251
|
Zsombok A. Vanilloid receptors--do they have a role in whole body metabolism? Evidence from TRPV1. J Diabetes Complications 2013; 27:287-92. [PMID: 23332888 PMCID: PMC3633635 DOI: 10.1016/j.jdiacomp.2012.11.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 12/16/2022]
Abstract
With increasing lifespan, therapeutic interventions for the treatment of disorders such as type 2 diabetes mellitus are in great demand. Despite billions of dollars invested to reduce the symptoms and complications due to diabetes mellitus, current treatments (e.g., insulin replacements, sensitization) remain inadequate, justifying the search for novel therapeutic approaches or alternative solutions, including dietary supplementation, for the treatment of diabetes mellitus in every age group. The involvement of the vanilloid system in the regulation of metabolism has been identified, and the emerging role of its receptors, the transient receptor potential vanilloid type 1 (TRPV1), in diabetes was recently demonstrated. Indeed, beneficial effects of dietary capsaicin, an agonist of TRPV1 receptors, were identified for improving glucose, insulin and glucagon-like peptide-1 levels. Recent findings regarding TRPV1 receptors in association with whole body metabolism including glucose homeostasis will be reviewed in this article.
Collapse
Affiliation(s)
- Andrea Zsombok
- Department of Physiology, Endocrinology Section, Tulane University, School of Medicine, 1430 Tulane Ave., SL39, New Orleans, LA 70112, USA.
| |
Collapse
|
252
|
Stobart JL, Anderson CM. Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Front Cell Neurosci 2013; 7:38. [PMID: 23596393 PMCID: PMC3622037 DOI: 10.3389/fncel.2013.00038] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/26/2013] [Indexed: 01/01/2023] Open
Abstract
Dynamic adjustments to neuronal energy supply in response to synaptic activity are critical for neuronal function. Glial cells known as astrocytes have processes that ensheath most central synapses and express G-protein-coupled neurotransmitter receptors and transporters that respond to neuronal activity. Astrocytes also release substrates for neuronal oxidative phosphorylation and have processes that terminate on the surface of brain arterioles and can influence vascular smooth muscle tone and local blood flow. Membrane receptor or transporter-mediated effects of glutamate represent a convergence point of astrocyte influence on neuronal bioenergetics. Astrocytic glutamate uptake drives glycolysis and subsequent shuttling of lactate from astrocytes to neurons for oxidative metabolism. Astrocytes also convert synaptically reclaimed glutamate to glutamine, which is returned to neurons for glutamate salvage or oxidation. Finally, astrocytes store brain energy currency in the form of glycogen, which can be mobilized to produce lactate for neuronal oxidative phosphorylation in response to glutamatergic neurotransmission. These mechanisms couple synaptically driven astrocytic responses to glutamate with release of energy substrates back to neurons to match demand with supply. In addition, astrocytes directly influence the tone of penetrating brain arterioles in response to glutamatergic neurotransmission, coordinating dynamic regulation of local blood flow. We will describe the role of astrocytes in neurometabolic and neurovascular coupling in detail and discuss, in turn, how astrocyte dysfunction may contribute to neuronal bioenergetic deficit and neurodegeneration. Understanding the role of astrocytes as a hub for neurometabolic and neurovascular coupling mechanisms is a critical underpinning for therapeutic development in a broad range of neurodegenerative disorders characterized by chronic generalized brain ischemia and brain microvascular dysfunction.
Collapse
Affiliation(s)
- Jillian L Stobart
- Division of Neurodegenerative Disorders, Department of Pharmacology and Therapeutics, St. Boniface Hospital Research, University of Manitoba Winnipeg, MB, Canada ; Department of Nuclear Medicine, Institute of Pharmacology and Toxicology, University of Zürich Zürich, Switzerland
| | | |
Collapse
|
253
|
Szepietowska B, Zhu W, Czyzyk J, Eid T, Sherwin RS. EphA5-EphrinA5 interactions within the ventromedial hypothalamus influence counterregulatory hormone release and local glutamine/glutamate balance during hypoglycemia. Diabetes 2013; 62:1282-8. [PMID: 23274893 PMCID: PMC3609598 DOI: 10.2337/db12-0982] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Activation of β-cell EphA5 receptors by its ligand ephrinA5 from adjacent β-cells has been reported to decrease insulin secretion during hypoglycemia. Given the similarities between islet and ventromedial hypothalamus (VMH) glucose sensing, we tested the hypothesis that the EphA5/ephrinA5 system might function within the VMH during hypoglycemia to stimulate counterregulatory hormone release as well. Counterregulatory responses and glutamine/glutamate concentrations in the VMH were assessed during a hyperinsulinemic-hypoglycemic glucose clamp study in chronically catheterized awake male Sprague-Dawley rats that received an acute VMH microinjection of ephrinA5-Fc, chronic VMH knockdown, or overexpression of ephrinA5 using an adenoassociated viral construct. Local stimulation of VMH EphA5 receptors by ephrinA5-Fc or ephrinA5 overexpression increased, whereas knockdown of VMH ephrinA5 reduced counterregulatory responses during hypoglycemia. Overexpression of VMH ephrinA5 transiently increased local glutamate concentrations, whereas ephrinA5 knockdown produced profound suppression of VMH interstitial fluid glutamine concentrations in the basal state and during hypoglycemia. Changes in ephrinA5/EphA5 interactions within the VMH, a key brain glucose-sensing region, act in concert with islets to restore glucose homeostasis during acute hypoglycemia, and its effect on counterregulation may be mediated by changes in glutamate/glutamine cycling.
Collapse
Affiliation(s)
- Barbara Szepietowska
- Department of Internal Medicine and Endocrinology, Yale University School of Medicine, New Haven, Connecticut
| | - Wanling Zhu
- Department of Internal Medicine and Endocrinology, Yale University School of Medicine, New Haven, Connecticut
| | - Jan Czyzyk
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, New York
| | - Tore Eid
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Robert S. Sherwin
- Department of Internal Medicine and Endocrinology, Yale University School of Medicine, New Haven, Connecticut
- Corresponding author: Robert S. Sherwin,
| |
Collapse
|
254
|
Zsombok A. Autonomic control and bariatric procedures. Auton Neurosci 2013; 177:81-6. [PMID: 23538033 DOI: 10.1016/j.autneu.2013.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 10/10/2012] [Accepted: 03/01/2013] [Indexed: 12/12/2022]
Abstract
The sudden improvement of metabolic profile and the remission of type 2 diabetes after bariatric surgery, well before weight loss, raise important new questions regarding glycemic control. Currently, various types of bariatric procedures target type 2 diabetes in obese and non-obese patients. Nevertheless, the origin of the dramatic metabolic improvements, including glucose homeostasis, is poorly understood, and the role of the gastrointestinal (GI) tract remains relatively speculative, as well as why these procedures are variably effective. One neglected explanation is that such interventions disrupt neural networks mediating GI-brain communication and could alter the autonomic output to the visceral organs, including the liver. Incretins, e.g., glucagon-like peptide 1 (GLP-1), have major influence on the central nervous system. Moreover, the level of GLP-1 is observed to significantly increase after bariatric surgery and could be a key factor in the weight-independent, anti-diabetic effect. Therefore, this review will evaluate the effect of GLP-1 on the central nervous system, with emphasis on the cellular effects of GLP-1, and will provide an overview of the autonomic control of the liver.
Collapse
Affiliation(s)
- Andrea Zsombok
- Department of Physiology, Endocrinology Section, Tulane University, School of Medicine, 1430 Tulane Ave., SL39, New Orleans, LA 70112, United States; Department of Medicine, Endocrinology Section, Tulane University, School of Medicine, 1430 Tulane Ave., SL39, New Orleans, LA 70112, United States.
| |
Collapse
|
255
|
Seyer P, Vallois D, Poitry-Yamate C, Schütz F, Metref S, Tarussio D, Maechler P, Staels B, Lanz B, Grueter R, Decaris J, Turner S, da Costa A, Preitner F, Minehira K, Foretz M, Thorens B. Hepatic glucose sensing is required to preserve β cell glucose competence. J Clin Invest 2013; 123:1662-76. [PMID: 23549084 DOI: 10.1172/jci65538] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 01/24/2013] [Indexed: 12/31/2022] Open
Abstract
Liver glucose metabolism plays a central role in glucose homeostasis and may also regulate feeding and energy expenditure. Here we assessed the impact of glucose transporter 2 (Glut2) gene inactivation in adult mouse liver (LG2KO mice). Loss of Glut2 suppressed hepatic glucose uptake but not glucose output. In the fasted state, expression of carbohydrate-responsive element-binding protein (ChREBP) and its glycolytic and lipogenic target genes was abnormally elevated. Feeding, energy expenditure, and insulin sensitivity were identical in LG2KO and control mice. Glucose tolerance was initially normal after Glut2 inactivation, but LG2KO mice exhibited progressive impairment of glucose-stimulated insulin secretion even though β cell mass and insulin content remained normal. Liver transcript profiling revealed a coordinated downregulation of cholesterol biosynthesis genes in LG2KO mice that was associated with reduced hepatic cholesterol in fasted mice and reduced bile acids (BAs) in feces, with a similar trend in plasma. We showed that chronic BAs or farnesoid X receptor (FXR) agonist treatment of primary islets increases glucose-stimulated insulin secretion, an effect not seen in islets from Fxr(-/-) mice. Collectively, our data show that glucose sensing by the liver controls β cell glucose competence and suggest BAs as a potential mechanistic link.
Collapse
Affiliation(s)
- Pascal Seyer
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
256
|
Scherer T, Lehnert H, Hallschmid M. Brain insulin and leptin signaling in metabolic control: from animal research to clinical application. Endocrinol Metab Clin North Am 2013; 42:109-25. [PMID: 23391243 DOI: 10.1016/j.ecl.2012.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Besides the well-characterized effects of brain insulin and leptin in regulating food intake, insulin and leptin signaling to the central nervous system modulates a variety of metabolic processes, such as glucose and lipid homeostasis, as well as energy expenditure. This review summarizes the current literature on the contribution of central nervous insulin and leptin action to metabolic control in animals and humans. Potential therapeutic options based on the direct delivery of these peptides to the brain by, for example, intranasal administration, are discussed.
Collapse
Affiliation(s)
- Thomas Scherer
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria.
| | | | | |
Collapse
|
257
|
Abstract
Islet hormones, especially insulin and glucagon, are important for glucose homeostasis. Insulin is a necessity for life, and disturbed insulin release results in disordered blood glucose regulation. Although isolated islets are fully capable of detecting changes in their local environment (particularly glucose fluctuations) and altering hormone release appropriately, experimentally manipulating pancreatic innervation alters islet hormone release in the whole animal. This article describes how brain may play a role in influencing and directing secretion of insulin and glucagon as a key part of the integrated physiology of blood glucose homeostasis.
Collapse
Affiliation(s)
- Mayowa A Osundiji
- Department of Medicine, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | | |
Collapse
|
258
|
Arble DM, Sandoval DA. CNS control of glucose metabolism: response to environmental challenges. Front Neurosci 2013; 7:20. [PMID: 23550218 PMCID: PMC3581798 DOI: 10.3389/fnins.2013.00020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/04/2013] [Indexed: 01/07/2023] Open
Abstract
Over the last 15 years, considerable work has accumulated to support the role of the CNS in regulating postprandial glucose levels. As discussed in the first section of this review, the CNS receives and integrates information from afferent neurons, circulating hormones, and postprandially generated nutrients to subsequently direct changes in glucose output by the liver and glucose uptake by peripheral tissues. The second major component of this review focuses on the effects of external pressures, including high fat diet and changes to the light:dark cycle on CNS-regulating glucose homeostasis. We also discuss the interaction between these different pressures and how they contribute to the multifaceted mechanisms that we hypothesize contribute to the dysregulation of glucose in type 2 diabetes mellitus (T2DM). We argue that while current peripheral therapies serve to delay the progression of T2DM, generating combined obesity and T2DM therapies targeted at the CNS, the primary site of dysfunction for both diseases, would lead to a more profound impact on the progression of both diseases.
Collapse
Affiliation(s)
- Deanna M Arble
- Department of Medicine, University of Cincinnati Cincinnati, OH, USA
| | | |
Collapse
|
259
|
Abstract
The central melanocortin system plays an essential role in the regulation of energy metabolism. Key to this regulation are the responses of neurons expressing proopiomelanocortin (POMC) and agouti-related protein (AgRP) to blood-borne metabolic signals. Recent evidence has demonstrated that POMC and AgRP neurons are not simply mirror opposites of each other in function and responsiveness to metabolic signals, nor are they exclusively first-order neurons. These neurons act as central transceivers, integrating both hormonal and neural signals, and then transmitting this information to peripheral tissues via the autonomic nervous system to coordinate whole-body energy metabolism. This review focuses on most recent developments obtained from rodent studies on the function, metabolic regulation, and circuitry of the central melanocortin system.
Collapse
Affiliation(s)
- James P. Warne
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Allison W. Xu
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
260
|
Liu J, Bisschop PH, Eggels L, Foppen E, Ackermans MT, Zhou JN, Fliers E, Kalsbeek A. Intrahypothalamic estradiol regulates glucose metabolism via the sympathetic nervous system in female rats. Diabetes 2013; 62:435-43. [PMID: 23139356 PMCID: PMC3554366 DOI: 10.2337/db12-0488] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Long-term reduced hypothalamic estrogen signaling leads to increased food intake and decreased locomotor activity and energy expenditure, and ultimately results in obesity and insulin resistance. In the current study, we aimed to determine the acute obesity-independent effects of hypothalamic estrogen signaling on glucose metabolism. We studied endogenous glucose production (EGP) and insulin sensitivity during selective modulation of systemic or intrahypothalamic estradiol (E2) signaling in rats 1 week after ovariectomy (OVX). OVX caused a 17% decrease in plasma glucose, which was completely restored by systemic E2. Likewise, the administration of E2 by microdialysis, either in the hypothalamic paraventricular nucleus (PVN) or in the ventromedial nucleus (VMH), restored plasma glucose. The infusion of an E2 antagonist via reverse microdialysis into the PVN or VMH attenuated the effect of systemic E2 on plasma glucose. Furthermore, E2 administration in the VMH, but not in the PVN, increased EGP and induced hepatic insulin resistance. E2 administration in both the PVN and the VMH resulted in peripheral insulin resistance. Finally, sympathetic, but not parasympathetic, hepatic denervation blunted the effect of E2 in the VMH on both EGP and hepatic insulin sensitivity. In conclusion, intrahypothalamic estrogen regulates peripheral and hepatic insulin sensitivity via sympathetic signaling to the liver.
Collapse
Affiliation(s)
- Ji Liu
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Meibergdreef Amsterdam, the Netherlands
- Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui, People's Republic of China
- Department of Hypothalamic Integration Mechanisms, Netherlands Institute of Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef, Amsterdam, the Netherlands
| | - Peter H. Bisschop
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Meibergdreef Amsterdam, the Netherlands
| | - Leslie Eggels
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Meibergdreef Amsterdam, the Netherlands
| | - Ewout Foppen
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Meibergdreef Amsterdam, the Netherlands
- Department of Hypothalamic Integration Mechanisms, Netherlands Institute of Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef, Amsterdam, the Netherlands
| | - Mariette T. Ackermans
- Department of Clinical Chemistry, Laboratory of Endocrinology, Academic Medical Center, University of Amsterdam, Meibergdreef, Amsterdam, the Netherlands
| | - Jiang-Ning Zhou
- Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui, People's Republic of China
- Corresponding author: Jiang-Ning Zhou,
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Meibergdreef Amsterdam, the Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Meibergdreef Amsterdam, the Netherlands
- Department of Hypothalamic Integration Mechanisms, Netherlands Institute of Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef, Amsterdam, the Netherlands
| |
Collapse
|
261
|
Vogt MC, Brüning JC. CNS insulin signaling in the control of energy homeostasis and glucose metabolism - from embryo to old age. Trends Endocrinol Metab 2013; 24:76-84. [PMID: 23265947 DOI: 10.1016/j.tem.2012.11.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/07/2012] [Accepted: 11/13/2012] [Indexed: 10/27/2022]
Abstract
Central nervous system (CNS) insulin signaling regulates energy and glucose homeostasis by acting on hypothalamic neurocircuits and higher brain circuits such as the dopaminergic system. However, overnutrition, obesity, and type 2 diabetes mellitus (T2DM) induce insulin resistance selectively in different regions of the brain, thereby impairing energy homeostasis and augmenting disease progression. Moreover, fetal hyperinsulinemia in response to maternal overnutrition, obesity, and diabetes disrupts hypothalamic neurocircuit development and predisposes to metabolic disorders later in life. In light of the current obesity and diabetes epidemic, we review the molecular basis of insulin action and resistance in the CNS, mechanisms which are causal to the development of these metabolic disorders, both in the neonate and in the adult.
Collapse
Affiliation(s)
- Merly C Vogt
- Max Planck Institute for Neurological Research, D-50931 Cologne, Germany
| | | |
Collapse
|
262
|
Duarte AI, Candeias E, Correia SC, Santos RX, Carvalho C, Cardoso S, Plácido A, Santos MS, Oliveira CR, Moreira PI. Crosstalk between diabetes and brain: glucagon-like peptide-1 mimetics as a promising therapy against neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2013; 1832:527-41. [PMID: 23314196 DOI: 10.1016/j.bbadis.2013.01.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/18/2012] [Accepted: 01/06/2013] [Indexed: 12/14/2022]
Abstract
According to World Health Organization estimates, type 2 diabetes (T2D) is an epidemic (particularly in under development countries) and a socio-economic challenge. This is even more relevant since increasing evidence points T2D as a risk factor for Alzheimer's disease (AD), supporting the hypothesis that AD is a "type 3 diabetes" or "brain insulin resistant state". Despite the limited knowledge on the molecular mechanisms and the etiological complexity of both pathologies, evidence suggests that neurodegeneration/death underlying cognitive dysfunction (and ultimately dementia) upon long-term T2D may arise from a complex interplay between T2D and brain aging. Additionally, decreased brain insulin levels/signaling and glucose metabolism in both pathologies further suggests that an effective treatment strategy for one disorder may be also beneficial in the other. In this regard, one such promising strategy is a novel successful anti-T2D class of drugs, the glucagon-like peptide-1 (GLP-1) mimetics (e.g. exendin-4 or liraglutide), whose potential neuroprotective effects have been increasingly shown in the last years. In fact, several studies showed that, besides improving peripheral (and probably brain) insulin signaling, GLP-1 analogs minimize cell loss and possibly rescue cognitive decline in models of AD, Parkinson's (PD) or Huntington's disease. Interestingly, exendin-4 is undergoing clinical trials to test its potential as an anti-PD therapy. Herewith, we aim to integrate the available data on the metabolic and neuroprotective effects of GLP-1 mimetics in the central nervous system (CNS) with the complex crosstalk between T2D-AD, as well as their potential therapeutic value against T2D-associated cognitive dysfunction.
Collapse
Affiliation(s)
- A I Duarte
- Life Sciences Department, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
263
|
Abstract
One of the ‘side effects’ of our modern lifestyle is a range of metabolic diseases: the incidence of obesity, type 2 diabetes and associated cardiovascular diseases has grown to pandemic proportions. This increase, which shows no sign of reversing course, has occurred despite education and new treatment options, and is largely due to a lack of knowledge about the precise pathology and etiology of metabolic disorders. Accumulating evidence suggests that the communication pathways linking the brain, gut and adipose tissue might be promising intervention points for metabolic disorders. To maintain energy homeostasis, the brain must tightly monitor the peripheral energy state. This monitoring is also extremely important for the brain’s survival, because the brain does not store energy but depends solely on a continuous supply of nutrients from the general circulation. Two major groups of metabolic inputs inform the brain about the peripheral energy state: short-term signals produced by the gut system and long-term signals produced by adipose tissue. After central integration of these inputs, the brain generates neuronal and hormonal outputs to balance energy intake with expenditure. Miscommunication between the gut, brain and adipose tissue, or the degradation of input signals once inside the brain, lead to the brain misunderstanding the peripheral energy state. Under certain circumstances, the brain responds to this miscommunication by increasing energy intake and production, eventually causing metabolic disorders. This poster article overviews current knowledge about communication pathways between the brain, gut and adipose tissue, and discusses potential research directions that might lead to a better understanding of the mechanisms underlying metabolic disorders.
Collapse
Affiliation(s)
- Chun-Xia Yi
- Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technical University Munich, Munich, Germany
| | | |
Collapse
|
264
|
Harada S, Yamazaki Y, Tokuyama S. Orexin-A suppresses postischemic glucose intolerance and neuronal damage through hypothalamic brain-derived neurotrophic factor. J Pharmacol Exp Ther 2013; 344:276-85. [PMID: 23117790 DOI: 10.1124/jpet.112.199604] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Orexin-A (a glucose-sensing neuropeptide in the hypothalamus) and brain-derived neurotrophic factor (BDNF; a member of the neurotrophin family) play roles in many physiologic functions, including regulation of glucose metabolism. We previously showed that the development of postischemic glucose intolerance is one of the triggers of ischemic neuronal damage. The aim of this study was to determine whether there was an interaction between orexin-A and BDNF functions in the hypothalamus after cerebral ischemic stress. Male ddY mice were subjected to 2 hours of middle cerebral artery occlusion (MCAO). Neuronal damage was estimated by histologic and behavioral analyses. Expression of protein levels was analyzed by Western blot. Small interfering RNA directed BDNF, orexin-A, and SB334867 [N-(2-methyl-6-benzoxazolyl)-N'-1,5-naphthyridin-4-yl urea; a specific orexin-1 receptor antagonist] were administered directly into the hypothalamus. The level of hypothalamic orexin-A, detected by immunohistochemistry, was decreased on day 1 after MCAO. Intrahypothalamic administration of orexin-A (1 or 5 pmol/mouse) significantly and dose-dependently suppressed the development of postischemic glucose intolerance on day 1 and development of neuronal damage on day 3. The MCAO-induced decrease in insulin receptor levels in the liver and skeletal muscle on day 1 was recovered to control levels by orexin-A, and this effect of orexin-A was reversed by the administration of SB334867 as well as by hypothalamic BDNF knockdown. These results suggest that suppression of postischemic glucose intolerance by orexin-A assists in the prevention of cerebral ischemic neuronal damage. In addition, hypothalamic BDNF may play an important role in this effect of orexin-A.
Collapse
Affiliation(s)
- Shinichi Harada
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | | | | |
Collapse
|
265
|
Pan Y, Hong Y, Zhang QY, Kong LD. Impaired hypothalamic insulin signaling in CUMS rats: restored by icariin and fluoxetine through inhibiting CRF system. Psychoneuroendocrinology 2013; 38:122-34. [PMID: 22663897 DOI: 10.1016/j.psyneuen.2012.05.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 05/16/2012] [Accepted: 05/16/2012] [Indexed: 01/27/2023]
Abstract
Epidemiological evidence demonstrates the neuroendocrine link between stress, depression and diabetes. This study observed glucose intolerance of rats exposed to chronic unpredictable mild stress (CUMS) in oral glucose tolerance test (OGTT). CUMS procedure significantly up-regulated corticotropin-releasing factor (CRF)-related peptide urocortin 2 expression and elevated cAMP production, resulting in over-expression of suppressor of cytokine signaling 3 (SOCS3) in hypothalamic arcuate nucleus (ARC) of rats. Furthermore, SOCS3 activation blocked insulin signaling pathway through the suppression of insulin receptor substrate 2 (IRS2) phosphotyrosine and phosphatidylinositol-3-kinase (PI3-K) activation in hypothalamic ARC of CUMS rats after high-level of insulin stimulation. These data indicated that CUMS procedure induced the hyperactivity of CRF system, and subsequently produced conditional loss of insulin signaling in hypothalamic ARC of rats. More importantly, icariin and fluoxetine with the ability to restrain CRF system hyperactivity improved insulin signaling in hypothalamic ARC of CUMS rats, which were consistent with the enhancement of glucose tolerance in OGTT, showing anti-diabetic efficacy. Although effective in OGTT, anti-diabetic drug pioglitazone failed to restore hypothalamic ARC CRF system hyperactivity, paralleling with its inability to ameliorate the loss of insulin signaling and depression-like behavior in CUMS rats. These observations support the hypothesis that signal cross-talk between hypothalamic CRF system and insulin may be impaired in depression with glucose intolerance and suggest that icarrin and fluoxetine aiming at CRF system may have great potential in the prevention and treatment of depression with comorbid diabetes.
Collapse
Affiliation(s)
- Ying Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | | | | | | |
Collapse
|
266
|
Ramnanan CJ, Kraft G, Smith MS, Farmer B, Neal D, Williams PE, Lautz M, Farmer T, Donahue EP, Cherrington AD, Edgerton DS. Interaction between the central and peripheral effects of insulin in controlling hepatic glucose metabolism in the conscious dog. Diabetes 2013; 62:74-84. [PMID: 23011594 PMCID: PMC3526039 DOI: 10.2337/db12-0148] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The importance of hypothalamic insulin action to the regulation of hepatic glucose metabolism in the presence of a normal liver/brain insulin ratio (3:1) is unknown. Thus, we assessed the role of central insulin action in the response of the liver to normal physiologic hyperinsulinemia over 4 h. Using a pancreatic clamp, hepatic portal vein insulin delivery was increased three- or eightfold in the conscious dog. Insulin action was studied in the presence or absence of intracerebroventricularly mediated blockade of hypothalamic insulin action. Euglycemia was maintained, and glucagon was clamped at basal. Both the molecular and metabolic aspects of insulin action were assessed. Blockade of hypothalamic insulin signaling did not alter the insulin-mediated suppression of hepatic gluconeogenic gene transcription but blunted the induction of glucokinase gene transcription and completely blocked the inhibition of glycogen synthase kinase-3β gene transcription. Thus, central and peripheral insulin action combined to control some, but not other, hepatic enzyme programs. Nevertheless, inhibition of hypothalamic insulin action did not alter the effects of the hormone on hepatic glucose flux (production or uptake). These data indicate that brain insulin action is not a determinant of the rapid (<4 h) inhibition of hepatic glucose metabolism caused by normal physiologic hyperinsulinemia in this large animal model.
Collapse
Affiliation(s)
- Christopher J. Ramnanan
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, Tennessee
- Medical College of Georgia at Georgia Health Sciences University, Department of Cellular Biology and Anatomy, Augusta, Georgia
| | - Guillaume Kraft
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, Tennessee
| | - Marta S. Smith
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, Tennessee
| | - Ben Farmer
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, Tennessee
| | - Doss Neal
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, Tennessee
| | - Phillip E. Williams
- Vanderbilt University School of Medicine, Division of Surgical Research, Nashville, Tennessee
| | - Margaret Lautz
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, Tennessee
| | - Tiffany Farmer
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, Tennessee
| | - E. Patrick Donahue
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, Tennessee
| | - Alan D. Cherrington
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, Tennessee
| | - Dale S. Edgerton
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, Tennessee
- Corresponding author: Dale S. Edgerton,
| |
Collapse
|
267
|
Grayson BE, Seeley RJ, Sandoval DA. Wired on sugar: the role of the CNS in the regulation of glucose homeostasis. Nat Rev Neurosci 2013; 14:24-37. [PMID: 23232606 PMCID: PMC4231433 DOI: 10.1038/nrn3409] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Obesity and type 2 diabetes mellitus (T2DM)--disorders of energy homeostasis and glucose homeostasis, respectively--are tightly linked and the incidences of both conditions are increasing in parallel. The CNS integrates information regarding peripheral nutrient and hormonal changes and processes this information to regulate energy homeostasis. Recent findings indicate that some of the neural circuits and mechanisms underlying energy balance are also essential for the regulation of glucose homeostasis. We propose that disruption of these overlapping pathways links the metabolic disturbances associated with obesity and T2DM. A better understanding of these converging mechanisms may lead to therapeutic strategies that target both T2DM and obesity.
Collapse
Affiliation(s)
- Bernadette E Grayson
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio 45237, USA
| | | | | |
Collapse
|
268
|
Mehran AE, Templeman NM, Brigidi GS, Lim GE, Chu KY, Hu X, Botezelli JD, Asadi A, Hoffman BG, Kieffer TJ, Bamji SX, Clee SM, Johnson JD. Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. Cell Metab 2012; 16:723-37. [PMID: 23217255 DOI: 10.1016/j.cmet.2012.10.019] [Citation(s) in RCA: 374] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 08/26/2012] [Accepted: 10/31/2012] [Indexed: 12/21/2022]
Abstract
Hyperinsulinemia is associated with obesity and pancreatic islet hyperplasia, but whether insulin causes these phenomena or is a compensatory response has remained unsettled for decades. We examined the role of insulin hypersecretion in diet-induced obesity by varying the pancreas-specific Ins1 gene dosage in mice lacking Ins2 gene expression in the pancreas, thymus, and brain. Age-dependent increases in fasting insulin and β cell mass were absent in Ins1(+/-):Ins2(-/-) mice fed a high-fat diet when compared to Ins1(+/+):Ins2(-/-) littermate controls. Remarkably, Ins1(+/-):Ins2(-/-) mice were completely protected from diet-induced obesity. Genetic prevention of chronic hyperinsulinemia in this model reprogrammed white adipose tissue to express uncoupling protein 1 and increase energy expenditure. Normalization of adipocyte size and activation of energy expenditure genes in white adipose tissue was associated with reduced inflammation, reduced fatty acid spillover, and reduced hepatic steatosis. Thus, we provide genetic evidence that pathological circulating hyperinsulinemia drives diet-induced obesity and its complications.
Collapse
Affiliation(s)
- Arya E Mehran
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
269
|
Abstract
The vagus nerve has an important role in regulation of metabolic homeostasis, and efferent vagus nerve-mediated cholinergic signalling controls immune function and proinflammatory responses via the inflammatory reflex. Dysregulation of metabolism and immune function in obesity are associated with chronic inflammation, a critical step in the pathogenesis of insulin resistance and type 2 diabetes mellitus. Cholinergic mechanisms within the inflammatory reflex have, in the past 2 years, been implicated in attenuating obesity-related inflammation and metabolic complications. This knowledge has led to the exploration of novel therapeutic approaches in the treatment of obesity-related disorders.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Center for Biomedical Science, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA.
| | | |
Collapse
|
270
|
Abstract
Diabetes is a major worldwide problem. Despite some progress in the development of new antidiabetic agents, the ability to maintain tight glycemic control in order to prevent renal, retinal, and neuropathic complications of diabetes without adverse complications still remains a challenge. Recent evidence suggests, however, that in addition to playing a key role in the regulation of energy homeostasis, the adiposity hormone leptin also plays an important role in the control of glucose metabolism via its actions in the brain. This review examines the role of leptin action in the central nervous system and the mechanisms whereby leptin mediates its effects to regulate glucose metabolism. These findings suggest that defects or dysfunction in leptin signaling may contribute to the etiology of diabetes and raise the possibility that either leptin or downstream targets of leptin may have therapeutic potential for the treatment of diabetes.
Collapse
Affiliation(s)
- Thomas H. Meek
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Gregory J. Morton
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
271
|
Liu X, Qi Y, Gao H, Jiao Y, Gu H, Miao J, Yuan Z. Maternal protein restriction induces alterations in insulin signaling and ATP sensitive potassium channel protein in hypothalami of intrauterine growth restriction fetal rats. J Clin Biochem Nutr 2012; 52:43-8. [PMID: 23341697 PMCID: PMC3541418 DOI: 10.3164/jcbn.12-28] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 06/20/2012] [Indexed: 12/13/2022] Open
Abstract
It is well recognized that intrauterine growth restriction leads to the development of insulin resistance and type 2 diabetes mellitus in adulthood. To investigate the mechanisms behind this "metabolic imprinting" phenomenon, we examined the impact of maternal undernutrition on insulin signaling pathway and the ATP sensitive potassium channel expression in the hypothalamus of intrauterine growth restriction fetus. Intrauterine growth restriction rat model was developed through maternal low protein diet. The expression and activated levels of insulin signaling molecules and K(ATP) protein in the hypothalami which were dissected at 20 days of gestation, were analyzed by western blot and real time PCR. The tyrosine phosphorylation levels of the insulin receptor substrate 2 and phosphatidylinositol 3'-kinase p85α in the hypothalami of intrauterine growth restriction fetus were markedly reduced. There was also a downregulation of the hypothalamic ATP sensitive potassium channel subunit, sulfonylurea receptor 1, which conveys the insulin signaling. Moreover, the abundances of gluconeogenesis enzymes were increased in the intrauterine growth restriction livers, though no correlation was observed between sulfonylurea receptor 1 and gluconeogenesis enzymes. Our data suggested that aberrant intrauterine milieu impaired insulin signaling in the hypothalamus, and these alterations early in life might contribute to the predisposition of the intrauterine growth restriction fetus toward the adult metabolic disorders.
Collapse
Affiliation(s)
- Xiaomei Liu
- Key Laboratory of Health Ministry for Congenital Malformations, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | | | | | | | | | | | | |
Collapse
|
272
|
Rask-Madsen C, Kahn CR. Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscler Thromb Vasc Biol 2012; 32:2052-9. [PMID: 22895666 DOI: 10.1161/atvbaha.111.241919] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Impaired insulin signaling is central to development of the metabolic syndrome and can promote cardiovascular disease indirectly through development of abnormal glucose and lipid metabolism, hypertension, and a proinflammatory state. However, insulin's action directly on vascular endothelium, atherosclerotic plaque macrophages, and in the heart, kidney, and retina has now been described, and impaired insulin signaling in these locations can alter progression of cardiovascular disease in the metabolic syndrome and affect development of microvascular complications of diabetes mellitus. Recent advances in our understanding of the complex pathophysiology of insulin's effects on vascular tissues offer new opportunities for preventing these cardiovascular disorders.
Collapse
Affiliation(s)
- Christian Rask-Madsen
- Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | | |
Collapse
|
273
|
Yang SB, Tien AC, Boddupalli G, Xu AW, Jan YN, Jan LY. Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons. Neuron 2012; 75:425-36. [PMID: 22884327 DOI: 10.1016/j.neuron.2012.03.043] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2012] [Indexed: 01/08/2023]
Abstract
VIDEO ABSTRACT The prevalence of obesity in older people is the leading cause of metabolic syndromes. Central neurons serving as homeostatic sensors for body-weight control include hypothalamic neurons that express pro-opiomelanocortin (POMC) or neuropeptide-Y (NPY) and agouti-related protein (AgRP). Here, we report an age-dependent increase of mammalian target of rapamycin (mTOR) signaling in POMC neurons that elevates the ATP-sensitive potassium (K(ATP)) channel activity cell-autonomously to silence POMC neurons. Systemic or intracerebral administration of the mTOR inhibitor rapamycin causes weight loss in old mice. Intracerebral rapamycin infusion into old mice enhances the excitability and neurite projection of POMC neurons, thereby causing a reduction of food intake and body weight. Conversely, young mice lacking the mTOR-negative regulator TSC1 in POMC neurons, but not those lacking TSC1 in NPY/AgRP neurons, were obese. Our study reveals that an increase in mTOR signaling in hypothalamic POMC neurons contributes to age-dependent obesity.
Collapse
Affiliation(s)
- Shi-Bing Yang
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | |
Collapse
|
274
|
Abstract
Hypothalamic POMC neurons contribute to the regulation of energy homeostasis and glucose metabolism. In this issue of Neuron, Yang et al. (2012) show that the mTOR pathway has a pivotal role in deterioration of POMC neurons during age-dependent obesity.
Collapse
Affiliation(s)
- Jae Geun Kim
- Program in Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
275
|
Filippi BM, Yang CS, Tang C, Lam TKT. Insulin activates Erk1/2 signaling in the dorsal vagal complex to inhibit glucose production. Cell Metab 2012; 16:500-10. [PMID: 23040071 DOI: 10.1016/j.cmet.2012.09.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 08/01/2012] [Accepted: 09/11/2012] [Indexed: 01/07/2023]
Abstract
Insulin activates PI3-kinase (PI3K)/AKT to regulate glucose homeostasis in the peripheral tissues and the mediobasal hypothalamus (MBH) of rodents. We report that insulin infusion into the MBH or dorsal vagal complex (DVC) activated insulin receptors. The same dose of insulin that activated MBH PI3K/AKT did not in the DVC. DVC insulin instead activated Erk1/2 and lowered glucose production in rats and mice. Molecular and chemical inhibition of DVC Erk1/2 negated, while activation of DVC Erk1/2 recapitulated, the effects of DVC insulin. Circulating insulin failed to inhibit glucose production when DVC Erk1/2 was inhibited in normal rodents, while DVC insulin action was disrupted in high-fat-fed rodents. Activation of DVC ATP-sensitive potassium channels was necessary for insulin-Erk1/2 and sufficient to inhibit glucose production in normal and high-fat-fed rodents. DVC is a site of insulin action where insulin triggers Erk1/2 signaling to inhibit glucose production and of insulin resistance in high-fat feeding.
Collapse
Affiliation(s)
- Beatrice M Filippi
- Toronto General Research Institute, University Health Network, Toronto, M5G 1L7, Canada
| | | | | | | |
Collapse
|
276
|
Scherer T, Lindtner C, Zielinski E, O'Hare J, Filatova N, Buettner C. Short term voluntary overfeeding disrupts brain insulin control of adipose tissue lipolysis. J Biol Chem 2012; 287:33061-9. [PMID: 22810223 PMCID: PMC3463338 DOI: 10.1074/jbc.m111.307348] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 07/06/2012] [Indexed: 12/20/2022] Open
Abstract
Insulin controls fatty acid (FA) release from white adipose tissue (WAT) through direct effects on adipocytes and indirectly through hypothalamic signaling by reducing sympathetic nervous system outflow to WAT. Uncontrolled FA release from WAT promotes lipotoxicity, which is characterized by inflammation and insulin resistance that leads to and worsens type 2 diabetes. Here we tested whether early diet-induced insulin resistance impairs the ability of hypothalamic insulin to regulate WAT lipolysis and thus contributes to adipose tissue dysfunction. To this end we fed male Sprague-Dawley rats a 10% lard diet (high fat diet (HFD)) for 3 consecutive days, which is known to induce systemic insulin resistance. Rats were studied by euglycemic pancreatic clamps and concomitant infusion of either insulin or vehicle into the mediobasal hypothalamus. Short term HFD feeding led to a 37% increase in caloric intake and elevated base-line free FAs and insulin levels compared with rats fed regular chow. Overfeeding did not impair insulin signaling in WAT, but it abolished the ability of mediobasal hypothalamus insulin to suppress WAT lipolysis and hepatic glucose production as assessed by glycerol and glucose flux. HFD feeding also increased hypothalamic levels of the endocannabinoid 2-arachidonoylglycerol after only 3 days. In summary, overfeeding impairs hypothalamic insulin action, which may contribute to unrestrained lipolysis seen in human obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Thomas Scherer
- From the Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
| | - Claudia Lindtner
- From the Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
| | - Elizabeth Zielinski
- From the Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
| | - James O'Hare
- From the Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
| | - Nika Filatova
- From the Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
| | - Christoph Buettner
- From the Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
| |
Collapse
|
277
|
Banks WA. Brain meets body: the blood-brain barrier as an endocrine interface. Endocrinology 2012; 153:4111-9. [PMID: 22778219 PMCID: PMC3423627 DOI: 10.1210/en.2012-1435] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/19/2012] [Indexed: 12/30/2022]
Abstract
The blood-brain barrier (BBB) separates the central nervous system (CNS) from the peripheral tissues. However, this does not prevent hormones from entering the brain, but shifts the main control of entry to the BBB. In general, steroid hormones cross the BBB by transmembrane diffusion, a nonsaturable process resulting in brain levels that reflect blood levels, whereas thyroid hormones and many peptides and regulatory proteins cross using transporters, a saturable process resulting in brain levels that reflect blood levels and transporter characteristics. Protein binding, brain-to-blood transport, and pharmacokinetics modulate BBB penetration. Some hormones have the opposite effect within the CNS than they do in the periphery, suggesting that these hormones cross the BBB to act as their own counterregulators. The cells making up the BBB are also endocrine like, both responding to circulating substances and secreting substances into the circulation and CNS. By dividing a hormone's receptors into central and peripheral pools, the former of which may not be part of the hormone's negative feed back loop, the BBB fosters the development of variable hormone resistance syndromes, as exemplified by evidence that altered insulin action in the CNS can contribute to Alzheimer's disease. In summary, the BBB acts as a regulatory interface in an endocrine-like, humoral-based communication between the CNS and peripheral tissues.
Collapse
Affiliation(s)
- William A Banks
- Veterans Affairs Puget Sound Health Care System and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
278
|
Blake CB, Smith BN. Insulin reduces excitation in gastric-related neurons of the dorsal motor nucleus of the vagus. Am J Physiol Regul Integr Comp Physiol 2012; 303:R807-14. [PMID: 22914748 DOI: 10.1152/ajpregu.00276.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dorsal motor nucleus of the vagus (DMV) in the caudal brain stem is composed mainly of preganglionic parasympathetic neurons that control the subdiaphragmatic viscera and thus participates in energy homeostasis regulation. Metabolic pathologies, including diabetes, can disrupt vagal circuitry and lead to gastric dysfunction. Insulin receptors (IRs) are expressed in the DMV, and insulin crosses the blood-brain barrier and is transported into the brain stem. Despite growing evidence that insulin action in the brain is critical for energy homeostasis, little is known about insulin's action in the DMV. We used whole cell patch-clamp recordings in brain stem slices to identify effects of insulin on membrane and synaptic input properties of DMV neurons, including a subset of gastric-related cells identified subsequent to injection of a retrograde label into the gastric wall. Insulin application significantly reduced the frequency of spontaneous and miniature excitatory, but not inhibitory postsynaptic currents, with no change in amplitude (P < 0.05). Insulin also directly hyperpolarized the membrane potential (-4.2 ± 1.3 mV; P < 0.05) and reduced action potential firing (P < 0.05). Insulin effects were eliminated in the presence of a ATP-dependent K+ (K(ATP)) channel antagonist tolbutamide (200 μM), or the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin (100 nM), suggesting that insulin inhibition of excitatory input to gastric-related DMV neurons was mediated by K(ATP) channels and depended on PI3K activity. Insulin regulation of synaptic input in the DMV may influence autonomic visceral regulation and thus systemic glucose metabolism.
Collapse
Affiliation(s)
- Camille B Blake
- Dept. of Physiology, Univ. of Kentucky College of Medicine, MS508 Chandler Medical Center, 800 Rose St., Lexington, KY 40536, USA
| | | |
Collapse
|
279
|
Agapito MA, Barreira JC, Logan RW, Sarkar DK. Evidence for possible period 2 gene mediation of the effects of alcohol exposure during the postnatal period on genes associated with maintaining metabolic signaling in the mouse hypothalamus. Alcohol Clin Exp Res 2012; 37:263-9. [PMID: 22823489 DOI: 10.1111/j.1530-0277.2012.01871.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/04/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND Animals exposed to alcohol during the developmental period develop circadian disturbances and metabolic problems that often persist during their adult period. In order to study whether alcohol and the circadian clock interact to alter metabolic signaling in the hypothalamus, we determined whether postnatal alcohol feeding in mice permanently alters metabolic sensing in the hypothalamus. Furthermore, we evaluated whether the effect of circadian disruption via Period 2 (Per2) gene mutation prevents alcohol's effects on metabolic signaling in the hypothalamus. METHODS Per2 mutant and wild-type male and female mice of the same genetic background were given a milk formula containing ethanol (EtOH; 11.34% vol/vol) from postnatal day (PD) 2 to 7 and used for gene expression and peptide level determinations in the hypothalamus at PD7 and PD90. RESULTS We report here that postnatal alcohol feeding reduces the expression of proopiomelanocortin (Pomc) gene and production of β-endorphin and α-melanocyte stimulating hormone (α-MSH) in the hypothalamus that persists into adulthood. In addition, expressions of metabolic sensing genes in the hypothalamus were also reduced as a consequence of postnatal alcohol exposure. These effects were not sex-specific and were observed in both males and females. Mice carrying a mutation of the Per2 gene did not show any reductions in hypothalamic levels of Pomc and metabolic genes and β-endorphin and α-MSH peptides following alcohol exposure. CONCLUSIONS These data suggest that early-life exposure to alcohol alters metabolic sensing to the hypothalamus possibly via regulating Per2 gene and/or the cellular circadian clock mechanism.
Collapse
Affiliation(s)
- Maria A Agapito
- Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | | | | | | |
Collapse
|
280
|
Milanski M, Arruda AP, Coope A, Ignacio-Souza LM, Nunez CE, Roman EA, Romanatto T, Pascoal LB, Caricilli AM, Torsoni MA, Prada PO, Saad MJ, Velloso LA. Inhibition of hypothalamic inflammation reverses diet-induced insulin resistance in the liver. Diabetes 2012; 61:1455-62. [PMID: 22522614 PMCID: PMC3357298 DOI: 10.2337/db11-0390] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 02/06/2012] [Indexed: 12/12/2022]
Abstract
Defective liver gluconeogenesis is the main mechanism leading to fasting hyperglycemia in type 2 diabetes, and, in concert with steatosis, it is the hallmark of hepatic insulin resistance. Experimental obesity results, at least in part, from hypothalamic inflammation, which leads to leptin resistance and defective regulation of energy homeostasis. Pharmacological or genetic disruption of hypothalamic inflammation restores leptin sensitivity and reduces adiposity. Here, we evaluate the effect of a hypothalamic anti-inflammatory approach to regulating hepatic responsiveness to insulin. Obese rodents were treated by intracerebroventricular injections, with immunoneutralizing antibodies against Toll-like receptor (TLR)4 or tumor necrosis factor (TNF)α, and insulin signal transduction, hepatic steatosis, and gluconeogenesis were evaluated. The inhibition of either TLR4 or TNFα reduced hypothalamic inflammation, which was accompanied by the reduction of hypothalamic resistance to leptin and improved insulin signal transduction in the liver. This was accompanied by reduced liver steatosis and reduced hepatic expression of markers of steatosis. Furthermore, the inhibition of hypothalamic inflammation restored defective liver glucose production. All these beneficial effects were abrogated by vagotomy. Thus, the inhibition of hypothalamic inflammation in obesity results in improved hepatic insulin signal transduction, leading to reduced steatosis and reduced gluconeogenesis. All these effects are mediated by parasympathetic signals delivered by the vagus nerve.
Collapse
Affiliation(s)
- Marciane Milanski
- Laboratory of Cell Signaling, University of Campinas, Campinas, Brazil
- Faculty of Applied Sciences, University of Campinas, Campinas, Brazil
| | - Ana P. Arruda
- Laboratory of Cell Signaling, University of Campinas, Campinas, Brazil
| | - Andressa Coope
- Laboratory of Cell Signaling, University of Campinas, Campinas, Brazil
| | | | - Carla E. Nunez
- Laboratory of Cell Signaling, University of Campinas, Campinas, Brazil
| | - Erika A. Roman
- Laboratory of Cell Signaling, University of Campinas, Campinas, Brazil
| | - Talita Romanatto
- Laboratory of Cell Signaling, University of Campinas, Campinas, Brazil
| | - Livia B. Pascoal
- Laboratory of Cell Signaling, University of Campinas, Campinas, Brazil
| | | | - Marcio A. Torsoni
- Laboratory of Cell Signaling, University of Campinas, Campinas, Brazil
- Faculty of Applied Sciences, University of Campinas, Campinas, Brazil
| | - Patricia O. Prada
- Faculty of Applied Sciences, University of Campinas, Campinas, Brazil
| | - Mario J. Saad
- Department of Internal Medicine, University of Campinas, Campinas, Brazil
| | - Licio A. Velloso
- Laboratory of Cell Signaling, University of Campinas, Campinas, Brazil
| |
Collapse
|
281
|
Heni M, Kullmann S, Ketterer C, Guthoff M, Linder K, Wagner R, Stingl KT, Veit R, Staiger H, Häring HU, Preissl H, Fritsche A. Nasal insulin changes peripheral insulin sensitivity simultaneously with altered activity in homeostatic and reward-related human brain regions. Diabetologia 2012; 55:1773-82. [PMID: 22434537 DOI: 10.1007/s00125-012-2528-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 02/15/2012] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS Impaired insulin sensitivity is a major factor leading to type 2 diabetes. Animal studies suggest that the brain is involved in the regulation of insulin sensitivity. We investigated whether insulin action in the human brain regulates peripheral insulin sensitivity and examined which brain areas are involved. METHODS Insulin and placebo were given intranasally. Plasma glucose, insulin and C-peptide were measured in 103 participants at 0, 30 and 60 min. A subgroup (n = 12) was also studied with functional MRI, and blood sampling at 0, 30 and 120 min. For each time-point, the HOMA of insulin resistance (HOMA-IR) was calculated as an inverse estimate of peripheral insulin sensitivity. RESULTS Plasma insulin increased and subsequently decreased. This excursion was accompanied by slightly decreased plasma glucose, resulting in an initially increased HOMA-IR. At 1 h after insulin spray, the HOMA-IR subsequently decreased and remained lower up to 120 min. An increase in hypothalamic activity was observed, which correlated with the increased HOMA-IR at 30 min post-spray. Activity in the putamen, right insula and orbitofrontal cortex correlated with the decreased HOMA-IR at 120 min post-spray. CONCLUSIONS/INTERPRETATION Central insulin action in specific brain areas, including the hypothalamus, may time-dependently regulate peripheral insulin sensitivity. This introduces a potential novel mechanism for the regulation of peripheral insulin sensitivity and underlines the importance of cerebral insulin action for the whole organism.
Collapse
Affiliation(s)
- M Heni
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Otfried-Müller-Str 10, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Gao H, Miyata K, Bhaskaran MD, Derbenev AV, Zsombok A. Transient receptor potential vanilloid type 1-dependent regulation of liver-related neurons in the paraventricular nucleus of the hypothalamus diminished in the type 1 diabetic mouse. Diabetes 2012; 61:1381-90. [PMID: 22492526 PMCID: PMC3357291 DOI: 10.2337/db11-0820] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The paraventricular nucleus (PVN) of the hypothalamus controls the autonomic neural output to the liver, thereby participating in the regulation of hepatic glucose production (HGP); nevertheless, mechanisms controlling the activity of liver-related PVN neurons are not known. Transient receptor potential vanilloid type 1 (TRPV1) is involved in glucose homeostasis and colocalizes with liver-related PVN neurons; however, the functional role of TRPV1 regarding liver-related PVN neurons has to be elucidated. A retrograde viral tracer was used to identify liver-related neurons within the brain-liver circuit in control, type 1 diabetic, and insulin-treated mice. Our data indicate that TRPV1 regulates liver-related PVN neurons. This TRPV1-dependent excitation diminished in type 1 diabetic mice. In vivo and in vitro insulin restored TRPV1 activity in a phosphatidylinositol 3-kinase/protein kinase C-dependent manner and stimulated TRPV1 receptor trafficking to the plasma membrane. There was no difference in total TRPV1 protein expression; however, increased phosphorylation of TRPV1 receptors was observed in type 1 diabetic mice. Our data demonstrate that TRPV1 plays a pivotal role in the regulation of liver-related PVN neurons. Moreover, TRPV1-dependent excitation of liver-related PVN neurons diminishes in type 1 diabetes, thus indicating that the brain-liver autonomic circuitry is altered in type 1 diabetes and may contribute to the autonomic dysfunction of HGP.
Collapse
Affiliation(s)
- Hong Gao
- Department of Physiology, Tulane University, School of Medicine, New Orleans, Louisiana, USA.
| | | | | | | | | |
Collapse
|
283
|
Affiliation(s)
- Patricia I. Mighiu
- University Health Network, Toronto General Research Institute, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Beatrice M. Filippi
- University Health Network, Toronto General Research Institute, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Tony K.T. Lam
- University Health Network, Toronto General Research Institute, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
- Corresponding author: Tony K.T. Lam,
| |
Collapse
|
284
|
Ramnanan CJ, Edgerton DS, Cherrington AD. Evidence against a physiologic role for acute changes in CNS insulin action in the rapid regulation of hepatic glucose production. Cell Metab 2012; 15:656-64. [PMID: 22560218 PMCID: PMC3348512 DOI: 10.1016/j.cmet.2012.03.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This Perspective will discuss the physiologic relevance of data that suggest CNS insulin action is required for the rapid suppression of hepatic glucose production. It will also review data from experiments on the conscious dog, which show that although the canine brain can sense insulin and, thereby, regulate hepatic glucoregulatory enzyme expression, CNS insulin action is not essential for the rapid suppression of glucose production caused by the hormone. Insulin's direct hepatic effects are dominant, thus it appears that insulin's central effects are redundant in the acute regulation of hepatic glucose metabolism.
Collapse
Affiliation(s)
- Christopher J Ramnanan
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, TN 37232, USA
| | | | | |
Collapse
|
285
|
Abstract
Lipid sensing and insulin signaling in the brain independently triggers a negative feedback system to lower glucose production and food intake. Here, we discuss the underlying molecular and neuronal mechanisms of lipid sensing and insulin signaling in the hypothalamus and how these mechanisms are affected in response to high-fat feeding. We propose that high-fat feeding concurrently disrupts hypothalamic insulin-signaling and lipid-sensing mechanisms and that experiments aimed to restore both insulin action and lipid sensing in the brain could effectively lower glucose production and food intake to restore metabolic homeostasis in type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Jessica T Y Yue
- Toronto General Research Institute, University Health Network, Toronto, Canada
| | | |
Collapse
|
286
|
Abstract
Muscarinic acetylcholine (ACh) receptors (mAChRs; M₁-M₅) regulate the activity of an extraordinarily large number of important physiological processes. During the past 10-15 years, studies with whole-body M₁-M₅ mAChR knockout mice have provided many new insights into the physiological and pathophysiological roles of the individual mAChR subtypes. This review will focus on the characterization of a novel generation of mAChR mutant mice, including mice in which distinct mAChR genes have been excised in a tissue- or cell type-specific fashion, various transgenic mouse lines that overexpress wild-type or different mutant M₃ mAChRs in certain tissues or cells only, as well as a novel M₃ mAChR knockin mouse strain deficient in agonist-induced M₃ mAChR phosphorylation. Phenotypic analysis of these new animal models has greatly advanced our understanding of the physiological roles of the various mAChR subtypes and has identified potential targets for the treatment of type 2 diabetes, schizophrenia, Parkinson's disease, drug addiction, cognitive disorders, and several other pathophysiological conditions.
Collapse
|
287
|
Ropero AB, Alonso-Magdalena P, Soriano S, Juan-Picó P, Roepke TA, Kelly MJ, Nadal Á. Insulinotropic effect of the non-steroidal compound STX in pancreatic β-cells. PLoS One 2012; 7:e34650. [PMID: 22506040 PMCID: PMC3323542 DOI: 10.1371/journal.pone.0034650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 03/05/2012] [Indexed: 11/30/2022] Open
Abstract
The non-steroidal compound STX modulates the hypothalamic control of core body temperature and energy homeostasis. The aim of this work was to study the potential effects of STX on pancreatic β-cell function. 1–10 nM STX produced an increase in glucose-induced insulin secretion in isolated islets from male mice, whereas it had no effect in islets from female mice. This insulinotropic effect of STX was abolished by the anti-estrogen ICI 182,780. STX increased intracellular calcium entry in both whole islets and isolated β-cells, and closed the KATP channel, suggesting a direct effect on β-cells. When intraperitoneal glucose tolerance test was performed, a single dose of 100 µg/kg body weight STX improved glucose sensitivity in males, yet it had a slight effect on females. In agreement with the effect on isolated islets, 100 µg/kg dose of STX enhanced the plasma insulin increase in response to a glucose load, while it did not in females. Long-term treatment (100 µg/kg, 6 days) of male mice with STX did not alter body weight, fasting glucose, glucose sensitivity or islet insulin content. Ovariectomized females were insensitive to STX (100 µg/kg), after either an acute administration or a 6-day treatment. This long-term treatment was also ineffective in a mouse model of mild diabetes. Therefore, STX appears to have a gender-specific effect on blood glucose homeostasis, which is only manifested after an acute administration. The insulinotropic effect of STX in pancreatic β-cells is mediated by the closure of the KATP channel and the increase in intracellular calcium concentration. The in vivo improvement in glucose tolerance appears to be mostly due to the enhancement of insulin secretion from β-cells.
Collapse
Affiliation(s)
- Ana B Ropero
- Instituto de Bioingeniería and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad Miguel Hernández, Elche, Spain.
| | | | | | | | | | | | | |
Collapse
|
288
|
Christesen HT, Brusgaard K, Hussain K. Recurrent spontaneous hypoglycaemia causes loss of neurogenic and neuroglycopaenic signs in infants with congenital hyperinsulinism. Clin Endocrinol (Oxf) 2012; 76:548-54. [PMID: 21981106 DOI: 10.1111/j.1365-2265.2011.04250.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Hypoglycaemia-associated autonomic failure (HAAF) with impaired neurogenic and neuroglycopaenic responses occurs in adults following recent, repeated hypoglycaemia. We aimed to evaluate whether HAAF also occurs in patients with infant-onset congenital hyperinsulinism (CHI). DESIGN, PATIENTS A controlled fast was performed in (i) seven CHI infants with initial symptomatic hypoglycaemia and three recent episodes of spontaneous recurrent hypoglycaemia each lasting <5 min and in (ii) seven infants with idiopathic ketotic hypoglycaemia for control. MEASUREMENTS At the time of hypoglycaemia (blood glucose <3 mmol/l or clinical signs), blood was drawn for serum insulin, cortisol, glucagon, adrenalin and nor-adrenalin. Signs of hypoglycaemia were documented. In CHI patients, the ABCC8 and KCNJ11 genes were analysed by denaturing high performance liquid chromatography (DHPLC) and/or direct bidirectional sequencing. RESULTS Two CHI patients had a paternal ABCC8 mutation, five had no mutations. When repeated hypoglycaemia was provoked, all CHI patients exhibited a complete loss of clinical signs of hypoglycaemia, along with a global blunting of the counter-regulatory hormones cortisol, glucagon, growth hormone, adrenalin and nor-adrenalin responses (median values 256 nmol/l, 23 pmol/l, 5·6 mU/l, 390 pmol/l and 2·9 nmol/l, respectively), irrespective of mutational status. In the controls, hypoglycaemia was always clinically overt with normal counter-regulatory cortisol, glucagon, adrenalin and nor-adrenalin responses (530 nmol/l, 60, 920 pmol/l and 4·0 nmol/l, respectively). CONCLUSION Recurrent hyperinsulinaemic hypoglycaemia even of short duration blunts the autonomic, neuroglycopaenic and glucose counter-regulatory hormonal responses in patients with infant-onset CHI resulting in clinically silent hypoglycaemia. Tight, or continuous, glucose monitoring is therefore recommended, especially in conservatively treated patients.
Collapse
|
289
|
Affiliation(s)
- Beatrice M Filippi
- Toronto General Research Institute, University Health Network,Toronto, Ontario, Canada.
| | | | | |
Collapse
|
290
|
Hallschmid M, Higgs S, Thienel M, Ott V, Lehnert H. Postprandial administration of intranasal insulin intensifies satiety and reduces intake of palatable snacks in women. Diabetes 2012; 61:782-9. [PMID: 22344561 PMCID: PMC3314365 DOI: 10.2337/db11-1390] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The role of brain insulin signaling in the control of food intake in humans has not been thoroughly defined. We hypothesized that the hormone contributes to the postprandial regulation of appetite for palatable food, and assessed the effects on appetite and snack intake of postprandial versus fasted intranasal insulin administration to the brain in healthy women. Two groups of subjects were intranasally administered 160 IU insulin or vehicle after lunch. Two hours later, consumption of cookies of varying palatability was measured under the pretext of a taste test. In a control study, the effects of intranasal insulin administered to fasted female subjects were assessed. Compared with placebo, insulin administration in the postprandial but not in the fasted state decreased appetite as well as intake and rated palatability of chocolate chip cookies (the most palatable snack offered). In both experiments, intranasal insulin induced a slight decrease in plasma glucose but did not affect serum insulin concentrations. Data indicate that brain insulin acts as a relevant satiety signal during the postprandial period, in particular reducing the intake of highly palatable food, and impacts peripheral glucose homeostasis. Postprandial intranasal insulin administration might be useful in curtailing overconsumption of snacks with accentuated rewarding value.
Collapse
Affiliation(s)
- Manfred Hallschmid
- Department of Neuroendocrinology, University of Lübeck, Lübeck, Germany.
| | | | | | | | | |
Collapse
|
291
|
Ott V, Benedict C, Schultes B, Born J, Hallschmid M. Intranasal administration of insulin to the brain impacts cognitive function and peripheral metabolism. Diabetes Obes Metab 2012; 14:214-21. [PMID: 21883804 DOI: 10.1111/j.1463-1326.2011.01490.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In recent years, the central nervous system (CNS) has emerged as a principal site of insulin action. This notion is supported by studies in animals relying on intracerebroventricular insulin infusion and by experiments in humans that make use of the intranasal pathway of insulin administration to the brain. Employing neurobehavioural and metabolic measurements as well as functional imaging techniques, these studies have provided insight into a broad range of central and peripheral effects of brain insulin. The present review focuses on CNS effects of insulin administered via the intranasal route on cognition, in particular memory function, and whole-body energy homeostasis including glucose metabolism. Furthermore, evidence is reviewed that suggests a pathophysiological role of impaired brain insulin signaling in obesity and type 2 diabetes, which are hallmarked by peripheral and possibly central nervous insulin resistance, as well as in conditions such as Alzheimer's disease where CNS insulin resistance might contribute to cognitive dysfunction.
Collapse
Affiliation(s)
- V Ott
- Department of Neuroendocrinology, University of Luebeck, Luebeck, Germany.
| | | | | | | | | |
Collapse
|
292
|
Farooqui AA, Farooqui T, Panza F, Frisardi V. Metabolic syndrome as a risk factor for neurological disorders. Cell Mol Life Sci 2012; 69:741-62. [PMID: 21997383 PMCID: PMC11115054 DOI: 10.1007/s00018-011-0840-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/08/2011] [Accepted: 09/15/2011] [Indexed: 02/07/2023]
Abstract
The metabolic syndrome is a cluster of common pathologies: abdominal obesity linked to an excess of visceral fat, insulin resistance, dyslipidemia and hypertension. At the molecular level, metabolic syndrome is accompanied not only by dysregulation in the expression of adipokines (cytokines and chemokines), but also by alterations in levels of leptin, a peptide hormone released by white adipose tissue. These changes modulate immune response and inflammation that lead to alterations in the hypothalamic 'bodyweight/appetite/satiety set point,' resulting in the initiation and development of metabolic syndrome. Metabolic syndrome is a risk factor for neurological disorders such as stroke, depression and Alzheimer's disease. The molecular mechanism underlying the mirror relationship between metabolic syndrome and neurological disorders is not fully understood. However, it is becoming increasingly evident that all cellular and biochemical alterations observed in metabolic syndrome like impairment of endothelial cell function, abnormality in essential fatty acid metabolism and alterations in lipid mediators along with abnormal insulin/leptin signaling may represent a pathological bridge between metabolic syndrome and neurological disorders such as stroke, Alzheimer's disease and depression. The purpose of this review is not only to describe the involvement of brain in the pathogenesis of metabolic syndrome, but also to link the pathogenesis of metabolic syndrome with neurochemical changes in stroke, Alzheimer's disease and depression to a wider audience of neuroscientists with the hope that this discussion will initiate more studies on the relationship between metabolic syndrome and neurological disorders.
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43221, USA.
| | | | | | | |
Collapse
|
293
|
Levi J, Huynh FK, Denroche HC, Neumann UH, Glavas MM, Covey SD, Kieffer TJ. Hepatic leptin signalling and subdiaphragmatic vagal efferents are not required for leptin-induced increases of plasma IGF binding protein-2 (IGFBP-2) in ob/ob mice. Diabetologia 2012; 55:752-62. [PMID: 22202803 DOI: 10.1007/s00125-011-2426-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 11/28/2011] [Indexed: 01/19/2023]
Abstract
AIMS/HYPOTHESIS The fat-derived hormone leptin plays a crucial role in the maintenance of normal body weight and energy expenditure as well as in glucose homeostasis. Recently, it was reported that the liver-derived protein, insulin-like growth factor binding protein-2 (IGFBP-2), is responsible for at least some of the glucose-normalising effects of leptin. However, the exact mechanism by which leptin upregulates IGFBP-2 production is unknown. Since it is believed that circulating IGFBP-2 is predominantly derived from the liver and leptin has been shown to have both direct and indirect actions on the liver, we hypothesised that leptin signalling in hepatocytes or via brain-liver vagal efferents may mediate leptin control of IGFBP-2 production. METHODS To address our hypothesis, we assessed leptin action on glucose homeostasis and plasma IGFBP-2 levels in both leptin-deficient ob/ob mice with a liver-specific loss of leptin signalling and ob/ob mice with a subdiaphragmatic vagotomy. We also examined whether restoring hepatic leptin signalling in leptin receptor-deficient db/db mice could increase plasma IGFBP-2 levels. RESULTS Continuous leptin administration increased plasma IGFBP-2 levels in a dose-dependent manner, in association with reduced plasma glucose and insulin levels. Interestingly, leptin was still able to increase plasma IGFBP-2 levels and improve glucose homeostasis in both ob/ob mouse models to the same extent as their littermate controls. Further, restoration of hepatic leptin signalling in db/db mice did not increase either hepatic or plasma IGFBP-2 levels. CONCLUSIONS/INTERPRETATION Taken together, these data indicate that hepatic leptin signalling and subdiaphragmatic vagal inputs are not required for leptin upregulation of plasma IGFBP-2 nor blood glucose lowering in ob/ob mice.
Collapse
Affiliation(s)
- J Levi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | | | |
Collapse
|
294
|
Yi CX, Tschöp MH, Woods SC, Hofmann SM. High-fat-diet exposure induces IgG accumulation in hypothalamic microglia. Dis Model Mech 2012; 5:686-90. [PMID: 22381575 PMCID: PMC3424466 DOI: 10.1242/dmm.009464] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mediobasal hypothalamic arcuate nucleus (ARC), with its relatively ‘leaky’ blood-brain barrier that allows more circulating molecules to enter the brain, has emerged as a key sensor of blood-borne signals. In both the ARC and white adipose tissue (WAT), consumption of a high-fat diet (HFD) rapidly induces infiltration of microglia (ARC) or macrophages (WAT). Animals with HFD-induced obesity (DIO) and insulin resistance additionally accumulate B cells in WAT, increasing the local production of pathogenic antibodies. We therefore investigated whether DIO mice or genetically obese ob/ob mice have increased IgG in the ARC, analogous to the recent observations in WAT. Following 16 weeks of exposure to a HFD, wild-type (WT) mice had significantly increased IgG-immunoreactivity (ir) signaling that was specific to the ARC and was exclusively concentrated in microglia. By contrast, IgG-ir of age-matched obese ob/ob mice fed standard chow had ARC IgG levels comparable with those in chow-fed WT control mice. However, following 2 weeks of HFD exposure, ob/ob mice also had a significant increase of IgG-ir in the ARC. In summary, our findings reveal a novel pathophysiological phenomenon, specific for the hypothalamic ARC, that is induced by exposure to a HFD and can be enhanced, but not caused, by genetic obesity.
Collapse
Affiliation(s)
- Chun-Xia Yi
- Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment, Technical University Munich, Munich, Germany
| | | | | | | |
Collapse
|
295
|
Electrophysiological analysis of circuits controlling energy homeostasis. Mol Neurobiol 2012; 45:258-78. [PMID: 22331510 DOI: 10.1007/s12035-012-8241-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/26/2012] [Indexed: 10/28/2022]
Abstract
Since the discovery of leptin and the central melanocortin circuit, electrophysiological studies have played a major role in elucidating mechanisms underlying energy homeostasis. This review highlights the contribution of findings made by electrophysiological measurements to the current understanding of hypothalamic neuronal networks involved in energy homeostasis with a specific focus on the arcuate-paraventricular nucleus circuit.
Collapse
|
296
|
Yi CX, Foppen E, Abplanalp W, Gao Y, Alkemade A, la Fleur SE, Serlie MJ, Fliers E, Buijs RM, Tschöp MH, Kalsbeek A. Glucocorticoid signaling in the arcuate nucleus modulates hepatic insulin sensitivity. Diabetes 2012; 61:339-45. [PMID: 22210324 PMCID: PMC3266416 DOI: 10.2337/db11-1239] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glucocorticoid receptors are highly expressed in the hypothalamic paraventricular nucleus (PVN) and arcuate nucleus (ARC). As glucocorticoids have pronounced effects on neuropeptide Y (NPY) expression and as NPY neurons projecting from the ARC to the PVN are pivotal for balancing feeding behavior and glucose metabolism, we investigated the effect of glucocorticoid signaling in these areas on endogenous glucose production (EGP) and insulin sensitivity by local retrodialysis of the glucocorticoid receptor agonist dexamethasone into the ARC or the PVN, in combination with isotope dilution and hyperinsulinemic-euglycemic clamp techniques. Retrodialysis of dexamethasone for 90 min into the ARC or the PVN did not have significant effects on basal plasma glucose concentration. During the hyperinsulinemic-euglycemic clamp, retrodialysis of dexamethasone into the ARC largely prevented the suppressive effect of hyperinsulinemia on EGP. Antagonizing the NPY1 receptors by intracerebroventricular infusion of its antagonist largely blocked the hepatic insulin resistance induced by dexamethasone in the ARC. The dexamethasone-ARC-induced inhibition of hepatic insulin sensitivity was also prevented by hepatic sympathetic denervation. These data suggest that glucocorticoid signaling specifically in the ARC neurons modulates hepatic insulin responsiveness via NPY and the sympathetic system, which may add to our understanding of the metabolic impact of clinical conditions associated with hypercortisolism.
Collapse
Affiliation(s)
- Chun-Xia Yi
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
297
|
Burmeister MA, Ferre T, Ayala JE, King EM, Holt RM, Ayala JE. Acute activation of central GLP-1 receptors enhances hepatic insulin action and insulin secretion in high-fat-fed, insulin resistant mice. Am J Physiol Endocrinol Metab 2012; 302:E334-43. [PMID: 22094469 DOI: 10.1152/ajpendo.00409.2011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor knockout (Glp1r(-/-)) mice exhibit impaired hepatic insulin action. High fat (HF)-fed Glp1r(-/-) mice exhibit improved, rather than the expected impaired, hepatic insulin action. This is due to decreased lipogenic gene expression and triglyceride accumulation. The present studies overcome these secondary adaptations by acutely modulating GLP-1R action in HF-fed wild-type mice. The central GLP-1R was targeted given its role as a regulator of hepatic insulin action. We hypothesized that acute inhibition of the central GLP-1R impairs hepatic insulin action beyond the effects of HF feeding. We further hypothesized that activation of the central GLP-1R improves hepatic insulin action in HF-fed mice. Insulin action was assessed in conscious, unrestrained mice using the hyperinsulinemic euglycemic clamp. Mice received intracerebroventricular (icv) infusions of artificial cerebrospinal fluid, GLP-1, or the GLP-1R antagonist exendin-9 (Ex-9) during the clamp. Intracerebroventricular Ex-9 impaired the suppression of hepatic glucose production by insulin, whereas icv GLP-1 improved it. Neither treatment affected tissue glucose uptake. Intracerebroventricular GLP-1 enhanced activation of hepatic Akt and suppressed hypothalamic AMP-activated protein kinase. Central GLP-1R activation resulted in lower hepatic triglyceride levels but did not affect muscle, white adipose tissue, or plasma triglyceride levels during hyperinsulinemia. In response to oral but not intravenous glucose challenges, activation of the central GLP-1R improved glucose tolerance. This was associated with higher insulin levels. Inhibition of the central GLP-1R had no effect on oral or intravenous glucose tolerance. These results show that inhibition of the central GLP-1R deteriorates hepatic insulin action in HF-fed mice but does not affect whole body glucose homeostasis. Contrasting this, activation of the central GLP-1R improves glucose homeostasis in HF-fed mice by increasing insulin levels and enhancing hepatic insulin action.
Collapse
Affiliation(s)
- Melissa A Burmeister
- Metabolic Signaling and Disease Program, Diabetes and Obesity Research Center, Orlando, Florida, USA
| | | | | | | | | | | |
Collapse
|
298
|
Jitrapakdee S. Transcription factors and coactivators controlling nutrient and hormonal regulation of hepatic gluconeogenesis. Int J Biochem Cell Biol 2012; 44:33-45. [DOI: 10.1016/j.biocel.2011.10.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/30/2011] [Accepted: 10/04/2011] [Indexed: 12/17/2022]
|
299
|
Su Y, Lam TK, He W, Pocai A, Bryan J, Aguilar-Bryan L, Gutiérrez-Juárez R. Hypothalamic leucine metabolism regulates liver glucose production. Diabetes 2012; 61:85-93. [PMID: 22187376 PMCID: PMC3237640 DOI: 10.2337/db11-0857] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Amino acids profoundly affect insulin action and glucose metabolism in mammals. Here, we investigated the role of the mediobasal hypothalamus (MBH), a key center involved in nutrient-dependent metabolic regulation. Specifically, we tested the novel hypothesis that the metabolism of leucine within the MBH couples the central sensing of leucine with the control of glucose production by the liver. We performed either central (MBH) or systemic infusions of leucine in Sprague-Dawley male rats during basal pancreatic insulin clamps in combination with various pharmacological and molecular interventions designed to modulate leucine metabolism in the MBH. We also examined the role of hypothalamic ATP-sensitive K(+) channels (K(ATP) channels) in the effects of leucine. Enhancing the metabolism of leucine acutely in the MBH lowered blood glucose through a biochemical network that was insensitive to rapamycin but strictly dependent on the hypothalamic metabolism of leucine to α-ketoisocaproic acid and, further, insensitive to acetyl- and malonyl-CoA. Functional K(ATP) channels were also required. Importantly, molecular attenuation of this central sensing mechanism in rats conferred susceptibility to developing hyperglycemia. We postulate that the metabolic sensing of leucine in the MBH is a previously unrecognized mechanism for the regulation of hepatic glucose production required to maintain glucose homeostasis.
Collapse
Affiliation(s)
- Ya Su
- Department of Medicine, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York
| | - Tony K.T. Lam
- Department of Medicine, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York
| | - Wu He
- Department of Medicine, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York
| | - Alessandro Pocai
- Department of Medicine, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York
| | - Joseph Bryan
- Pacific Northwest Research Institute, Seattle, Washington
| | | | - Roger Gutiérrez-Juárez
- Department of Medicine, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York
- Corresponding author: Roger Gutiérrez-Juárez,
| |
Collapse
|
300
|
Coomans CP, Biermasz NR, Geerling JJ, Guigas B, Rensen PCN, Havekes LM, Romijn JA. Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice. Diabetes 2011; 60:3132-40. [PMID: 22028182 PMCID: PMC3219951 DOI: 10.2337/db10-1100] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated tissue-specific glucose uptake. RESEARCH DESIGN AND METHODS Tolbutamide, an inhibitor of ATP-sensitive K(+) channels (K(ATP) channels), or vehicle was infused into the lateral ventricle in the basal state and during hyperinsulinemic-euglycemic conditions in postabsorptive, chow-fed C57Bl/6J mice and in postabsorptive C57Bl/6J mice with diet-induced obesity. Whole-body glucose uptake was measured by d-[(14)C]glucose kinetics and tissue-specific glucose uptake by 2-deoxy-d-[(3)H]glucose uptake. RESULTS During clamp conditions, intracerebroventricular administration of tolbutamide impaired the ability of insulin to inhibit EGP by ∼20%. In addition, intracerebroventricular tolbutamide diminished insulin-stimulated glucose uptake in muscle (by ∼59%) but not in heart or adipose tissue. In contrast, in insulin-resistant mice with diet-induced obesity, intracerebroventricular tolbutamide did not alter the effects of insulin during clamp conditions on EGP or glucose uptake by muscle. CONCLUSIONS Insulin stimulates glucose uptake in muscle in part through effects via K(ATP) channels in the central nervous system, in analogy with the inhibitory effects of insulin on EGP. High-fat diet-induced obesity abolished the central effects of insulin on liver and muscle. These observations stress the role of central insulin resistance in the pathophysiology of diet-induced insulin resistance.
Collapse
Affiliation(s)
- Claudia P Coomans
- Department of Endocrinology and Metabolic Disorders, Leiden University Medical Center, Leiden, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|