. [PMID: 37932673 PMCID: PMC10626664 DOI: 10.1186/s12889-023-17137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND To examine trends in weight change patterns from young adulthood through midlife to late adulthood and their sex and racial/ethnic disparities among US adults from 1988 to 2018. METHODS A total of 48,969 participants from the National Health and Nutrition Examination Survey 1988-1994 and 2001-2018 were included. RESULTS The age-adjusted prevalence of stable non-obesity between young adulthood and midlife declined significantly from 84.1% (95 CI, 82.9-85.3%) in 1988-1994 to 68.7% (67.1-70.2%) in 2013-2018, and between midlife and late adulthood from 71.2% (69.2-73.1%) to 52.4% (50.5-54.2%). The magnitude of increase in the prevalence of weight gain from young adulthood to midlife (from 10.8% [9.9-11.6%] in 1988-1994 to 21.2% [20-22.3%] in 2013-2018; P < 0.001 for trend) was greater than that from midlife to late adulthood (from 14.1% [12.9-15.3%] to 17.2% [16.2-18.1%]; P = 0.002 for trend). The magnitude of increase in the prevalence of stable obesity from young adulthood to midlife (from 3.9% [3.1-4.8%] in 1988-1994 to 9.2% [8.2-10.3%] in 2013-2018; P < 0.001 for trend) was smaller than that from midlife to late adulthood (from 11.2% [10.1-12.2%] to 24.8% [23.3-26.3%]; P < 0.001 for trend). The declining trends in the prevalence of stable non-obesity and increasing trends in the prevalence of weight gain and stable obesity from young adulthood through midlife to late adulthood were also observed for all sex and race/ethnicity subgroups. The magnitude of decrease in the prevalence of stable non-obesity, and the magnitude of increase in the prevalence of weight gain from young adulthood through midlife to late adulthood were greater in men than in women (all P for interaction < 0.01). Weight gain patterns for those aged ≥ 65 years were substantially different from the younger age groups. CONCLUSIONS More young people born in later years are encountering obesity and accumulate greater obesity exposure across their lives than young people born in earlier years.
Collapse
Affiliation(s)
- Xingxing Sun
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tingting Du
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China.
| |
Collapse
|
243
|
Merrill AK, Sobolewski M, Susiarjo M. Exposure to endocrine disrupting chemicals impacts immunological and metabolic status of women during pregnancy. Mol Cell Endocrinol 2023; 577:112031. [PMID: 37506868 PMCID: PMC10592265 DOI: 10.1016/j.mce.2023.112031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Affiliation(s)
- Alyssa K Merrill
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA.
| |
Collapse
|
244
|
Jorge BC, Stein J, Reis ACC, de Matos Manoel B, Nagaoka LT, Arena AC. Insights from the maternal lineage of the F2 generation after exposure to an environmentally relevant dose of benzo(a)pyrene in the male rats of F0 generation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110363-110376. [PMID: 37783996 DOI: 10.1007/s11356-023-30089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023]
Abstract
Benzo(a)pyrene (BaP) is a substance with the potential to induce endocrine disruption in the F0 generation and cause adverse multigenerational effects (F1 generation) for reproductive parameters in rats. The objective of this study was to investigate the occurrence of transgenerational inheritance in the reproductive aspects of male and female rats belonging to the F2 generation (MF2). This investigation was conducted following the exposure of male rats from the F0 generation to BaP to assess potential effects on subsequent generation from the maternal lineage (F1). For that, juvenile male Wistar rats (F0) were orally exposed to BaP (0.1 µg/kg/day) for 31 consecutive days. In adulthood, they were mated with untreated females to obtain female offspring (F1), which later produced the MF2. In the MF2 generation, both males and females exhibited increased body weight on postnatal day (PND) 1. In MF2 males, we observed delayed preputial separation, altered pup weight, reduced levels of follicle-stimulating hormone (FSH), increased intratesticular testosterone levels, decreased type A sperm, epididymal disturbances, reduced 5 α-reductase activity, increased testicular proliferation, and alterations in testicular antioxidant enzymes. In MF2 females, we noted morphological uterine enlargement, reduced sexual activity, and decreased progesterone levels. The findings suggest that the alterations observed in both MF2 males and females can be attributed to modifications in the sperm from F0 generation, which were subsequently transmitted to F1 females and MF2 generation due to BaP exposure.
Collapse
Affiliation(s)
- Bárbara Campos Jorge
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (Unesp), District of Rubião Junior, S/N, code post - 510, Botucatu, São Paulo, CEP: 18618970, Brazil.
| | - Julia Stein
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (Unesp), District of Rubião Junior, S/N, code post - 510, Botucatu, São Paulo, CEP: 18618970, Brazil
| | - Ana Carolina Casali Reis
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (Unesp), District of Rubião Junior, S/N, code post - 510, Botucatu, São Paulo, CEP: 18618970, Brazil
| | - Beatriz de Matos Manoel
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (Unesp), District of Rubião Junior, S/N, code post - 510, Botucatu, São Paulo, CEP: 18618970, Brazil
| | - Lívia Trippe Nagaoka
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (Unesp), District of Rubião Junior, S/N, code post - 510, Botucatu, São Paulo, CEP: 18618970, Brazil
| | - Arielle Cristina Arena
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (Unesp), District of Rubião Junior, S/N, code post - 510, Botucatu, São Paulo, CEP: 18618970, Brazil
- Information and Toxicological Assistance Center (CIATOX), Institute of Biosciences of Botucatu, São Paulo State University (Unesp), São Paulo, Brazil
| |
Collapse
|
245
|
Braunstein EW, Braunstein GD. Are Prepubertal Gynaecomastia and Premature Thelarche Linked to Topical Lavender and Tea Tree Oil Use? TOUCHREVIEWS IN ENDOCRINOLOGY 2023; 19:60-68. [PMID: 38187077 PMCID: PMC10769481 DOI: 10.17925/ee.2023.19.2.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/02/2023] [Indexed: 01/09/2024]
Abstract
Various studies, conducted since 2007, have reported a total of eight boys with prepubertal gynaecomastia and four girls with premature thelarche following exposure to lavender and/or tree tea oil. All patients experienced regression of the breast tissue after they stopped using these oils. Both of these essential oils, and several of their constituents, have oestrogenic and antiandrogenic activity in vitro. However, limited dermal penetration of some of the components means that the in vitro findings cannot be extrapolated to the in vivo situation. There are unanswered questions as to how much lavender or tea tree oil was actually present in the skincare products used by the children and a lack of information about exposure to other agents. Furthermore, since both prepubertal gynaecomastia and premature thelarche often spontaneously regress, it cannot be concluded that the use of lavender and/or tree tea oil is the cause of the gynaecomastia and thelarche in these children.
Collapse
Affiliation(s)
- Elsa W Braunstein
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Glenn D Braunstein
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
246
|
Gebru YA, Pang MG. Modulatory effects of bisphenol A on the hepatic immune response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122430. [PMID: 37611793 DOI: 10.1016/j.envpol.2023.122430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
The liver is a primary line of defense for protection from external substances next to the intestinal barrier. As a result, the hepatic immune system plays a central role in liver pathophysiology. Bisphenol A (BPA) is one of the most common endocrine disrupting chemicals and is primarily metabolized in the liver. Due to its ability to bind to estrogen receptors, BPA is well known to possess estrogenic activity and disrupt reproductive functions. The phase I and Phase II metabolism reactions of BPA mainly occur in the liver with the help of enzymes including cytochrome P450 (CYP), uridine 5'-diphospho-glucuronosyltransferase-glucuronosyltransferases, sulfotransferases, and glutathione-S-transferases. Although the majority of BPA is excreted after conjugation by these enzymes, untransformed BPA induces the production of reactive oxygen species through disruption of the enzymatic complex CYP, lipid accumulation, mitochondrial dysfunction, endoplasmic reticulum stress and inflammatory injury in the liver. Moreover, it has been proposed to possess a potential immunomodulatory effect. Indeed, several in vivo and in vitro studies have reported that low doses of BPA increase the population of T cells with type 1 T helper (Th1), Th2, and Th17 cells. Although the current literature lacks clear evidence on the mechanisms by which BPA is involved in T cell mediated immune responses, recent multi-omics studies suggest that it may directly interact with the antigen processing and presentation pathways. In this review, we first discuss the metabolism of BPA in the liver, before exploring currently available data on its effects on liver injury. Finally, we review its modulatory effects on the hepatic immune response, as well as potential mechanisms. By conducting this review, we aim to improve understanding on the relationship between BPA exposure and immune-related liver injury, with a focus on the antigen processing and presentation pathway and T cell-mediated response in the liver.
Collapse
Affiliation(s)
- Yoseph Asmelash Gebru
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
247
|
Esquivel-Zuniga R, Rogol AD. Functional hypogonadism in adolescence: an overlooked cause of secondary hypogonadism. Endocr Connect 2023; 12:e230190. [PMID: 37615381 PMCID: PMC10563622 DOI: 10.1530/ec-23-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
Hypogonadism is a clinical syndrome resulting from failure to produce physiological concentrations of sex steroid hormones with accompanying symptoms, such as slowed growth and delayed pubertal maturation. Hypogonadism may arise from gonadal disease (primary hypogonadism), dysfunction of the hypothalamic-pituitary axis (secondary hypogonadism) or functional hypogonadism. Disrupted puberty (delayed or absent) leading to hypogonadism can have a significant impact on both the physical and psychosocial well-being of adolescents with lasting effects. The diagnosis of hypogonadism in teenagers can be challenging as the most common cause of delayed puberty in both sexes is self-limited, also known as constitutional delay of growth and puberty (CDGP). Although an underlying congenital cause should always be considered in a teenager with hypogonadism, acquired conditions such as obesity, diabetes mellitus, other chronic diseases and medications have all been associated with low sex steroid hormone levels. In this review, we highlight some forms of functional hypogonadism in adolescents and the clinical challenges to differentiate normal variants from pathological states.
Collapse
Affiliation(s)
| | - Alan D Rogol
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
248
|
Caroccia B, Caputo I, Rossi FB, Piazza M, Pallafacchina G, Paolo Rossi G. Endocrine disruptors and arterial hypertension: A developing story. Steroids 2023; 199:109292. [PMID: 37549779 DOI: 10.1016/j.steroids.2023.109292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Endocrine disrupting Chemicals (EDCs) are substances that interfere with hormones by several mechanisms including receptor activation or antagonism, changes in gene and protein expression, modification of signal transduction, and/or epigenetic modifications in hormone-producing cells. A survey conducted by the European Union in a Northern Italian region led to the discovery of a large environmental contamination of drinking water by perfluoroalkyl substances (PFAS). As the exposed population showed a high prevalence of arterial hypertension and cardiovascular disease, we decided to investigate if PFAS could enhance the biosynthesis of aldosterone. To this aim, we exposed human adrenocortical carcinoma HAC15 cells to PFAS and found that PFAS markedly increased aldosterone synthase (CYP11B2) gene expression and aldosterone secretion. Moreover, we found that they promoted reactive oxygen species (ROS) production in mitochondria, the organelles where aldosterone biosynthesis takes place. PFAS also enhanced the effects of the aldosterone secretagogue angiotensin II (Ang II) on CYP11B2 gene expression and aldosterone secretion. We also found that not only PFAS but also polychlorinated biphenyl 126 (PCB126), a chemical compound belonging to a different category of EDCs, can increase CYP11B2 gene expression and aldosterone secretion in adrenocortical cells. This novel information needs to be considered in the context of a widespread exposure to the most common EDC, that is excess Na+ intake, whose detrimental effects on human health occur in the setting of aldosterone production exceeding the physiological needs and lead to high blood pressure, congestion, and cardiovascular and renal damage.
Collapse
Affiliation(s)
- Brasilina Caroccia
- Internal Emergency Medicine Unit, Department of Medicine-DIMED University of Padua, Specialized Center for Blood Pressure Disorders-Regione Veneto, 35128 Padua, Italy
| | - Ilaria Caputo
- Internal Emergency Medicine Unit, Department of Medicine-DIMED University of Padua, Specialized Center for Blood Pressure Disorders-Regione Veneto, 35128 Padua, Italy
| | - Federico Bernardo Rossi
- Internal Emergency Medicine Unit, Department of Medicine-DIMED University of Padua, Specialized Center for Blood Pressure Disorders-Regione Veneto, 35128 Padua, Italy
| | - Maria Piazza
- Internal Emergency Medicine Unit, Department of Medicine-DIMED University of Padua, Specialized Center for Blood Pressure Disorders-Regione Veneto, 35128 Padua, Italy
| | - Giorgia Pallafacchina
- Department of Biomedical Sciences-DSB, University of Padua, 35131 Padua, Italy; Italian National Research Council (CNR), Neuroscience Institute, 35131 Padua, Italy
| | - Gian Paolo Rossi
- Internal Emergency Medicine Unit, Department of Medicine-DIMED University of Padua, Specialized Center for Blood Pressure Disorders-Regione Veneto, 35128 Padua, Italy.
| |
Collapse
|
249
|
Yokoyama T, Mizuguchi M, Nabeshima Y, Nakagawa Y, Okada T, Toyooka N, Kusaka K. Rafoxanide, a salicylanilide anthelmintic, interacts with human plasma protein transthyretin. FEBS J 2023; 290:5158-5170. [PMID: 37522420 DOI: 10.1111/febs.16915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/13/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023]
Abstract
Transthyretin (TTR) is a carrier protein for thyroid hormone thyroxine (T4 ) in plasma, placental cytosol, and cerebrospinal fluid. While the potential toxicity of small molecules that compete with T4 for binding to TTR should be carefully studied, these small molecules can also serve as anti-ATTR amyloidosis drugs by stabilizing the TTR structure. Here, we demonstrated that rafoxanide, an EU-approved anthelmintic drug for domesticated animals, binds to the T4 -binding site of TTR. An intrinsic fluorescence quenching assay showed that rafoxanide also binds to the thyroid hormone-related proteins, including serum albumin and thyroid hormone receptor β. Rafoxanide strongly inhibited TTR amyloidogenesis in fibrillization assay, but the binding of rafoxanide to TTR was interfered with in human plasma, probably due to interactions with thyroid hormone-related proteins. Protein crystallography provided clues for the optimization of binding affinity and selectivity. Our findings emphasize the importance of considering rafoxanide as both a possible thyroid-disrupting chemical and a lead compound for the development of new ATTR amyloidosis inhibitors.
Collapse
Affiliation(s)
| | | | - Yuko Nabeshima
- Faculty of Pharmaceutical Sciences, University of Toyama, Japan
| | - Yusuke Nakagawa
- Graduate School of Innovative Life Science, University of Toyama, Japan
| | - Takuya Okada
- Graduate School of Innovative Life Science, University of Toyama, Japan
- Faculty of Engineering, University of Toyama, Japan
| | - Naoki Toyooka
- Graduate School of Innovative Life Science, University of Toyama, Japan
- Faculty of Engineering, University of Toyama, Japan
| | - Katsuhiro Kusaka
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai, Japan
| |
Collapse
|
250
|
Fisher M, Muckle G, Lanphear B, Arbuckle TE, Braun JM, Zidek A, Vélez MP, Lupien N, Bastien S, Ashley-Martin J, Oulhote Y, Borghese MM, Walker M, Asztalos E, Bouchard MF, Booij L, Palmert MR, Morrison KM, Cummings EA, Khatchadourian K, Panagiotopoulos C, Glendon G, Shutt R, Abdul-Fatah A, Seal K, Fraser WD. Cohort profile update: The Canadian Maternal-Infant Research on Environmental Chemicals Child Development study (MIREC-CD PLUS). Paediatr Perinat Epidemiol 2023; 37:719-732. [PMID: 37921434 DOI: 10.1111/ppe.13013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/11/2023] [Accepted: 10/01/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND The pan-Canadian Maternal-Infant Research on Environmental Chemicals (MIREC) study was established to determine whether maternal environmental chemical exposures were associated with adverse pregnancy outcomes in 2001 pregnant women. OBJECTIVES The MIREC-Child Development (CD PLUS) study followed this cohort with the goal of assessing the potential effects of prenatal exposures on anthropometry and neurodevelopment in early childhood. POPULATION MIREC families with children between the ages of 15 months and 5 years who had agreed to be contacted for future research (n = 1459) were invited to participate in MIREC-CD PLUS which combines data collected from an online Maternal Self-Administered Questionnaire with biomonitoring and neurodevelopment data collected from two in-person visits. PRELIMINARY RESULTS Between April 2013 and March 2015, 803 children participated in the Biomonitoring visit where we collected anthropometric measures, blood, and urine from the children. The Behavioural Assessment System for Children-2, Behaviour Rating Inventory of Executive Function, MacArthur-Bates Communicative Development Inventories and the Communication subscale of the Adaptive Behaviour Scale from the Bayley Scales of Infant and Toddler Development-III are available on close to 900 children. There were 610 singleton children who completed in-person visits for neurodevelopment assessments including the Social Responsiveness Scale, Wechsler Preschool Primary Scale of Intelligence-III and NEuroPSYchological assessments (NEPSY). Currently, we are following the cohort into early adolescence to measure the impact of early life exposures on endocrine and metabolic function (MIREC-ENDO). CONCLUSIONS Data collection for the MIREC-CD PLUS study is complete and analysis of the data continues. We are now extending the follow-up of the cohort into adolescence to measure the impact of early life exposures on endocrine and metabolic function (MIREC-ENDO). MIREC-CD PLUS is limited by loss to follow-up and the fact that mothers are predominately of higher socioeconomic status and 'White' ethnicity, which limits our generalizability. However, the depth of biomonitoring and clinical measures in MIREC provides a platform to examine associations of prenatal, infancy and childhood exposures with child growth and development.
Collapse
Affiliation(s)
- Mandy Fisher
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | | | - Bruce Lanphear
- Simon Fraser University, Vancouver, British Columbia, Canada
| | - Tye E Arbuckle
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island, USA
| | - Angelika Zidek
- Existing Substances and Risk Assessment Bureau, Health Canada, Ottawa, Ontario, Canada
| | | | - Nicole Lupien
- Sainte-Justine University Hospital Research Center, Montreal, Quebec, Canada
| | - Stephanie Bastien
- Sainte-Justine University Hospital Research Center, Montreal, Quebec, Canada
| | - Jillian Ashley-Martin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Youssef Oulhote
- Department of Epidemiology and Biostatistics, School of Public Health and Health Sciences, University of Massachusetts, Boston, Massachusetts, USA
| | - Michael M Borghese
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Mark Walker
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Elizabeth Asztalos
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Maryse F Bouchard
- Sainte-Justine University Hospital Research Center, Montreal, Quebec, Canada
- Institut National de la Recherche Scientifique, Montreal, Quebec, Canada
| | - Linda Booij
- Sainte-Justine University Hospital Research Center, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Research Centre/Eating Disorders Continuum, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Mark R Palmert
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Katherine M Morrison
- Department of Pediatrics, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | | | | | - Constadina Panagiotopoulos
- Endocrinology and Diabetes Unit, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gord Glendon
- Ontario Cancer Genetics Network, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Robin Shutt
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Ammanie Abdul-Fatah
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Kelsey Seal
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - William D Fraser
- Department of Obstetrics and Gynecology, Centre de Recherche du CHUS, University of Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|