251
|
Li K, Cao R, Mo S, Yao R, Ren Z, Wu J. Swine Manure Composting With Compound Microbial Inoculants: Removal of Antibiotic Resistance Genes and Their Associations With Microbial Community. Front Microbiol 2020; 11:592592. [PMID: 33250880 PMCID: PMC7673438 DOI: 10.3389/fmicb.2020.592592] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
In this study, compound microbial inoculants, including three Bacillus strains and one Yeast strain, were inoculated into swine manure composting to explore the effects on antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), microbial community structure, and pathogenic bacteria. The results indicated that the abundances of the detected ARGs ranged from 3.6 × 103 to 1.13 × 108 copies/g. The ARGs with the highest abundance was sul2, and the lowest was blaCTX. Composting removes most of the ARGs and MGEs by 22.8-99.7%. These ARGs were significantly reduced during the thermophilic phase of compost. The removal rate of ARGs at the different layers of compost pile was different as follows: middle layer > upper layer > lower layer. But some ARGs proliferated significantly in the maturation phase of compost, especially the sulfonamide resistance genes. Compound microbial inoculants increased the temperature of compost, accelerated water loss, nitrogen fixation, and increased the removal rate of β-lactamase resistance genes, the transposon gene tn916 and part of tetracycline resistance genes by 3.7-23.8% in compost. Compound microbial inoculants changed the community structure and increased the Bacillus abundance in the thermophilic phase of compost. And it was helpful for removing pathogens during composting. The addition of compound microbial inoculants causes the decrease of Firmicutes and the increase of Bacteroidetes, which may be related to the removal and proliferation of ARGs.
Collapse
Affiliation(s)
- Ke Li
- College of Animal Sciences and Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Cao
- College of Animal Sciences and Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shangkun Mo
- College of Animal Sciences and Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rensheng Yao
- Animal Husbandry and Veterinary Station of Guangling District, Yangzhou, China
| | - Zhuqing Ren
- College of Animal Sciences and Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jian Wu
- College of Animal Sciences and Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
252
|
Cai J, Ye ZL, Ye C, Ye X, Chen S. Struvite crystallization induced the discrepant transports of antibiotics and antibiotic resistance genes in phosphorus recovery from swine wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115361. [PMID: 32810833 DOI: 10.1016/j.envpol.2020.115361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Struvite (MgNH4PO3·6H2O) crystallization is one of important methods of phosphorus recovery from wastewater. As to livestock wastewater, the high-strength occurrence of antibiotics and antibiotic resistance genes might induce struvite recovery to spread antibiotic resistance to the environment. However, limited information has been reported on the simultaneous transport of antibiotics and ARGs in struvite recovery. In the present study, tetracyclines (TCs) and tetracyclines antibiotic resistance genes (ARGs) were selected as the targeted pollutants, and their discrepant residues in struvite recovery from swine wastewater were investigated. TCs and ARGs were obviously detected, with their contents of 4.88-79.5 mg/kg and 6.99 × 107-2.14 × 1011 copies/g, notably higher than those of TCs 0.550-1.94 mg/kg and ARGs 3.98 × 104-5.66 × 107 copies/g obtained from synthetic wastewater. The correlational relationship revealed that predominant factors affecting TCs and ARGs transports were different. Results from network analyses indicated that among the total edges, the negative correlations between TCs and ARGs predominately occupied 18.0%. The redundancy analysis revealed that mineral components in the recovered products, including struvite, K-struvite and amorphous calcium phosphate, coupling with organic contents, displayed insignificant roles on TCs residues, where heavy metals exerted positive and remarkable functions to boost TCs migration. Unexpectedly, mineral components and heavy metals did not displayed significant promotion on ARGs transport as a whole.
Collapse
Affiliation(s)
- Jiasheng Cai
- Key Laboratory of Urban Pollution Conversion, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799 Jimei Road, Xiamen City, Fujian, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Long Ye
- Key Laboratory of Urban Pollution Conversion, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799 Jimei Road, Xiamen City, Fujian, 361021, China.
| | - Chengsong Ye
- College of the Environment and Ecology, Xiamen University, Xiamen City, Fujian, 361005, China
| | - Xin Ye
- Key Laboratory of Urban Pollution Conversion, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799 Jimei Road, Xiamen City, Fujian, 361021, China
| | - Shaohua Chen
- Key Laboratory of Urban Pollution Conversion, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799 Jimei Road, Xiamen City, Fujian, 361021, China
| |
Collapse
|
253
|
Wang B, Zhang Y, Zhu D, Li H. Assessment of Bioavailability of Biochar-Sorbed Tetracycline to Escherichia coli for Activation of Antibiotic Resistance Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12920-12928. [PMID: 32786566 DOI: 10.1021/acs.est.9b07963] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Human overuse and misuse of antibiotics have caused the wide dissemination of antibiotics in the environment, which has promoted the development and proliferation of antibiotic resistance genes (ARGs) in soils. Biochar (BC) with strong sorption affinity to many antibiotics is considered to sequester antibiotics and hence mitigate their impacts to bacterial communities in soils. However, little is known about whether BC-sorbed antibiotics are bioavailable and exert selective pressure on soil bacteria. In this study, we probed the bioavailability of tetracycline sorbed by BCs prepared from rice-, wheat-, maize-, and bean-straw feedstock using Escherichia coli MC4100/pTGM bioreporter strain. The results revealed that BC-sorbed tetracycline was still bioavailable to the E. coli attached to BC surfaces. Tetracycline sorbed by BCs prepared at 400 °C (BC400) demonstrated a higher bioavailability to bacteria compared to that sorbed by BCs prepared at 500 °C (BC500). Tetracycline could be sorbed primarily in the small pores of BC500 where bacteria could not access due to the size exclusion to bacteria. In contrast, tetracycline could be sorbed mainly on BC400 surfaces where bacteria could conveniently access tetracycline. Increasing the ambient humidity apparently enhanced the bioavailability of BC400-sorbed tetracycline. BC500-sorbed tetracycline exposed to varying levels of ambient humidity showed no significant changes in bioavailability, indicating that water could not effectively mobilize tetracycline from BC500 pores to surfaces where bacteria could access tetracycline. The results from this study suggest that BCs prepared at a higher pyrolysis temperature could be more effective to sequester tetracycline and mitigate the selective pressure on soil bacteria.
Collapse
Affiliation(s)
- Bingyu Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, United States
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Yingjie Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, United States
| | - Dongqiang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
- School of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
254
|
Sun J, Jin L, He T, Wei Z, Liu X, Zhu L, Li X. Antibiotic resistance genes (ARGs) in agricultural soils from the Yangtze River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140001. [PMID: 32569910 DOI: 10.1016/j.scitotenv.2020.140001] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 05/23/2023]
Abstract
As an important reservoir of intrinsic antimicrobial resistance, soil is subjected to increasing anthropogenic activities that creates sustained selection pressure for the prevalence of antibiotic resistance genes (ARGs), thus constituting an important environmental dissemination pathway to human exposure. This study investigated the levels and spatial distributions of three classes of ARGs in relation to a range of co-occurring chemical mixtures and soil properties at a regional scale of the Yangtze River Delta (YRD), China. The selected eight ARGs were all detected in 241 agricultural soil samples with relative abundances ranging from 1.01 × 10-7 to 2.31 × 10-1 normalized to the 16S rRNA gene. The sulII and tetG were the dominant ARGs with a mean relative abundance of 6.67 × 10-3 and 5.25 × 10-3, respectively. The ARGs were mainly present in agricultural soils alongside Taihu Lake and Shanghai municipality, the most agriculturally and economically vibrant area of the YRD region. Antibiotics, rather than other co-occurring pollutants and soil properties, remain to be the dominant correlate to the ARGs, suggesting their co-introduction into the soils via irrigation and manure application or the sustained selection pressure of antibiotics from these sources for the proliferation of ARGs in the soils. While the current dataset provided useful information to assess the ARGs pollution for mitigation, future studies are warranted to reveal the complete picture on the potential transfer of antimicrobial resistance from soil to agricultural produces to human consumption and associated health implications.
Collapse
Affiliation(s)
- Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Tangtian He
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Zi Wei
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xinyi Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
255
|
Chen X, Zhao Y, Zhang C, Zhang D, Yao C, Meng Q, Zhao R, Wei Z. Speciation, toxicity mechanism and remediation ways of heavy metals during composting: A novel theoretical microbial remediation method is proposed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 272:111109. [PMID: 32854897 DOI: 10.1016/j.jenvman.2020.111109] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 04/26/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Heavy metals (HM) pollution is a major limitation to the application of composting products. Therefore, mitigating the toxicity of HM has attracted wide attention during composting. The toxicity of HM is mainly acted on microorganisms during composting, and the toxicity of different HM speciation is obviously various. There are many pathways to change the speciation to reduce the toxicity during composting. Therefore, in this review, the speciation distribution, toxicity mechanism and remediation ways of HM during composting were discussed in order to better solve HM pollution. The microbial remediation technology holds enormous potential to remediate for HM without damaging composting, however, it is hard to extract HM. The innovation of this review was to outline microbial remediation strategies for HM during composting based on two mechanisms of microbial remediation: extracellular adsorption and intracellular sequestration, to solve the problem how to extract microbial agents from the compost. Ultimately, a novel theoretical method of microbial remediation was proposed to remove HM from the compost.
Collapse
Affiliation(s)
- Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Chuang Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Duoying Zhang
- School of Civil Engineering, Heilongjiang University, Harbin, 150080, China
| | - Changhao Yao
- Heilongjiang Province Environmental Monitoring Centre, Harbin, 150056, China
| | - Qingqing Meng
- Heilongjiang Province Environmental Monitoring Centre, Harbin, 150056, China
| | - Ran Zhao
- Heilongjiang Province Environmental Monitoring Centre, Harbin, 150056, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
256
|
Qin K, Wei L, Li J, Lai B, Zhu F, Yu H, Zhao Q, Wang K. A review of ARGs in WWTPs: Sources, stressors and elimination. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.04.057] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
257
|
Li H, Xu H, Song HL, Lu Y, Yang XL. Antibiotic resistance genes, bacterial communities, and functions in constructed wetland-microbial fuel cells: Responses to the co-stresses of antibiotics and zinc. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115084. [PMID: 32806463 DOI: 10.1016/j.envpol.2020.115084] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 05/12/2023]
Abstract
The effects of the continuous accumulation of Zinc (Zn) on the fate of antibiotic resistance genes (ARGs) in constructed wetland-microbial fuel cells (CW-MFCs) remain unclear. In this study, the impacts of Zn addition and a circuit mode on antibiotic removal, occurrence of ARGs, the bacterial community, and bacterial functions were investigated in three groups of CW-MFCs. The results showed that continuous Zn exposure enriched the target ARGs during the initial stage, while excessive Zn accumulation decreased antibiotic removal and the abundance of ARGs. A principal component analysis demonstrated that ARGs and the bacterial community distribution characteristics were significantly impacted by the mass accumulation of antibiotics and Zn, as well as the circuit mode. A redundancy analysis, partial least squares path modeling, and Procrustes analysis revealed that the accumulation of antibiotics and Zn, the composition of the bacterial community, the circuit mode, and the abundance of intI associated with horizontal gene transfer jointly contributed to the distributions of ARGs in the electrodes and effluent. Moreover, continuous exposure to Zn decreased the bacterial diversity and changed the composition and function of the bacterial community predicted using PICRUSt tool. The co-occurrence of ARGs, their potential hosts and bacterial functions were further revealed using a network analysis. A variation partition analysis also showed that the accumulation of target pollutants and the circuit mode had a significant impact on the bacterial community composition and functions. Therefore, the interaction among ARGs, the bacterial community, bacterial functions, and pollutant accumulations in the CW-MFC was complex. This study provides useful implications for the application of CW-MFCs for the treatment of wastewater contaminated with antibiotics and heavy metals.
Collapse
Affiliation(s)
- Hua Li
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Han Xu
- School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China.
| | - Yi Lu
- School of Environmental and Natural Resources, Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
258
|
Yan C, Wang F, Liu H, Liu H, Pu S, Lin F, Geng H, Ma S, Zhang Y, Tian Z, Chen H, Zhou B, Yuan R. Deciphering the toxic effects of metals in gold mining area: Microbial community tolerance mechanism and change of antibiotic resistance genes. ENVIRONMENTAL RESEARCH 2020; 189:109869. [PMID: 32678731 DOI: 10.1016/j.envres.2020.109869] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/20/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Mine tailing dumps represent significant threats to ecological environments due to the presence of toxic substances. The present work investigated the relationship among microbial activity, the community, antibiotic resistance genes (ARGs) and trace metals in soil surrounding gold mine tailings. Using microbial metabolic activity and high-throughput sequencing analysis, we found the trace metals Cd and Hg could be main factors influencing the microbial community. According to bacterial co-occurrence pattern analysis, the effects of total cadmium and total mercury on bacterial diversity are potentially mediated by influencing bacteria community in the keystone module II. Additionally, most of metal-resistant bacteria belong to Actinobacteria and Proteobacteria, and the metal tolerance suggested to be linked with various functions including replication, recombination and repair, as well as inorganic ion transport and metabolism based on PICRUSt2 analysis. We also found that metals generated by mining activity may trigger the co-selection of antibiotic resistance in the phyla Actinobacteria and Proteobacteria due to co-resistance or cross resistance. Additionally, PLS-PM analysis revealed that metals could indirectly affect ARGs by influencing bacterial diversity in gold mining areas.
Collapse
Affiliation(s)
- Changchun Yan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Fei Wang
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China.
| | - Haijun Liu
- School of Resources and Environment, Anqing Normal University, 1318 Jixian North Road, 246133, Anqing, Anhui, China
| | - Huafeng Liu
- Shandong Institute of Geological Survey, 35 Jianzhuxincun South Road, Lixia District, 250014, Jinan, China
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, 610059, Chengdu, Sichuan, China
| | - Fanyu Lin
- Analytical and Testing Center, Third Institute of Oceanography, Ministry of Natural Resources, 178 University Road, Siming District, 361000, Xiamen, Fujian, China
| | - Huanhuan Geng
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Shuai Ma
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Yiyue Zhang
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Zhijun Tian
- Beijing Geo-engineering Design and Research Institute, 6 East Yuanlin Road, Miyun District, 101500, Beijing, China
| | - Huilun Chen
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China.
| | - Beihai Zhou
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Rongfang Yuan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| |
Collapse
|
259
|
Mahbub KR, King WL, Siboni N, Nguyen VK, Rahman MM, Megharaj M, Seymour JR, Franks AE, Labbate M. Long-lasting effect of mercury contamination on the soil microbiota and its co-selection of antibiotic resistance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115057. [PMID: 32806457 DOI: 10.1016/j.envpol.2020.115057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/11/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance genes (ARGs) in the environment are an exposure risk to humans and animals and is emerging as a global public health concern. In this study, mercury (Hg) driven co-selection of ARGs was investigated under controlled conditions in two Australian non-agricultural soils with differing pH. Soils were spiked with increasing concentrations of inorganic Hg and left to age for 5 years. Both soils contained ARGs conferring resistance to tetracycline (tetA, tetB), sulphonamides (sul1), trimethoprim (dfrA1) and the ARG indicator class 1 integron-integrase gene, intI1, as measured by qPCR. The last resort antibiotic vancomycin resistance gene, vanB and quinolone resistance gene, qnrS were not detected. Hg driven co-selection of several ARGs namely intI1, tetA and tetB were observed in the alkaline soil within the tested Hg concentrations. No co-selection of the experimental ARGs was observed in the neutral pH soil. 16S rRNA sequencing revealed proliferation of Proteobacteria and Bacteriodetes in Hg contaminated neutral and alkaline soils respectively. Multivariate analyses revealed a strong effect of Hg, soil pH and organic carbon content on the co-selection of ARGs in the experimental soils. Additionally, although aging caused a significant reduction in Hg content, agriculturally important bacterial phyla such as Nitrospirae did not regrow in the contaminated soils. The results suggest that mercury can drive co-selection of ARGs in contaminated non-agricultural soils over five years of aging which is linked to soil microbiota shift and metal chemistry in the soil.
Collapse
Affiliation(s)
| | - William L King
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Viet Khue Nguyen
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Ashley E Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, 3086, Australia; Centre for Future Landscapes, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Maurizio Labbate
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
260
|
Parente CET, Brusdzenski GS, Zonta E, Lino AS, Azevedo-Silva CE, Dorneles PR, Azeredo A, Torres JPM, Meire RO, Malm O. Fluoroquinolones and trace elements in poultry litter: estimation of environmental load based on nitrogen requirement for crops. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:1087-1098. [PMID: 32900284 DOI: 10.1080/03601234.2020.1816794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Poultry litter soil application contributes to sustainability of agricultural systems and is in accordance with the United Nations Sustainable Development Goals (UN-SDG). Poultry litter recommended rates are based on crop nitrogen (N) needs, however, their application can be a potential source of antibiotics and trace elements overload. The aim of the study was to estimate the role of poultry litter application on soil contamination by fluoroquinolones [enrofloxacin (ENR) and ciprofloxacin (CIP)] and trace elements, based on N requirements for crops. Analytical and sampling techniques were used to estimate the loads from poultry litter application. Only CIP was found in poultry litter samples (283 ± 124 µg kg-1) and its load was estimated to be of 9.89 ± 4.33 g ha-1, for the poultry litter application (35 t ha-1). The estimated loads (g ha-1) of trace elements were: Cr 9.19 ± 3.26, Ni 12.3 ± 4.93, Pb 22.0 ± 8.26, Cu 229 ± 85.6, Mn 691 ± 259 and Zn 1,011 ± 378. These estimates were 900% higher than those recommended by the technical guidance, while N exceeded 600% the recommended application. In order to achieve UN-SDGs, local policies to disseminate knowledge and technologies are required for consolidating sustainable agricultural practices.
Collapse
Affiliation(s)
- Cláudio E T Parente
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Gabriel S Brusdzenski
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Everaldo Zonta
- Departamento de Solos, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Adan S Lino
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Claudio E Azevedo-Silva
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Paulo R Dorneles
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Antonio Azeredo
- Laboratório de Toxicologia, Instituto de Estudos em Saúde Coletiva, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - João Paulo M Torres
- Laboratório de Micropoluentes Jan Japenga, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Rodrigo O Meire
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Olaf Malm
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
261
|
Yang S, Wen Q, Chen Z. Impacts of Cu and Zn on the performance, microbial community dynamics and resistance genes variations during mesophilic and thermophilic anaerobic digestion of swine manure. BIORESOURCE TECHNOLOGY 2020; 312:123554. [PMID: 32460007 DOI: 10.1016/j.biortech.2020.123554] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
In this work, fate of antibiotic resistance genes (ARGs), heavy metal resistance genes (MRGs) and intI1 were investigated during mesophilic (mAD) and thermophilic anaerobic digestion (tAD) of swine manure with presence of Cu and Zn. Results showed that metal reduced the lag phase time. Cu showed stronger inhibition than Zn on archaea community and metals inhibited the growth of acetoclastic methanogens during mAD. Although total concentration of metals increased after AD, they were transformed into stable state. The abundance of qnrS, sul1, sul2 and drfA7 increased 1.2-5.7 times after mAD, while reduced after tAD, showed that tAD was effective in ARGs removal. Structural equation model analysis suggested that intI1 had the most standardized direct effects on ARGs variation in mAD (R = 0.85, p < 0.01), while the co-occurrence of MRGs with ARGs showed significantly positive influences on ARGs variation in tAD (R = 0.82, p < 0.01).
Collapse
Affiliation(s)
- Shuo Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
262
|
Manure as a Potential Hotspot for Antibiotic Resistance Dissemination by Horizontal Gene Transfer Events. Vet Sci 2020; 7:vetsci7030110. [PMID: 32823495 PMCID: PMC7558842 DOI: 10.3390/vetsci7030110] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 12/26/2022] Open
Abstract
The increasing demand for animal-derived foods has led to intensive and large-scale livestock production with the consequent formation of large amounts of manure. Livestock manure is widely used in agricultural practices as soil fertilizer worldwide. However, several antibiotic residues, antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria are frequently detected in manure and manure-amended soils. This review explores the role of manure in the persistence and dissemination of ARGs in the environment, analyzes the procedures used to decrease antimicrobial resistance in manure and the potential impact of manure application in public health. We highlight that manure shows unique features as a hotspot for antimicrobial gene dissemination by horizontal transfer events: richness in nutrients, a high abundance and diversity of bacteria populations and antibiotic residues that may exert a selective pressure on bacteria and trigger gene mobilization; reduction methodologies are able to reduce the concentrations of some, but not all, antimicrobials and microorganisms. Conjugation events are often seen in the manure environment, even after composting. Antibiotic resistance is considered a growing threat to human, animal and environmental health. Therefore, it is crucial to reduce the amount of antimicrobials and the load of antimicrobial resistant bacteria that end up in soil.
Collapse
|
263
|
Anthony ET, Ojemaye MO, Okoh OO, Okoh AI. A critical review on the occurrence of resistomes in the environment and their removal from wastewater using apposite treatment technologies: Limitations, successes and future improvement. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:113791. [PMID: 32224385 DOI: 10.1016/j.envpol.2019.113791] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Recent reports are pointing towards the potential increasing risks of resistomes in human host. With no permissible limit in sight, resistomes are continually multiplying at an alarming rate in the ecosystem, with a disturbing level in drinking water source. The morphology and chemical constituent of resistomes afford them to resist degradation, elude membrane and counter ionic charge, thereby, rendering both conventional and advanced water and wastewater treatment inefficient. Water and wastewater matrix may govern the propagation of individual resistomes sub-type, co-selection and specific interaction towards precise condition may have enhanced the current challenge. This review covers recent reports (2011-2019) on the occurrence of ARB/ARGs and ease of spread of resistance genes in the aquatic ecosystem. The contributions of water matrix to the spread and mitigation, treatment options, via bulk removal or capture, and intracellular and extracellular DNA lysis were discussed. A complete summary of recent occurrences of ARB/ARGs, fate after disinfection and optimum conditions of individual treatment technology or in tandem, including process limitations, with a brief assessment of removal or degradation mechanism were highlighted.
Collapse
Affiliation(s)
- Eric Tobechukwu Anthony
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa; SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa; AEMREG, Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa.
| | - Mike O Ojemaye
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa; SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa; AEMREG, Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa
| | - Omobola O Okoh
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa; SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa; AEMREG, Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa; AEMREG, Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa
| |
Collapse
|
264
|
Xu D, Pan H, Yao J, Feng Y, Wu P, Shao K. Stress responses and biological residues of sulfanilamide antibiotics in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 199:110727. [PMID: 32446101 DOI: 10.1016/j.ecoenv.2020.110727] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Sulfonamides (SAs) are antibiotics widely used in clinical practice, livestock and poultry production, and the aquaculture industry. The compounds enter the soil environment largely through livestock and poultry manure application to farmland. SAs not only affect plant growth, but also pose a potential threat to human health through SA residues in plant tissues. In particular, sulfamethoxazole (SMZ) has been classified as a Category 3 carcinogen by the World Health Organization, and thus its soil ecological toxicity and possible health risks are of concern. Using A. thaliana as a model plant, stress responses and biological residues of sulfadiazine (SD), sulfametoxydiazine (SMD), and SMZ were investigated in the present study. Root length and aboveground plant biomass were significantly inhibited by the three types of SA, whereas lateral roots exposed to SMD grew vigorously. The contents of chlorophyll a and chlorophyll b and photosystem II maximum photochemical quantum yield declined with increase in drug concentration, which indicated that exposure to SAs affected photosynthesis and inhibited chlorophyll synthesis in A. thaliana. With increase in drug concentration, reactive oxygen species (ROS) accumulation in the leaves increased significantly. Activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were activated at low SA concentrations, but increased lipid peroxidation occurred with increase in SA concentration. Of the three compounds, SMZ was the most toxic to A. thaliana, followed by SD, and SMD was the least toxic. The results indicated that the risk of SMD entering an organism through the food chain is greater than that for SMZ and SD.
Collapse
Affiliation(s)
- Dongmei Xu
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Hua Pan
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jiachao Yao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yixuan Feng
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Panpan Wu
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Kai Shao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| |
Collapse
|
265
|
Wang Y, He J, Wu P, Luo D, Yan R, Zhang H, Jiang W. Simultaneous Removal of Tetracycline and Cu(II) in Hybrid Wastewater through Formic-Acid-Assisted TiO2 Photocatalysis. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02443] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ying Wang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jian He
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Pan Wu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Dingyuan Luo
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Runhua Yan
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Hao Zhang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Wei Jiang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
266
|
Iwu CD, Korsten L, Okoh AI. The incidence of antibiotic resistance within and beyond the agricultural ecosystem: A concern for public health. Microbiologyopen 2020; 9:e1035. [PMID: 32710495 PMCID: PMC7520999 DOI: 10.1002/mbo3.1035] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
The agricultural ecosystem creates a platform for the development and dissemination of antimicrobial resistance, which is promoted by the indiscriminate use of antibiotics in the veterinary, agricultural, and medical sectors. This results in the selective pressure for the intrinsic and extrinsic development of the antimicrobial resistance phenomenon, especially within the aquaculture‐animal‐manure‐soil‐water‐plant nexus. The existence of antimicrobial resistance in the environment has been well documented in the literature. However, the possible transmission routes of antimicrobial agents, their resistance genes, and naturally selected antibiotic‐resistant bacteria within and between the various niches of the agricultural environment and humans remain poorly understood. This study, therefore, outlines an overview of the discovery and development of commonly used antibiotics; the timeline of resistance development; transmission routes of antimicrobial resistance in the agro‐ecosystem; detection methods of environmental antimicrobial resistance determinants; factors involved in the evolution and transmission of antibiotic resistance in the environment and the agro‐ecosystem; and possible ways to curtail the menace of antimicrobial resistance.
Collapse
Affiliation(s)
- Chidozie D Iwu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
267
|
Peng H, Gu J, Wang X, Wang Q, Sun W, Hu T, Guo H, Ma J, Bao J. Insight into the fate of antibiotic resistance genes and bacterial community in co-composting green tea residues with swine manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 266:110581. [PMID: 32310121 DOI: 10.1016/j.jenvman.2020.110581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/03/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Green tea residues (GTRs) are byproducts of tea production and processing, and this type of agricultural waste retains nutritious components. This study investigated the co-composting of GTRs with swine manure, as well as the effects of GTRs on antibiotic resistance genes (ARGs) and the bacterial community during co-composting. The temperature and C/N ratio indicate compost was mature after processing. The addition of GTRs effectively promoted the reduction in the abundances of most targeted ARGs (tet and sul genes), mobile genetic element (MGE; intI1), and metal resistance genes (MRGs; pcoA and tcrB). Redundancy analysis (RDA) showed that GTRs can reduce the abundance of MRGs and ARGs by reducing the bioavailability of heavy metals. Network analysis shows that Firmicutes and Actinobacteria were the main hosts of ARGs and ARGs, MGEs, and MRGs shared the same potential host bacteria. Adding GTRs during composting may reduce ARGs transmission through horizontal gene transfer (HGT). GTRs affected the bacterial community, thereby influencing the variations in the ARG profiles and reducing the potential risk associated with the compost product.
Collapse
Affiliation(s)
- Huiling Peng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qianzhi Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiyue Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jianfeng Bao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
268
|
Wang Z, Han M, Li E, Liu X, Wei H, Yang C, Lu S, Ning K. Distribution of antibiotic resistance genes in an agriculturally disturbed lake in China: Their links with microbial communities, antibiotics, and water quality. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122426. [PMID: 32143164 DOI: 10.1016/j.jhazmat.2020.122426] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 02/12/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
In this study, six antibiotic resistance genes (ARGs), one mobile genetic element (int1), and their relation with microbial communities, antibiotics, and water quality were investigated in and around of an agriculturally disturbed lake, namely, Lake Honghu. The ARGs and int1 in the research area had a 100 % detection frequency in each sample during two sampling times. The ARGs were higher in the rivers and inlets than in Lake Honghu. Sul1 was the main ARG in this area. Antibiotics, nutrients, and dissolved oxygen were significantly, positively, and negatively correlated with nearly all of the ARGs, respectively. This finding suggests that reducing antibiotics and the eutrophication level could reduce the risk of ARGs. Microbial community shift had the most direct contribution to ARG variation. However, when the indirect effect was considered, environmental factors contributed 34 % to the ARGs' variance, the microbial community contributed 28 %, and their joint effect contributed 27 % to the ARG profiles. The abundance of Firmicutes, Gemmatimonadetes, Proteobacteria, etc. and their positive correlation with ARGs were significant, suggesting that these phyla probably carry ARGs. The study provides a systematic profile of ARG distribution and dissemination in a typical Chinese lake and new ideas to control this emerging contaminant in lakes.
Collapse
Affiliation(s)
- Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei Province, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, Hubei, China.
| | - Maozhen Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Enhua Li
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei Province, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, Hubei, China
| | - Xi Liu
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei Province, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, Hubei, China
| | - Huimin Wei
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei Province, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, Hubei, China
| | - Chao Yang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei Province, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, Hubei, China
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria an Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
269
|
Gu Y, Shen S, Han B, Tian X, Yang F, Zhang K. Family livestock waste: An ignored pollutant resource of antibiotic resistance genes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110567. [PMID: 32289631 DOI: 10.1016/j.ecoenv.2020.110567] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
The random discharge of livestock waste from family farms without utilization and treatment has caused great pressure on the rural ecological environment and gravely increased the environmental pollution. In this study, we targeted 26 family livestock farms to assess the occurrence characteristics of antibiotic resistance genes (ARGs) in livestock waste and its receiving farmland environment in Erhai Lake basin of China by real-time fluorescence quantitative PCR. The results showed that various common ARGs and some high-risk ARGs (i.e., blaampC, blaOXA-1 and blaTEM-1) were prevalent in family livestock waste, and the pollution of tetracycline resistance genes was the most serious in these family livestock farms. Meanwhile, we also found that the ARG levels were higher in family chicken farms than that in pig and cattle farms, and ARGs pollution in layer waste and sow waste was more severe than that in broiler waste and piglet/fattening pig waste, respectively. Troublesomely, significant ARGs levels could be discharged via manure application, further causing the increase of ARGs abundance in soil environment (approximately 11-36 times). This study demonstrated the high prevalence and severity of ARGs contamination in family livestock farms, also emphasizing that family livestock waste was a non-ignored important pollutant resource of ARGs in the environment.
Collapse
Affiliation(s)
- Yanru Gu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; College of Resources and Environment, Northeast Agricultural University, Harbin, 150036, China
| | - Shizhou Shen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Bingjun Han
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Xueli Tian
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; College of Resources and Environment, Northeast Agricultural University, Harbin, 150036, China.
| |
Collapse
|
270
|
Li Y, Wang X, Wang Y, Wang F, Xia S, Zhao J. Struvite-supported biochar composite effectively lowers Cu bio-availability and the abundance of antibiotic-resistance genes in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138294. [PMID: 32247985 DOI: 10.1016/j.scitotenv.2020.138294] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
The accumulation of heavy metals and the accelerated dissemination of antibiotic-resistance genes (ARGs) in soil receiving long-term manure application are causing worldwide concern. In this study, struvite-supported biochar composite (MAP/BC) obtained by N and P recovery from pig slurry with Mg(OH)2-modified biochar (Mg(OH)2/BC) was used as a novel amendment for the remediation of Cu- and ARG-contaminated agricultural soil. The effects of MAP/BC on Cu immobilization, ARG distribution, and the bacterial community in the soil were investigated simultaneously. The results showed that the mechanisms involved in the immobilization of Cu by MAP/BC included the formation of copper-phosphate precipitation and a surface complex. With a 10% MAP/BC modification, the acid-soluble Cu content in soil decreased by 0.47-fold at day 56 while the residual Cu content increased 1.41-fold. Meanwhile, the abundances of most of the target ARGs (tetX, tetT, tetW, tetG, ermB, sulI, sulII, and intlI) were reduced by 11.35-99.95%, and the abundance of total ARGs was reduced by 30.69%. The redundancy analysis indicated that the bio-available Cu content played a crucial role in the variations of both ARGs and bacterial communities. The network analysis further suggested that potential hosts of soil ARGs were mainly Firmicutes and Actinobacteria. The above results suggested that the application of MAP/BC can mitigate Cu and ARG pollution in manured soil.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xuejiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yuan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Fei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
271
|
Yang R, Xia X, Wang J, Zhu L, Wang J, Ahmad Z, Yang L, Mao S, Chen Y. Dose and time-dependent response of single and combined artificial contamination of sulfamethazine and copper on soil enzymatic activities. CHEMOSPHERE 2020; 250:126161. [PMID: 32092565 DOI: 10.1016/j.chemosphere.2020.126161] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
The widespread contamination of antibiotics and heavy metals results in imbalance in the ecosystem. However, the effect of the interaction between sulfamethazine (SM2) and copper (Cu) on soil enzymatic activities is unclear. Therefore, this study investigated the effect of single and combined artificial contamination of SM2 and Cu (0, 1.6 mmol kg-1 Cu and 0, 0.05, 0.2, 0.8 mmol kg-1 SM2) on soil enzymatic activities (urease, sucrose, phosphatase, and RubisCO). A single application of Cu at a concentration of 1.6 mmol kg-1 inhibited the urease, phosphatase and sucrase activities, while a stimulating effect on RubisCO activity was observed on day 7, 21, and 28 of incubation. The individual application of SM2 at higher concentration exhibited significant inhibition of sucrase, phosphatase, and urease activities while a stimulatory effect on RubisCO activity was observed on day 14 and 21 of incubation. The combined contamination of SM2 and Cu significantly inhibited the activities of urease, sucrase, and phosphatase. The effect of combined contamination of SM2 and Cu on the activity of RubisCO was different. The analysis results of interaction types show that there are synergistic or antagonistic effects between Cu and SM2, and these effects can amplify or reduce the effect of Cu or SM2 on soil enzyme activities. Integrated biological responses version 2 (IBRv2) analysis showed that the combined contamination of Cu and SM2 had a greater inhibitory or stimulatory effect on soil enzyme activities than the single contamination of Cu and SM2, depending upon dose and time.
Collapse
Affiliation(s)
- Rui Yang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Xiaoming Xia
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, China.
| | - Jinhua Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Lusheng Zhu
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Jun Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Zulfiqar Ahmad
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei, 430072, China; Department of Environmental Sciences, University of California, Riverside, California, 92521, USA.
| | - Lili Yang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Shushuai Mao
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Yangyang Chen
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| |
Collapse
|
272
|
Wang L, Wang J, Wang J, Zhu L, Conkle JL, Yang R. Soil types influence the characteristic of antibiotic resistance genes in greenhouse soil with long-term manure application. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122334. [PMID: 32092657 DOI: 10.1016/j.jhazmat.2020.122334] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Composted livestock and poultry manure, which may contain antibiotic resistance genes (ARGs), is widely used as natural fertilizer in China. But the influence of soil types on ARGs is not well characterized, particularly at greenhouse sites with long-term manure application. We investigated the distribution of ARGs in the cinnamon, fluvo-aquic and saline-alkali soils in greenhouse of Yellow River Delta region, China. A total of 193 ARGs subtypes were detected, with multidrug and aminoglycoside resistance genes as the most universal ARGs subtypes. Soil types influenced the ARGs distribution, where higher levels of diversity and relative abundance of ARGs in the fluvo-aquic and saline-alkali soils compared with those in the cinnamon soils. Among abiotic factors, sand, pH and Zn contributed more to the pattern of ARGs in the cinnamon soils, whereas sand and Cd, clay and Pb contributed the most in the fluvo-aquic and saline-alkali soils respectively. Furthermore, positive correlations between the relative abundances of ARGs and mobile genetic elements (MGEs) in the fluvo-aquic soils, suggesting higher dissemination potential of ARGs in this type of soil. Overall, MGEs played a positive primary role in the ARGs distribution in greenhouse soil than heavy metal co-selection and soil physicochemical properties.
Collapse
Affiliation(s)
- Lanjun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Jinhua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Lusheng Zhu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Jeremy L Conkle
- Department of Physical & Environmental Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, 78412, United States.
| | - Rui Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
273
|
Silva V, Peixoto F, Parelho C, Garcia P, Rodrigues A, Silva A, Carvalho I, Pereira JE, Igrejas G, Poeta PACQD. Occurrence of ESBL-producing Escherichia coli in soils subjected to livestock grazing in Azores archipelago: an environment-health pollution issue? Int Microbiol 2020; 23:619-624. [PMID: 32514644 DOI: 10.1007/s10123-020-00134-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 04/21/2020] [Accepted: 06/02/2020] [Indexed: 10/24/2022]
Abstract
Antibiotics are successful drugs used in human and animal therapy; however, they must be considered as environmental pollutants. This study aims to isolate and characterize the extended-spectrum β-lactamase (ESBL) producing Escherichia coli soil from Azores Archipelago subjected to livestock agricultural practices. Twenty-four soil samples were collected from three different pasture systems with different number of cattle heads, and from a control site. Antibiotic susceptibility method was performed by Kirby-Bauer disk diffusion method against 16 antibiotics, and the presence of genes encoding lactamases, antimicrobial resistance genes, virulence factors, and phylogenetic groups was determined by polymerase chain reaction (PCR). Nine ESBLs were recovered from the three grazing sites, and all isolates presented the beta-lactamase genes blaCTX-M-3 and blaSHV. E. coli isolates were resistance to tetracycline and streptomycin and harbored the tetB, strA, and strB genes. One isolate also showed resistance to sulfonamides, and the genes sul1 and sul2 were detected. The isolates were grouped into the following phylogenic groups: B1 (n = 6), D (n = 2), and A (n = 1). The presence of antibiotics and resistance genes in soils may be the source to the development of antimicrobial resistance, which may have negative consequences in human and animal health.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Functional Genomics and Proteomics Unit, University of Tras-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Caparica, Lisboa, Portugal
| | - Fernando Peixoto
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Carolina Parelho
- Faculty of Sciences and Technology, University of the Azores, Ponta Delgada, Portugal.,cE3c, Centre for Ecology, Evolution and Environmental Changes, and Azorean Biodiversity Group, University of the Azores, Ponta Delgada, Portugal
| | - Patrícia Garcia
- Faculty of Sciences and Technology, University of the Azores, Ponta Delgada, Portugal.,cE3c, Centre for Ecology, Evolution and Environmental Changes, and Azorean Biodiversity Group, University of the Azores, Ponta Delgada, Portugal
| | - Armindo Rodrigues
- Faculty of Sciences and Technology, University of the Azores, Ponta Delgada, Portugal.,IVAR, Institute of Volcanology and Risks Assessment, University of the Azores, Ponta Delgada, Portugal
| | - Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Functional Genomics and Proteomics Unit, University of Tras-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Caparica, Lisboa, Portugal
| | - Isabel Carvalho
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Functional Genomics and Proteomics Unit, University of Tras-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Caparica, Lisboa, Portugal
| | | | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Functional Genomics and Proteomics Unit, University of Tras-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Caparica, Lisboa, Portugal
| | - Patrícia Alexandra Curado Quintas Dinis Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal. .,Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Caparica, Lisboa, Portugal.
| |
Collapse
|
274
|
Pu Q, Zhao LX, Li YT, Su JQ. Manure fertilization increase antibiotic resistance in soils from typical greenhouse vegetable production bases, China. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122267. [PMID: 32062545 DOI: 10.1016/j.jhazmat.2020.122267] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 05/21/2023]
Abstract
A large quantity of manure is applied in greenhouse vegetable production (GVP) soils, while manure fertilization often leads to the proliferation of antibiotic resistance genes (ARGs) in soils. However, comprehensive study on the effects of different types of manure on ARGs in GVP soils remains unknown, and the baseline level of ARGs in GVP soil is poorly quantified. This study conducted a comprehensive survey of ARGs in GVP soils using high-throughput quantitative PCR. We found elevated ARG diversity and absolute abundance in fertilized soil, whereas no significant difference in soil ARGs amended with different types of manure. Redundancy analysis indicated that the change of bacterial community compositions and environmental factors contributed partially to the shift in ARG profiles. Bipartite network analysis indicated that one ARG was detected in non-manured soils, while 50 ARGs and 4 mobile gene elements were exclusively detected in fertilized soils, suggesting introduction of ARGs from manure into soils largely explained the increased ARG diversity in fertilized soil. By comparison of ARG absolute abundance between manured and non-manured soil, we estimated the typical level of ARG absolute abundance in non-manured soil, which provided the first rough baseline level of ARGs to assess ARG contamination in GVP soils.
Collapse
Affiliation(s)
- Qiang Pu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Li-Xia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yong-Tao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| |
Collapse
|
275
|
He P, Wu Y, Huang W, Wu X, Lv J, Liu P, Bu L, Bai Z, Chen S, Feng W, Yang Z. Characteristics of and variation in airborne ARGs among urban hospitals and adjacent urban and suburban communities: A metagenomic approach. ENVIRONMENT INTERNATIONAL 2020; 139:105625. [PMID: 32251897 DOI: 10.1016/j.envint.2020.105625] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 05/21/2023]
Abstract
Environmental antibiotic resistance genes (ARGs) have received much attention, while the characteristics of ARGs carried by particulate matter (PM) as a function of urban functional region are almost unknown. In this study, ARGs carried by PM2.5 and PM10 in an urban hospital, a nearby urban community and the nearest suburban community were detected using metagenomics. In total, 643 ARG subtypes belonging to 22 different ARG types were identified. The chloramphenicol exporter gene, sul1, bacA, and lnuA were the most abundant ARG subtypes in all air samples. The hospital exhibited higher ARG abundance and richness than the nearby communities. ARG profiles depended on functional region: hospital and suburban samples clustered separately, and samples from the nearby urban community interspersed among them. The representation of multidrug and quinolone resistance genes decayed with distance from the hospital to the urban community to the suburban community, indicating that hospital PM may be a hotspot for ARGs encoding proteins conferring multidrug and quinolone resistance. Airborne ARGs carried by PM in the hospital environment were more closely associated with clinically important pathogens than were those in nearby communities. In particular, carbapenemase genes, including blaNDM,blaKPC,blaIMP,blaVIM,and blaOXA-48, were discovered in hospital PM. In the suburban community, crAssphage, a human host-specific bacteriophage, was applied to predict ARG abundance and found to be enriched due to anthropogenic pollution but showed no clear evidence for ARG selection. In the hospital and the nearby urban community, the drivers of ARGs were complex. Our results highlighted that PM ARGs were closely related to human activities and revealed a potential hotspot, which could provide new evidence for further research and consequently mitigate the formation of airborne ARGs and transfer risks.
Collapse
Affiliation(s)
- Peng He
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Yan Wu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Wenzhong Huang
- School of Public Health, Sun Yat-sen University, Guangzhou 510006, Guangdong, PR China
| | - Xinwei Wu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Jiayun Lv
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Pengda Liu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Li Bu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Zhijun Bai
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Shouyi Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Wenru Feng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China.
| | - Zhicong Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China.
| |
Collapse
|
276
|
Zheng X, Liu Y, Huang J, Du Z, Zhouyang S, Wang Y, Zheng Y, Li Q, Shen X. The influence of variables on the bioavailability of heavy metals during the anaerobic digestion of swine manure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110457. [PMID: 32182529 DOI: 10.1016/j.ecoenv.2020.110457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
The speciation of heavy metals, besides the total concentrations, urgently need to be considered when assessing the eco-toxicity and the bioavailability of heavy metals in environment. This paper aims to investigate the distribution and chemical speciation (e.g. the acid extractable fraction (F1), the reducible fraction (F2), the oxidizable fraction (F3), and the residual fraction (F4)) of heavy metals during the anaerobic digestion process of swine manure. The majority of six heavy metals from the manure was located in biogas residue in the order of decreasing concentration Zn > Cu > Ni > As > Pb > Cd. The transformation of heavy metals among four fractions was observed during the digestion process, and the change of bioavailable fraction of Zn, Cu, Ni, Cd, As and Pb were 9.71%, -6.04%, -19.24%, 13.62%, -16.48% and -7.22%, respectively. The heat map of correlation coefficients and the stepwise linear regressions model were established to describe the correlation between the bioavailability of the metals and the given digestion variables to predict the influence of the selected variables on the bioavailability of heavy metals. The variations of heavy metal bioavailable fractions are attributed to three key digestion variables, NH4+-N concentration, CH4% in biogas daily yield and pH. These results provide a new perspective for analysis and control of heavy metals during the anaerobic digestion process.
Collapse
Affiliation(s)
- Xiarong Zheng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Southern Siming Road, Xiamen, 361005, PR China
| | - Yuanqiong Liu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Southern Siming Road, Xiamen, 361005, PR China
| | - Jiaming Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Southern Siming Road, Xiamen, 361005, PR China
| | - Zhongyi Du
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Southern Siming Road, Xiamen, 361005, PR China
| | - Siyu Zhouyang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Southern Siming Road, Xiamen, 361005, PR China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Southern Siming Road, Xiamen, 361005, PR China
| | - Yanmei Zheng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Southern Siming Road, Xiamen, 361005, PR China.
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Southern Siming Road, Xiamen, 361005, PR China
| | - Xiaolong Shen
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, 79401, USA.
| |
Collapse
|
277
|
Alessia E, Medina M, William R, Fahrenfeld N. Factors associated with elevated levels of antibiotic resistance genes in sewer sediments and wastewater. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2020; 6:1697-1710. [PMID: 34295504 PMCID: PMC8294613 DOI: 10.1039/d0ew00230e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The sewer environment is a potential hotspot for the proliferation of antibiotic resistance genes (ARGs) and other hazardous microbial agents. Understanding the potential for ARG proliferation and retardation and/or accumulation in sewer sediments is of interest for protecting the health of sewage workers and the broader community in the event of sewer overflows as well as for interpreting sewage epidemiology data. To better understand this understudied environment for antibiotic resistance, a field survey was conducted to identify the factors that may control ARGs in sewer sediments and sewage. qPCR was performed for select ARGs and amplicon sequencing was performed for paired samples from combined and separate sanitary sewer systems. Metagenomic sequencing was performed on combined sewer sediments. The relative abundances of sul1, tet(O), tet(W), ermF, and vanA were higher in wastewater compared to sewer sediments, while NDM-1 was greater in sewer sediment and ermF was similar between the two matrices. NDM-1 was observed in sewer sediment but rarely above detection in wastewater in this study. This may indicate that larger/more frequent wastewater samples are needed for detection and/or that retardation and/or accumulation in sewage sediment may need to be considered when interpreting wastewater-based epidemiology data for ARGs. Random forest analyses indicated that season and conductivity were important variables and to a lesser extent so were pH, TSS, heavy metals, and sewer type for explaining the variance of the ARGs. These variables explained the 19-61% of the variance of sul1, tet(O), tet(G), and tet(W) quantified in wastewater. These variables performed less well for explaining the variance in sewer sediments (0.2-24%). Sewer sediment and wastewater had distinct microbial community structures and biomarkers for each are described. Metagenomics indicated that a high diversity of ARGs, including several of medical importance, were observed in the combined sewer sediment. This work provides insight into the complex sewer microbiome and the potential hazard posed by different sewer matrices.
Collapse
Affiliation(s)
- Eramo Alessia
- Civil & Environmental Engineering, Rutgers, The State University of New Jersey, 500 Bartholomew Rd., Piscataway, NJ 08854
| | - Morales Medina
- Microbiology and Molecular Genetics, Rutgers, The State University of New Jersey
| | - R. William
- Microbiology and Molecular Genetics, Rutgers, The State University of New Jersey
| | - N.L. Fahrenfeld
- Civil & Environmental Engineering, Rutgers, The State University of New Jersey, 500 Bartholomew Rd., Piscataway, NJ 08854
- , 1-848-445-8416
| |
Collapse
|
278
|
Zheng J, Zhang J, Gao L, Kong F, Shen G, Wang R, Gao J, Zhang J. The Effects of Tetracycline Residues on the Microbial Community Structure of Tobacco Soil in Pot Experiment. Sci Rep 2020; 10:8804. [PMID: 32472015 PMCID: PMC7260358 DOI: 10.1038/s41598-020-65203-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/27/2020] [Indexed: 01/15/2023] Open
Abstract
To evaluate the micro-ecological effects of tetracycline residues on tobacco soil, high-throughput sequencing technology was used to study the effects of the addition of different concentrations (0, 5, 50, and 500 mg·kg-1) of tetracycline on the abundance, diversity, and structure of bacterial and fungal communities in the rhizosphere and non-rhizosphere soil of flue-cured tobacco in China. Results showed that the presence of tetracycline had an important but varying effect on soil bacterial and fungal community richness, diversity, and structure. Changes in the diversity indices (Chao index and Shannon index) of soil bacterial and fungal communities showed a similar pattern after the addition of tetracycline; however, a few differences were found in the effects of tetracycline in the rhizosphere and non-rhizosphere soil, suggesting an evident rhizosphere-specific effect. The bacterial community at the phylum level in the rhizosphere closely clustered into one group, which might be the result of tobacco root secretions and rhizodeposition. Tetracycline showed a concentration-dependent effect on the soil bacterial community structure. The soil bacterial community structures observed after treatments with higher concentrations of tetracycline (50 and 500 mg·kg-1) were found to be closely related. Moreover, the effects of the treatments with higher concentrations of tetracycline, on the soil bacterial community at the phylum level, were different from those with lower concentrations of tetracycline (5 mg·kg-1), and CK treatments. This might have resulted from the induction of increasing selective pressure with increasing antibiotic concentration. Tetracycline continued to affect the soil bacterial community throughout the experiment. Tetracycline was found to have a varying impact on the community structure of soil fungi compared to that of soil bacteria, and the addition of an intermediate concentration of tetracycline (50 mg·kg-1) significantly increased the soil fungal diversity in the non-rhizosphere soil. The biological effects of tetracycline on the soil fungal community and the fungal-bacterial interactions, therefore, require further elucidation, warranting further research.
Collapse
Affiliation(s)
- Jiayu Zheng
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P.R. China
| | - Jixu Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P.R. China
- Kunming Tobacco Company, Kunming, 651500, P.R. China
| | - Lin Gao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P.R. China
| | - Fanyu Kong
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P.R. China
| | - Guoming Shen
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P.R. China
| | - Rui Wang
- Tobacco Company of Hubei Province, Wuhan, 430030, P.R. China
| | - Jiaming Gao
- Tobacco Company of Hubei Province, Wuhan, 430030, P.R. China
| | - Jiguang Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P.R. China.
| |
Collapse
|
279
|
Dungan RS, Strausbaugh CA, Leytem AB. Survey of selected antibiotic resistance genes in agricultural and non-agricultural soils in south-central Idaho. FEMS Microbiol Ecol 2020; 95:5497921. [PMID: 31121020 DOI: 10.1093/femsec/fiz071] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 05/22/2019] [Indexed: 01/21/2023] Open
Abstract
Improving our understanding of antibiotic resistance in soils is important for the protection of human, animal and ecological health. In south-central Idaho, antibiotic resistance genes (ARGs) [blaCTX-M-1, erm(B), sul1, tet(B), tet(M) and tet(X)] and a class 1 integron-integrase gene (intI1) were quantified in agricultural and non-agricultural soils (96 total sites) under various land use practices (cropland, forestland, inactive cropland, pastureland, rangeland, recreational, residential). We hypothesized that gene occurrence and abundance would be greater in intensively managed agricultural soils. The ARGs (except blaCTX-M-1) and intI1 gene were detected in many of the soils (15 to 58 out of 96 samples), with sul1 and intI1 being detected the most frequently (60% of samples). All of the genes were detected more frequently in the cropland soils (46 sites) and at statistically greater relative abundances (per 16S rRNA gene) than in soils from the other land use categories. When the cropland gene data was separated by sites that had received dairy manure, dairy wastewater, and/or biosolids (27 sites), it was revealed that the genes [except tet(B)] were found at statistically greater abundances (7- to 22-fold higher on average) than in soils that were not treated. The results from this study provide convincing evidence that manure/biosolids use in Idaho cropland soils increases the expansion of antibiotic resistance-related determinants.
Collapse
Affiliation(s)
- Robert S Dungan
- United States Department of Agriculture-Agricultural Research Service, Northwest Irrigation & Soils Research Laboratory, 3793 North 3600 East, Kimberly, ID 83341, USA
| | - Carl A Strausbaugh
- United States Department of Agriculture-Agricultural Research Service, Northwest Irrigation & Soils Research Laboratory, 3793 North 3600 East, Kimberly, ID 83341, USA
| | - April B Leytem
- United States Department of Agriculture-Agricultural Research Service, Northwest Irrigation & Soils Research Laboratory, 3793 North 3600 East, Kimberly, ID 83341, USA
| |
Collapse
|
280
|
Riaz L, Wang Q, Yang Q, Li X, Yuan W. Potential of industrial composting and anaerobic digestion for the removal of antibiotics, antibiotic resistance genes and heavy metals from chicken manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137414. [PMID: 32105920 DOI: 10.1016/j.scitotenv.2020.137414] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Composting and anaerobic digestion techniques are widely used for manure recycling, but these methods have shown conflicting results in the removal of antibiotics, antibiotic resistance genes (ARGs), and heavy metals. In the present study, anaerobically digested chicken manure and various types of composted chicken manure were investigated on an industrial scale. Antibiotics, ARGs, and heavy metals had shown inconsistent results for anaerobic digestion and composting. The different composting processes either declined or completely removed the blaCTX-M, intl1 and oqxB genes. In addition, composting processes decreased the absolute abundance of aac6'-Ib and aadA genes, while increased the absolute abundance of qnrD, sul1, and tet(A) genes. On the other hand, anaerobic digestion of chicken manure increased the absolute abundance of ere(A) and tet(A). High throughput sequencing showed that Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria dominated the total bacterial composition of composted and anaerobically digested samples. Network analysis revealed the co-occurrence of ARGs and intl1. The redundancy analysis showed a significant correlation between some heavy metals and ARGs. Similarly, the bacterial composition showed a positive correlation with the prevalence of ARGs in treated manure. These findings suggest that bacterial community, heavy metals, and mobile genetic elements can play a significant role in the abundance and variation of ARGs during composting and anaerobic digestion. In conclusion, anaerobic digestion and composting methods at industrial scale need to be improved for the effective removal of antibiotics, ARGs and heavy metals from chicken manure.
Collapse
Affiliation(s)
- Luqman Riaz
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang 453007, China
| | - Qianqian Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang 453007, China
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang 453007, China.
| | - Xunan Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang 453007, China
| | - Wei Yuan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
281
|
Wu P, Qian TT, Fan TT, Zhang Y, Liu C, Zhou DM, Wang YJ. Time-dependent evolution of Zn(II) fractions in soils remediated by wheat straw biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137021. [PMID: 32062249 DOI: 10.1016/j.scitotenv.2020.137021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/16/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Biochar is a cost-effective and multifunctional carbon material, which can be used to immobilize heavy metal (HM) in soil. To date, the immobilization of different HM by various biochars are well-studied, however, little is known about the release condition of the immobilized HM. As the released HM may bring a threat to the soil environment, it is critical to understand the release pattern of biochar-sorbed HM in soil. Herein, six wheat straw-derived biochars (WBs) pyrolyzed under different temperature and duration time were loaded with zinc(Zn (II)), and the evolution of Zn(II) fractions in soils remediated by WBs over time was investigated by Community Bureau of Reference (BCR) three-step sequential extraction method. The main Zn(II) species sorbed on WBs were the Zn(II) sorbed on the acidic functional groups of WB and that sorbed on WB surface via electrostatic interaction. Generally, Zn(II) sorbed on high-temperature WB was more mobile than that sorbed on low-temperature WB. In the red soil, the soluble and exchangeable Zn(II) (i.e., Zn(II) in Fraction 1) in WB was inclined to transform to organic matter associated-Zn(II) (i.e., Zn(II) in Fraction 3) and residual Zn(II) (i.e., Zn(II) in Fraction 4). In the yellow-brown soil, the soluble and exchangeable Zn(II) in WB was prone to convert into amorphous Fe/Mn oxide associated-Zn(II) (i.e., Zn(II) in Fraction 2) and residual Zn(II). These results imply that Zn(II) sorbed by WB has the risk to be released into the soil environment, and WB produced at low temperature are more suitable to remediate soils with low/neutral pH.
Collapse
Affiliation(s)
- Ping Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China,; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ting-Ting Qian
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Ting-Ting Fan
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Ying Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Dong-Mei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yu-Jun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China,.
| |
Collapse
|
282
|
Wang Q, Liu L, Hou Z, Wang L, Ma D, Yang G, Guo S, Luo J, Qi L, Luo Y. Heavy metal copper accelerates the conjugative transfer of antibiotic resistance genes in freshwater microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137055. [PMID: 32065888 DOI: 10.1016/j.scitotenv.2020.137055] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/08/2020] [Accepted: 01/31/2020] [Indexed: 05/19/2023]
Abstract
Recent studies have consistently demonstrated increasing abundances of antibiotic resistance genes (ARGs) in the absence of antibiotic use. There is a large amount of quantitative data that has correlated the elevated ARGs levels with the concentrations of heavy metals in environments with anthropogenic impact. However, the mechanisms by which heavy metals facilitate the proliferation and horizontal gene transfer of ARGs among environmental bacteria were still unknown. This study validated effects of four typical heavy metals (Cu, Cd, Pb, Zn) on the plasmid RP4 mediated conjugative transfer of ARGs in freshwater microcosms. The results suggested that the typical heavy metals including Cu, Pb and Zn would promote conjugative transfer of the plasmid RP4, and Cu (5.0 μg/L) had the greatest ability to increase conjugative transfer by 16-fold higher than the control groups. In conjugative transfer microcosms, the species of each cultivable transconjugant were isolated, and their minimum inhibitory concentrations (MICs) were assessed via antibiotic susceptibility testing. The mechanism of the increased conjugative transfer of Cu was that Cu induced cell damage and the reduced conjugative transfer of Cd was that Cd increased the content of extracellular polymers substances (EPS). This study confirms that heavy metal Cu facilitates the conjugative transfer of environmental-mediated plasmid RP4 by cell damage effect, therefore accelerating the transmission and proliferation of ARGs.
Collapse
Affiliation(s)
- Qing Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China; Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Lei Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Zelin Hou
- Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Litao Wang
- Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Dan Ma
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Guang Yang
- Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Shaoyue Guo
- Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Jinghui Luo
- Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Liying Qi
- Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China.
| |
Collapse
|
283
|
Wang G, Zhou S, Han X, Zhang L, Ding S, Li Y, Zhang D, Zarin K. Occurrence, distribution, and source track of antibiotics and antibiotic resistance genes in the main rivers of Chongqing city, Southwest China. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122110. [PMID: 31978820 DOI: 10.1016/j.jhazmat.2020.122110] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
In this study, the occurrence of 14 antibiotics, four corresponding antibiotic resistance genes (ARGs) and two microbial source tracker (MST) indicators were analyzed in two rivers of Chongqing city, southwest China. The results showed that 13 antibiotics were detected in all 12 sites and their detection frequencies were much higher in September, but concentrations were lower than that in March. Of them, erythromycin (ETM) and ofloxacin (OFL) were the predominant antibiotics in both seasons. The remarkably higher concentration of antibiotics in sediments of these rivers than those in other rivers were found. Environmental risk assessment found that four antibiotics posed high risk toward some sensitive algae. For ARGs, their relative abundances were higher in waters than those in sediments, higher in March than in September. Correlation analysis showed that antibiotics were not the exclusive selective pressure of ARGs; many environmental factors like dry matter contents on a mass basis, organic matter, total organic carbon, dissolved organic carbon, temperature, oxidation reduction potential and nitrite could affect the occurrence of ARGs. MST indicators analysis demonstrated that this river basin was largely polluted by human and pig feces, and human feces might be one main source of the four ARGs and five antibiotics.
Collapse
Affiliation(s)
- Gangan Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Shaohong Zhou
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Xinkuan Han
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Shiyuan Ding
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yang Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Kinza Zarin
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400044, People's Republic of China
| |
Collapse
|
284
|
Cen T, Zhang X, Xie S, Li D. Preservatives accelerate the horizontal transfer of plasmid-mediated antimicrobial resistance genes via differential mechanisms. ENVIRONMENT INTERNATIONAL 2020; 138:105544. [PMID: 32172042 DOI: 10.1016/j.envint.2020.105544] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/19/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
Increasing concentrations of preservatives have been detected in environments due to the overuse and misuse of preservatives in food and personal care products. Recent studies have relied heavily on the toxicity, biodegradability, and fate of preservatives in the environment. However, the biological effects of preservatives on antimicrobial resistance, which poses great threats to public health worldwide, are largely unknown. This study investigated three preservatives for their ability and mechanisms of promoting horizontal transfer of antimicrobial resistance genes (ARGs). The results demonstrated that these preservatives (sodium nitrite, sodium benzoate, and triclocarbon), under daily-use concentrations, led to concentration-dependent increases in conjugative transfer by 1.24-2.63, 6.79-7.05, and 2.17-4.31 folds compared with the control group. Even these three preservatives had different patterns on generating intracellular reactive oxidative species (ROS) and reactive nitrogen species (RNS), all of them could stimulate radical-induced RpoS regulon and SOS response, increase cell membrane permeability, and regulate conjugative transfer-related genes, subsequently promoting horizontal transfer of ARGs. The present results expanded the understanding of biological effects induced by preservatives, and provided mechanistic insight into the preservatives-induced resistance. This study also opens an intriguing question on the roles of emerging contaminants including preservatives in the emerging and spread of ARGs in various environments.
Collapse
Affiliation(s)
- Tianyu Cen
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
| | - Xinyu Zhang
- Biomanafacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27606, United States
| | - Shanshan Xie
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Dan Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
285
|
Maltas J, Krasnick B, Wood KB. Using Selection by Nonantibiotic Stressors to Sensitize Bacteria to Antibiotics. Mol Biol Evol 2020; 37:1394-1406. [PMID: 31851309 PMCID: PMC7182213 DOI: 10.1093/molbev/msz303] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Evolutionary adaptation of bacteria to nonantibiotic selective forces, such as osmotic stress, has been previously associated with increased antibiotic resistance, but much less is known about potentially sensitizing effects of nonantibiotic stressors. In this study, we use laboratory evolution to investigate adaptation of Enterococcus faecalis, an opportunistic bacterial pathogen, to a broad collection of environmental agents, ranging from antibiotics and biocides to extreme pH and osmotic stress. We find that nonantibiotic selection frequently leads to increased sensitivity to other conditions, including multiple antibiotics. Using population sequencing and whole-genome sequencing of single isolates from the evolved populations, we identify multiple mutations in genes previously linked with resistance to the selecting conditions, including genes corresponding to known drug targets or multidrug efflux systems previously tied to collateral sensitivity. Finally, we hypothesized based on the measured sensitivity profiles that sequential rounds of antibiotic and nonantibiotic selection may lead to hypersensitive populations by harnessing the orthogonal collateral effects of particular pairs of selective forces. To test this hypothesis, we show experimentally that populations evolved to a sequence of linezolid (an oxazolidinone antibiotic) and sodium benzoate (a common preservative) exhibit increased sensitivity to more stressors than adaptation to either condition alone. The results demonstrate how sequential adaptation to drug and nondrug environments can be used to sensitize bacteria to antibiotics and highlight new potential strategies for exploiting shared constraints governing adaptation to diverse environmental challenges.
Collapse
Affiliation(s)
- Jeff Maltas
- Department of Biophysics, University of Michigan, Ann Arbor, MI
| | - Brian Krasnick
- Department of Biophysics, University of Michigan, Ann Arbor, MI
| | - Kevin B Wood
- Department of Biophysics, University of Michigan, Ann Arbor, MI
- Department of Physics, University of Michigan, Ann Arbor, MI
| |
Collapse
|
286
|
Ma J, Cui Y, Li A, Zhang W, Liang J, Wang S, Zhang L. Evaluation of the fate of nutrients, antibiotics, and antibiotic resistance genes in sludge treatment wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136370. [PMID: 31945537 DOI: 10.1016/j.scitotenv.2019.136370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
The aim of this research was to analyze the elimination of nutrients, antibiotics as well as antibiotic resistance genes (ARGs) in different sludge treatment wetlands (STWs) with or without reeds and aeration tubes. Five antibiotics, including oxytetracycline, tetracycline, azithromycin, sulfamethoxazole, and sulfadiazine; five ARGs, including two tetracycline ARGs (tetC and tetA), one macrolide ARGs (ermB), and two sulfonamide ARGs (sul1 and sul2); and one integrase gene (intI1) were determined in the surface and bottom layers of three STWs, respectively. The removal efficiencies of antibiotics in the bottom layer were lower than that in the surface layer, while the elimination efficiencies of ARGs showed opposite trend. Strong correlations were observed among the contents of antibiotics as well as related ARGs, and the abundance of ARGs had a strong correlation with intI1. The results demonstrated that the contents of these pollutants decreased during the resting period in all the STWs, while the wetland had reeds and aeration tubes performed the best.
Collapse
Affiliation(s)
- Junwen Ma
- School of Environment Science & Technology, Dalian University of Technology, Dalian 116024, China; College of Environment and Resources, Dalian Minzu University, Dalian 116600, China
| | - Yubo Cui
- College of Environment and Resources, Dalian Minzu University, Dalian 116600, China.
| | - Aimin Li
- School of Environment Science & Technology, Dalian University of Technology, Dalian 116024, China
| | - Wanjun Zhang
- College of Environment and Resources, Dalian Minzu University, Dalian 116600, China
| | - Junyu Liang
- College of Environment and Resources, Dalian Minzu University, Dalian 116600, China
| | - Shiquan Wang
- School of Environment Science & Technology, Dalian University of Technology, Dalian 116024, China
| | - Lei Zhang
- School of Environment Science & Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
287
|
Rodgers K, McLellan I, Peshkur T, Williams R, Tonner R, Knapp CW, Henriquez FL, Hursthouse AS. The legacy of industrial pollution in estuarine sediments: spatial and temporal variability implications for ecosystem stress. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:1057-1068. [PMID: 31119572 DOI: 10.1007/s10311-018-0791-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/30/2019] [Indexed: 05/28/2023]
Abstract
The direct impacts of anthropogenic pollution are widely known public and environmental health concerns, and details on the indirect impact of these are starting to emerge, for example affecting the environmental microbiome. Anthropogenic activities throughout history with associated pollution burdens are notable contributors. Focusing on the historically heavily industrialised River Clyde, Scotland, we investigate spatial and temporal contributions to stressful/hostile environments using a geochemical framework, e.g. pH, EC, total organic carbon and potentially toxic elements: As, Co, Cr, Cu, Ni, Pb and Zn and enrichment indicators. With regular breaches of the sediment quality standards in the estuarine system we focused on PTE correlations instead. Multivariate statistical analysis (principle component analysis) identifies two dominant components, PC1: As, Cr, Cu, Pb and Zn, as well as PC2: Ni, Co and total organic carbon. Our assessment confirms hot spots in the Clyde Estuary indicative of localised inputs. In addition, there are sites with high variability indicative of excessive mixing. We demonstrate that industrialised areas are dynamic environmental sites dependant on historical anthropogenic activity with short-scale variation. This work supports the development of 'contamination' mapping to enable an assessment of the impact of historical anthropogenic pollution, identifying specific 'stressors' that can impact the microbiome, neglecting in estuarine recovery dynamics and potentially supporting the emergence of antimicrobial resistance in the environment.
Collapse
Affiliation(s)
- Kiri Rodgers
- School of Health and Life Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK.
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK.
| | - Iain McLellan
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Tatyana Peshkur
- Department of Civil and Environmental Engineering, Centre for Water, Environmental, Sustainability and Public Health, University of Strathclyde, Glasgow, G1 1XQ, UK
| | - Roderick Williams
- School of Health and Life Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Rebecca Tonner
- Department of Civil and Environmental Engineering, Centre for Water, Environmental, Sustainability and Public Health, University of Strathclyde, Glasgow, G1 1XQ, UK
| | - Charles W Knapp
- Department of Civil and Environmental Engineering, Centre for Water, Environmental, Sustainability and Public Health, University of Strathclyde, Glasgow, G1 1XQ, UK
| | - Fiona L Henriquez
- School of Health and Life Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Andrew S Hursthouse
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK
| |
Collapse
|
288
|
Wang M, Xie X, Wang M, Wu J, Zhou Q, Sun Y. The bacterial microbiota in florfenicol contaminated soils: The antibiotic resistome and the nitrogen cycle. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113901. [PMID: 32023788 DOI: 10.1016/j.envpol.2019.113901] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/18/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Soil antibiotic resistome and the nitrogen cycle are affected by florfenicol addition to manured soils but their interactions have not been fully described. In the present study, antibiotic resistance genes (ARGs) and nitrogen cycle genes possessed by soil bacteria were characterized using real-time fluorescence quantification PCR (qPCR) and metagenomic sequencing in a short-term (30 d) soil model experiment. Florfenicol significantly changed in the abundance of genes conferring resistance to aminoglycosides, β-lactams, tetracyclines and macrolides. And the abundance of Sphingomonadaceae, the protein metabolic and nitrogen metabolic functions, as well as NO reductase, nitrate reductase, nitrite reductase and N2O reductase can also be affected by florfenicol. In this way, ARG types of genes conferring resistance to aminoglycosides, β-lactamases, tetracyclines, colistin, fosfomycin, phenicols and trimethoprim were closely associated with multiple nitrogen cycle genes. Actinobacteria, Chlorobi, Firmicutes, Gemmatimonadetes, Nitrospirae, Proteobacteria and Verrucomicrobia played an important role in spreading of ARGs. Moreover, soil physicochemical properties were important factors affecting the distribution of soil flora. This study provides a theoretical basis for further exploration of the transmission regularity and interference mechanism of ARGs in soil bacteria responsible for nitrogen cycle.
Collapse
Affiliation(s)
- Mei Wang
- The Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Xiying Xie
- The Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Mianzhi Wang
- The Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Jing Wu
- The Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Qin Zhou
- The Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Yongxue Sun
- The Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China.
| |
Collapse
|
289
|
Wang S, Xue N, Li W, Zhang D, Pan X, Luo Y. Selectively enrichment of antibiotics and ARGs by microplastics in river, estuary and marine waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134594. [PMID: 31796269 DOI: 10.1016/j.scitotenv.2019.134594] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 05/23/2023]
Abstract
The partition of antibiotics and antibiotic resistant genes (ARGs) between the microplastics (MPs) and the surrounding water with various salinity are still unclear. In this study, we hypothesized that adsorption of antibiotics on MPs might cause a significant change of the structure of microbial communities, diversity and abundance of ARGs on MPs and this might be further affected by change of salinity. In this study, we investigated adsorption of four common antibiotics (sulfamerazine, tetracycline, chloramphenicol and tylosin) to polyethylene (PE) MPs in river, estuary and marine waters, and the differences of antibiotic resistant genes (ARGs) and bacterial communities on MPs and in the three waters. The results showed that MPs can enrich antibiotics, ARGs and microbes from the surrounding water. Elevated salinity could reduce adsorption of antibiotics to MPs and the abundance of ARGs. For example, MPs can concentrate more antibiotics and ARGs in the fresh river water than in the estuary and the marine waters. In addition, ARGs and bacterial communities on MPs at various salinity were significantly different under the pressure of four antibiotics. On MPs, sul1, sulA/folP-01, tetA, tetC, tetX and ermE increased significantly but a few new ARGs such as sulA/folP-01 and tetA appeared. The structure of the bacterial communities on MPs was different from the surrounding water since some bacteria species found on MPs were barely detected in the surrounding water while some genera on MPs vanished after exposure to antibiotics. As the antibiotics adsorbed and the ARGs on MPs decreased with the water salinity, the structure of the communities on MPs thus varied with salinity change. These findings are important to understand the effects of MPs on the transport, fate and ecological risk of antibiotics and ARGs in different aquatic environments.
Collapse
Affiliation(s)
- Shanshan Wang
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nana Xue
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenfeng Li
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Daoyong Zhang
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
290
|
Liu Y, Dyall-Smith M, Marenda M, Hu HW, Browning G, Billman-Jacobe H. Antibiotic Resistance Genes in Antibiotic-Free Chicken Farms. Antibiotics (Basel) 2020; 9:antibiotics9030120. [PMID: 32183177 PMCID: PMC7148458 DOI: 10.3390/antibiotics9030120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/22/2022] Open
Abstract
Rising concern about the use of antibiotics in food production has resulted in many studies on the occurrence of antibiotic resistance genes (ARGs) in animal-associated bacterial communities. There are few baseline data on the abundance of ARGs on farms where chickens are intensively raised with little or no use of antibiotics. This study used a high-throughput quantitative PCR array to survey two antibiotic-free chicken farms for the occurrence of ARGs and mobile genetic elements known to enhance the spread of ARGs. No antibiotics had been used on the study farms for five years prior to this study. The results provide a baseline for the occurrence of resistance genes in the chicken production system without direct selective pressure.
Collapse
Affiliation(s)
- Yuhong Liu
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.L.); (M.D.-S.); (M.M.); (G.B.)
- National Centre for Antimicrobial Stewardship, The Peter Doherty Institute, Elizabeth St Melbourne, VIC 3000, Australia
| | - Michael Dyall-Smith
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.L.); (M.D.-S.); (M.M.); (G.B.)
| | - Marc Marenda
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.L.); (M.D.-S.); (M.M.); (G.B.)
| | - Hang-Wei Hu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Glenn Browning
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.L.); (M.D.-S.); (M.M.); (G.B.)
- National Centre for Antimicrobial Stewardship, The Peter Doherty Institute, Elizabeth St Melbourne, VIC 3000, Australia
| | - Helen Billman-Jacobe
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.L.); (M.D.-S.); (M.M.); (G.B.)
- National Centre for Antimicrobial Stewardship, The Peter Doherty Institute, Elizabeth St Melbourne, VIC 3000, Australia
- Correspondence:
| |
Collapse
|
291
|
Liu HY, Song C, Zhao S, Wang SG. Biochar-induced migration of tetracycline and the alteration of microbial community in agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:136086. [PMID: 31855650 DOI: 10.1016/j.scitotenv.2019.136086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/01/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Recently, biochar is widely used as a soil amendment to improve soil properties, which might affect the fate and behavior of contaminants in soil. In this study, we investigated the effect of biochar on the migration of tetracycline (TC) in soil and their combined impacts on microbiome. Due to the strong interaction between soil and TC, adsorption, rather than photolysis or biodegradation, was the dominating dissipation way of TC in soil. Moreover, biochar could promote the vertical migration of TC through the decreased soil bulk density and its lower adsorption capacity. After 90-day incubation, only slight impact of TC on soil bacterial community was observed due to the rapid dissipation of TC in soil, whereas more available C supply induced by biochar significantly altered bacterial community via the enhancement of copiotrophic bacteria. Besides, biochar could decrease the soil pH and thus change the composition of fungal community. The effect of TC on fungal community was partially counteracted by biochar, which could adsorb part of TC and thus decrease the contact of TC with microorganisms. This work will improve our understanding of the fate of organic pollutants and evolution of microbiome in soil where biochar servers as soil amendment.
Collapse
Affiliation(s)
- Hua-Yu Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shu-Guang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
292
|
Liu X, Liang C, Liu X, Zhao F, Han C. Occurrence and human health risk assessment of pharmaceuticals and personal care products in real agricultural systems with long-term reclaimed wastewater irrigation in Beijing, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110022. [PMID: 31865205 DOI: 10.1016/j.ecoenv.2019.110022] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Reclaimed wastewater (RW) is increasingly used to irrigate agricultural land and to alleviate agricultural water shortages worldwide. This usage has resulted in concerns about soil contamination by pharmaceuticals and personal care products (PPCPs) and the human health risks associated with dietary crop intake. In this study, we systematically analysed the occurrence and accumulation of 11 PPCPs and one active metabolite in soils and various crops (cucumber, eggplant, long bean and wheat) from realistic RW irrigation fields with different irrigation histories (20, 30 and 40 years) in Beijing and evaluated the human health risks associated with the consumption of these crops. The 11 PPCPs and one active metabolite were detected at concentrations ranging from 0.67 to 22.92 ng L-1 in RW, 0.029-28.13 μg kg-1 in irrigated soil, and <0.01-28.01 μg kg-1 in crops. The concentrations of N4-acetyl-sulfamethoxazole and triclosan were higher than those of other PPCPs, with respective concentrations of 14.39-31.44 ng L-1 and 15.93-26.23 ng L-1 in RW, 10.92-23.29 μg kg-1 and 20.22-28.13 μg kg-1 in irrigated soil and 17.92-28.01 μg kg-1 and 8.92-14.91 μg kg-1 in crops. However, the estimated threshold of toxicological concern (TTC) and hazard quotient (HQ) values revealed that the concentrations of N4-acetyl-sulfamethoxazole and triclosan in crops irrigated with RW should be considered a de minimis risk to human health. The concentrations of 11 PPCPs and one active metabolite in soils and crops and the calculated fruit bioconcentration factors (BCFs) did not display obvious increases associated with the duration of RW irrigation in real agricultural systems (P > 0.05). The concentrations of the studied PPCPs in the RW used for irrigation followed different patterns from the concentrations detected in the irrigated soils and crops. Although the concentrations of sulfamethoxazole, sulfisoxazole, sulfamethazine and trimethoprim in RW were higher than those of many other studied PPCPs, their respective values in the irrigated soils and crops did not display a similar tendency. The uptake and accumulation of PPCPs varied among the crop species (P < 0.05). Although PPCPs were detected in eggplant, long bean and wheat (BCFs: not applicable-1.67, 0.03-1.35 and 0.01-5.01, respectively), PPCPs accumulated at increased levels in cucumber (BCFs 0.03-18.98). The estimated TTC and HQ values showed that the consumption of crops irrigated long-term with RW presents a de minimis risk to human health. However, further studies with more PPCPs and additional crop species need to be conducted, the synergistic effects of chemical mixtures of multiple PPCPs and the toxic effects of PPCP metabolites should be elucidated to obtain more reliable information on the safety of wastewater reuse for irrigation.
Collapse
Affiliation(s)
- Xianjing Liu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China; School of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Cunzhen Liang
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China.
| | - Xiaohui Liu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria an Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Fei Zhao
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Chao Han
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| |
Collapse
|
293
|
Cheng D, Hao Ngo H, Guo W, Wang Chang S, Duc Nguyen D, Liu Y, Zhang X, Shan X, Liu Y. Contribution of antibiotics to the fate of antibiotic resistance genes in anaerobic treatment processes of swine wastewater: A review. BIORESOURCE TECHNOLOGY 2020; 299:122654. [PMID: 31917094 DOI: 10.1016/j.biortech.2019.122654] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Antibiotic resistance genes (ARGs) in water environment have become a global health concern. Swine wastewater is widely considered to be one of the major contributors for promoting the proliferation of ARGs in water environments. This paper comprehensively reviews and discusses the occurrence and removal of ARGs in anaerobic treatment of swine wastewater, and contributions of antibiotics to the fate of ARGs. The results reveal that ARGs' removal is unstable during anaerobic processes, which negatively associated with the presence of antibiotics. The abundance of bacteria carrying ARGs increases with the addition of antibiotics and results in the spread of ARGs. The positive relationship was found between antibiotics and the abundance and transfer of ARGs in this review. However, it is necessary to understand the correlation among antibiotics, ARGs and microbial communities, and obtain more knowledge about controlling the dissemination of ARGs in the environment.
Collapse
Affiliation(s)
- Dongle Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Soon Wang Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea; Institution of Research and Development, Duy Tan University, Da Nang, Viet Nam; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xue Shan
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Yi Liu
- Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, PR China
| |
Collapse
|
294
|
Li P, Liu M, Ma X, Wu M, Jiang C, Liu K, Liu J, Li Z. Responses of microbial communities to a gradient of pig manure amendment in red paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135884. [PMID: 31818573 DOI: 10.1016/j.scitotenv.2019.135884] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Microbial communities play a key role in maintaining agroecosystem functioning and sustainability, but their response to excessive animal manure application and relevant mechanisms have not been thoroughly elucidated to date. This study investigated the responses of soil bacterial and fungal communities to pig manure (PM) amendment in red paddy soils. High-throughput sequencing revealed that PM amendment significantly reduced the relative abundance of Acidobacteria yet increased that of Bacteroidetes, Ignavibacteriae, Firmicutes, and Rozellomycota. The Cu and available phosphorus were the primary impact factors influencing bacterial and fungal diversity, respectively. Bacterial alpha-diversity tended to sharply decrease when the content of soil Cu was >30.70 mg kg-1, while fungal alpha-diversity did not continuously increase when the content of soil available phosphorus was >82.84 mg kg-1. Bacterial communities with a wider niche breadth showed significantly lower structural variation, whereas fungal communities with a narrower niche breadth showed greater variation in community structure. Soil heavy metals, primarily Cu and Zn, were the primary factors that affected bacterial communities, whereas soil fungal communities were mainly influenced by soil phosphorus. Bacterial and fungal communities showed distinct co-occurrence patterns, with bacterial communities showing a higher degree, a clustering coefficient, and betweenness centrality, but a lower closeness centrality. The findings highlighted that bacteria and fungi responded differently to PM amendment because of their discrepant niche breadth, interspecific relationships, and different tolerance to heavy metal and soil nutrient.
Collapse
Affiliation(s)
- Pengfa Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Meng Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyu Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Kai Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Liu
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China.
| | - Zhongpei Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
295
|
Zou Y, Xiao Y, Wang H, Fang T, Dong P. New insight into fates of sulfonamide and tetracycline resistance genes and resistant bacteria during anaerobic digestion of manure at thermophilic and mesophilic temperatures. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121433. [PMID: 31685315 DOI: 10.1016/j.jhazmat.2019.121433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the variations in antibiotic (sulfonamide and tetracycline) resistance genes (ARGs) and resistant bacteria (ARB) during manure anaerobic digestion (AD) at 35 ℃ and 55 ℃, and discussed the mechanisms of variations in ARGs. The AD lasted for 60 days, five ARGs and intI1 each decreased in abundance after AD at the thermophilic temperature, while only half decreased at the mesophilic temperature. On days 10, 30, and 60, sulfonamide and tetracycline ARB were screened on selective media. During thermophilic AD, ARB numbers reduced by 4-log CFUs per gram dry manure, but only by approximately 1-log CFU at the mesophilic temperature. However, ARB composition analysis showed that at either temperature, no significant reduction in identified ARB species was observed. Furthermore, 72 ARB clones were randomly selected to detect the ARGs they harbored, and the results showed that each ARG was harbored by various hosts, and no definitive link existed between ARGs and bacterial species. In addition, by comparison with the identified host by culture method, the host prediction results based on the correlation analysis between ARGs and the bacterial community was proven to be unreliable. Overall, these findings indicated that relationships between ARB and ARGs were intricate.
Collapse
Affiliation(s)
- Yina Zou
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yao Xiao
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
| | - Tingting Fang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Peiyan Dong
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
296
|
Lu J, Wang Y, Jin M, Yuan Z, Bond P, Guo J. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes. WATER RESEARCH 2020; 169:115229. [PMID: 31783256 DOI: 10.1016/j.watres.2019.115229] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 08/04/2019] [Accepted: 10/24/2019] [Indexed: 05/21/2023]
Abstract
Antibiotic resistance in bacteria is a growing threat to global human health. Horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs) is recognized as the primary contributor to antibiotic resistance dissemination. Silver nanoparticles (AgNPs) are widely used in personal care products as antimicrobial agents. While heavy metals are known to induce antibiotic resistance in bacteria, it is not known whether AgNPs in the environment can stimulate the HGT of ARGs. Here, we report that both AgNPs and ionic silver Ag+, at environmentally relevant and sub-lethal concentrations, facilitate the conjugative transfer of plasmid-borne ARGs across bacterial genera (from the donor Escherichia coli K-12 LE392 to the recipient Pseudomonas putida KT2440). The underlying mechanisms of the Ag+- or AgNPs-promoted HGT were unveiled by detecting oxidative stress and cell membrane permeability, combined with genome-wide RNA sequencing and proteomic analyses. It was found that both Ag+ and AgNPs exposure induced various bacterial responses that included reactive oxygen species (ROS) generation, membrane damage and the SOS response. This study exposes the potential ecological risks of environmental levels of AgNPs and Ag+ for promoting the spread of ARGs and highlights concerns regarding the management of nanoparticles and heavy metals.
Collapse
Affiliation(s)
- Ji Lu
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Yue Wang
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Min Jin
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Philip Bond
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
297
|
Ohore OE, Addo FG, Han N, Li X, Zhang S. Profiles of ARGs and their relationships with antibiotics, metals and environmental parameters in vertical sediment layers of three lakes in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 255:109583. [PMID: 31739203 DOI: 10.1016/j.jenvman.2019.109583] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/22/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Antibiotic resistance is a global health problem, and the role of antibiotics and metal pollution in antibiotic resistance in sediment biocenosis is limited. The occurrence and relationship between antibiotic resistance genes (ARGs), antibiotics, metals and environmental parameters were investigated in vertical layers of sediments in rural and urban lakes. Generally, the total concentrations of seven antibiotics were significantly higher in the rural lake (Lake Taihu = 96%) than in the urban lakes (Xuanwu = 0.3%, Wulongtan = 3%), while similar concentrations were observed for metals (Taihu (34%), Xuanwu (33%) and Wulongtan (33%)). The concentration of metals and antibiotics were mostly higher in the surface sediment layers than the deeper ones (for antibiotics; surface layers = 89%, deeper layer = 11%, for metals; surface = 65%, deep = 35%). The ARGs showed no significant difference between surface and deeper sediments (surface = 48%, deep = 52%, p < 0.05). The potential ecological risk index of Ni, Cu, Zn, Cr, Mn, As, Cd, and Pb contamination showed that Lake Taihu and Wulongtan had moderate ecological risks while Lake Xuanwu had a low ecological risk. Pearson coefficient and network analysis showed that direct and indirect relationship existed among antibiotics, metals, environmental parameters, and ARGs, and the relationship was linked by key environmental components. tetA, blaTEM, SDZ, TOC, OFL, Cd, OTC, NOR, Ni, sulA, AUR, TC, DOX and TN were the major factors that influence the distribution of resistance genes, forming a complex network mechanism of antibiotic resistance. Our study revealed that antibiotics and heavy metals are widely distributed in the surficial sediments and the proliferation of ARGs are influenced by some key environmental components.
Collapse
Affiliation(s)
- Okugbe Ebiotubo Ohore
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China
| | - Felix Gyawu Addo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China
| | - Nini Han
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xin Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
298
|
Gao Q, Dong Q, Wu L, Yang Y, Hale L, Qin Z, Xie C, Zhang Q, Van Nostrand JD, Zhou J. Environmental antibiotics drives the genetic functions of resistome dynamics. ENVIRONMENT INTERNATIONAL 2020; 135:105398. [PMID: 31862641 DOI: 10.1016/j.envint.2019.105398] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
The increasing prevalence of antibiotic-resistant microorganisms imposes a global threat to public health. The over reliant use of antibiotics in the food industry has contributed considerably to the dissemination of antibiotics into various environments, yet the mechanisms by which antibiotic dissemination influences the assembly of the microbial community continues to remain obscure. Here, we examine bacterial and fungal community assemblies in swine manure, compost, compost amended, and unamended agricultural soil in five suburban areas of Beijing, China. Total antibiotic concentration decreased by factors of 10-1000 from manure and compost to soils. The bacterial α-diversity was found to be low in manure and compost samples, while the fungal α-diversity was similar across all samples. We detected significantly (p < 0.05) higher relative abundances of well recognized pathogenic microbial taxa, virulence associated genes, and antibiotic resistance genes (ARGs) in manure and compost than those in agricultural soils, revealing the higher microbial capacity of pathogenicity, virulence and antibiotic resistance. Unexpectedly, the relative abundances of both bacterial and fungal taxa did not predict the antibiotic concentration. A possible explanation was that bacterial and fungal communities were mainly shaped by random assemblies. Rather, antibiotic concentration could be well predicted by relative abundances of antibiotic resistance, stress and virulence associated genes. Despite the weak interconnection between ARGs and the microbiome, we demonstrate that microbial genes should be the focal point in tracking the ecological effects of antibiotic dissemination by revealing microbial community patterns along the dissemination chain of antibiotics.
Collapse
Affiliation(s)
- Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qiang Dong
- Institute of Chemical Defense, Beijing 102205, China
| | - Linwei Wu
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA.
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Lauren Hale
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA; Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, USDA, Parlier, CA 93648-9757, USA
| | - Ziyan Qin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Changyi Xie
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qiuting Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Joy D Van Nostrand
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
| | - Jizhong Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA; Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
299
|
Zhang M, Wan K, Zeng J, Lin W, Ye C, Yu X. Co-selection and stability of bacterial antibiotic resistance by arsenic pollution accidents in source water. ENVIRONMENT INTERNATIONAL 2020; 135:105351. [PMID: 31794937 DOI: 10.1016/j.envint.2019.105351] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/04/2019] [Accepted: 11/19/2019] [Indexed: 05/24/2023]
Abstract
Frequent heavy-metal pollution accidents severely deteriorated the source water quality of drinking water treatment plants (DWTP). Limited data have explicitly addressed the impact of these incidents on bacterial antibiotic resistance (BAR). In present study, we investigated the shift of antibiotic resistome caused by heavy metal pollution incidents via simulating an arsenic shock loading [As (III)], along with the associated risks imposed on drinking water systems. The results indicated that a quick co-selection of antibiotic resistant bacteria (ARB) was achieved after exposure to 0.2-1 mg/L As (III) for only 6 h, meanwhile, there was an increase of relative abundance of antibiotic resistance genes (ARGs) and mobile genetic elements. Most of the co-selected BAR could be maintained for at least 4 days in the absence of As (III) and antibiotics, implying that the pollution in source water possibly contributed to the preservation and proliferation of antibiotic resistance determinants in the subsequent DWTP. Bacterial community structure analysis showed a strong correlation between bacterial community shift and BAR promotion, and enrichment of opportunistic bacteria (e.g. Escherichia-Shigella, Empedobacter sp. and Elizabethkingia sp.). The results indicated a potential epidemiological threat to the public due to accident-level arsenic contamination in the source water. This study gave insight into understanding the source water pollution accidents from the perspective of bio-hazard and biological risks, and highlighted a neglected important source of BAR in drinking water systems.
Collapse
Affiliation(s)
- Menglu Zhang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; Key Laboratory of Resource Cycle and Pollution Control of Fujian Province, Fujian Normal University, Fuzhou 350007, China
| | - Kun Wan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Jie Zeng
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Wenfang Lin
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chengsong Ye
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
300
|
Chen Z, Wu Y, Wen Q, Bao H, Fu Q. Insight into the effects of sulfamethoxazole and norfloxacin on nitrogen transformation functional genes during swine manure composting. BIORESOURCE TECHNOLOGY 2020; 297:122463. [PMID: 31786036 DOI: 10.1016/j.biortech.2019.122463] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
The effects of sulfamethoxazole and norfloxacin on nitrogen functional genes were investigated in four composting treatments of swine manure: CK (no antibiotics), SMZ (spiked with 5 mg kg-1 dry weight (DW) sulfamethoxazole), NOR (spiked with 5 mg kg-1DW norfloxacin), and SN (spiked with 5 mg kg-1DW sulfamethoxazole and 5 mg kg-1DW norfloxacin). Antibiotics decreased relative abundance of bacterial amoA and nxrA, while increased nosZ/nirK. The decline in amoA/16S rRNA increased the total NH3 emission in SMZ and NOR from 1027.05 to 1144.39 and 1278.22 mg kg-1DW. The decrease of nxrA/16S rRNA enhanced the NO2--N content and N2O emission in SMZ in the initial composting. Additionally, the increase in nosZ/nirK probably was the main reason for the lower N2O emission in SN than other treatments in the cooling phase. The inhibition on nitrification process and increase in NH3 emission resulted from antibiotics is worthy of attention in the future.
Collapse
Affiliation(s)
- Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Yiqi Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China.
| | - Huanyu Bao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Qiqi Fu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| |
Collapse
|