301
|
Ulakcsai Z, Szabo L, Szabo Z, Karaszi E, Szabo T, Fazekas L, Vereb A, Kovacs NF, Nemeth D, Kovacs E, Nemeth E, Nagy G, Vago H, Merkely B. T cell immune response predicts survival in severely ill COVID-19 patients requiring venovenous extracorporeal membrane oxygenation support. Front Immunol 2023; 14:1179620. [PMID: 37600824 PMCID: PMC10433181 DOI: 10.3389/fimmu.2023.1179620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction There is a critical gap in understanding which SARS-CoV-2 patients would benefit most from venovenous extracorporeal membrane oxygenation (VV-ECMO) support. The potential role of a dysregulated immune response is still unclear in this patient population. Objectives To assess the potential predictive value of SARS-CoV-2 specific cellular and humoral immune responses for survival in critically ill COVID-19 patients requiring VV-ECMO. Methods We conducted a prospective single-center observational study of unvaccinated patients requiring VV-ECMO support treated at the intensive care unit of Semmelweis University Heart and Vascular Center between March and December 2021. Peripheral blood samples were collected to measure the humoral and cellular immune statuses of the patients at the VV-ECMO cannulation. Patients were followed until hospital discharge. Results Overall, 35 COVID-19 patients (63% men, median age 37 years) on VV-ECMO support were included in our study. The time from COVID-19 verification to ECMO support was a median (IQR) of 10 (7-14) days. Of the patients, 9 (26%) were discharged alive and 26 (74%) died during their hospital stay. Immune tests confirmed ongoing SARS-CoV-2 infection in all the patients, showing an increased humoral immune response. SARS-CoV-2-specific cellular immune response was significantly higher among survivors compared to the deceased patients. A higher probability of survival was observed in patients with markers indicating a higher T cell response detected by both QuantiFeron (QF) and flow cytometry (Flow) assays. (Flow S1 CD8+ ≥ 0.15%, Flow S1 CD4+ ≥ 0.02%, QF CD4 ≥ 0.07, QF whole genome ≥ 0.59). In univariate Cox proportional hazard regression analysis BMI, right ventricular (RV) failure, QF whole genome T cell level, and Flow S1 CD8+ T cell level were associated with mortality, and we found that an increased T cell response showed a significant negative association with mortality, independent of BMI and RV failure. Conclusion Evaluation of SARS-CoV-2 specific T cell response before the cannulation can aid the risk stratification and evaluation of seriously ill COVID-19 patients undergoing VV-ECMO support by predicting survival, potentially changing our clinical practice in the future.
Collapse
Affiliation(s)
| | - Liliana Szabo
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Zsofia Szabo
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Eva Karaszi
- Pediatric Healthcare Center, Council of Budafok-Tétény, Budapest, Hungary
| | - Tamas Szabo
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Levente Fazekas
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Alexandra Vereb
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | - Dora Nemeth
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Eniko Kovacs
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Endre Nemeth
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Gyorgy Nagy
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
- Hospital of the Hospitaller Order of Saint John of God, Budapest, Hungary
| | - Hajnalka Vago
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, Budapest, Hungary
| | - Bela Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
302
|
Congrave-Wilson Z, Kim M, Sutherland A, Jumarang J, Lee Y, Del Valle J, Cheng WA, da Silva Antunes R, Pannaraj PS. Effect of wash media type during PBMC isolation on downstream characterization of SARS-CoV-2-specific T cells. J Immunol Methods 2023; 519:113520. [PMID: 37390890 PMCID: PMC10306416 DOI: 10.1016/j.jim.2023.113520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Protocols for the isolation of peripheral blood mononuclear cells (PBMCs) from whole blood vary greatly between laboratories, especially in published studies of SARS-CoV-2-specific T cell responses following infection and vaccination. Research on the effects of different wash media types or centrifugation speeds and brake usage during the PBMC isolation process on downstream T cell activation and functionality is limited. Blood samples from 26 COVID-19-vaccinated participants were processed with different PBMC isolation methods using either PBS or RPMI as the wash media with high centrifugation speed and brakes or RPMI as the wash media with low speed and brakes (RPMI+ method). SARS-CoV-2 spike-specific T cells were quantified and characterized via a flow cytometry-based activation induced markers (AIM) assay and an interferon-γ (IFNγ) FluoroSpot assay and responses were compared between processing methods. Samples washed with RPMI showed higher AIM+ CD4 T cell responses than those washed with PBS and showed a shift away from naïve and towards an effector memory phenotype. The activation marker OX40 showed higher SARS-CoV-2 spike-induced upregulation on RPMI-washed CD4 T cells, while differences in CD137 upregulation were minimal between processing methods. The magnitude of the AIM+ CD8 T cell response was similar between processing methods but showed higher stimulation indices. Background frequencies of CD69+ CD8 T cells were increased in PBS-washed samples and were associated with higher baseline numbers of IFNγ-producing cells in the FluoroSpot assay. Slower braking in the RPMI+ method did not improve detection of SARS-CoV-2-specific T cells and caused longer processing times. Thus, the use of RPMI media with full centrifugation brakes during the wash steps of PBMC isolation was found to be most effective and efficient. Further studies are needed to elucidate the pathways involved in RPMI-mediated preservation of downstream T cell activity.
Collapse
Affiliation(s)
- Zion Congrave-Wilson
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Minjun Kim
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, United States; Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
| | - Aaron Sutherland
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Jaycee Jumarang
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, United States; Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
| | - Yesun Lee
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, United States; Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
| | - Jennifer Del Valle
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Wesley A Cheng
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, United States; Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
| | - Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Pia S Pannaraj
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, United States; Department of Pediatrics and Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
303
|
Li Z, Xiang T, Liang B, Liu J, Deng H, Yang X, Wang H, Feng X, Zelinskyy G, Trilling M, Sutter K, Lu M, Dittmer U, Wang B, Yang D, Zheng X, Liu J. SARS-CoV-2-specific T cell responses wane profoundly in convalescent individuals 10 months after primary infection. Virol Sin 2023; 38:606-619. [PMID: 37414153 PMCID: PMC10436107 DOI: 10.1016/j.virs.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 06/28/2023] [Indexed: 07/08/2023] Open
Abstract
A key question in the coronavirus disease 2019 (COVID-19) pandemic is the duration of specific T cell responses against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) post primary infection, which is difficult to address due to the large-scale COVID-19 vaccination and re-exposure to the virus. Here, we conducted an analysis of the long-term SARS-CoV-2-specific T cell responses in a unique cohort of convalescent individuals (CIs) that were among the first to be infected worldwide and without any possible antigen re-exposure since then. The magnitude and breadth of SARS-CoV-2-specific T cell responses correlated inversely with the time that had elapsed from disease onset and the age of those CIs. The mean magnitude of SARS-CoV-2-specific CD4 and CD8 T cell responses decreased about 82% and 76%, respectively, over the time period of ten months after infection. Accordingly, the longitudinal analysis also demonstrated that SARS-CoV-2-specific T cell responses waned significantly in 75% of CIs during the follow-up. Collectively, we provide a comprehensive characterization of the long-term memory T cell response in CIs, suggesting that robust SARS-CoV-2-specific T cell immunity post primary infection may be less durable than previously expected.
Collapse
Affiliation(s)
- Ziwei Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tiandan Xiang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Boyun Liang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Deng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuecheng Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuemei Feng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gennadiy Zelinskyy
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, 45147, Germany; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mirko Trilling
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, 45147, Germany; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kathrin Sutter
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, 45147, Germany; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, 45147, Germany; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ulf Dittmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, 45147, Germany; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Baoju Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
304
|
Xue T, Kong X, Ma L. Trends in the Epidemiology of Pneumocystis Pneumonia in Immunocompromised Patients without HIV Infection. J Fungi (Basel) 2023; 9:812. [PMID: 37623583 PMCID: PMC10455156 DOI: 10.3390/jof9080812] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/19/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
The increasing morbidity and mortality of life-threatening Pneumocystis pneumonia (PCP) in immunocompromised people poses a global concern, prompting the World Health Organization to list it as one of the 19 priority invasive fungal diseases, calling for increased research and public health action. In response to this initiative, we provide this review on the epidemiology of PCP in non-HIV patients with various immunodeficient conditions, including the use of immunosuppressive agents, cancer therapies, solid organ and stem cell transplantation, autoimmune and inflammatory diseases, inherited or primary immunodeficiencies, and COVID-19. Special attention is given to the molecular epidemiology of PCP outbreaks in solid organ transplant recipients; the risk of PCP associated with the increasing use of immunodepleting monoclonal antibodies and a wide range of genetic defects causing primary immunodeficiency; the trend of concurrent infection of PCP in COVID-19; the prevalence of colonization; and the rising evidence supporting de novo infection rather than reactivation of latent infection in the pathogenesis of PCP. Additionally, we provide a concise discussion of the varying effects of different immunodeficient conditions on distinct components of the immune system. The objective of this review is to increase awareness and knowledge of PCP in non-HIV patients, thereby improving the early identification and treatment of patients susceptible to PCP.
Collapse
Affiliation(s)
- Ting Xue
- NHC Key Laboratory of Pneumoconiosis, Key Laboratory of Prophylaxis and Treatment and Basic Research of Respiratory Diseases of Shanxi Province, Shanxi Province Key Laboratory of Respiratory, Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xiaomei Kong
- NHC Key Laboratory of Pneumoconiosis, Key Laboratory of Prophylaxis and Treatment and Basic Research of Respiratory Diseases of Shanxi Province, Shanxi Province Key Laboratory of Respiratory, Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD 20892, USA
| |
Collapse
|
305
|
Hertz T, Levy S, Ostrovsky D, Oppenheimer H, Zismanov S, Kuzmina A, Friedman LM, Trifkovic S, Brice D, Chun-Yang L, Cohen-Lavi L, Shemer-Avni Y, Cohen-Lahav M, Amichay D, Keren-Naus A, Voloshin O, Weber G, Najjar-Debbiny R, Chazan B, McGargill MA, Webby R, Chowers M, Novack L, Novack V, Taube R, Nesher L, Weinstein O. Correlates of protection for booster doses of the SARS-CoV-2 vaccine BNT162b2. Nat Commun 2023; 14:4575. [PMID: 37516771 PMCID: PMC10387073 DOI: 10.1038/s41467-023-39816-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/28/2023] [Indexed: 07/31/2023] Open
Abstract
Vaccination, especially with multiple doses, provides substantial population-level protection against COVID-19, but emerging variants of concern (VOC) and waning immunity represent significant risks at the individual level. Here we identify correlates of protection (COP) in a multicenter prospective study following 607 healthy individuals who received three doses of the Pfizer-BNT162b2 vaccine approximately six months prior to enrollment. We compared 242 individuals who received a fourth dose to 365 who did not. Within 90 days of enrollment, 239 individuals contracted COVID-19, 45% of the 3-dose group and 30% of the four-dose group. The fourth dose elicited a significant rise in antibody binding and neutralizing titers against multiple VOCs reducing the risk of symptomatic infection by 37% [95%CI, 15%-54%]. However, a group of individuals, characterized by low baseline titers of binding antibodies, remained susceptible to infection despite significantly increased neutralizing antibody titers upon boosting. A combination of reduced IgG levels to RBD mutants and reduced VOC-recognizing IgA antibodies represented the strongest COP in both the 3-dose group (HR = 6.34, p = 0.008) and four-dose group (HR = 8.14, p = 0.018). We validated our findings in an independent second cohort. In summary combination IgA and IgG baseline binding antibody levels may identify individuals most at risk from future infections.
Collapse
Affiliation(s)
- Tomer Hertz
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Research Center, Seattle, USA.
| | - Shlomia Levy
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel Ostrovsky
- Clinical Research Center, Soroka University Medical Center, and the faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hanna Oppenheimer
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shosh Zismanov
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alona Kuzmina
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lilach M Friedman
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sanja Trifkovic
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David Brice
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lin Chun-Yang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Liel Cohen-Lavi
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yonat Shemer-Avni
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Laboratory of Virology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Merav Cohen-Lahav
- Laboratory of Management, Soroka University Medical Center, Beer-Sheva, Israel
| | - Doron Amichay
- Central Laboratory, Clalit Health Services & Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheba, Israel
| | - Ayelet Keren-Naus
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Laboratory of Virology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Olga Voloshin
- Laboratory of Virology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Gabriel Weber
- Infectious Diseases Unit, Lady Davis Carmel Medical Center, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronza Najjar-Debbiny
- Infectious Diseases Unit, Lady Davis Carmel Medical Center, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Bibiana Chazan
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Infectious Diseases Unit, Emek Medical Center, Afula, Israel
| | - Maureen A McGargill
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michal Chowers
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Meir Medical Center, Kfar Saba, Israel
| | - Lena Novack
- Clinical Research Center, Soroka University Medical Center, and the faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Victor Novack
- Clinical Research Center, Soroka University Medical Center, and the faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ran Taube
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Lior Nesher
- Infectious Disease Institute, Soroka University Medical Center, and Faculty of Health Sciences, Ben-Gurion University, Beer Sheba, Israel.
| | - Orly Weinstein
- Dept. of Health systems management, faculty of health sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Hospital division, Clalit Health Services, Tel Aviv, Israel
| |
Collapse
|
306
|
Beitari S, Duque D, Bavananthasivam J, Hewitt M, Sandhu JK, Hadžisejdić I, Tran A. Cross protection to SARS-CoV-2 variants in hamsters with naturally-acquired immunity. Virol J 2023; 20:167. [PMID: 37507719 PMCID: PMC10386765 DOI: 10.1186/s12985-023-02136-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Since SARS-CoV-2 was first reported in late 2019, multiple variations of the original virus have emerged. Each variant harbors accumulations of mutations, particularly within the spike glycoprotein, that are associated with increased viral transmissibility and escape immunity. The different mutations in the spike protein of different variants shape the subsequent antibody and T cell responses, such that exposure to different spike proteins can result in reduced or enhanced responses to heterologous variants further down the line. Globally, people have been exposed and re-exposed to multiple variations of the Ancestral strain, including the five variants of concerns. Studies have shown that the protective immune response of an individual is influenced by which strain or combination of strains they are exposed to. The initial exposure to a specific strain may also shape their subsequent immune patterns and response to later infections with a heterologous virus. Most immunological observations were carried out early during the pandemic when the Ancestral strain was circulating. However, SARS-CoV-2 variants exhibit varying patterns of disease severity, waning immunity, immune evasion and sensitivity to therapeutics. Here we investigated the cross-protection in hamsters previously infected with a variant of concern (VOC) and subsequently re-infected with a heterologous variant. We also determined if cross-protection and immunity were dependent on the specific virus to which the hamster was first exposed. We further profiled the host cytokine response induced by each SARS-CoV-2 variants as well as subsequent to re-infection. A comparative analysis of the three VOCs revealed that Alpha variant was the most pathogenic VOC to emerge. We showed that naturally acquired immunity protected hamsters from subsequent re-infection with heterologous SARS-CoV-2 variant, regardless which variant the animal was first exposed to. Our study supports observations that heterologous infection of different SARS-CoV-2 variants do not exacerbate disease in subsequent re-infections. The continual emergence of new SARS-CoV-2 variants mandates a better understanding of cross-protection and immune imprinting in infected individuals. Such information is essential to guide vaccine strategy and public policy to emerging SARS-CoV-2 VOCs and future novel pandemic coronaviruses.
Collapse
Affiliation(s)
- Saina Beitari
- Infectious Diseases, Human Health Therapeutics Research Centre, National Research Council Canada, ON, Ottawa, Canada
| | - Diana Duque
- Infectious Diseases, Human Health Therapeutics Research Centre, National Research Council Canada, ON, Ottawa, Canada
| | - Jegarubee Bavananthasivam
- Infectious Diseases, Human Health Therapeutics Research Centre, National Research Council Canada, ON, Ottawa, Canada
| | - Melissa Hewitt
- Preclinical Imaging, Human Health Therapeutics Research Centre, National Research Council Canada, ON, Ottawa, Canada
| | - Jagdeep K Sandhu
- Preclinical Imaging, Human Health Therapeutics Research Centre, National Research Council Canada, ON, Ottawa, Canada
| | - Ita Hadžisejdić
- Clinical Department of Pathology and Cytology, University of Rijeka, Rijeka, Croatia
| | - Anh Tran
- Infectious Diseases, Human Health Therapeutics Research Centre, National Research Council Canada, ON, Ottawa, Canada.
| |
Collapse
|
307
|
Lee CYS, Suzuki JB. COVID-19: Variants, Immunity, and Therapeutics for Non-Hospitalized Patients. Biomedicines 2023; 11:2055. [PMID: 37509694 PMCID: PMC10377623 DOI: 10.3390/biomedicines11072055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The continuing transmission of coronavirus disease 2019 (COVID-19) remains a world-wide 21st-century public health emergency of concern. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused greater than 600 million cases of COVID-19 and over 6 million deaths globally. COVID-19 continues to be a highly transmissible disease despite efforts by public health officials and healthcare providers to manage and control the disease. Variants identified in selected worldwide epicenters add to the complexity of vaccine efficacy, overage, and antibody titer maintenance and bioactivity. The identification of the SARS-CoV-2 variants is described with respect to evading protective efficacy of COVID-19 vaccines and breakthrough infections. Vaccines and other therapeutics have prevented millions of SARS-CoV-2 infections and thousands of deaths in the United States. We explore aspects of the immune response in a condensed discussion to understand B and T cell lymphocyte regulatory mechanisms and antibody effectiveness and senescence. Finally, COVID-19 therapies including Paxlovid, Remdisivir, Molnupiravir and convalescent plasma in non-hospitalized patients are presented with limitations for identification, collection, and distribution to infected patients.
Collapse
Affiliation(s)
- Cameron Y S Lee
- Private Practice in Oral, Maxillofacial and Reconstructive Surgery, Aiea, HI 96701, USA
- Department of Periodontology and Oral Implantology, Kornberg School of Dentistry, Temple University, Philadelphia, PA 19140, USA
| | - Jon B Suzuki
- Department of Periodontology and Oral Implantology, Kornberg School of Dentistry, Temple University, Philadelphia, PA 19140, USA
- Department of Graduate Periodontics, University of Maryland, Baltimore, MD 20742, USA
- Department of Graduate Prosthodontics, University of Washington, Seattle, WA 98195, USA
- Department of Graduate Periodontics, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
308
|
Kervevan J, Staropoli I, Slama D, Jeger-Madiot R, Donnadieu F, Planas D, Pietri MP, Loghmari-Bouchneb W, Alaba Tanah M, Robinot R, Boufassa F, White M, Salmon-Ceron D, Chakrabarti LA. Divergent adaptive immune responses define two types of long COVID. Front Immunol 2023; 14:1221961. [PMID: 37559726 PMCID: PMC10408302 DOI: 10.3389/fimmu.2023.1221961] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023] Open
Abstract
Background The role of adaptive immune responses in long COVID remains poorly understood, with contrasting hypotheses suggesting either an insufficient antiviral response or an excessive immune response associated with inflammatory damage. To address this issue, we set to characterize humoral and CD4+ T cell responses in long COVID patients prior to SARS-CoV-2 vaccination. Methods Long COVID patients who were seropositive (LC+, n=28) or seronegative (LC-, n=23) by spike ELISA assay were recruited based on (i) an initial SARS-CoV-2 infection documented by PCR or the conjunction of three major signs of COVID-19 and (ii) the persistence or resurgence of at least 3 symptoms for over 3 months. They were compared to COVID patients with resolved symptoms (RE, n=29) and uninfected control individuals (HD, n=29). Results The spectrum of persistent symptoms proved similar in both long COVID groups, with a trend for a higher number of symptoms in the seronegative group (median=6 vs 4.5; P=0.01). The use a highly sensitive S-flow assay enabled the detection of low levels of SARS-CoV-2 spike-specific IgG in 22.7% of ELISA-seronegative long COVID (LC-) patients. In contrast, spike-specific IgG levels were uniformly high in the LC+ and RE groups. Multiplexed antibody analyses to 30 different viral antigens showed that LC- patients had defective antibody responses to all SARS-CoV-2 proteins tested but had in most cases preserved responses to other viruses. A sensitive primary T cell line assay revealed low but detectable SARS-CoV-2-specific CD4 responses in 39.1% of LC- patients, while response frequencies were high in the LC+ and RE groups. Correlation analyses showed overall strong associations between humoral and cellular responses, with exceptions in the LC- group. Conclusions These findings provide evidence for two major types of antiviral immune responses in long COVID. Seropositive patients showed coordinated cellular and humoral responses at least as high as those of recovered patients. In contrast, ELISA-seronegative long COVID patients showed overall low antiviral responses, with detectable specific CD4+ T cells and/or antibodies in close to half of patients (52.2%). These divergent findings in patients sharing a comparable spectrum of persistent symptoms raise the possibility of multiple etiologies in long COVID.
Collapse
Affiliation(s)
- Jérôme Kervevan
- Virus and Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR3569, Paris, France
| | - Isabelle Staropoli
- Virus and Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR3569, Paris, France
| | - Dorsaf Slama
- Department of Infectious Diseases and Immunology, Hôtel Dieu Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris Cité, Paris, France
| | - Raphaël Jeger-Madiot
- Virus and Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR3569, Paris, France
| | - Françoise Donnadieu
- Infectious Disease Analytics and Epidemiology G5 Unit, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Delphine Planas
- Virus and Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR3569, Paris, France
| | - Marie-Pierre Pietri
- Department of Infectious Diseases and Immunology, Hôtel Dieu Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris Cité, Paris, France
| | - Wiem Loghmari-Bouchneb
- Department of Infectious Diseases and Immunology, Hôtel Dieu Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris Cité, Paris, France
| | - Motolete Alaba Tanah
- Department of Infectious Diseases and Immunology, Hôtel Dieu Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris Cité, Paris, France
| | - Rémy Robinot
- Virus and Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR3569, Paris, France
| | - Faroudy Boufassa
- INSERM U1018, Center for Research in Epidemiology and Population Health (CESP), Le Kremlin-Bicêtre, France
| | - Michael White
- Infectious Disease Analytics and Epidemiology G5 Unit, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Dominique Salmon-Ceron
- Department of Infectious Diseases and Immunology, Hôtel Dieu Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris Cité, Paris, France
| | - Lisa A. Chakrabarti
- Virus and Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR3569, Paris, France
| |
Collapse
|
309
|
Law JC, Watts TH. Considerations for Choosing T Cell Assays during a Pandemic. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:169-174. [PMID: 37399079 DOI: 10.4049/jimmunol.2300129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/15/2023] [Indexed: 07/05/2023]
Abstract
The appropriate immunosurveillance tools are foundational for the creation of therapeutics, vaccines, and containment strategies when faced with outbreaks of novel pathogens. During the COVID-19 pandemic, there was an urgent need to rapidly assess immune memory following infection or vaccination. Although there have been attempts to standardize cellular assays more broadly, methods for measuring cell-mediated immunity remain variable across studies. Commonly used methods include ELISPOT, intracellular cytokine staining, activation-induced markers, cytokine secretion assays, and peptide-MHC tetramer staining. Although each assay offers unique and complementary information on the T cell response, there are challenges associated with standardizing these assays. The choice of assay can be driven by sample size, the need for high throughput, and the information sought. A combination of approaches may be optimal. This review describes the benefits and limitations of commonly used methods for assessing T cell immunity across SARS-CoV-2 studies.
Collapse
Affiliation(s)
- Jaclyn C Law
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
310
|
Federico L, Tvedt THA, Gainullin M, Osen JR, Chaban V, Lund KP, Tietze L, Tran TT, Lund-Johansen F, Kared H, Lind A, Vaage JT, Stratford R, Tennøe S, Malone B, Clancy T, Myhre AEL, Gedde-Dahl T, Munthe LA. Robust spike-specific CD4 + and CD8 + T cell responses in SARS-CoV-2 vaccinated hematopoietic cell transplantation recipients: a prospective, cohort study. Front Immunol 2023; 14:1210899. [PMID: 37503339 PMCID: PMC10369799 DOI: 10.3389/fimmu.2023.1210899] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 07/29/2023] Open
Abstract
Poor overall survival of hematopoietic stem cell transplantation (HSCT) recipients who developed COVID-19 underlies the importance of SARS-CoV-2 vaccination. Previous studies of vaccine efficacy have reported weak humoral responses but conflicting results on T cell immunity. Here, we have examined the relationship between humoral and T cell response in 48 HSCT recipients who received two doses of Moderna's mRNA-1273 or Pfizer/BioNTech's BNT162b2 vaccines. Nearly all HSCT patients had robust T cell immunity regardless of protective humoral responses, with 18/48 (37%, IQR 8.679-5601 BAU/mL) displaying protective IgG anti-receptor binding domain (RBD) levels (>2000 BAU/mL). Flow cytometry analysis of activation induced markers (AIMs) revealed that 90% and 74% of HSCT patients showed reactivity towards immunodominant spike peptides in CD8+ and CD4+ T cells, respectively. The response rate increased to 90% for CD4+ T cells as well when we challenged the cells with a complete set of overlapping peptides spanning the entire spike protein. T cell response was detectable as early as 3 months after transplant, but only CD4+ T cell reactivity correlated with IgG anti-RBD level and time after transplantation. Boosting increased seroconversion rate, while only one patient developed COVID-19 requiring hospitalization. Our data suggest that HSCT recipients with poor serological responses were protected from severe COVID-19 by vaccine-induced T cell responses.
Collapse
Affiliation(s)
- Lorenzo Federico
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Murat Gainullin
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Julie Røkke Osen
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Viktoriia Chaban
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Katrine Persgård Lund
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lisa Tietze
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- ImmunoLingo Convergence Center, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Trung The Tran
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- ImmunoLingo Convergence Center, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- ImmunoLingo Convergence Center, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hassen Kared
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andreas Lind
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - John Torgils Vaage
- ImmunoLingo Convergence Center, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | | | | | - Anders Eivind Leren Myhre
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- ImmunoLingo Convergence Center, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Ludvig André Munthe
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
311
|
Li T, Xu J, Gao Y, Wang X, Xu Y. Exploring the clinical application value of peripheral blood T lymphocyte subset in patients with asymptomatic omicron infection. Eur J Med Res 2023; 28:223. [PMID: 37408049 PMCID: PMC10320873 DOI: 10.1186/s40001-023-01187-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
OBJECTIVE To investigate the clinical significance and value of peripheral blood T lymphocyte subset in patients with asymptomatic novel coronavirus variant strains infection (OMICRON). METHODS A retrospective analysis of 281 patients with asymptomatic OMICRON infection who were admitted and isolated to the Fuyang Second People's Hospital from March to April 2022 was conducted. With 32 normal people as the control group, T lymphocytes of the two groups (CD3 + T, CD3 + CD4 + T, CD3 + CD8 + T) were analyzed and the differences between the two groups were analyzed. CD4 + T lymphocytes between patients with asymptomatic OMICRON infection and patients with mild COVID-19 infection in 2020 were analyzed and compared. Based on CD3 CD4 + T lymphocyte changes, lymphocyte reference range: CD3 CD4 + T lymphocyte count 404-1612/μL. Lower than 404 × 106/μL was defined as lymphocytopenia, patients were divided into the reduced group (138) and the normal group (143). The CT value of novel coronavirus nucleic acid (ORF1ab gene, N gene) and the time of viral shedding were compared between the two groups. RESULTS Differences in number of CD3 + T cells, CD3 + CD4 + T cells, and CD3 + CD8 + T cells were significant between both groups (P < 0.05), which were significantly higher in the normal population than in the patients with asymptomatic OMICRON infection. There was no significant difference in CD4 + T lymphocytes between patients with asymptomatic OMICRON infection and patients with mild COVID-19 infection in 2020 (P < 0.05). The novel coronavirus nucleic CT value was significantly lower in the CD3CD4 + T lymphocyte-reduced group than in the CD3CD4 + T lymphocyte-normal group (P < 0.05). Moreover, the time of viral shedding was significantly longer in the reduced group compared with the normal group (P < 0.05). CONCLUSION The changing characteristics of the peripheral blood T lymphocyte subset count in patients with asymptomatic OMICRON infections can provide an important basis for the diagnosis and outcome of the asymptomatic OMICRON infection.
Collapse
Affiliation(s)
- Tuantuan Li
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, No. 218 of JiXi Road Hefei, Hefei, 230022, Anhui Province, China
- Department of Clinical Laboratory, The Second People's Hospital of Fuyang City (Fuyang Infectious Disease Clinical College of Anhui Medical University), Fuyang, 236000, Anhui Province, China
| | - Jing Xu
- Department of Clinical Laboratory, Fuyang People's Hospital (Anhui Medical University, Affiliated Fuyang Peoples Hospital), Fuyang, 236000, Anhui Province, China
| | - Yong Gao
- Department of Clinical Laboratory, The Second People's Hospital of Fuyang City (Fuyang Infectious Disease Clinical College of Anhui Medical University), Fuyang, 236000, Anhui Province, China
| | - XiaoWu Wang
- Department of Clinical Laboratory, The Second People's Hospital of Fuyang City (Fuyang Infectious Disease Clinical College of Anhui Medical University), Fuyang, 236000, Anhui Province, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, No. 218 of JiXi Road Hefei, Hefei, 230022, Anhui Province, China.
| |
Collapse
|
312
|
Ammitzbøll C, Thomsen MK, Andersen JB, Bartels LE, Hermansen MLF, Johannsen AD, Mistegaard CE, Mikkelsen S, Vils SR, Erikstrup C, Hauge EM, Troldborg A. COVID-19 vaccination in patients with rheumatic diseases leads to a high seroconversion rate and reduced self-imposed isolation and shielding behaviour. Mod Rheumatol 2023; 33:777-785. [PMID: 35860843 PMCID: PMC9384499 DOI: 10.1093/mr/roac069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVES We investigated the effect of a two-dose messenger ribonucleic acid (mRNA) vaccine on antibody levels against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and patient behaviour and shielding concerning fear of coronavirus disease 2019 (COVID-19) in patients with systemic lupus erythematosus or rheumatoid arthritis. METHODS Three hundred and three patients and 44 blood donors were included. All patients received two doses of an mRNA vaccine and had total antibodies against SARS-CoV-2 measured before vaccination and 2 and 9 weeks after the second vaccination. Further, patients answered an electronic questionnaire before and after vaccination concerning behaviour, anxiety, and symptoms of depression (Patient Health Questionnaire-9). RESULTS Significantly fewer patients (90%) had measurable antibodies against SARS-CoV-2 compared to blood donors (100%) after the second vaccination (P < .001). Treatment with rituximab was the strongest predictor of an unfavourable vaccine response, as only 27% had measurable antibodies. Nearly all patients (97%) not treated with rituximab experienced seroconversion. Prednisone and methotrexate had a negative effect on seroconversion, but no effect of age or comorbidity was observed. Patients experienced significant improvement after vaccination in 10 out of 12 questions regarding behaviour and fear of COVID-19, while no change in Patient Health Questionnaire-9 or anxiety was observed. CONCLUSION We find a very high seroconversion rate among rheumatic patients and reduced self-imposed isolation and shielding after COVID-19 vaccination.
Collapse
Affiliation(s)
- Christian Ammitzbøll
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marianne Kragh Thomsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Lars Erik Bartels
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Clara Elbæk Mistegaard
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Susan Mikkelsen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Signe Risbøl Vils
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Christian Erikstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Ellen-Margrethe Hauge
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne Troldborg
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
313
|
Bruno PM, Timms RT, Abdelfattah NS, Leng Y, Lelis FJN, Wesemann DR, Yu XG, Elledge SJ. High-throughput, targeted MHC class I immunopeptidomics using a functional genetics screening platform. Nat Biotechnol 2023; 41:980-992. [PMID: 36593401 PMCID: PMC10314971 DOI: 10.1038/s41587-022-01566-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 10/13/2022] [Indexed: 01/03/2023]
Abstract
Identification of CD8+ T cell epitopes is critical for the development of immunotherapeutics. Existing methods for major histocompatibility complex class I (MHC class I) ligand discovery are time intensive, specialized and unable to interrogate specific proteins on a large scale. Here, we present EpiScan, which uses surface MHC class I levels as a readout for whether a genetically encoded peptide is an MHC class I ligand. Predetermined starting pools composed of >100,000 peptides can be designed using oligonucleotide synthesis, permitting large-scale MHC class I screening. We exploit this programmability of EpiScan to uncover an unappreciated role for cysteine that increases the number of predicted ligands by 9-21%, reveal affinity hierarchies by analysis of biased anchor peptide libraries and screen viral proteomes for MHC class I ligands. Using these data, we generate and iteratively refine peptide binding predictions to create EpiScan Predictor. EpiScan Predictor performs comparably to other state-of-the-art MHC class I peptide binding prediction algorithms without suffering from underrepresentation of cysteine-containing peptides. Thus, targeted immunopeptidomics using EpiScan will accelerate CD8+ T cell epitope discovery toward the goal of individual-specific immunotherapeutics.
Collapse
Affiliation(s)
- Peter M Bruno
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Richard T Timms
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Nouran S Abdelfattah
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Yumei Leng
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Felipe J N Lelis
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Duane R Wesemann
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
314
|
Poloni C, Schonhofer C, Ivison S, Levings MK, Steiner TS, Cook L. T-cell activation-induced marker assays in health and disease. Immunol Cell Biol 2023; 101:491-503. [PMID: 36825901 PMCID: PMC10952637 DOI: 10.1111/imcb.12636] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
Activation-induced marker (AIM) assays have proven to be an accessible and rapid means of antigen-specific T-cell detection. The method typically involves short-term incubation of whole blood or peripheral blood mononuclear cells with antigens of interest, where autologous antigen-presenting cells process and present peptides in complex with major histocompatibility complex (MHC) molecules. Recognition of peptide-MHC complexes by T-cell receptors then induces upregulation of activation markers on the T cells that can be detected by flow cytometry. In this review, we highlight the most widely used activation markers for assays in the literature while identifying nuances and potential downfalls associated with the technique. We provide a summary of how AIM assays have been used in both discovery science and clinical studies, including studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunity. This review primarily focuses on AIM assays using human blood or peripheral blood mononuclear cell samples, with some considerations noted for tissue-derived T cells and nonhuman samples. AIM assays are a powerful tool that enables detailed analysis of antigen-specific T-cell frequency, phenotype and function without needing to know the precise antigenic peptides and their MHC restriction elements, enabling a wider analysis of immunity generated following infection and/or vaccination.
Collapse
Affiliation(s)
- Chad Poloni
- Division of Infectious Diseases, Department of MedicineUniversity of British ColumbiaVancouverBCCanada
- BC Children's Hospital Research InstituteVancouverBCCanada
| | - Cole Schonhofer
- Division of Infectious Diseases, Department of MedicineUniversity of British ColumbiaVancouverBCCanada
- BC Children's Hospital Research InstituteVancouverBCCanada
| | - Sabine Ivison
- BC Children's Hospital Research InstituteVancouverBCCanada
- Department of SurgeryUniversity of British ColumbiaVancouverBCCanada
| | - Megan K Levings
- BC Children's Hospital Research InstituteVancouverBCCanada
- Department of SurgeryUniversity of British ColumbiaVancouverBCCanada
| | - Theodore S Steiner
- Division of Infectious Diseases, Department of MedicineUniversity of British ColumbiaVancouverBCCanada
- BC Children's Hospital Research InstituteVancouverBCCanada
| | - Laura Cook
- Division of Infectious Diseases, Department of MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Department of Critical Care, Melbourne Medical SchoolUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
315
|
Vasileiou S, Hill L, Kuvalekar M, Workineh AG, Watanabe A, Velazquez Y, Lulla S, Mooney K, Lapteva N, Grilley BJ, Heslop HE, Rooney CM, Brenner MK, Eagar TN, Carrum G, Grimes KA, Leen AM, Lulla P. Allogeneic, off-the-shelf, SARS-CoV-2-specific T cells (ALVR109) for the treatment of COVID-19 in high-risk patients. Haematologica 2023; 108:1840-1850. [PMID: 36373249 PMCID: PMC10316279 DOI: 10.3324/haematol.2022.281946] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/31/2022] [Indexed: 07/22/2023] Open
Abstract
Defects in T-cell immunity to SARS-CoV-2 have been linked to an increased risk of severe COVID-19 (even after vaccination), persistent viral shedding and the emergence of more virulent viral variants. To address this T-cell deficit, we sought to prepare and cryopreserve banks of virus-specific T cells, which would be available as a partially HLA-matched, off-the-shelf product for immediate therapeutic use. By interrogating the peripheral blood of healthy convalescent donors, we identified immunodominant and protective T-cell target antigens, and generated and characterized polyclonal virus-specific T-cell lines with activity against multiple clinically important SARS-CoV-2 variants (including 'delta' and 'omicron'). The feasibility of making and safely utilizing such virus-specific T cells clinically was assessed by administering partially HLA-matched, third-party, cryopreserved SARS-CoV-2-specific T cells (ALVR109) in combination with other antiviral agents to four individuals who were hospitalized with COVID-19. This study establishes the feasibility of preparing and delivering off-the-shelf, SARS-CoV-2-directed, virus-specific T cells to patients with COVID-19 and supports the clinical use of these products outside of the profoundly immune compromised setting (ClinicalTrials.gov number, NCT04401410).
Collapse
Affiliation(s)
- Spyridoula Vasileiou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX.
| | - LaQuisa Hill
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Manik Kuvalekar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Aster G Workineh
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Ayumi Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Yovana Velazquez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Suhasini Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Kimberly Mooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Natalia Lapteva
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Bambi J Grilley
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Todd N Eagar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - George Carrum
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Kevin A Grimes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Premal Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| |
Collapse
|
316
|
Jiang N, Malone M, Chizari S. Antigen-specific and cross-reactive T cells in protection and disease. Immunol Rev 2023; 316:120-135. [PMID: 37209375 PMCID: PMC10524458 DOI: 10.1111/imr.13217] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/22/2023]
Abstract
Human T cells have a diverse T-cell receptor (TCR) repertoire that endows them with the ability to identify and defend against a broad spectrum of antigens. The universe of possible antigens that T cells may encounter, however, is even larger. To effectively surveil such a vast universe, the T-cell repertoire must adopt a high degree of cross-reactivity. Likewise, antigen-specific and cross-reactive T-cell responses play pivotal roles in both protective and pathological immune responses in numerous diseases. In this review, we explore the implications of these antigen-driven T-cell responses, with a particular focus on CD8+ T cells, using infection, neurodegeneration, and cancer as examples. We also summarize recent technological advances that facilitate high-throughput profiling of antigen-specific and cross-reactive T-cell responses experimentally, as well as computational biology approaches that predict these interactions.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA, 19104
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, 19104
- Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA, 19104
| | - Michael Malone
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
| | - Shahab Chizari
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
317
|
A'la R, Wijaya AY, Susilowati H, Kuncorojakti S, Diyantoro, Rahmahani J, Rantam FA. Inactivated SARS-CoV-2 vaccine candidate immunization on non-human primate animal model: B-cell and T-cell responses immune evaluation. Heliyon 2023; 9:e18039. [PMID: 37519714 PMCID: PMC10372371 DOI: 10.1016/j.heliyon.2023.e18039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND SARS-CoV-2 vaccine was proven to be an effective and efficient measure for mitigating pandemic. COVID-19 infection and mortality subsided along with the increaseing COVID-19 vaccination coverage. Vaccine and health resource equity are predominant factors in COVID-19 pandemic management. Vaccine development for Indonesia, aims to ensure a sustainable pandemic control and steady national stability restoration. A decent vaccine must induce immunity against COVID-19 with minimum adverse reaction. Immunogenicity and ability to induce neutralizing antibody evaluation needs to be performed as part of the SARS-CoV-2 inactivated vaccine development from East Java, Indonesia isolate (Vaksin Merah Putih-INAVAC). OBJECTIVE This research demonstrated INAVAC performance in inducing the production neutralizing antibody along with its effects on CD4+ and CD8+ cells response in Macaca fascicularis (non-human primate). METHODS Two dosages of 3 μg and 5 μg were tested, compared to sham (NaCl 0.9%) in 10 Macaca fascicularis (2 injection intramuscular with 14 days interval). All animals were monitored daily for clinical signs. Nasopharyngeal samples were analyzed using qRT-PCR while the serum were tested using ELISA and neutralization assay, whereas PBMCs were flowcytrometrically analyzed to measure CD4+ and CD8+ population. RESULTS It is observed that both vaccine doses could stimulate relatively similar immune response and neutralizing antibody (end GMT post challenge = 905,1), whereas higher CD8+ cells response were reported in the 5 μg group after the 3rd day post-challenge. The dose of vaccine that produce adequate immune cell stimulation with neutralizing antibody induction can be adopted to clinical study, as favorable result of these parameters could predict minimum adverse reaction from inflammation response with balanced immune response. CONCLUSIONS Therefore, it is concluded that Vaksin Merah Putih-INAVAC with 3 μg dose showed a favorable potential to be developed and tested as human vaccine.
Collapse
Affiliation(s)
- Rofiqul A'la
- Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Helen Susilowati
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Suryo Kuncorojakti
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Diyantoro
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Indonesia
| | - Jola Rahmahani
- Virology and Immunology Laboratory, Department of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Fedik Abdul Rantam
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Virology and Immunology Laboratory, Department of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
318
|
Potts M, Fletcher-Etherington A, Nightingale K, Mescia F, Bergamaschi L, Calero-Nieto FJ, Antrobus R, Williamson J, Parsons H, Huttlin EL, Kingston N, Göttgens B, Bradley JR, Lehner PJ, Matheson NJ, Smith KGC, Wills MR, Lyons PA, Weekes MP. Proteomic analysis of circulating immune cells identifies cellular phenotypes associated with COVID-19 severity. Cell Rep 2023; 42:112613. [PMID: 37302069 PMCID: PMC10243220 DOI: 10.1016/j.celrep.2023.112613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/29/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
Certain serum proteins, including C-reactive protein (CRP) and D-dimer, have prognostic value in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nonetheless, these factors are non-specific, providing limited mechanistic insight into the peripheral blood mononuclear cell (PBMC) populations that drive the pathogenesis of severe COVID-19. To identify cellular phenotypes associated with disease, we performed a comprehensive, unbiased analysis of total and plasma-membrane PBMC proteomes from 40 unvaccinated individuals with SARS-CoV-2, spanning the whole disease spectrum. Combined with RNA sequencing (RNA-seq) and flow cytometry from the same donors, we define a comprehensive multi-omic profile for each severity level, revealing that immune-cell dysregulation progresses with increasing disease. The cell-surface proteins CEACAMs1, 6, and 8, CD177, CD63, and CD89 are strongly associated with severe COVID-19, corresponding to the emergence of atypical CD3+CD4+CEACAM1/6/8+CD177+CD63+CD89+ and CD16+CEACAM1/6/8+ mononuclear cells. Utilization of these markers may facilitate real-time patient assessment by flow cytometry and identify immune populations that could be targeted to ameliorate immunopathology.
Collapse
Affiliation(s)
- Martin Potts
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Alice Fletcher-Etherington
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Katie Nightingale
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Federica Mescia
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Laura Bergamaschi
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | | | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - James Williamson
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Harriet Parsons
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nathalie Kingston
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Berthold Göttgens
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 OAW, UK
| | - John R Bradley
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Paul J Lehner
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Nicholas J Matheson
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; NHS Blood and Transplant, Cambridge CB2 0PT, UK
| | - Kenneth G C Smith
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Mark R Wills
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Paul A Lyons
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
319
|
Gashimova NR, Pankratyeva LL, Bitsadze VO, Khizroeva JK, Tretyakova MV, Grigoreva KN, Tsibizova VI, Gris JC, Degtyareva ND, Yakubova FE, Makatsariya AD. Inflammation and Immune Reactions in the Fetus as a Response to COVID-19 in the Mother. J Clin Med 2023; 12:4256. [PMID: 37445296 DOI: 10.3390/jcm12134256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Background: Contracting COVID-19 during pregnancy can harm both the mother and the unborn child. Pregnant women are highly likely to develop respiratory viral infection complications with critical conditions caused by physiological changes in the immune and cardiopulmonary systems. Asymptomatic COVID-19 in pregnant women may be accompanied by fetal inflammatory response syndrome, which has adverse consequences for the newborn's life and health. Purpose: To conduct an inflammatory response assessment of the fetus due to the effects of COVID-19 on the mother during pregnancy by determining pro-inflammatory cytokines, cell markers, T regulatory cells, T cell response, evaluation of cardiac function, and thymus size. Materials and methods: A prospective study included pregnant women (n = 92). The main group consisted of 62 pregnant women with COVID-19 infection: subgroup 1-SARS-CoV-2 PCR-positive pregnant women 4-6 weeks before delivery (n = 30); subgroup 2-SARS-CoV-2 PCR-positive earlier during pregnancy (n = 32). The control group consisted of 30 healthy pregnant women. In all pregnant women, the levels of circulating cytokines and chemokines (IL-1α, IL-6, IL-8, IL-10, GM-CSF, TNF-α, IFN-γ, MIP-1β, and CXCL-10) were determined in the peripheral blood and after delivery in the umbilical cord blood, and an analysis was performed of the cell markers on dendritic cells, quantitative and functional characteristics of T regulatory cells, and specific T cell responses. The levels of thyroxine and thyroid-stimulating hormone were determined in the newborns of the studied groups, and ultrasound examinations of the thymus and echocardiography of the heart were also performed. Results: The cord blood dendritic cells of newborns born to mothers who suffered from COVID-19 4-6 weeks before delivery (subgroup 1) showed a significant increase in CD80 and CD86 expression compared to the control group (p = 0.023). In the umbilical cord blood samples of children whose mothers tested positive for COVID-19 4-6 weeks before delivery (subgroup 1), the CD4+CCR7+ T cells increased with a concomitant decrease in the proportion of naive CD4+ T cells compared with the control group (p = 0.016). Significantly higher levels of pro-inflammatory cytokines and chemokines were detected in the newborns of subgroup 1 compared to the control group. In the newborns of subgroup 1, the functional activity of T regulatory cells was suppressed, compared with the newborns of the control group (p < 0.001). In all pregnant women with a severe coronavirus infection, a weak T cell response was detected in them as well as in their newborns. In newborns whose mothers suffered a coronavirus infection, a decrease in thymus size, transient hypothyroxinemia, and changes in functional parameters according to echocardiography were revealed compared with the newborns of the control group. Conclusions: Fetal inflammatory response syndrome can occur in infants whose mothers suffered from a COVID-19 infection during pregnancy and is characterized by the activation of the fetal immune system and increased production of pro-inflammatory cytokines. The disease severity in a pregnant woman does not correlate with SIRS severity in the neonatal period. It can vary from minimal laboratory parameter changes to the development of complications in the organs and systems of the fetus and newborn.
Collapse
Affiliation(s)
- Nilufar R Gashimova
- Sechenov University, 2 bldg. 4, Bolshaya Pirogovskaya Str., 119991 Moscow, Russia
| | - Liudmila L Pankratyeva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela Street, 117997 Moscow, Russia
- Clinical Research Center, Vorokhobov City Clinical Hospital No 67, 2/44 Salama Adil Str., 123423 Moscow, Russia
| | - Victoria O Bitsadze
- Sechenov University, 2 bldg. 4, Bolshaya Pirogovskaya Str., 119991 Moscow, Russia
| | - Jamilya Kh Khizroeva
- Sechenov University, 2 bldg. 4, Bolshaya Pirogovskaya Str., 119991 Moscow, Russia
| | - Maria V Tretyakova
- Sechenov University, 2 bldg. 4, Bolshaya Pirogovskaya Str., 119991 Moscow, Russia
| | - Kristina N Grigoreva
- Sechenov University, 2 bldg. 4, Bolshaya Pirogovskaya Str., 119991 Moscow, Russia
| | - Valentina I Tsibizova
- Federal State Budgetary Institution "Almazov National Medical Research Centre", Ministry of Health of the Russian Federation 2 Akkuratova Street, 197341 St. Petersburg, Russia
| | - Jean-Christophe Gris
- Sechenov University, 2 bldg. 4, Bolshaya Pirogovskaya Str., 119991 Moscow, Russia
- University of Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
| | - Natalia D Degtyareva
- Sechenov University, 2 bldg. 4, Bolshaya Pirogovskaya Str., 119991 Moscow, Russia
| | - Fidan E Yakubova
- Sechenov University, 2 bldg. 4, Bolshaya Pirogovskaya Str., 119991 Moscow, Russia
| | | |
Collapse
|
320
|
Petrone L, Sette A, de Vries RD, Goletti D. The Importance of Measuring SARS-CoV-2-Specific T-Cell Responses in an Ongoing Pandemic. Pathogens 2023; 12:862. [PMID: 37513709 PMCID: PMC10385870 DOI: 10.3390/pathogens12070862] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Neutralizing antibodies are considered a correlate of protection against SARS-CoV-2 infection and severe COVID-19, although they are not the only contributing factor to immunity: T-cell responses are considered important in protecting against severe COVID-19 and contributing to the success of vaccination effort. T-cell responses after vaccination largely mirror those of natural infection in magnitude and functional capacity, but not in breadth, as T-cells induced by vaccination exclusively target the surface spike glycoprotein. T-cell responses offer a long-lived line of defense and, unlike humoral responses, largely retain reactivity against the SARS-CoV-2 variants. Given the increasingly recognized role of T-cell responses in protection against severe COVID-19, the circulation of SARS-CoV-2 variants, and the potential implementation of novel vaccines, it becomes imperative to continuously monitor T-cell responses. In addition to "classical" T-cell assays requiring the isolation of peripheral blood mononuclear cells, simple whole-blood-based interferon-γ release assays have a potential role in routine T-cell response monitoring. These assays could be particularly useful for immunocompromised people and other clinically vulnerable populations, where interactions between cellular and humoral immunity are complex. As we continue to live alongside COVID-19, the importance of considering immunity as a whole, incorporating both humoral and cellular responses, is crucial.
Collapse
Affiliation(s)
- Linda Petrone
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, 00149 Rome, Italy;
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA;
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Rory D. de Vries
- Department Viroscience, Erasmus University Medical Center, 3015CN Rotterdam, The Netherlands;
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, 00149 Rome, Italy;
| |
Collapse
|
321
|
Smolic M, Dawood R, Salum G, Abd El Meguid M, Omran M, Smolic R. Therapeutic Interventions for COVID-19. POST COVID-19 - EFFECTS ON HUMAN HEALTH 2023. [DOI: 10.5772/intechopen.111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
SARS-CoV-2, a novel coronavirus, is currently represented a major public health concern. The high transmission rate of this virus increases the mortality rate worldwide. To date, significant efforts and restricted regulations were performed around the world to control this crisis effectively, but unfortunately, there is no specific and successful therapy for COVID-19. Many approaches have been repurposed for SARS-CoV-2 treatment such as antivirals and anti-inflammatories. Furthermore, antibody therapies are one of the main and important approaches of SARS-CoV-2 infection treatment. In recent trials, various immunotherapeutic interventions such as convalescent plasma therapy and monoclonal antibodies, as well as immunomodulatory agents are being proposed. However, the development of a vaccine that provides durable protective immunity will be the most effective therapy for controlling possible epidemics of this virus. The current review summarized all the proposed therapeutic approaches together with information on their safety and efficacy in treating COVID-19, as well as the vaccine candidates. The provided comprehensive information regarding the applied therapeutic strategies against COVID-19 might help the scientific community in any progress toward the treatment of COVID-19 infection.
Collapse
|
322
|
Tarke A, Zhang Y, Methot N, Narowski TM, Phillips E, Mallal S, Frazier A, Filaci G, Weiskopf D, Dan JM, Premkumar L, Scheuermann RH, Sette A, Grifoni A. Targets and cross-reactivity of human T cell recognition of common cold coronaviruses. Cell Rep Med 2023; 4:101088. [PMID: 37295422 PMCID: PMC10242702 DOI: 10.1016/j.xcrm.2023.101088] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/17/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
The coronavirus (CoV) family includes several viruses infecting humans, highlighting the importance of exploring pan-CoV vaccine strategies to provide broad adaptive immune protection. We analyze T cell reactivity against representative Alpha (NL63) and Beta (OC43) common cold CoVs (CCCs) in pre-pandemic samples. S, N, M, and nsp3 antigens are immunodominant, as shown for severe acute respiratory syndrome 2 (SARS2), while nsp2 and nsp12 are Alpha or Beta specific. We further identify 78 OC43- and 87 NL63-specific epitopes, and, for a subset of those, we assess the T cell capability to cross-recognize sequences from representative viruses belonging to AlphaCoV, sarbecoCoV, and Beta-non-sarbecoCoV groups. We find T cell cross-reactivity within the Alpha and Beta groups, in 89% of the instances associated with sequence conservation >67%. However, despite conservation, limited cross-reactivity is observed for sarbecoCoV, indicating that previous CoV exposure is a contributing factor in determining cross-reactivity. Overall, these results provide critical insights in developing future pan-CoV vaccines.
Collapse
Affiliation(s)
- Alison Tarke
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Experimental Medicine and Center of Excellence for Biomedical Research (CEBR), University of Genoa, 16132 Genoa, Italy
| | - Yun Zhang
- J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Nils Methot
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Tara M Narowski
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7290, USA
| | - Elizabeth Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Gilberto Filaci
- Center of Excellence for Biomedical Research, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Jennifer M Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7290, USA
| | - Richard H Scheuermann
- J. Craig Venter Institute, La Jolla, CA 92037, USA; Department of Pathology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA.
| |
Collapse
|
323
|
Maison DP, Deng Y, Gerschenson M. SARS-CoV-2 and the host-immune response. Front Immunol 2023; 14:1195871. [PMID: 37404823 PMCID: PMC10315470 DOI: 10.3389/fimmu.2023.1195871] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
The SARS-CoV-2 pandemic and the COVID-19 disease have affected everyone globally, leading to one of recorded history's most significant research surges. As our knowledge evolves, our approaches to the virus and treatments must also evolve. The evaluation of future research approaches to SARS-CoV-2 will necessitate reviewing the host immune response and viral antagonism of that response. This review provides an overview of the current knowledge on SARS-CoV-2 by summarizing the virus and human response. The focuses are on the viral genome, replication cycle, host immune activation, response, signaling, and antagonism. To effectively fight the pandemic, efforts must focus on the current state of research to help develop treatments and prepare for future outbreaks.
Collapse
Affiliation(s)
- David P. Maison
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Mariana Gerschenson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
324
|
Milighetti M, Peng Y, Tan C, Mark M, Nageswaran G, Byrne S, Ronel T, Peacock T, Mayer A, Chandran A, Rosenheim J, Whelan M, Yao X, Liu G, Felce SL, Dong T, Mentzer AJ, Knight JC, Balloux F, Greenstein E, Reich-Zeliger S, Pade C, Gibbons JM, Semper A, Brooks T, Otter A, Altmann DM, Boyton RJ, Maini MK, McKnight A, Manisty C, Treibel TA, Moon JC, Noursadeghi M, Chain B. Large clones of pre-existing T cells drive early immunity against SARS-COV-2 and LCMV infection. iScience 2023; 26:106937. [PMID: 37275518 PMCID: PMC10201888 DOI: 10.1016/j.isci.2023.106937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/14/2023] [Accepted: 05/17/2023] [Indexed: 06/07/2023] Open
Abstract
T cell responses precede antibody and may provide early control of infection. We analyzed the clonal basis of this rapid response following SARS-COV-2 infection. We applied T cell receptor (TCR) sequencing to define the trajectories of individual T cell clones immediately. In SARS-COV-2 PCR+ individuals, a wave of TCRs strongly but transiently expand, frequently peaking the same week as the first positive PCR test. These expanding TCR CDR3s were enriched for sequences functionally annotated as SARS-COV-2 specific. Epitopes recognized by the expanding TCRs were highly conserved between SARS-COV-2 strains but not with circulating human coronaviruses. Many expanding CDR3s were present at high frequency in pre-pandemic repertoires. Early response TCRs specific for lymphocytic choriomeningitis virus epitopes were also found at high frequency in the preinfection naive repertoire. High-frequency naive precursors may allow the T cell response to respond rapidly during the crucial early phases of acute viral infection.
Collapse
Affiliation(s)
- Martina Milighetti
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Yanchun Peng
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Cedric Tan
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Michal Mark
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gayathri Nageswaran
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Suzanne Byrne
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Tahel Ronel
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Tom Peacock
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Andreas Mayer
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Aneesh Chandran
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Joshua Rosenheim
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Matthew Whelan
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Xuan Yao
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Guihai Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Suet Ling Felce
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | | | - Julian C Knight
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Francois Balloux
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Erez Greenstein
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shlomit Reich-Zeliger
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Corinna Pade
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Joseph M Gibbons
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Amanda Semper
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Tim Brooks
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Ashley Otter
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Daniel M Altmann
- Department of Immunology and Inflammation, Imperial College London, London SW7 2BX, UK
| | - Rosemary J Boyton
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
- Lung Division, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Aine McKnight
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Charlotte Manisty
- Institute of Cardiovascular Sciences, University College London, London WC1E 6BT, UK
| | - Thomas A Treibel
- Institute of Cardiovascular Sciences, University College London, London WC1E 6BT, UK
| | - James C Moon
- Institute of Cardiovascular Sciences, University College London, London WC1E 6BT, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Benny Chain
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| |
Collapse
|
325
|
Nytrova P, Stastna D, Tesar A, Menkyova I, Posova H, Koprivova H, Mikulova V, Hrdy J, Smela G, Horakova D, Rysankova I, Doleckova K, Tyblova M. Immunity following SARS-CoV-2 vaccination in autoimmune neurological disorders treated with rituximab or ocrelizumab. Front Immunol 2023; 14:1149629. [PMID: 37398654 PMCID: PMC10312310 DOI: 10.3389/fimmu.2023.1149629] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
Background Rituximab (RTX) and ocrelizumab (OCR), B cell-depleting therapy targeting CD20 molecules, affect the humoral immune response after vaccination. How these therapies influence T-cell-mediated immune response against SARS-CoV-2 after immunization remains unclear. We aimed to evaluate the humoral and cellular immune response to the COVID-19 vaccine in a cohort of patients with multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), and myasthenia gravis (MG). Methods Patients with MS (83), NMOSD (19), or MG (7) undergoing RTX (n=47) or OCR (n=62) treatment were vaccinated twice with the mRNA BNT162b2 vaccine. Antibodies were quantified using the SARS-CoV-2 IgG chemiluminescence immunoassay, targeting the spike protein. SARS-CoV-2-specific T cell responses were quantified by interferon γ release assays (IGRA). The responses were evaluated at two different time points (4-8 weeks and 16-20 weeks following the 2nd dose of the vaccine). Immunocompetent vaccinated individuals (n=41) were included as controls. Results Almost all immunocompetent controls developed antibodies against the SARS-CoV-2 trimeric spike protein, but only 34.09% of the patients, without a COVID-19 history and undergoing anti-CD20 treatment (via RTX or OCR), seroconverted. This antibody response was higher in patients with intervals of longer than 3 weeks between vaccinations. The duration of therapy was significantly shorter in seroconverted patients (median 24 months), than in the non-seroconverted group. There was no correlation between circulating B cells and the levels of antibodies. Even patients with a low proportion of circulating CD19+ B cells (<1%, 71 patients) had detectable SARS-CoV-2 specific antibody responses. SARS-CoV-2 specific T cell response measured by released interferon γ was detected in 94.39% of the patients, independently of a humoral immune response. Conclusion The majority of MS, MG, and NMOSD patients developed a SARS-CoV-2-specific T cell response. The data suggest that vaccination can induce SARS-CoV-2-specific antibodies in a portion of anti-CD20 treated patients. The seroconversion rate was higher in OCR-treated patients compared to those on RTX. The response represented by levels of antibodies was better in individuals, with intervals of longer than 3 weeks between vaccinations.
Collapse
Affiliation(s)
- Petra Nytrova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Dominika Stastna
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Adam Tesar
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
- Institute of Biophysics and Informatics of the First Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Ingrid Menkyova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
- 2nd Department of Neurology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Helena Posova
- Laboratory of Clinical Immunology and Allergology, Institute of Clinical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Helena Koprivova
- Laboratory of Clinical Immunology and Allergology, Institute of Clinical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Veronika Mikulova
- Laboratory of Clinical Immunology and Allergology, Institute of Clinical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Jiri Hrdy
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Gabriela Smela
- Laboratory of Clinical Immunology and Allergology, Institute of Clinical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Dana Horakova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Irena Rysankova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Kristyna Doleckova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Michaela Tyblova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| |
Collapse
|
326
|
Nowill AE, Caruso M, de Campos-Lima PO. T-cell immunity to SARS-CoV-2: what if the known best is not the optimal course for the long run? Adapting to evolving targets. Front Immunol 2023; 14:1133225. [PMID: 37388738 PMCID: PMC10303130 DOI: 10.3389/fimmu.2023.1133225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/11/2023] [Indexed: 07/01/2023] Open
Abstract
Humanity did surprisingly well so far, considering how unprepared it was to respond to the coronavirus disease 2019 (COVID-19) threat. By blending old and ingenious new technology in the context of the accumulated knowledge on other human coronaviruses, several vaccine candidates were produced and tested in clinical trials in record time. Today, five vaccines account for the bulk of the more than 13 billion doses administered worldwide. The ability to elicit biding and neutralizing antibodies most often against the spike protein is a major component of the protection conferred by immunization but alone it is not enough to limit virus transmission. Thus, the surge in numbers of infected individuals by newer variants of concern (VOCs) was not accompanied by a proportional increase in severe disease and death rate. This is likely due to antiviral T-cell responses, whose evasion is more difficult to achieve. The present review helps navigating the very large literature on T cell immunity induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination. We examine the successes and shortcomings of the vaccinal protection in the light of the emergence of VOCs with breakthrough potential. SARS-CoV-2 and human beings will likely coexist for a long while: it will be necessary to update existing vaccines to improve T-cell responses and attain better protection against COVID-19.
Collapse
Affiliation(s)
- Alexandre E. Nowill
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas, SP, Brazil
| | - Manuel Caruso
- CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center, Québec, QC, Canada
| | - Pedro O. de Campos-Lima
- Boldrini Children’s Center, Campinas, SP, Brazil
- Molecular and Morphofunctional Biology Graduate Program, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
327
|
Ishii T, Hamada K, Jubishi D, Hashimoto H, Okamoto K, Hisasue N, Sunohara M, Saito M, Shinohara T, Yamashita M, Wakimoto Y, Otani A, Ikeda M, Harada S, Okugawa S, Moriya K, Yanagimoto S. Waning cellular immune responses and predictive factors in maintaining cellular immunity against SARS-CoV-2 six months after BNT162b2 mRNA vaccination. Sci Rep 2023; 13:9607. [PMID: 37311763 DOI: 10.1038/s41598-023-36397-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023] Open
Abstract
Several clinical trials have shown that the humoral response produced by anti-spike antibodies elicited by coronavirus disease 2019 (COVID-19) vaccines gradually declines. The kinetics, durability and influence of epidemiological and clinical factors on cellular immunity have not been fully elucidated. We analyzed cellular immune responses elicited by BNT162b2 mRNA vaccines in 321 health care workers using whole blood interferon-gamma (IFN-γ) release assays. IFN-γ, induced by CD4 + and CD8 + T cells stimulated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike epitopes (Ag2), levels were highest at 3 weeks after the second vaccination (6 W) and decreased by 37.4% at 3 months (4 M) and 60.0% at 6 months (7 M), the decline of which seemed slower than that of anti-spike antibody levels. Multiple regression analysis revealed that the levels of IFN-γ induced by Ag2 at 7 M were significantly correlated with age, dyslipidemia, focal adverse reactions to full vaccination, lymphocyte and monocyte counts in whole blood, Ag2 levels before the second vaccination, and Ag2 levels at 6 W. We clarified the dynamics and predictive factors for the long-lasting effects of cellular immune responses. The results emphasize the need for a booster vaccine from the perspective of SARS-CoV-2 vaccine-elicited cellular immunity.
Collapse
Affiliation(s)
- Takashi Ishii
- Division for Health Service Promotion, The University of Tokyo, Hongo 7-3-1, Bunkyo, TokyoTokyo, 113-8655, Japan.
| | - Kensuke Hamada
- Division for Health Service Promotion, The University of Tokyo, Hongo 7-3-1, Bunkyo, TokyoTokyo, 113-8655, Japan
| | - Daisuke Jubishi
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
| | - Hideki Hashimoto
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
| | - Koh Okamoto
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
| | - Naoko Hisasue
- Division for Health Service Promotion, The University of Tokyo, Hongo 7-3-1, Bunkyo, TokyoTokyo, 113-8655, Japan
| | - Mitsuhiro Sunohara
- Division for Health Service Promotion, The University of Tokyo, Hongo 7-3-1, Bunkyo, TokyoTokyo, 113-8655, Japan
| | - Minako Saito
- Division for Health Service Promotion, The University of Tokyo, Hongo 7-3-1, Bunkyo, TokyoTokyo, 113-8655, Japan
| | - Takayuki Shinohara
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
| | - Marie Yamashita
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
| | - Yuji Wakimoto
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
| | - Amato Otani
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
| | - Mahoko Ikeda
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Tokyo, Japan
| | - Sohei Harada
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Tokyo, Japan
| | - Shu Okugawa
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
| | - Kyoji Moriya
- Division for Health Service Promotion, The University of Tokyo, Hongo 7-3-1, Bunkyo, TokyoTokyo, 113-8655, Japan
| | - Shintaro Yanagimoto
- Division for Health Service Promotion, The University of Tokyo, Hongo 7-3-1, Bunkyo, TokyoTokyo, 113-8655, Japan.
| |
Collapse
|
328
|
Ghazizadeh H, Shakour N, Ghoflchi S, Mansoori A, Saberi-Karimiam M, Rashidmayvan M, Ferns G, Esmaily H, Ghayour-Mobarhan M. Use of data mining approaches to explore the association between type 2 diabetes mellitus with SARS-CoV-2. BMC Pulm Med 2023; 23:203. [PMID: 37308948 PMCID: PMC10258488 DOI: 10.1186/s12890-023-02495-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Corona virus causes respiratory tract infections in mammals. The latest type of Severe Acute Respiratory Syndrome Corona-viruses 2 (SARS-CoV-2), Corona virus spread in humans in December 2019 in Wuhan, China. The purpose of this study was to investigate the relationship between type 2 diabetes mellitus (T2DM), and their biochemical and hematological factors with the level of infection with COVID-19 to improve the treatment and management of the disease. MATERIAL AND METHOD This study was conducted on a population of 13,170 including 5780 subjects with SARS-COV-2 and 7390 subjects without SARS-COV-2, in the age range of 35-65 years. Also, the associations between biochemical factors, hematological factors, physical activity level (PAL), age, sex, and smoking status were investigated with the COVID-19 infection. RESULT Data mining techniques such as logistic regression (LR) and decision tree (DT) algorithms were used to analyze the data. The results using the LR model showed that in biochemical factors (Model I) creatine phosphokinase (CPK) (OR: 1.006 CI 95% (1.006,1.007)), blood urea nitrogen (BUN) (OR: 1.039 CI 95% (1.033, 1.047)) and in hematological factors (Model II) mean platelet volume (MVP) (OR: 1.546 CI 95% (1.470, 1.628)) were significant factors associated with COVID-19 infection. Using the DT model, CPK, BUN, and MPV were the most important variables. Also, after adjustment for confounding factors, subjects with T2DM had higher risk for COVID-19 infection. CONCLUSION There was a significant association between CPK, BUN, MPV and T2DM with COVID-19 infection and T2DM appears to be important in the development of COVID-19 infection.
Collapse
Affiliation(s)
- Hamideh Ghazizadeh
- The Hospital for Sick Children, CALIPER Program, Division of Clinical Biochemistry, Pediatric Laboratory Medicine, Toronto, ON, Canada
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Shakour
- Department of Medical Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Ghoflchi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mansoori
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maryam Saberi-Karimiam
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Rashidmayvan
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Gordon Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Brighton, UK
| | - Habibollah Esmaily
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
329
|
Kim WJ, Roberts CC, Song JY, Yoon JG, Seong H, Hyun HJ, Lee H, Gil A, Oh Y, Park JE, Lee JE, Jeon B, Kane D, Spruill S, Kudchodkar SB, Muthumani K, Park YK, Kwon I, Maslow JN. Immune response enhancement with GLS-5310 DNA primary vaccine against SARS-CoV-2 followed by administration of an mRNA vaccine heterologous boost. Vaccine 2023:S0264-410X(23)00683-7. [PMID: 37296017 DOI: 10.1016/j.vaccine.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/15/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Heterologous boost regimens are being increasingly considered against SARS-CoV-2. We report results for the 32 of 45 participants in the Phase 1 CoV2-001 clinical trial (Kim et al., Int J Iinfect Dis 2023, 128:112-120) who elected to receive an EUA-approved SARS-CoV-2 mRNA vaccine 6 to 8 months following a two-dose primary vaccination with the GLS-5310 bi-cistronic DNA vaccine given intradermally and followed by application of suction using the GeneDerm device. Receipt of EUA-approved mRNA vaccines after GLS-5310 vaccination was well-tolerated, with no reported adverse events. Immune responses were enhanced such that binding antibody titers, neutralizing antibody titers, and T-cell responses increased 1,187-fold, 110-fold, and 2.9-fold, respectively. This paper is the first description of the immune responses following heterologous vaccination with a DNA primary series and mRNA boost.
Collapse
Affiliation(s)
- Woo Joo Kim
- Division of Infectious Diseases, Guro Hospital, Vaccine Innovation Center, Korea University, College of Medicine, Seoul, Republic of Korea
| | | | - Joon Young Song
- Division of Infectious Diseases, Guro Hospital, Vaccine Innovation Center, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Jin Gu Yoon
- Division of Infectious Diseases, Guro Hospital, Vaccine Innovation Center, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Hye Seong
- Division of Infectious Diseases, Guro Hospital, Vaccine Innovation Center, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Hak-Jun Hyun
- Division of Infectious Diseases, Guro Hospital, Vaccine Innovation Center, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Hyojin Lee
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Areum Gil
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Yeeun Oh
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Ji-Eun Park
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Ji-Eun Lee
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Bohyun Jeon
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Deborah Kane
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Susan Spruill
- Applied Statistics and Consulting, Spruce Pine, NC, USA
| | | | - Kar Muthumani
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Young K Park
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Ijoo Kwon
- GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - Joel N Maslow
- GeneOne Life Science, Inc., Seoul, Republic of Korea; Department of Medicine, Morristown Medical Center, Morristown, NJ, USA.
| |
Collapse
|
330
|
Johnson SA, Phillips E, Adele S, Longet S, Malone T, Mason C, Stafford L, Jamsen A, Gardiner S, Deeks A, Neo J, Blurton EJ, White J, Ali M, Kronsteiner B, Wilson JD, Skelly DT, Jeffery K, Conlon CP, Goulder P, Consortium PITCH, Carroll M, Barnes E, Klenerman P, Dunachie SJ. Evaluation of QuantiFERON SARS-CoV-2 interferon-γ release assay following SARS-CoV-2 infection and vaccination. Clin Exp Immunol 2023; 212:249-261. [PMID: 36807499 PMCID: PMC10243914 DOI: 10.1093/cei/uxad027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/18/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023] Open
Abstract
T cells are important in preventing severe disease from SARS-CoV-2, but scalable and field-adaptable alternatives to expert T-cell assays are needed. The interferon-gamma release assay QuantiFERON platform was developed to detect T-cell responses to SARS-CoV-2 from whole blood with relatively basic equipment and flexibility of processing timelines. Forty-eight participants with different infection and vaccination backgrounds were recruited. Whole blood samples were analysed using the QuantiFERON SARS-CoV-2 assay in parallel with the well-established 'Protective Immunity from T Cells in Healthcare workers' (PITCH) ELISpot, which can evaluate spike-specific T-cell responses. The primary aims of this cross-sectional observational cohort study were to establish if the QuantiFERON SARS-Co-V-2 assay could discern differences between specified groups and to assess the sensitivity of the assay compared with the PITCH ELISpot. The QuantiFERON SARS-CoV-2 distinguished acutely infected individuals (12-21 days post positive PCR) from naïve individuals (P < 0.0001) with 100% sensitivity and specificity for SARS-CoV-2 T cells, whilst the PITCH ELISpot had reduced sensitivity (62.5%) for the acute infection group. Sensitivity with QuantiFERON for previous infection was 12.5% (172-444 days post positive test) and was inferior to the PITCH ELISpot (75%). Although the QuantiFERON assay could discern differences between unvaccinated and vaccinated individuals (55-166 days since second vaccination), the latter also had reduced sensitivity (44.4%) compared to the PITCH ELISpot (66.6%). The QuantiFERON SARS-CoV-2 assay showed potential as a T- cell evaluation tool soon after SARS-CoV-2 infection but has lower sensitivity for use in reliable evaluation of vaccination or more distant infection.
Collapse
Affiliation(s)
- Síle A Johnson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- University of Oxford Medical School, University of Oxford, Oxford, UK
- University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | - Eloise Phillips
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Sandra Adele
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Stephanie Longet
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tom Malone
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Chris Mason
- University of Oxford Medical School, University of Oxford, Oxford, UK
| | - Lizzie Stafford
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Experimental Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Anni Jamsen
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Experimental Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Siobhan Gardiner
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Experimental Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Alexandra Deeks
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Department of Experimental Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Janice Neo
- University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | - Emily J Blurton
- University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | - Jemima White
- University of Oxford Medical School, University of Oxford, Oxford, UK
| | - Muhammed Ali
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Barbara Kronsteiner
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Joseph D Wilson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- King’s College Hospital NHS Foundation Trust, London, UK
| | - Dónal T Skelly
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Katie Jeffery
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Christopher P Conlon
- Oxford Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, UK
| | - PITCH Consortium
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Miles Carroll
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
331
|
Duette G, Lee E, Martins Costa Gomes G, Tungatt K, Doyle C, Stylianou VV, Lee A, Maddocks S, Taylor J, Khanna R, Bull RA, Martinello M, Sandgren KJ, Cunningham AL, Palmer S. Highly Networked SARS-CoV-2 Peptides Elicit T Cell Responses with Enhanced Specificity. Immunohorizons 2023; 7:508-527. [PMID: 37358499 PMCID: PMC10580120 DOI: 10.4049/immunohorizons.2300034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
Identifying SARS-CoV-2-specific T cell epitope-derived peptides is critical for the development of effective vaccines and measuring the duration of specific SARS-CoV-2 cellular immunity. In this regard, we previously identified T cell epitope-derived peptides within topologically and structurally essential regions of SARS-CoV-2 spike and nucleocapsid proteins by applying an immunoinformatics pipeline. In this study, we selected 30 spike- and nucleocapsid-derived peptides and assessed whether these peptides induce T cell responses and avoid major mutations found in SARS-CoV-2 variants of concern. Our peptide pool was highly specific, with only a single peptide driving cross-reactivity in people unexposed to SARS-COV-2, and immunogenic, inducing a polyfunctional response in CD4+ and CD8+ T cells from COVID-19 recovered individuals. All peptides were immunogenic and individuals recognized broad and diverse peptide repertoires. Moreover, our peptides avoided most mutations/deletions associated with all four SARS-CoV-2 variants of concern while retaining their physicochemical properties even when genetic changes are introduced. This study contributes to an evolving definition of individual CD4+ and CD8+ T cell epitopes that can be used for specific diagnostic tools for SARS-CoV-2 T cell responses and is relevant to the development of variant-resistant and durable T cell-stimulating vaccines.
Collapse
Affiliation(s)
- Gabriel Duette
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Eunok Lee
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Katie Tungatt
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Chloe Doyle
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Vicki V. Stylianou
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ashley Lee
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Susan Maddocks
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
| | - Janette Taylor
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Rowena A. Bull
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | - Marianne Martinello
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
- Westmead Hospital, Sydney, New South Wales, Australia
- Blacktown & Mount Druitt Hospital, Blacktown, New South Wales, Australia
| | - Kerrie J. Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
332
|
Saad Albichr I, Mzougui S, Devresse A, Georgery H, Goffin E, Kanaan N, Yombi JC, Belkhir L, De Greef J, Scohy A, Rodriguez-Villalobos H, Kabamba-Mukadi B. Evaluation of a commercial interferon-γ release assay for the detection of SARS-CoV-2 T-cell response after vaccination. Heliyon 2023; 9:e17186. [PMID: 37325456 PMCID: PMC10256590 DOI: 10.1016/j.heliyon.2023.e17186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023] Open
Abstract
Objective Evidence regarding the role of cellular immunity in protecting against COVID-19 is emerging. To better assess immune status, simple and robust assays measuring specific T-cell responses associated with humoral responses are needed. We aimed to evaluate the Quan-T-Cell SARS-CoV-2 test for measuring cellular immune responses in vaccinated healthy and immunosuppressed subjects. Methods T-cell responses were assessed in healthy vaccinated and unvaccinated and unexposed healthcare workers to determine the sensitivity and specificity of the EUROIMMUN SARS-CoV-2 Quan-T-Cell IGRA test performed on vaccinated kidney transplant recipients (KTRs). Results The EUROIMMUN SARS-CoV-2 Quan-T-Cell IGRA test showed good sensitivity (87.2%) and specificity (92.3%) at the calculated 147 mIU/mL cutoff, with an 88.33% accuracy. In KTRs, specific cellular immunity was lower than the antibody response; however, those with a positive IGRA result produced as much IFN-γ as healthy individuals. Conclusions The EUROIMMUN SARS-CoV-2 Quan-T-Cell IGRA test showed good sensitivity and specificity for the detection of specific T-cell responses against the SARS-CoV-2 spike protein. These results present an additional tool for better management of COVID-19, especially in vulnerable populations.
Collapse
Affiliation(s)
- Imane Saad Albichr
- Department of Microbiology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Samy Mzougui
- Department of Microbiology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Arnaud Devresse
- Department of Nephrology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Institut de Recherche Clinique et Expérimentale, Université Catholique de Louvain, Brussels, Belgium
| | - Hélène Georgery
- Department of Nephrology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Eric Goffin
- Department of Nephrology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Nada Kanaan
- Department of Nephrology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Jean Cyr Yombi
- Department of Internal Medicine and Infectious Disease, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Leila Belkhir
- Department of Internal Medicine and Infectious Disease, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Julien De Greef
- Department of Internal Medicine and Infectious Disease, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Anaïs Scohy
- Department of Microbiology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | | | - Benoît Kabamba-Mukadi
- Department of Microbiology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| |
Collapse
|
333
|
Cong Y, Lee JH, Perry DL, Cooper K, Wang H, Dixit S, Liu DX, Feuerstein IM, Solomon J, Bartos C, Seidel J, Hammoud DA, Adams R, Anthony SM, Liang J, Schuko N, Li R, Liu Y, Wang Z, Tarbet EB, Hischak AMW, Hart R, Isic N, Burdette T, Drawbaugh D, Huzella LM, Byrum R, Ragland D, St Claire MC, Wada J, Kurtz JR, Hensley LE, Schmaljohn CS, Holbrook MR, Johnson RF. Longitudinal analyses using 18F-Fluorodeoxyglucose positron emission tomography with computed tomography as a measure of COVID-19 severity in the aged, young, and humanized ACE2 SARS-CoV-2 hamster models. Antiviral Res 2023; 214:105605. [PMID: 37068595 PMCID: PMC10105383 DOI: 10.1016/j.antiviral.2023.105605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023]
Abstract
This study compared disease progression of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in three different models of golden hamsters: aged (≈60 weeks old) wild-type (WT), young (6 weeks old) WT, and adult (14-22 weeks old) hamsters expressing the human-angiotensin-converting enzyme 2 (hACE2) receptor. After intranasal (IN) exposure to the SARS-CoV-2 Washington isolate (WA01/2020), 2-deoxy-2-[fluorine-18]fluoro-D-glucose positron emission tomography with computed tomography (18F-FDG PET/CT) was used to monitor disease progression in near real time and animals were euthanized at pre-determined time points to directly compare imaging findings with other disease parameters associated with coronavirus disease 2019 (COVID-19). Consistent with histopathology, 18F-FDG-PET/CT demonstrated that aged WT hamsters exposed to 105 plaque forming units (PFU) developed more severe and protracted pneumonia than young WT hamsters exposed to the same (or lower) dose or hACE2 hamsters exposed to a uniformly lethal dose of virus. Specifically, aged WT hamsters presented with a severe interstitial pneumonia through 8 d post-exposure (PE), while pulmonary regeneration was observed in young WT hamsters at that time. hACE2 hamsters exposed to 100 or 10 PFU virus presented with a minimal to mild hemorrhagic pneumonia but succumbed to SARS-CoV-2-related meningoencephalitis by 6 d PE, suggesting that this model might allow assessment of SARS-CoV-2 infection on the central nervous system (CNS). Our group is the first to use (18F-FDG) PET/CT to differentiate respiratory disease severity ranging from mild to severe in three COVID-19 hamster models. The non-invasive, serial measure of disease progression provided by PET/CT makes it a valuable tool for animal model characterization.
Collapse
Affiliation(s)
- Yu Cong
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Ji Hyun Lee
- Radiology and Imaging Sciences, Clinical Center, National Institute of Health, Bethesda, MD, USA
| | - Donna L Perry
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Kurt Cooper
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Hui Wang
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Saurabh Dixit
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - David X Liu
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Irwin M Feuerstein
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jeffrey Solomon
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Christopher Bartos
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jurgen Seidel
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Ricky Adams
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Scott M Anthony
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Janie Liang
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Nicolette Schuko
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Rong Li
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA.
| | - Yanan Liu
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Zhongde Wang
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - E Bart Tarbet
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Amanda M W Hischak
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Randy Hart
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Nejra Isic
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Tracey Burdette
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA; Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - David Drawbaugh
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Louis M Huzella
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Russell Byrum
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Danny Ragland
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Marisa C St Claire
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jiro Wada
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jonathan R Kurtz
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Lisa E Hensley
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Connie S Schmaljohn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Michael R Holbrook
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA.
| | - Reed F Johnson
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA; SARS-CoV-2 Virology Core Laboratory, Division of Intramural Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
334
|
Singh SP, Parween F, Edara N, Zhang HH, Chen J, Otaizo-Carrasquero F, Cheng D, Oppenheim NA, Ransier A, Zhu W, Shamsaddini A, Gardina PJ, Darko SW, Singh TP, Douek DC, Myers TG, Farber JM. Human CCR6+ Th Cells Show Both an Extended Stable Gradient of Th17 Activity and Imprinted Plasticity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1700-1716. [PMID: 37093875 PMCID: PMC10463241 DOI: 10.4049/jimmunol.2200874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/20/2023] [Indexed: 04/25/2023]
Abstract
Th17 cells have been investigated in mice primarily for their contributions to autoimmune diseases. However, the pathways of differentiation of Th17 and related Th cells (type 17 cells) and the structure of the type 17 memory population in humans are not well understood; such understanding is critical for manipulating these cells in vivo. By exploiting differences in levels of surface CCR6, we found that human type 17 memory cells, including individual T cell clonotypes, form an elongated continuum of type 17 character along which cells can be driven by increasing RORγt. This continuum includes cells preserved within the memory pool with potentials that reflect the early preferential activation of multiple over single lineages. The phenotypes and epigenomes of CCR6+ cells are stable across cell divisions under noninflammatory conditions. Nonetheless, activation in polarizing and nonpolarizing conditions can yield additional functionalities, revealing, respectively, both environmentally induced and imprinted mechanisms that contribute differentially across the type 17 continuum to yield the unusual plasticity ascribed to type 17 cells.
Collapse
Affiliation(s)
- Satya P. Singh
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Farhat Parween
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Nithin Edara
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Hongwei H. Zhang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Jinguo Chen
- Center for Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Francisco Otaizo-Carrasquero
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Debby Cheng
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Nicole A. Oppenheim
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Amy Ransier
- Genome Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Wenjun Zhu
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Amirhossein Shamsaddini
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Paul J. Gardina
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Samuel W. Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Tej Pratap Singh
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Timothy G. Myers
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Joshua M. Farber
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| |
Collapse
|
335
|
Marcinkevics R, Silva PN, Hankele AK, Dörnte C, Kadelka S, Csik K, Godbersen S, Goga A, Hasenöhrl L, Hirschi P, Kabakci H, LaPierre MP, Mayrhofer J, Title AC, Shu X, Baiioud N, Bernal S, Dassisti L, Saenz-de-Juano MD, Schmidhauser M, Silvestrelli G, Ulbrich SZ, Ulbrich TJ, Wyss T, Stekhoven DJ, Al-Quaddoomi FS, Yu S, Binder M, Schultheiβ C, Zindel C, Kolling C, Goldhahn J, Seighalani BK, Zjablovskaja P, Hardung F, Schuster M, Richter A, Huang YJ, Lauer G, Baurmann H, Low JS, Vaqueirinho D, Jovic S, Piccoli L, Ciesek S, Vogt JE, Sallusto F, Stoffel M, Ulbrich SE. Machine learning analysis of humoral and cellular responses to SARS-CoV-2 infection in young adults. Front Immunol 2023; 14:1158905. [PMID: 37313411 PMCID: PMC10258347 DOI: 10.3389/fimmu.2023.1158905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/09/2023] [Indexed: 06/15/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces B and T cell responses, contributing to virus neutralization. In a cohort of 2,911 young adults, we identified 65 individuals who had an asymptomatic or mildly symptomatic SARS-CoV-2 infection and characterized their humoral and T cell responses to the Spike (S), Nucleocapsid (N) and Membrane (M) proteins. We found that previous infection induced CD4 T cells that vigorously responded to pools of peptides derived from the S and N proteins. By using statistical and machine learning models, we observed that the T cell response highly correlated with a compound titer of antibodies against the Receptor Binding Domain (RBD), S and N. However, while serum antibodies decayed over time, the cellular phenotype of these individuals remained stable over four months. Our computational analysis demonstrates that in young adults, asymptomatic and paucisymptomatic SARS-CoV-2 infections can induce robust and long-lasting CD4 T cell responses that exhibit slower decays than antibody titers. These observations imply that next-generation COVID-19 vaccines should be designed to induce stronger cellular responses to sustain the generation of potent neutralizing antibodies.
Collapse
Affiliation(s)
| | | | | | - Charlyn Dörnte
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Sarah Kadelka
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Katharina Csik
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Svenja Godbersen
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Algera Goga
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Lynn Hasenöhrl
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Pascale Hirschi
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Hasan Kabakci
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Mary P. LaPierre
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Johanna Mayrhofer
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Xuan Shu
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Nouell Baiioud
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Sandra Bernal
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Laura Dassisti
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Meret Schmidhauser
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Giulia Silvestrelli
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Simon Z. Ulbrich
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Thea J. Ulbrich
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Tamara Wyss
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Daniel J. Stekhoven
- NEXUS Personalized Health Technologies, Zurich & SIB Swiss Institute of Bioinformatics, ETH Zurich, Lausanne, Switzerland
| | - Faisal S. Al-Quaddoomi
- NEXUS Personalized Health Technologies, Zurich & SIB Swiss Institute of Bioinformatics, ETH Zurich, Lausanne, Switzerland
| | - Shuqing Yu
- NEXUS Personalized Health Technologies, Zurich & SIB Swiss Institute of Bioinformatics, ETH Zurich, Lausanne, Switzerland
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Christoph Schultheiβ
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Zindel
- Department of Health Science, Translational Medicine, ETH Zurich, Zurich, Switzerland
| | - Christoph Kolling
- Department of Health Science, Translational Medicine, ETH Zurich, Zurich, Switzerland
| | - Jörg Goldhahn
- Department of Health Science, Translational Medicine, ETH Zurich, Zurich, Switzerland
| | | | | | - Frank Hardung
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Marc Schuster
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Anne Richter
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Yi-Ju Huang
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Gereon Lauer
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | | | - Jun Siong Low
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Daniela Vaqueirinho
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Sandra Jovic
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Luca Piccoli
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Sandra Ciesek
- Institute of Medical Virology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Julia E. Vogt
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
- Medical Immunology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- University Hospital Zurich, Zurich, Switzerland
| | - Susanne E. Ulbrich
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
336
|
Mohandas S, Jagannathan P, Henrich TJ, Sherif ZA, Bime C, Quinlan E, Portman MA, Gennaro M, Rehman J. Immune mechanisms underlying COVID-19 pathology and post-acute sequelae of SARS-CoV-2 infection (PASC). eLife 2023; 12:e86014. [PMID: 37233729 PMCID: PMC10219649 DOI: 10.7554/elife.86014] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
With a global tally of more than 500 million cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections to date, there are growing concerns about the post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID. Recent studies suggest that exaggerated immune responses are key determinants of the severity and outcomes of the initial SARS-CoV-2 infection as well as subsequent PASC. The complexity of the innate and adaptive immune responses in the acute and post-acute period requires in-depth mechanistic analyses to identify specific molecular signals as well as specific immune cell populations which promote PASC pathogenesis. In this review, we examine the current literature on mechanisms of immune dysregulation in severe COVID-19 and the limited emerging data on the immunopathology of PASC. While the acute and post-acute phases may share some parallel mechanisms of immunopathology, it is likely that PASC immunopathology is quite distinct and heterogeneous, thus requiring large-scale longitudinal analyses in patients with and without PASC after an acute SARS-CoV-2 infection. By outlining the knowledge gaps in the immunopathology of PASC, we hope to provide avenues for novel research directions that will ultimately lead to precision therapies which restore healthy immune function in PASC patients.
Collapse
Affiliation(s)
- Sindhu Mohandas
- Division of Infectious Diseases, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Prasanna Jagannathan
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford UniversityStanfordUnited States
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Zaki A Sherif
- Department of Biochemistry & Molecular Biology, Howard University College of MedicineWashingtonUnited States
| | - Christian Bime
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, University of Arizona College of MedicineTucsonUnited States
| | - Erin Quinlan
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
| | - Michael A Portman
- Seattle Children’s Hospital, Division of Pediatric Cardiology, Department of Pediatrics, University of WashingtonSeattleUnited States
| | - Marila Gennaro
- Public Health Research Institute and Department of Medicine, Rutgers New Jersey Medical SchoolNewarkUnited States
| | - Jalees Rehman
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of MedicineChicagoUnited States
| |
Collapse
|
337
|
Arieta CM, Xie YJ, Rothenberg DA, Diao H, Harjanto D, Meda S, Marquart K, Koenitzer B, Sciuto TE, Lobo A, Zuiani A, Krumm SA, Cadima Couto CI, Hein S, Heinen AP, Ziegenhals T, Liu-Lupo Y, Vogel AB, Srouji JR, Fesser S, Thanki K, Walzer K, Addona TA, Türeci Ö, Şahin U, Gaynor RB, Poran A. The T-cell-directed vaccine BNT162b4 encoding conserved non-spike antigens protects animals from severe SARS-CoV-2 infection. Cell 2023; 186:2392-2409.e21. [PMID: 37164012 PMCID: PMC10099181 DOI: 10.1016/j.cell.2023.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/12/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
T cell responses play an important role in protection against beta-coronavirus infections, including SARS-CoV-2, where they associate with decreased COVID-19 disease severity and duration. To enhance T cell immunity across epitopes infrequently altered in SARS-CoV-2 variants, we designed BNT162b4, an mRNA vaccine component that is intended to be combined with BNT162b2, the spike-protein-encoding vaccine. BNT162b4 encodes variant-conserved, immunogenic segments of the SARS-CoV-2 nucleocapsid, membrane, and ORF1ab proteins, targeting diverse HLA alleles. BNT162b4 elicits polyfunctional CD4+ and CD8+ T cell responses to diverse epitopes in animal models, alone or when co-administered with BNT162b2 while preserving spike-specific immunity. Importantly, we demonstrate that BNT162b4 protects hamsters from severe disease and reduces viral titers following challenge with viral variants. These data suggest that a combination of BNT162b2 and BNT162b4 could reduce COVID-19 disease severity and duration caused by circulating or future variants. BNT162b4 is currently being clinically evaluated in combination with the BA.4/BA.5 Omicron-updated bivalent BNT162b2 (NCT05541861).
Collapse
Affiliation(s)
| | - Yushu Joy Xie
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | - Huitian Diao
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | - Dewi Harjanto
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | - Shirisha Meda
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | - Adam Zuiani
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | - John R Srouji
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | - Özlem Türeci
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany; HI-TRON - Helmholtz Institute for Translational Oncology Mainz by DKFZ, Obere Zahlbacherstr. 63, 55131 Mainz, Germany
| | - Uğur Şahin
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany; TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstraße 12, 55131 Mainz, Germany
| | | | - Asaf Poran
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA.
| |
Collapse
|
338
|
Avadhanula V, Creighton CJ, Ferlic-Stark L, Sucgang R, Zhang Y, Nagaraj D, Nicholson EG, Rajan A, Menon VK, Doddapaneni H, Muzny DM, Metcalf G, Cregeen SJJ, Hoffman KL, Gibbs RA, Petrosino J, Piedra PA. Longitudinal host transcriptional responses to SARS-CoV-2 infection in adults with extremely high viral load. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542181. [PMID: 37292999 PMCID: PMC10245966 DOI: 10.1101/2023.05.24.542181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Current understanding of viral dynamics of SARS-CoV-2 and host responses driving the pathogenic mechanisms in COVID-19 is rapidly evolving. Here, we conducted a longitudinal study to investigate gene expression patterns during acute SARS-CoV-2 illness. Cases included SARS-CoV-2 infected individuals with extremely high viral loads early in their illness, individuals having low SARS-CoV-2 viral loads early in their infection, and individuals testing negative for SARS-CoV-2. We could identify widespread transcriptional host responses to SARS-CoV-2 infection that were initially most strongly manifested in patients with extremely high initial viral loads, then attenuating within the patient over time as viral loads decreased. Genes correlated with SARS-CoV-2 viral load over time were similarly differentially expressed across independent datasets of SARS-CoV-2 infected lung and upper airway cells, from both in vitro systems and patient samples. We also generated expression data on the human nose organoid model during SARS-CoV-2 infection. The human nose organoid-generated host transcriptional response captured many aspects of responses observed in the above patient samples, while suggesting the existence of distinct host responses to SARS-CoV-2 depending on the cellular context, involving both epithelial and cellular immune responses. Our findings provide a catalog of SARS-CoV-2 host response genes changing over time.
Collapse
Affiliation(s)
- Vasanthi Avadhanula
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chad J. Creighton
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Laura Ferlic-Stark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard Sucgang
- Center for Health Data Science and Analytics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Divya Nagaraj
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Erin G. Nicholson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Vipin Kumar Menon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harshavardhan Doddapaneni
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna Marie Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ginger Metcalf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Kristi Louise Hoffman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joseph Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
339
|
Eser TM, Baranov O, Huth M, Ahmed MIM, Deák F, Held K, Lin L, Pekayvaz K, Leunig A, Nicolai L, Pollakis G, Buggert M, Price DA, Rubio-Acero R, Reich J, Falk P, Markgraf A, Puchinger K, Castelletti N, Olbrich L, Vanshylla K, Klein F, Wieser A, Hasenauer J, Kroidl I, Hoelscher M, Geldmacher C. Nucleocapsid-specific T cell responses associate with control of SARS-CoV-2 in the upper airways before seroconversion. Nat Commun 2023; 14:2952. [PMID: 37225706 DOI: 10.1038/s41467-023-38020-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/12/2023] [Indexed: 05/26/2023] Open
Abstract
Despite intensive research since the emergence of SARS-CoV-2, it has remained unclear precisely which components of the early immune response protect against the development of severe COVID-19. Here, we perform a comprehensive immunogenetic and virologic analysis of nasopharyngeal and peripheral blood samples obtained during the acute phase of infection with SARS-CoV-2. We find that soluble and transcriptional markers of systemic inflammation peak during the first week after symptom onset and correlate directly with upper airways viral loads (UA-VLs), whereas the contemporaneous frequencies of circulating viral nucleocapsid (NC)-specific CD4+ and CD8+ T cells correlate inversely with various inflammatory markers and UA-VLs. In addition, we show that high frequencies of activated CD4+ and CD8+ T cells are present in acutely infected nasopharyngeal tissue, many of which express genes encoding various effector molecules, such as cytotoxic proteins and IFN-γ. The presence of IFNG mRNA-expressing CD4+ and CD8+ T cells in the infected epithelium is further linked with common patterns of gene expression among virus-susceptible target cells and better local control of SARS-CoV-2. Collectively, these results identify an immune correlate of protection against SARS-CoV-2, which could inform the development of more effective vaccines to combat the acute and chronic illnesses attributable to COVID-19.
Collapse
Affiliation(s)
- Tabea M Eser
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Olga Baranov
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Manuel Huth
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Center for Mathematics, Technische Universität München, 85748, Garching, Germany
| | - Mohammed I M Ahmed
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Flora Deák
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Kathrin Held
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Luming Lin
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Kami Pekayvaz
- Department of Medicine I, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 81377, Munich, Germany
| | - Alexander Leunig
- Department of Medicine I, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 81377, Munich, Germany
| | - Leo Nicolai
- Department of Medicine I, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 81377, Munich, Germany
| | - Georgios Pollakis
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 2BE, UK
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, CF14 4XN, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, CF14 4XN, UK
| | - Raquel Rubio-Acero
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Jakob Reich
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Philine Falk
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Alissa Markgraf
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Kerstin Puchinger
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Noemi Castelletti
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Laura Olbrich
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Andreas Wieser
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, LMU Munich, 81377, Munich, Germany
| | - Jan Hasenauer
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Center for Mathematics, Technische Universität München, 85748, Garching, Germany
- Faculty of Mathematics and Natural Sciences, University of Bonn, 53113, Bonn, Germany
| | - Inge Kroidl
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany.
| |
Collapse
|
340
|
Grifoni A, Alonzi T, Alter G, Noonan DM, Landay AL, Albini A, Goletti D. Impact of aging on immunity in the context of COVID-19, HIV, and tuberculosis. Front Immunol 2023; 14:1146704. [PMID: 37292210 PMCID: PMC10246744 DOI: 10.3389/fimmu.2023.1146704] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/11/2023] [Indexed: 06/10/2023] Open
Abstract
Knowledge of aging biology needs to be expanded due to the continuously growing number of elderly people worldwide. Aging induces changes that affect all systems of the body. The risk of cardiovascular disease and cancer increases with age. In particular, the age-induced adaptation of the immune system causes a greater susceptibility to infections and contributes to the inability to control pathogen growth and immune-mediated tissue damage. Since the impact of aging on immune function, is still to be fully elucidated, this review addresses some of the recent understanding of age-related changes affecting key components of immunity. The emphasis is on immunosenescence and inflammaging that are impacted by common infectious diseases that are characterized by a high mortality, and includes COVID-19, HIV and tuberculosis.
Collapse
Affiliation(s)
- Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Tonino Alonzi
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, Rome, Italy
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
| | - Douglas McClain Noonan
- Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Alan L. Landay
- Department of Internal Medicine, Rush Medical College, Chicago, IL, United States
| | | | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, Rome, Italy
| |
Collapse
|
341
|
Benede NSB, Tincho MB, Walters A, Subbiah V, Ngomti A, Baguma R, Butters C, Mennen M, Skelem S, Adriaanse M, van Graan S, Balla SR, Moyo-Gwete T, Moore PL, Botha M, Workman L, Zar HJ, Ntusi NAB, Zühlke L, Webb K, Riou C, Burgers WA, Keeton RS. Distinct T cell functional profiles in SARS-CoV-2 seropositive and seronegative children associated with endemic human coronavirus cross-reactivity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.16.23290059. [PMID: 37292954 PMCID: PMC10246143 DOI: 10.1101/2023.05.16.23290059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
SARS-CoV-2 infection in children typically results in asymptomatic or mild disease. There is a paucity of studies on antiviral immunity in African children. We investigated SARS-CoV-2-specific T cell responses in 71 unvaccinated asymptomatic South African children who were seropositive or seronegative for SARS-CoV-2. SARS-CoV-2-specific CD4+ T cell responses were detectable in 83% of seropositive and 60% of seronegative children. Although the magnitude of the CD4+ T cell response did not differ significantly between the two groups, their functional profiles were distinct, with SARS-CoV-2 seropositive children exhibiting a higher proportion of polyfunctional T cells compared to their seronegative counterparts. The frequency of SARS-CoV-2-specific CD4+ T cells in seronegative children was associated with the endemic human coronavirus (HCoV) HKU1 IgG response. Overall, the presence of SARS-CoV-2-responding T cells in seronegative children may result from cross-reactivity to endemic coronaviruses and could contribute to the relative protection from disease observed in SARS-CoV-2-infected children.
Collapse
Affiliation(s)
- Ntombi S. B. Benede
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Marius B. Tincho
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Avril Walters
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Vennesa Subbiah
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Amkele Ngomti
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Richard Baguma
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Claire Butters
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Mathilda Mennen
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Sango Skelem
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Marguerite Adriaanse
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Strauss van Graan
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Sashkia R. Balla
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Thandeka Moyo-Gwete
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L. Moore
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Maresa Botha
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Lesley Workman
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Heather J. Zar
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Ntobeko A. B. Ntusi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Liesl Zühlke
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
- South African Medical Research Council, Francie Van Zijl Drive, Parow Cape Town, South Africa
| | - Kate Webb
- South African Medical Research Council, Francie Van Zijl Drive, Parow Cape Town, South Africa
- Crick African Network, The Francis Crick Institute, London, United Kingdom
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Wendy A. Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Roanne S. Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| |
Collapse
|
342
|
Maslow JN, Kwon I, Kudchodkar SB, Kane D, Tadesse A, Lee H, Park YK, Muthumani K, Roberts CC. DNA Vaccines for Epidemic Preparedness: SARS-CoV-2 and Beyond. Vaccines (Basel) 2023; 11:1016. [PMID: 37376404 DOI: 10.3390/vaccines11061016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
We highlight the significant progress in developing DNA vaccines during the SARS-CoV-2 pandemic. Specifically, we provide a comprehensive review of the DNA vaccines that have progressed to Phase 2 testing or beyond, including those that have received authorization for use. DNA vaccines have significant advantages with regard to the rapidity of production, thermostability, safety profile, and cellular immune responses. Based on user needs and cost, we compare the three devices used in the SARS-CoV-2 clinical trials. Of the three devices, the GeneDerm suction device offers numerous benefits, particularly for international vaccination campaigns. As such, DNA vaccines represent a promising option for future pandemics.
Collapse
Affiliation(s)
- Joel N Maslow
- GeneOne Life Science, Inc., Seoul 04500, Republic of Korea
- Department of Medicine, Morristown Medical Center, Morristown, NJ 07960, USA
| | - Ijoo Kwon
- GeneOne Life Science, Inc., Seoul 04500, Republic of Korea
| | | | - Deborah Kane
- GeneOne Life Science, Inc., Seoul 04500, Republic of Korea
| | - Amha Tadesse
- GeneOne Life Science, Inc., Seoul 04500, Republic of Korea
| | - Hyojin Lee
- GeneOne Life Science, Inc., Seoul 04500, Republic of Korea
| | - Young K Park
- GeneOne Life Science, Inc., Seoul 04500, Republic of Korea
| | - Kar Muthumani
- GeneOne Life Science, Inc., Seoul 04500, Republic of Korea
| | | |
Collapse
|
343
|
Gatti A, Zizzo G, De Paschale M, Tamburello A, Castelnovo L, Faggioli PM, Clerici P, Brando B, Mazzone A. Assessing SARS-CoV-2-specific T-cell reactivity in late convalescents and vaccinees: Comparison and combination of QuantiFERON and activation-induced marker assays, and relation with antibody status. PLoS One 2023; 18:e0285728. [PMID: 37220145 DOI: 10.1371/journal.pone.0285728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023] Open
Abstract
OBJECTIVES Monitoring of SARS-CoV-2 spread and vaccination strategies have relied on antibody (Ab) status as a correlate of protection. We used QuantiFERON™ (QFN) and Activation-Induced Marker (AIM) assays to measure memory T-cell reactivity in unvaccinated individuals with prior documented symptomatic infection (late convalescents) and fully vaccinated asymptomatic donors (vaccinees). METHODS Twenty-two convalescents and 13 vaccinees were enrolled. Serum anti-SARS-CoV-2 S1 and N Abs were measured using chemiluminescent immunoassays. QFN was performed following instructions and interferon-gamma (IFN-γ) measured by ELISA. AIM was performed on aliquots of antigen-stimulated samples from QFN tubes. SARS-CoV-2-specific memory CD4+CD25+CD134+, CD4+CD69+CD137+ and CD8+CD69+CD137+ T-cell frequencies were measured by flow cytometry. RESULTS In convalescents, substantial agreement was observed between QFN and AIM assays. IFN-γ concentrations and AIM+ (CD69+CD137+) CD4+ T-cell frequencies correlated with each other, with Ab levels and AIM+ CD8+ T-cell frequencies, whereas AIM+ (CD25+CD134+) CD4+ T-cell frequencies correlated with age. AIM+ CD4+ T-cell frequencies increased with time since infection, whereas AIM+ CD8+ T-cell expansion was greater after recent reinfection. QFN-reactivity and anti-S1 titers were lower, whereas anti-N titers were higher, and no statistical difference in AIM-reactivity and Ab positivity emerged compared to vaccinees. CONCLUSIONS Albeit on a limited sample size, we confirm that coordinated, cellular and humoral responses are detectable in convalescents up to 2 years after prior infection. Combining QFN with AIM may enhance detection of naturally acquired memory responses and help stratify virus-exposed individuals in T helper 1-type (TH1)-reactive (QFNpos AIMpos Abshigh), non-TH1-reactive (QFNneg AIMpos Abshigh/low), and pauci-reactive (QFNneg AIMneg Abslow).
Collapse
Affiliation(s)
- Arianna Gatti
- Laboratory of Haematology, Transfusion Center, Legnano Hospital, ASST Ovest Milanese, via Papa Giovanni Paolo II, Legnano, Milan, Italy
| | - Gaetano Zizzo
- Department of Internal Medicine, Legnano and Cuggiono Hospitals, ASST Ovest Milanese, via Papa Giovanni Paolo II, Legnano, Milan, Italy
| | - Massimo De Paschale
- Unit of Microbiology, Legnano Hospital, ASST Ovest Milanese, via Papa Giovanni Paolo II, Legnano, Milan, Italy
| | - Antonio Tamburello
- Department of Internal Medicine, Legnano and Cuggiono Hospitals, ASST Ovest Milanese, via Papa Giovanni Paolo II, Legnano, Milan, Italy
| | - Laura Castelnovo
- Department of Internal Medicine, Legnano and Cuggiono Hospitals, ASST Ovest Milanese, via Papa Giovanni Paolo II, Legnano, Milan, Italy
| | - Paola Maria Faggioli
- Department of Internal Medicine, Legnano and Cuggiono Hospitals, ASST Ovest Milanese, via Papa Giovanni Paolo II, Legnano, Milan, Italy
| | - Pierangelo Clerici
- Unit of Microbiology, Legnano Hospital, ASST Ovest Milanese, via Papa Giovanni Paolo II, Legnano, Milan, Italy
| | - Bruno Brando
- Laboratory of Haematology, Transfusion Center, Legnano Hospital, ASST Ovest Milanese, via Papa Giovanni Paolo II, Legnano, Milan, Italy
| | - Antonino Mazzone
- Department of Internal Medicine, Legnano and Cuggiono Hospitals, ASST Ovest Milanese, via Papa Giovanni Paolo II, Legnano, Milan, Italy
| |
Collapse
|
344
|
Vazquez-Alejo E, Tarancon-Diez L, Espinar-Buitrago MDLS, Genebat M, Calderón A, Pérez-Cabeza G, Magro-Lopez E, Leal M, Muñoz-Fernández MÁ. Persistent Exhausted T-Cell Immunity after Severe COVID-19: 6-Month Evaluation in a Prospective Observational Study. J Clin Med 2023; 12:jcm12103539. [PMID: 37240647 DOI: 10.3390/jcm12103539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
INTRODUCTION Severe COVID-19 can result in a significant and irreversible impact on long-term recovery and subsequent immune protection. Understanding the complex immune reactions may be useful for establishing clinically relevant monitoring. METHODS Hospitalized adults with SARS-CoV-2 between March/October 2020 (n = 64) were selected. Cryopreserved peripheral blood mononuclear cells (PBMCs) and plasma samples were obtained at hospitalization (baseline) and 6 months after recovery. Immunological components' phenotyping and SARS-CoV-2-specific T-cell response were studied in PBMCs by flow cytometry. Up to 25 plasma pro/anti-inflammatory cytokines/chemokines were assessed by LEGENDplex immunoassays. The SARS-CoV-2 group was compared to matched healthy donors. RESULTS Biochemical altered parameters during infection were normalized at a follow-up time point in the SARS-CoV-2 group. Most of the cytokine/chemokine levels were increased at baseline in the SARS-CoV-2 group. This group showed increased Natural Killer cells (NK) activation and decreased CD16high NK subset, which normalized six months later. They also presented a higher intermediate and patrolling monocyte proportion at baseline. T cells showed an increased terminally differentiated (TemRA) and effector memory (EM) subsets distribution in the SARS-CoV-2 group at baseline and continued to increase six months later. Interestingly, T-cell activation (CD38) in this group decreased at the follow-up time point, contrary to exhaustion markers (TIM3/PD1). In addition, we observed the highest SARS-CoV-2-specific T-cell magnitude response in TemRA CD4 T-cell and EM CD8 T-cell subsets at the six-months time point. CONCLUSIONS The immunological activation in the SARS-CoV-2 group during hospitalization is reversed at the follow-up time point. However, the marked exhaustion pattern remains over time. This dysregulation could constitute a risk factor for reinfection and the development of other pathologies. Additionally, high SARS-CoV-2-specific T-cells response levels appear to be associated with infection severity.
Collapse
Affiliation(s)
- Elena Vazquez-Alejo
- Immunology Section, Molecular Immuno-Biology Laboratory, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Tarancon-Diez
- Immunology Section, Molecular Immuno-Biology Laboratory, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria de la Sierra Espinar-Buitrago
- Immunology Section, Molecular Immuno-Biology Laboratory, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Genebat
- Internal Medicine Department, Hospital Fátima, 41012 Sevilla, Spain
| | - Alba Calderón
- Internal Medicine Department, Hospital Fátima, 41012 Sevilla, Spain
| | | | - Esmeralda Magro-Lopez
- Immunology Section, Molecular Immuno-Biology Laboratory, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Leal
- Internal Medicine Department, Hospital Viamed Santa Ángela de la Cruz, 41013 Sevilla, Spain
| | - Mª Ángeles Muñoz-Fernández
- Immunology Section, Molecular Immuno-Biology Laboratory, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
345
|
den Hartog Y, Malahe SRK, Rietdijk WJR, Dieterich M, Gommers L, Geers D, Bogers S, van Baarle D, Diavatopoulos DA, Messchendorp AL, van der Molen RG, Remmerswaal EBM, Bemelman FJ, Gansevoort RT, Hilbrands LB, Sanders JS, GeurtsvanKessel CH, Kho MML, Reinders MEJ, de Vries RD, Baan CC. Th 1-dominant cytokine responses in kidney patients after COVID-19 vaccination are associated with poor humoral responses. NPJ Vaccines 2023; 8:70. [PMID: 37198189 DOI: 10.1038/s41541-023-00664-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/25/2023] [Indexed: 05/19/2023] Open
Abstract
Cytokines are regulators of the immune response against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, the contribution of cytokine-secreting CD4+ and CD8+ memory T cells to the SARS-CoV-2-specific humoral immune response in immunocompromised kidney patients is unknown. Here, we profiled 12 cytokines after stimulation of whole blood obtained 28 days post second 100 μg mRNA-1273 vaccination with peptides covering the SARS-CoV-2 spike (S)-protein from patients with chronic kidney disease (CKD) stage 4/5, on dialysis, kidney transplant recipients (KTR), and healthy controls. Unsupervised hierarchical clustering analysis revealed two distinct vaccine-induced cytokine profiles. The first profile was characterized by high levels of T-helper (Th)1 (IL-2, TNF-α, and IFN-γ) and Th2 (IL-4, IL-5, IL-13) cytokines, and low levels of Th17 (IL-17A, IL-22) and Th9 (IL-9) cytokines. This cluster was dominated by patients with CKD, on dialysis, and healthy controls. In contrast, the second cytokine profile contained predominantly KTRs producing mainly Th1 cytokines upon re-stimulation, with lower levels or absence of Th2, Th17, and Th9 cytokines. Multivariate analyses indicated that a balanced memory T cell response with the production of Th1 and Th2 cytokines was associated with high levels of S1-specific binding and neutralizing antibodies mainly at 6 months after second vaccination. In conclusion, seroconversion is associated with the balanced production of cytokines by memory T cells. This emphasizes the importance of measuring multiple T cell cytokines to understand their influence on seroconversion and potentially gain more information about the protection induced by vaccine-induced memory T cells.
Collapse
Affiliation(s)
- Yvette den Hartog
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - S Reshwan K Malahe
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Wim J R Rietdijk
- Department of Hospital Pharmacy, University Medical Center, Rotterdam, The Netherlands
| | - Marjolein Dieterich
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Lennert Gommers
- Department of Viroscience, University Medical Center, Rotterdam, The Netherlands
| | - Daryl Geers
- Department of Viroscience, University Medical Center, Rotterdam, The Netherlands
| | - Susanne Bogers
- Department of Viroscience, University Medical Center, Rotterdam, The Netherlands
| | - Debbie van Baarle
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, The Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Dimitri A Diavatopoulos
- Radboud Institute for Molecular Life Sciences, Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - A Lianne Messchendorp
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Renate G van der Molen
- Radboud Institute for Molecular Life Sciences, Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Ester B M Remmerswaal
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Frederike J Bemelman
- Renal Transplant Unit, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ron T Gansevoort
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Luuk B Hilbrands
- Department of Nephrology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Jan-Stephan Sanders
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Marcia M L Kho
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Marlies E J Reinders
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Rory D de Vries
- Department of Viroscience, University Medical Center, Rotterdam, The Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
346
|
Solimando AG, Bittrich M, Shahini E, Albanese F, Fritz G, Krebs M. Determinants of COVID-19 Disease Severity-Lessons from Primary and Secondary Immune Disorders including Cancer. Int J Mol Sci 2023; 24:8746. [PMID: 37240091 PMCID: PMC10218128 DOI: 10.3390/ijms24108746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
At the beginning of the COVID-19 pandemic, patients with primary and secondary immune disorders-including patients suffering from cancer-were generally regarded as a high-risk population in terms of COVID-19 disease severity and mortality. By now, scientific evidence indicates that there is substantial heterogeneity regarding the vulnerability towards COVID-19 in patients with immune disorders. In this review, we aimed to summarize the current knowledge about the effect of coexistent immune disorders on COVID-19 disease severity and vaccination response. In this context, we also regarded cancer as a secondary immune disorder. While patients with hematological malignancies displayed lower seroconversion rates after vaccination in some studies, a majority of cancer patients' risk factors for severe COVID-19 disease were either inherent (such as metastatic or progressive disease) or comparable to the general population (age, male gender and comorbidities such as kidney or liver disease). A deeper understanding is needed to better define patient subgroups at a higher risk for severe COVID-19 disease courses. At the same time, immune disorders as functional disease models offer further insights into the role of specific immune cells and cytokines when orchestrating the immune response towards SARS-CoV-2 infection. Longitudinal serological studies are urgently needed to determine the extent and the duration of SARS-CoV-2 immunity in the general population, as well as immune-compromised and oncological patients.
Collapse
Affiliation(s)
- Antonio G. Solimando
- Guido Baccelli Unit of Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area—(DiMePRe-J), Aldo Moro Bari University, 70100 Bari, Italy
| | - Max Bittrich
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy
| | - Federica Albanese
- Guido Baccelli Unit of Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area—(DiMePRe-J), Aldo Moro Bari University, 70100 Bari, Italy
| | - Georg Fritz
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy at the Immanuel Klinikum Bernau, Heart Center Brandenburg, 16321 Bernau, Germany
| | - Markus Krebs
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Urology and Paediatric Urology, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
347
|
Arroyo-Sánchez D, Luczkowiak J, Delgado R, Cabrera-Marante O, Paz-Artal E. Immune Response Against SARS-CoV-2 Infection and Vaccination in a CD8α-Deficient Patient. J Clin Immunol 2023:10.1007/s10875-023-01497-5. [PMID: 37145391 PMCID: PMC10160709 DOI: 10.1007/s10875-023-01497-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Affiliation(s)
- Daniel Arroyo-Sánchez
- Department of Immunology, Hospital Universitario, 12 de Octubre, Av. de Córdoba, s/n, 28041, Madrid, Spain.
- Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), Madrid, Spain.
| | - Joanna Luczkowiak
- Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), Madrid, Spain
| | - Rafael Delgado
- Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC-Instituto de Salud Carlos III), Madrid, Spain
- Department of Microbiology, Hospital Universitario, 12 de Octubre, Madrid, Spain
| | - Oscar Cabrera-Marante
- Department of Immunology, Hospital Universitario, 12 de Octubre, Av. de Córdoba, s/n, 28041, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), Madrid, Spain
- Escuela de Doctorado, Departamento de Ciencias de La Salud, Universidad de Acalá, Alcalá de Henares, Spain
| | - Estela Paz-Artal
- Department of Immunology, Hospital Universitario, 12 de Octubre, Av. de Córdoba, s/n, 28041, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC-Instituto de Salud Carlos III), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
348
|
Tawinprai K, Jungsomsri P, Pinijnai O, Tavonvunchai F, Lievjaroen A, Suwannaroj P, Siripongboonsitti T, Porntharukchareon T, Sornsamdang G, Ungtrakul T. Immunogenicity and reactogenicity of heterologous prime-boost vaccination with inactivated COVID-19 and ChAdOx1 nCoV-19 (AZD1222) vaccines, a quasi-experimental study. Hum Vaccin Immunother 2023:2206360. [PMID: 37140889 DOI: 10.1080/21645515.2023.2206360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The global supply of COVID-19 vaccines has been limited, and concerns have arisen about vaccine supply chain disruptions in developing countries. Heterologous prime-boost vaccination, which involves using different vaccines for the first and second doses, has been proposed to enhance the immune response. We aimed to compare the immunogenicity and safety of a heterologous prime-boost vaccination using an inactivated COVID-19 vaccine and AZD1222 vaccine with that of a homologous vaccination using AZD1222. This pilot involved 164 healthy volunteers without prior SARS-CoV-2 infection aged 18 years or older assigned to receive either the heterologous or homologous vaccination. The results showed that the heterologous approach was safe and well-tolerated, although the reactogenicity of the heterologous approach was higher. At 4 weeks after receiving the booster dose, the heterologous approach elicited a non-inferior immune response compared to the homologous approach in neutralizing antibody and cell-mediated immune response. The percentage of inhibition was 83.88 (79.72-88.03) in the heterologous and 79.88 (75.50-84.25) in the homologous group, a mean difference of 4.60 (-1.67-10.88). The geometric mean of interferon-gamma was 1072.53 mIU/mL (799.29-1439.18) in the heterologous group and 867.67 mIU/mL (671.94-1120.40) in the homologous group, a GMR of 1.24 (0.82-1.85). However, the binding antibody test of the heterologous group was inferior to the homologous group. Our findings suggest that the use of heterologous prime-boost vaccination with different types of COVID-19 vaccines is a viable strategy, especially in settings where vaccine supply is limited or where vaccine distribution is challenging.
Collapse
Affiliation(s)
- Kriangkrai Tawinprai
- Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Pawornrath Jungsomsri
- Department of General Practice and Family Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Onnicha Pinijnai
- Department of General Practice and Family Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Fahsiri Tavonvunchai
- Department of General Practice and Family Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Anchisa Lievjaroen
- Department of General Practice and Family Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Paphada Suwannaroj
- Department of General Practice and Family Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Taweegrit Siripongboonsitti
- Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Thachanun Porntharukchareon
- Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Gaidganok Sornsamdang
- Central Laboratory Center, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Teerapat Ungtrakul
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
349
|
Riddell AC, Cutino-Moguel T. The origins of new SARS-COV-2 variants in immunocompromised individuals. Curr Opin HIV AIDS 2023; 18:148-156. [PMID: 36977190 DOI: 10.1097/coh.0000000000000794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
PURPOSE OF REVIEW To explore the origins of new severe acute respiratory coronavirus 2 (SARS-CoV-2) variants in immunocompromised individuals and whether the emergence of novel mutations in these individuals is responsible for the development of variants of concern (VOC). RECENT FINDINGS Next generation sequencing of samples from chronically infected immunocompromised patients has enabled identification of VOC- defining mutations in individuals prior to the emergence of these variants worldwide. Whether these individuals are the source of variant generation is uncertain. Vaccine effectiveness in immunocompromised individuals and with respect to VOCs is also discussed. SUMMARY Current evidence on chronic SARS-CoV-2 infection in immunocompromised populations is reviewed including the relevance of this to the generation of novel variants. Continued viral replication in the absence of an effective immune response at an individual level or high levels of viral infection at the population level are likely to have contributed to the appearance of the main VOC.
Collapse
Affiliation(s)
- Anna C Riddell
- Department of Virology, Division of Infection, Barts Health NHS Trust, London, UK
| | | |
Collapse
|
350
|
Wing PAC, Schmidt NM, Peters R, Erdmann M, Brown R, Wang H, Swadling L, COVIDsortium Investigators, Newman J, Thakur N, Shionoya K, Morgan SB, Hinks TSC, Watashi K, Bailey D, Hansen SB, Davidson AD, Maini MK, McKeating JA. An ACAT inhibitor suppresses SARS-CoV-2 replication and boosts antiviral T cell activity. PLoS Pathog 2023; 19:e1011323. [PMID: 37134108 PMCID: PMC10202285 DOI: 10.1371/journal.ppat.1011323] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 05/22/2023] [Accepted: 03/27/2023] [Indexed: 05/04/2023] Open
Abstract
The severity of disease following infection with SARS-CoV-2 is determined by viral replication kinetics and host immunity, with early T cell responses and/or suppression of viraemia driving a favourable outcome. Recent studies uncovered a role for cholesterol metabolism in the SARS-CoV-2 life cycle and in T cell function. Here we show that blockade of the enzyme Acyl-CoA:cholesterol acyltransferase (ACAT) with Avasimibe inhibits SARS-CoV-2 pseudoparticle infection and disrupts the association of ACE2 and GM1 lipid rafts on the cell membrane, perturbing viral attachment. Imaging SARS-CoV-2 RNAs at the single cell level using a viral replicon model identifies the capacity of Avasimibe to limit the establishment of replication complexes required for RNA replication. Genetic studies to transiently silence or overexpress ACAT isoforms confirmed a role for ACAT in SARS-CoV-2 infection. Furthermore, Avasimibe boosts the expansion of functional SARS-CoV-2-specific T cells from the blood of patients sampled during the acute phase of infection. Thus, re-purposing of ACAT inhibitors provides a compelling therapeutic strategy for the treatment of COVID-19 to achieve both antiviral and immunomodulatory effects. Trial registration: NCT04318314.
Collapse
Affiliation(s)
- Peter A. C. Wing
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nathalie M. Schmidt
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, United Kingdom
| | - Rory Peters
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Maximilian Erdmann
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Rachel Brown
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, United Kingdom
- UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Hao Wang
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, San Diego, California, United States of America
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, San Diego, California, United States of America
| | - Leo Swadling
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, United Kingdom
| | | | | | | | - Kaho Shionoya
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
- Research Centre for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sophie B. Morgan
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Timothy SC Hinks
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
- Research Centre for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Scott B. Hansen
- UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Mala K. Maini
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, United Kingdom
| | - Jane A. McKeating
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|