301
|
Walczak P, Janowski M. The COVID-19 Menace. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2100004. [PMID: 34178377 PMCID: PMC8209929 DOI: 10.1002/gch2.202100004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/22/2021] [Indexed: 05/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which binds to ectoenzyme angiotensin-converting enzyme 2. It is very contagious and is spreading rapidly around the world. Until now, coronaviruses have mainly been associated with the aerodigestive tract due to the presence of a monobasic cleavage site for the resident transmembrane serine protease 2. Notably, SARS-CoV-2 is equipped with a second, polybasic cleavage site for the ubiquitous furin protease, which may determine the widespread tissue tropism. Furthermore, the terminal sequence of the furin-cleaved spike protein also binds to neuropilin receptors. Clinically, there is enormous variability in the severity of the disease. Severe consequences are seen in a relatively small number of patients, most show moderate symptoms, but asymptomatic cases, especially among young people, drive disease spread. Unfortunately, the number of local infections can quickly build up, causing disease outbreaks suddenly exhausting health services' capacity. Therefore, COVID-19 is dangerous and unpredictable and has become the most serious threat for generations. Here, the latest research on COVID-19 is summarized, including its spread, testing methods, organ-specific complications, the role of comorbidities, long-term consequences, mortality, as well as a new hope for immunity, drugs, and vaccines.
Collapse
Affiliation(s)
- Piotr Walczak
- Center for Advanced Imaging ResearchDepartment of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of MarylandBaltimoreMD21201USA
| | - Miroslaw Janowski
- Center for Advanced Imaging ResearchDepartment of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of MarylandBaltimoreMD21201USA
| |
Collapse
|
302
|
Abstract
Here we present the first case of newly diagnosed IgA nephropathy (IgAN) after a SARS-CoV-2 vaccination. A 30-year-old man with no known past medical history presented with gross hematuria and subnephrotic proteinuria 24 hours after the second dose of the mRNA-1273 SARS-CoV-2 vaccine. A kidney biopsy showed IgAN. He was started on an angiotensin receptor blocker, resulting in proteinuria reduction. Similar to natural infection of SARS-CoV-2, persons who receive 2 mRNA-based vaccines demonstrate robust antibodies against the receptor-binding domain (RBD) of the S1 protein. Given the uniqueness of glycosylation of RBD and potent stimulation of immune response from mRNA-based vaccine compared to other vaccines, we hypothesize that our patient developed de novo antibodies, leading to IgA-containing immune-complex deposits. This case highlights the urgency of understanding the immunological responses to novel mRNA-based SARS-CoV-2 vaccines in more diverse populations. Despite the lack of clear causality, nephrologists should be alerted if any new-onset hematuria or proteinuria is observed.
Collapse
Affiliation(s)
- Matthew Abramson
- Division of Nephrology Icahn School of Medicine at Mount Sinai, New York, New York
| | - Samuel Mon-Wei Yu
- Division of Nephrology Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kirk N. Campbell
- Division of Nephrology Icahn School of Medicine at Mount Sinai, New York, New York
| | - Miriam Chung
- Division of Nephrology Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fadi Salem
- Department of Pathology, Molecular & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
303
|
Jeeva S, Kim KH, Shin CH, Wang BZ, Kang SM. An Update on mRNA-Based Viral Vaccines. Vaccines (Basel) 2021; 9:965. [PMID: 34579202 PMCID: PMC8473183 DOI: 10.3390/vaccines9090965] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/23/2022] Open
Abstract
With the success of COVID-19 vaccines, newly created mRNA vaccines against other infectious diseases are beginning to emerge. Here, we review the structural elements required for designing mRNA vaccine constructs for effective in vitro synthetic transcription reactions. The unprecedently speedy development of mRNA vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was enabled with previous innovations in nucleoside modifications during in vitro transcription and lipid nanoparticle delivery materials of mRNA. Recent updates are briefly described in the status of mRNA vaccines against SARS-CoV-2, influenza virus, and other viral pathogens. Unique features of mRNA vaccine platforms and future perspectives are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (S.J.); (K.-H.K.); (C.H.S.); (B.-Z.W.)
| |
Collapse
|
304
|
Heida R, Hinrichs WL, Frijlink HW. Inhaled vaccine delivery in the combat against respiratory viruses: a 2021 overview of recent developments and implications for COVID-19. Expert Rev Vaccines 2021; 21:957-974. [PMID: 33749491 DOI: 10.1080/14760584.2021.1903878] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION As underlined by the late 2019 outbreak of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), vaccination remains the cornerstone of global health-care. Although vaccines for SARS-CoV-2 are being developed at a record-breaking pace, the majority of those that are licensed or currently registered in clinical trials are formulated as an injectable product, requiring a tightly regulated cold-chain infrastructure, and primarily inducing systemic immune responses. AREAS COVERED Here, we shed light on the status of inhaled vaccines against viral pathogens, providing background to the role of the mucosal immune system and elucidating what factors determine an inhalable vaccine's efficacy. We also discuss whether the development of an inhalable powder vaccine formulation against SARS-CoV-2 could be feasible. The review was conducted using relevant studies from PubMed, Web of Science and Google Scholar. EXPERT OPINION We believe that the scope of vaccine research should be broadened toward inhalable dry powder formulations since dry vaccines bear several advantages. Firstly, their dry state can tremendously increase vaccine stability and shelf-life. Secondly, they can be inhaled using disposable inhalers, omitting the need for trained health-care personnel and, therefore, facilitating mass-vaccination campaigns. Thirdly, inhalable vaccines may provide improved protection since they can induce an IgA-mediated mucosal immune response.
Collapse
Affiliation(s)
- Rick Heida
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Wouter Lj Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
305
|
van Doremalen N, Purushotham JN, Schulz JE, Holbrook MG, Bushmaker T, Carmody A, Port JR, Yinda CK, Okumura A, Saturday G, Amanat F, Krammer F, Hanley PW, Smith BJ, Lovaglio J, Anzick SL, Barbian K, Martens C, Gilbert SC, Lambe T, Munster VJ. Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces viral shedding after SARS-CoV-2 D614G challenge in preclinical models. Sci Transl Med 2021; 13:eabh0755. [PMID: 34315826 PMCID: PMC9267380 DOI: 10.1126/scitranslmed.abh0755] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022]
Abstract
ChAdOx1 nCoV-19/AZD1222 is an approved adenovirus-based vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) currently being deployed globally. Previous studies in rhesus macaques revealed that intramuscular vaccination with ChAdOx1 nCoV-19/AZD1222 provided protection against pneumonia but did not reduce shedding of SARS-CoV-2 from the upper respiratory tract. Here, we investigated whether intranasally administered ChAdOx1 nCoV-19 reduces detection of virus in nasal swabs after challenging vaccinated macaques and hamsters with SARS-CoV-2 carrying a D614G mutation in the spike protein. Viral loads in swabs obtained from intranasally vaccinated hamsters were decreased compared to control hamsters, and no viral RNA or infectious virus was found in lung tissue after a direct challenge or after direct contact with infected hamsters. Intranasal vaccination of rhesus macaques resulted in reduced virus concentrations in nasal swabs and a reduction in viral loads in bronchoalveolar lavage and lower respiratory tract tissue. Intranasal vaccination with ChAdOx1 nCoV-19/AZD1222 reduced virus concentrations in nasal swabs in two different SARS-CoV-2 animal models, warranting further investigation as a potential vaccination route for COVID-19 vaccines.
Collapse
Affiliation(s)
- Neeltje van Doremalen
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Jyothi N Purushotham
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Jonathan E Schulz
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Myndi G Holbrook
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Trenton Bushmaker
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Aaron Carmody
- Research Technologies Branch, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT 59840, USA
| | - Julia R Port
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Claude K Yinda
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Atsushi Okumura
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrick W Hanley
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Brian J Smith
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Sarah L Anzick
- Research Technologies Branch, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT 59840, USA
| | - Kent Barbian
- Research Technologies Branch, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT 59840, USA
| | - Craig Martens
- Research Technologies Branch, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT 59840, USA
| | - Sarah C Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Vincent J Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| |
Collapse
|
306
|
Helou DG, Mauras A, Fasquelle F, Lanza JS, Loiseau PM, Betbeder D, Cojean S. Intranasal vaccine from whole Leishmania donovani antigens provides protection and induces specific immune response against visceral leishmaniasis. PLoS Negl Trop Dis 2021; 15:e0009627. [PMID: 34403413 PMCID: PMC8370633 DOI: 10.1371/journal.pntd.0009627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/05/2021] [Indexed: 12/27/2022] Open
Abstract
Visceral leishmaniasis is a protozoan disease associated with high fatality rate in developing countries. Although the drug pipeline is constantly improving, available treatments are costly and live-threatening side effects are not uncommon. Moreover, an approved vaccine against human leishmaniasis does not exist yet. Using whole antigens from Leishmania donovani promastigotes (LdAg), we investigated the protective potential of a novel adjuvant-free vaccine strategy. Immunization of mice with LdAg via the intradermal or the intranasal route prior to infection decreases the parasitic burden in primary affected internal organs, including the liver, spleen, and bone marrow. Interestingly, the intranasal route is more efficient than the intradermal route, leading to better parasite clearance and remarkable induction of adaptive immune cells, notably the helper and cytotoxic T cells. In vitro restimulation experiments with Leishmania antigens led to significant IFN-γ secretion by splenocytes; therefore, exemplifying specificity of the adaptive immune response. To improve mucosal delivery and the immunogenic aspects of our vaccine strategy, we used polysaccharide-based nanoparticles (NP) that carry the antigens. The NP-LdAg formulation is remarkably taken up by dendritic cells and induces their maturation in vitro, as revealed by the increased expression of CD80, CD86 and MHC II. Intranasal immunization with NP-LdAg does not improve the parasite clearance in our experimental timeline; however, it does increase the percentage of effector and memory T helper cells in the spleen, suggesting a potential induction of long-term memory. Altogether, this study provides a simple and cost-effective vaccine strategy against visceral leishmaniasis based on LdAg administration via the intranasal route, which could be applicable to other parasitic diseases. Visceral leishmaniasis is a neglected tropical disease caused by specific species of Leishmania parasites that affect internal organs including spleen, liver, and bone marrow. The infective stage called promastigote, is transmitted into the host skin via sandfly bites. Visceral leishmaniasis is usually associated with high mortality rate in poor and developing countries, lacking proper health assistance. Moreover, treatments are expensive while no approved vaccines exist to prevent infection and avoid disease outbreaks. This study suggests an affordable and adjuvant-free vaccine formulation made from the total lysate of promastigotes. Vaccine administration via the intranasal route, ensures a remarkable clearance of Leishmania parasites from the internal organs of infected experimental mice. In particular, intranasal route known to be not invasive, is efficient in inducing adequate immune response against the infective form of the parasite. Further studies are now required to improve this prophylactic vaccine and provide therefore the basis for a promising translational approach.
Collapse
MESH Headings
- Adaptive Immunity
- Adjuvants, Immunologic/administration & dosage
- Administration, Intranasal
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/administration & dosage
- Antigens, Protozoan/blood
- Antigens, Protozoan/immunology
- Bone Marrow/metabolism
- Bone Marrow/parasitology
- Female
- Immunization
- Interferon-gamma/metabolism
- Leishmania donovani/immunology
- Leishmaniasis Vaccines/administration & dosage
- Leishmaniasis Vaccines/immunology
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/parasitology
- Leishmaniasis, Visceral/prevention & control
- Liver/metabolism
- Liver/parasitology
- Mice
- Mice, Inbred BALB C
- Spleen/metabolism
- Spleen/parasitology
Collapse
Affiliation(s)
- Doumet Georges Helou
- Université Paris-Saclay, CNRS, BioCis-UMR 8076, Châtenay-Malabry, France
- * E-mail: (DGH); (SC)
| | - Aurélie Mauras
- Université Paris-Saclay, CNRS, BioCis-UMR 8076, Châtenay-Malabry, France
| | | | | | | | | | - Sandrine Cojean
- Université Paris-Saclay, CNRS, BioCis-UMR 8076, Châtenay-Malabry, France
- * E-mail: (DGH); (SC)
| |
Collapse
|
307
|
Yaqinuddin A, Shafqat A, Kashir J, Alkattan K. Effect of SARS-CoV-2 Mutations on the Efficacy of Antibody Therapy and Response to Vaccines. Vaccines (Basel) 2021; 9:914. [PMID: 34452039 PMCID: PMC8402590 DOI: 10.3390/vaccines9080914] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2 causes severe acute respiratory syndrome, which has led to significant morbidity and mortality around the world. Since its emergence, extensive prophylactic and therapeutic countermeasures have been employed to successfully prevent the spread of COVID-19. Extensive work has been undertaken on using monoclonal antibody therapies, mass vaccination programs, and antiviral drugs to prevent and treat COVID-19. However, since antiviral drugs could take years to become widely available, immunotherapy and vaccines currently appear to be the most feasible option. In December 2020, the first vaccine against SARS-CoV-2 was approved by the World Health Organization (WHO) and, subsequently, many other vaccines were approved for use by different international regulators in different countries. Most monoclonal antibodies (mAbs) and vaccines target the SARS-CoV-2 surface spike (S) protein. Recently, mutant (or variant) SARS-CoV-2 strains with increased infectivity and virulence that evade protective host antibodies present either due to infection, antibody therapy, or vaccine administration have emerged. In this manuscript, we discuss the different monoclonal antibody and vaccine therapies available against COVID-19 and how the efficacy of these therapies is affected by the emergence of variants of SARS-CoV-2. We also discuss strategies that might help society cope with variants that could neutralize the effects of immunotherapy and escape the protective immunity conferred by vaccines.
Collapse
Affiliation(s)
- Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (J.K.); (K.A.)
| | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (J.K.); (K.A.)
| | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (J.K.); (K.A.)
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11533, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (J.K.); (K.A.)
| |
Collapse
|
308
|
Untersmayr E, Förster-Waldl E, Bonelli M, Boztug K, Brunner PM, Eiwegger T, Eller K, Göschl L, Grabmeier-Pfistershammer K, Hötzenecker W, Jordakieva G, Moschen AR, Pfaller B, Pickl W, Reinisch W, Wiedermann U, Klimek L, Bergmann KC, Brehler R, Novak N, Merk HF, Rabe U, Schlenter WW, Ring J, Wehrmann W, Mülleneisen NK, Wrede H, Fuchs T, Jensen-Jarolim E. Immunologisch relevante Aspekte der neuen COVID-19-Impfstoffe. ALLERGO JOURNAL 2021; 30:34-47. [PMID: 34393384 PMCID: PMC8349614 DOI: 10.1007/s15007-021-4848-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Eva Untersmayr
- Medical University of Vienna, Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
| | - Elisabeth Förster-Waldl
- Abteilung für Neonatologie, Pädiatrische Intensivmedizin und Neuropädiatrie mit Center for Congenital Immunodeficiencies, Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
| | - Michael Bonelli
- Klinische Abteilung für Rheumatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
| | - Kaan Boztug
- St. Anna Kinderspital und Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
| | - Patrick M. Brunner
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Thomas Eiwegger
- Medical University of Vienna, Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
- Abteilung für Neonatologie, Pädiatrische Intensivmedizin und Neuropädiatrie mit Center for Congenital Immunodeficiencies, Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Klinische Abteilung für Rheumatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
- St. Anna Kinderspital und Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Kathrin Eller
- Medical University of Vienna, Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
- Abteilung für Neonatologie, Pädiatrische Intensivmedizin und Neuropädiatrie mit Center for Congenital Immunodeficiencies, Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Klinische Abteilung für Rheumatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
- St. Anna Kinderspital und Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Lisa Göschl
- Medical University of Vienna, Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
- Abteilung für Neonatologie, Pädiatrische Intensivmedizin und Neuropädiatrie mit Center for Congenital Immunodeficiencies, Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Klinische Abteilung für Rheumatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
- St. Anna Kinderspital und Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Katharina Grabmeier-Pfistershammer
- Medical University of Vienna, Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
- Abteilung für Neonatologie, Pädiatrische Intensivmedizin und Neuropädiatrie mit Center for Congenital Immunodeficiencies, Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Klinische Abteilung für Rheumatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
- St. Anna Kinderspital und Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Wolfram Hötzenecker
- Medical University of Vienna, Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
- Abteilung für Neonatologie, Pädiatrische Intensivmedizin und Neuropädiatrie mit Center for Congenital Immunodeficiencies, Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Klinische Abteilung für Rheumatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
- St. Anna Kinderspital und Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Galateja Jordakieva
- Medical University of Vienna, Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
- Abteilung für Neonatologie, Pädiatrische Intensivmedizin und Neuropädiatrie mit Center for Congenital Immunodeficiencies, Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Klinische Abteilung für Rheumatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
- St. Anna Kinderspital und Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Alexander R. Moschen
- Medical University of Vienna, Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
- Abteilung für Neonatologie, Pädiatrische Intensivmedizin und Neuropädiatrie mit Center for Congenital Immunodeficiencies, Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Klinische Abteilung für Rheumatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
- St. Anna Kinderspital und Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Birgit Pfaller
- Medical University of Vienna, Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
- Abteilung für Neonatologie, Pädiatrische Intensivmedizin und Neuropädiatrie mit Center for Congenital Immunodeficiencies, Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Klinische Abteilung für Rheumatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
- St. Anna Kinderspital und Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Winfried Pickl
- Medical University of Vienna, Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
- Abteilung für Neonatologie, Pädiatrische Intensivmedizin und Neuropädiatrie mit Center for Congenital Immunodeficiencies, Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Klinische Abteilung für Rheumatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
- St. Anna Kinderspital und Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Walter Reinisch
- Medical University of Vienna, Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
- Abteilung für Neonatologie, Pädiatrische Intensivmedizin und Neuropädiatrie mit Center for Congenital Immunodeficiencies, Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Klinische Abteilung für Rheumatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
- St. Anna Kinderspital und Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Ursula Wiedermann
- Medical University of Vienna, Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
- Abteilung für Neonatologie, Pädiatrische Intensivmedizin und Neuropädiatrie mit Center for Congenital Immunodeficiencies, Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Klinische Abteilung für Rheumatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
- St. Anna Kinderspital und Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Ludger Klimek
- Medical University of Vienna, Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
- Abteilung für Neonatologie, Pädiatrische Intensivmedizin und Neuropädiatrie mit Center for Congenital Immunodeficiencies, Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Klinische Abteilung für Rheumatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
- St. Anna Kinderspital und Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Karl-Christian Bergmann
- Medical University of Vienna, Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
- Abteilung für Neonatologie, Pädiatrische Intensivmedizin und Neuropädiatrie mit Center for Congenital Immunodeficiencies, Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Klinische Abteilung für Rheumatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
- St. Anna Kinderspital und Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Randolf Brehler
- Medical University of Vienna, Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
- Abteilung für Neonatologie, Pädiatrische Intensivmedizin und Neuropädiatrie mit Center for Congenital Immunodeficiencies, Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Klinische Abteilung für Rheumatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
- St. Anna Kinderspital und Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Natalija Novak
- Medical University of Vienna, Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
- Abteilung für Neonatologie, Pädiatrische Intensivmedizin und Neuropädiatrie mit Center for Congenital Immunodeficiencies, Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Klinische Abteilung für Rheumatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
- St. Anna Kinderspital und Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Hans F. Merk
- Medical University of Vienna, Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
- Abteilung für Neonatologie, Pädiatrische Intensivmedizin und Neuropädiatrie mit Center for Congenital Immunodeficiencies, Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Klinische Abteilung für Rheumatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
- St. Anna Kinderspital und Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Uta Rabe
- Medical University of Vienna, Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
- Abteilung für Neonatologie, Pädiatrische Intensivmedizin und Neuropädiatrie mit Center for Congenital Immunodeficiencies, Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Klinische Abteilung für Rheumatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
- St. Anna Kinderspital und Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Wolfgang W. Schlenter
- Medical University of Vienna, Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
- Abteilung für Neonatologie, Pädiatrische Intensivmedizin und Neuropädiatrie mit Center for Congenital Immunodeficiencies, Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Klinische Abteilung für Rheumatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
- St. Anna Kinderspital und Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Johannes Ring
- Medical University of Vienna, Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
- Abteilung für Neonatologie, Pädiatrische Intensivmedizin und Neuropädiatrie mit Center for Congenital Immunodeficiencies, Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Klinische Abteilung für Rheumatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
- St. Anna Kinderspital und Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Wolfgang Wehrmann
- Medical University of Vienna, Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
- Abteilung für Neonatologie, Pädiatrische Intensivmedizin und Neuropädiatrie mit Center for Congenital Immunodeficiencies, Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Klinische Abteilung für Rheumatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
- St. Anna Kinderspital und Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Norbert K. Mülleneisen
- Medical University of Vienna, Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
- Abteilung für Neonatologie, Pädiatrische Intensivmedizin und Neuropädiatrie mit Center for Congenital Immunodeficiencies, Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Klinische Abteilung für Rheumatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
- St. Anna Kinderspital und Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Holger Wrede
- Medical University of Vienna, Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
- Abteilung für Neonatologie, Pädiatrische Intensivmedizin und Neuropädiatrie mit Center for Congenital Immunodeficiencies, Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Klinische Abteilung für Rheumatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
- St. Anna Kinderspital und Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Thomas Fuchs
- Medical University of Vienna, Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
- Abteilung für Neonatologie, Pädiatrische Intensivmedizin und Neuropädiatrie mit Center for Congenital Immunodeficiencies, Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Klinische Abteilung für Rheumatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
- St. Anna Kinderspital und Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Erika Jensen-Jarolim
- Medical University of Vienna, Department of Pathophysiology and Allergy Research, Waehringer Gürtel 18-20, 1090 Wien, Österreich
- Abteilung für Neonatologie, Pädiatrische Intensivmedizin und Neuropädiatrie mit Center for Congenital Immunodeficiencies, Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Klinische Abteilung für Rheumatologie, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
- St. Anna Kinderspital und Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Wien, Österreich
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| |
Collapse
|
309
|
King RG, Silva-Sanchez A, Peel JN, Botta D, Dickson AM, Pinto AK, Meza-Perez S, Allie SR, Schultz MD, Liu M, Bradley JE, Qiu S, Yang G, Zhou F, Zumaquero E, Simpler TS, Mousseau B, Killian JT, Dean B, Shang Q, Tipper JL, Risley CA, Harrod KS, Feng T, Lee Y, Shiberu B, Krishnan V, Peguillet I, Zhang J, Green TJ, Randall TD, Suschak JJ, Georges B, Brien JD, Lund FE, Roberts MS. Single-Dose Intranasal Administration of AdCOVID Elicits Systemic and Mucosal Immunity against SARS-CoV-2 and Fully Protects Mice from Lethal Challenge. Vaccines (Basel) 2021; 9:881. [PMID: 34452006 PMCID: PMC8402488 DOI: 10.3390/vaccines9080881] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has highlighted the urgent need for effective prophylactic vaccination to prevent the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Intranasal vaccination is an attractive strategy to prevent COVID-19 as the nasal mucosa represents the first-line barrier to SARS-CoV-2 entry. The current intramuscular vaccines elicit systemic immunity but not necessarily high-level mucosal immunity. Here, we tested a single intranasal dose of our candidate adenovirus type 5-vectored vaccine encoding the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein (AdCOVID) in inbred, outbred, and transgenic mice. A single intranasal vaccination with AdCOVID elicited a strong and focused immune response against RBD through the induction of mucosal IgA in the respiratory tract, serum neutralizing antibodies, and CD4+ and CD8+ T cells with a Th1-like cytokine expression profile. A single AdCOVID dose resulted in immunity that was sustained for over six months. Moreover, a single intranasal dose completely protected K18-hACE2 mice from lethal SARS-CoV-2 challenge, preventing weight loss and mortality. These data show that AdCOVID promotes concomitant systemic and mucosal immunity and represents a promising vaccine candidate.
Collapse
Affiliation(s)
- R. Glenn King
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Aaron Silva-Sanchez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.S.-S.); (S.M.-P.); (S.R.A.); (M.L.); (J.E.B.); (T.D.R.)
| | - Jessica N. Peel
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Davide Botta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Alexandria M. Dickson
- Department of Molecular Microbiology & Immunology, Saint Louis University, St. Louis, MO 63104, USA; (A.M.D.); (A.K.P.); (J.D.B.)
| | - Amelia K. Pinto
- Department of Molecular Microbiology & Immunology, Saint Louis University, St. Louis, MO 63104, USA; (A.M.D.); (A.K.P.); (J.D.B.)
| | - Selene Meza-Perez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.S.-S.); (S.M.-P.); (S.R.A.); (M.L.); (J.E.B.); (T.D.R.)
| | - S. Rameeza Allie
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.S.-S.); (S.M.-P.); (S.R.A.); (M.L.); (J.E.B.); (T.D.R.)
| | - Michael D. Schultz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Mingyong Liu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.S.-S.); (S.M.-P.); (S.R.A.); (M.L.); (J.E.B.); (T.D.R.)
| | - John E. Bradley
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.S.-S.); (S.M.-P.); (S.R.A.); (M.L.); (J.E.B.); (T.D.R.)
| | - Shihong Qiu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Guang Yang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Fen Zhou
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Esther Zumaquero
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Thomas S. Simpler
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Betty Mousseau
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - John T. Killian
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Brittany Dean
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Qiao Shang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Jennifer L. Tipper
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.L.T.); (K.S.H.)
| | - Christopher A. Risley
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Kevin S. Harrod
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.L.T.); (K.S.H.)
| | - Tsungwei Feng
- Altimmune Inc., Gaithersburg, MD 20878, USA; (T.F.); (Y.L.); (B.S.); (V.K.); (I.P.); (J.Z.); (J.J.S.); (B.G.)
| | - Young Lee
- Altimmune Inc., Gaithersburg, MD 20878, USA; (T.F.); (Y.L.); (B.S.); (V.K.); (I.P.); (J.Z.); (J.J.S.); (B.G.)
| | - Bethlehem Shiberu
- Altimmune Inc., Gaithersburg, MD 20878, USA; (T.F.); (Y.L.); (B.S.); (V.K.); (I.P.); (J.Z.); (J.J.S.); (B.G.)
| | - Vyjayanthi Krishnan
- Altimmune Inc., Gaithersburg, MD 20878, USA; (T.F.); (Y.L.); (B.S.); (V.K.); (I.P.); (J.Z.); (J.J.S.); (B.G.)
| | - Isabelle Peguillet
- Altimmune Inc., Gaithersburg, MD 20878, USA; (T.F.); (Y.L.); (B.S.); (V.K.); (I.P.); (J.Z.); (J.J.S.); (B.G.)
| | - Jianfeng Zhang
- Altimmune Inc., Gaithersburg, MD 20878, USA; (T.F.); (Y.L.); (B.S.); (V.K.); (I.P.); (J.Z.); (J.J.S.); (B.G.)
| | - Todd J. Green
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Troy D. Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.S.-S.); (S.M.-P.); (S.R.A.); (M.L.); (J.E.B.); (T.D.R.)
| | - John J. Suschak
- Altimmune Inc., Gaithersburg, MD 20878, USA; (T.F.); (Y.L.); (B.S.); (V.K.); (I.P.); (J.Z.); (J.J.S.); (B.G.)
| | - Bertrand Georges
- Altimmune Inc., Gaithersburg, MD 20878, USA; (T.F.); (Y.L.); (B.S.); (V.K.); (I.P.); (J.Z.); (J.J.S.); (B.G.)
| | - James D. Brien
- Department of Molecular Microbiology & Immunology, Saint Louis University, St. Louis, MO 63104, USA; (A.M.D.); (A.K.P.); (J.D.B.)
| | - Frances E. Lund
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - M. Scot Roberts
- Altimmune Inc., Gaithersburg, MD 20878, USA; (T.F.); (Y.L.); (B.S.); (V.K.); (I.P.); (J.Z.); (J.J.S.); (B.G.)
| |
Collapse
|
310
|
Mendonça SA, Lorincz R, Boucher P, Curiel DT. Adenoviral vector vaccine platforms in the SARS-CoV-2 pandemic. NPJ Vaccines 2021; 6:97. [PMID: 34354082 PMCID: PMC8342436 DOI: 10.1038/s41541-021-00356-x] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Adenoviral vectors have been explored as vaccine agents for a range of infectious diseases, and their ability to induce a potent and balanced immune response made them logical candidates to apply to the COVID-19 pandemic. The unique molecular characteristics of these vectors enabled the rapid development of vaccines with advanced designs capable of overcoming the biological challenges faced by early adenoviral vector systems. These successes and the urgency of the COVID-19 situation have resulted in a flurry of candidate adenoviral vector vaccines for COVID-19 from both academia and industry. These vaccines represent some of the lead candidates currently supported by Operation Warp Speed and other government agencies for rapid translational development. This review details adenoviral vector COVID-19 vaccines currently in human clinical trials and provides an overview of the new technologies employed in their design. As these vaccines have formed a cornerstone of the COVID-19 global vaccination campaign, this review provides a full consideration of the impact and development of this emerging platform.
Collapse
Affiliation(s)
- Samir Andrade Mendonça
- Washington University in Saint Louis, School of Medicine, Biologic Therapeutics Center, Radiation Oncology Department. 660 South Euclid Avenue, St. Louis, MO, USA
| | - Reka Lorincz
- Washington University in Saint Louis, School of Medicine, Biologic Therapeutics Center, Radiation Oncology Department. 660 South Euclid Avenue, St. Louis, MO, USA
| | - Paul Boucher
- Washington University in Saint Louis, School of Medicine, Biologic Therapeutics Center, Radiation Oncology Department. 660 South Euclid Avenue, St. Louis, MO, USA
| | - David T Curiel
- Washington University in Saint Louis, School of Medicine, Biologic Therapeutics Center, Radiation Oncology Department. 660 South Euclid Avenue, St. Louis, MO, USA.
| |
Collapse
|
311
|
Granados-Riveron JT, Aquino-Jarquin G. Engineering of the current nucleoside-modified mRNA-LNP vaccines against SARS-CoV-2. Biomed Pharmacother 2021; 142:111953. [PMID: 34343897 PMCID: PMC8299225 DOI: 10.1016/j.biopha.2021.111953] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Currently, there are over 230 different COVID-19 vaccines under development around the world. At least three decades of scientific development in RNA biology, immunology, structural biology, genetic engineering, chemical modification, and nanoparticle technologies allowed the accelerated development of fully synthetic messenger RNA (mRNA)-based vaccines within less than a year since the first report of a SARS-CoV-2 infection. mRNA-based vaccines have been shown to elicit broadly protective immune responses, with the added advantage of being amenable to rapid and flexible manufacturing processes. This review recapitulates current advances in engineering the first two SARS-CoV-2-spike-encoding nucleoside-modified mRNA vaccines, highlighting the strategies followed to potentiate their effectiveness and safety, thus facilitating an agile response to the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Javier T Granados-Riveron
- Laboratorio de Investigación en Patogénesis Molecular, Hospital Infantil de México, Federico Gómez, Ciudad de México, Mexico
| | - Guillermo Aquino-Jarquin
- Laboratorio de Investigación en Genómica, Genética y Bioinformática, Hospital Infantil de México, Federico Gómez, Ciudad de México, Mexico.
| |
Collapse
|
312
|
Immunogenicity and protective efficacy of an intranasal live-attenuated vaccine against SARS-CoV-2. iScience 2021; 24:102941. [PMID: 34368648 PMCID: PMC8332743 DOI: 10.1016/j.isci.2021.102941] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/27/2021] [Accepted: 07/30/2021] [Indexed: 01/08/2023] Open
Abstract
Global deployment of an effective and safe vaccine is necessary to curtail the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we evaluated a Newcastle disease virus (NDV)-based vectored-vaccine in mice and hamsters for its immunogenicity, safety, and protective efficacy against SARS-CoV-2. Intranasal administration of recombinant (r)NDV-S vaccine expressing spike (S) protein of SARS-CoV-2 to mice induced high levels of SARS-CoV-2-specific neutralizing immunoglobulin A (IgA) and IgG2a antibodies and T-cell-mediated immunity. Hamsters immunized with two doses of vaccine showed complete protection from lung infection, inflammation, and pathological lesions following SARS-CoV-2 challenge. Importantly, administration of two doses of intranasal rNDV-S vaccine significantly reduced the SARS-CoV-2 shedding in nasal turbinate and lungs in hamsters. Collectively, intranasal vaccination has the potential to control infection at the site of inoculation, which should prevent both clinical disease and virus transmission to halt the spread of the COVID-19 pandemic. Vaccine induces high levels of neutralizing Abs and T-cell-mediated immunity Vaccine ameliorates lung inflammation and pathology in hamster induced by SARS-CoV-2 The SARS-CoV-2 remains undetectable in lungs and nasal turbinates of vaccinated hamster Two doses of intranasal vaccine show complete protection against SARS-CoV-2 challenge
Collapse
|
313
|
Kaushik SK, Bobdey S, Faujdar DS, Anand V, Kumar Yadav A. Coronavirus disease 2019 vaccines: perspectives and update. Med J Armed Forces India 2021; 77:S245-S249. [PMID: 34334888 PMCID: PMC8313072 DOI: 10.1016/j.mjafi.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/07/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- S K Kaushik
- Professor & Head, Department of Community Medicine, Armed Forces Medical College, Pune, India
| | - S Bobdey
- Professor, Department of Community Medicine, Armed Forces Medical College, Pune, India
| | - D S Faujdar
- Associate Professor, Department of Community Medicine, Armed Forces Medical College, Pune, India
| | - Vivek Anand
- Assistant Professor, Department of Community Medicine, Armed Forces Medical College, Pune, India
| | - Arun Kumar Yadav
- Associate Professor, Department of Community Medicine, Armed Forces Medical College, Pune, India
| |
Collapse
|
314
|
Gallo O. Risk for COVID-19 infection in patients with tobacco smoke-associated cancers of the upper and lower airway. Eur Arch Otorhinolaryngol 2021; 278:2695-2702. [PMID: 33216184 PMCID: PMC7677601 DOI: 10.1007/s00405-020-06456-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/22/2020] [Indexed: 01/21/2023]
Abstract
PURPOSE Cancer patients are regarded as a group at risk for both COVID-19 infection and severe clinical course because of advanced age, comorbidities and iatrogenic immune impairment. Among them, patients with cancer of the upper and lower airways share other risk factors, mostly related to tobacco-smoke exposure, including male gender, airway epithelial damages, chronic obstructive respiratory disease (COPD), cardiovascular and cerebrovascular diseases. Clinical and pathophysiological factors shared by these conditions are reviewed. METHODS Review of the published literature since the beginning of 2020. RESULTS COVID-19 is a respiratory infectious disease and SARS-CoV-2 replication and shedding occurs in nasal and bronchial epithelial respiratory cells through the interaction with ACE2 and TMPRSS2 receptors, both overexpressed in smokers and former smokers. Tobacco-smoke airway exposure is also characterized by a chronic inflammation with activation of inflammatory cells and cytokine release including interleukin-6 (IL-6). A high release of cytokine in response to viral infection is documented in COVID-19 patients with adverse clinical outcomes and IL-6 is a key element of the cytokine storm syndrome leading to multi-organ damage. CONCLUSIONS Patients with cancers of the upper and lower airways might be at increased risk of infection, morbidity and mortality from COVID-19 also because of tobacco exposure, a key factor in triggering inflammation, immunity and cancer.
Collapse
Affiliation(s)
- Oreste Gallo
- Department of Otorhinolaryngology, Careggi University Hospital, Largo Brambilla, 3, 50139, Florence, Italy.
| |
Collapse
|
315
|
Wilson N, Mansoor OD, Boyd MJ, Kvalsvig A, Baker MG. We should not dismiss the possibility of eradicating COVID-19: comparisons with smallpox and polio. BMJ Glob Health 2021; 6:e006810. [PMID: 34373261 PMCID: PMC8375448 DOI: 10.1136/bmjgh-2021-006810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/13/2021] [Indexed: 01/26/2023] Open
Affiliation(s)
- Nick Wilson
- Public Health, University of Otago Wellington, Wellington, New Zealand
| | | | | | - Amanda Kvalsvig
- Public Health, University of Otago Wellington, Wellington, New Zealand
| | - Michael G Baker
- Public Health, University of Otago Wellington, Wellington, New Zealand
| |
Collapse
|
316
|
Alhashimi M, Elkashif A, Sayedahmed EE, Mittal SK. Nonhuman Adenoviral Vector-Based Platforms and Their Utility in Designing Next Generation of Vaccines for Infectious Diseases. Viruses 2021; 13:1493. [PMID: 34452358 PMCID: PMC8402644 DOI: 10.3390/v13081493] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Several human adenoviral (Ad) vectors have been developed for vaccine delivery owing to their numerous advantages, including the feasibility of different vector designs, the robustness of elicited immune responses, safety, and scalability. To expand the repertoire of Ad vectors for receptor usage and circumvention of Ad vector immunity, the use of less prevalent human Ad types or nonhuman Ads were explored for vector design. Notably, many nonhuman Ad vectors have shown great promise in preclinical and clinical studies as vectors for vaccine delivery. This review describes the key features of several nonhuman Ad vector platforms and their implications in developing effective vaccines against infectious diseases.
Collapse
Affiliation(s)
| | | | | | - Suresh K. Mittal
- Immunology and Infectious Disease, and Purdue University Center for Cancer Research, Department of Comparative Pathobiology, Purdue Institute for Inflammation, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907-2027, USA; (M.A.); (A.E.); (E.E.S.)
| |
Collapse
|
317
|
Hassan AO, Shrihari S, Gorman MJ, Ying B, Yuan D, Raju S, Chen RE, Dmitriev IP, Kashentseva E, Adams LJ, Mann C, Davis-Gardner ME, Suthar MS, Shi PY, Saphire EO, Fremont DH, Curiel DT, Alter G, Diamond MS. An intranasal vaccine durably protects against SARS-CoV-2 variants in mice. Cell Rep 2021; 36:109452. [PMID: 34289385 PMCID: PMC8270739 DOI: 10.1016/j.celrep.2021.109452] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/11/2021] [Accepted: 07/02/2021] [Indexed: 01/06/2023] Open
Abstract
SARS-CoV-2 variants that attenuate antibody neutralization could jeopardize vaccine efficacy. We recently reported the protective activity of an intranasally administered spike protein-based chimpanzee adenovirus-vectored vaccine (ChAd-SARS-CoV-2-S) in animals, which has advanced to human trials. Here, we assessed its durability, dose response, and cross-protective activity in mice. A single intranasal dose of ChAd-SARS-CoV-2-S induced durably high neutralizing and Fc effector antibody responses in serum and S-specific IgG and IgA secreting long-lived plasma cells in the bone marrow. Protection against a historical SARS-CoV-2 strain was observed across a 100-fold vaccine dose range and over a 200-day period. At 6 weeks or 9 months after vaccination, serum antibodies neutralized SARS-CoV-2 strains with B.1.351, B.1.1.28, and B.1.617.1 spike proteins and conferred almost complete protection in the upper and lower respiratory tracts after challenge with variant viruses. Thus, in mice, intranasal immunization with ChAd-SARS-CoV-2-S provides durable protection against historical and emerging SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Ahmed O Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Swathi Shrihari
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew J Gorman
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | - Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dansu Yuan
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | - Saravanan Raju
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rita E Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Igor P Dmitriev
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elena Kashentseva
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lucas J Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Colin Mann
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Meredith E Davis-Gardner
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mehul S Suthar
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Departments of Microbiology and Immunology, University of Texas Medical Branch, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David T Curiel
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
318
|
Staquicini DI, Tang FHF, Markosian C, Yao VJ, Staquicini FI, Dodero-Rojas E, Contessoto VG, Davis D, O'Brien P, Habib N, Smith TL, Bruiners N, Sidman RL, Gennaro ML, Lattime EC, Libutti SK, Whitford PC, Burley SK, Onuchic JN, Arap W, Pasqualini R. Design and proof of concept for targeted phage-based COVID-19 vaccination strategies with a streamlined cold-free supply chain. Proc Natl Acad Sci U S A 2021; 118:e2105739118. [PMID: 34234013 PMCID: PMC8325333 DOI: 10.1073/pnas.2105739118] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Development of effective vaccines against coronavirus disease 2019 (COVID-19) is a global imperative. Rapid immunization of the entire human population against a widespread, continually evolving, and highly pathogenic virus is an unprecedented challenge, and different vaccine approaches are being pursued. Engineered filamentous bacteriophage (phage) particles have unique potential in vaccine development due to their inherent immunogenicity, genetic plasticity, stability, cost-effectiveness for large-scale production, and proven safety profile in humans. Herein we report the development and initial evaluation of two targeted phage-based vaccination approaches against SARS-CoV-2: dual ligand peptide-targeted phage and adeno-associated virus/phage (AAVP) particles. For peptide-targeted phage, we performed structure-guided antigen design to select six solvent-exposed epitopes of the SARS-CoV-2 spike (S) protein. One of these epitopes displayed on the major capsid protein pVIII of phage induced a specific and sustained humoral response when injected in mice. These phage were further engineered to simultaneously display the peptide CAKSMGDIVC on the minor capsid protein pIII to enable their transport from the lung epithelium into the systemic circulation. Aerosolization of these "dual-display" phage into the lungs of mice generated a systemic and specific antibody response. In the second approach, targeted AAVP particles were engineered to deliver the entire S protein gene under the control of a constitutive CMV promoter. This induced tissue-specific transgene expression, stimulating a systemic S protein-specific antibody response in mice. With these proof-of-concept preclinical experiments, we show that both targeted phage- and AAVP-based particles serve as robust yet versatile platforms that can promptly yield COVID-19 vaccine prototypes for translational development.
Collapse
Affiliation(s)
- Daniela I Staquicini
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Fenny H F Tang
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Christopher Markosian
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Virginia J Yao
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Fernanda I Staquicini
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | | | - Vinícius G Contessoto
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, SP 15054, Brazil
| | - Deodate Davis
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Paul O'Brien
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Nazia Habib
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Tracey L Smith
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Natalie Bruiners
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Richard L Sidman
- Department of Neurology, Harvard Medical School, Boston, MA 02115
| | - Maria L Gennaro
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Edmund C Lattime
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Steven K Libutti
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Paul C Whitford
- Department of Physics and Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115
| | - Stephen K Burley
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901
- RCSB Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- RCSB Protein Data Bank, San Diego Supercomputer Center and Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92067
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005;
- Department of Biosciences, Rice University, Houston, TX 77005
- Department of Chemistry, Rice University, Houston, TX 77005
- Department of Physics and Astronomy, Rice University, Houston, TX 77005
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101;
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101;
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103
| |
Collapse
|
319
|
Abstract
Mucosal vaccines offer the potential to trigger robust protective immune responses at the predominant sites of pathogen infection. In principle, the induction of adaptive immunity at mucosal sites, involving secretory antibody responses and tissue-resident T cells, has the capacity to prevent an infection from becoming established in the first place, rather than only curtailing infection and protecting against the development of disease symptoms. Although numerous effective mucosal vaccines are in use, the major advances seen with injectable vaccines (including adjuvanted subunit antigens, RNA and DNA vaccines) have not yet been translated into licensed mucosal vaccines, which currently comprise solely live attenuated and inactivated whole-cell preparations. The identification of safe and effective mucosal adjuvants allied to innovative antigen discovery and delivery strategies is key to advancing mucosal vaccines. Significant progress has been made in resolving the mechanisms that regulate innate and adaptive mucosal immunity and in understanding the crosstalk between mucosal sites, and this provides valuable pointers to inform mucosal adjuvant design. In particular, increased knowledge on mucosal antigen-presenting cells, innate lymphoid cell populations and resident memory cells at mucosal sites highlights attractive targets for vaccine design. Exploiting these insights will allow new vaccine technologies to be leveraged to facilitate rational mucosal vaccine design for pathogens including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and for cancer.
Collapse
|
320
|
Wu S, Huang J, Zhang Z, Wu J, Zhang J, Hu H, Zhu T, Zhang J, Luo L, Fan P, Wang B, Chen C, Chen Y, Song X, Wang Y, Si W, Sun T, Wang X, Hou L, Chen W. Safety, tolerability, and immunogenicity of an aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in adults: preliminary report of an open-label and randomised phase 1 clinical trial. THE LANCET. INFECTIOUS DISEASES 2021; 21:1654-1664. [PMID: 34324836 PMCID: PMC8313090 DOI: 10.1016/s1473-3099(21)00396-0] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022]
Abstract
Background SARS-CoV-2 has caused millions of deaths, and, since Aug 11, 2020, 20 intramuscular COVID-19 vaccines have been approved for use. We aimed to evaluate the safety and immunogenicity of an aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in adults without COVID-19 from China. Method This was a randomised, single-centre, open-label, phase 1 trial done in Zhongnan Hospital (Wuhan, China), to evaluate the safety and immunogenicity of the Ad5-nCoV vaccine by aerosol inhalation in adults (≥18 years) seronegative for SARS-CoV-2. Breastfeeding or pregnant women and people with major chronic illnesses or history of allergies were excluded. Participants were enrolled and randomly assigned (1:1:1:1:1) into five groups to be vaccinated via intramuscular injection, aerosol inhalation, or both. Randomisation was stratified by sex and age (18–55 years or ≥56 years) using computer-generated randomisation sequences (block sizes of five). Only laboratory staff were masked to group assignment. The participants in the two aerosol groups received an initial high dose (2 × 1010 viral particles; HDmu group) or low dose (1 × 1010 viral particles; LDmu group) of Ad5-nCoV vaccine on day 0, followed by a booster on day 28. The mixed vaccination group received an initial intramuscular (5 × 1010 viral particles) vaccine on day 0, followed by an aerosolised booster (2 × 1010 viral particles) vaccine on day 28 (MIX group). The intramuscular groups received one dose (5 × 1010 viral particles; 1Dim group) or two doses (10 × 1010 viral particles; 2Dim group) of Ad5-nCoV on day 0. The primary safety outcome was adverse events 7 days after each vaccination, and the primary immunogenicity outcome was anti-SARS-CoV-2 spike receptor IgG antibody and SARS-CoV-2 neutralising antibody geometric mean titres at day 28 after last vaccination. This trial is registered with ClinicalTrials.gov, number NCT04552366. Findings Between Sept 28, 2020, and Sept 30, 2020, 230 individuals were screened for inclusion, of whom 130 (56%) participants were enrolled into the trial and randomly assigned into one of the five groups (26 participants per group). Within 7 days after vaccination, adverse events occurred in 18 (69%) in the HDmu group, 19 (73%) in the LDmu group, 19 (73%) in the MIX group, 19 (73%) in the 1Dim group, and 15 (58%) in the 2Dim group. The most common adverse events reported 7 days after the first or booster vaccine were fever (62 [48%] of 130 participants), fatigue (40 [31%] participants), and headache (46 [35%] participants). More adverse events were reported in participants who received intramuscular vaccination, including participants in the MIX group (49 [63%] of 78 participants), than those who received aerosol vaccine (13 [25%] of 52 participants) after the first vaccine vaccination. No serious adverse events were noted within 56 days after the first vaccine. At days 28 after last vaccination, geometric mean titres of SARS-CoV-2 neutralising antibody was 107 (95% CI 47–245) in the HDmu group, 105 (47–232) in the LDmu group, 396 (207–758) in the MIX group, 95 (61–147) in the 1Dim group, and 180 (113–288) in the 2Dim group. The geometric mean concentrations of receptor binding domain-binding IgG was 261 EU/mL (95% CI 121–563) in the HDmu group, 289 EU/mL (138–606) in the LDmu group, 2013 EU/mL (1180–3435) in the MIX group, 915 EU/mL (588–1423) in the 1Dim group, and 1190 EU/mL (776–1824) in the 2Dim group. Interpretation Aerosolised Ad5-nCoV is well tolerated, and two doses of aerosolised Ad5-nCoV elicited neutralising antibody responses, similar to one dose of intramuscular injection. An aerosolised booster vaccination at 28 days after first intramuscular injection induced strong IgG and neutralising antibody responses. The efficacy and cost-effectiveness of aerosol vaccination should be evaluated in future studies. Funding National Key Research and Development Programme of China and National Science and Technology Major Project. Translation For the Chinese translation of the Summary see Supplementary Material.
Collapse
Affiliation(s)
- Shipo Wu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Jianying Huang
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhe Zhang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Jianyuan Wu
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jinlong Zhang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Hanning Hu
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tao Zhu
- CanSino Biologics, Tianjin, China
| | - Jun Zhang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Lin Luo
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pengfei Fan
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Busen Wang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Chang Chen
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Chen
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Xiaohong Song
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Yudong Wang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | | | - Tianjian Sun
- Shanghai Stem Pharmaceutical Development, Shanghai, China
| | - Xinghuan Wang
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Lihua Hou
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China.
| | - Wei Chen
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
321
|
Bricker TL, Darling TL, Hassan AO, Harastani HH, Soung A, Jiang X, Dai YN, Zhao H, Adams LJ, Holtzman MJ, Bailey AL, Case JB, Fremont DH, Klein R, Diamond MS, Boon ACM. A single intranasal or intramuscular immunization with chimpanzee adenovirus-vectored SARS-CoV-2 vaccine protects against pneumonia in hamsters. Cell Rep 2021; 36:109400. [PMID: 34245672 PMCID: PMC8238649 DOI: 10.1016/j.celrep.2021.109400] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/18/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
The development of an effective vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of coronavirus disease 2019 (COVID-19), is a global priority. Here, we compare the protective capacity of intranasal and intramuscular delivery of a chimpanzee adenovirus-vectored vaccine encoding a prefusion stabilized spike protein (chimpanzee adenovirus [ChAd]-SARS-CoV-2-S) in Golden Syrian hamsters. Although immunization with ChAd-SARS-CoV-2-S induces robust spike-protein-specific antibodies capable of neutralizing the virus, antibody levels in serum are higher in hamsters vaccinated by an intranasal compared to intramuscular route. Accordingly, against challenge with SARS-CoV-2, ChAd-SARS-CoV-2-S-immunized hamsters are protected against less weight loss and have reduced viral infection in nasal swabs and lungs, and reduced pathology and inflammatory gene expression in the lungs, compared to ChAd-control immunized hamsters. Intranasal immunization with ChAd-SARS-CoV-2-S provides superior protection against SARS-CoV-2 infection and inflammation in the upper respiratory tract. These findings support intranasal administration of the ChAd-SARS-CoV-2-S candidate vaccine to prevent SARS-CoV-2 infection, disease, and possibly transmission.
Collapse
Affiliation(s)
- Traci L Bricker
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Tamarand L Darling
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Ahmed O Hassan
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Houda H Harastani
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Allison Soung
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Xiaoping Jiang
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Ya-Nan Dai
- Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Haiyan Zhao
- Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Lucas J Adams
- Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Michael J Holtzman
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Adam L Bailey
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - James Brett Case
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Daved H Fremont
- Department of Molecular Microbiology and Microbial Pathogenesis, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry and Biophysics, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Robyn Klein
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology and Microbial Pathogenesis, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Adrianus C M Boon
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology and Microbial Pathogenesis, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
322
|
Brechbühl J, Lopes AC, Wood D, Bouteiller S, de Vallière A, Verdumo C, Broillet MC. Age-dependent appearance of SARS-CoV-2 entry sites in mouse chemosensory systems reflects COVID-19 anosmia-ageusia symptoms. Commun Biol 2021; 4:880. [PMID: 34267318 PMCID: PMC8282876 DOI: 10.1038/s42003-021-02410-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/30/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 pandemic has given rise to a collective scientific effort to study its viral causing agent SARS-CoV-2. Research is focusing in particular on its infection mechanisms and on the associated-disease symptoms. Interestingly, this environmental pathogen directly affects the human chemosensory systems leading to anosmia and ageusia. Evidence for the presence of the cellular entry sites of the virus, the ACE2/TMPRSS2 proteins, has been reported in non-chemosensory cells in the rodent’s nose and mouth, missing a direct correlation between the symptoms reported in patients and the observed direct viral infection in human sensory cells. Here, mapping the gene and protein expression of ACE2/TMPRSS2 in the mouse olfactory and gustatory cells, we precisely identify the virus target cells to be of basal and sensory origin and reveal the age-dependent appearance of viral entry-sites. Our results propose an alternative interpretation of the human viral-induced sensory symptoms and give investigative perspectives on animal models. Brechbühl et al characterise the gene and protein expression of ACE2/TMPRSS2 in the mouse olfactory and gustatory cells, which reveals that SARS-CoV-2 target cells are of basal and sensory origin. They also demonstrate an age-dependent appearance of viral entry-sites, which could inform the use of mouse models in the investigation of SARS-CoV-2 effects on olfaction.
Collapse
Affiliation(s)
- Julien Brechbühl
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ana Catarina Lopes
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Dean Wood
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sofiane Bouteiller
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Aurélie de Vallière
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Chantal Verdumo
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Marie-Christine Broillet
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
323
|
Eedara BB, Alabsi W, Encinas-Basurto D, Polt R, Ledford JG, Mansour HM. Inhalation Delivery for the Treatment and Prevention of COVID-19 Infection. Pharmaceutics 2021; 13:1077. [PMID: 34371768 PMCID: PMC8308954 DOI: 10.3390/pharmaceutics13071077] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease-2019 (COVID-19) is caused by coronavirus-2 (SARS-CoV-2) and has produced a global pandemic. As of 22 June 2021, 178 million people have been affected worldwide, and 3.87 million people have died from COVID-19. According to the Centers for Disease Control and Prevention (CDC) of the United States, COVID-19 virus is primarily transmitted between people through respiratory droplets and contact routes. Since the location of initial infection and disease progression is primarily through the lungs, the inhalation delivery of drugs directly to the lungs may be the most appropriate route of administration for treating COVID-19. This review article aims to present possible inhalation therapeutics and vaccines for the treatment of COVID-19 symptoms. This review covers the comparison between SARS-CoV-2 and other coronaviruses such as SARS-CoV/MERS, inhalation therapeutics for the treatment of COVID-19 symptoms, and vaccines for preventing infection, as well as the current clinical status of inhaled therapeutics and vaccines.
Collapse
Affiliation(s)
- Basanth Babu Eedara
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel Str., Tucson, AZ 85721, USA; (B.B.E.); (W.A.); (D.E.-B.)
| | - Wafaa Alabsi
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel Str., Tucson, AZ 85721, USA; (B.B.E.); (W.A.); (D.E.-B.)
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA;
| | - David Encinas-Basurto
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel Str., Tucson, AZ 85721, USA; (B.B.E.); (W.A.); (D.E.-B.)
| | - Robin Polt
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA;
| | - Julie G. Ledford
- Department of Immunobiology, The University of Arizona, Tucson, AZ 85724, USA;
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85724, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85719, USA
| | - Heidi M. Mansour
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel Str., Tucson, AZ 85721, USA; (B.B.E.); (W.A.); (D.E.-B.)
- BIO5 Institute, The University of Arizona, Tucson, AZ 85719, USA
- Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ 85721, USA
| |
Collapse
|
324
|
Jearanaiwitayakul T, Seesen M, Chawengkirttikul R, Limthongkul J, Apichirapokey S, Sapsutthipas S, Phumiamorn S, Sunintaboon P, Ubol S. Intranasal Administration of RBD Nanoparticles Confers Induction of Mucosal and Systemic Immunity against SARS-CoV-2. Vaccines (Basel) 2021; 9:vaccines9070768. [PMID: 34358183 PMCID: PMC8310126 DOI: 10.3390/vaccines9070768] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/29/2022] Open
Abstract
Mucosal immunity plays a significant role in host defense against viruses in the respiratory tract. Because the upper respiratory airway is a primary site of SARS-CoV-2 entry, immunization at the mucosa via the intranasal route could potentially lead to induction of local sterilizing immunity that protects against SARS-CoV-2 infection. In this study, we evaluated the immunogenicity of a receptor-binding domain (RBD) of SARS-CoV-2 spike glycoprotein loaded into N,N,N-trimethyl chitosan nanoparticles (RBD-TMC NPs). We showed that intranasal delivery of RBD-TMC NPs into mice induced robust local mucosal immunity, as evidenced by the presence of IgG and IgA responses in BALs and the lungs of immunized mice. Furthermore, mice intranasally administered with this platform of immunogens developed robust systemic antibody responses including serum IgG, IgG1, IgG2a, IgA and neutralizing antibodies. In addition, these immunized mice had significantly higher levels of activated splenic CD4+ and CD8+ cells compared with those that were administered with soluble RBD immunogen. Collectively, these findings shed light on an alternative route of vaccination that mimics the natural route of SARS-CoV-2 infection. This route of administration stimulated not only local mucosal responses but also the systemic compartment of the immune system.
Collapse
Affiliation(s)
- Tuksin Jearanaiwitayakul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.J.); (M.S.); (R.C.); (J.L.); (S.A.)
| | - Mathurin Seesen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.J.); (M.S.); (R.C.); (J.L.); (S.A.)
| | - Runglawan Chawengkirttikul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.J.); (M.S.); (R.C.); (J.L.); (S.A.)
| | - Jitra Limthongkul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.J.); (M.S.); (R.C.); (J.L.); (S.A.)
| | - Suttikarn Apichirapokey
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.J.); (M.S.); (R.C.); (J.L.); (S.A.)
| | - Sompong Sapsutthipas
- Institute of Biological Products, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand; (S.S.); (S.P.)
| | - Supaporn Phumiamorn
- Institute of Biological Products, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand; (S.S.); (S.P.)
| | - Panya Sunintaboon
- Department of Chemistry, Faculty of Science, Mahidol University, Salaya, Nakornpatom 73170, Thailand;
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.J.); (M.S.); (R.C.); (J.L.); (S.A.)
- Correspondence:
| |
Collapse
|
325
|
Abstract
Under the pressure of the COVID-19 pandemic, vaccines were developed and rolled out into mass vaccination campaigns at incredible speed. What normally takes a decade was worked out within a year. Vaccines were produced along many different platforms ranging from inactivated whole virus vaccines over adenovirus-vectored vaccines, recombinant protein vaccines and nanoparticles to mRNA vaccines. Several vaccines went through preclinical testing and completed successful phase 1 to phase 3 clinical trials. The first evaluations of national vaccination campaigns document astonishing high levels of protection against disease. The present article summarizes the published reports leading to these striking achievements with vaccines based on different concepts.
Collapse
Affiliation(s)
- Harald Brüssow
- Department of BiosystemsLaboratory of Gene TechnologyKU LeuvenLeuvenBelgium
| |
Collapse
|
326
|
Lai C, Liu X, Yan Q, Lv H, Zhou L, Hu L, Cai Y, Wang G, Chen Y, Chai R, Liu Z, Xu Y, Huang W, Xiao F, Hu L, Li Y, Huang J, Zhou Q, Li L, Peng T, Zhang H, Zhang Z, Chen L, Chen C, Ji T. Low Innate Immunity and Lagged Adaptive Immune Response in the Re-Tested Viral RNA Positivity of a COVID-19 Patient. Front Immunol 2021; 12:664619. [PMID: 34305895 PMCID: PMC8295488 DOI: 10.3389/fimmu.2021.664619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/31/2021] [Indexed: 11/21/2022] Open
Abstract
Recent studies have highlighted observations regarding re-tested positivity (RP) of SARS-CoV-2 RNA in discharged COVID-19 patients, however, the immune mechanisms underlying SARS-CoV-2 RNA RP in immunocompetent patients remain elusive. Herein, we describe the case of an immunocompetent COVID-19 patient with moderate symptoms who was twice re-tested as positive for SARS-CoV-2 RNA, and the period between first and third viral RNA positivity was 95 days, longer than previously reported (18–25 days). The chest computed tomography findings, plasma anti-SARS-CoV-2 antibody, neutralizing antibodies (NAbs) titer, and whole blood transcriptic characteristics in the viral RNA RP patient and other COVID-19 patients were analyzed. During the SARS-CoV-2 RNA RP period, new lung lesions were observed. The COVID-19 patient with viral RNA RP had delayed seroconversion of anti-spike/receptor-binding domain (RBD) IgA antibody and NAbs and were accompanied with disappearance of the lung lesions. Further experimental data validated that NAbs titer was significantly associated with anti-RBD IgA and IgG, and anti-spike IgG. The RP patient had lower interferon-, T cells- and B cell-related genes expression than non-RP patients with mild-to-moderate symptoms, and displayed lower cytokines and chemokines gene expression than severe patients. Interestingly, the RP patient had low expression of antigen presentation-related genes and low B cell counts which might have contributed to the delayed anti-RBD specific antibody and low CD8+ cell response. Collectively, delayed antigen presentation-related gene expression was found related to delayed adaptive immune response and contributed to the SARS-CoV-2 RNA RP in this described immunocompetent patient.
Collapse
Affiliation(s)
- Changchun Lai
- Clinical Laboratory Medicine Department, Maoming People's Hospital, Maoming, China.,Department of Emergency, Maoming People's Hospital, Maoming, China.,Clinical Laboratory Medicine Department, Xinyi People's Hospital, Xinyi, China
| | - Xinglong Liu
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qihong Yan
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hualiang Lv
- Pulmonary and Critical Care Medicine Department, Maoming People's Hospital, Maoming, China
| | - Lei Zhou
- Pathology Laboratory Department, Maoming People's Hospital, Maoming, China
| | - Longbo Hu
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yong Cai
- CT Department, Maoming People's Hospital, Maoming, China
| | - Guoqiang Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yufeng Chen
- Clinical Laboratory Medicine Department, Maoming People's Hospital, Maoming, China
| | - Renjie Chai
- Cardiovascular Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenwei Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuhua Xu
- Vaccine Research and Development Department, Guangdong South China Vaccine Co. Ltd, Guangzhou, China
| | - Wendong Huang
- Scientific Research Center, Maoming People's Hospital, Maoming, China
| | - Fei Xiao
- Clinical Laboratory Medicine Department, Maoming People's Hospital, Maoming, China
| | - Linhui Hu
- Clinical Research Center, Maoming People's Hospital, Maoming, China
| | - Yaocai Li
- Infection Department, Maoming People's Hospital, Maoming, China
| | - Jianhong Huang
- Medical Department, Maoming People's Hospital, Maoming, China
| | - Qiang Zhou
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Luqian Li
- Clinical Laboratory Medicine Department, Maoming People's Hospital, Maoming, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Haiye Zhang
- Clinical Laboratory Medicine Department, Xinyi People's Hospital, Xinyi, China
| | - Zhenhui Zhang
- Critical Care Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Chen
- Bioland Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunbo Chen
- Department of Emergency, Maoming People's Hospital, Maoming, China.,Scientific Research Center, Maoming People's Hospital, Maoming, China
| | - Tianxing Ji
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
327
|
Garritsen A, Scholzen A, van den Nieuwenhof DWA, Smits APF, Datema ES, van Galen LS, Kouwijzer MLCE. Two-tiered SARS-CoV-2 seroconversion screening in the Netherlands and stability of nucleocapsid, spike protein domain 1 and neutralizing antibodies. Infect Dis (Lond) 2021; 53:498-512. [PMID: 33684020 PMCID: PMC7967720 DOI: 10.1080/23744235.2021.1893378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/28/2021] [Accepted: 02/17/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Serological testing in the COVID-19 pandemic is mainly implemented to gain sero-epidemiological data, but can also retrospectively inform about suspected SARS-CoV-2 infection. METHOD We verified and applied a two-tiered testing strategy combining a SARS-CoV-2 receptor-binding domain (RBD)-specific lateral flow assay (LFA) with a nucleocapsid protein (NCP) IgG ELISA to assess seroconversion in n = 7241 individuals. The majority had experienced symptoms consistent with COVID-19, but had no access to RT-PCR testing. Longitudinal follow-up in n = 97 LFA + individuals was performed up to 20 weeks after initial infection using NCP and spike protein S1 domain (S1) IgG ELISAs and a surrogate virus neutralization test (sVNT). RESULTS Individuals reporting symptoms from January 2020 onwards showed seroconversion, as did a considerable proportion of asymptomatic individuals. Seroconversion for symptomatic and asymptomatic individuals was higher in an area with a known infection cluster compared to a low incidence area. Overall, 94% of individuals with a positive IgG result by LFA were confirmed by NCP ELISA. The proportion of ELISA-confirmed LFA results declined over time, in line with contracting NCP IgG titres during longitudinal follow-up. Neutralizing antibody activity was considerably more stable than S1 and NCP IgG titres, and both reach a plateau after approximately 100 d. The sVNT proved to be not only highly specific, but also more sensitive than the specificity-focussed two-tiered serology approach. CONCLUSIONS Our results demonstrate the high specificity of two-tiered serology testing and highlight the sVNT used as a valuable tool to support modelling of SARS-CoV-2 transmission dynamics, complement molecular testing and provide relevant information to individuals.
Collapse
|
328
|
Seyfoori A, Shokrollahi Barough M, Mokarram P, Ahmadi M, Mehrbod P, Sheidary A, Madrakian T, Kiumarsi M, Walsh T, McAlinden KD, Ghosh CC, Sharma P, Zeki AA, Ghavami S, Akbari M. Emerging Advances of Nanotechnology in Drug and Vaccine Delivery against Viral Associated Respiratory Infectious Diseases (VARID). Int J Mol Sci 2021; 22:6937. [PMID: 34203268 PMCID: PMC8269337 DOI: 10.3390/ijms22136937] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
Viral-associated respiratory infectious diseases are one of the most prominent subsets of respiratory failures, known as viral respiratory infections (VRI). VRIs are proceeded by an infection caused by viruses infecting the respiratory system. For the past 100 years, viral associated respiratory epidemics have been the most common cause of infectious disease worldwide. Due to several drawbacks of the current anti-viral treatments, such as drug resistance generation and non-targeting of viral proteins, the development of novel nanotherapeutic or nano-vaccine strategies can be considered essential. Due to their specific physical and biological properties, nanoparticles hold promising opportunities for both anti-viral treatments and vaccines against viral infections. Besides the specific physiological properties of the respiratory system, there is a significant demand for utilizing nano-designs in the production of vaccines or antiviral agents for airway-localized administration. SARS-CoV-2, as an immediate example of respiratory viruses, is an enveloped, positive-sense, single-stranded RNA virus belonging to the coronaviridae family. COVID-19 can lead to acute respiratory distress syndrome, similarly to other members of the coronaviridae. Hence, reviewing the current and past emerging nanotechnology-based medications on similar respiratory viral diseases can identify pathways towards generating novel SARS-CoV-2 nanotherapeutics and/or nano-vaccines.
Collapse
Affiliation(s)
- Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Mahdieh Shokrollahi Barough
- Department of Immunology, Iran University of Medical Sciences, Tehran 1449614535, Iran;
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Pooneh Mokarram
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran;
- Autophagy Research Center, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (M.A.); (T.M.)
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of IRAN, Tehran 1316943551, Iran;
| | - Alireza Sheidary
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (M.A.); (T.M.)
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran;
| | - Mohammad Kiumarsi
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Tavia Walsh
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
| | - Kielan D. McAlinden
- Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Chandra C. Ghosh
- Roger Williams Medical Center, Immuno-Oncology Institute (Ix2), Providence, RI 02908, USA;
| | - Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Amir A. Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, U.C. Davis Lung Center, Davis School of Medicine, University of California, Davis, CA 95817, USA;
- Veterans Affairs Medical Center, Mather, CA 95817, USA
| | - Saeid Ghavami
- Autophagy Research Center, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
329
|
Untersmayr E, Förster-Waldl E, Bonelli M, Boztug K, Brunner PM, Eiwegger T, Eller K, Göschl L, Grabmeier-Pfistershammer K, Hötzenecker W, Jordakieva G, Moschen AR, Pfaller B, Pickl W, Reinisch W, Wiedermann U, Klimek L, Bergmann KC, Brehler R, Pfützner W, Novak N, Merk H, Rabe U, Schlenter W, Ring J, Wehrmann W, Mülleneisen N, Wrede H, Fuchs T, Jensen-Jarolim E. Immunologically relevant aspects of the new COVID-19 vaccines-an ÖGAI (Austrian Society for Allergology and Immunology) and AeDA (German Society for Applied Allergology) position paper. ALLERGO JOURNAL INTERNATIONAL 2021; 30:155-168. [PMID: 34178577 PMCID: PMC8212077 DOI: 10.1007/s40629-021-00178-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/08/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND The vaccines against the coronavirus disease 2019 (COVID-19) approved in the European Union represent a decisive step in the fight against the pandemic. The application of these available vaccines to patients with pre-existing immunological conditions leads to a multitude of questions regarding efficacy, side effects and the necessary patient information. RESULTS This review article provides insight into mechanisms of action of the currently available severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and summarises the current state of science as well as expert recommendations regarding tolerability of the vaccines. In addition, the potential to develop protective immune responses is determined. A special focus is given on patients under immunosuppression or in treatment with immunomodulatory drugs. Special groups of the population such as children, pregnant women and the elderly are also considered. CONCLUSION Despite the need for a patient-specific risk-benefit assessment, the consensus among experts is that patients with immunological diseases in particular benefit from the induced immune protection after COVID-19 vaccination and do not have an increased risk of side effects.
Collapse
Affiliation(s)
- Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria
| | - Elisabeth Förster-Waldl
- Department of Neonatology, Paediatric Intensive Care Medicine and Neuropaediatrics with Centre for Congenital Immunodeficiencies, University Clinics of Paediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Bonelli
- Clinical Department of Rheumatology, University Clinics of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Hospital and University Clinic for Paediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- St. Anna Kinderkrebsforschung GmbH, Vienna, Austria
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Patrick M. Brunner
- University Clinics of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario Canada
- Clinical Department of Pediatrics, University Hospital St. Pölten, St. Pölten, Austria
| | - Kathrin Eller
- Clinical Department of Nephrology, Internal Medicine, Medical University of Graz, Graz, Austria
| | - Lisa Göschl
- Clinical Department of Rheumatology, University Clinics of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Wolfram Hötzenecker
- University Clinics of Dermatology and Venereology, Kepler University Hospital, Comprehensive Allergy Centre, Linz, Austria
| | - Galateja Jordakieva
- University Clinics of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Vienna, Austria
| | - Alexander R. Moschen
- University Clinics of Internal Medicine, Department of Gastroenterology and Hepatology, Kepler University Hospital, Linz, Austria
| | - Birgit Pfaller
- Department of Internal Medicine 1, Karl Landsteiner University of Health Sciences, University Hospital, St. Pölten, Austria
| | - Winfried Pickl
- Institute of Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Walter Reinisch
- Clinical Division of Gastroenterology and Hepatology, University Clinics of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ludger Klimek
- Centre for Rhinology and Allergology, Wiesbaden, Germany
| | - Karl-Christian Bergmann
- Department of Dermatology, Venereology and Allergy, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Randolf Brehler
- Department of Skin Diseases—General Dermatology and Venereology—Outpatient Clinic for Allergology, Occupational Dermatology and Environmental Medicine, University Hospital Münster, Münster, Germany
| | - Wolfgang Pfützner
- Department of Dermatology and Allergology, University Hospital Marburg (UKGM), Philipps University Marburg, Marburg, Germany
| | - Natalija Novak
- Clinic and Polyclinic for Dermatology and Allergology, University Hospital Bonn, Bonn, Germany
| | - Hans Merk
- Department of Dermatology and Allergology, RWTH Aachen University, Aachen, Germany
| | - Uta Rabe
- Clinic for Allergology, Johanniter-Krankenhaus im Fläming Treuenbrietzen GmbH, Treuenbrietzen, Germany
| | | | | | | | | | | | - Thomas Fuchs
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria
- Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
| |
Collapse
|
330
|
Schieffelin JS, Norton EB, Kolls JK. What should define a SARS-CoV-2 "breakthrough" infection? J Clin Invest 2021; 131:151186. [PMID: 33974565 PMCID: PMC8203469 DOI: 10.1172/jci151186] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
| | | | - Jay K. Kolls
- Center for Translational Research in Infection and Inflammation, Tulane School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
331
|
Tiboni M, Casettari L, Illum L. Nasal vaccination against SARS-CoV-2: Synergistic or alternative to intramuscular vaccines? Int J Pharm 2021; 603:120686. [PMID: 33964339 PMCID: PMC8099545 DOI: 10.1016/j.ijpharm.2021.120686] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
It is striking that all marketed SARS-CoV-2 vaccines are developed for intramuscular administration designed to produce humoral and cell mediated immune responses, preventing viremia and the COVID-19 syndrome. They have a high degree of efficacy in humans (70-95%) depending on the type of vaccine. However, little protection is provided against viral replication and shedding in the upper airways due to the lack of a local sIgA immune response, indicating a risk of transmission of virus from vaccinated individuals. A range of novel nasal COVID-19 vaccines are in development and preclinical results in non-human primates have shown a promising prevention of replication and shedding of virus due to the induction of mucosal immune response (sIgA) in upper and lower respiratory tracts as well as robust systemic and humoral immune responses. Whether these results will translate to humans remains to be clarified. An IM prime followed by an IN booster vaccination would likely result in a better well-rounded immune response, including prevention (or strong reduction) in viral replication in the upper and lower respiratory tracts.
Collapse
Affiliation(s)
- Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Lisbeth Illum
- IDentity, 19 Cavendish Crescent North, The Park, Nottingham, NG71BA, United Kingdom.
| |
Collapse
|
332
|
Vashishtha VM, Kumar P. Development of SARS-CoV-2 vaccines: challenges, risks, and the way forward. Hum Vaccin Immunother 2021; 17:1635-1649. [PMID: 33270478 PMCID: PMC7754925 DOI: 10.1080/21645515.2020.1845524] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 01/13/2023] Open
Abstract
The COVID-19 pandemic mandates the development of a safe and effective Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) vaccine. This review analyzes the complexities, challenges, and other vital issues associated with the development of the SARS-CoV-2 vaccine. A brief review of the immune responses (innate, antibody, and T-cell) to SARS-CoV-2, including immune targets, correlates of protection, and duration of immunity is presented. Approaches to vaccine development including different vaccine platforms, critical attributes of novel vaccine candidates, the status of the ongoing clinical trials, and the ways to speed up vaccine development are also reviewed. Despite a historical average success rate of only 6%, and a usual gestation period of 10-12 years for the development of a new vaccine, the world is on the verge of developing COVID-19 vaccines in an extraordinary short time span.
Collapse
Affiliation(s)
- Vipin M. Vashishtha
- Department of Pediatrics, Mangla Hospital & Research Center, Shakti Chowk, Bijnor, India
| | | |
Collapse
|
333
|
Recent updates in COVID-19 with emphasis on inhalation therapeutics: Nanostructured and targeting systems. J Drug Deliv Sci Technol 2021; 63:102435. [PMID: 33643448 PMCID: PMC7894098 DOI: 10.1016/j.jddst.2021.102435] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/16/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023]
Abstract
The current world health threat posed by the novel coronavirus disease of 2019 (COVID-19) calls for the urgent development of effective therapeutic options. COVID-19 needs daunting routes such as nano-antivirals. Hence, the role of nanotechnology is very critical in combating this nano-enemy "virus." Although substantial resources are under ongoing attention for prevention and care, we would like to start sharing with readers our vision of the role of inhaled nanomaterials and targeting systems that can play an important role in the fight against the COVID-19. In this review, we underline the genomic structure of COVID-19, recent modes of virus transmission with measures to control the infection, pathogenesis, clinical presentation of SARS-CoV-2, and how much the virus affects the lung. Additionally, the recent therapeutic approaches for managing COVID-19 with emphasis on the value of nanomaterial-based technical approaches are discussed in this review. This review also focuses on the safe and efficient delivery of useable targeted therapies using designed nanocarriers. Moreover, the effectiveness and availability of active targeting of certain specific receptors expressed on the coronavirus surfaces via tailored ligand nanoparticles are manipulated. It was also highlighted in this review the role of inhaled medicines including antivirals and repurposed drugs for fighting the associated lung disorders and efficiency of developed vaccines. Moreover, the inhalation delivery safety techniques were also highlighted.
Collapse
|
334
|
Johannes L. The Cellular and Chemical Biology of Endocytic Trafficking and Intracellular Delivery-The GL-Lect Hypothesis. Molecules 2021; 26:3299. [PMID: 34072622 PMCID: PMC8198588 DOI: 10.3390/molecules26113299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
Lipid membranes are common to all forms of life. While being stable barriers that delimitate the cell as the fundamental organismal unit, biological membranes are highly dynamic by allowing for lateral diffusion, transbilayer passage via selective channels, and in eukaryotic cells for endocytic uptake through the formation of membrane bound vesicular or tubular carriers. Two of the most abundant fundamental fabrics of membranes-lipids and complex sugars-are produced through elaborate chains of biosynthetic enzymes, which makes it difficult to study them by conventional reverse genetics. This review illustrates how organic synthesis provides access to uncharted areas of membrane glycobiology research and its application to biomedicine. For this Special Issue on Chemical Biology Research in France, focus will be placed on synthetic approaches (i) to study endocytic functions of glycosylated proteins and lipids according to the GlycoLipid-Lectin (GL-Lect) hypothesis, notably that of Shiga toxin; (ii) to mechanistically dissect its endocytosis and intracellular trafficking with small molecule; and (iii) to devise intracellular delivery strategies for immunotherapy and tumor targeting. It will be pointed out how the chemical biologist's view on lipids, sugars, and proteins synergizes with biophysics and modeling to "look" into the membrane for atomistic scale insights on molecular rearrangements that drive the biogenesis of endocytic carriers in processes of clathrin-independent endocytosis.
Collapse
Affiliation(s)
- Ludger Johannes
- Cellular and Chemical Biology Department, Institut Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, 26 rue d'Ulm, CEDEX 05, 75248 Paris, France
| |
Collapse
|
335
|
Park JH, Lee HK. Delivery Routes for COVID-19 Vaccines. Vaccines (Basel) 2021; 9:524. [PMID: 34069359 PMCID: PMC8158705 DOI: 10.3390/vaccines9050524] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
The novel coronavirus, SARS-CoV-2, which causes COVID-19, has resulted in a pandemic with millions of deaths. To eradicate SARS-CoV-2 and prevent further infections, many vaccine candidates have been developed. These vaccines include not only traditional subunit vaccines and attenuated or inactivated viral vaccines but also nucleic acid and viral vector vaccines. In contrast to the diversity in the platform technology, the delivery of vaccines is limited to intramuscular vaccination. Although intramuscular vaccination is safe and effective, mucosal vaccination could improve the local immune responses that block the spread of pathogens. However, a lack of understanding of mucosal immunity combined with the urgent need for a COVID-19 vaccine has resulted in only intramuscular vaccinations. In this review, we summarize the history of vaccines, current progress in COVID-19 vaccine technology, and the status of intranasal COVID-19 vaccines. Future research should determine the most effective route for vaccine delivery based on the platform and determine the mechanisms that underlie the efficacy of different delivery routes.
Collapse
Affiliation(s)
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| |
Collapse
|
336
|
Leventhal SS, Clancy C, Erasmus J, Feldmann H, Hawman DW. An Intramuscular DNA Vaccine for SARS-CoV-2 Decreases Viral Lung Load but Not Lung Pathology in Syrian Hamsters. Microorganisms 2021; 9:1040. [PMID: 34065996 PMCID: PMC8151856 DOI: 10.3390/microorganisms9051040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/23/2022] Open
Abstract
The 2019 novel coronavirus, SARS-CoV-2, first reported in December 2019, has infected over 102 million people around the world as of February 2021 and thus calls for rapid development of safe and effective interventions, namely vaccines. In our study, we evaluated a DNA vaccine against SARS-CoV-2 in the Syrian hamster model. Hamsters were vaccinated with a DNA-plasmid encoding the SARS-CoV-2 full length spike open reading frame (ORF) to induce host cells to produce spike protein and protective immune responses before exposure to infectious virus. We tested this vaccine candidate by both intranasal (IN) and intramuscular (IM) routes of administration and complexing with and without an in vivo delivery reagent. Hamsters receiving prime-boost-boost IM-only vaccinations recovered body weight quicker, had decreased lung viral loads, and increased SARS-CoV-2-specific antibody titers compared to control vaccinated animals but, surprisingly, lung pathology was as severe as sham vaccinated controls. The IM/IN combination group showed no efficacy in reducing lung virus titers or pathology. With increasing public health need for rapid and effective interventions, our data demonstrate that in some vaccine contexts, significant antibody responses and decreased viral loads may not be sufficient to prevent lung pathology.
Collapse
Affiliation(s)
- Shanna S. Leventhal
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA; (S.S.L.); (C.C.); (H.F.)
| | - Chad Clancy
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA; (S.S.L.); (C.C.); (H.F.)
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Jesse Erasmus
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA;
- HDT Bio, Seattle, WA 98102, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA; (S.S.L.); (C.C.); (H.F.)
| | - David W. Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA; (S.S.L.); (C.C.); (H.F.)
| |
Collapse
|
337
|
Jarai BM, Stillman Z, Bomb K, Kloxin AM, Fromen CA. Biomaterials-Based Opportunities to Engineer the Pulmonary Host Immune Response in COVID-19. ACS Biomater Sci Eng 2021; 7:1742-1764. [PMID: 33356134 PMCID: PMC7784663 DOI: 10.1021/acsbiomaterials.0c01287] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/25/2020] [Indexed: 02/08/2023]
Abstract
The COVID-19 pandemic caused by the global spread of the SARS-CoV-2 virus has led to a staggering number of deaths worldwide and significantly increased burden on healthcare as nations scramble to find mitigation strategies. While significant progress has been made in COVID-19 diagnostics and therapeutics, effective prevention and treatment options remain scarce. Because of the potential for the SARS-CoV-2 infections to cause systemic inflammation and multiple organ failure, it is imperative for the scientific community to evaluate therapeutic options aimed at modulating the causative host immune responses to prevent subsequent systemic complications. Harnessing decades of expertise in the use of natural and synthetic materials for biomedical applications, the biomaterials community has the potential to play an especially instrumental role in developing new strategies or repurposing existing tools to prevent or treat complications resulting from the COVID-19 pathology. Leveraging microparticle- and nanoparticle-based technology, especially in pulmonary delivery, biomaterials have demonstrated the ability to effectively modulate inflammation and may be well-suited for resolving SARS-CoV-2-induced effects. Here, we provide an overview of the SARS-CoV-2 virus infection and highlight current understanding of the host's pulmonary immune response and its contributions to disease severity and systemic inflammation. Comparing to frontline COVID-19 therapeutic options, we highlight the most significant untapped opportunities in immune engineering of the host response using biomaterials and particle technology, which have the potential to improve outcomes for COVID-19 patients, and identify areas needed for future investigations. We hope that this work will prompt preclinical and clinical investigations of promising biomaterials-based treatments to introduce new options for COVID-19 patients.
Collapse
Affiliation(s)
- Bader M. Jarai
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Zachary Stillman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Kartik Bomb
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - April M. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716
| | - Catherine A. Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
338
|
Horspool AM, Ye C, Wong TY, Russ BP, Lee KS, Winters MT, Bevere JR, Kieffer T, Martinez I, Sourimant J, Greninger A, Plemper RK, Denvir J, Cyphert HA, Torrelles J, Martinez-Sobrido L, Damron FH. SARS-CoV-2 B.1.1.7 and B.1.351 variants of concern induce lethal disease in K18-hACE2 transgenic mice despite convalescent plasma therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.05.442784. [PMID: 33972945 PMCID: PMC8109207 DOI: 10.1101/2021.05.05.442784] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SARS-CoV-2 variants of concern (VoCs) are impacting responses to the COVID-19 pandemic. Here we present a comparison of the SARS-CoV-2 USA-WA1/2020 (WA-1) strain with B.1.1.7 and B.1.351 VoCs and identify significant differences in viral propagation in vitro and pathogenicity in vivo using K18-hACE2 transgenic mice. Passive immunization with plasma from an early pandemic SARS-CoV-2 patient resulted in significant differences in the outcome of VoC-infected mice. WA-1-infected mice were protected by plasma, B.1.1.7-infected mice were partially protected, and B.1.351-infected mice were not protected. Serological correlates of disease were different between VoC-infected mice, with B.1.351 triggering significantly altered cytokine profiles than other strains. In this study, we defined infectivity and immune responses triggered by VoCs and observed that early 2020 SARS-CoV-2 human immune plasma was insufficient to protect against challenge with B.1.1.7 and B.1.351 in the mouse model.
Collapse
|
339
|
Chakraborty S, Mallajosyula V, Tato CM, Tan GS, Wang TT. SARS-CoV-2 vaccines in advanced clinical trials: Where do we stand? Adv Drug Deliv Rev 2021; 172:314-338. [PMID: 33482248 PMCID: PMC7816567 DOI: 10.1016/j.addr.2021.01.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
The ongoing SARS-CoV-2 pandemic has led to the focused application of resources and scientific expertise toward the goal of developing investigational vaccines to prevent COVID-19. The highly collaborative global efforts by private industry, governments and non-governmental organizations have resulted in a number of SARS-CoV-2 vaccine candidates moving to Phase III trials in a period of only months since the start of the pandemic. In this review, we provide an overview of the preclinical and clinical data on SARS-CoV-2 vaccines that are currently in Phase III clinical trials and in few cases authorized for emergency use. We further discuss relevant vaccine platforms and provide a discussion of SARS-CoV-2 antigens that may be targeted to increase the breadth and durability of vaccine responses.
Collapse
Affiliation(s)
- Saborni Chakraborty
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA
| | - Vamsee Mallajosyula
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | - Cristina M Tato
- Infectious Disease Initiative, Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gene S Tan
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA; Department of Infectious Diseases, University of California San Diego, La Jolla, CA 92037, USA
| | - Taia T Wang
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
340
|
McCallum M, De Marco A, Lempp FA, Tortorici MA, Pinto D, Walls AC, Beltramello M, Chen A, Liu Z, Zatta F, Zepeda S, di Iulio J, Bowen JE, Montiel-Ruiz M, Zhou J, Rosen LE, Bianchi S, Guarino B, Fregni CS, Abdelnabi R, Foo SYC, Rothlauf PW, Bloyet LM, Benigni F, Cameroni E, Neyts J, Riva A, Snell G, Telenti A, Whelan SPJ, Virgin HW, Corti D, Pizzuto MS, Veesler D. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell 2021; 184:2332-2347.e16. [PMID: 33761326 PMCID: PMC7962585 DOI: 10.1016/j.cell.2021.03.028] [Citation(s) in RCA: 644] [Impact Index Per Article: 214.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 01/05/2023]
Abstract
The SARS-CoV-2 spike (S) glycoprotein contains an immunodominant receptor-binding domain (RBD) targeted by most neutralizing antibodies (Abs) in COVID-19 patient plasma. Little is known about neutralizing Abs binding to epitopes outside the RBD and their contribution to protection. Here, we describe 41 human monoclonal Abs (mAbs) derived from memory B cells, which recognize the SARS-CoV-2 S N-terminal domain (NTD) and show that a subset of them neutralize SARS-CoV-2 ultrapotently. We define an antigenic map of the SARS-CoV-2 NTD and identify a supersite (designated site i) recognized by all known NTD-specific neutralizing mAbs. These mAbs inhibit cell-to-cell fusion, activate effector functions, and protect Syrian hamsters from SARS-CoV-2 challenge, albeit selecting escape mutants in some animals. Indeed, several SARS-CoV-2 variants, including the B.1.1.7, B.1.351, and P.1 lineages, harbor frequent mutations within the NTD supersite, suggesting ongoing selective pressure and the importance of NTD-specific neutralizing mAbs for protective immunity and vaccine design.
Collapse
Affiliation(s)
- Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Anna De Marco
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institut Pasteur and CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Dora Pinto
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Martina Beltramello
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Alex Chen
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fabrizia Zatta
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Samantha Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Jiayi Zhou
- Vir Biotechnology, San Francisco, CA 94158, USA
| | | | - Siro Bianchi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Barbara Guarino
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - Rana Abdelnabi
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Shi-Yan Caroline Foo
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Louis-Marie Bloyet
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fabio Benigni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Elisabetta Cameroni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Johan Neyts
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Agostino Riva
- III Division of Infectious Diseases, Luigi Sacco Hospital, University of Milan, 20157 Milan, Italy
| | | | | | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland.
| | | | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
341
|
Sui Y, Li J, Zhang R, Prabhu SK, Andersen H, Venzon D, Cook A, Brown R, Teow E, Velasco J, Greenhouse J, Putman-Taylor T, Campbell TA, Pessaint L, Moore IN, Lagenaur L, Talton J, Breed MW, Kramer J, Bock KW, Minai M, Nagata BM, Lewis MG, Wang LX, Berzofsky JA. Protection against SARS-CoV-2 infection by a mucosal vaccine in rhesus macaques. JCI Insight 2021; 6:148494. [PMID: 33908897 PMCID: PMC8262352 DOI: 10.1172/jci.insight.148494] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
Effective SARS-CoV-2 vaccines are urgently needed. Although most vaccine strategies have focused on systemic immunization, here we compared the protective efficacy of 2 adjuvanted subunit vaccines with spike protein S1: an intramuscularly primed/boosted vaccine and an intramuscularly primed/intranasally boosted mucosal vaccine in rhesus macaques. The intramuscular-alum–only vaccine induced robust binding and neutralizing antibody and persistent cellular immunity systemically and mucosally, whereas intranasal boosting with nanoparticles, including IL-15 and TLR agonists, elicited weaker T cell and Ab responses but higher dimeric IgA and IFN-α. Nevertheless, following SARS-CoV-2 challenge, neither group showed detectable subgenomic RNA in upper or lower respiratory tracts versus naive controls, indicating full protection against viral replication. Although mucosal and systemic protective mechanisms may differ, results demonstrate both vaccines can protect against respiratory SARS-CoV-2 exposure. In summary, we have demonstrated that the mucosal vaccine was safe after multiple doses and cleared the input virus more efficiently in the nasal cavity and thus may act as a potent complementary reinforcing boost for conventional systemic vaccines to provide overall better protection.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Jianping Li
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Roushu Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Sunaina Kiran Prabhu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | | | - David Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | - Ian N Moore
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, USA
| | - Laurel Lagenaur
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Jim Talton
- Alchem Laboratories Corporation, Alachua, Florida, USA
| | - Matthew W Breed
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Bethesda, Maryland, USA
| | - Josh Kramer
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Bethesda, Maryland, USA
| | - Kevin W Bock
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, USA
| | | | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
342
|
Mahallawi WH, Aljeraisi TM. In vitro cell culture model of human nasal-associated lymphoid tissue (NALT) to evaluate the humoral immune response to SARS-CoV-2 spike proteins. Saudi J Biol Sci 2021; 28:4516-4521. [PMID: 33942008 PMCID: PMC8064899 DOI: 10.1016/j.sjbs.2021.04.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/04/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022] Open
Abstract
To date, coronavirus disease 2019 (COVID-19) continues to be considered a pandemic worldwide, with a mild to severe disease presentation that is sometimes associated with serious complications that are concerning to global health authorities. Scientists are working hard to understand the pathogenicity of this novel virus, and a great deal of attention and effort has been focused on identifying therapeutics and vaccines to control this pandemic. Methods This study used tonsils removed from twelve patients who underwent an elective tonsillectomy in the ear, nose, and throat (ENT) department at Saudi Germany Hospital, Madinah, Saudi Arabia. Tonsillar mononuclear cells (MNCs) were separated and co-cultured in RPMI complete medium in the presence and absence of viral spike (S) proteins (the full-length S, S1 subunit, and S2 subunit proteins). Enzyme-linked immunosorbent assay (ELISA) was used to measure secreted antibody concentrations following stimulation. Results The in vitro human nasal-associated lymphoid tissue (NALT) cell culture model was successfully used to evaluate the humoral immune response against SARS-CoV-2- S protein. Significant (p < 0.0001, n = 12) levels of specific, anti-S IgG, IgM, and IgA antibody responses were detected in cells culture supernatanat folloeing stimulation with the full-length S protein compared with unstimulated cells. In contrast, S1 and S2 subunit proteins alone failed to induce a mucosal humoral immune response following tonsillar MNC stimulation. Conclusion We demonstrated a successful human NALT in vitro cell culture model that was used to study the mucosal humoral immune response to the SARS-CoV-2 S protein. This model could be advantageous for the in-depth study of cellular immune responses to the S protein and other viral antigens, such as nucleocapsid and matrix antigen. The S protein appears to be the important viral protein that may be able to mimic the natural infection process intranasally and should be studied as a component of a candidate vaccine.
Collapse
Affiliation(s)
- Waleed H Mahallawi
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Madinah 41541, Saudi Arabia
| | - Talal M Aljeraisi
- Otorhinolaryngology, Head& Neck Surgery Department, Faculty of Medicine, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
343
|
Diamond M, Chen R, Winkler E, Case J, Aziati I, Bricker T, Joshi A, Darling T, Ying B, Errico J, Shrihari S, VanBlargan L, Xie X, Gilchuk P, Zost S, Droit L, Liu Z, Stumpf S, Wang D, Handley S, Stine W, Shi PY, Garcia-Knight M, Andino R, Chiu C, Ellebedy A, Fremont D, Whelan S, Crowe J, Purcell L, Corti D, Boon A. In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. RESEARCH SQUARE 2021:rs.3.rs-448370. [PMID: 34013259 PMCID: PMC8132254 DOI: 10.21203/rs.3.rs-448370/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Rapidly-emerging variants jeopardize antibody-based countermeasures against SARS-CoV-2. While recent cell culture experiments have demonstrated loss of potency of several anti-spike neutralizing antibodies against SARS-CoV-2 variant strains1-3, the in vivo significance of these results remains uncertain. Here, using a panel of monoclonal antibodies (mAbs) corresponding to many in advanced clinical development by Vir Biotechnology, AbbVie, AstraZeneca, Regeneron, and Lilly we report the impact on protection in animals against authentic SARS-CoV-2 variants including WA1/2020 strains, a B.1.1.7 isolate, and chimeric strains with South African (B.1.351) or Brazilian (B.1.1.28) spike genes. Although some individual mAbs showed reduced or abrogated neutralizing activity against B.1.351 and B.1.1.28 viruses with E484K spike protein mutations in cell culture, low prophylactic doses of mAb combinations protected against infection in K18-hACE2 transgenic mice, 129S2 immunocompetent mice, and hamsters without emergence of resistance. Two exceptions were mAb LY-CoV555 monotherapy which lost all protective activity in vivo, and AbbVie 2B04/47D11, which showed partial loss of activity. When administered after infection as therapy, higher doses of mAb cocktails protected in vivo against viruses displaying a B.1.351 spike gene. Thus, many, but not all, of the antibody products with Emergency Use Authorization should retain substantial efficacy against the prevailing SARS-CoV-2 variant strains.
Collapse
Affiliation(s)
| | - Rita Chen
- Washington University School of Medicine
| | | | - James Case
- Washington University School of Medicine
| | | | | | | | | | | | | | | | | | | | | | - Seth Zost
- Vanderbilt University Medical Center
| | | | | | | | | | | | | | - Pei-Yong Shi
- The University of Texas Medical Branch at Galveston
| | | | | | | | | | | | | | | | - Lisa Purcell
- Vir Biotechnology, Washington University School of Medicine
| | - Davide Corti
- Vir Biotechnology, Washington University School of Medicine
| | | |
Collapse
|
344
|
Hassan AO, Feldmann F, Zhao H, Curiel DT, Okumura A, Tang-Huau TL, Case JB, Meade-White K, Callison J, Chen RE, Lovaglio J, Hanley PW, Scott DP, Fremont DH, Feldmann H, Diamond MS. A single intranasal dose of chimpanzee adenovirus-vectored vaccine protects against SARS-CoV-2 infection in rhesus macaques. Cell Rep Med 2021; 2:100230. [PMID: 33754147 PMCID: PMC7969912 DOI: 10.1016/j.xcrm.2021.100230] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 01/08/2023]
Abstract
The deployment of a vaccine that limits transmission and disease likely will be required to end the coronavirus disease 2019 (COVID-19) pandemic. We recently described the protective activity of an intranasally administered chimpanzee adenovirus-vectored vaccine encoding a pre-fusion stabilized spike (S) protein (ChAd-SARS-CoV-2-S [chimpanzee adenovirus-severe acute respiratory syndrome-coronavirus-2-S]) in the upper and lower respiratory tracts of mice expressing the human angiotensin-converting enzyme 2 (ACE2) receptor. Here, we show the immunogenicity and protective efficacy of this vaccine in non-human primates. Rhesus macaques were immunized with ChAd-Control or ChAd-SARS-CoV-2-S and challenged 1 month later by combined intranasal and intrabronchial routes with SARS-CoV-2. A single intranasal dose of ChAd-SARS-CoV-2-S induces neutralizing antibodies and T cell responses and limits or prevents infection in the upper and lower respiratory tracts after SARS-CoV-2 challenge. As ChAd-SARS-CoV-2-S confers protection in non-human primates, it is a promising candidate for limiting SARS-CoV-2 infection and transmission in humans.
Collapse
Affiliation(s)
- Ahmed O. Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, NIAID, NIH, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Haiyan Zhao
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David T. Curiel
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Atsushi Okumura
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Tsing-Lee Tang-Huau
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Julie Callison
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Rita E. Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Division of Intramural Research, NIAID, NIH, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Patrick W. Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, NIAID, NIH, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Dana P. Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, NIAID, NIH, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Daved H. Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
345
|
Szabo PA, Dogra P, Gray JI, Wells SB, Connors TJ, Weisberg SP, Krupska I, Matsumoto R, Poon MML, Idzikowski E, Morris SE, Pasin C, Yates AJ, Ku A, Chait M, Davis-Porada J, Guo XV, Zhou J, Steinle M, Mackay S, Saqi A, Baldwin MR, Sims PA, Farber DL. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity 2021; 54:797-814.e6. [PMID: 33765436 PMCID: PMC7951561 DOI: 10.1016/j.immuni.2021.03.005] [Citation(s) in RCA: 229] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/27/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Immune response dynamics in coronavirus disease 2019 (COVID-19) and their severe manifestations have largely been studied in circulation. Here, we examined the relationship between immune processes in the respiratory tract and circulation through longitudinal phenotypic, transcriptomic, and cytokine profiling of paired airway and blood samples from patients with severe COVID-19 relative to heathy controls. In COVID-19 airways, T cells exhibited activated, tissue-resident, and protective profiles; higher T cell frequencies correlated with survival and younger age. Myeloid cells in COVID-19 airways featured hyperinflammatory signatures, and higher frequencies of these cells correlated with mortality and older age. In COVID-19 blood, aberrant CD163+ monocytes predominated over conventional monocytes, and were found in corresponding airway samples and in damaged alveoli. High levels of myeloid chemoattractants in airways suggest recruitment of these cells through a CCL2-CCR2 chemokine axis. Our findings provide insights into immune processes driving COVID-19 lung pathology with therapeutic implications for targeting inflammation in the respiratory tract.
Collapse
Affiliation(s)
- Peter A Szabo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Pranay Dogra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Joshua I Gray
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Steven B Wells
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Thomas J Connors
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Stuart P Weisberg
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Izabela Krupska
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rei Matsumoto
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Maya M L Poon
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Medical Scientist Training Program, Columbia University, New York, NY 10032, USA
| | - Emma Idzikowski
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sinead E Morris
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chloé Pasin
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrew J Yates
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Amy Ku
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michael Chait
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julia Davis-Porada
- Medical Scientist Training Program, Columbia University, New York, NY 10032, USA
| | - Xinzheng V Guo
- Human Immune Monitoring Core, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jing Zhou
- IsoPlexis Corporation, Branford, CT 06405, USA
| | | | - Sean Mackay
- IsoPlexis Corporation, Branford, CT 06405, USA
| | - Anjali Saqi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthew R Baldwin
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
346
|
Casillas Santana MA, Dipp Velázquez FA, Sámano Valencia C, Martínez Zumarán A, Zavala Alonso NV, Martínez Rider R, Salas Orozco MF. Saliva: What Dental Practitioners Should Know about the Role of This Biofluid in the Transmission and Diagnostic of SARS-CoV-2. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:349. [PMID: 33917276 PMCID: PMC8067428 DOI: 10.3390/medicina57040349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
A novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak has become a global ongoing pandemic. This pandemic represents a great work risk for all health professionals, it includes dental professionals who are in constant contact with saliva, which represents one of the main routes of transmission of the disease. This is due to the fact that a wide variety of oral tissues and cells are susceptible to infection by SARS-CoV-2 and that they express the ACE2 receptor, which is the main route of entry of the virus into cells, as well as the proteins TMPRSS and furin that contributes to the binding of the virus to the host cells. According to recent studies, some of the oral cells most susceptible to infection by SARS-CoV-2 are the epithelial cells of the salivary glands. This explains the presence of the virus in the saliva of infected patients and provides scientific evidence that supports the use of saliva as a biofluid that offers the opportunity to develop new detection and diagnostic techniques. This is because saliva is much easier to collect compared to nasopharyngeal swab. However, the presence of the virus in saliva, also represents a great source of transmission, since the main form of infection is through microscopic drops that are generated when infected people cough or sneeze. Likewise, health professionals, such as dentists are exposed to contagion through saliva. The objective of this review article is to provide a perspective on the main cells and tissues that can be affected by the virus, the risk of contagion that the presence of the virus in saliva represents for dentists; and the new techniques developed from saliva samples for the diagnosis and surveillance of SARS-CoV-2 infection. This review is expected to contribute to the knowledge of oral health professionals about the risk of saliva in the spread of SARS-CoV-2, but also its advantages as a diagnostic tool for pandemic control. In conclusion, the authors can mention that information that provides more scientific evidence of the mechanisms of infection of the coronavirus in oral cells and tissues is being published continually. This also explains the presence of the virus in the saliva of infected people and the risk of contagion that this means. It also provides scientific evidence of the use of saliva as a biofluid for the detection, diagnosis, monitoring, and control of the spread of the virus.
Collapse
Affiliation(s)
- Miguel Angel Casillas Santana
- Maestría en Estomatología con Opción Terminal en Ortodoncia, Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. 72410, Mexico; (F.A.D.V.); (C.S.V.)
| | - Farid Alonso Dipp Velázquez
- Maestría en Estomatología con Opción Terminal en Ortodoncia, Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. 72410, Mexico; (F.A.D.V.); (C.S.V.)
| | - Carolina Sámano Valencia
- Maestría en Estomatología con Opción Terminal en Ortodoncia, Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. 72410, Mexico; (F.A.D.V.); (C.S.V.)
| | - Alan Martínez Zumarán
- Especialidad en Ortodoncia, Facultad de Estomatología, Univesidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P. 78290, Mexico; (A.M.Z.); (N.V.Z.A.); (R.M.R.)
| | - Norma Verónica Zavala Alonso
- Especialidad en Ortodoncia, Facultad de Estomatología, Univesidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P. 78290, Mexico; (A.M.Z.); (N.V.Z.A.); (R.M.R.)
| | - Ricardo Martínez Rider
- Especialidad en Ortodoncia, Facultad de Estomatología, Univesidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P. 78290, Mexico; (A.M.Z.); (N.V.Z.A.); (R.M.R.)
| | - Marco Felipe Salas Orozco
- Especialidad en Ortodoncia, Facultad de Estomatología, Univesidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P. 78290, Mexico; (A.M.Z.); (N.V.Z.A.); (R.M.R.)
| |
Collapse
|
347
|
Velikova T. INFECTION-ACQUIRED VERSUS VACCINE-INDUCED IMMUNITY AGAINST COVID-19. CENTRAL ASIAN JOURNAL OF MEDICAL HYPOTHESES AND ETHICS 2021. [DOI: 10.47316/cajmhe.2021.2.1.05] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The course of COVID-19 depends on a dynamic interplay between SARS-CoV-2 and the host's immune system. Although it is an emerging global health issue, little is known about the specificity, safety, and duration of the immunity elicited by the virus. This hypothesis article explores the benefits of infection-acquired and vaccine-induced immunity against COVID-19, suggesting that the latter outweighs the former. Comparative studies are proposed to explain and reveal all aspects of the immune responses. Although vaccine development relies on studies of naturally acquired immune responses, there are still no comparative analyses of the natural and vaccine immunity against SARS-CoV-2. Moreover, there are scarce reports on the characteristics of both types of responses. The scientific facts about the virulence of SARS-CoV-2 affecting the immune system are of great importance for proposed comparative analyses. Various immunological methods can be employed to elucidate infection-acquired and vaccine-induced immunity against SARS-CoV-2. The safe vaccination of subjects with and without COVID-19 history may disrupt the virus spreading and end the pandemic.
Collapse
|
348
|
Heinz FX, Stiasny K. Profiles of current COVID-19 vaccines. Wien Klin Wochenschr 2021; 133:271-283. [PMID: 33725201 PMCID: PMC7962631 DOI: 10.1007/s00508-021-01835-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Franz X Heinz
- Center for Virology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria.
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| |
Collapse
|
349
|
Winkler MS, Skirecki T, Brunkhorst FM, Cajander S, Cavaillon JM, Ferrer R, Flohé SB, García-Salido A, Giamarellos-Bourboulis EJ, Girardis M, Kox M, Lachmann G, Martin-Loeches I, Netea MG, Spinetti T, Schefold JC, Torres A, Uhle F, Venet F, Weis S, Scherag A, Rubio I, Osuchowski MF. Bridging animal and clinical research during SARS-CoV-2 pandemic: A new-old challenge. EBioMedicine 2021; 66:103291. [PMID: 33813139 PMCID: PMC8016444 DOI: 10.1016/j.ebiom.2021.103291] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Many milestones in medical history rest on animal modeling of human diseases. The SARS-CoV-2 pandemic has evoked a tremendous investigative effort primarily centered on clinical studies. However, several animal SARS-CoV-2/COVID-19 models have been developed and pre-clinical findings aimed at supporting clinical evidence rapidly emerge. In this review, we characterize the existing animal models exposing their relevance and limitations as well as outline their utility in COVID-19 drug and vaccine development. Concurrently, we summarize the status of clinical trial research and discuss the novel tactics utilized in the largest multi-center trials aiming to accelerate generation of reliable results that may subsequently shape COVID-19 clinical treatment practices. We also highlight areas of improvement for animal studies in order to elevate their translational utility. In pandemics, to optimize the use of strained resources in a short time-frame, optimizing and strengthening the synergy between the preclinical and clinical domains is pivotal.
Collapse
Affiliation(s)
- Martin S Winkler
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Robert-Koch-Str. 40, 37085 Göttingen, Germany
| | - Tomasz Skirecki
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Frank M Brunkhorst
- Dept. of Anesthesiology and Intensive Care Medicine & Center for Sepsis Control and Care (CSCC), Jena University Hospital-Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany; Center for Clinical Studies, Jena University Hospital, 07747 Jena, Germany
| | - Sara Cajander
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Sweden
| | | | - Ricard Ferrer
- Intensive Care Department and Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona, 08035, Spain; Centro de Investigación Biomedica En Red-Enfermedades Respiratorias (CibeRes, CB06/06/0028), Instituto de salud Carlos III (ISCIII), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - Stefanie B Flohé
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Alberto García-Salido
- Pediatric Critical Care Unit, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | | | - Massimo Girardis
- Department of Anesthesia and Intensive Care, University Hospital of Modena, Italy
| | - Matthijs Kox
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Gunnar Lachmann
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany
| | - Ignacio Martin-Loeches
- Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, James's St N, Ushers, Dublin, D03 VX82, Ireland
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thibaud Spinetti
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| | - Antoni Torres
- Pneumology Department, Respiratory Institute (ICR), Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - University of Barcelona (UB), Spain
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Fabienne Venet
- Hospices Civils de Lyon, Immunology Laboratory, Edouard Herriot Hospital, 5 Place d'Arsonval, 69003 Lyon, France; EA 7426 "Pathophysiology of Injury-Induced Immunosuppression - PI3", Université Claude Bernard Lyon 1/bioMérieux/Hospices Civils de Lyon, Edouard Herriot Hospital, 5 Place d'Arsonval, 69003 Lyon, France
| | - Sebastian Weis
- Dept. of Anesthesiology and Intensive Care Medicine & Center for Sepsis Control and Care (CSCC), Jena University Hospital-Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany; Institute for Infectious Disease and Infection Control, Jena University Hospital-Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - André Scherag
- Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital-Friedrich Schiller University, Bachstrasse 18, 07743 Jena, Germany
| | - Ignacio Rubio
- Dept. of Anesthesiology and Intensive Care Medicine & Center for Sepsis Control and Care (CSCC), Jena University Hospital-Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - Marcin F Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Donaueschingenstrasse 13, 1200, Vienna, Austria.
| |
Collapse
|
350
|
Chen RE, Zhang X, Case JB, Winkler ES, Liu Y, VanBlargan LA, Liu J, Errico JM, Xie X, Suryadevara N, Gilchuk P, Zost SJ, Tahan S, Droit L, Turner JS, Kim W, Schmitz AJ, Thapa M, Wang D, Boon ACM, Presti RM, O'Halloran JA, Kim AHJ, Deepak P, Pinto D, Fremont DH, Crowe JE, Corti D, Virgin HW, Ellebedy AH, Shi PY, Diamond MS. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat Med 2021; 27:717-726. [PMID: 33664494 PMCID: PMC8058618 DOI: 10.1038/s41591-021-01294-w] [Citation(s) in RCA: 722] [Impact Index Per Article: 240.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global COVID-19 pandemic. Rapidly spreading SARS-CoV-2 variants may jeopardize newly introduced antibody and vaccine countermeasures. Here, using monoclonal antibodies (mAbs), animal immune sera, human convalescent sera and human sera from recipients of the BNT162b2 mRNA vaccine, we report the impact on antibody neutralization of a panel of authentic SARS-CoV-2 variants including a B.1.1.7 isolate, chimeric strains with South African or Brazilian spike genes and isogenic recombinant viral variants. Many highly neutralizing mAbs engaging the receptor-binding domain or N-terminal domain and most convalescent sera and mRNA vaccine-induced immune sera showed reduced inhibitory activity against viruses containing an E484K spike mutation. As antibodies binding to spike receptor-binding domain and N-terminal domain demonstrate diminished neutralization potency in vitro against some emerging variants, updated mAb cocktails targeting highly conserved regions, enhancement of mAb potency or adjustments to the spike sequences of vaccines may be needed to prevent loss of protection in vivo.
Collapse
Affiliation(s)
- Rita E Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xianwen Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Laura A VanBlargan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jianying Liu
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - John M Errico
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephen Tahan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsay Droit
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jackson S Turner
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wooseob Kim
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Aaron J Schmitz
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mahima Thapa
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - David Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel M Presti
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jane A O'Halloran
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Alfred H J Kim
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Parakkal Deepak
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Dora Pinto
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Departments of Pediatrics and Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Davide Corti
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Herbert W Virgin
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Vir Biotechnology, San Francisco, CA, USA
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ali H Ellebedy
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|