251
|
Bajrai LH, Sohrab SS, Alandijany TA, Mobashir M, Reyaz M, Kamal MA, Firoz A, Parveen S, Azhar EI. Gene Expression Profiling of Early Acute Febrile Stage of Dengue Infection and Its Comparative Analysis With Streptococcus pneumoniae Infection. Front Cell Infect Microbiol 2021; 11:707905. [PMID: 34778101 PMCID: PMC8581568 DOI: 10.3389/fcimb.2021.707905] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/30/2021] [Indexed: 02/05/2023] Open
Abstract
Infectious diseases are the disorders caused by organisms such as bacteria, viruses, fungi, or parasites. Although many of them are permentantly hazardous, a number of them live in and on our bodies and they are normally harmless or even helpful. Under certain circumstances, some organisms may cause diseases and these infectious diseases may be passed directly from person to person or via intermediate vectors including insects and other animals. Dengue virus and Streptococcus pneumoniae are the critical and common sources of infectious diseases. So, it is critical to understand the gene expression profiling and their inferred functions in comparison to the normal and virus infected conditions. Here, we have analyzed the gene expression profiling for dengue hemorrhagic fever, dengue fever, and normal human dataset. Similar to it, streptococcus pneumoniae infectious data were analyzed and both the outcomes were compared. Our study leads to the conclusion that the dengue hemorrhagic fever arises in result to potential change in the gene expression pattern, and the inferred functions obviously belong to the immune system, but also there are some additional potential pathways which are critical signaling pathways. In the case of pneumoniae infection, 19 pathways were enriched, almost all these pathways are associated with the immune system and 17 of the enriched pathways were common with dengue infection except platelet activation and antigen processing and presentation. In terms of the comparative study between dengue virus and Streptococcus pneumoniae infection, we conclude that cell adhesion molecules (CAMs), MAPK signaling pathway, natural killer cell mediated cytotoxicity, regulation of actin cytoskeleton, and cytokine-cytokine receptor interaction are commonly enriched in all the three cases of dengue infection and Streptococcus pneumoniae infection, focal adhesion was enriched between classical dengue fever — dengue hemorrhagic fever, dengue hemorrhagic fever—normal samples, and SP, and antigen processing and presentation and Leukocyte transendothelial migration were enriched in classical dengue fever —normal samples, dengue hemorrhagic fever—normal samples, and Streptococcus pneumoniae infection.
Collapse
Affiliation(s)
- Leena H Bajrai
- Special Infectious Agents Unit - BSL-3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia.,Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sayed S Sohrab
- Special Infectious Agents Unit - BSL-3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamir A Alandijany
- Special Infectious Agents Unit - BSL-3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Mobashir
- SciLifeLab, Department of Oncology and Pathology Karolinska Institutet, Stockholm, Sweden
| | - Muddassir Reyaz
- Department of Healthcare Management, Jamia Hamdard Hamdard Nagar, New Delhi, India
| | - Mohammad A Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Enzymoics, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Ahmad Firoz
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Shabana Parveen
- Department of Bioscience, Jamia Millia Islamia, New Delhi, India
| | - Esam I Azhar
- Special Infectious Agents Unit - BSL-3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
252
|
Association between antibiotics use and diabetes incidence in a nationally representative retrospective cohort among Koreans. Sci Rep 2021; 11:21681. [PMID: 34737360 PMCID: PMC8568925 DOI: 10.1038/s41598-021-01125-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
Numerous studies have reported that antibiotics could lead to diabetes, even after adjusting for confounding variables. This study aimed to determine the causal relationship between antibiotics use and diabetes in a nationally representative cohort. This retrospective cohort study included adults aged 40 years or older who were enrolled in the Korean National Health Insurance Service-Health Screening Cohort. Antibiotic exposure was assessed from 2002 to 2005 and newly diagnosed diabetes mellitus was determined based on diagnostic codes and history of antidiabetic medication use from 2006 to 2015. Multivariate Cox proportional hazards model was used to assess the association between antibiotic use and diabetes incidence. The mean age of the 201,459 study subjects was 53.2 years. People who used antibiotics for 90 or more days had a higher risk of diabetes (adjusted hazard ratio [aHR] 1.16, 95% confidence interval [CI] 1.07–1.26) compared to non-users. Those who used five or more classes of antibiotics had a higher risk of diabetes than those who used one antibiotic class (aHR 1.14; 95% CI 1.06–1.23). The clear dose-dependent association between antibiotics and diabetes incidence supports the judicious use of antibiotics in the future.
Collapse
|
253
|
Giulio GMD, Waldman EA, Nunes J, Buss PM, Jaime PC, Campelo T, Ribeiro H. Global Health and Planetary Health: perspectives for a transition to a more sustainable world post COVID-19. CIENCIA & SAUDE COLETIVA 2021; 26:4373-4382. [PMID: 34730629 DOI: 10.1590/1413-812320212610.14332021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/30/2021] [Indexed: 11/21/2022] Open
Abstract
The manuscript discusses interfaces between academic and practical fields of Global Health and Planetary Health, shedding light on some critical perspectives of cumulative and synergistic causes of global crises, and effects on health and food security, on human rights, on migration, and on environment. Concepts of Global Health and Planetary Health and the path for the Sustainable Development Goals -SDG in the context of the Syndemy of Global Crisis, in particular the COVID-19 pandemic, are presented. COVID-19 lessons highlight challenges of infectious diseases and pandemics of the crisis of food insecurity, and of climate emergency. The manuscript advocates for an innovative approach that simultaneously broader awareness of the interconnected problems and of their complex causes and calls for emancipatory knowledge to face urgent challenges for a transdisciplinary research agenda aiming to tackle enormous planetary problems brought by the Anthropocene. It calls for practical solutions, with examples of some nature-based. It highlights the need of a collective reflection on a viable path to promote changes for a more sustainable, equitable, and adaptive future, bridging gaps from Global and Planetary Health.
Collapse
Affiliation(s)
- Gabriela Marques Di Giulio
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo. Av. Dr. Arnaldo 715, Cerqueira César. 01246-904 São Paulo SP Brasil.
| | - Eliseu Alves Waldman
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo. São Paulo SP Brasil
| | - João Nunes
- Departamento de Ciência Política, Universidade de Iorque. Iorque Inglaterra
| | - Paulo Marchiori Buss
- Centro de Relações Internacionais, Fundação Oswaldo Cruz. Rio de Janeiro RJ Brasil
| | - Patricia Constante Jaime
- Departamento de Nutrição, Faculdade de Saúde Pública, Universidade de São Paulo. São Paulo SP Brasil
| | - Tereza Campelo
- Faculdade de Saúde Pública, Universidade de São Paulo. São Paulo SP Brasil
| | - Helena Ribeiro
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo. Av. Dr. Arnaldo 715, Cerqueira César. 01246-904 São Paulo SP Brasil.
| |
Collapse
|
254
|
Lee CY, Degani I, Cheong J, Weissleder R, Lee JH, Cheon J, Lee H. Development of Integrated Systems for On-Site Infection Detection. Acc Chem Res 2021; 54:3991-4000. [PMID: 34677927 DOI: 10.1021/acs.accounts.1c00498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The modern healthcare system faces an unrelenting threat from microorganisms, as evidenced by global outbreaks of new viral diseases, emerging antimicrobial resistance, and the rising incidence of healthcare-associated infections (HAIs). An effective response to these threats requires rapid and accurate diagnostic tests that can identify causative pathogens at the point of care (POC). Such tests could eliminate diagnostic uncertainties, facilitating patient triaging, minimizing the empiric use of antimicrobial drugs, and enabling targeted treatments. Current standard methods, however, often fail to meet the needs of rapid diagnosis in POC settings. Culture-based assays entail long processing times and require specialized laboratory infrastructure; nucleic acid (NA) tests are often limited to centralized hospitals due to assay complexity and high costs. Here we discuss two new POC tests developed in our groups to enable the rapid diagnosis of infection. The first is nanoPCR that takes advantages of core-shell magnetoplasmonic nanoparticles (MPNs): (i) Au shell significantly accelerates thermocycling via volumetric, plasmonic light-to-heat conversion and (ii) a magnetic core enables sensitive in situ fluorescent detection via magnetic clearing. By adopting a Ferris wheel module, the system expedites multisamples in parallel with a minimal setup. When applied to COVID-19 diagnosis, nanoPCR detected SARS-CoV-2 RNA down to 3.2 copy/μL within 17 min. In particular, nanoPCR diagnostics accurately identified COVID-19 cases in clinical samples (n = 150), validating its clinical applicability. The second is a polarization anisotropy diagnostic (PAD) system that exploits the principle of fluorescence polarization (FP) as a detection modality. Fluorescent probes were designed to alter their molecular weight upon recognizing target NAs. This event modulates the probes' tumbling rate (Brownian motion), which leads to changes in FP. The approach is robust against environmental noise and benefits from the ratiometric nature of the signal readout. We applied PAD to detect clinically relevant HAI bacteria (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Staphylococcus aureus). The PAD assay demonstrated detection sensitivity down to the single bacterium level and determined both drug resistance and virulence status. In summary, these new tests have the potential to become powerful tools for rapid diagnosis in the infectious disease space. They do not require highly skilled personnel or labor-intensive analyses, and the assays are quick and cost-effective. These attributes will make nanoPCR and PAD well-aligned with a POC workflow to aid physicians to initiate prompt and informed patient treatment.
Collapse
Affiliation(s)
- Chang Yeol Lee
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Institute for Basic Science (IBS), Center for NanoMedicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Ismail Degani
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02142, United States
| | - Jiyong Cheong
- Institute for Basic Science (IBS), Center for NanoMedicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Department of Systems Biology, Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Jae-Hyun Lee
- Institute for Basic Science (IBS), Center for NanoMedicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Jinwoo Cheon
- Institute for Basic Science (IBS), Center for NanoMedicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Institute for Basic Science (IBS), Center for NanoMedicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
255
|
TAMTA SHIKA, VINODHKUMAR OR, KARTHIKEYAN A, DUBAL ZB, KHAN SHARUN, A SAIED ABDULRAHMAN, DHAWAN MANISH, DHAMA KULDEEP, MALIK YS. Epidemiological profiling of SARS-CoV-2 with focus on one-health approaches in mitigating COVID-19 pandemic. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i10.117206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Of the 1,415 human pathogens identified, 175 are responsible for causing emerging diseases, 132 are zoonotic and majority of the diseases are categorized as emerging or re-emerging. Emerging novel Coronavirus (COVID- 19) is one of them, and it is responsible for causing social and economically critical disease in both humans and animals. This review presents the understanding of epidemiological characteristics of the COVID-19 pandemic related to host, agent, and the environment with transmission and spread of the disease for better prevention of the COVID-19. The inclination of the viruses to spillover between different species and determining the number of the reservoir of coronaviruses in an entirely new host to create infection is of emerging importance. The understanding of disease patterns will potentiate our expertise to alert how, when, and where the potential epidemic will occur. One health approach involves co-operation from all the sectors, including healthcare (medical and veterinary), environmental, pharmaceutical, educational, research, police, and administration, to combat the COVID-19 pandemic and reduce the public health threat.
Collapse
|
256
|
Zhou X, Li Z, Zhang Z, Zhu L, Liu Q. A rapid and label-free platform for virus enrichment based on electrostatic microfluidics. Talanta 2021; 242:122989. [PMID: 35189409 DOI: 10.1016/j.talanta.2021.122989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022]
Abstract
Virus surveillance and discovery are crucial for virus prediction and outbreak preparedness. Virus samples are frequently bulky and complicated so that effective virus detection remain challenging. Herein, we develop an 3D electrostatic microfluidic platform to rapidly and label-free enrich viruses from bulky samples at low concentrations. The platform consists of double microchannels for streamlining large volume processing and electrodes for enriching viruses by electrostatic interaction. The trajectories of simulation show that particle is successfully enriched under different forces of electrostatic field and different sample flow rates. We demonstrate that the electrostatic microfluidic platform can increase the limit of detection in 100-fold higher based on real-time PCR quantified analysis. Our design thus provides a simple, rapid, label-free and high-throughput viruses concentration platform and would thus have significant utility for various viral detection.
Collapse
Affiliation(s)
- Xiaoxiang Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing, 210096, PR China
| | - Zhanping Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing, 210096, PR China
| | - Zhen Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing, 210096, PR China
| | - Libo Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing, 210096, PR China
| | - Quanjun Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing, 210096, PR China.
| |
Collapse
|
257
|
Foster R, Peeler E, Bojko J, Clark PF, Morritt D, Roy HE, Stebbing P, Tidbury HJ, Wood LE, Bass D. Pathogens co-transported with invasive non-native aquatic species: implications for risk analysis and legislation. NEOBIOTA 2021. [DOI: 10.3897/neobiota..71358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Invasive Non-Native Species (INNS) can co-transport externally and internally other organisms including viruses, bacteria and other eukaryotes (including metazoan parasites), collectively referred to as the symbiome. These symbiotic organisms include pathogens, a small minority of which are subject to surveillance and regulatory control, but most of which are currently unscrutinized and/or unknown. These putatively pathogenetic symbionts can potentially pose diverse risks to other species, with implications for increased epidemiological risk to agriculture and aquaculture, wildlife/ecosystems, and human health (zoonotic diseases). The risks and impacts arising from co-transported known pathogens and other symbionts of unknown pathogenic virulence, remain largely unexplored, unlegislated, and difficult to identify and quantify. Here, we propose a workflow using PubMed and Google Scholar to systematically search existing literature to determine any known and potential pathogens of aquatic INNS. This workflow acts as a prerequisite for assessing the nature and risk posed by co-transported pathogens of INNS; of which a better understanding is necessary to inform policy and INNS risk assessments. Addressing this evidence gap will be instrumental to devise an appropriate set of statutory responsibilities with respect to these symbionts, and to underpin new and more effective legislative processes relating to the disease screening and risk assessment of INNS.
Collapse
|
258
|
Foster R, Peeler E, Bojko J, Clark PF, Morritt D, Roy HE, Stebbing P, Tidbury HJ, Wood LE, Bass D. Pathogens co-transported with invasive non-native aquatic species: implications for risk analysis and legislation. NEOBIOTA 2021. [DOI: 10.3897/neobiota.69.71358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Invasive Non-Native Species (INNS) can co-transport externally and internally other organisms including viruses, bacteria and other eukaryotes (including metazoan parasites), collectively referred to as the symbiome. These symbiotic organisms include pathogens, a small minority of which are subject to surveillance and regulatory control, but most of which are currently unscrutinized and/or unknown. These putatively pathogenetic symbionts can potentially pose diverse risks to other species, with implications for increased epidemiological risk to agriculture and aquaculture, wildlife/ecosystems, and human health (zoonotic diseases). The risks and impacts arising from co-transported known pathogens and other symbionts of unknown pathogenic virulence, remain largely unexplored, unlegislated, and difficult to identify and quantify. Here, we propose a workflow using PubMed and Google Scholar to systematically search existing literature to determine any known and potential pathogens of aquatic INNS. This workflow acts as a prerequisite for assessing the nature and risk posed by co-transported pathogens of INNS; of which a better understanding is necessary to inform policy and INNS risk assessments. Addressing this evidence gap will be instrumental to devise an appropriate set of statutory responsibilities with respect to these symbionts, and to underpin new and more effective legislative processes relating to the disease screening and risk assessment of INNS.
Collapse
|
259
|
Eberle RJ, Olivier DS, Amaral MS, Willbold D, Arni RK, Coronado MA. Promising Natural Compounds against Flavivirus Proteases: Citrus Flavonoids Hesperetin and Hesperidin. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10102183. [PMID: 34685992 PMCID: PMC8539695 DOI: 10.3390/plants10102183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 05/04/2023]
Abstract
Ubiquitous in citrus plants, Hesperidin and Hesperetin flavanones possess several biological functions, including antiviral activity. Arbovirus infections pose an ever-increasing threat to global healthcare systems. Among the severe arboviral infections currently known are those caused by members of the Flavivirus genus, for example, Dengue Virus-DENV, Yellow Fever Virus-YFV, and West Nile Virus-WNV. In this study, we characterize the inhibitory effect of Hesperidin and Hesperetin against DENV2, YFV, and WNV NS2B/NS3 proteases. We report the noncompetitive inhibition of the NS2B/NS3pro by the two bioflavonoids with half maximal inhibitory concentration (IC50) values <5 µM for HST and <70 µM for HSD. The determined dissociation constants (KD) of both flavonoids is significantly below the threshold value of 30 µM. Our findings demonstrate that a new generation of anti-flavivirus drugs could be developed based on selective optimization of both molecules.
Collapse
Affiliation(s)
- Raphael J. Eberle
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany;
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße, 40225 Düsseldorf, Germany
- Correspondence: (R.J.E.); (M.A.C.)
| | - Danilo S. Olivier
- Integrated Sciences Center, Federal University of Tocantins, Araguaína 77824-838, Brazil;
| | - Marcos S. Amaral
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany;
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße, 40225 Düsseldorf, Germany
- JuStruct: Jülich Centre for Structural Biology, Forchungszentrum Jülich, 52428 Jülich, Germany
| | - Raghuvir K. Arni
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Universidade Estadual Paulista (UNESP), São Jose do Rio Preto 15054-000, Brazil;
| | - Monika A. Coronado
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany;
- Correspondence: (R.J.E.); (M.A.C.)
| |
Collapse
|
260
|
Abdulah DM, Aziz Qazli SS, Suleman SK. Response of the Public to Preventive Measures of COVID-19 in Iraqi Kurdistan. Disaster Med Public Health Prep 2021; 15:e17-e25. [PMID: 32660687 PMCID: PMC7443563 DOI: 10.1017/dmp.2020.233] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/01/2020] [Accepted: 06/23/2020] [Indexed: 01/21/2023]
Abstract
OBJECTIVES On March 1, 2020, the Kurdistan Region Government (KRG) announced 4 confirmed cases of coronavirus disease (COVID-19). We aimed to explore the response of the public toward the prevention principles against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS The investigators invited individuals from different geographic areas of Duhok Governorate of Iraqi Kurdistan in March 2020. RESULTS The mean age of the participants was 25.74 (16-95 years). The mean score and prevalence of fear toward SARS-CoV-2 infection was 4.40 of 10 and 81.9%, respectively. A small percentage of participants did not minimize their exposures by reducing close contacts and transmission of respiratory droplets (14.5%) and visited public areas during the epidemic (28.7%). The study revealed that 30.8% of the participants do not use face masks or tissues when they sneeze in public areas. Most of the participants wash their hands when they suspect a possible transmission of the SARS-CoV-2 pathogen (94.6%) and clean or disinfect pathogen contamination-suspected areas at home (84.6%). The study also revealed that some participants (11.2%), due to a lower education, did not visit a medical clinic when they experienced possible symptoms of SARS-CoV-2 infection. Participants agreed with the health policies of KRG against the COVID-19 outbreak (90.8%). CONCLUSIONS Some individuals do not adhere to preventive measures against SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | - Sherzad Khudeida Suleman
- Witten/Herdecke University, Germany
- Community Health and Pediatric Unit, College of Nursing, University of Duhok, Duhok, Iraq
| |
Collapse
|
261
|
Mata AS, Dourado SMP. Mathematical modeling applied to epidemics: an overview. THE SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES 2021; 15:1025-1044. [PMID: 38624924 PMCID: PMC8482738 DOI: 10.1007/s40863-021-00268-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 12/13/2022]
Abstract
This work presents an overview of the evolution of mathematical modeling applied to the context of epidemics and the advances in modeling in epidemiological studies. In fact, mathematical treatments have contributed substantially in the epidemiology area since the formulation of the famous SIR (susceptible-infected-recovered) model, in the beginning of the 20th century. We presented the SIR deterministic model and we also showed a more realistic application of this model applying a stochastic approach in complex networks. Nowadays, computational tools, such as big data and complex networks, in addition to mathematical modeling and statistical analysis, have been shown to be essential to understand the developing of the disease and the scale of the emerging outbreak. These issues are fundamental concerns to guide public health policies. Lately, the current pandemic caused by the new coronavirus further enlightened the importance of mathematical modeling associated with computational and statistical tools. For this reason, we intend to bring basic knowledge of mathematical modeling applied to epidemiology to a broad audience. We show the progress of this field of knowledge over the years, as well as the technical part involving several numerical tools.
Collapse
Affiliation(s)
- Angélica S. Mata
- Departamento de Física, Universidade Federal de Lavras, 37200-900 Lavras, MG Brazil
| | - Stela M. P. Dourado
- Departamento de Ciências da Saúde, Universidade Federal de Lavras, 37200-900 Lavras, MG Brazil
| |
Collapse
|
262
|
Wang Y, Wang P, Qin J. Microfluidic Organs-on-a-Chip for Modeling Human Infectious Diseases. Acc Chem Res 2021; 54:3550-3562. [PMID: 34459199 DOI: 10.1021/acs.accounts.1c00411] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Infectious diseases present tremendous challenges to human progress and public health. The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the associated coronavirus disease 2019 (COVID-19) pandemic continue to pose an imminent threat to humanity. These infectious diseases highlight the importance of developing innovative strategies to study disease pathogenesis and protect human health. Although conventional in vitro cell culture and animal models are useful in facilitating the development of effective therapeutics for infectious diseases, models that can accurately reflect human physiology and human-relevant responses to pathogens are still lacking. Microfluidic organs-on-a-chip (organ chips) are engineered microfluidic cell culture devices lined with living cells, which can resemble organ-level physiology with high fidelity by rebuilding tissue-tissue interfaces, mechanical cues, fluidic flow, and the biochemical cellular microenvironment. They present a unique opportunity to bridge the gap between in vitro experimental models and in vivo human pathophysiology and are thus a promising platform for disease studies and drug testing. In this Account, we first introduce how recent progress in organ chips has enabled the recreation of complex pathophysiological features of human infections in vitro. Next, we describe the progress made by our group in adopting organ chips and other microphysiological systems for the study of infectious diseases, including SARS-CoV-2 viral infections and intrauterine bacterial infections. Respiratory symptoms dominate the clinical manifestations of many COVID-19 patients, even involving the systemic injury of many distinct organs, such as the lung, the gastrointestinal tract, and so forth. We thus particularly highlight our recent efforts to explore how lung-on-a-chip and intestine-on-a-chip might be useful in addressing the ongoing viral pandemic of COVID-19 caused by SARS-CoV-2. These organ chips offer a potential platform for studying virus-host interactions and human-relevant responses as well as accelerating the development of effective therapeutics against COVID-19. Finally, we discuss opportunities and challenges in the development of next-generation organ chips, which are urgently needed for developing effective and affordable therapies to combat infectious diseases. We hope that this Account will promote awareness about in vitro organ microphysiological systems for modeling infections and stimulate joint efforts across multiple disciplines to understand emerging and re-emerging pandemic diseases and rapidly identify innovative interventions.
Collapse
Affiliation(s)
- Yaqing Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Peng Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
263
|
Siddiquea BN, Shetty A, Bhattacharya O, Afroz A, Billah B. Global epidemiology of COVID-19 knowledge, attitude and practice: a systematic review and meta-analysis. BMJ Open 2021; 11:e051447. [PMID: 34521674 PMCID: PMC8441223 DOI: 10.1136/bmjopen-2021-051447] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/06/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To assess the knowledge, attitude and practice (KAP) of the global general population regarding COVID-19. DESIGN Systematic review and meta-analysis. METHODS MEDLINE, Embase, CINAHL and PsycINFO were used to identify articles published between 1 January and 30 June 2021 assessing KAP regarding COVID-19 in the global general population. The quality of eligible studies was assessed. Random effects model was used to obtain the pooled proportion of each component of KAP of COVID-19. Heterogeneity (I2) was tested, and subgroup and correlation analyses were performed. RESULTS Out of 3099 records, 84 studies from 45 countries across all continents assessing 215 731 participants' COVID-19 KAP were included in this study. The estimated overall correct answers for knowledge, good attitude and good practice in this review were 75% (95% CI 72% to 77%), 74% (95% CI 71% to 77%) and 70% (95% CI 66% to 74%), respectively. Low-income countries, men, people aged below 30 years and people with 12 years of education or less had the lowest practice scores. Practice scores were below 60% in Africa and Europe/Oceania. Overall heterogeneity was high (I2 ≥98%), and publication bias was present (Egger's regression test, p<0.01). A positive significant correlation between knowledge and practice (r=0.314, p=0.006), and attitude and practice (r=0.348, p=0.004) was observed. CONCLUSIONS This study's findings call for community-based awareness programmes to provide a simple, clear and understandable message to reinforce knowledge especially regarding efficacy of the preventive measures in low and lower middle-income countries, and in Africa and Europe/Oceania, which will translate into good practice. Targeted intervention for men, people with low education, unemployed people and people aged below 30 years should be recommended. As most of the included studies were online surveys, underprivileged and remote rural people may have been missed out. Additional studies are needed to cover heterogeneous populations. PROSPERO REGISTRATION NUMBER CRD42020203476.
Collapse
Affiliation(s)
- Bodrun Naher Siddiquea
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Aishwarya Shetty
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Oashe Bhattacharya
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Afsana Afroz
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Centre of Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Baki Billah
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
264
|
Guo Z, Kang S, Wu Q, Wang S, Crickmore N, Zhou X, Bravo A, Soberón M, Zhang Y. The regulation landscape of MAPK signaling cascade for thwarting Bacillus thuringiensis infection in an insect host. PLoS Pathog 2021; 17:e1009917. [PMID: 34495986 PMCID: PMC8452011 DOI: 10.1371/journal.ppat.1009917] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/20/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Host-pathogen interactions are central components of ecological networks where the MAPK signaling pathways act as central hubs of these complex interactions. We have previously shown that an insect hormone modulated MAPK signaling cascade participates as a general switch to trans-regulate differential expression of diverse midgut genes in the diamondback moth, Plutella xylostella (L.) to cope with the insecticidal action of Cry1Ac toxin, produced by the entomopathogenic bacterium Bacillus thuringiensis (Bt). The relationship between topology and functions of this four-tiered phosphorylation signaling cascade, however, is an uncharted territory. Here, we carried out a genome-wide characterization of all the MAPK orthologs in P. xylostella to define their phylogenetic relationships and to confirm their evolutionary conserved modules. Results from quantitative phosphoproteomic analyses, combined with functional validations studies using specific inhibitors and dsRNAs lead us to establish a MAPK "road map", where p38 and ERK MAPK signaling pathways, in large part, mount a resistance response against Bt toxins through regulating the differential expression of multiple Cry toxin receptors and their non-receptor paralogs in P. xylostella midgut. These data not only advance our understanding of host-pathogen interactions in agricultural pests, but also inform the future development of biopesticides that could suppress Cry resistance phenotypes.
Collapse
Affiliation(s)
- Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (ZG); (YZ)
| | - Shi Kang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (ZG); (YZ)
| |
Collapse
|
265
|
Kwon JH, Wi CI, Seol HY, Park M, King K, Ryu E, Sohn S, Liu H, Juhn YJ. Risk, Mechanisms and Implications of Asthma-Associated Infectious and Inflammatory Multimorbidities (AIMs) among Individuals With Asthma: a Systematic Review and a Case Study. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:697-718. [PMID: 34486256 PMCID: PMC8419637 DOI: 10.4168/aair.2021.13.5.697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/15/2021] [Indexed: 11/25/2022]
Abstract
Our prior work and the work of others have demonstrated that asthma increases the risk of a broad range of both respiratory (e.g., pneumonia and pertussis) and non-respiratory (e.g., zoster and appendicitis) infectious diseases as well as inflammatory diseases (e.g., celiac disease and myocardial infarction [MI]), suggesting the systemic disease nature of asthma and its impact beyond the airways. We call these conditions asthma-associated infectious and inflammatory multimorbidities (AIMs). At present, little is known about why some people with asthma are at high-risk of AIMs, and others are not, to the extent to which controlling asthma reduces the risk of AIMs and which specific therapies mitigate the risk of AIMs. These questions represent a significant knowledge gap in asthma research and unmet needs in asthma care, because there are no guidelines addressing the identification and management of AIMs. This is a systematic review on the association of asthma with the risk of AIMs and a case study to highlight that 1) AIMs are relatively under-recognized conditions, but pose major health threats to people with asthma; 2) AIMs provide insights into immunological and clinical features of asthma as a systemic inflammatory disease beyond a solely chronic airway disease; and 3) it is time to recognize AIMs as a distinctive asthma phenotype in order to advance asthma research and improve asthma care. An improved understanding of AIMs and their underlying mechanisms will bring valuable and new perspectives improving the practice, research, and public health related to asthma.
Collapse
Affiliation(s)
- Jung Hyun Kwon
- Precision Population Science Lab, Department of Pediatrics and Adolescence Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Pediatrics, Korea University College of Medicine, Seoul, Korea
| | - Chung-Il Wi
- Precision Population Science Lab, Department of Pediatrics and Adolescence Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hee Yun Seol
- Precision Population Science Lab, Department of Pediatrics and Adolescence Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Miguel Park
- Division of Allergy and Immunology, Mayo Clinic, Rochester, MN, USA
| | - Katherine King
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Euijung Ryu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Sunghwan Sohn
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Hongfang Liu
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Young J Juhn
- Precision Population Science Lab, Department of Pediatrics and Adolescence Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
266
|
Saied AA, Metwally AA, Madkhali NAB, Haque S, Dhama K. Egypt's COVID-19 Recent Happenings and Perspectives: A Mini-Review. Front Public Health 2021; 9:696082. [PMID: 34485226 PMCID: PMC8415352 DOI: 10.3389/fpubh.2021.696082] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/12/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected countries across the world. While the zoonotic aspects of SARS-CoV-2 are still under investigation, bats and pangolins are currently cited as the animal origin of the virus. Several types of vaccines against COVID-19 have been developed and are being used in vaccination drives across the world. A number of countries are experiencing second and third waves of the pandemic, which have claimed nearly four million lives out of the 180 million people infected globally as of June 2021. The emerging SARS-CoV-2 variants and mutants are posing high public health concerns owing to their rapid transmissibility, higher severity, and in some cases, ability to infect vaccinated people (vaccine breakthrough). Here in this mini-review, we specifically looked at the efforts and actions of the Egyptian government to slow down and control the spread of COVID-19. We also review the COVID-19 statistics in Egypt and the possible reasons behind the low prevalence and high case fatality rate (CFR%), comparing Egypt COVID-19 statistics with China (the epicenter of COVID-19 pandemic) and the USA, Brazil, India, Italy, and France (the first countries in which the numbers of patients infected with COVID-19). Additionally, we have summarized the SARS-CoV-2 variants, vaccines used in Egypt, and the use of medicinal plants as preventive and curative options.
Collapse
Affiliation(s)
- AbdulRahman A Saied
- Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, Egypt.,Touristic Activities and Interior Offices Sector (Aswan Office), Ministry of Tourism and Antiquities, Aswan, Egypt
| | - Asmaa A Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | | | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia.,Bursa Uludağ University, Faculty of Medicine, Bursa, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
267
|
Pilaquinga F, Morey J, Torres M, Seqqat R, Piña MDLN. Silver nanoparticles as a potential treatment against SARS-CoV-2: A review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1707. [PMID: 33638618 PMCID: PMC7995207 DOI: 10.1002/wnan.1707] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Several human coronaviruses (HCoVs) are distinguished by the ability to generate epidemics or pandemics, with their corresponding diseases characterized by severe respiratory illness, such as that which occurs in severe acute respiratory syndrome (SARS-CoV), Middle East respiratory syndrome (MERS-CoV), and, today, in SARS-CoV-2, an outbreak that has struck explosively and uncontrollably beginning in December 2019 and has claimed the lives of more than 1.9 M people worldwide as of January 2021. The development of vaccines has taken one year, which is why it is necessary to investigate whether some already-existing alternatives that have been successfully developed in recent years can mitigate the pandemic's advance. Silver nanoparticles (AgNPs) have proved effective in antiviral action. Thus, in this review, several in vitro and in vivo studies of the effect of AgNPs on viruses that cause respiratory diseases are analyzed and discussed to promote an understanding of the possible interaction of AgNPs with SARS-CoV-2. The study focuses on several in vivo toxicological studies of AgNPs and a dose extrapolation to humans to determine the chief avenue of exposure. It can be concluded that the use of AgNPs as a possible treatment for SARS-CoV-2 could be viable, based on comparing the virus' behavior to that of similar viruses in in vivo studies, and that the suggested route of administration in terms of least degree of adverse effects is inhalation. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Fernanda Pilaquinga
- School of Chemistry SciencesPontificia Universidad Católica del EcuadorQuitoEcuador
- Department of ChemistryUniversity of the Balearic IslandsPalma de MallorcaSpain
| | - Jeroni Morey
- Department of ChemistryUniversity of the Balearic IslandsPalma de MallorcaSpain
| | - Marbel Torres
- Immunology and Virology Laboratory, Nanoscience and Nanotechnology CenterUniversidad de las Fuerzas Armadas, ESPESangolquíEcuador
| | - Rachid Seqqat
- Immunology and Virology Laboratory, Nanoscience and Nanotechnology CenterUniversidad de las Fuerzas Armadas, ESPESangolquíEcuador
| | | |
Collapse
|
268
|
Lugo-Robles R, Garges EC, Olsen CH, Brett-Major DM. Identifying Nontraditional Epidemic Disease Risk Factors Associated with Major Health Events from World Health Organization and World Bank Open Data. Am J Trop Med Hyg 2021; 105:896-902. [PMID: 34460422 PMCID: PMC8592146 DOI: 10.4269/ajtmh.20-1318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 07/09/2021] [Indexed: 11/22/2022] Open
Abstract
Health events emerge from host, community, environment, and pathogen factors-forecasting epidemics is a complex task. We describe an exploratory analysis to identify economic risk factors that could aid epidemic risk assessment. A line list was constructed using the World Health Organization Disease Outbreak News (2016-2018) and economic indicators from the World Bank. Poisson regression employing forward imputations was used to establish relationships with the frequency with which countries reported public health events. Economic indicators demonstrated strong performance appropriate for further assessment in surveillance programming. In our analysis, three economic indicators were significantly associated to event reporting: how much the country's urban population changed, its average forest area, and a novel economic indicator we developed that assessed how much the gross domestic product changed per capita. Other economic indicators performed less well: changes in total, female, urban, and rural population sizes; population density; net migration; change in per cent forest area; total forest area; and another novel indicator, change in percent of trade as a fraction of the total economy. We then undertook a further analysis of the start of the current COVID-19 pandemic that revealed similar associations, but confounding by global disease burden is likely. Continued development of forecasting approaches capturing information relevant to whole-of-society factors (e.g., economic factors as assessed in our study) could improve the risk management process through earlier hazard identification and inform strategic decision processes in multisectoral strategies to preventing, detecting, and responding to pandemic-threat events.
Collapse
Affiliation(s)
- Roberta Lugo-Robles
- Department of Preventive Medicine and Biostatics, Uniformed Services University, Bethesda, Maryland
- Henry M. Jackson Foundation, Bethesda, Maryland
| | - Eric C. Garges
- Department of Preventive Medicine and Biostatics, Uniformed Services University, Bethesda, Maryland
| | - Cara H. Olsen
- Department of Preventive Medicine and Biostatics, Uniformed Services University, Bethesda, Maryland
| | - David M. Brett-Major
- College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
269
|
GC-MS and Antibacterial Potential of Methanolic Extract Hyphaene Thebaica L. Fruit Pulp against Antibiotics-resistant Pathogens. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Methanol extract obtained from the fruits of Hyphaene thebaica (doum fruit) was chemically analyzed using GC-MS (gas chromatography-mass spectrometry). Up to thirty compounds were identified in the extract. Acetic acid decyl ester (36.80%), n-Hexadecenoic acid (5.14%),1H-Purine-2,6-dione, 3,7-dihydro-1-methyl (4.24%), 2-Furancarboxaldehyde, 5-(2-hydroxy-2-phenylacetyl)-dimethylhydrazone (4.67%), Propanoic acid 3,3′-dithiobis (3.52%) and [1,2,4] Triazolo[1,5-a]pyrimidin-7-ol were major components. The antibacterial potential of the extract against six clinical bacterial isolates resistant to antibiotics was also investigated, using various in vitro assays including well diffusion, minimal inhibitory and minimal bactericidal concentration. It was found that, the methanol extract of doum fruit was characterized by antibacterial action toward one Gram-positive ß-lactamase bacteria (Staphylococcus aureus), and one Gram-negative Multidrug-resistant bacteria (Proteus mirabilis). The other four bacterial strains showed no susceptibility towards the extract. The study suggests future additional biochemical and microbiological investigations in order to understand the mechanism of action of the bioactive molecules as antimicrobial agents.
Collapse
|
270
|
Nunn CL, Vining AQ, Chakraborty D, Reiskind MH, Young HS. Effects of host extinction and vector preferences on vector-borne disease risk in phylogenetically structured host-hector communities. PLoS One 2021; 16:e0256456. [PMID: 34424937 PMCID: PMC8382198 DOI: 10.1371/journal.pone.0256456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/08/2021] [Indexed: 11/26/2022] Open
Abstract
Anthropogenic disturbance impacts the phylogenetic composition and diversity of ecological communities. While changes in diversity are known to dramatically change species interactions and alter disease dynamics, the effects of phylogenetic changes in host and vector communities on disease have been relatively poorly studied. Using a theoretical model, we investigated how phylogeny and extinction influence network structural characteristics relevant to disease transmission in disturbed environments. We modelled a multi-host, multi-vector community as a bipartite ecological network, where nodes represent host and vector species and edges represent connections among them through vector feeding, and we simulated vector preferences and threat status on host and parasite phylogenies. We then simulated loss of hosts, including phylogenetically clustered losses, to investigate how extinction influences network structure. We compared effects of phylogeny and extinction to those of host specificity, which we predicted to strongly increase network modularity and reduce disease prevalence. The simulations revealed that extinction often increased modularity, with higher modularity as species loss increased, although not as much as increasing host specificity did. These results suggest that extinction itself, all else being equal, may reduce disease prevalence in disturbed communities. However, in real communities, systematic patterns in species loss (e.g. favoring high competence species) or changes in abundance may counteract these effects. Unexpectedly, we found that effects of phylogenetic signal in host and vector traits were relatively weak, and only important when phylogenetic signal of host and vector traits were similar, or when these traits both varied.
Collapse
Affiliation(s)
- Charles L. Nunn
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
- Duke Global Health Institute, Durham, North Carolina, United States of America
| | - Alexander Q. Vining
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
- Graduate Program in Animal Behavior, UC Davis, Davis, California, United States of America
| | - Debapriyo Chakraborty
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
- INRAE ENVT IHAP, National Veterinary School of Toulouse, Toulouse, France
| | - Michael H. Reiskind
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Hillary S. Young
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, United States of America
| |
Collapse
|
271
|
Industrial Animal Farming and Zoonotic Risk: COVID-19 as a Gateway to Sustainable Change? A Scoping Study. SUSTAINABILITY 2021. [DOI: 10.3390/su13169251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The threat of zoonoses (i.e., human infectious diseases transmitted from animals) because of industrial animal farming may be receiving less attention in society due to the putative wildlife origin of COVID-19. To identify societal responses to COVID-19 that do address or affect the risk of future zoonoses associated with industrial animal farming, the literature was screened for measures, actions, proposals and attitudes following the guidelines of a scoping review. Forty-one articles with relevant information published between 1 January 2020 and 30 April 2021 were identified directly or indirectly via bibliographies from 138 records retrieved via Google Scholar. Analysis of relevant content revealed ten fields of policy action amongst which biosecurity and change in dietary habits were the dominant topics. Further searches for relevant records within each field of policy action retrieved another eight articles. Identified responses were furthermore classified and evaluated according to groups of societal actors, implying different modes of regulation and governance. Based on the results, a suggested policy strategy is presented for moving away from food production in factory farms and supporting sustainable farming, involving the introduction of a tax on the demand side and subsidies for the development and production of alternative meat.
Collapse
|
272
|
Maurya R, Kanakan A, Vasudevan JS, Chattopadhyay P, Pandey R. Infection outcome needs two to tango: human host and the pathogen. Brief Funct Genomics 2021; 21:90-102. [PMID: 34402498 PMCID: PMC8385967 DOI: 10.1093/bfgp/elab037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases are potential drivers for human evolution, through a complex, continuous and dynamic interaction between the host and the pathogen/s. It is this dynamic interaction that contributes toward the clinical outcome of a pathogenic disease. These are modulated by contributions from the human genetic variants, transcriptional response (including noncoding RNA) and the pathogen’s genome architecture. Modern genomic tools and techniques have been crucial for the detection and genomic characterization of pathogens with respect to the emerging infectious diseases. Aided by next-generation sequencing (NGS), risk stratification of host population/s allows for the identification of susceptible subgroups and better disease management. Nevertheless, many challenges to a general understanding of host–pathogen interactions remain. In this review, we elucidate how a better understanding of the human host-pathogen interplay can substantially enhance, and in turn benefit from, current and future applications of multi-omics based approaches in infectious and rare diseases. This includes the RNA-level response, which modulates the disease severity and outcome. The need to understand the role of human genetic variants in disease severity and clinical outcome has been further highlighted during the Coronavirus disease 2019 (COVID-19) pandemic. This would enhance and contribute toward our future pandemic preparedness.
Collapse
Affiliation(s)
- Ranjeet Maurya
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Akshay Kanakan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India
| | - Janani Srinivasa Vasudevan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India
| | - Partha Chattopadhyay
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
273
|
Liquid-liquid phase separation in human health and diseases. Signal Transduct Target Ther 2021; 6:290. [PMID: 34334791 PMCID: PMC8326283 DOI: 10.1038/s41392-021-00678-1] [Citation(s) in RCA: 332] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/26/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence suggests that liquid-liquid phase separation (LLPS) represents a vital and ubiquitous phenomenon underlying the formation of membraneless organelles in eukaryotic cells (also known as biomolecular condensates or droplets). Recent studies have revealed evidences that indicate that LLPS plays a vital role in human health and diseases. In this review, we describe our current understanding of LLPS and summarize its physiological functions. We further describe the role of LLPS in the development of human diseases. Additionally, we review the recently developed methods for studying LLPS. Although LLPS research is in its infancy-but is fast-growing-it is clear that LLPS plays an essential role in the development of pathophysiological conditions. This highlights the need for an overview of the recent advances in the field to translate our current knowledge regarding LLPS into therapeutic discoveries.
Collapse
|
274
|
Gunathilake TMSU, Ching YC, Uyama H, Chuah CH. Nanotherapeutics for treating coronavirus diseases. J Drug Deliv Sci Technol 2021; 64:102634. [PMID: 34127930 PMCID: PMC8190278 DOI: 10.1016/j.jddst.2021.102634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
Viral diseases have recently become a threat to human health and rapidly become a significant cause of mortality with a continually exacerbated unfavorable socio-economic impact. Coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome (MERS-CoV), and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), have threatened human life, with immense accompanying morbidity rates; the COVID-19 (caused by SARS-CoV-2) epidemic has become a severe threat to global public health. In addition, the design process of antiviral medications usually takes years before the treatments can be made readily available. Hence, it is necessary to invest scientifically and financially in a technology platform that can then be quickly repurposed on demand to be adequately positioned for this kind of pandemic situation through lessons learned from the previous pandemics. Nanomaterials/nanoformulations provide such platform technologies, and a proper investigation into their basic science and biological interactions would be of great benefit for potential vaccine and therapeutic development. In this respect, intelligent and advanced nano-based technologies provide specific physico-chemical properties, which can help fix the key issues related to the treatments of viral infections. This review aims to provide an overview of the latest research on the effective use of nanomaterials in the treatment of coronaviruses. Also raised are the problems, perspectives of antiviral nanoformulations, and the possibility of using nanomaterials effectively against current pandemic situations.
Collapse
Affiliation(s)
- Thennakoon M Sampath U Gunathilake
- Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yern Chee Ching
- Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Cheng Hock Chuah
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
275
|
Bhujbal N, Gaikwad D, Jagdale Y, Pawar C. Synthesis, antimicrobial and anti‐tubercular activity study of N‐(substituted‐benzyl)‐4‐(trifluoromethyl)thiazole‐2‐sulfonamide and 2‐(N‐(substituted‐benzyl)sulfamoyl)thiazole‐4‐carboxylic acid. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Namdeo Bhujbal
- Department of Chemistry, Chemistry Research Centre Annasaheb Magar Mahavidyalaya, Hadapsar Pune Maharashtra India
| | - Dattatray Gaikwad
- Department of Chemistry Deogiri College Aurangabad Maharashtra India
| | - Yuvraj Jagdale
- Department of Chemistry, Chemistry Research Centre Annasaheb Magar Mahavidyalaya, Hadapsar Pune Maharashtra India
| | - Chandrakant Pawar
- Department of Chemical Technology Dr. Babasaheb Ambedkar Marathwada University Aurangabad Maharashtra India
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu‐Natal Westville Campus, Durban South Africa
| |
Collapse
|
276
|
Shin J, Jung J. Comparative population genetics of the invasive mosquito Aedes albopictus and the native mosquito Aedes flavopictus in the Korean peninsula. Parasit Vectors 2021; 14:377. [PMID: 34315478 PMCID: PMC8314453 DOI: 10.1186/s13071-021-04873-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aedes mosquitoes are important invasive species contributing to the spread of chikungunya, dengue fever, yellow fever, zika virus, and other dangerous vector-borne diseases. Aedes albopictus is native to southeast Asia, with rapid expansion due to human activity, showing a wide distribution in the Korean peninsula. Aedes flavopictus is considered to be native to East Asia, with a broad distribution in the region, including the Korean peninsula. A better understanding of the genetic diversity of these species is critical for establishing strategies for disease prevention and vector control. METHODS We obtained DNA from 148 specimens of Ae. albopictus and 166 specimens of Ae. flavopictus in Korea, and amplified two mitochondrial genes (COI and ND5) to compare the genetic diversity and structure of the two species. RESULTS We obtained a 658-bp sequence of COI and a 423-bp sequence of ND5 from both mosquito species. We found low diversity and a nonsignificant population genetic structure in Ae. albopictus, and high diversity and a nonsignificant structure in Ae. flavopictus for these two mitochondrial genes. Aedes albopictus had fewer haplotypes with respect to the number of individuals, and a slight mismatch distribution was confirmed. By contrast, Ae. flavopictus had a large number of haplotypes compared with the number of individuals, and a large unimodal-type mismatch distribution was confirmed. Although the genetic structure of both species was nonsignificant, Ae. flavopictus exhibited higher genetic diversity than Ae. albopictus. CONCLUSIONS Aedes albopictus appears to be an introduced species, whereas Ae. flavopictus is endemic to the Korean peninsula, and the difference in genetic diversity between the two species is related to their adaptability and introduction history. Further studies on the genetic structure and diversity of these mosquitos will provide useful data for vector control.
Collapse
Affiliation(s)
- Jiyeong Shin
- The Division of EcoCreative, Ewha Womans University, Seoul, 03760 South Korea
| | - Jongwoo Jung
- The Division of EcoCreative, Ewha Womans University, Seoul, 03760 South Korea
- Department of Science Education, Ewha Womans University, Seoul, 03760 South Korea
| |
Collapse
|
277
|
Crum T, Mooney K, Tiwari BR. Current situation of vaccine injury compensation program and a future perspective in light of COVID-19 and emerging viral diseases. F1000Res 2021; 10:652. [PMID: 35035888 PMCID: PMC8733825 DOI: 10.12688/f1000research.51160.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 04/06/2024] Open
Abstract
Background: Vaccines have had a great impact on disease prevention and mortality reduction. Very rarely, vaccines also can result in serious adverse effects. In consideration of this fact, vaccine injury compensation programs have been implemented in many countries to compensate a vaccinee for associated adverse effects. The existing vaccine injury compensation system addresses routine immunization schemes. However, there are rising concerns about the compensation for adverse effects caused by new vaccines such as those developed for coronavirus disease 2019 (COVID-19). The objective of this article is to review the existing vaccine injury compensation programs in different countries. The review also highlights the necessity to include all upcoming new vaccines for COVID-19 and other emerging viral diseases in the compensation schemes. Methods : Published articles relating to vaccine compensation injury programs, vaccines, injuries, disabilities, illnesses, and deaths resulting from vaccination were searched in data bases. Through a careful review of the abstracts, 25 relevant articles were selected for analysis. Results: We identified 27 countries on four continents with vaccine injury compensation schemes: 17 countries in Europe, 7 countries in Asia, the United States, a Canadian Province and New Zealand. No programs were identified in Africa and in South America. Program design, funding, and eligibility for compensation vary vastly between countries. We identified 17 countries operating well-established vaccine injury compensation programs. However, minimal information is available on numerous other countries. Conclusion: We have identified 27 countries operating vaccine injury compensation programs. In Canada, Quebec is the only province with a scheme; however, discussions are ongoing in Canada for nationwide implementation in light of COVID 19. Study limitations include limited scientific material, which hindered our research. Additional data concerning payout for each type of injury and the number of claimants related to a specific vaccine injury worldwide could provide a more comprehensive analysis.
Collapse
Affiliation(s)
- Tommie Crum
- Department of Microbiology, Saint James School of Medicine, Albert Lake Dr The Quarter, AL-2640, Anguilla
| | - Kirsten Mooney
- Department of Microbiology, Saint James School of Medicine, Albert Lake Dr The Quarter, AL-2640, Anguilla
| | - Birendra R. Tiwari
- Department of Microbiology and Immunology, American University of Barbados, School of Medicine, Saint Michael, Wildey, BB 11100, Barbados
| |
Collapse
|
278
|
Crum T, Mooney K, Tiwari BR. Current situation of vaccine injury compensation program and a future perspective in light of COVID-19 and emerging viral diseases. F1000Res 2021; 10:652. [PMID: 35035888 PMCID: PMC8733825 DOI: 10.12688/f1000research.51160.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Vaccines have had a great impact on disease prevention and reducing mortality. Very rarely, vaccines also can result in serious adverse effects. In consideration of this fact, vaccine injury compensation programs have been implemented in many countries to compensate a vaccinee for associated adverse effects. The existing vaccine injury compensation system addresses routine immunization schemes. However, there are rising concerns about the compensation for adverse effects caused by new vaccines such as those developed for coronavirus disease 2019 (COVID-19). This review focuses on vaccine injury compensation programs and highlights the necessity to include all upcoming new vaccines for COVID-19 and other emerging viral diseases in the compensation schemes. Methods: Published articles relating to vaccine compensation injury programs, vaccines, injuries, disabilities, illnesses, and deaths resulting from vaccination were searched in data bases. Through a careful review of the abstracts, 25 relevant articles were selected for analysis. Results: We identified 27 countries on four continents with vaccine injury compensation schemes: 17 countries in Europe, 7 countries in Asia, the United States, a Canadian Province and New Zealand. No programs were identified in Africa and in South America. Program design, funding, and eligibility for compensation vary vastly between countries. We identified 17 countries operating well-established vaccine injury compensation programs. However, minimal information is available on numerous other countries. Conclusion: We conclude that the vaccine injury compensation programs are available in limited number of countries across four continents - mostly in Europe. Lack of standard approach and scope of injury prevention and compensation programs across the countries exists. Some important limitations include limited scientific material, which hindered our research. Therefore, additional data concerning payout for each type of injury and the number of claimants related to a specific vaccine injury worldwide could provide a more comprehensive analysis.
Collapse
Affiliation(s)
- Tommie Crum
- Department of Microbiology, Saint James School of Medicine, Albert Lake Dr The Quarter, AL-2640, Anguilla
| | - Kirsten Mooney
- Department of Microbiology, Saint James School of Medicine, Albert Lake Dr The Quarter, AL-2640, Anguilla
| | - Birendra R. Tiwari
- Department of Microbiology and Immunology, American University of Barbados, School of Medicine, Saint Michael, Wildey, BB 11100, Barbados
| |
Collapse
|
279
|
Development of a loop-mediated isothermal amplification assay for the rapid detection of six common respiratory viruses. Eur J Clin Microbiol Infect Dis 2021; 40:2525-2532. [PMID: 34264402 PMCID: PMC8280575 DOI: 10.1007/s10096-021-04300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/23/2021] [Indexed: 11/04/2022]
Abstract
Due to the highly contagious and spreads quickly of respiratory infectious diseases (ADR), the availability of rapid, sensitive, and reliable diagnostic methods is essential for disease control. Here, we develop an approach based on loop-mediated isothermal amplification (LAMP) for the detection of influenza A virus (Flu A), Flu A subtypes H1N1and H3N2, influenza B virus (Flu B), respiratory syncytial virus (RSV) subtypes A and B, human adenovirus (HAdV), parainfluenza virus (PIV) subtypes 1 and 3, and human rhinovirus (HRV) simultaneously. We designed primers specific to detect respiratory viruses above, optimized the RT-LAMP assay and evaluated it for its sensitivity and specificity of detection using real-time monitoring based on SYBR Green I. We also evaluated the result of our RT-LAMP assay on 638 nasopharyngeal swab specimens with the commercial RT-PCR by Cohen’s Kappa. The inconsistent results were verified by Sanger sequencing furtherly. The developed RT-LAMP assay displayed a detection limit of 1 × 102 copies/ml RNA close to that of RT-PCR; no cross-reactivity was observed in the 10 kinds of viruses studied. The results obtained with 638 clinical samples indicate that the developed method has high specificity (0.988–1) and sensitivity (0.863–1) for viruses studied, and the Kappa value of all viruses was more than 0.85 revealed an excellent agreement between the two methods. We developed an RT-LAMP-based method and optimized for the detection of common respiratory viruses. It may be a powerful tool for rapid and reliable clinical diagnosis of ADR in primary hospitals.
Collapse
|
280
|
Singh KR, Nayak V, Singh J, Singh AK, Singh RP. Potentialities of bioinspired metal and metal oxide nanoparticles in biomedical sciences. RSC Adv 2021; 11:24722-24746. [PMID: 35481029 PMCID: PMC9036962 DOI: 10.1039/d1ra04273d] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
To date, various reports have shown that metallic gold bhasma at the nanoscale form was used as medicine as early as 2500 B.C. in India, China, and Egypt. Owing to their unique physicochemical, biological, and electronic properties, they have broad utilities in energy, environment, agriculture and more recently, the biomedical field. The biomedical domain has been used in drug delivery, imaging, diagnostics, therapeutics, and biosensing applications. In this review, we will discuss and highlight the increasing control over metal and metal oxide nanoparticle structures as smart nanomaterials utilized in the biomedical domain to advance the role of biosynthesized nanoparticles for improving human health through wide applications in the targeted drug delivery, controlled release drug delivery, wound dressing, tissue scaffolding, and medical implants. In addition, we have discussed concerns related to the role of these types of nanoparticles as an anti-viral agent by majorly highlighting the ways to combat the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic, along with their prospects.
Collapse
Affiliation(s)
- Kshitij Rb Singh
- Department of Chemistry, Govt. V.Y.T. PG Autonomous College Durg Chhattisgarh (491001) India
| | - Vanya Nayak
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University Amarkantak Madhya Pradesh (484886) India +91-91-0934-6565
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi Uttar Pradesh (221005) India
| | - Ajaya Kumar Singh
- Department of Chemistry, Govt. V.Y.T. PG Autonomous College Durg Chhattisgarh (491001) India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University Amarkantak Madhya Pradesh (484886) India +91-91-0934-6565
| |
Collapse
|
281
|
Liu Q, Zhang A, Wang R, Zhang Q, Cui D. A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications. NANO-MICRO LETTERS 2021; 13:154. [PMID: 34241715 PMCID: PMC8271064 DOI: 10.1007/s40820-021-00674-8] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/31/2021] [Indexed: 05/19/2023]
Abstract
Since the ferromagnetic (Fe3O4) nanoparticles were firstly reported to exert enzyme-like activity in 2007, extensive research progress in nanozymes has been made with deep investigation of diverse nanozymes and rapid development of related nanotechnologies. As promising alternatives for natural enzymes, nanozymes have broadened the way toward clinical medicine, food safety, environmental monitoring, and chemical production. The past decade has witnessed the rapid development of metal- and metal oxide-based nanozymes owing to their remarkable physicochemical properties in parallel with low cost, high stability, and easy storage. It is widely known that the deep study of catalytic activities and mechanism sheds significant influence on the applications of nanozymes. This review digs into the characteristics and intrinsic properties of metal- and metal oxide-based nanozymes, especially emphasizing their catalytic mechanism and recent applications in biological analysis, relieving inflammation, antibacterial, and cancer therapy. We also conclude the present challenges and provide insights into the future research of nanozymes constituted of metal and metal oxide nanomaterials.
Collapse
Affiliation(s)
- Qianwen Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Amin Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China.
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China.
| | - Ruhao Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China.
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
282
|
Shivaprakash KN, Sen S, Paul S, Kiesecker JM, Bawa KS. Mammals, wildlife trade, and the next global pandemic. Curr Biol 2021; 31:3671-3677.e3. [PMID: 34237267 DOI: 10.1016/j.cub.2021.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/09/2021] [Accepted: 06/02/2021] [Indexed: 12/23/2022]
Abstract
Most new infectious diseases emerge when pathogens transfer from animals to humans.1,2 The suspected origin of the COVID pandemic in a wildlife wet market has resurfaced debates on the role of wildlife trade as a potential source of emerging zoonotic diseases.3-5 Yet there are no studies quantitatively assessing zoonotic disease risk associated with wildlife trade. Combining data on mammal species hosting zoonotic viruses and mammals known to be in current and future wildlife trade,6 we found that one-quarter (26.5%) of the mammals in wildlife trade harbor 75% of known zoonotic viruses, a level much higher than domesticated and non-traded mammals. The traded mammals also harbor distinct compositions of zoonotic viruses and different host reservoirs from non-traded and domesticated mammals. Furthermore, we highlight that primates, ungulates, carnivores, and bats represent significant zoonotic disease risks as they host 132 (58%) of 226 known zoonotic viruses in present wildlife trade, whereas species of bats, rodents, and marsupials represent significant zoonotic disease risks in future wildlife trade. Thus, the risk of carrying zoonotic diseases is not equal for all mammal species in wildlife trade. Overall, our findings strengthen the evidence that wildlife trade and zoonotic disease risks are strongly associated, and that mitigation measures should prioritize species with the highest risk of carrying zoonotic viruses. Curbing the sales of wildlife products and developing principles that support the sustainable and healthy trade of wildlife could be cost-effective investments given the potential risk and consequences of zoonotic outbreaks.
Collapse
Affiliation(s)
| | - Sandeep Sen
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Sriramapura, Jakkur Post, Bangalore, Karnataka 560064, India
| | - Seema Paul
- The Nature Conservancy Center, Lajpat Nagar III, New Delhi 110024, India
| | - Joseph M Kiesecker
- Global Lands Program, The Nature Conservancy, Fort Collins, CO 80524, USA
| | - Kamaljit S Bawa
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Sriramapura, Jakkur Post, Bangalore, Karnataka 560064, India; Department of Biology, University of Massachusetts, 100 Morrissey Boulevard, Boston, MA 02125, USA
| |
Collapse
|
283
|
Plowright RK, Hudson PJ. From Protein to Pandemic: The Transdisciplinary Approach Needed to Prevent Spillover and the Next Pandemic. Viruses 2021; 13:1298. [PMID: 34372504 PMCID: PMC8310336 DOI: 10.3390/v13071298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 01/10/2023] Open
Abstract
Pandemics are a consequence of a series of processes that span scales from viral biology at 10-9 m to global transmission at 106 m. The pathogen passes from one host species to another through a sequence of events that starts with an infected reservoir host and entails interspecific contact, innate immune responses, receptor protein structure within the potential host, and the global spread of the novel pathogen through the naive host population. Each event presents a potential barrier to the onward passage of the virus and should be characterized with an integrated transdisciplinary approach. Epidemic control is based on the prevention of exposure, infection, and disease. However, the ultimate pandemic prevention is prevention of the spillover event itself. Here, we focus on the potential for preventing the spillover of henipaviruses, a group of viruses derived from bats that frequently cross species barriers, incur high human mortality, and are transmitted among humans via stuttering chains. We outline the transdisciplinary approach needed to prevent the spillover process and, therefore, future pandemics.
Collapse
Affiliation(s)
- Raina K. Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Peter J. Hudson
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, State College, PA 16802, USA;
| |
Collapse
|
284
|
Asem N, Ramadan A, Hassany M, Ghazy RM, Abdallah M, Ibrahim M, Gamal EM, Hassan S, Kamal N, Zaid H. Pattern and determinants of COVID-19 infection and mortality across countries: An ecological study. Heliyon 2021; 7:e07504. [PMID: 34254048 PMCID: PMC8264269 DOI: 10.1016/j.heliyon.2021.e07504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 03/30/2021] [Accepted: 07/05/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND This work aimed to identify the mathematical model and ecological determinants of COVID-19 infection and mortality across different countries during the first six months of the pandemic. METHODOLOGY In this study, authors used the online available data sources of randomly selected 18 countries to figure out potential determinants of COVID-19 transmissibility and mortality. The studied variables were environmental factors (daily average temperature, daily humidity), socioeconomic attributes (population age structure, count and density, human development index, per capita income (PCI), gross domestic product, internet coverage) mobility trends and chronic diseases. Researchers used the linear and exponential time series analysis, and further utilized multivariate techniques to explain the variance in the monthly increase in cases and deaths. RESULTS In the first two months, the R2 of linear models for the cases and deaths were higher than that of the corresponding R2 of the exponential model. Later one, R2 of the exponential model was occasionally relatively higher than that of the linear model. The exponential growth rate of new cases was significantly associated with mobility trends (β = 0.00398, P = 0.002), temperature (β = 0.000679, P = 0.011), humidity (β = 0.000249, P < 0.001), and the proportion of population aged ≥65 years (β = -0.000959, P = 0.012). Similarly, the exponential growth rate of deaths was significantly associated with mobility trends (β = 0.0027, P = 0.049), temperature (β = 0.0014, P < 0.001), humidity (β = -0.0026, P < 0.001), and PCI of countries. During this period, COVID-19 transmissibility was evident to be controlled as soon as social mobility is decreased by about 40% of the baseline over 3 months controlling for the other predictors. CONCLUSION Controlling of COVID-19 pandemic is based mainly on controlling social mobility. Role of environmental determinants like temperature and humidity was well noticed on disease fatality and transmissibility. Socio-demographic determinants of COVID-19 spread and fatality included modifiable risk factors like PCI and non-modifiable risk factors like ageing.
Collapse
Affiliation(s)
- Noha Asem
- Department of Public Health, Faculty of Medicine, Cairo University, Egypt
- Ministry of Health and Population, Egypt
| | - Ahmed Ramadan
- Department of Data Science and Medical Information, DataClin CRO, Egypt
- Department of Applied Statistics, Faculty of Postgraduate Studies for Statistical Research, Cairo University, Egypt
| | | | - Ramy Mohamed Ghazy
- Tropical Health Department, High Institute of Public Health, Alexandria University, Egypt
| | - Mohamed Abdallah
- Medical Research Division, National Research Center, Giza, Egypt
| | - Mohamed Ibrahim
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Egypt
| | | | | | - Nehal Kamal
- Department of Research, Children's Cancer Hospital (CCHE) 57357, Egypt
| | - Hala Zaid
- Ministry of Health and Population, Egypt
| |
Collapse
|
285
|
The Potential Role of School Citizen Science Programs in Infectious Disease Surveillance: A Critical Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18137019. [PMID: 34209178 PMCID: PMC8297284 DOI: 10.3390/ijerph18137019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022]
Abstract
Public involvement in science has allowed researchers to collect large-scale and real-time data and also engage citizens, so researchers are adopting citizen science (CS) in many areas. One promising appeal is student participation in CS school programs. In this literature review, we aimed to investigate which school CS programs exist in the areas of (applied) life sciences and if any projects target infectious disease surveillance. This review’s objectives are to determine success factors in terms of data quality and student engagement. After a comprehensive search in biomedical and social databases, we found 23 projects. None of the projects found focused on infectious disease surveillance, and the majority centered around species biodiversity. While a few projects had issues with data quality, simplifying the protocol or allowing students to resubmit data made the data collected more usable. Overall, students at different educational levels and disciplines were able to collect usable data that was comparable to expert data and had positive learning experiences. In this review, we have identified limitations and gaps in reported CS school projects and provided recommendations for establishing future programs. This review shows the value of using CS in collaboration with traditional research techniques to advance future science and increasingly engage communities.
Collapse
|
286
|
Chen Y, Lei X, Jiang Z, Fitzgerald KA. Cellular nucleic acid-binding protein is essential for type I interferon-mediated immunity to RNA virus infection. Proc Natl Acad Sci U S A 2021; 118:e2100383118. [PMID: 34168080 PMCID: PMC8255963 DOI: 10.1073/pnas.2100383118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Type I interferons (IFNs) are innate immune cytokines required to establish cellular host defense. Precise control of IFN gene expression is crucial to maintaining immune homeostasis. Here, we demonstrated that cellular nucleic acid-binding protein (CNBP) was required for the production of type I IFNs in response to RNA virus infection. CNBP deficiency markedly impaired IFN production in macrophages and dendritic cells that were infected with a panel of RNA viruses or stimulated with synthetic double-stranded RNA. Furthermore, CNBP-deficient mice were more susceptible to influenza virus infection than were wild-type mice. Mechanistically, CNBP was phosphorylated and translocated to the nucleus, where it directly binds to the promoter of IFNb in response to RNA virus infection. Furthermore, CNBP controlled the recruitment of IFN regulatory factor (IRF) 3 and IRF7 to IFN promoters for the maximal induction of IFNb gene expression. These studies reveal a previously unrecognized role for CNBP as a transcriptional regulator of type I IFN genes engaged downstream of RNA virus-mediated innate immune signaling, which provides an additional layer of control for IRF3- and IRF7-dependent type I IFN gene expression and the antiviral innate immune response.
Collapse
Affiliation(s)
- Yongzhi Chen
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Xuqiu Lei
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Zhaozhao Jiang
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
287
|
Targhi AA, Moammeri A, Jamshidifar E, Abbaspour K, Sadeghi S, Lamakani L, Akbarzadeh I. Synergistic effect of curcumin-Cu and curcumin-Ag nanoparticle loaded niosome: Enhanced antibacterial and anti-biofilm activities. Bioorg Chem 2021; 115:105116. [PMID: 34333420 DOI: 10.1016/j.bioorg.2021.105116] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022]
Abstract
In the current study, for the first time, the synergistic activity of curcumin and silver/copper nanoparticles (NPs) was studied against Staphylococcus aureus and Pseudomonas aeruginosa. Moreover, a unique combination of curcumin and silver/copper NPs in free and encapsulated forms was prepared and delivered through a niosomal system. For this purpose, different niosomal formulations of curcumin and metal NPs were prepared by thin film hydration method. Then, the dual drug-loaded niosomes were dispersed in chitosan hydrogel in order to widen its applications. The effect of the molar ratios of lipid to drug and surfactant to cholesterol was investigated to find the optimized noisomal nanoparticles in terms of size, polydispersity index (PDI), and entrapment efficiency (EE). The size and PDI values were measured by dynamic light scattering (DLS). Morphology and in vitro drug release kinetics of niosomes were examined by scanning and transmission electron microscopy (SEM, TEM) and dialysis method, respectively. The drug-loaded niosomes and their hydrogel counterpart were screened for investigating their antibacterial activity against S. aureus and P. aeruginosa by disk diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Furthermore, anti-biofilm assay and expression of biofilm-associated genes by Real-time PCR were performed to evaluate the anti-biofilm effect of NPs. In this study, the drug-loaded niosomal formulations showed good entrapment efficiencies (EE) with a sustained release profile over 72 h. Moreover, compared to free drugs, the optimized niosomal formulations increased antibacterial activity against the bacteria via promotion in the inhibition zone and reduction in MIC and MBC values. Interestingly, gel-based niosomal formulations increased the inhibition zone by about 6 mm and significantly decreased MIC and MBC values compared to niosomal formulations. Also, biofilm eradication of curcumin-metal NPs encapsulated into niosomal hydrogel was highest compared to free and niosomal drugs. Overall, curcumin-Cu or curcumin-Ag nanoparticle loaded niosomes incorporated in hydrogel hold great promise for biomedical applications.
Collapse
Affiliation(s)
| | - Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Elham Jamshidifar
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Koorosh Abbaspour
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Somayeh Sadeghi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| | - Lida Lamakani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
288
|
Ratcliffe NA, Castro HC, Paixão IC, Mello CB. COVID-19: Innovative Antiviral Drugs Required for Long-Term Prevention and Control of Coronavirus Diseases. Curr Med Chem 2021; 28:3554-3567. [PMID: 33109030 DOI: 10.2174/0929867327666201027152400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic has had global catastrophic effects on financial markets, jobs and peoples' lives. Future prevention/therapy of COVID-19 will rely heavily on vaccine development and attempts to repurpose drugs previously used for other microbial diseases. Little attention, however, has been paid to possible difficulties and delays in producing these drugs. Sometimes, unfortunately, these endeavours have been politicized and if these two approaches founder in any way or resistance subsequently occurs, then the world will be left once again to the mercy of these devastating viral pandemics. This review, therefore, briefly outlines the challenges in the development of vaccines and repurposed antiviral drugs, which will hopefully lead to new treatments for COVID-19. It also concludes, however, that the armoury against COVID-19 urgently needs to be enlarging due to the potential severity and likely future reoccurrence of new emergent viruses. Therefore, serious consideration is given to alternative ways of preventing and controlling these pathogens that have received scant attention from the media in the present pandemic. The development of innovative, broad-spectrum, antiviral drugs from natural products is therefore particularly advocated with the challenges involved by new regulatory and scientific initiatives.
Collapse
Affiliation(s)
- Norman A Ratcliffe
- Programa de Pos-Graduacao em Ciencias e Biotecnologia, IB, Universidade Federal Fluminense, Niteroi, Brazil
| | - Helena C Castro
- Programa de Pos-Graduacao em Ciencias e Biotecnologia, IB, Universidade Federal Fluminense, Niteroi, Brazil
| | - Izabel C Paixão
- Programa de Pos-Graduacao em Ciencias e Biotecnologia, IB, Universidade Federal Fluminense, Niteroi, Brazil
| | - Cicero B Mello
- Programa de Pos-Graduacao em Ciencias e Biotecnologia, IB, Universidade Federal Fluminense, Niteroi, Brazil
| |
Collapse
|
289
|
Awate DM, Pola CC, Shumaker E, Gomes CL, Juárez JJ. 3D printed imaging platform for portable cell counting. Analyst 2021; 146:4033-4041. [PMID: 34036979 DOI: 10.1039/d1an00778e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite having widespread application in the biomedical sciences, flow cytometers have several limitations that prevent their application to point-of-care (POC) diagnostics in resource-limited environments. 3D printing provides a cost-effective approach to improve the accessibility of POC devices in resource-limited environments. Towards this goal, we introduce a 3D-printed imaging platform (3DPIP) capable of accurately counting particles and perform fluorescence microscopy. In our 3DPIP, captured microscopic images of particle flow are processed on a custom developed particle counter code to provide a particle count. This prototype uses a machine vision-based algorithm to identify particles from captured flow images and is flexible enough to allow for labeled and label-free particle counting. Additionally, the particle counter code returns particle coordinates with respect to time which can further be used to perform particle image velocimetry. These results can help estimate forces acting on particles, and identify and sort different types of cells/particles. We evaluated the performance of this prototype by counting 10 μm polystyrene particles diluted in deionized water at different concentrations and comparing the results with a commercial Beckman-Coulter Z2 particle counter. The 3DPIP can count particle concentrations down to ∼100 particles per mL with a standard deviation of ±20 particles, which is comparable to the results obtained on a commercial particle counter. Our platform produces accurate results at flow rates up to 9 mL h-1 for concentrations below 1000 particle per mL, while 5 mL h-1 produces accurate results above this concentration limit. Aside from performing flow-through experiments, our instrument is capable of performing static experiments that are comparable to a plate reader. In this configuration, our instrument is able to count between 10 and 250 cells per image, depending on the prepared concentration of bacteria samples (Citrobacter freundii; ATCC 8090). Overall, this platform represents a first step towards the development of an affordable fully 3D printable imaging flow cytometry instrument for use in resource-limited clinical environments.
Collapse
Affiliation(s)
- Diwakar M Awate
- Department of Mechanical Engineering, Iowa State University, 2529 Union Drive, Ames, IA 50011, USA.
| | - Cicero C Pola
- Department of Mechanical Engineering, Iowa State University, 2529 Union Drive, Ames, IA 50011, USA.
| | - Erica Shumaker
- Department of Mechanical Engineering, Iowa State University, 2529 Union Drive, Ames, IA 50011, USA.
| | - Carmen L Gomes
- Department of Mechanical Engineering, Iowa State University, 2529 Union Drive, Ames, IA 50011, USA.
| | - Jaime J Juárez
- Department of Mechanical Engineering, Iowa State University, 2529 Union Drive, Ames, IA 50011, USA. and Center for Multiphase Flow Research and Education, Iowa State University, 2519 Union Drive, Ames, IA 50011, USA
| |
Collapse
|
290
|
Rush ER, Dale E, Aguirre AA. Illegal Wildlife Trade and Emerging Infectious Diseases: Pervasive Impacts to Species, Ecosystems and Human Health. Animals (Basel) 2021; 11:1821. [PMID: 34207364 PMCID: PMC8233965 DOI: 10.3390/ani11061821] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 11/21/2022] Open
Abstract
Emerging infectious disease (EID) events can be traced to anthropogenic factors, including the movement of wildlife through legal and illegal trade. This paper focuses on the link between illegal wildlife trade (IWT) and infectious disease pathogens. A literature review through Web of Science and relevant conference proceedings from 1990 to 2020 resulted in documenting 82 papers and 240 identified pathogen cases. Over 60% of the findings referred to pathogens with known zoonotic potential and five cases directly referenced zoonotic spillover events. The diversity of pathogens by taxa included 44 different pathogens in birds, 47 in mammals, 16 in reptiles, two in amphibians, two in fish, and one in invertebrates. This is the highest diversity of pathogen types in reported literature related to IWT. However, it is likely not a fully representative sample due to needed augmentation of surveillance and monitoring of IWT and more frequent pathogen testing on recovered shipments. The emergence of infectious disease through human globalization has resulted in several pandemics in the last decade including SARS, MERS, avian influenza H1N1,and Ebola. We detailed the growing body of literature on this topic since 2008 and highlight the need to detect, document, and prevent spillovers from high-risk human activities, such as IWT.
Collapse
Affiliation(s)
| | | | - A. Alonso Aguirre
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030, USA; (E.R.R.); (E.D.)
| |
Collapse
|
291
|
Zhou J, Dong S, Ma C, Wu Y, Qiu X. Epidemic spread simulation in an area with a high-density crowd using a SEIR-based model. PLoS One 2021; 16:e0253220. [PMID: 34138911 PMCID: PMC8211270 DOI: 10.1371/journal.pone.0253220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022] Open
Abstract
Understanding the spread of infectious diseases is an extremely essential step to preventing them. Thus, correct modeling and simulation approaches are critical for elucidating the transmission of infectious diseases and improving the control of epidemics. The primary objective of this study is to simulate the spread of communicable diseases in an urban rail transit station. Data were collected by a field investigation in the city of Ningbo, China. A SEIR-based model was developed to simulate the spread of infectious diseases in Tianyi station, considering four groups of passengers (susceptible, exposed, infected, and recovered) and a 14-day incubation period. Based on the historical data of infectious diseases, the parameters of the SEIR infectious disease model were clarified, and a sensitivity analysis of the parameters was also performed. The results showed that the contact rate (CR), infectivity (I), and average illness duration (AID) were positively correlated with the number of infections. It was also found that the length of the average incubation time (AIT) was positively correlated with the number of exposed individuals and negatively correlated with the number of infectors. These simulation results provide support for the validity and reliability of using the SEIR model in studies of the spread of epidemics and facilitate the development of effective measures to prevent and control an epidemic.
Collapse
Affiliation(s)
- Jibiao Zhou
- School of Civil and Transportation Engineering, Ningbo University of Technology, Ningbo, China
- Department of Traffic Engineering & Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai, China
| | - Sheng Dong
- School of Civil and Transportation Engineering, Ningbo University of Technology, Ningbo, China
| | - Changxi Ma
- School of Traffic and Transportation, Lanzhou Jiaotong University, Anning District, Lanzhou, China
| | - Yao Wu
- School of Modern Posts & Institute of Modern Posts, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Xiao Qiu
- School of Civil Engineering and Transportation, Hohai University, Nanjing, China
| |
Collapse
|
292
|
Chan CH, Wen TH. Revisiting the Effects of High-Speed Railway Transfers in the Early COVID-19 Cross-Province Transmission in Mainland China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126394. [PMID: 34199158 PMCID: PMC8312229 DOI: 10.3390/ijerph18126394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an ongoing pandemic that was reported at the end of 2019 in Wuhan, China, and was rapidly disseminated to all provinces in around one month. The study aims to assess the changes in intercity railway passenger transport on the early spatial transmission of COVID-19 in mainland China. Examining the role of railway transport properties in disease transmission could help quantify the spatial spillover effects of large-scale travel restriction interventions. This study used daily high-speed railway schedule data to compare the differences in city-level network properties (destination arrival and transfer service) before and after the Wuhan city lockdown in the early stages of the spatial transmission of COVID-19 in mainland China. Bayesian multivariate regression was used to examine the association between structural changes in the railway origin-destination network and the incidence of COVID-19 cases. Our results show that the provinces with rising transfer activities after the Wuhan city lockdown had more confirmed COVID-19 cases, but changes in destination arrival did not have significant effects. The regions with increasing transfer activities were located in provinces neighboring Hubei in the widthwise and longitudinal directions. These results indicate that transfer activities enhance interpersonal transmission probability and could be a crucial risk factor for increasing epidemic severity after the Wuhan city lockdown. The destinations of railway passengers might not be affected by the Wuhan city lockdown, but their itinerary routes could be changed due to the replacement of an important transfer hub (Wuhan city) in the Chinese railway transportation network. As a result, transfer services in the high-speed rail network could explain why the provinces surrounded by Hubei had a higher number of confirmed COVID-19 cases than other provinces.
Collapse
|
293
|
Wang J. Dynamics and bifurcation analysis of a state-dependent impulsive SIS model. ADVANCES IN DIFFERENCE EQUATIONS 2021; 2021:287. [PMID: 34149834 PMCID: PMC8196939 DOI: 10.1186/s13662-021-03436-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Recently, considering the susceptible population size-guided implementations of control measures, several modelling studies investigated the global dynamics and bifurcation phenomena of the state-dependent impulsive SIR models. In this study, we propose a state-dependent impulsive model based on the SIS model. We firstly recall the complicated dynamics of the ODE system with saturated treatment. Based on the dynamics of the ODE system, we firstly discuss the existence and the stability of the semi-trivial periodic solution. Then, based on the definition of the Poincaré map and its properties, we systematically investigate the bifurcations near the semi-trivial periodic solution with all the key control parameters; consequently, we prove the existence and stability of the positive periodic solutions.
Collapse
Affiliation(s)
- Jinyan Wang
- School of Mathematics and Information Science, North Minzu University, Yinchuan, 750021 P.R. China
| |
Collapse
|
294
|
Kanitthamniyom P, Hon PY, Zhou A, Abdad MY, Leow ZY, Yazid NBM, Xun VLW, Vasoo S, Zhang Y. A 3D-printed magnetic digital microfluidic diagnostic platform for rapid colorimetric sensing of carbapenemase-producing Enterobacteriaceae. MICROSYSTEMS & NANOENGINEERING 2021; 7:47. [PMID: 34567760 PMCID: PMC8433351 DOI: 10.1038/s41378-021-00276-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/24/2021] [Accepted: 05/07/2021] [Indexed: 05/27/2023]
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE) are a group of drug-resistant Gram-negative pathogens that are classified as a critical threat by the World Health Organization (WHO). Conventional methods of detecting antibiotic-resistant pathogens do not assess the resistance mechanism and are often time-consuming and laborious. We have developed a magnetic digital microfluidic (MDM) platform, known as MDM Carba, for the identification of CPE by measuring their ability to hydrolyze carbapenem antibiotics. MDM Carba offers the ability to rapidly test CPE and reduce the amount of reagents used compared with conventional phenotypic testing. On the MDM Carba platform, tests are performed in droplets that function as reaction chambers, and fluidic operations are accomplished by manipulating these droplets with magnetic force. The simple droplet-based magnetic fluidic operation allows easy system automation and simplified hands-on operation. Because of the unique "power-free" operation of MDM technology, the MDM Carba platform can also be operated manually, showing great potential for point-of-care testing in resource-limited settings. We tested 27 bacterial isolates on the MDM Carba platform, and the results showed sensitivity and specificity that were comparable to those of the widely used Carba NP test. MDM Carba may shorten the overall turnaround time for CPE identification, thereby enabling more timely clinical decisions for better clinical outcomes. MDM Carba is a technological platform that can be further developed to improve diagnostics for other types of antibiotic resistance with minor modifications.
Collapse
Affiliation(s)
- Pojchanun Kanitthamniyom
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore City, Singapore
| | - Pei Yun Hon
- National Center for Infectious Disease, Tan Tock Seng Hospital, Singapore City, Singapore
| | - Aiwu Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore City, Singapore
| | - Mohammad Yazid Abdad
- National Center for Infectious Disease, Tan Tock Seng Hospital, Singapore City, Singapore
| | - Zhi Yun Leow
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
| | | | - Vanessa Lim Wei Xun
- National Center for Infectious Disease, Tan Tock Seng Hospital, Singapore City, Singapore
| | - Shawn Vasoo
- National Center for Infectious Disease, Tan Tock Seng Hospital, Singapore City, Singapore
| | - Yi Zhang
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore City, Singapore
| |
Collapse
|
295
|
Sokullu E, Gauthier MS, Coulombe B. Discovery of Antivirals Using Phage Display. Viruses 2021; 13:v13061120. [PMID: 34200959 PMCID: PMC8230593 DOI: 10.3390/v13061120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
The latest coronavirus disease outbreak, COVID-19, has brought attention to viral infections which have posed serious health threats to humankind throughout history. The rapid global spread of COVID-19 is attributed to the increased human mobility of today's world, yet the threat of viral infections to global public health is expected to increase continuously in part due to increasing human-animal interface. Development of antiviral agents is crucial to combat both existing and novel viral infections. Recently, there is a growing interest in peptide/protein-based drug molecules. Antibodies are becoming especially predominant in the drug market. Indeed, in a remarkably short period, four antibody therapeutics were authorized for emergency use in COVID-19 treatment in the US, Russia, and India as of November 2020. Phage display has been one of the most widely used screening methods for peptide/antibody drug discovery. Several phage display-derived biologics are already in the market, and the expiration of intellectual property rights of phage-display antibody discovery platforms suggests an increment in antibody drugs in the near future. This review summarizes the most common phage display libraries used in antiviral discovery, highlights the approaches employed to enhance the antiviral potency of selected peptides/antibody fragments, and finally provides a discussion about the present status of the developed antivirals in clinic.
Collapse
Affiliation(s)
- Esen Sokullu
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada;
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Correspondence: (E.S.); (B.C.)
| | - Marie-Soleil Gauthier
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada;
| | - Benoit Coulombe
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada;
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Correspondence: (E.S.); (B.C.)
| |
Collapse
|
296
|
Barbhuiya NH, Singh SP, Makovitzki A, Narkhede P, Oren Z, Adar Y, Lupu E, Cherry L, Monash A, Arnusch CJ. Virus Inactivation in Water Using Laser-Induced Graphene Filters. MATERIALS (BASEL, SWITZERLAND) 2021; 14. [PMID: 34207716 DOI: 10.26434/chemrxiv.13489398.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 05/18/2023]
Abstract
Interest in the pathogenesis, detection, and prevention of viral infections has increased broadly in many fields of research over the past year. The development of water treatment technology to combat viral infection by inactivation or disinfection might play a key role in infection prevention in places where drinking water sources are biologically contaminated. Laser-induced graphene (LIG) has antimicrobial and antifouling surface effects mainly because of its electrochemical properties and texture, and LIG-based water filters have been used for the inactivation of bacteria. However, the antiviral activity of LIG-based filters has not yet been explored. Here we show that LIG filters also have antiviral effects by applying electrical potential during filtration of the model prototypic poxvirus Vaccinia lister. This antiviral activity of the LIG filters was compared with its antibacterial activity, which showed that higher voltages were required for the inactivation of viruses compared to that of bacteria. The generation of reactive oxygen species, along with surface electrical effects, played a role in the mechanism of virus inactivation. This new property of LIG highlights its potential for use in water and wastewater treatment for the electrochemical disinfection of various pathogenic microorganisms, including bacteria and viruses.
Collapse
Affiliation(s)
- Najmul Haque Barbhuiya
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Swatantra P Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Arik Makovitzki
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Pradnya Narkhede
- Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 8499000, Israel
- Department of Desalination and Water Treatment, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
| | - Ziv Oren
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Yaakov Adar
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Edith Lupu
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Lilach Cherry
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Arik Monash
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Christopher J Arnusch
- Department of Desalination and Water Treatment, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
| |
Collapse
|
297
|
Barbhuiya NH, Singh SP, Makovitzki A, Narkhede P, Oren Z, Adar Y, Lupu E, Cherry L, Monash A, Arnusch CJ. Virus Inactivation in Water Using Laser-Induced Graphene Filters. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3179. [PMID: 34207716 PMCID: PMC8226673 DOI: 10.3390/ma14123179] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 11/22/2022]
Abstract
Interest in the pathogenesis, detection, and prevention of viral infections has increased broadly in many fields of research over the past year. The development of water treatment technology to combat viral infection by inactivation or disinfection might play a key role in infection prevention in places where drinking water sources are biologically contaminated. Laser-induced graphene (LIG) has antimicrobial and antifouling surface effects mainly because of its electrochemical properties and texture, and LIG-based water filters have been used for the inactivation of bacteria. However, the antiviral activity of LIG-based filters has not yet been explored. Here we show that LIG filters also have antiviral effects by applying electrical potential during filtration of the model prototypic poxvirus Vaccinia lister. This antiviral activity of the LIG filters was compared with its antibacterial activity, which showed that higher voltages were required for the inactivation of viruses compared to that of bacteria. The generation of reactive oxygen species, along with surface electrical effects, played a role in the mechanism of virus inactivation. This new property of LIG highlights its potential for use in water and wastewater treatment for the electrochemical disinfection of various pathogenic microorganisms, including bacteria and viruses.
Collapse
Affiliation(s)
- Najmul Haque Barbhuiya
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India;
| | - Swatantra P. Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India;
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Arik Makovitzki
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Pradnya Narkhede
- Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 8499000, Israel;
- Department of Desalination and Water Treatment, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
| | - Ziv Oren
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Yaakov Adar
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Edith Lupu
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Lilach Cherry
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Arik Monash
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Christopher J. Arnusch
- Department of Desalination and Water Treatment, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
| |
Collapse
|
298
|
Lee J, Kim S, Chung HY, Kang A, Kim S, Hwang H, Yang SI, Yun WS. Electrochemical microgap immunosensors for selective detection of pathogenic Aspergillus niger. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125069. [PMID: 33454571 DOI: 10.1016/j.jhazmat.2021.125069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Aspergillus niger (A. niger) is a well-known allergenic, harmful fungus in the indoor environment that can cause asthmatic symptoms and atopy. Previous immunosensing approach suffers from an insufficient detection limit, mainly because there are no techniques for target amplification. We report an electrochemical immunosensor that selectively quantifies the A. niger based on the detection of extracellular proteins by using a specific interaction with antibody. The sensor was designed to show a decrease in redox current upon binding of the antigens secreted from A. niger onto an antibody-immobilized surface between the interdigitated electrodes. The extracellular proteins were profiled by LC-MS/MS to identify the antigens existing in the A. niger solution. Since the targets of the sensor are the proteins, its sensitivity and selectivity remain almost intact even after filtration of the spores. It was also found that the use of secretion promoter in the sampling stage greatly improved the sensor's limit of detection (LOD) for the spores. By this, the LOD was lowered by a few orders of magnitude so as to reach the value as low as ~101 spores/mL.
Collapse
Affiliation(s)
- Jisu Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16429, Republic of Korea
| | - Semee Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16429, Republic of Korea
| | - Ha Young Chung
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Aeyeon Kang
- Nano/Bio Fusion Technology Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seunghun Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16429, Republic of Korea
| | - Heeyoun Hwang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Sung Ik Yang
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Wan Soo Yun
- Department of Chemistry, Sungkyunkwan University, Suwon 16429, Republic of Korea; Nano/Bio Fusion Technology Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
299
|
He F, Wu X, Zhang Q, Li Y, Ye Y, Li P, Chen S, Peng Y, Hardeland R, Xia Y. Bacteriostatic Potential of Melatonin: Therapeutic Standing and Mechanistic Insights. Front Immunol 2021; 12:683879. [PMID: 34135911 PMCID: PMC8201398 DOI: 10.3389/fimmu.2021.683879] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Diseases caused by pathogenic bacteria in animals (e.g., bacterial pneumonia, meningitis and sepsis) and plants (e.g., bacterial wilt, angular spot and canker) lead to high prevalence and mortality, and decomposition of plant leaves, respectively. Melatonin, an endogenous molecule, is highly pleiotropic, and accumulating evidence supports the notion that melatonin's actions in bacterial infection deserve particular attention. Here, we summarize the antibacterial effects of melatonin in vitro, in animals as well as plants, and discuss the potential mechanisms. Melatonin exerts antibacterial activities not only on classic gram-negative and -positive bacteria, but also on members of other bacterial groups, such as Mycobacterium tuberculosis. Protective actions against bacterial infections can occur at different levels. Direct actions of melatonin may occur only at very high concentrations, which is at the borderline of practical applicability. However, various indirect functions comprise activation of hosts' defense mechanisms or, in sepsis, attenuation of bacterially induced inflammation. In plants, its antibacterial functions involve the mitogen-activated protein kinase (MAPK) pathway; in animals, protection by melatonin against bacterially induced damage is associated with inhibition or activation of various signaling pathways, including key regulators such as NF-κB, STAT-1, Nrf2, NLRP3 inflammasome, MAPK and TLR-2/4. Moreover, melatonin can reduce formation of reactive oxygen and nitrogen species (ROS, RNS), promote detoxification and protect mitochondrial damage. Altogether, we propose that melatonin could be an effective approach against various pathogenic bacterial infections.
Collapse
Affiliation(s)
- Fang He
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoyan Wu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingzhuo Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yikun Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yuyi Ye
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Pan Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Shuai Chen
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yuanyi Peng
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Yaoyao Xia
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
300
|
Al-Halhouli A, Albagdady A, Alawadi J, Abeeleh MA. Monitoring Symptoms of Infectious Diseases: Perspectives for Printed Wearable Sensors. MICROMACHINES 2021; 12:620. [PMID: 34072174 PMCID: PMC8229808 DOI: 10.3390/mi12060620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/23/2022]
Abstract
Infectious diseases possess a serious threat to the world's population, economies, and healthcare systems. In this review, we cover the infectious diseases that are most likely to cause a pandemic according to the WHO (World Health Organization). The list includes COVID-19, Crimean-Congo Hemorrhagic Fever (CCHF), Ebola Virus Disease (EBOV), Marburg Virus Disease (MARV), Lassa Hemorrhagic Fever (LHF), Middle East Respiratory Syndrome (MERS), Severe Acute Respiratory Syndrome (SARS), Nipah Virus diseases (NiV), and Rift Valley fever (RVF). This review also investigates research trends in infectious diseases by analyzing published research history on each disease from 2000-2020 in PubMed. A comprehensive review of sensor printing methods including flexographic printing, gravure printing, inkjet printing, and screen printing is conducted to provide guidelines for the best method depending on the printing scale, resolution, design modification ability, and other requirements. Printed sensors for respiratory rate, heart rate, oxygen saturation, body temperature, and blood pressure are reviewed for the possibility of being used for disease symptom monitoring. Printed wearable sensors are of great potential for continuous monitoring of vital signs in patients and the quarantined as tools for epidemiological screening.
Collapse
Affiliation(s)
- Ala’aldeen Al-Halhouli
- NanoLab/Mechatronics Engineering Department, School of Applied Technical Sciences, German Jordanian University (GJU), Amman 11180, Jordan; (A.A.); (J.A.)
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany
- Faculty of Engineering, Middle East University, Amman 11831, Jordan
| | - Ahmed Albagdady
- NanoLab/Mechatronics Engineering Department, School of Applied Technical Sciences, German Jordanian University (GJU), Amman 11180, Jordan; (A.A.); (J.A.)
| | - Ja’far Alawadi
- NanoLab/Mechatronics Engineering Department, School of Applied Technical Sciences, German Jordanian University (GJU), Amman 11180, Jordan; (A.A.); (J.A.)
| | - Mahmoud Abu Abeeleh
- Department of Surgery, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan;
| |
Collapse
|