251
|
Guo Z, Pan J, Zhu H, Chen ZY. Metabolites of Gut Microbiota and Possible Implication in Development of Diabetes Mellitus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5945-5960. [PMID: 35549332 DOI: 10.1021/acs.jafc.1c07851] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetes mellitus is characterized by having a disorder of glucose metabolism. The types of diabetes mellitus include type 1 diabetes mellitus, type 2 diabetes mellitus, gestational diabetes mellitus, and other specific types of diabetes mellitus. Many risk factors contribute to diabetes mellitus mainly including genetics, environment, obesity, and diet. In the recent years, gut microbiota has been shown to be linked to the development of diabetes. It has been reported that the gut microbiota composition of diabetic patients is different from that of healthy people. Although the mechanism behind the abnormality remains to be explored, most hypotheses focus on the inflammation response and leaky gut in relation to the changes in production of endotoxins and metabolites derived from the intestinal flora. Consequently, the above-mentioned abnormalities trigger a series of metabolic changes, gradually leading to development of hyperglycemia, insulin resistance, and diabetes. This review is (i) to summarize the differences in gut microbiota between diabetic patients and healthy people, (ii) to discuss the underlying mechanism(s) by which how lipopolysaccharide, diet, and metabolites of the gut microbiota affect diabetes, and (iii) to provide a new insight in the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Zinan Guo
- School of Food Science and Engineering, South China Food Safety Research Center, Foshan University, Foshan 528011, Guangdong, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China
| | - Jingjin Pan
- School of Food Science and Engineering, South China Food Safety Research Center, Foshan University, Foshan 528011, Guangdong, China
| | - Hanyue Zhu
- School of Food Science and Engineering, South China Food Safety Research Center, Foshan University, Foshan 528011, Guangdong, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China
| |
Collapse
|
252
|
Juni RP, ’t Hart KC, Houtkooper RH, Boon R. Long non‐coding RNAs in cardiometabolic disorders. FEBS Lett 2022; 596:1367-1387. [DOI: 10.1002/1873-3468.14370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Rio P. Juni
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
| | - Kelly C. ’t Hart
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
- Laboratory Genetic Metabolic Diseases Amsterdam University Medical Centers; Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Science, University of Amsterdam Frankfurt am Main Germany
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases Amsterdam University Medical Centers; Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Science, University of Amsterdam Frankfurt am Main Germany
| | - Reinier Boon
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
- Institute for Cardiovascular Regeneration Centre for Molecular Medicine Goethe University Frankfurt am Main Frankfurt am Main Germany
- German Centre for Cardiovascular Research DZHK Partner site Frankfurt Rhein/Main Frankfurt am Main Germany
| |
Collapse
|
253
|
Carvalho AM, Nunes R, Sarmento B. From pluripotent stem cells to bioengineered islets: A challenging journey to diabetes treatment. Eur J Pharm Sci 2022; 172:106148. [DOI: 10.1016/j.ejps.2022.106148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/27/2022]
|
254
|
Shao R, Liao X, Lan Y, Zhang H, Jiao L, Du Q, Han D, Ai Q, Mai K, Wan M. Vitamin D regulates insulin pathway and glucose metabolism in zebrafish (Danio rerio). FASEB J 2022; 36:e22330. [PMID: 35474468 DOI: 10.1096/fj.202200334rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/20/2022]
Abstract
1,25-dihydroxyvitamin D3 [1,25(OH)2 D3 ], the most active vitamin D (VD) metabolite, is a steroid hormone playing an important role in many physiological functions in addition to maintaining mineral homeostasis. In this study, we explored the mechanism that the VD regulated insulin pathway and glucose metabolism in zebrafish in vitro and in vivo. Our results show that 1,25(OH)2 D3 significantly enhances the expression of insulin receptor a (insra), insulin receptor substrate 1 (irs1) and glucose transporter 2 (glut2), and promotes glycolysis and glycogenesis, while suppressing gluconeogenesis in zebrafish liver cell line (ZFL) under the condition of high glucose (20 mM), instead of the normal glucose (10 mM). Moreover, consistent results were obtained from the zebrafish fed with VD3 -deficient diet, as well as the cyp2r1-/- zebrafish, in which endogenous VD metabolism is blocked. Furthermore, results from dual-luciferase reporting system exhibited that 1,25(OH)2 D3 directly activated the transcription of insra, rather than insrb in zebrafish by binding to vitamin D response element (VDRE) located at -181 to -167 bp in the promoter region of insra. Importantly, the 1,25(OH)2 D3 treatment significantly alleviated the symptoms of hyperglycemia in diabetic zebrafish. In conclusion, our study demonstrated that VD activates VDRE located in the promoter area of insra in zebrafish to promote insulin/insra signaling pathway, thereby contributing to the maintenance of glucose homeostasis.
Collapse
Affiliation(s)
- Rui Shao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Xinmeng Liao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Yawen Lan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Hui Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Lin Jiao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Qingyang Du
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China.,Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China.,Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| | - Min Wan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China.,Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| |
Collapse
|
255
|
Dong C, Hu X, Tripathi AS. A brief review of vitamin D as a potential target for the regulation of blood glucose and inflammation in diabetes-associated periodontitis. Mol Cell Biochem 2022; 477:2257-2268. [PMID: 35478388 DOI: 10.1007/s11010-022-04445-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
Diabetes is a metabolic disorder associated with various complications, including periodontitis. The risk of periodontitis is increased in patients with diabetes, while vitamin D deficiency is associated with both diabetes and periodontitis. Thus, there is a need to identify the molecular effects of vitamin D on the regulation of inflammation and glucose in diabetes-associated periodontitis. The Web of Science, Scopus, and PubMed databases were searched for studies of the molecular effects of vitamin D. Molecular effects were reportedly mediated by salivary secretions, interactions of advanced glycation end products (AGEs) with receptors of AGEs (RAGEs), cytokines, and oxidative stress pathways linking diabetes with periodontitis. Vitamin D supplementation attenuates inflammation in diabetes-associated periodontitis by reducing the levels of inflammatory cytokines and numbers of immune cells; it also has antibacterial effects. Vitamin D reduces cytokine levels through regulation of the extracellular signal-related kinase 1/2 and Toll-like receptor 1/2 pathways, along with the suppression of interleukin expression. Glucose homeostasis is altered in diabetes either because of reduced insulin production or decreased insulin sensitivity. These vitamin D-related alterations of glucoregulatory factors may contribute to hyperglycaemia; hyperglycaemia may also lead to alterations of glucoregulatory factors. This review discusses the pathways involved in glucose regulation and effects of vitamin D supplementation on glucose regulation. Further studies are needed to characterise the effects of vitamin D on diabetes-associated periodontitis.
Collapse
Affiliation(s)
- Cheng Dong
- Department of Stomatology, The People's Hospital of Beilun District, Ningbo, 315800, China
| | - Xuzhi Hu
- Department of Stomatology, The People's Hospital of Beilun District, Ningbo, 315800, China.
| | - Alok Shiomurti Tripathi
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| |
Collapse
|
256
|
Daskalaki E, Parkinson A, Brew-Sam N, Hossain MZ, O'Neal D, Nolan CJ, Suominen H. The Potential of Current Noninvasive Wearable Technology for the Monitoring of Physiological Signals in the Management of Type 1 Diabetes: Literature Survey. J Med Internet Res 2022; 24:e28901. [PMID: 35394448 PMCID: PMC9034434 DOI: 10.2196/28901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 12/06/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background Monitoring glucose and other parameters in persons with type 1 diabetes (T1D) can enhance acute glycemic management and the diagnosis of long-term complications of the disease. For most persons living with T1D, the determination of insulin delivery is based on a single measured parameter—glucose. To date, wearable sensors exist that enable the seamless, noninvasive, and low-cost monitoring of multiple physiological parameters. Objective The objective of this literature survey is to explore whether some of the physiological parameters that can be monitored with noninvasive, wearable sensors may be used to enhance T1D management. Methods A list of physiological parameters, which can be monitored by using wearable sensors available in 2020, was compiled by a thorough review of the devices available in the market. A literature survey was performed using search terms related to T1D combined with the identified physiological parameters. The selected publications were restricted to human studies, which had at least their abstracts available. The PubMed and Scopus databases were interrogated. In total, 77 articles were retained and analyzed based on the following two axes: the reported relations between these parameters and T1D, which were found by comparing persons with T1D and healthy control participants, and the potential areas for T1D enhancement via the further analysis of the found relationships in studies working within T1D cohorts. Results On the basis of our search methodology, 626 articles were returned, and after applying our exclusion criteria, 77 (12.3%) articles were retained. Physiological parameters with potential for monitoring by using noninvasive wearable devices in persons with T1D included those related to cardiac autonomic function, cardiorespiratory control balance and fitness, sudomotor function, and skin temperature. Cardiac autonomic function measures, particularly the indices of heart rate and heart rate variability, have been shown to be valuable in diagnosing and monitoring cardiac autonomic neuropathy and, potentially, predicting and detecting hypoglycemia. All identified physiological parameters were shown to be associated with some aspects of diabetes complications, such as retinopathy, neuropathy, and nephropathy, as well as macrovascular disease, with capacity for early risk prediction. However, although they can be monitored by available wearable sensors, most studies have yet to adopt them, as opposed to using more conventional devices. Conclusions Wearable sensors have the potential to augment T1D sensing with additional, informative biomarkers, which can be monitored noninvasively, seamlessly, and continuously. However, significant challenges associated with measurement accuracy, removal of noise and motion artifacts, and smart decision-making exist. Consequently, research should focus on harvesting the information hidden in the complex data generated by wearable sensors and on developing models and smart decision strategies to optimize the incorporation of these novel inputs into T1D interventions.
Collapse
Affiliation(s)
- Elena Daskalaki
- School of Computing, College of Engineering and Computer Science, The Australian National University, Canberra, Australia
| | - Anne Parkinson
- Department of Health Services Research and Policy, Research School of Population Health, College of Health and Medicine, The Australian National University, Canberra, Australia
| | - Nicola Brew-Sam
- Department of Health Services Research and Policy, Research School of Population Health, College of Health and Medicine, The Australian National University, Canberra, Australia
| | - Md Zakir Hossain
- School of Computing, College of Engineering and Computer Science, The Australian National University, Canberra, Australia.,School of Biology, College of Science, The Australian National University, Canberra, Australia.,Bioprediction Activity, Commonwealth Industrial and Scientific Research Organisation, Canberra, Australia
| | - David O'Neal
- Department of Medicine, University of Melbourne, Melbourne, Australia.,Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Australia
| | - Christopher J Nolan
- Australian National University Medical School and John Curtin School of Medical Research, College of Health and Medicine, The Autralian National University, Canberra, Australia.,Department of Diabetes and Endocrinology, The Canberra Hospital, Canberra, Australia
| | - Hanna Suominen
- School of Computing, College of Engineering and Computer Science, The Australian National University, Canberra, Australia.,Data61, Commonwealth Industrial and Scientific Research Organisation, Canberra, Australia.,Department of Computing, University of Turku, Turku, Finland
| |
Collapse
|
257
|
Roham PH, Save SN, Sharma S. Human islet amyloid polypeptide: A therapeutic target for the management of type 2 diabetes mellitus. J Pharm Anal 2022; 12:556-569. [PMID: 36105173 PMCID: PMC9463490 DOI: 10.1016/j.jpha.2022.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) and other metabolic disorders are often silent and go unnoticed in patients because of the lack of suitable prognostic and diagnostic markers. The current therapeutic regimens available for managing T2DM do not reverse diabetes; instead, they delay the progression of diabetes. Their efficacy (in principle) may be significantly improved if implemented at earlier stages. The misfolding and aggregation of human islet amyloid polypeptide (hIAPP) or amylin has been associated with a gradual decrease in pancreatic β-cell function and mass in patients with T2DM. Hence, hIAPP has been recognized as a therapeutic target for managing T2DM. This review summarizes hIAPP's role in mediating dysfunction and apoptosis in pancreatic β-cells via induction of endoplasmic reticulum stress, oxidative stress, mitochondrial dysfunction, inflammatory cytokine secretion, autophagy blockade, etc. Furthermore, it explores the possibility of using intermediates of the hIAPP aggregation pathway as potential drug targets for T2DM management. Finally, the effects of common antidiabetic molecules and repurposed drugs; other hIAPP mimetics and peptides; small organic molecules and natural compounds; nanoparticles, nanobodies, and quantum dots; metals and metal complexes; and chaperones that have demonstrated potential to inhibit and/or reverse hIAPP aggregation and can, therefore, be further developed for managing T2DM have been discussed. Misfolded species of hIAPP form toxic oligomers in pancreatic β-cells. hIAPP amyloids has been detected in the pancreas of about 90% subjects with T2DM. Inhibitors of hIAPP aggregation can help manage T2DM.
Collapse
|
258
|
Pham VM, Thakor N. Insulin enhances neurite extension and myelination of diabetic neuropathy neurons. Korean J Pain 2022; 35:160-172. [PMID: 35354679 PMCID: PMC8977202 DOI: 10.3344/kjp.2022.35.2.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background The authors established an in vitro model of diabetic neuropathy based on the culture system of primary neurons and Schwann cells (SCs) to mimic similar symptoms observed in in vivo models of this complication, such as impaired neurite extension and impaired myelination. The model was then utilized to investigate the effects of insulin on enhancing neurite extension and myelination of diabetic neurons. Methods SCs and primary neurons were cultured under conditions mimicking hyperglycemia prepared by adding glucose to the basal culture medium. In a single culture, the proliferation and maturation of SCs and the neurite extension of neurons were evaluated. In a co-culture, the percentage of myelination of diabetic neurons was investigated. Insulin at different concentrations was supplemented to culture media to examine its effects on neurite extension and myelination. Results The cells showed similar symptoms observed in in vivo models of this complication. In a single culture, hyperglycemia attenuated the proliferation and maturation of SCs, induced apoptosis, and impaired neurite extension of both sensory and motor neurons. In a co-culture of SCs and neurons, the percentage of myelinated neurites in the hyperglycemia-treated group was significantly lower than that in the control group. This impaired neurite extension and myelination was reversed by the introduction of insulin to the hyperglycemic culture media. Conclusions Insulin may be a potential candidate for improving diabetic neuropathy. Insulin can function as a neurotrophic factor to support both neurons and SCs. Further research is needed to discover the potential of insulin in improving diabetic neuropathy.
Collapse
Affiliation(s)
- Vuong M Pham
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore.,Department of Biotechnology, Ho Chi Minh City University of Food Industry, Ho Chi Minh City, Vietnam
| | - Nitish Thakor
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
259
|
Oyelere SF, Ajayi OH, Ayoade TE, Santana Pereira GB, Dayo Owoyemi BC, Ilesanmi AO, Akinyemi OA. A detailed review on the phytochemical profiles and anti-diabetic mechanisms of Momordica charantia. Heliyon 2022; 8:e09253. [PMID: 35434401 PMCID: PMC9010624 DOI: 10.1016/j.heliyon.2022.e09253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 11/29/2021] [Accepted: 04/02/2022] [Indexed: 01/25/2023] Open
Abstract
Diabetes mellitus is the most well-known endocrine dilemma suffered by hundreds of million people globally, with an annual mortality of more than one million people. This high mortality rate highlights the need for in-depth study of anti-diabetic agents. This review explores the phytochemical contents and anti-diabetic mechanisms of M. charantia (cucurbitaceae). Studies show that M. charantia contains several phytochemicals that have hypoglycemic effects, thus, the plant may be effective in the treatment/management of diabetes mellitus. Also, the biochemical and physiological basis of M. charantia anti-diabetic actions is explained. M. charantia exhibits its anti-diabetic effects via the suppression of MAPKs and NF-κβin pancreatic cells, promoting glucose and fatty acids catabolism, stimulating fatty acids absorption, inducing insulin production, ameliorating insulin resistance, activating AMPK pathway, and inhibiting glucose metabolism enzymes (fructose-1,6-bisphosphate and glucose-6-phosphatase). Reviewed literature was obtained from credible sources such as PubMed, Scopus, and Web of Science.
Collapse
|
260
|
Validated Kinetic Spectrophotometric Methods to Optimize Robustness Study with Youden Factorial Combinations to Determine Repaglinide Using Response Surface Methodology via Box–Behnken Design. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-06782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
261
|
de Souza Nunes Faria MS, Pimentel VE, Helaehil JV, Bertolo MC, Santos NTH, da Silva-Neto PV, Thomazini BF, de Oliveira CA, do Amaral MEC. Caloric restriction overcomes pre-diabetes and hypertension induced by a high fat diet and renal artery stenosis. Mol Biol Rep 2022; 49:5883-5895. [PMID: 35344116 DOI: 10.1007/s11033-022-07370-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/10/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Calorie restriction (CR) is a type of dietary intervention that is essential in weight loss through modulation of critical metabolic control pathways, is well established and understood in cases of systemic arterial hypertension, however, its role in renovascular hypertension is still unclear. METHODS Rats were divided into three groups: SHAM, and two groups that underwent surgery to clip the left renal artery and induce renovascular hypertension (OH and OHR). The SHAM diet was as follows: 14 weeks normolipidic diet; OH: 2 weeks normolipidic diet + 12 weeks hyperlipidic diet, both ad libitum; OHR, 2 weeks normolipidic diet + 8 weeks ad libitum high-fat diet + 4 weeks 40% calorie-restricted high-fat diet. RESULTS Rats in the OHR group had decreased blood pressure, body weight, and glucose levels. Reductions in insulinemia and in lipid and islet fibrotic areas in the OHR group were observed, along with increased insulin sensitivity and normalization of insulin-degrading enzyme levels. The expression of nicotinamide phosphoribosyltransferase (NAMPT), insulin receptor (IR), sirtuin 1 (SIRT1), and complex II proteins were increased in the liver tissue of the OHR group. Strong correlations, whether positive or negative, were evaluated via Spearman's model between SIRT1, AMPK, NAMPT, PGC-1α, and NNMT expressions with the restoration of normal blood pressure, weight loss, glycemic and lipid panel, and mitochondrial adaptation. CONCLUSION CR provided short-term beneficial effects to recover the physiological parameters induced by a high-fat diet and renal artery stenosis in obese and hypertensive animals. These benefits, even in the short term, can provide physiological benefits in the long term.
Collapse
Affiliation(s)
| | - Vinicíus Eduardo Pimentel
- Programa de Pós-Graduação em Imunologia Básica e Aplicada da Faculdade de Medicina de Ribeirão Preto, Ribeirão Prêto, São Paulo, Brazil.,Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Biomedical College, Centro Universitário da Fundação Hermínio Ometto, FHO, Araras, São Paulo, Brazil
| | - Júlia Venturini Helaehil
- Graduate Program in Biomedical Sciences, Centro Universitário da Fundação Hermínio Ometto, FHO, Araras, São Paulo, Brazil.,Biomedical College, Centro Universitário da Fundação Hermínio Ometto, FHO, Araras, São Paulo, Brazil
| | - Mayara Correa Bertolo
- Biomedical College, Centro Universitário da Fundação Hermínio Ometto, FHO, Araras, São Paulo, Brazil
| | | | - Pedro Vieira da Silva-Neto
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Programa de Pós-graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas - UFAM, Manaus, Amazonas, Brazil
| | - Bruna Fontana Thomazini
- Graduate Program in Biomedical Sciences, Centro Universitário da Fundação Hermínio Ometto, FHO, Araras, São Paulo, Brazil
| | - Camila Andréa de Oliveira
- Graduate Program in Biomedical Sciences, Centro Universitário da Fundação Hermínio Ometto, FHO, Araras, São Paulo, Brazil
| | | |
Collapse
|
262
|
Sakhrani N, Lee AJ, Murphy LA, Kenawy HM, Visco CJ, Ateshian GA, Shah RP, Hung CT. Toward Development of a Diabetic Synovium Culture Model. Front Bioeng Biotechnol 2022; 10:825046. [PMID: 35265601 PMCID: PMC8899218 DOI: 10.3389/fbioe.2022.825046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degradation and inflammation of synovium, the specialized connective tissue that envelops the diarthrodial joint. Type 2 diabetes mellitus (DM) is often found in OA patients, with nearly double the incidence of arthritis reported in patients with diabetes (52%) than those without it (27%). The correlation between OA and DM has been attributed to similar risk factors, namely increasing age and joint loading due to obesity. However, a potential causative link is not well understood due to comorbidities involved with treating diabetic patients, such as high infection rates and poor healing response caused by hyperglycemia and insulin resistance. The purpose of this study was to investigate the effect of hyperglycemic and insulin culture conditions on synovium properties. It was hypothesized that modeling hyperglycemia-induced insulin resistance in synovium would provide novel insights of OA pathogenesis in DM patients. To simulate DM in the synovial joint, healthy synovium was preconditioned in either euglycemic (EG) or hyperglycemic (HG) glucose concentrations with insulin in order to induce the biological response of the diseased phenotype. Synovium biochemical composition was evaluated to determine ECM remodeling under hyperglycemic culture conditions. Concurrent changes in AKT phosphorylation, a signaling pathway implicated in insulin resistance, were measured along with gene expression data for insulin receptors, glucose transporters, and specific glycolysis markers involved in glucose regulation. Since fluid shear stress arising during joint articulation is a relevant upstream stimulus for fibroblast-like synoviocytes (FLS), the predominant cell type in synovium, FLS mechanotransduction was evaluated via intracellular calcium ([Ca2+]i). Incidence and length of primary cilia, a critical effector of cell mechanosensing, were measured as potential mechanisms to support differences in [Ca2+]i responses. Hyperglycemic culture conditions decreased collagen and GAG content compared to EG groups, while insulin recovered ECM constituents. FLS mechanosensitivity was significantly greater in EG and insulin conditions compared to HG and non-insulin treated groups. Hyperglycemic treatment led to decreased incidence and length of primary cilia and decreased AKT phosphorylation, providing possible links to the mechanosensing response and suggesting a potential correlation between glycemic culture conditions, diabetic insulin resistance, and OA development.
Collapse
Affiliation(s)
- Neeraj Sakhrani
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Andy J Lee
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Lance A Murphy
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Hagar M Kenawy
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Christopher J Visco
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, NY, United States
| | - Gerard A Ateshian
- Department of Biomedical Engineering, Columbia University, New York, NY, United States.,Department of Mechanical Engineering, Columbia University, New York, NY, United States
| | - Roshan P Shah
- Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY, United States.,Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| |
Collapse
|
263
|
Mechanistic Investigation of GHS-R Mediated Glucose-Stimulated Insulin Secretion in Pancreatic Islets. Biomolecules 2022; 12:biom12030407. [PMID: 35327599 PMCID: PMC8945998 DOI: 10.3390/biom12030407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/19/2022] [Accepted: 02/27/2022] [Indexed: 02/07/2023] Open
Abstract
Ghrelin receptor, a growth hormone secretagogue receptor (GHS-R), is expressed in the pancreas. Emerging evidence indicates that GHS-R is involved in the regulation of glucose-stimulated insulin secretion (GSIS), but the mechanism by which GHS-R regulates GSIS in the pancreas is unclear. In this study, we investigated the role of GHS-R on GSIS in detail using global Ghsr−/− mice (in vivo) and Ghsr-ablated pancreatic islets (ex vivo). GSIS was attenuated in both Ghsr−/− mice and Ghsr-ablated islets, while the islet morphology was similar between WT and Ghsr−/− mice. To elucidate the mechanism underpinning Ghsr-mediated GSIS, we investigated the key steps of the GSIS signaling cascade. The gene expression of glucose transporter 2 (Glut2) and the glucose-metabolic intermediate—glucose-6-phosphate (G6P) were reduced in Ghsr-ablated islets, supporting decreased glucose uptake. There was no difference in mitochondrial DNA content in the islets of WT and Ghsr−/− mice, but the ATP/ADP ratio in Ghsr−/− islets was significantly lower than that of WT islets. Moreover, the expression of pancreatic and duodenal homeobox 1 (Pdx1), as well as insulin signaling genes of insulin receptor (IR) and insulin receptor substrates 1 and 2 (IRS1/IRS2), was downregulated in Ghsr−/− islets. Akt is the key mediator of the insulin signaling cascade. Concurrently, Akt phosphorylation was reduced in the pancreas of Ghsr−/− mice under both insulin-stimulated and homeostatic conditions. These findings demonstrate that GHS-R ablation affects key components of the insulin signaling pathway in the pancreas, suggesting the existence of a cross-talk between GHS-R and the insulin signaling pathway in pancreatic islets, and GHS-R likely regulates GSIS via the Akt-Pdx1-GLUT2 pathway.
Collapse
|
264
|
Chandramoorthy HC, Dera AA, Al-Hakami A, Eid RA, Patel A, Mahmoud Faris N, Devaraj A, Kumar A, Alshahrani MY, Zaman GS, Rajagopalan P. Glucose and oleic acid mediate cellular alterations in GLP-1-induced insulin-positive differentiating UCBMSCs. J Food Biochem 2022; 46:e14087. [PMID: 35246864 DOI: 10.1111/jfbc.14087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
Coordinated effects of glucose and oleic acid on glucagon-like peptide-1 (GLP-1) mediated differentiation of insulin-positive differentiating umbilical cord mesenchymal stromal cells (dUCBMSCs) was studied using a co-culture of NCI-H716 (GLP-1+) and UCBMSCs (insulin+). The addition of 2.5 mM glucose increased the proliferation of NCI-H716 cells by 30% and induced transformation of UCBMSCs into insulin-secreting cells in 18 days as compared to 22 days in control cells. Oleic acid (25 μM) showed decrease in cell proliferation, autophagy, and apoptosis in NCI-H716 cells while no effect was observed in dUCBMSCs. Prolonged glucose and oleic acid resulted in apoptosis and cell cycle changes in dUCBMSCs after day 18 while higher concentrations resulted in cell death. Additionally, the expression of FAS and ACC mRNA was observed in NCI-H716 and dUCBMSCs post 24-hr addition of glucose and/or oleic acid. Absorption of oleic acid was high in NCI-H716 compared to dUCBMSCs. Taken together, optimal concentrations of glucose and oleic acid could be a key factor in stimulating intrinsic GLP-1, which in turn stimulates differentiating MSCs in a glucose-dependent manner. PRACTICAL APPLICATIONS: The aim of this article was to study whether differentiating or differentiated MSCs after mobilization or post-transplant would require optimal glucose and oleic acid to naturally stimulate intrinsic GLP-1, or otherwise, the high or long-term overload of glucose or oleic acid could result in inhibition of differentiated cells resulting in failure of insulin secretion.
Collapse
Affiliation(s)
- Harish C Chandramoorthy
- Centre for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Al-Hakami
- Centre for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ayyub Patel
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Nouraldeen Mahmoud Faris
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Anantharam Devaraj
- Centre for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ashish Kumar
- Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Gaffar S Zaman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
265
|
Eom YS, Wilson JR, Bernet VJ. Links between Thyroid Disorders and Glucose Homeostasis. Diabetes Metab J 2022; 46:239-256. [PMID: 35385635 PMCID: PMC8987680 DOI: 10.4093/dmj.2022.0013] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Thyroid disorders and diabetes mellitus often coexist and are closely related. Several studies have shown a higher prevalence of thyroid disorders in patients with diabetes mellitus and vice versa. Thyroid hormone affects glucose homeostasis by impacting pancreatic β-cell development and glucose metabolism through several organs such as the liver, gastrointestinal tract, pancreas, adipose tissue, skeletal muscles, and the central nervous system. The present review discusses the effect of thyroid hormone on glucose homeostasis. We also review the relationship between thyroid disease and diabetes mellitus: type 1, type 2, and gestational diabetes, as well as guidelines for screening thyroid function with each disorder. Finally, we provide an overview of the effects of antidiabetic drugs on thyroid hormone and thyroid disorders.
Collapse
Affiliation(s)
- Young Sil Eom
- Division of Endocrinology, Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Jessica R. Wilson
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Jacksonville, FL, USA
| | - Victor J. Bernet
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Jacksonville, FL, USA
- Corresponding author: Victor J. Bernet https://orcid.org/0000-0002-2477-5631 Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA E-mail:
| |
Collapse
|
266
|
Palmer ES, Irwin N, O’Harte FPM. Potential Therapeutic Role for Apelin and Related Peptides in Diabetes: An Update. Clin Med Insights Endocrinol Diabetes 2022; 15:11795514221074679. [PMID: 35177945 PMCID: PMC8844737 DOI: 10.1177/11795514221074679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an epidemic with an ever-increasing global prevalence. Current treatment strategies, although plentiful and somewhat effective, often fail to achieve desired glycaemic goals in many people, leading ultimately to disease complications. The lack of sustained efficacy of clinically-approved drugs has led to a heightened interest in the development of novel alternative efficacious antidiabetic therapies. One potential option in this regard is the peptide apelin, an adipokine that acts as an endogenous ligand of the APJ receptor. Apelin exists in various molecular isoforms and was initially studied for its cardiovascular benefits, however recent research suggests that it also plays a key role in glycaemic control. As such, apelin peptides have been shown to improve insulin sensitivity, glucose tolerance and lower circulating blood glucose. Nevertheless, native apelin has a short biological half-life that limits its therapeutic potential. More recently, analogues of apelin, particularly apelin-13, have been developed that possess a significantly extended biological half-life. These analogues may represent a promising target for future development of therapies for metabolic disease including diabetes and obesity.
Collapse
Affiliation(s)
- Ethan S Palmer
- Ethan S Palmer, Diabetes Research Group, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK.
| | | | | |
Collapse
|
267
|
Protease-controlled secretion and display of intercellular signals. Nat Commun 2022; 13:912. [PMID: 35177637 PMCID: PMC8854555 DOI: 10.1038/s41467-022-28623-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
To program intercellular communication for biomedicine, it is crucial to regulate the secretion and surface display of signaling proteins. If such regulations are at the protein level, there are additional advantages, including compact delivery and direct interactions with endogenous signaling pathways. Here we create a modular, generalizable design called Retained Endoplasmic Cleavable Secretion (RELEASE), with engineered proteins retained in the endoplasmic reticulum and displayed/secreted in response to specific proteases. The design allows functional regulation of multiple synthetic and natural proteins by synthetic protease circuits to realize diverse signal processing capabilities, including logic operation and threshold tuning. By linking RELEASE to additional sensing and processing circuits, we can achieve elevated protein secretion in response to "undruggable" oncogene KRAS mutants. RELEASE should enable the local, programmable delivery of intercellular cues for a broad variety of fields such as neurobiology, cancer immunotherapy and cell transplantation.
Collapse
|
268
|
Isolation, Identification and Pharmacological Effects of Mandragora autumnalis Fruit Flavonoids Fraction. Molecules 2022; 27:molecules27031046. [PMID: 35164311 PMCID: PMC8838059 DOI: 10.3390/molecules27031046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/22/2022] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
Since ancient times, Mandragora autumnalis has been used as a traditional medicinal plant for the treatment of numerous ailments. In light of this, the current study was designed to isolate and identify the chemical constituents of the flavonoids fraction from M. autumnalis ripe fruit (FFM), and evaluate its DPPH scavenging, anti-lipase, cytotoxicity, antimicrobial and antidiabetic effects. An ethyl acetate extract of M. autumnalis was subjected to a sequence of silica gel column chromatography using different eluents with various polarities. The chemical structures of the isolated compounds were identified using different spectral techniques, including 1H NMR and 13C NMR. FFM's anti-diabetic activity was assessed using a glucose transporter-4 (GLUT4) translocation assay, as well as an inhibition against α-amylase and α-glucosidase using standard biochemical assays. The FFM anti-lipase effect against porcine pancreatic lipase was also evaluated. Moreover, FFM free radical scavenging activity using the DPPH test and antimicrobial properties against eight microbial strains using the micro-dilution method were also assessed. Four flavonoid aglycones were separated from FFM and their chemical structures were identified. The structures of the isolated compounds were established as kaempferol 1, luteolin 2, myricetin 3 and (+)-taxifolin 4, based on NMR spectroscopic analyses. The cytotoxicity test results showed high cell viability (at least 90%) for up to 1 mg/mL concentration of FFM, which is considered to be safe. A dose-dependent increase in GLUT4 translocation was significantly shown (p < 0.05) when the muscle cells were treated with FFM up to 0.5 mg/mL. Moreover, FFM revealed potent α-amylase, α-glucosidase, DPPH scavenging and porcine pancreatic lipase inhibitory activities compared with the positive controls, with IC50 values of 72.44 ± 0.89, 39.81 ± 0.74, 5.37 ± 0.41 and 39.81 ± 1.23 µg/mL, respectively. In addition, FFM inhibited the growth of all of the tested bacterial and fungal strains and showed the greatest antibacterial activity against the K. pneumoniae strain with a MIC value of 0.135 µg/mL. The four flavonoid molecules that constitute the FFM have been shown to have medicinal promise. Further in vivo testing and formulation design are needed to corroborate these findings, which are integral to the pharmaceutical and food supplement industries.
Collapse
|
269
|
Radmehr V, Ahangarpour A, Mard SA, Khorsandi L. Crocin ameliorates MicroRNAs-associated ER stress in type 2 diabetes induced by methylglyoxal. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:179-186. [PMID: 35655590 PMCID: PMC9124542 DOI: 10.22038/ijbms.2022.60493.13407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/11/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Methylglyoxal (MG) provokes endoplasmic reticulum (ER) stress in β-cells and triggers pancreatic β-cell dysfunction. Crocin has anti-diabetic properties. The present study investigated whether crocin prevented pancreas damages induced by MG. MATERIALS AND METHODS Diabetes was induced by MG administration (600 mg/kg/day, PO). On the fourteenth day, after proving hyperglycemia, crocin (15, 30, and 60 mg/kg) and metformin (MT) (150 mg/kg) were used for detoxification of MG until the end of the experiment. The animals were divided into 6 groups: 1) control, 2) diabetic by MG, 3) MG + crocin 15 mg/kg, 4) MG + crocin 30 mg/kg, 5) MG + crocin 60 mg/kg, and 6) MG + MT. The data were analyzed by one-way analysis of variance and significant differences were compared by Tukey and Bonferroni tests (P<0.05). Biochemical assays, antioxidant evaluation, and microRNAs expression associated with ER stress were assessed. RESULTS MG induced hyperglycemia, insulin resistance, and dyslipidemia (P<0.001). Crocin and MT significantly ameliorated β-cell function through reduction of fasting blood glucose, malondialdehyde levels (P<0.001), and significant elevation of anti-oxidant enzyme activity accompanied by regulation of glutathione and glyoxalase1-Nrf2 in MG induced diabetic mice. Crocin and MT significantly down-regulated microRNAs 204, 216b, 192, and 29a expression (P<0.001). Crocin (60 mg/kg) (P<0.01) and MT (P<0.001) could improve diameter of pancreatic islets in MG treated mice. CONCLUSION Crocin prevents the progression of diabetes through modulating ER stress-associated microRNAs and GLO1 activity with the helpful effects of glutathione and Nrf2.
Collapse
Affiliation(s)
- Vahid Radmehr
- Student Research Committee, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Ahangarpour
- Medical Basic Sciences Research Institute, Physiology Research Center, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Corresponding author: Akram Ahangarpour. Medical Basic Sciences Research Institute, Physiology Research Center, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Tel: +98-61-357-15794;
| | - Seyyed Ali Mard
- Medical Basic Sciences Research Institute, Physiology Research Center, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Alimentary Tract Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, School of Medicine, Medical Basic Sciences Research Institute, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
270
|
Zhou HL, Premont RT, Stamler JS. The manifold roles of protein S-nitrosylation in the life of insulin. Nat Rev Endocrinol 2022; 18:111-128. [PMID: 34789923 PMCID: PMC8889587 DOI: 10.1038/s41574-021-00583-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 02/04/2023]
Abstract
Insulin, which is released by pancreatic islet β-cells in response to elevated levels of glucose in the blood, is a critical regulator of metabolism. Insulin triggers the uptake of glucose and fatty acids into the liver, adipose tissue and muscle, and promotes the storage of these nutrients in the form of glycogen and lipids. Dysregulation of insulin synthesis, secretion, transport, degradation or signal transduction all cause failure to take up and store nutrients, resulting in type 1 diabetes mellitus, type 2 diabetes mellitus and metabolic dysfunction. In this Review, we make the case that insulin signalling is intimately coupled to protein S-nitrosylation, in which nitric oxide groups are conjugated to cysteine thiols to form S-nitrosothiols, within effectors of insulin action. We discuss the role of S-nitrosylation in the life cycle of insulin, from its synthesis and secretion in pancreatic β-cells, to its signalling and degradation in target tissues. Finally, we consider how aberrant S-nitrosylation contributes to metabolic diseases, including the roles of human genetic mutations and cellular events that alter S-nitrosylation of insulin-regulating proteins. Given the growing influence of S-nitrosylation in cellular metabolism, the field of metabolic signalling could benefit from renewed focus on S-nitrosylation in type 2 diabetes mellitus and insulin-related disorders.
Collapse
Affiliation(s)
- Hua-Lin Zhou
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Richard T Premont
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jonathan S Stamler
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
271
|
Rodríguez-Comas J, Ramón-Azcón J. Islet-on-a-chip for the study of pancreatic β-cell function. IN VITRO MODELS 2022; 1:41-57. [PMID: 39872972 PMCID: PMC11749753 DOI: 10.1007/s44164-021-00005-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 01/30/2025]
Abstract
Diabetes mellitus is a significant public health problem worldwide. It encompasses a group of chronic disorders characterized by hyperglycemia, resulting from pancreatic islet dysfunction or as a consequence of insulin-producing β-cell death. Organ-on-a-chip platforms have emerged as technological systems combining cell biology, engineering, and biomaterial technological advances with microfluidics to recapitulate a specific organ's physiological or pathophysiological environment. These devices offer a novel model for the screening of pharmaceutical agents and to study a particular disease. In the field of diabetes, a variety of microfluidic devices have been introduced to recreate native islet microenvironments and to understand pancreatic β-cell kinetics in vitro. This kind of platforms has been shown fundamental for the study of the islet function and to assess the quality of these islets for subsequent in vivo transplantation. However, islet physiological systems are still limited compared to other organs and tissues, evidencing the difficulty to study this "organ" and the need for further technological advances. In this review, we summarize the current state of islet-on-a-chip platforms that have been developed so far. We recapitulate the most relevant studies involving pancreatic islets and microfluidics, focusing on the molecular and cellular-scale activities that underlie pancreatic β-cell function.
Collapse
Affiliation(s)
- Júlia Rodríguez-Comas
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac, 10-12, 08028 Barcelona, Spain
| | - Javier Ramón-Azcón
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac, 10-12, 08028 Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
272
|
Ahuja N, Cleaver O. The cell cortex as mediator of pancreatic epithelial development and endocrine differentiation. Curr Opin Genet Dev 2022; 72:118-127. [PMID: 34929610 PMCID: PMC8915777 DOI: 10.1016/j.gde.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023]
Abstract
Organogenesis is the complex process of cells coordinating their own proliferation with changes to their shape, cell migration and cell-cell signaling, so that they transform into a three dimensional functional tissue, with its own custom range of differentiated cell types. Understanding when and where critical signals emanate from, and how those signals are transduced and interpreted, is the fundamental challenge of developmental biology. Here, we review recent findings regarding how progenitor cells interpret cues during pancreatic morphogenesis and how they coordinate cell fate determination. Recent evidence suggests that molecules located in the cell cortex play a crticial role in determining cellular behavior during pancreatic morphogenesis. Specifically, we find that control of cell adhesion, polarity, and constriction are all integral to both initiation of epithelial development and to later cell differentiation. Here, we review key molecules that coordinate these processes and suggest that the cell cortex acts as a signaling center that relays cues during pancreas development.
Collapse
Affiliation(s)
- Neha Ahuja
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| |
Collapse
|
273
|
Gromova LV, Polozov AS, Savochkina EV, Alekseeva AS, Dmitrieva YV, Kornyushin OV, Gruzdkov AA. Effect of Type 2 Diabetes and Impaired Glucose Tolerance on Digestive Enzymes and Glucose Absorption in the Small Intestine of Young Rats. Nutrients 2022; 14:nu14020385. [PMID: 35057569 PMCID: PMC8779211 DOI: 10.3390/nu14020385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/10/2022] Open
Abstract
The reactions of intestinal functional parameters to type 2 diabetes at a young age remain unclear. The study aimed to assess changes in the activity of intestinal enzymes, glucose absorption, transporter content (SGLT1, GLUT2) and intestinal structure in young Wistar rats with type 2 diabetes (T2D) and impaired glucose tolerance (IGT). To induce these conditions in the T2D (n = 4) and IGT (n = 6) rats, we used a high-fat diet and a low dose of streptozotocin. Rats fed a high-fat diet (HFD) (n = 6) or a standard diet (SCD) (n = 6) were used as controls. The results showed that in T2D rats, the ability of the small intestine to absorb glucose was higher in comparison to HFD rats (p < 0.05). This was accompanied by a tendency towards an increase in the number of enterocytes on the villi of the small intestine in the absence of changes in the content of SGLT1 and GLUT2 in the brush border membrane of the enterocytes. T2D rats also showed lower maltase and alkaline phosphatase (AP) activity in the jejunal mucosa compared to the IGT rats (p < 0.05) and lower AP activity in the colon contents compared to the HFD (p < 0.05) and IGT (p < 0.05) rats. Thus, this study provides insights into the adaptation of the functional and structural parameters of the small intestine in the development of type 2 diabetes and impaired glucose tolerance in young representatives.
Collapse
Affiliation(s)
- Lyudmila V. Gromova
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
| | - Alexandr S. Polozov
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
| | - Elizaveta V. Savochkina
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
| | - Anna S. Alekseeva
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
| | - Yulia V. Dmitrieva
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
| | - Oleg V. Kornyushin
- Almazov National Medical Research Center, Ministry of Health of the Russian Federation, 2 Akkuratova Str., 197341 Saint-Petersburg, Russia;
| | - Andrey A. Gruzdkov
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
- Correspondence: ; Tel.: +7-960-276-3000
| |
Collapse
|
274
|
Rings LM, Kamr AM, Kinsella HM, Hostnik LD, Swink JM, Burns TA, Christie K, David JB, Toribio RE. The enteroinsular axis during hospitalization in newborn foals. Domest Anim Endocrinol 2022; 78:106686. [PMID: 34649126 DOI: 10.1016/j.domaniend.2021.106686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 01/08/2023]
Abstract
The enteroinsular axis (EIA) is an energy regulatory system that modulates insulin secretion through the release of enteroendocrine factors (incretins). Despite the importance of energy homeostasis in the equine neonate, information on the EIA in hospitalized foals is lacking. The goals of this study were to measure serum insulin and plasma incretin (glucose-dependent insulinotropic polypeptide [GIP], glucagon-like peptide-1 [GLP-1] and glucagon-like peptide-2 [GLP-2]) concentrations, to determine the insulin and incretin association, as well as their link to disease severity and outcome in hospitalized foals. A total of 102 newborn foals ≤72 h old were classified into hospitalized (n = 88) and healthy groups (n = 14). Hospitalized foals included septic (n = 55) and sick non-septic (SNS; n = 33) foals based on sepsis scores. Blood samples were collected over 72 h to measure serum insulin and plasma GIP, GLP-1 and GLP-2 concentrations using immunoassays. Data were analyzed by nonparametric methods and univariate logistic regression. At admission, serum glucose and insulin and plasma GIP were significantly lower in hospitalized and septic compared to healthy foals (P < 0.01), while plasma GLP-1 and GLP-2 concentrations were higher in hospitalized and septic foals than healthy and SNS foals, and decreased over time in septic foals (P < 0.05). As a percent of admission values, GLP-1 and GLP-2 concentrations dropped faster in healthy compared to hospitalized foals. Serum insulin concentrations were lower in hospitalized and septic non-survivors than survivors at admission (P < 0.01). Hospitalized foals with serum insulin < 5.8 µIU/mL, plasma GLP-1 >68.5 pM, and plasma GLP-2 >9 ng/mL within 24 h of admission were more likely to die (OR = 4.2; 95% CI = 1.1-16.1; OR = 13.5, 95% CI = 1.4-123.7; OR = 12.5, 95% CI = 1.6-97.6, respectively; P < 0.05). Low GIP together with increased GLP-1 and GLP-2 concentrations indicates that different mechanisms may be contributing to reduced insulin secretion in critically ill foals, including impaired intestinal production (GIP, proximal intestine) and pancreatic endocrine resistance to enhanced incretin secretion (GLP-1, GLP-2; distal intestine). These imbalances could contribute to energy dysregulation in the critically ill equine neonate.
Collapse
Affiliation(s)
- L M Rings
- College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; Rood and Riddle Equine Hospital, Lexington, KY 40511, USA
| | - A M Kamr
- College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - H M Kinsella
- College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - L D Hostnik
- College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - J M Swink
- College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; Brown Equine Hospital, Somerset, PA 15501, USA
| | - T A Burns
- College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - K Christie
- Rood and Riddle Equine Hospital, Lexington, KY 40511, USA
| | - J B David
- Hagyard Equine Medical Institute, Lexington, KY 40511, USA
| | - R E Toribio
- College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
275
|
Wan L, Gao Q, Deng Y, Ke Y, Ma E, Yang H, Lin H, Li H, Yang Y, Gong J, Li J, Xu Y, Liu J, Li J, Liu J, Zhang X, Huang L, Feng J, Zhang Y, Huang H, Wang H, Wang C, Chen Q, Huang X, Ye Q, Li D, Yan Q, Liu M, Wei M, Mo Y, Li D, Tang K, Lin C, Zheng F, Xu L, Cheng G, Wang P, Yang X, Wu F, Sun Z, Qin C, Wei C, Zhong H. GP73 is a glucogenic hormone contributing to SARS-CoV-2-induced hyperglycemia. Nat Metab 2022; 4:29-43. [PMID: 34992299 DOI: 10.1038/s42255-021-00508-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/18/2021] [Indexed: 01/08/2023]
Abstract
Severe cases of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are associated with elevated blood glucose levels and metabolic complications. However, the molecular mechanisms for how SARS-CoV-2 infection alters glycometabolic control are incompletely understood. Here, we connect the circulating protein GP73 with enhanced hepatic gluconeogenesis during SARS-CoV-2 infection. We first demonstrate that GP73 secretion is induced in multiple tissues upon fasting and that GP73 stimulates hepatic gluconeogenesis through the cAMP/PKA signaling pathway. We further show that GP73 secretion is increased in cultured cells infected with SARS-CoV-2, after overexpression of SARS-CoV-2 nucleocapsid and spike proteins and in lungs and livers of mice infected with a mouse-adapted SARS-CoV-2 strain. GP73 blockade with an antibody inhibits excessive glucogenesis stimulated by SARS-CoV-2 in vitro and lowers elevated fasting blood glucose levels in infected mice. In patients with COVID-19, plasma GP73 levels are elevated and positively correlate with blood glucose levels. Our data suggest that GP73 is a glucogenic hormone that likely contributes to SARS-CoV-2-induced abnormalities in systemic glucose metabolism.
Collapse
Affiliation(s)
- Luming Wan
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Qi Gao
- Beijing Sungen Biomedical Technology Co. Ltd., Beijing, China
| | - Yongqiang Deng
- Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Yuehua Ke
- Centers for Disease Control and Prevention of PLA, Beijing, China
| | - Enhao Ma
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Huan Yang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Haotian Lin
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Huilong Li
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Yilong Yang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jing Gong
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jingfei Li
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yixin Xu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jing Liu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jianmin Li
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jialong Liu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Xuemiao Zhang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Linfei Huang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jiangyue Feng
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yanhong Zhang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Hanqing Huang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Huapeng Wang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Changjun Wang
- Centers for Disease Control and Prevention of PLA, Beijing, China
| | - Qi Chen
- Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Xingyao Huang
- Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Qing Ye
- Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Dongyu Li
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Qiulin Yan
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Muyi Liu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Meng Wei
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yunhai Mo
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Dongrui Li
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Ke Tang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Changqing Lin
- Beijing Sungen Biomedical Technology Co. Ltd., Beijing, China
| | - Fei Zheng
- Beijing Sungen Biomedical Technology Co. Ltd., Beijing, China
| | - Lei Xu
- Beijing Sungen Biomedical Technology Co. Ltd., Beijing, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Peihui Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaopan Yang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Feixang Wu
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Zhiwei Sun
- Beijing Sungen Biomedical Technology Co. Ltd., Beijing, China
| | - Chengfeng Qin
- Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Congwen Wei
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Hui Zhong
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China.
| |
Collapse
|
276
|
Lian K, Feng H, Liu S, Wang K, Liu Q, Deng L, Wang G, Chen Y, Liu G. Insulin quantification towards early diagnosis of prediabetes/diabetes. Biosens Bioelectron 2022; 203:114029. [DOI: 10.1016/j.bios.2022.114029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/19/2022]
|
277
|
Liang J, Li X, Dong Y, Zhao B. Modeling Human Organ Development and Diseases With Fetal Tissue-Derived Organoids. Cell Transplant 2022; 31:9636897221124481. [PMID: 36121224 PMCID: PMC9490458 DOI: 10.1177/09636897221124481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recent advances in human organoid technology have greatly facilitated the study of organ development and pathology. In most cases, these organoids are derived from either pluripotent stem cells or adult stem cells for the modeling of developmental events and tissue homeostasis. However, due to the lack of human fetal tissue references and research model, it is still challenging to capture early developmental changes and underlying mechanisms in human embryonic development. The establishment of fetal tissue–derived organoids in rigorous time points is necessary. Here we provide an overview of the strategies and applications of fetal tissue–derived organoids, mainly focusing on fetal organ development research, developmental defect disease modeling, and organ–organ interaction study. Discussion of the importance of fetal tissue research also highlights the prospects and challenges in this field.
Collapse
Affiliation(s)
- Jianqing Liang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinyang Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yateng Dong
- bioGenous Biotechnology, Inc., Hangzhou, China
| | - Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
278
|
Zhao YF. Free fatty acid receptors in the endocrine regulation of glucose metabolism: Insight from gastrointestinal-pancreatic-adipose interactions. Front Endocrinol (Lausanne) 2022; 13:956277. [PMID: 36246919 PMCID: PMC9554507 DOI: 10.3389/fendo.2022.956277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Glucose metabolism is primarily controlled by pancreatic hormones, with the coordinated assistance of the hormones from gastrointestine and adipose tissue. Studies have unfolded a sophisticated hormonal gastrointestinal-pancreatic-adipose interaction network, which essentially maintains glucose homeostasis in response to the changes in substrates and nutrients. Free fatty acids (FFAs) are the important substrates that are involved in glucose metabolism. FFAs are able to activate the G-protein coupled membrane receptors including GPR40, GPR120, GPR41 and GPR43, which are specifically expressed in pancreatic islet cells, enteroendocrine cells as well as adipocytes. The activation of FFA receptors regulates the secretion of hormones from pancreas, gastrointestine and adipose tissue to influence glucose metabolism. This review presents the effects of the FFA receptors on glucose metabolism via the hormonal gastrointestinal-pancreatic-adipose interactions and the underlying intracellular mechanisms. Furthermore, the development of therapeutic drugs targeting FFA receptors for the treatment of abnormal glucose metabolism such as type 2 diabetes mellitus is summarized.
Collapse
|
279
|
Mohd Ghozali N, Giribabu N, Salleh N. Mechanisms Linking Vitamin D Deficiency to Impaired Metabolism: An Overview. Int J Endocrinol 2022; 2022:6453882. [PMID: 35859985 PMCID: PMC9293580 DOI: 10.1155/2022/6453882] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/19/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Vitamin D deficiency is a common health problem worldwide. Despite its known skeletal effects, studies have begun to explore its extra-skeletal effects, that is, in preventing metabolic diseases such as obesity, hyperlipidemia, and diabetes mellitus. The mechanisms by which vitamin D deficiency led to these unfavorable metabolic consequences have been explored. Current evidence indicates that the deficiency of vitamin D could impair the pancreatic β-cell functions, thus compromising its insulin secretion. Besides, vitamin D deficiency could also exacerbate inflammation, oxidative stress, and apoptosis in the pancreas and many organs, which leads to insulin resistance. Together, these will contribute to impairment in glucose homeostasis. This review summarizes the reported metabolic effects of vitamin D, in order to identify its potential use to prevent and overcome metabolic diseases.
Collapse
Affiliation(s)
- Nurulmuna Mohd Ghozali
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 59100, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 59100, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 59100, Malaysia
| |
Collapse
|
280
|
Ma R, An X, Shao R, Zhang Q, Sun S. Recent advancement in noninvasive glucose monitoring and closed-loop management system for diabetes. J Mater Chem B 2022; 10:5537-5555. [DOI: 10.1039/d2tb00749e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diabetes can cause many complications, which has become one of the most common diseases that may lead to death. Currently, the number of diabetics continues increasing year by year. Thus,...
Collapse
|
281
|
Hou X, Yang D, Yang G, Li M, Zhang J, Zhang J, Zhang Y, Liu Y. Therapeutic potential of vasoactive intestinal peptide and its receptor VPAC2 in type 2 diabetes. Front Endocrinol (Lausanne) 2022; 13:984198. [PMID: 36204104 PMCID: PMC9531956 DOI: 10.3389/fendo.2022.984198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Owing to the increasing prevalence of type 2 diabetes, the development of novel hypoglycemic drugs has become a research hotspot, with the ultimate goal of developing therapeutic drugs that stimulate glucose-induced insulin secretion without inducing hypoglycemia. Vasoactive intestinal peptide (VIP), a 28-amino-acid peptide, can stimulate glucose-dependent insulin secretion, particularly by binding to VPAC2 receptors. VIP also promotes islet β-cell proliferation through the forkhead box M1 pathway, but the specific molecular mechanism remains to be studied. The clinical application of VIP is limited because of its short half-life and wide distribution in the human body. Based on the binding properties of VIP and VPAC2 receptors, VPAC2-selective agonists have been developed to serve as novel hypoglycemic drugs. This review summarizes the physiological significance of VIP in glucose homeostasis and the potential therapeutic value of VPAC2-selective agonists in type 2 diabetes.
Collapse
Affiliation(s)
- Xintong Hou
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Dan Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Guimei Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Mengnan Li
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Jian Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Jiaxin Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yi Zhang, ; Yunfeng Liu,
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Yi Zhang, ; Yunfeng Liu,
| |
Collapse
|
282
|
Remya K, Ajith Y, Parvathy J, Panicker VP, Preena P, Ambily VR, Ancy T, Anjaly F, Madhavan Unny N, Pillai UN. Acute insulin-responsive hyperglycemia and hypocalcemia in Theileria spp. infected goat. Vet Parasitol Reg Stud Reports 2022; 27:100668. [PMID: 35012725 DOI: 10.1016/j.vprsr.2021.100668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/24/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Theileriosis can be manifested in appreciably variable clinical forms among domestic ruminants and may often become life-threatening. The present report narrates, the quick remarkable clinical recovery of a lactating goat infected with Theileria spp., exhibiting acute insulin-responsive hyperglycemia and hypocalcemia, by providing intensive therapy. A four year old doe was presented with the complaint of acute manifestation of weakness, ventroflexion of neck with flaccid muscles, recumbency, hypersalivation, severe abdominal breathing, anorexia and polyuria since last eighteen hours. The animal kidded three kids one month before, out of which one was mummified. Clinical examination revealed severe depression, dehydration, dyspnoea, congested mucous membrane, sluggish rumen motility and reduced pupillary light reflex. Laboratory investigation revealed severe granulocytopenia, thrombocytopenia, hypocalcemia, hyperglycemia and Theileria spp. infection. The animal showed significant improvement within a few minutes of initiating the evidence-based stabilization therapy to correct hydration status, cellular glucose uptake, calcium levels and Theileria spp. infection. This case indicates the significance of investigating the metabolic status of animals suffering from theileriosis for achieving better clinical responses. Also, future studies may focus on the endocrinological perspectives of metabolic impact of Theileria spp. infection in goats.
Collapse
Affiliation(s)
- Krishna Remya
- Department of Veterinary Clinical Medicine, Ethics and Jurisprudence, College of Veterinary and Animal Sciences, KVASU, Mannuthy, Thrissur, Kerala 680651, India
| | - Y Ajith
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, KVASU, Mannuthy, Thrissur, Kerala 680651, India.
| | - J Parvathy
- Department of Veterinary Clinical Medicine, Ethics and Jurisprudence, College of Veterinary and Animal Sciences, KVASU, Mannuthy, Thrissur, Kerala 680651, India
| | - Varuna P Panicker
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, KVASU, Mannuthy, Thrissur, Kerala 680651, India
| | - P Preena
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, KVASU, Mannuthy, Thrissur, Kerala 680651, India
| | - V R Ambily
- Department of Veterinary Clinical Medicine, Ethics and Jurisprudence, College of Veterinary and Animal Sciences, KVASU, Mannuthy, Thrissur, Kerala 680651, India
| | - Thankachan Ancy
- Department of Epidemiology and Preventive Medicine, College of Veterinary and Animal Sciences, KVASU, Mannuthy, Thrissur, Kerala 680651, India
| | - Francis Anjaly
- Department of Veterinary Clinical Medicine, Ethics and Jurisprudence, College of Veterinary and Animal Sciences, KVASU, Mannuthy, Thrissur, Kerala 680651, India
| | - N Madhavan Unny
- Department of Veterinary Clinical Medicine, Ethics and Jurisprudence, College of Veterinary and Animal Sciences, KVASU, Mannuthy, Thrissur, Kerala 680651, India
| | - Usha Narayana Pillai
- Department of Veterinary Clinical Medicine, Ethics and Jurisprudence, College of Veterinary and Animal Sciences, KVASU, Mannuthy, Thrissur, Kerala 680651, India
| |
Collapse
|
283
|
Hong S, Jung CH, Han S, Park CY. Increasing Age Associated with Higher Dipeptidyl Peptidase-4 Inhibition Rate Is a Predictive Factor for Efficacy of Dipeptidyl Peptidase-4 Inhibitors. Diabetes Metab J 2022; 46:63-70. [PMID: 33866774 PMCID: PMC8831807 DOI: 10.4093/dmj.2020.0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/26/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND It is not known which type 2 diabetes mellitus (T2DM) patients would most benefit from dipeptidyl peptidase-4 (DPP-4) inhibitor treatment. We aimed to investigate the predictors of response to DPP-4 inhibitors considering degree of DPP-4 inhibition. METHODS This study is a post hoc analysis of a 24-week, randomized, double-blind, phase III trial that compared the efficacy and safety of a DPP-4 inhibitor (gemigliptin vs. sitagliptin) in patients with T2DM. Subjects were classified into tertiles of T1 <65.26%, T2=65.26%-76.35%, and T3 ≥76.35% by DPP-4 inhibition. We analyzed the change from baseline in glycosylated hemoglobin (HbA1c) according to DPP-4 inhibition with multiple linear regression adjusting for age, ethnicity, body mass index, baseline HbA1c, and DPP-4 activity at baseline. RESULTS The mean age was greater in the high tertile group compared with the low tertile group (T1: 49.8±8.3 vs. T2: 53.1±10.5 vs. T3: 55.3±9.5, P<0.001) of DPP-4 inhibition. Although HbA1c at baseline was not different among tertiles of DPP-4 inhibition (P=0.398), HbA1c after 24-week treatment was lower in the higher tertile compares to the lower tertile (T1: 7.30%±0.88% vs. T2: 7.12%±0.78% vs. T3: 7.00%±0.78%, P=0.021). In multiple regression analysis, DPP-4 enzyme inhibition rate was not a significant determent for HbA1c reduction due to age. In subgroup analysis by tertile of DPP-4 inhibition, age was the only significant predictor and only in the highest tertile (R2=0.281, B=-0.014, P=0.024). CONCLUSION This study showed that HbA1c reduction by DPP-4 inhibitor was associated with increasing age, and this association was linked with higher DPP-4 inhibition.
Collapse
Affiliation(s)
- Sangmo Hong
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Seoul, Korea
| | - Chang Hee Jung
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Song Han
- Life Sciences, LG Chem Ltd., Seoul, Korea
| | - Cheol-Young Park
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
284
|
Nguyen YTK, Ha HTT, Nguyen TH, Nguyen LN. The role of SLC transporters for brain health and disease. Cell Mol Life Sci 2021; 79:20. [PMID: 34971415 PMCID: PMC11071821 DOI: 10.1007/s00018-021-04074-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/05/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
The brain exchanges nutrients and small molecules with blood via the blood-brain barrier (BBB). Approximately 20% energy intake for the body is consumed by the brain. Glucose is known for its critical roles for energy production and provides substrates for biogenesis in neurons. The brain takes up glucose via glucose transporters GLUT1 and 3, which are expressed in several neural cell types. The brain is also equipped with various transport systems for acquiring amino acids, lactate, ketone bodies, lipids, and cofactors for neuronal functions. Unraveling the mechanisms by which the brain takes up and metabolizes these nutrients will be key in understanding the nutritional requirements in the brain. This could also offer opportunities for therapeutic interventions in several neurological disorders. For instance, emerging evidence suggests a critical role of lactate as an alternative energy source for neurons. Neuronal cells express monocarboxylic transporters to acquire lactate. As such, treatment of GLUT1-deficient patients with ketogenic diets to provide the brain with alternative sources of energy has been shown to improve the health of the patients. Many transporters are present in the brain, but only a small number has been characterized. In this review, we will discuss about the roles of solute carrier (SLC) transporters at the blood brain barrier (BBB) and neural cells, in transport of nutrients and metabolites in the brain.
Collapse
Affiliation(s)
- Yen T K Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Hoa T T Ha
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Tra H Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Long N Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore.
- SLING/Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore.
- Immunology Translational and Cardiovascular Disease Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
| |
Collapse
|
285
|
Maphumulo SC, Pretorius E. Role of Circulating Microparticles in Type 2 Diabetes Mellitus: Implications for Pathological Clotting. Semin Thromb Hemost 2021; 48:188-205. [PMID: 34959250 DOI: 10.1055/s-0041-1740150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial chronic metabolic disease characterized by chronic hyperglycemia due to insulin resistance and a deficiency in insulin secretion. The global diabetes pandemic relates primarily to T2DM, which is the most prevalent form of diabetes, accounting for over 90% of all cases. Chronic low-grade inflammation, triggered by numerous risk factors, and the chronic activation of the immune system are prominent features of T2DM. Here we highlight the role of blood cells (platelets, and red and white blood cells) and vascular endothelial cells as drivers of systemic inflammation in T2DM. In addition, we discuss the role of microparticles (MPs) in systemic inflammation and hypercoagulation. Although once seen as inert by-products of cell activation or destruction, MPs are now considered to be a disseminated storage pool of bioactive effectors of thrombosis, inflammation, and vascular function. They have been identified to circulate at elevated levels in the bloodstream of individuals with increased risk of atherothrombosis or cardiovascular disease, two significant hallmark conditions of T2DM. There is also general evidence that MPs activate blood cells, express proinflammatory and coagulant effects, interact directly with cell receptors, and transfer biological material. MPs are considered major players in the pathogenesis of many systemic inflammatory diseases and may be potentially useful biomarkers of disease activity and may not only be of prognostic value but may act as novel therapeutic targets.
Collapse
Affiliation(s)
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
286
|
Combined Intranasal Insulin/Saxagliptin/Metformin Therapies Ameliorate the Effect of Combined Oral Contraceptive- (COC-) Induced Metabolic Syndrome (MetS) with a Major Target on Glucose Metabolism in Adult Female Wistar Rats. Int J Reprod Med 2021; 2021:9693171. [PMID: 34938803 PMCID: PMC8687792 DOI: 10.1155/2021/9693171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/12/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Objective To evaluate the effect of the chronic use of combined oral contraceptives (COCs: ethinyl estradiol and levonorgestrel) on the indices of metabolic syndrome in adult female Wistar rats and possible therapeutic management. Materials and Methods 64 female Wistar rats received either distilled water, norethindrone (NOR), COC, intranasal insulin (INI), metformin (MET), saxagliptin (SAX), INI+MET, and INI+SAX. After 8 weeks of exposure to COC, the animals were sorted into the therapeutic groups. Several parameters were assayed for, such as body weight changes, fasting blood glucose (FBG) level, insulin levels, inflammatory cytokines, and glycated hemoglobin (Hb1Ac). Results The levels of FBG, insulin, and Hb1Ac were increased consequent upon COC treatment. Treatment with INI+SAX and INI+MET reduced significantly the levels of FBG and Hb1Ac; in addition, the level of insulin was significantly increased in the INI+MET groups (p ≤ 0.05). Serum lipid profile analysis showed a statistical reduction in high-density lipoprotein (HDL) level; this reduction was also significantly reversed in the INI+SAX group. Reduced catalase activity observed in the COC group was reversed in the INI+MET group (p ≤ 0.05). A nonsignificant increase in the level of TNF-α as a result of COC treatment was reversed by INI and INI+MET treatment. Liver GLUT4 and G-6-phosphate levels were significantly increased by COC treatment, and this effect was reversed by INI+SAX in both assays, respectively (p ≤ 0.01). Conclusions The use of MET and SAX in combination with INI has been shown to reverse some indices of MetS. This study proposes a clinical phase to backup and ascertain these preclinical findings.
Collapse
|
287
|
Emerging role of exosomes as biomarkers in cancer treatment and diagnosis. Crit Rev Oncol Hematol 2021; 169:103565. [PMID: 34871719 DOI: 10.1016/j.critrevonc.2021.103565] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is a leading cause of death worldwide and cancer incidence and mortality are rapidly growing. These massive amounts of cancer patients require rapid diagnosis and efficient treatment strategies. However, the currently utilized methods are invasive and cost-effective. Recently, the effective roles of exosomes as promising diagnostic, prognostic, and predictive biomarkers have been revealed. Exosomes are membrane-bound extracellular vesicles containing RNAs, DNAs, and proteins, and are present in a wide array of body fluids. Exosomal cargos have shown the potential to detect various types of cancers at early stages with high sensitivity and specificity. They can also delivery therapeutic agents efficiently. In this article, an overview of recent advances in the research of exosomal biomarkers and their applications in cancer diagnosis and treatment has been provided. Furthermore, the advantages and challenges of exosomes as liquid biopsy targets are discussed and the clinical implications of using exosomal miRNAs have been revealed.
Collapse
|
288
|
Mahnam K, Shakhsi-Niaei M, Ziaei M, Sweazea KL. In silico evaluation of the downstream effect of mutated glucagon is consistent with higher blood glucose homeostasis in Galliformes and Strigiformes. Gen Comp Endocrinol 2021; 314:113925. [PMID: 34624309 DOI: 10.1016/j.ygcen.2021.113925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 11/29/2022]
Abstract
In contrast to mammals, glucagon is reported as a much more potent blood glucose modulator in birds. Interestingly, we have found p.Thr16Ser mutation, a variation in the highly conserved glucagon hormone, in Galliformes as well as Strigiformes. To check the effect of this mutation on the receptor binding of glucagon, we predicted the ancestral glucagon receptor sequence of all available Galliformes and Strigiformes species. Subsequently, we analysed their binding to the mutated and wild type glucagon (ancestral) by molecular dynamics simulation. At first, we made a model of ancestral glucagon receptor and ancestral mutated, and wild type glucagon in the order Galliformes and Strigiformes. Then we performed molecular dynamics for each Galliformes and Strigiformes receptor as well as each glucagon peptide, respectively. The final structures were used for docking simulation of glucagon to their receptors. The results of the docking simulations showed a stronger binding affinity of mutated glucagon to glucagon receptors. Afterward, we obtained blood glucose concentrations of all available Galliformes members, as well as all available members of its only taxonomic neighbour (order Anseriformes) in superorder Galloanserae. Interestingly the p.Thr16Ser mutation could finely cluster these two orders into two groups: higher blood glucose concentration (order Galliformes, 17.64 ± 1.66 mMol/L) and lower blood glucose concentration (order Anseriformes, 11.34 ± 1.11 mMol/L). Strigiformes which carry the mutated glucagon peptide show also high blood glucose concentrations (17.40 ± 1.51 mMol/L). Therefore, the results suggest this mutation, which leads to stronger binding affinity of mutated glucagon to its receptor, may be a driving force for higher blood glucose homeostasis in the related birds.
Collapse
Affiliation(s)
- Karim Mahnam
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Mostafa Shakhsi-Niaei
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| | - Maryam Ziaei
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | | |
Collapse
|
289
|
Arora K, Tomar PC, Mohan V. Diabetic neuropathy: an insight on the transition from synthetic drugs to herbal therapies. J Diabetes Metab Disord 2021; 20:1773-1784. [PMID: 34900824 PMCID: PMC8630252 DOI: 10.1007/s40200-021-00830-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
The global pandemic of prediabetes and diabetes has led to a severe corresponding complication of these disorders. Neuropathy is one of the most prevalent complication of diabetes is, affecting blood supply of the peripheral nervous system that may eventually results into loss of sensations, injuries, diabetic foot and death. The utmost identified risk of diabetic neuropathy is uncontrolled high blood glucose levels. However, aging, body mass index (BMI), oxidative stress, inflammation, increased HbA1c levels and blood pressure are among the other key factors involved in the upsurge of this disease. The so far treatment to deal with diabetic neuropathy is controlling metabolic glucose levels. Apart from this, drugs like reactive oxygen species (ROS) inhibitors, aldose reductase inhibitors, PKC inhibitors, Serotonin-norepinephrine reuptake inhibitors (SNRIs), anticonvulsants, N-methyl-D-aspartate receptor (NMDAR) antagonists, are the other prescribed medications. However, the related side-effects (hallucinations, drowsiness, memory deficits), cost, poor pharmacokinetics and drug resistance brought the trust of patients down and thus herbal renaissance is occurring all over the word as the people have shifted their intentions from synthetic drugs to herbal remedies. Medicinal plants have widely been utilized as herbal remedies against number of ailments in Indian medicinal history. Their bioactive components are very much potent to handle different chronic disorders and complications with lesser-known side effects. Therefore, the current article mainly concludes the etiology and pathophysiology of diabetic neuropathy. Furthermore, it also highlights the important roles of medicinal plants and their naturally occurring bioactive compounds in addressing this disease.
Collapse
Affiliation(s)
- Komal Arora
- Department of Life Sciences, Neurosciences, Gurugram University, Gurugram, India
| | - Pushpa C. Tomar
- Department of Biotechnology, Faculty of Engineering & Technology, Manav Rachna International Institute of Research & Studies, Haryana 121004 Faridabad, India
| | - Vandana Mohan
- Department of Life Sciences, Neurosciences, Gurugram University, Gurugram, India
| |
Collapse
|
290
|
Wei P, Jiang G, Wang H, Ru S, Zhao F. Bisphenol AF exposure causes fasting hyperglycemia in zebrafish (Danio rerio) by interfering with glycometabolic networks. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 241:106000. [PMID: 34715482 DOI: 10.1016/j.aquatox.2021.106000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol AF (BPAF), one of the main alternatives to bisphenol A, has been frequently detected in various environmental media, including the human body, and is an emerging contaminant. Epidemiological investigations have recently shown the implications of exposure to BPAF in the incidence of diabetes mellitus in humans, indicating that BPAF may be a potential diabetogenic endocrine disruptor. However, the effects of BPAF exposure on glucose homeostasis and their underlying mechanisms in animals remain largely unknown, which may limit our understanding of the health risks of BPAF. To this end, zebrafish (Danio rerio), an emerging and valuable model in studying animal glycometabolism and diabetes, were exposed to environmentally relevant concentrations (5 and 50 μg/L) and 500 μg/L BPAF for 28 d. Several key toxicity endpoints of blood glucose metabolism were detected in our study, and the results showed significantly increased fasting blood glucose levels, hepatic glycogen contents and hepatosomatic indexes and decreased muscular glycogen contents in the BPAF-exposed zebrafish. The results of quantitative real-time PCR showed the abnormal expression of genes involved in glycometabolic networks, which might promote hepatic gluconeogenesis and inhibit glycogenesis and glycolysis in the muscle and/or liver. Furthermore, the failure of insulin regulation, including plasma insulin deficiency and impaired insulin signaling pathways in target tissues, may be a potential mechanism underlying BPAF-induced dysfunctional glycometabolism. In summary, our results provide novel in vivo evidence that BPAF can cause fasting hyperglycemia by interfering with glycometabolic networks, which emphasizes the potential health risks of environmental exposure to BPAF in inducing diabetes mellitus.
Collapse
Affiliation(s)
- Penghao Wei
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong Province, China; School of Environmental Sciences and Engineering, Shandong University, Qingdao, 266237, Shandong Province, China
| | - Guobin Jiang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong Province, China
| | - Hongfang Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong Province, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong Province, China.
| | - Fei Zhao
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong Province, China; School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, Shandong Province, China.
| |
Collapse
|
291
|
Zhan M, Li Z, Li X, Tao B, Zhang Q, Wang J. Effect of short-term ambient PM 2.5 exposure on fasting blood glucose levels: A longitudinal study among 47,471 people in eastern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117983. [PMID: 34425372 DOI: 10.1016/j.envpol.2021.117983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/19/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
As a common health indicator in physical examinations, fasting blood glucose (FBG) level measurements are widely applied as a diagnostic method for diabetes mellitus. Uncertain conclusions remained regarding the relationship between PM2.5 exposure and FBG levels. We enrolled 47,471 subjects who participated in annual physical examinations between 2017 and 2019. We collected their general characteristics and FBG levels, and environmental factors simultaneously. We applied the generalized additive model to evaluate the impact of short-term outdoor PM2.5 exposure on FBG levels. Among the entire population, the single-pollutant models showed that a 10 μg/m3 increase in PM2.5 significantly contributed to 0.0030, 0.0233, and 0.0325 mmol/L increases in FBG at lag 0-7 days, lag 0-21 days, and lag 0-28 days, respectively. Accordingly, in multipollutant models, when PM2.5 increased by 10 μg/m3, there was an elevation of 0.0361, 0.0315, 0.0357, and 0.0387 mmol/L in FBG for 8-day, 15-day, 22-day, and 29-day moving averages, respectively. Similarly, we observed a significant positive association between them in the normal population. Moreover, the effects could be modified by age in both the entire and normal populations. Decreasing the ambient PM2.5 concentrations can alleviate the elevation of FBG, which may significantly impact the burden of diabetes mellitus.
Collapse
Affiliation(s)
- Mengyao Zhan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhongqi Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaona Li
- Department of Health Management, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Health Management Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bilin Tao
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qun Zhang
- Department of Health Management, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Health Management Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jianming Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Department of Health Management, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
292
|
Mokwena MAM, Engwa GA, Nkeh-Chungag BN, Sewani-Rusike CR. Athrixia phylicoides tea infusion (bushman tea) improves adipokine balance, glucose homeostasis and lipid parameters in a diet-induced metabolic syndrome rat model. BMC Complement Med Ther 2021; 21:292. [PMID: 34844584 PMCID: PMC8628465 DOI: 10.1186/s12906-021-03459-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/03/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Central obesity and insulin resistance are associated with metabolic syndrome (MetS) which is aggravated by diet and sedentary lifestyle. Athrixia phylicoides (AP) is reported by rural communities to have medicinal benefits associated with MetS such as obesity and type 2 diabetes. This study was aimed to investigate the effects of AP on diet-induced MetS in Wistar rats to validate its ethnopharmacological use. METHODS AP was profiled for phytochemicals by LC-MS. After induction of MetS with high energy diet (HED), 30 male rats were divided into five treatment groups (n = 6): normal diet control, HED control, HED + AP 50 mg/Kg BW, HED + AP 100 mg/Kg BW and HED + 50 mg/Kg BW metformin. The rats were treated daily for 8 weeks orally after which weight gain, visceral fat, total cholesterol, free fatty acids (FFAs) and adipokine regulation; leptin: adiponectin ratio (LAR) were assessed. Also, glucose homeostatic parameters including fasting blood glucose (FBG), oral glucose tolerance test (OGTT), glucose transporter 4 (GLUT 4), insulin and homeostatic model assessment of insulin resistance (HOMA-IR) were determined. RESULTS Findings showed that AP was rich in polyphenols. The HED control group showed derangements of the selected blood parameters of MetS. AP reversed diet-induced weight gain by reducing visceral fat, total blood cholesterol and circulating FFAs (p ≤ 0.05). Treatment with AP improved adipokine regulation depicted by reduced LAR (p<0.05). Treatment with AP improved parameters of glucose homeostasis as demonstrated by reduced FBG and HOMA-IR (p ≤ 0.05) and increased GLUT 4 (p<0.05). CONCLUSION Athrixia phylicoides tea infusion was shown to possess anti-obesity and anti-inflammatory properties, improved glucose uptake and reduce insulin resistance in diet-induced MetS in rats which could be attributed to its richness in polyphenols. Therefore, AP could have potential benefits against type 2 diabetes and obesity which are components of MetS validating its ethnopharmacological use.
Collapse
Affiliation(s)
- Madigoahle A M Mokwena
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University PBX1, Mthatha, 5117, South Africa
| | - Godwill Azeh Engwa
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University PBX1, Mthatha, 5117, South Africa
| | - Benedicta N Nkeh-Chungag
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University PBX1, Mthatha, 5117, South Africa
| | - Constance R Sewani-Rusike
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University PBX1, Mthatha, 5117, South Africa.
| |
Collapse
|
293
|
Jayaraman S, Roy A, Vengadassalapathy S, Sekar R, Veeraraghavan VP, Rajagopal P, Rengasamy G, Mukherjee R, Sekar D, Manjunathan R. An Overview on the Therapeutic Function of Foods Enriched with Plant Sterols in Diabetes Management. Antioxidants (Basel) 2021; 10:antiox10121903. [PMID: 34943006 PMCID: PMC8750040 DOI: 10.3390/antiox10121903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes is one of the most significant health issues across the world. People identified with diabetes are more vulnerable to various infections and are at a greater risk of developing cardiovascular diseases. The plant-based food we consume often contains many sterol-based bioactive compounds. It is well documented that these compounds could effectively manage the processes of insulin metabolism and cholesterol regulation. Insulin resistance followed by hyperglycemia often results in oxidative stress level enhancement and increased reactive oxygen species production. At the molecular level, these changes induce apoptosis in pancreatic cells and hence lead to insulin insufficiency. Studies have proved that plant sterols can lower inflammatory and oxidative stress damage connected with DNA repair mechanisms. The effective forms of phyto compounds are polyphenols, terpenoids, and thiols abundant in vegetables, fruits, nuts, and seeds. The available conventional drug-based therapies for the prevention and management of diabetes are time-consuming, costly, and with life-threatening side effects. Thereby, the therapeutic management of diabetes with plant sterols available in our daily diet is highly welcome as there are no side effects. This review intends to offer an overview of the present scenario of the anti-diabetic compounds from food ingredients towards the therapeutic beneficial against diabetes.
Collapse
Affiliation(s)
- Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Chennai 600077, India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Chennai 600077, India
| | - Srinivasan Vengadassalapathy
- Department of Pharmacology, Saveetha Medical College and Hospital, Saveetha Institute of Medical & Technical Sciences, Chennai 602105, India
| | - Ramya Sekar
- Department of Oral Pathology, Meenakshi Ammal Dental College and Hospitals, Chennai 600095, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Chennai 600077, India
| | - Ponnulakshmi Rajagopal
- Department of Central Research Laboratory, Meenakshi Ammal Dental College and Hospitals, Chennai 600095, India
| | - Gayathri Rengasamy
- Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Chennai 600077, India
| | - Raktim Mukherjee
- Shree PM Patel Institute of PG Studies and Research in Science, Sardar Patel University, Anand 388001, India
| | - Durairaj Sekar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - Reji Manjunathan
- Multi-Disciplinary Research Unit, Chengalpattu Government Medical College, Chengalpattu 60300, India
| |
Collapse
|
294
|
Hinds CE, Owen BM, Hope DCD, Pickford P, Jones B, Tan TM, Minnion JS, Bloom SR. A glucagon analogue decreases body weight in mice via signalling in the liver. Sci Rep 2021; 11:22577. [PMID: 34799628 PMCID: PMC8604983 DOI: 10.1038/s41598-021-01912-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
Glucagon receptor agonists show promise as components of next generation metabolic syndrome pharmacotherapies. However, the biology of glucagon action is complex, controversial, and likely context dependent. As such, a better understanding of chronic glucagon receptor (GCGR) agonism is essential to identify and mitigate potential clinical side-effects. Herein we present a novel, long-acting glucagon analogue (GCG104) with high receptor-specificity and potent in vivo action. It has allowed us to make two important observations about the biology of sustained GCGR agonism. First, it causes weight loss in mice by direct receptor signalling at the level of the liver. Second, subtle changes in GCG104-sensitivity, possibly due to interindividual variation, may be sufficient to alter its effects on metabolic parameters. Together, these findings confirm the liver as a principal target for glucagon-mediated weight loss and provide new insights into the biology of glucagon analogues.
Collapse
Affiliation(s)
- Charlotte E Hinds
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Bryn M Owen
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - David C D Hope
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Philip Pickford
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Ben Jones
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Tricia M Tan
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - James S Minnion
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Stephen R Bloom
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
295
|
Caillé F, Saba W, Goutal S, Breuil L, Kuhnast B, Tournier N. Radiolabeling and brain penetration of [ 11 C]VU0071063, a ligand of type 1 sulfonylurea receptors for positron emission tomography imaging. J Labelled Comp Radiopharm 2021; 65:28-35. [PMID: 34796549 DOI: 10.1002/jlcr.3957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022]
Abstract
Sulfonylurea receptor 1 (SUR1) overexpression in the central nervous system is a potential biomarker for positron emission tomography (PET) imaging of brain damage and recovery. VU0071063, a selective ligand of SUR1 able to cross the blood-brain barrier, was isotopically radiolabeled with carbon-11 from a desmethyl precursor obtained quantitatively in one step. Ready-to-inject [11C]VU0071063 was obtained in 18 ± 2% radiochemical yield and 103 ± 22 GBq/μmol molar activity. PET imaging in healthy rats demonstrated a significant brain penetration and rapid elimination of the tracer in vivo, encouraging further investigation in animal models of SUR1 overexpression.
Collapse
Affiliation(s)
- Fabien Caillé
- Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, Université Paris-Saclay, Orsay, France
| | - Wadad Saba
- Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, Université Paris-Saclay, Orsay, France
| | - Sébastien Goutal
- Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, Université Paris-Saclay, Orsay, France
| | - Louise Breuil
- Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, Université Paris-Saclay, Orsay, France
| | - Bertrand Kuhnast
- Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, Université Paris-Saclay, Orsay, France
| | - Nicolas Tournier
- Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, Université Paris-Saclay, Orsay, France
| |
Collapse
|
296
|
Primavera R, Bellotti E, Di Mascolo D, Di Francesco M, Wang J, Kevadiya BD, De Pascale A, Thakor AS, Decuzzi P. Insulin Granule-Loaded MicroPlates for Modulating Blood Glucose Levels in Type-1 Diabetes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53618-53629. [PMID: 34751556 PMCID: PMC8603355 DOI: 10.1021/acsami.1c16768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Type-1 diabetes (T1DM) is a chronic metabolic disorder resulting from the autoimmune destruction of β cells. The current standard of care requires multiple, daily injections of insulin and accurate monitoring of blood glucose levels (BGLs); in some cases, this results in diminished patient compliance and increased risk of hypoglycemia. Herein, we engineered hierarchically structured particles comprising a poly(lactic-co-glycolic) acid (PLGA) prismatic matrix, with a 20 × 20 μm base, encapsulating 200 nm insulin granules. Five configurations of these insulin-microPlates (INS-μPLs) were realized with different heights (5, 10, and 20 μm) and PLGA contents (10, 40, and, 60 mg). After detailed physicochemical and biopharmacological characterizations, the tissue-compliant 10H INS-μPL, realized with 10 mg of PLGA, presented the most effective release profile with ∼50% of the loaded insulin delivered at 4 weeks. In diabetic mice, a single 10H INS-μPL intraperitoneal deposition reduced BGLs to that of healthy mice within 1 h post-implantation (167.4 ± 49.0 vs 140.0 ± 9.2 mg/dL, respectively) and supported normoglycemic conditions for about 2 weeks. Furthermore, following the glucose challenge, diabetic mice implanted with 10H INS-μPL successfully regained glycemic control with a significant reduction in AUC0-120min (799.9 ± 134.83 vs 2234.60 ± 82.72 mg/dL) and increased insulin levels at 7 days post-implantation (1.14 ± 0.11 vs 0.38 ± 0.02 ng/mL), as compared to untreated diabetic mice. Collectively, these results demonstrate that INS-μPLs are a promising platform for the treatment of T1DM to be further optimized with the integration of smart glucose sensors.
Collapse
Affiliation(s)
- Rosita Primavera
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Elena Bellotti
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Daniele Di Mascolo
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Martina Di Francesco
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Jing Wang
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Bhavesh D. Kevadiya
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Angelo De Pascale
- Unit
of Endocrinology, Department of Internal Medicine & Medical Specialist
(DIMI), University of Genoa, 16136 Genoa, Italy
| | - Avnesh S. Thakor
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Paolo Decuzzi
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
297
|
Wu CC, Lee CH, Hsu TW, Yeh CC, Lin MC, Chang CM, Tsai JH. Is Colectomy Associated with the Risk of Type 2 Diabetes in Patients without Colorectal Cancer? A Population-Based Cohort Study. J Clin Med 2021; 10:jcm10225313. [PMID: 34830601 PMCID: PMC8622203 DOI: 10.3390/jcm10225313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes might be influenced by colonic disease; however, the association between colonic resection and type 2 diabetes has rarely been discussed. This population-based cohort study explored the association between colectomy and type 2 diabetes in patients without colorectal cancer. A total of 642 patients who underwent colectomy for noncancerous diseases at any time between 2000 and 2012 in the National Health Insurance Research Database of Taiwan were enrolled. The enrolled patients were matched with 2568 patients without colectomy at a 1:4 ratio using a propensity score that covered age, sex, and comorbidities. The risk of type 2 diabetes was assessed using a Cox proportional hazards model. The mean (standard deviation) follow-up durations in colectomy cases and non-colectomy controls were 4.9 (4.0) and 5.6 (3.6) years, respectively; 65 (10.1%) colectomy cases and 342 (15.5%) non-colectomy controls developed type 2 diabetes. After adjustment, colectomy cases still exhibited a decreased risk of type 2 diabetes (adjusted HR = 0.80, 95% CI: 0.61–1.04). A stratified analysis for colectomy type indicated that patients who underwent right or transverse colectomy had a significantly lower risk of developing type 2 diabetes (adjusted HR = 0.57, 95% CI: 0.34–0.98). In the present study, colectomy tended to be at a reduced risk of type 2 diabetes in patients without colorectal cancer, and right or transverse colectomies were especially associated with a significantly reduced risk of type 2 diabetes.
Collapse
Affiliation(s)
- Chin-Chia Wu
- Division of Colorectal Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622, Taiwan; (C.-C.W.); (T.-W.H.)
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan; (C.-H.L.); (C.-C.Y.)
| | - Cheng-Hung Lee
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan; (C.-H.L.); (C.-C.Y.)
- Division of General Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622, Taiwan
| | - Ta-Wen Hsu
- Division of Colorectal Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622, Taiwan; (C.-C.W.); (T.-W.H.)
- College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chia-Chou Yeh
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan; (C.-H.L.); (C.-C.Y.)
- Department of Chinese Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622, Taiwan
| | - Mei-Chen Lin
- Management Office for Health Data, China Medical University Hospital, Taichung 404, Taiwan;
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Chun-Ming Chang
- College of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Department of General Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Correspondence: (C.-M.C.); (J.-H.T.)
| | - Jui-Hsiu Tsai
- College of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Department of Psychiatry, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622, Taiwan
- Ph.D. Program in Environmental and Occupation Medicine, National Health Research Institutes and Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (C.-M.C.); (J.-H.T.)
| |
Collapse
|
298
|
Lavilla CJ, Billacura MP, Hanna K, Boocock DJ, Coveney C, Miles AK, Foulds GA, Murphy A, Tan A, Jackisch L, Sayers SR, Caton PW, Doig CL, McTernan PG, Colombo SL, Sale C, Turner MD. Carnosine protects stimulus-secretion coupling through prevention of protein carbonyl adduction events in cells under metabolic stress. Free Radic Biol Med 2021; 175:65-79. [PMID: 34455039 DOI: 10.1016/j.freeradbiomed.2021.08.233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/23/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes is characterised by failure to control glucose homeostasis, with numerous diabetic complications attributable to the resulting exposure of cells and tissues to chronic elevated concentrations of glucose and fatty acids. This, in part, results from formation of advanced glycation and advanced lipidation end-products that are able to modify protein, lipid, or DNA structure, and disrupt normal cellular function. Herein we used mass spectrometry to identify proteins modified by two such adduction events in serum of individuals with obesity, type 2 diabetes, and gestational diabetes, along with similar analyses of human and mouse skeletal muscle cells and mouse pancreatic islets exposed to glucolipotoxic stress. We also report that carnosine, a histidine containing dipeptide, prevented 65-90% of 4-hydroxynonenal and 3-nitrotyrosine adduction events, and that this in turn preserved mitochondrial function and protected stimulus-secretion coupling in cells exposed to metabolic stress. Carnosine therefore offers significant therapeutic potential against metabolic diseases.
Collapse
Affiliation(s)
- Charlie Jr Lavilla
- Centre for Diabetes, Chronic Diseases and Ageing, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Merell P Billacura
- Centre for Diabetes, Chronic Diseases and Ageing, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Katie Hanna
- Centre for Diabetes, Chronic Diseases and Ageing, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - David J Boocock
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Clare Coveney
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Amanda K Miles
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Gemma A Foulds
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Alice Murphy
- Centre for Diabetes, Chronic Diseases and Ageing, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Arnold Tan
- Centre for Diabetes, Chronic Diseases and Ageing, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Laura Jackisch
- Department of Physiology, Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - Sophie R Sayers
- Diabetes and Nutritional Sciences Division, King's College London, London, SE1 1UL, UK
| | - Paul W Caton
- Diabetes and Nutritional Sciences Division, King's College London, London, SE1 1UL, UK
| | - Craig L Doig
- Centre for Diabetes, Chronic Diseases and Ageing, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Philip G McTernan
- Centre for Diabetes, Chronic Diseases and Ageing, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Sergio L Colombo
- Centre for Diabetes, Chronic Diseases and Ageing, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Craig Sale
- Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Mark D Turner
- Centre for Diabetes, Chronic Diseases and Ageing, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK.
| |
Collapse
|
299
|
Abstract
Rates of obesity and diabetes have increased significantly over the past decades and the prevalence is expected to continue to rise further in the coming years. Many observations suggest that obesity and diabetes are associated with an increased risk of developing several types of cancers, including liver, pancreatic, endometrial, colorectal, and post-menopausal breast cancer. The path towards developing obesity and diabetes is affected by multiple factors, including adipokines, inflammatory cytokines, growth hormones, insulin resistance, and hyperlipidemia. The metabolic abnormalities associated with changes in the levels of these factors in obesity and diabetes have the potential to significantly contribute to the development and progression of cancer through the regulation of distinct signaling pathways. Here, we highlight the cellular and molecular pathways that constitute the links between obesity, diabetes, cancer risk and mortality. This includes a description of the existing evidence supporting the obesity-driven morphological and functional alternations of cancer cells and adipocytes through complex interactions within the tumor microenvironment.
Collapse
Affiliation(s)
- Dae-Seok Kim
- Touchstone Diabetes Center, Department of Internal Medicine, Dallas, TX, USA
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Corresponding author: Philipp E. Scherer https://orcid.org/0000-0003-0680-3392 Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA E-mail:
| |
Collapse
|
300
|
Głombik K, Detka J, Budziszewska B. Hormonal Regulation of Oxidative Phosphorylation in the Brain in Health and Disease. Cells 2021; 10:2937. [PMID: 34831160 PMCID: PMC8616269 DOI: 10.3390/cells10112937] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/18/2022] Open
Abstract
The developing and adult brain is a target organ for the vast majority of hormones produced by the body, which are able to cross the blood-brain barrier and bind to their specific receptors on neurons and glial cells. Hormones ensure proper communication between the brain and the body by activating adaptive mechanisms necessary to withstand and react to changes in internal and external conditions by regulating neuronal and synaptic plasticity, neurogenesis and metabolic activity of the brain. The influence of hormones on energy metabolism and mitochondrial function in the brain has gained much attention since mitochondrial dysfunctions are observed in many different pathological conditions of the central nervous system. Moreover, excess or deficiency of hormones is associated with cell damage and loss of function in mitochondria. This review aims to expound on the impact of hormones (GLP-1, insulin, thyroid hormones, glucocorticoids) on metabolic processes in the brain with special emphasis on oxidative phosphorylation dysregulation, which may contribute to the formation of pathological changes. Since the brain concentrations of sex hormones and neurosteroids decrease with age as well as in neurodegenerative diseases, in parallel with the occurrence of mitochondrial dysfunction and the weakening of cognitive functions, their beneficial effects on oxidative phosphorylation and expression of antioxidant enzymes are also discussed.
Collapse
Affiliation(s)
- Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
| | - Jan Detka
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
| | - Bogusława Budziszewska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
- Department of Biochemical Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|