301
|
Functional plasticity of central TRPV1 receptors in brainstem dorsal vagal complex circuits of streptozotocin-treated hyperglycemic mice. J Neurosci 2011; 31:14024-31. [PMID: 21957263 DOI: 10.1523/jneurosci.2081-11.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Emerging data indicate that central neurons participate in diabetic processes by modulating autonomic output from neurons in the dorsal motor nucleus of the vagus (DMV). We tested the hypothesis that synaptic modulation by transient receptor potential vanilloid type 1 (TRPV1) receptors is reduced in the DMV in slices from a murine model of type 1 diabetes. The TRPV1 agonist capsaicin robustly enhanced glutamate release onto DMV neurons by acting at preterminal receptors in slices from intact mice, but failed to do so in slices from diabetic mice. TRPV1 receptor protein expression in the vagal complex was unaltered. Brief insulin preapplication restored TRPV1-dependent modulation of glutamate release in a PKC- and PI3K-dependent manner. The restorative effect of insulin was prevented by brefeldin A, suggesting that insulin induced TRPV1 receptor trafficking to the terminal membrane. Central vagal circuits critical to the autonomic regulation of metabolism undergo insulin-dependent synaptic plasticity involving TRPV1 receptor modulation in diabetic mice after several days of chronic hyperglycemia.
Collapse
|
302
|
McNay EC, Recknagel AK. Reprint of: 'Brain insulin signaling: A key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes'. Neurobiol Learn Mem 2011; 96:517-28. [PMID: 22085799 DOI: 10.1016/j.nlm.2011.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Understanding of the role of insulin in the brain has gradually expanded, from initial conceptions of the brain as insulin-insensitive through identification of a role in regulation of feeding, to recent demonstration of insulin as a key component of hippocampal memory processes. Conversely, systemic insulin resistance such as that seen in type 2 diabetes is associated with a range of cognitive and neural deficits. Here we review the evidence for insulin as a cognitive and neural modulator, including potential effector mechanisms, and examine the impact that type 2 diabetes has on these mechanisms in order to identify likely bases for the cognitive impairments seen in type 2 diabetic patients.
Collapse
Affiliation(s)
- Ewan C McNay
- Behavioral Neuroscience and Center for Neuroscience Research, University at Albany (SUNY), SS399, 1400 Washington Avenue, Albany, NY 12222, USA.
| | | |
Collapse
|
303
|
Kishore P, Boucai L, Zhang K, Li W, Koppaka S, Kehlenbrink S, Schiwek A, Esterson YB, Mehta D, Bursheh S, Su Y, Gutierrez-Juarez R, Muzumdar R, Schwartz GJ, Hawkins M. Activation of K(ATP) channels suppresses glucose production in humans. J Clin Invest 2011; 121:4916-20. [PMID: 22056385 DOI: 10.1172/jci58035] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 10/05/2011] [Indexed: 12/17/2022] Open
Abstract
Increased endogenous glucose production (EGP) is a hallmark of type 2 diabetes mellitus. While there is evidence for central regulation of EGP by activation of hypothalamic ATP-sensitive potassium (K(ATP)) channels in rodents, whether these central pathways contribute to regulation of EGP in humans remains to be determined. Here we present evidence for central nervous system regulation of EGP in humans that is consistent with complementary rodent studies. Oral administration of the K(ATP) channel activator diazoxide under fixed hormonal conditions substantially decreased EGP in nondiabetic humans and Sprague Dawley rats. In rats, comparable doses of oral diazoxide attained appreciable concentrations in the cerebrospinal fluid, and the effects of oral diazoxide were abolished by i.c.v. administration of the K(ATP) channel blocker glibenclamide. These results suggest that activation of hypothalamic K(ATP) channels may be an important regulator of EGP in humans and that this pathway could be a target for treatment of hyperglycemia in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Preeti Kishore
- Albert Einstein College of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
304
|
Expanding neurotransmitters in the hypothalamic neurocircuitry for energy balance regulation. Protein Cell 2011; 2:800-13. [PMID: 22058035 DOI: 10.1007/s13238-011-1112-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 10/10/2011] [Indexed: 01/06/2023] Open
Abstract
The current epidemic of obesity and its associated metabolic syndromes impose unprecedented challenges to our society. Despite intensive research on obesity pathogenesis, an effective therapeutic strategy to treat and cure obesity is still lacking. Exciting studies in last decades have established the importance of the leptin neural pathway in the hypothalamus in the regulation of body weight homeostasis. Important hypothalamic neuropeptides have been identified as critical neurotransmitters from leptin-sensitive neurons to mediate leptin action. Recent research advance has significantly expanded the list of neurotransmitters involved in body weight-regulating neural pathways, including fast-acting neurotransmitters, gamma-aminobutyric acid (GABA) and glutamate. Given the limited knowledge on the leptin neural pathway for body weight homeostasis, understanding the function of neurotransmitters released from key neurons for energy balance regulation is essential for delineating leptin neural pathway and eventually for designing effective therapeutic drugs against the obesity epidemic.
Collapse
|
305
|
Knight CM, Gutierrez-Juarez R, Lam TKT, Arrieta-Cruz I, Huang L, Schwartz G, Barzilai N, Rossetti L. Mediobasal hypothalamic SIRT1 is essential for resveratrol's effects on insulin action in rats. Diabetes 2011; 60:2691-700. [PMID: 21896928 PMCID: PMC3198094 DOI: 10.2337/db10-0987] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Sirtuin 1 (SIRT1) and its activator resveratrol are emerging as major regulators of metabolic processes. We investigate the site of resveratrol action on glucose metabolism and the contribution of SIRT1 to these effects. Because the arcuate nucleus in the mediobasal hypothalamus (MBH) plays a pivotal role in integrating peripheral metabolic responses to nutrients and hormones, we examined whether the actions of resveratrol are mediated at the MBH. RESEARCH DESIGN AND METHODS Sprague Dawley (SD) male rats received acute central (MBH) or systemic injections of vehicle, resveratrol, or SIRT1 inhibitor during basal pancreatic insulin clamp studies. To delineate the pathway(s) by which MBH resveratrol modulates hepatic glucose production, we silenced hypothalamic SIRT1 expression using a short hairpin RNA (shRNA) inhibited the hypothalamic ATP-sensitive potassium (K(ATP)) channel with glibenclamide, or selectively transected the hepatic branch of the vagus nerve while infusing resveratrol centrally. RESULTS Our studies show that marked improvement in insulin sensitivity can be elicited by acute administration of resveratrol to the MBH or during acute systemic administration. Selective inhibition of hypothalamic SIRT1 using a cell-permeable SIRT1 inhibitor or SIRT1-shRNA negated the effect of central and peripheral resveratrol on glucose production. Blockade of the K(ATP) channel and hepatic vagotomy significantly attenuated the effect of central resveratrol on hepatic glucose production. In addition, we found no evidence for hypothalamic AMPK activation after MBH resveratrol administration. CONCLUSIONS Taken together, these studies demonstrate that resveratrol improves glucose homeostasis mainly through a central SIRT1-dependent pathway and that the MBH is a major site of resveratrol action.
Collapse
Affiliation(s)
- Colette M Knight
- Department of Medicine, Diabetes Research Center, Albert EinsteinCollege of Medicine, Bronx, New York, USA.
| | | | | | | | | | | | | | | |
Collapse
|
306
|
Beneficial effects of ventromedial hypothalamus (VMH) lesioning on function and morphology of the liver after hepatectomy in rats. Brain Res 2011; 1421:82-9. [DOI: 10.1016/j.brainres.2011.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 09/01/2011] [Accepted: 09/07/2011] [Indexed: 11/22/2022]
|
307
|
Binkofski F, Loebig M, Jauch-Chara K, Bergmann S, Melchert UH, Scholand-Engler HG, Schweiger U, Pellerin L, Oltmanns KM. Brain energy consumption induced by electrical stimulation promotes systemic glucose uptake. Biol Psychiatry 2011; 70:690-5. [PMID: 21703596 DOI: 10.1016/j.biopsych.2011.05.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 05/06/2011] [Accepted: 05/06/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND Controlled transcranial stimulation of the brain is part of clinical treatment strategies in neuropsychiatric diseases such as depression, stroke, or Parkinson's disease. Manipulating brain activity by transcranial stimulation, however, inevitably influences other control centers of various neuronal and neurohormonal feedback loops and therefore may concomitantly affect systemic metabolic regulation. Because hypothalamic adenosine triphosphate-sensitive potassium channels, which function as local energy sensors, are centrally involved in the regulation of glucose homeostasis, we tested whether transcranial direct current stimulation (tDCS) causes an excitation-induced transient neuronal energy depletion and thus influences systemic glucose homeostasis and related neuroendocrine mediators. METHODS In a crossover design testing 15 healthy male volunteers, we increased neuronal excitation by anodal tDCS versus sham and examined cerebral energy consumption with ³¹phosphorus magnetic resonance spectroscopy. Systemic glucose uptake was determined by euglycemic-hyperinsulinemic glucose clamp, and neurohormonal measurements comprised the parameters of the stress systems. RESULTS We found that anodic tDCS-induced neuronal excitation causes an energetic depletion, as quantified by ³¹phosphorus magnetic resonance spectroscopy. Moreover, tDCS-induced cerebral energy consumption promotes systemic glucose tolerance in a standardized euglycemic-hyperinsulinemic glucose clamp procedure and reduces neurohormonal stress axes activity. CONCLUSIONS Our data demonstrate that transcranial brain stimulation not only evokes alterations in local neuronal processes but also clearly influences downstream metabolic systems regulated by the brain. The beneficial effects of tDCS on metabolic features may thus qualify brain stimulation as a promising nonpharmacologic therapy option for drug-induced or comorbid metabolic disturbances in various neuropsychiatric diseases.
Collapse
|
308
|
Ramadori G, Fujikawa T, Anderson J, Berglund ED, Frazao R, Michán S, Vianna CR, Sinclair DA, Elias CF, Coppari R. SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance. Cell Metab 2011; 14:301-12. [PMID: 21907137 PMCID: PMC3172583 DOI: 10.1016/j.cmet.2011.06.014] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 05/04/2011] [Accepted: 06/09/2011] [Indexed: 11/30/2022]
Abstract
Chronic feeding on high-calorie diets causes obesity and type 2 diabetes mellitus (T2DM), illnesses that affect hundreds of millions. Thus, understanding the pathways protecting against diet-induced metabolic imbalance is of paramount medical importance. Here, we show that mice lacking SIRT1 in steroidogenic factor 1 (SF1) neurons are hypersensitive to dietary obesity owing to maladaptive energy expenditure. Also, mutant mice have increased susceptibility to developing dietary T2DM due to insulin resistance in skeletal muscle. Mechanistically, these aberrations arise, in part, from impaired metabolic actions of the neuropeptide orexin-A and the hormone leptin. Conversely, mice overexpressing SIRT1 in SF1 neurons are more resistant to diet-induced obesity and insulin resistance due to increased energy expenditure and enhanced skeletal muscle insulin sensitivity. Our results unveil important protective roles of SIRT1 in SF1 neurons against dietary metabolic imbalance.
Collapse
Affiliation(s)
- Giorgio Ramadori
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Coomans CP, Geerling JJ, Guigas B, van den Hoek AM, Parlevliet ET, Ouwens DM, Pijl H, Voshol PJ, Rensen PCN, Havekes LM, Romijn JA. Circulating insulin stimulates fatty acid retention in white adipose tissue via KATP channel activation in the central nervous system only in insulin-sensitive mice. J Lipid Res 2011; 52:1712-22. [PMID: 21700834 PMCID: PMC3151691 DOI: 10.1194/jlr.m015396] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/06/2011] [Indexed: 01/21/2023] Open
Abstract
Insulin signaling in the central nervous system (CNS) is required for the inhibitory effect of insulin on glucose production. Our aim was to determine whether the CNS is also involved in the stimulatory effect of circulating insulin on the tissue-specific retention of fatty acid (FA) from plasma. In wild-type mice, hyperinsulinemic-euglycemic clamp conditions stimulated the retention of both plasma triglyceride-derived FA and plasma albumin-bound FA in the various white adipose tissues (WAT) but not in other tissues, including brown adipose tissue (BAT). Intracerebroventricular (ICV) administration of insulin induced a similar pattern of tissue-specific FA partitioning. This effect of ICV insulin administration was not associated with activation of the insulin signaling pathway in adipose tissue. ICV administration of tolbutamide, a K(ATP) channel blocker, considerably reduced (during hyperinsulinemic-euglycemic clamp conditions) and even completely blocked (during ICV administration of insulin) WAT-specific retention of FA from plasma. This central effect of insulin was absent in CD36-deficient mice, indicating that CD36 is the predominant FA transporter in insulin-stimulated FA retention by WAT. In diet-induced insulin-resistant mice, these stimulating effects of insulin (circulating or ICV administered) on FA retention in WAT were lost. In conclusion, in insulin-sensitive mice, circulating insulin stimulates tissue-specific partitioning of plasma-derived FA in WAT in part through activation of K(ATP) channels in the CNS. Apparently, circulating insulin stimulates fatty acid uptake in WAT but not in BAT, directly and indirectly through the CNS.
Collapse
Affiliation(s)
- Claudia P Coomans
- Departments of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
310
|
The changes of pro-opiomelanocortin neurons in type 2 diabetes mellitus rats after ileal transposition: the role of POMC neurons. J Gastrointest Surg 2011; 15:1618-24. [PMID: 21717281 DOI: 10.1007/s11605-011-1606-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/20/2011] [Indexed: 01/31/2023]
Abstract
BACKGROUND Ileal transposition (IT) can effectively resolve obesity and improve type 2 diabetes. IT is associated with increased glucagon-like peptide 1 secretion. The mechanisms mediating the effects of IT on obesity and diabetes remain undefined. Given the role of pro-opiomelanocortin neurons in energy balance, we sought to determine its potential role in these processes. METHODS Twenty non-obese diabetic Goto-Kakizaki rats underwent either IT or sham operation. Various measures including food intake, body weight, fasting plasma glucose, glucagon-like peptide 1 level, activated pro-opiomelanocortin neuron number, and pro-opiomelanocortin mRNA expression were evaluated. RESULTS The IT group demonstrated significantly improved plasma glucose homeostasis with increased glucagon-like peptide 1 secretion. The IT group ate less and demonstrated reduced body weight gain over time. These effects were also associated with increased central neuronal activity with increased pro-opiomelanocortin and derivative gene expression in the hypothalamus and increased protein expression in the pituitary gland. CONCLUSIONS More pro-opiomelanocortin neurons in the hypothalamus of diabetes rats were activated after ileal transposition. These data suggest a potential important role for pro-opiomelanocortin neurons in the resolution of diabetes after IT.
Collapse
|
311
|
Abstract
The central nervous system (CNS), generally accepted to regulate energy homeostasis, has been implicated in the metabolic perturbations that either cause or are associated with obesity. Normally, the CNS receives hormonal, metabolic, and neuronal input to assure adequate energy levels and maintain stable energy homeostasis. Recent evidence also supports that the CNS uses these same inputs to regulate glucose homeostasis and this aspect of CNS regulation also becomes impaired in the face of dietary-induced obesity. This review focuses on the literature surrounding hypothalamic regulation of energy and glucose homeostasis and discusses how dysregulation of this system may contribute to obesity and T2DM.
Collapse
|
312
|
Scherer T, Buettner C. Yin and Yang of hypothalamic insulin and leptin signaling in regulating white adipose tissue metabolism. Rev Endocr Metab Disord 2011; 12:235-43. [PMID: 21713385 PMCID: PMC3253350 DOI: 10.1007/s11154-011-9190-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fatty acids released from white adipose tissue (WAT) provide important energy substrates during fasting. However, uncontrolled fatty acid release from WAT during non-fasting states causes lipotoxicity and promotes inflammation and insulin resistance, which can lead to and worsen type 2 diabetes (DM2). WAT is also a source for insulin sensitizing fatty acids such as palmitoleate produced during de novo lipogenesis. Insulin and leptin are two major hormonal adiposity signals that control energy homeostasis through signaling in the central nervous system. Both hormones have been implicated to regulate both WAT lipolysis and de novo lipogenesis through the mediobasal hypothalamus (MBH) in an opposing fashion independent of their respective peripheral receptors. Here, we review the current literature on brain leptin and insulin action in regulating WAT metabolism and discuss potential mechanisms and neuro-anatomical substrates that could explain the opposing effects of central leptin and insulin. Finally, we discuss the role of impaired hypothalamic control of WAT metabolism in the pathogenesis of insulin resistance, metabolic inflexibility and type 2 diabetes.
Collapse
Affiliation(s)
- Thomas Scherer
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574, USA
| | - Christoph Buettner
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574, USA
| |
Collapse
|
313
|
McNay EC, Recknagel AK. Brain insulin signaling: a key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes. Neurobiol Learn Mem 2011; 96:432-42. [PMID: 21907815 DOI: 10.1016/j.nlm.2011.08.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 07/09/2011] [Accepted: 08/12/2011] [Indexed: 12/16/2022]
Abstract
Understanding of the role of insulin in the brain has gradually expanded, from initial conceptions of the brain as insulin-insensitive through identification of a role in regulation of feeding, to recent demonstration of insulin as a key component of hippocampal memory processes. Conversely, systemic insulin resistance such as that seen in type 2 diabetes is associated with a range of cognitive and neural deficits. Here we review the evidence for insulin as a cognitive and neural modulator, including potential effector mechanisms, and examine the impact that type 2 diabetes has on these mechanisms in order to identify likely bases for the cognitive impairments seen in type 2 diabetic patients.
Collapse
Affiliation(s)
- Ewan C McNay
- Behavioral Neuroscience and Center for Neuroscience Research, University at Albany (SUNY), SS399, 1400 Washington Avenue, Albany, NY 12222, USA.
| | | |
Collapse
|
314
|
Ramnanan CJ, Saraswathi V, Smith MS, Donahue EP, Farmer B, Farmer TD, Neal D, Williams PE, Lautz M, Mari A, Cherrington AD, Edgerton DS. Brain insulin action augments hepatic glycogen synthesis without suppressing glucose production or gluconeogenesis in dogs. J Clin Invest 2011; 121:3713-23. [PMID: 21865644 DOI: 10.1172/jci45472] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 06/22/2011] [Indexed: 01/26/2023] Open
Abstract
In rodents, acute brain insulin action reduces blood glucose levels by suppressing the expression of enzymes in the hepatic gluconeogenic pathway, thereby reducing gluconeogenesis and endogenous glucose production (EGP). Whether a similar mechanism is functional in large animals, including humans, is unknown. Here, we demonstrated that in canines, physiologic brain hyperinsulinemia brought about by infusion of insulin into the head arteries (during a pancreatic clamp to maintain basal hepatic insulin and glucagon levels) activated hypothalamic Akt, altered STAT3 signaling in the liver, and suppressed hepatic gluconeogenic gene expression without altering EGP or gluconeogenesis. Rather, brain hyperinsulinemia slowly caused a modest reduction in net hepatic glucose output (NHGO) that was attributable to increased net hepatic glucose uptake and glycogen synthesis. This was associated with decreased levels of glycogen synthase kinase 3β (GSK3β) protein and mRNA and with decreased glycogen synthase phosphorylation, changes that were blocked by hypothalamic PI3K inhibition. Therefore, we conclude that the canine brain senses physiologic elevations in plasma insulin, and that this in turn regulates genetic events in the liver. In the context of basal insulin and glucagon levels at the liver, this input augments hepatic glucose uptake and glycogen synthesis, reducing NHGO without altering EGP.
Collapse
Affiliation(s)
- Christopher J Ramnanan
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Levin BE, Sherwin RS. Peripheral glucose homeostasis: does brain insulin matter? J Clin Invest 2011; 121:3392-5. [PMID: 21865650 DOI: 10.1172/jci59653] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Much controversy surrounds the relative role of insulin signaling in the brain in the control of hepatic glucose metabolism. In this issue of the JCI, Ramnanan and colleagues demonstrate that arterial infusion of insulin into the brains of dogs reduces net hepatic glucose output without altering endogenous glucose production. However, this effect was modest and required both prolonged fasting and prolonged exposure of the brain to insulin, raising doubts about the overall physiological relevance of insulin action in the brain on hepatic glucose metabolism. Given the dominant direct role that insulin plays in inhibiting glucose production in the liver, we suggest that the main effect of central insulin on hepatic glucose metabolism may be more chronic and assume greater significance either when portal insulin is deficient, as occurs during exogenous insulin treatment of type 1 diabetes, or when chronic hyperinsulinemia and central insulin resistance develops, as occurs in type 2 diabetes.
Collapse
Affiliation(s)
- Barry E Levin
- Neurology Service (127C), VA Medical Center, East Orange, New Jersey 07018, USA.
| | | |
Collapse
|
316
|
Zhu G, Yan J, Smith WW, Moran TH, Bi S. Roles of dorsomedial hypothalamic cholecystokinin signaling in the controls of meal patterns and glucose homeostasis. Physiol Behav 2011; 105:234-41. [PMID: 21871472 DOI: 10.1016/j.physbeh.2011.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/22/2011] [Accepted: 08/08/2011] [Indexed: 10/17/2022]
Abstract
A role for dorsomedial hypothalamus (DMH) cholecystokinin (CCK) signaling in feeding control has been proposed. Administration of CCK into the DMH reduces food intake and OLETF rats lacking CCK1 receptors (CCK1R) become hyperphagic and obese. We hypothesized that site specific replenishment of CCK1R in the DMH of OLETF rats would attenuate aspects of their feeding deficits. Recombinant vectors of adeno-associated viral (AAV)-mediated expression of CCK1R (AAVCCK1R) were bilaterally delivered into the DMH of OLETF. OLETF rats with AAVCCK1R injections demonstrated a 65% replenishment of Cck1r mRNA expression in the DMH relative to lean LETO control rats. Although this level of replenishment did not significantly affect overall food intake or body weight through 14 weeks following viral injections, meal patterns were partially normalized in OLETF rats receiving AAVCCK1R with a significant decrease in dark cycle meal size and a small but significant decrease in daily food intake in the meal analysis chambers. Importantly, the elevation in blood glucose level of OLETF rats was attenuated by the AAVCCK1R injections (p=0.03), suggesting a role for DMH CCK signaling in glucose homeostasis. In support of this role, administration of CCK into the DMH of intact rats enhanced glucose tolerance, as this occurred through activation of CCK1R but not CCK2R signaling. In conclusion, partial replenishment of CCK1R in the DMH of OLETF rats, although insufficient for altering overall food intake and body weight, normalizes meal pattern changes and reduces blood glucose levels. Our study also shows a novel role of DMH CCK signaling in glucose homeostasis.
Collapse
Affiliation(s)
- Guangjing Zhu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, 710061, China
| | | | | | | | | |
Collapse
|
317
|
Satapathy SK, Ochani M, Dancho M, Hudson LK, Rosas-Ballina M, Valdes-Ferrer SI, Olofsson PS, Harris YT, Roth J, Chavan S, Tracey KJ, Pavlov VA. Galantamine alleviates inflammation and other obesity-associated complications in high-fat diet-fed mice. Mol Med 2011; 17:599-606. [PMID: 21738953 PMCID: PMC3146607 DOI: 10.2119/molmed.2011.00083] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 03/07/2011] [Indexed: 01/14/2023] Open
Abstract
Obesity, a serious and growing health threat, is associated with low-grade inflammation that plays a role in mediating its adverse consequences. Previously, we have discovered a role for neural cholinergic signaling in controlling inflammation, and demonstrated that the cholinergic agent galantamine suppresses excessive proinflammatory cytokine release. The main objective of this study was to examine the efficacy of galantamine, a clinically-approved drug, in alleviating obesity-related inflammation and associated complications. After 8 wks on a high-fat diet, C57BL/6J mice were treated with either galantamine (4 mg/kg, intraperitoneally [i.p.]) or saline for 4 wks in parallel with mice on a low-fat diet and treated with saline. Galantamine treatment of obese mice significantly reduced body weight, food intake, abdominal adiposity, plasma cytokine and adipokine levels, and significantly improved blood glucose, insulin resistance and hepatic steatosis. In addition, galantamine alleviated impaired insulin sensitivity and glucose intolerance significantly. These results indicate a previously unrecognized potential of galantamine in alleviating obesity, inflammation and other obesity-related complications in mice. These findings are of interest for studying the efficacy of this clinically-approved drug in the context of human obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Sanjaya K Satapathy
- Division of Gastroenterology, North Shore-Long Island Jewish Health System, New Hyde Park, New York, United States of America
| | - Mahendar Ochani
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Meghan Dancho
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - LaQueta K Hudson
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Mauricio Rosas-Ballina
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Sergio I Valdes-Ferrer
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Peder S Olofsson
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Yael Tobi Harris
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- Division of Endocrinology and Metabolism, North Shore- Long Island Jewish Health System, New Hyde Park, New York, United States of America
| | - Jesse Roth
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Sangeeta Chavan
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Kevin J Tracey
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Valentin A Pavlov
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| |
Collapse
|
318
|
The association of phosphoinositide 3-kinase enhancer A with hepatic insulin receptor enhances its kinase activity. EMBO Rep 2011; 12:847-54. [PMID: 21720388 DOI: 10.1038/embor.2011.108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/11/2011] [Accepted: 05/16/2011] [Indexed: 12/31/2022] Open
Abstract
Dysfunction of hepatic insulin receptor tyrosine kinase (IRTK) causes the development of type 2 diabetes. However, the molecular mechanism regulating IRTK activity in the liver remains poorly understood. Here, we show that phosphoinositide 3-kinase enhancer A (PIKE-A) is a new insulin-dependent enhancer of hepatic IRTK. Liver-specific Pike-knockout (LPKO) mice display glucose intolerance with impaired hepatic insulin sensitivity. Specifically, insulin-provoked phosphoinositide 3-kinase/Akt signalling is diminished in the liver of LPKO mice, leading to the failure of insulin-suppressed gluconeogenesis and hyperglycaemia. Thus, hepatic PIKE-A has a key role in mediating insulin signal transduction and regulating glucose homeostasis in the liver.
Collapse
|
319
|
Marino JS, Xu Y, Hill JW. Central insulin and leptin-mediated autonomic control of glucose homeostasis. Trends Endocrinol Metab 2011; 22:275-85. [PMID: 21489811 PMCID: PMC5154334 DOI: 10.1016/j.tem.2011.03.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/25/2011] [Accepted: 03/05/2011] [Indexed: 12/17/2022]
Abstract
Largely as a result of rising obesity rates, the incidence of type 2 diabetes is escalating rapidly. Type 2 diabetes results from multi-organ dysfunctional glucose metabolism. Recent publications have highlighted hypothalamic insulin- and adipokine-sensing as a major determinant of peripheral glucose and insulin responsiveness. The preponderance of evidence indicates that the brain is the master regulator of glucose homeostasis, and that hypothalamic insulin and leptin signaling in particular play a crucial role in the development of insulin resistance. This review discusses the neuronal crosstalk between the hypothalamus, autonomic nervous system, and tissues associated with the pathogenesis of type 2 diabetes, and how hypothalamic insulin and leptin signaling are integral to maintaining normal glucose homeostasis.
Collapse
Affiliation(s)
- Joseph S Marino
- Center for Diabetes and Endocrine Research, College of Medicine, The University of Toledo, Toledo, OH 43614, USA
| | | | | |
Collapse
|
320
|
Zsombok A, Gao H, Miyata K, Issa A, Derbenev AV. Immunohistochemical localization of transient receptor potential vanilloid type 1 and insulin receptor substrate 2 and their co-localization with liver-related neurons in the hypothalamus and brainstem. Brain Res 2011; 1398:30-9. [PMID: 21620379 PMCID: PMC3125635 DOI: 10.1016/j.brainres.2011.04.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 04/29/2011] [Accepted: 04/29/2011] [Indexed: 02/05/2023]
Abstract
The central nervous system plays an important role in the regulation of energy balance and glucose homeostasis mainly via controlling the autonomic output to the visceral organs. The autonomic output is regulated by hormones and nutrients to maintain adequate energy and glucose homeostasis. Insulin action is mediated via insulin receptors (IR) resulting in phosphorylation of insulin receptor substrates (IRS) inducing activation of downstream pathways. Furthermore, insulin enhances transient receptor potential vanilloid type 1 (TRPV1) mediated currents. Activation of the TRPV1 receptor increases excitatory neurotransmitter release in autonomic centers of the brain, thereby impacting energy and glucose homeostasis. The aim of this study is to determine co-expression of IRS2 and TRPV1 receptors in the paraventricular nucleus of the hypothalamus (PVN) and dorsal motor nucleus of the vagus (DMV) in the mouse brain as well as expression of IRS2 and TRPV1 receptors at liver-related preautonomic neurons pre-labeled with a trans-neural, viral tracer (PRV-152). The data indicate that IRS2 and TRPV1 receptors are present and co-express in the PVN and the DMV. A large portion (over 50%) of the liver-related preautonomic DMV and PVN neurons expresses IRS2. Moreover, the majority of liver-related DMV and PVN neurons also express TRPV1 receptors, suggesting that insulin and TRPV1 actions may affect liver-related preautonomic neurons.
Collapse
Affiliation(s)
- Andrea Zsombok
- Department of Physiology, Tulane University Health Science Center, New Orleans, LA 70112, USA.
| | | | | | | | | |
Collapse
|
321
|
Morton GJ, Schwartz MW. Leptin and the central nervous system control of glucose metabolism. Physiol Rev 2011; 91:389-411. [PMID: 21527729 DOI: 10.1152/physrev.00007.2010] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The regulation of body fat stores and blood glucose levels is critical for survival. This review highlights growing evidence that leptin action in the central nervous system plays a key role in both processes. Investigation into underlying mechanisms has begun to clarify the physiological role of leptin in the control of glucose metabolism and raises interesting new possibilities for the treatment of diabetes and related disorders.
Collapse
Affiliation(s)
- Gregory J Morton
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
322
|
Reamy AA, Wolfgang MJ. Carnitine palmitoyltransferase-1c gain-of-function in the brain results in postnatal microencephaly. J Neurochem 2011; 118:388-98. [PMID: 21592121 DOI: 10.1111/j.1471-4159.2011.07312.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Carnitine palmitoyltransferase-1c (CPT1c) is a newly identified and poorly understood brain-specific CPT1 homologue. Here, we have generated a new animal model that allows the conditional expression of CPT1c in a tissue specific and/or temporal manner via Cre-lox mediated recombination. Brain-specific, exogenous expression of CPT1c was achieved by crossing transgenic CPT1c mice to Nestin-Cre mice. The resulting double transgenic mice (CPT1c-TgN) displayed severe growth retardation in the postnatal period with a stunted development at 2 weeks of age. CPT1c-TgN mice had a greater than 2.3-fold reduction in brain weight. Even with this degree of microencephaly, CPT1c-TgN mice were viable and fertile and exhibited normal post-weaning growth. When fed a high fat diet CPT1c-TgN mice were protected from weight gain and the difference in body weight between CPT1c-TgN and control mice was further exaggerated. Conversely, low fat, high carbohydrate feeding partially reversed the body weight defects in CPT1c-TgN mice. Analysis of total brain lipids of low fat fed mice revealed a depletion of total very long chain fatty acids in adult CPT1c-TgN mice which was not evident in high fat fed CPT1c-TgN mice. These data show that CPT1c can elicit profound effects on brain physiology and total fatty acid profiles, which can be modulated by the nutritional composition of the diet.
Collapse
Affiliation(s)
- Amanda A Reamy
- Center for Metabolism and Obesity Research, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
323
|
Klöckener T, Hess S, Belgardt BF, Paeger L, Verhagen LAW, Husch A, Sohn JW, Hampel B, Dhillon H, Zigman JM, Lowell BB, Williams KW, Elmquist JK, Horvath TL, Kloppenburg P, Brüning JC. High-fat feeding promotes obesity via insulin receptor/PI3K-dependent inhibition of SF-1 VMH neurons. Nat Neurosci 2011; 14:911-8. [PMID: 21642975 PMCID: PMC3371271 DOI: 10.1038/nn.2847] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/28/2011] [Indexed: 01/16/2023]
Abstract
Steroidogenic factor 1 (SF-1)-expressing neurons of the ventromedial hypothalamus (VMH) control energy homeostasis, but the role of insulin action in these cells remains undefined. We show that insulin activates phosphatidylinositol-3-OH kinase (PI3K) signaling in SF-1 neurons and reduces firing frequency in these cells through activation of K(ATP) channels. These effects were abrogated in mice with insulin receptor deficiency restricted to SF-1 neurons (SF-1(ΔIR) mice). Whereas body weight and glucose homeostasis remained the same in SF-1(ΔIR) mice as in controls under a normal chow diet, they were protected from diet-induced leptin resistance, weight gain, adiposity and impaired glucose tolerance. High-fat feeding activated PI3K signaling in SF-1 neurons of control mice, and this response was attenuated in the VMH of SF-1(ΔIR) mice. Mimicking diet-induced overactivation of PI3K signaling by disruption of the phosphatidylinositol-3,4,5-trisphosphate phosphatase PTEN led to increased body weight and hyperphagia under a normal chow diet. Collectively, our experiments reveal that high-fat diet-induced, insulin-dependent PI3K activation in VMH neurons contributes to obesity development.
Collapse
Affiliation(s)
- Tim Klöckener
- Department of Mouse Genetics and Metabolism, Institute for Genetics University of Cologne, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne and Center for Molecular Medicine Cologne (CMMC), Zülpicher Str. 47a, 50674 Köln, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Zülpicher Str. 47a, 50674 Köln, Germany
- Max-Planck-Institute for Neurological Research, Gleueler Str. 50a, 50931 Köln, Germany
| | - Simon Hess
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Zülpicher Str. 47a, 50674 Köln, Germany
- Biocenter, Institute for Zoology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Bengt F. Belgardt
- Department of Mouse Genetics and Metabolism, Institute for Genetics University of Cologne, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne and Center for Molecular Medicine Cologne (CMMC), Zülpicher Str. 47a, 50674 Köln, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Zülpicher Str. 47a, 50674 Köln, Germany
- Max-Planck-Institute for Neurological Research, Gleueler Str. 50a, 50931 Köln, Germany
| | - Lars Paeger
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Zülpicher Str. 47a, 50674 Köln, Germany
- Biocenter, Institute for Zoology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Linda A. W. Verhagen
- Department of Mouse Genetics and Metabolism, Institute for Genetics University of Cologne, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne and Center for Molecular Medicine Cologne (CMMC), Zülpicher Str. 47a, 50674 Köln, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Zülpicher Str. 47a, 50674 Köln, Germany
- Max-Planck-Institute for Neurological Research, Gleueler Str. 50a, 50931 Köln, Germany
| | - Andreas Husch
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Zülpicher Str. 47a, 50674 Köln, Germany
- Biocenter, Institute for Zoology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Jong-Woo Sohn
- Division of Hypothalamic Research, Department of Internal Medicine, and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Brigitte Hampel
- Department of Mouse Genetics and Metabolism, Institute for Genetics University of Cologne, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne and Center for Molecular Medicine Cologne (CMMC), Zülpicher Str. 47a, 50674 Köln, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Zülpicher Str. 47a, 50674 Köln, Germany
- Max-Planck-Institute for Neurological Research, Gleueler Str. 50a, 50931 Köln, Germany
| | - Harveen Dhillon
- Beth Israel Deaconess Medical Center, Center for Life Sciences, Boston, MA 02115
| | - Jeffrey M. Zigman
- Division of Hypothalamic Research, Department of Internal Medicine, and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Bradford B. Lowell
- Beth Israel Deaconess Medical Center, Center for Life Sciences, Boston, MA 02115
| | - Kevin W. Williams
- Division of Hypothalamic Research, Department of Internal Medicine, and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Joel K. Elmquist
- Division of Hypothalamic Research, Department of Internal Medicine, and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Tamas L. Horvath
- Section of Comparative Medicine, Neurobiology & Departments of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Peter Kloppenburg
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Zülpicher Str. 47a, 50674 Köln, Germany
- Biocenter, Institute for Zoology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Jens C. Brüning
- Department of Mouse Genetics and Metabolism, Institute for Genetics University of Cologne, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne and Center for Molecular Medicine Cologne (CMMC), Zülpicher Str. 47a, 50674 Köln, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Zülpicher Str. 47a, 50674 Köln, Germany
- Max-Planck-Institute for Neurological Research, Gleueler Str. 50a, 50931 Köln, Germany
| |
Collapse
|
324
|
Tom RZ, Sjögren RJO, Vieira E, Glund S, Iglesias-Gutiérrez E, Garcia-Roves PM, Myers MG, Björnholm M. Increased hepatic insulin sensitivity in mice lacking inhibitory leptin receptor signals. Endocrinology 2011; 152:2237-46. [PMID: 21521753 DOI: 10.1210/en.2010-0040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leptin regulates food intake and energy expenditure by activating the long form of the leptin receptor (LepRb). Leptin also regulates glucose homeostasis by improving whole-body insulin sensitivity, but the mechanism remains undefined. Leptin action is mediated by phosphorylation of several tyrosine residues on LepRb. LepRb-Tyr985 plays an important role in the attenuation of LepRb signaling. We determined the contribution of LepRb-Tyr985-mediated signals to leptin action on insulin sensitivity using LepRb-Tyr985 mutant mice (l/l mice). Glucose tolerance and whole-body insulin-mediated glucose utilization were determined in wild-type (+/+) and l/l mice. Glucose tolerance was unaltered between female +/+ and l/l mice but enhanced in the male l/l mice. Serum insulin concentration was decreased at baseline and 15 min after a glucose injection in female l/l vs. +/+ mice (P < 0.05) but unaltered in the male l/l mice. However, basal and insulin-stimulated glucose transport in isolated soleus and extensor digitorum longus muscle was similar between +/+ and l/l mice, indicating skeletal muscle insulin sensitivity in vitro was not enhanced. Moreover, euglycemic-hyperinsulinemic clamps reveal hepatic, rather than peripheral, insulin sensitivity is enhanced in female l/l mice, whereas male l/l mice display both improved hepatic and peripheral insulin sensitivity. In conclusion, signals emanating from leptin receptor Tyr985 control hepatic insulin sensitivity in both female and male l/l mice. Lack of LepRb-Tyr985 signaling enhances whole-body insulin sensitivity partly through increased insulin action on the suppression of hepatic glucose production.
Collapse
Affiliation(s)
- Robby Zachariah Tom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, von Eulers väg 4a, IV, SE-171 77, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
325
|
Does deep brain stimulation of the subthalamic nucleus induce metabolic syndrome in Parkinson’s disease? ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.eclnm.2011.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
326
|
Quan Y, Barszczyk A, Feng ZP, Sun HS. Current understanding of K ATP channels in neonatal diseases: focus on insulin secretion disorders. Acta Pharmacol Sin 2011; 32:765-80. [PMID: 21602835 PMCID: PMC4009965 DOI: 10.1038/aps.2011.57] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/13/2011] [Indexed: 12/25/2022]
Abstract
ATP-sensitive potassium (K(ATP)) channels are cell metabolic sensors that couple cell metabolic status to electric activity, thus regulating many cellular functions. In pancreatic beta cells, K(ATP) channels modulate insulin secretion in response to fluctuations in plasma glucose level, and play an important role in glucose homeostasis. Recent studies show that gain-of-function and loss-of-function mutations in K(ATP) channel subunits cause neonatal diabetes mellitus and congenital hyperinsulinism respectively. These findings lead to significant changes in the diagnosis and treatment for neonatal insulin secretion disorders. This review describes the physiological and pathophysiological functions of K(ATP) channels in glucose homeostasis, their specific roles in neonatal diabetes mellitus and congenital hyperinsulinism, as well as future perspectives of K(ATP) channels in neonatal diseases.
Collapse
Affiliation(s)
- Yi Quan
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Andrew Barszczyk
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Zhong-ping Feng
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Hong-shuo Sun
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Departments of Surgery, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Departments of Pharmacology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| |
Collapse
|
327
|
Teff KL. How neural mediation of anticipatory and compensatory insulin release helps us tolerate food. Physiol Behav 2011; 103:44-50. [PMID: 21256146 PMCID: PMC3056926 DOI: 10.1016/j.physbeh.2011.01.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/06/2011] [Accepted: 01/12/2011] [Indexed: 11/18/2022]
Abstract
Learned anticipatory and compensatory responses allow the animal and human to maintain metabolic homeostasis during periods of nutritional challenges, either acutely within each meal or chronically during periods of overnutrition. This paper discusses the role of neurally-mediated anticipatory responses in humans and their role in glucoregulation, focusing on cephalic phase insulin and pancreatic polypeptide release as well as compensatory insulin release during the etiology of insulin resistance. The necessary stimuli required to elicit CPIR and vagal activation are discussed and the role of CPIR and vagal efferent activation in intra-meal metabolic homeostasis and during chronic nutritional challenges are reviewed.
Collapse
Affiliation(s)
- Karen L Teff
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, United States.
| |
Collapse
|
328
|
Gallagher EJ, Leroith D, Karnieli E. Insulin resistance in obesity as the underlying cause for the metabolic syndrome. ACTA ACUST UNITED AC 2011; 77:511-23. [PMID: 20960553 DOI: 10.1002/msj.20212] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The metabolic syndrome affects more than a third of the US population, predisposing to the development of type 2 diabetes and cardiovascular disease. The 2009 consensus statement from the International Diabetes Federation, American Heart Association, World Heart Federation, International Atherosclerosis Society, International Association for the Study of Obesity, and the National Heart, Lung, and Blood Institute defines the metabolic syndrome as 3 of the following elements: abdominal obesity, elevated blood pressure, elevated triglycerides, low high-density lipoprotein cholesterol, and hyperglycemia. Many factors contribute to this syndrome, including decreased physical activity, genetic predisposition, chronic inflammation, free fatty acids, and mitochondrial dysfunction. Insulin resistance appears to be the common link between these elements, obesity and the metabolic syndrome. In normal circumstances, insulin stimulates glucose uptake into skeletal muscle, inhibits hepatic gluconeogenesis, and decreases adipose-tissue lipolysis and hepatic production of very-low-density lipoproteins. Insulin signaling in the brain decreases appetite and prevents glucose production by the liver through neuronal signals from the hypothalamus. Insulin resistance, in contrast, leads to the release of free fatty acids from adipose tissue, increased hepatic production of very-low-density lipoproteins and decreased high-density lipoproteins. Increased production of free fatty acids, inflammatory cytokines, and adipokines and mitochondrial dysfunction contribute to impaired insulin signaling, decreased skeletal muscle glucose uptake, increased hepatic gluconeogenesis, and β cell dysfunction, leading to hyperglycemia. In addition, insulin resistance leads to the development of hypertension by impairing vasodilation induced by nitric oxide. In this review, we discuss normal insulin signaling and the mechanisms by which insulin resistance contributes to the development of the metabolic syndrome.
Collapse
|
329
|
Pharmacological modulation of dopamine receptor D2-mediated transmission alters the metabolic phenotype of diet induced obese and diet resistant C57Bl6 mice. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:928523. [PMID: 21603181 PMCID: PMC3096057 DOI: 10.1155/2011/928523] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/09/2011] [Indexed: 11/18/2022]
Abstract
High fat feeding induces a variety of obese and lean phenotypes in inbred rodents. Compared to Diet Resistant (DR) rodents, Diet Induced Obese (DIO) rodents are insulin resistant and have a reduced dopamine receptor D2 (DRD2) mediated tone. We hypothesized that this differing dopaminergic tone contributes to the distinct metabolic profiles of these animals.
C57Bl6 mice were classified as DIO or DR based on their weight gain during 10 weeks of high fat feeding. Subsequently DIO mice were treated with the DRD2 agonist bromocriptine and DR mice with the DRD2 antagonist haloperidol for 2 weeks.
Compared to DR mice, the bodyweight of DIO mice was higher and their insulin sensitivity decreased. Haloperidol treatment reduced the voluntary activity and energy expenditure of DR mice and induced insulin resistance in these mice. Conversely, bromocriptine treatment tended to reduce bodyweight and voluntary activity, and reinforce insulin action in DIO mice.
These results show that DRD2 activation partly redirects high fat diet induced metabolic anomalies in obesity-prone mice. Conversely, blocking DRD2 induces an adverse metabolic profile in mice that are inherently resistant to the deleterious effects of high fat food. This suggests that dopaminergic neurotransmission is involved in the control of metabolic phenotype.
Collapse
|
330
|
O'Hare JD, Zielinski E, Cheng B, Scherer T, Buettner C. Central endocannabinoid signaling regulates hepatic glucose production and systemic lipolysis. Diabetes 2011; 60:1055-62. [PMID: 21447652 PMCID: PMC3064079 DOI: 10.2337/db10-0962] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The endocannabinoid (EC) system has been implicated as an important regulator of energy homeostasis. In obesity and type 2 diabetes, EC tone is elevated in peripheral tissues including liver, muscle, fat, and also centrally, particularly in the hypothalamus. Cannabinoid receptor type 1 (CB₁) blockade with the centrally and peripherally acting rimonabant induces weight loss and improves glucose homeostasis while also causing psychiatric adverse effects. The relative contributions of peripheral versus central EC signaling on glucose homeostasis remain to be elucidated. The aim of this study was to test whether the central EC system regulates systemic glucose fluxes. RESEARCH DESIGN AND METHODS We determined glucose and lipid fluxes in male Sprague-Dawley rats during intracerebroventricular infusions of either WIN55,212-2 (WIN) or arachidonoyl-2'-chloroethylamide (ACEA) while controlling circulating insulin and glucose levels through hyperinsulinemic, euglycemic clamp studies. Conversely, we fed rats a high-fat diet for 3 days and then blocked central EC signaling with an intracerebroventricular infusion of rimonabant while assessing glucose fluxes during a clamp. RESULTS Central CB₁ activation is sufficient to impair glucose homeostasis. Either WIN or ACEA infusions acutely impaired insulin action in both liver and adipose tissue. Conversely, in a model of overfeeding-induced insulin resistance, CB₁ antagonism restored hepatic insulin sensitivity. CONCLUSIONS Thus central EC tone plays an important role in regulating hepatic and adipose tissue insulin action. These results indicate that peripherally restricted CB₁ antagonists, which may lack psychiatric side effects, are also likely to be less effective than brain-permeable CB₁ antagonists in ameliorating insulin resistance.
Collapse
Affiliation(s)
- James D O'Hare
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA.
| | | | | | | | | |
Collapse
|
331
|
Purkayastha S, Zhang H, Zhang G, Ahmed Z, Wang Y, Cai D. Neural dysregulation of peripheral insulin action and blood pressure by brain endoplasmic reticulum stress. Proc Natl Acad Sci U S A 2011; 108:2939-2944. [PMID: 21282643 PMCID: PMC3041145 DOI: 10.1073/pnas.1006875108] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic endoplasmic reticulum (ER) stress was recently revealed to affect hypothalamic neuroendocrine pathways that regulate feeding and body weight. However, it remains unexplored whether brain ER stress could use a neural route to rapidly cause the peripheral disorders that underlie the development of type 2 diabetes (T2D) and the metabolic syndrome. Using a pharmacologic model that delivered ER stress inducer thapsigargin into the brain, this study demonstrated that a short-term brain ER stress over 3 d was sufficient to induce glucose intolerance, systemic and hepatic insulin resistance, and blood pressure (BP) increase. The collection of these changes was accompanied by elevated sympathetic tone and prevented by sympathetic suppression. Molecular studies revealed that acute induction of metabolic disorders via brain ER stress was abrogated by NF-κB inhibition in the hypothalamus. Therapeutic experiments further revealed that acute inhibition of brain ER stress with tauroursodeoxycholic acid (TUDCA) partially reversed obesity-associated metabolic and blood pressure disorders. In conclusion, ER stress in the brain represents a mediator of the sympathetic disorders that underlie the development of insulin resistance syndrome and T2D.
Collapse
Affiliation(s)
- Sudarshana Purkayastha
- Department of Molecular Pharmacology and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Hai Zhang
- Department of Molecular Pharmacology and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Guo Zhang
- Department of Molecular Pharmacology and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Zaghloul Ahmed
- Department of Physical Therapy and Neuroscience Program, College of Staten Island/City University of New York, Staten Island, NY 10314
| | - Yi Wang
- Department of Molecular Pharmacology and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Dongsheng Cai
- Department of Molecular Pharmacology and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461; and
| |
Collapse
|
332
|
Abstract
The CNS melanocortin (MC) and the autonomic nervous (ANS) system represent key regulators of energy homeostasis. In this issue, Rossi et al. (2011) dissect metabolic functions of MC4 receptors based on anatomic localization within the ANS by re-expressing MC4R subpopulations in cholinergic or brainstem neurons of MC4R-KO mice.
Collapse
Affiliation(s)
- Chun-Xia Yi
- Metabolic Disease Institute, Division of Endocrinology, Department of Medicine, University of Cincinnati, Cincinnati, OH 45226, USA
| | | | | |
Collapse
|
333
|
Scherer T, O’Hare J, Diggs-Andrews K, Schweiger M, Cheng B, Lindtner C, Zielinski E, Vempati P, Su K, Dighe S, Milsom T, Puchowicz M, Scheja L, Zechner R, Fisher SJ, Previs SF, Buettner C. Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab 2011; 13:183-94. [PMID: 21284985 PMCID: PMC3061443 DOI: 10.1016/j.cmet.2011.01.008] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 09/14/2010] [Accepted: 12/06/2010] [Indexed: 01/14/2023]
Abstract
White adipose tissue (WAT) dysfunction plays a key role in the pathogenesis of type 2 diabetes (DM2). Unrestrained WAT lipolysis results in increased fatty acid release, leading to insulin resistance and lipotoxicity, while impaired de novo lipogenesis in WAT decreases the synthesis of insulin-sensitizing fatty acid species like palmitoleate. Here, we show that insulin infused into the mediobasal hypothalamus (MBH) of Sprague-Dawley rats increases WAT lipogenic protein expression, inactivates hormone-sensitive lipase (Hsl), and suppresses lipolysis. Conversely, mice that lack the neuronal insulin receptor exhibit unrestrained lipolysis and decreased de novo lipogenesis in WAT. Thus, brain and, in particular, hypothalamic insulin action play a pivotal role in WAT functionality.
Collapse
Affiliation(s)
- Thomas Scherer
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - James O’Hare
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - Kelly Diggs-Andrews
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO 63110, USA
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/3, A- 8010 Graz, Austria
| | - Bob Cheng
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - Claudia Lindtner
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - Elizabeth Zielinski
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - Prashant Vempati
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - Kai Su
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - Shveta Dighe
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - Thomas Milsom
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - Michelle Puchowicz
- Department of Nutrition and Mouse Metabolic Phenotyping Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Ludger Scheja
- Department of Biochemistry and Molecular Biology II, University Medical Center, 20246 Hamburg, Germany
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/3, A- 8010 Graz, Austria
| | - Simon J. Fisher
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO 63110, USA
| | - Stephen F. Previs
- Department of Nutrition and Mouse Metabolic Phenotyping Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Christoph Buettner
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| |
Collapse
|
334
|
German JP, Thaler JP, Wisse BE, Oh-I S, Sarruf DA, Matsen ME, Fischer JD, Taborsky GJ, Schwartz MW, Morton GJ. Leptin activates a novel CNS mechanism for insulin-independent normalization of severe diabetic hyperglycemia. Endocrinology 2011; 152:394-404. [PMID: 21159853 PMCID: PMC3037161 DOI: 10.1210/en.2010-0890] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The brain has emerged as a target for the insulin-sensitizing effects of several hormonal and nutrient-related signals. The current studies were undertaken to investigate mechanisms whereby leptin lowers circulating blood glucose levels independently of insulin. After extending previous evidence that leptin infusion directly into the lateral cerebral ventricle ameliorates hyperglycemia in rats with streptozotocin-induced uncontrolled diabetes mellitus, we showed that the underlying mechanism is independent of changes of food intake, urinary glucose excretion, or recovery of pancreatic β-cells. Instead, leptin action in the brain potently suppresses hepatic glucose production while increasing tissue glucose uptake despite persistent, severe insulin deficiency. This leptin action is distinct from its previously reported effect to increase insulin sensitivity in the liver and offers compelling evidence that the brain has the capacity to normalize diabetic hyperglycemia in the presence of sufficient amounts of central nervous system leptin.
Collapse
Affiliation(s)
- Jonathan P German
- Department of Medicine, University of Washington at South Lake Union, 815 Mercer Street, N334, PO Box 358055, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
335
|
Lin HV, Accili D. Reconstitution of insulin action in muscle, white adipose tissue, and brain of insulin receptor knock-out mice fails to rescue diabetes. J Biol Chem 2011; 286:9797-804. [PMID: 21239487 DOI: 10.1074/jbc.m110.210807] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Type 2 diabetes results from an impairment of insulin action. The first demonstrable abnormality of insulin signaling is a decrease of insulin-dependent glucose disposal followed by an increase in hepatic glucose production. In an attempt to dissect the relative importance of these two changes in disease progression, we have employed genetic knock-outs/knock-ins of the insulin receptor. Previously, we demonstrated that insulin receptor knock-out mice (Insr(-/-)) could be rescued from diabetes by reconstitution of insulin signaling in liver, brain, and pancreatic β cells (L1 mice). In this study, we used a similar approach to reconstitute insulin signaling in tissues that display insulin-dependent glucose uptake. Using GLUT4-Cre mice, we restored InsR expression in muscle, fat, and brain of Insr(-/-) mice (GIRKI (Glut4-insulin receptor knock-in line 1) mice). Unlike L1 mice, GIRKI mice failed to thrive and developed diabetes, although their survival was modestly extended when compared with Insr(-/-). The data underscore the role of developmental factors in the presentation of murine diabetes. The broader implication of our findings is that diabetes treatment should not necessarily target the same tissues that are responsible for disease pathogenesis.
Collapse
Affiliation(s)
- Hua V Lin
- Department of Medicine, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
336
|
Benedict C, Brede S, Schiöth HB, Lehnert H, Schultes B, Born J, Hallschmid M. Intranasal insulin enhances postprandial thermogenesis and lowers postprandial serum insulin levels in healthy men. Diabetes 2011; 60:114-8. [PMID: 20876713 PMCID: PMC3012162 DOI: 10.2337/db10-0329] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Animal studies indicate a prominent role of brain insulin signaling in the regulation of peripheral energy metabolism. We determined the effect of intranasal insulin, which directly targets the brain, on glucose metabolism and energy expenditure in humans. RESEARCH DESIGN AND METHODS In a double-blind, placebo-controlled, balanced within-subject comparison, 19 healthy normal-weight men (18-26 years old) were intranasally administered 160 IU human insulin after an overnight fast. Energy expenditure assessed via indirect calorimetry and blood concentrations of glucose, insulin, C-peptide, and free fatty acids (FFAs) were measured before and after insulin administration and the subsequent consumption of a high-calorie liquid meal of 900 kcal. RESULTS Intranasal insulin, compared with placebo, increased postprandial energy expenditure, i.e., diet-induced thermogenesis, and decreased postprandial concentrations of circulating insulin and C-peptide, whereas postprandial plasma glucose concentrations did not differ from placebo values. Intranasal insulin also induced a transient decrease in prandial serum FFA levels. CONCLUSIONS Enhancing brain insulin signaling by means of intranasal insulin administration enhances the acute thermoregulatory and glucoregulatory response to food intake, suggesting that central nervous insulin contributes to the control of whole-body energy homeostasis in humans.
Collapse
|
337
|
Abstract
The evolving concept of how nutrient excess and inflammation modulate metabolism provides new opportunities for strategies to correct the detrimental health consequences of obesity. In this review, we focus on the complex interplay among lipid overload, immune response, proinflammatory pathways and organelle dysfunction through which excess adiposity might lead to type 2 diabetes. We then consider evidence linking dysregulated CNS circuits to insulin resistance and results on nutrient-sensing pathways emerging from studies with calorie restriction. Subsequently, recent recommendations for the management of type 2 diabetes are discussed with emphasis on prevailing current therapeutic classes of biguanides, thiazolidinediones and incretin-based approaches.
Collapse
Affiliation(s)
- Christina Schwanstecher
- Molekulare Pharmakologie und Toxikologie, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany.
| | | |
Collapse
|
338
|
Halmos T, Suba I. The role of the brain in the regulation of metabolism and energy expenditure: the central role of insulin, the insulin resistance of the brain. Orv Hetil 2011; 152:83-91. [DOI: 10.1556/oh.2011.28981] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Regulatory role of the brain in energy expenditure, appetite, glucose metabolism, and central effects of insulin has been prominently studied. Certain neurons in the hypothalamus increase or decrease appetite via orexigenes and anorexigenes, regulating energy balance and food intake. Hypothalamus is the site of afferent and efferent stimuli between special nuclei and beta- and alpha cells, and it regulates induction/inhibition of glucose output from the liver. Incretines, produced in intestine and in certain brain cells (brain-gut hormones), link to special receptors in the hypothalamus. Central role of insulin has been proved both in animals and in humans. Insulin gets across the blood-brain barrier, links to special hypothalamic receptors, regulating peripheral glucose metabolism. Central glucose sensing, via “glucose-excited” and “glucose-inhibited” cells have outstanding role. Former are active in hyperglycaemia, latter in hypoglycaemia, via influencing beta– and alpha cells, independently of traditional metabolic pathways. Evidence of brain insulin resistance needs centrally acting drugs, paradigm changes in therapy and prevention of metabolic syndrome, diabetes, cardiovascular and oncological diseases. Orv. Hetil., 2011, 152, 83–91.
Collapse
Affiliation(s)
- Tamás Halmos
- MAZSIHISZ Szeretet Kórház Metabolikus Ambulancia Budapest Amerikai út 53–55. 1145
| | - Ilona Suba
- Bajcsy-Zsilinszky Kórház-Rendelőintézet Tüdőgondozó Budapest
| |
Collapse
|
339
|
Belgardt BF, Brüning JC. CNS leptin and insulin action in the control of energy homeostasis. Ann N Y Acad Sci 2010; 1212:97-113. [PMID: 21070248 DOI: 10.1111/j.1749-6632.2010.05799.x] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The obesity and diabetes pandemics have made it an urgent necessity to define the central nervous system (CNS) pathways controlling body weight, energy expenditure, and fuel metabolism. The pancreatic hormone insulin and the adipose tissue-derived leptin are known to act on diverse neuronal circuits in the CNS to maintain body weight and metabolism in a variety of species, including humans. Because these homeostatic circuits are disrupted during the development of obesity, the pathomechanisms leading to CNS leptin and insulin resistance are a focal point of research. In this review, we summarize the recent findings concerning the mechanisms and novel neuronal mediators of both insulin and leptin action in the CNS.
Collapse
Affiliation(s)
- Bengt F Belgardt
- Department of Mouse Genetics and Metabolism, Institute for Genetics, Center for Molecular Medicine, University of Cologne, Zülpicher Strasse 47a, Cologne, Germany
| | | |
Collapse
|
340
|
Kalsbeek A, Bruinstroop E, Yi CX, Klieverik LP, La Fleur SE, Fliers E. Hypothalamic control of energy metabolism via the autonomic nervous system. Ann N Y Acad Sci 2010; 1212:114-29. [PMID: 21070249 DOI: 10.1111/j.1749-6632.2010.05800.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The hypothalamic control of hepatic glucose production is an evident aspect of energy homeostasis. In addition to the control of glucose metabolism by the circadian timing system, the hypothalamus also serves as a key relay center for (humoral) feedback information from the periphery, with the important role for hypothalamic leptin receptors as a striking example. The hypothalamic biological clock uses its projections to the preautonomic hypothalamic neurons to control the daily rhythms in plasma glucose concentration, glucose uptake, and insulin sensitivity. Euglycemic, hyperinsulinemic clamp experiments combined with either sympathetic-, parasympathetic-, or sham-denervations of the autonomic input to the liver have further delineated the hypothalamic pathways that mediate the control of the circadian timing system over glucose metabolism. In addition, these experiments clearly showed both that next to the biological clock peripheral hormones may "use" the preautonomic neurons in the hypothalamus to affect hepatic glucose metabolism, and that similar pathways may be involved in the control of lipid metabolism in liver and white adipose tissue.
Collapse
Affiliation(s)
- A Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands.
| | | | | | | | | | | |
Collapse
|
341
|
Song J, Xu Y, Hu X, Choi B, Tong Q. Brain expression of Cre recombinase driven by pancreas-specific promoters. Genesis 2010; 48:628-34. [PMID: 20824628 DOI: 10.1002/dvg.20672] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 07/30/2010] [Accepted: 08/31/2010] [Indexed: 11/09/2022]
Abstract
Cre-loxP technology enables specific examination of the function and development of individual nuclei in the complex brain network. However, for most brain regions, the utilization of this technique has been hindered by the lack of mouse lines with Cre expression restricted to these regions. Here, we identified brain expressions of three transgenic Cre lines previously thought to be pancreas-specific. Cre expression driven by the rat-insulin promoter (Rip-Cre) was found mainly in the arcuate nucleus, and to a lesser degree in other hypothalamic regions. Cre expression driven by the neurogenin 3 promoter (Ngn3-Cre mice) was found in the ventromedial hypothalamus. Cre expression driven by the pancreas-duodenum homeobox 1 promoter (Pdx1-Cre) was found in several hypothalamic nuclei, the dorsal raphe and inferior olivary nuclei. Interestingly, Pdx1-Cre mediated deletion of vesicular GABA transporter led to postnatal growth retardation while Ngn3-Cre mediated deletion had no effects, suggesting a role for Pdx1-Cre neurons, but not pancreas, in the regulation of postnatal growth. These results demonstrate the potential for these Cre lines to study the function and development of brain neurons.
Collapse
|
342
|
Stefater MA, Seeley RJ. Central nervous system nutrient signaling: the regulation of energy balance and the future of dietary therapies. Annu Rev Nutr 2010; 30:219-35. [PMID: 20225935 DOI: 10.1146/annurev.nutr.012809.104723] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mammalian target of rapamycin (mTOR) pathway coordinates cell growth in response to nutrient availability. Increasing evidence points to a role for mTOR to also direct whole-body energy balance in response to micronutrient as well as hormonal cues. This positions mTOR as a key central integrator of acute and chronic changes in fuel status. Energy balance is affected by mTOR in several organ systems, including the hypothalamus, where the pathway can modulate feeding. We propose that a greater understanding of this nutrient-sensitive pathway may open the door to more intelligent, effective diet design based on the effects of micronutrients on specific signaling pathways.
Collapse
Affiliation(s)
- M A Stefater
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45237, USA.
| | | |
Collapse
|
343
|
Ross RA, Rossetti L, Lam TKT, Schwartz GJ. Differential effects of hypothalamic long-chain fatty acid infusions on suppression of hepatic glucose production. Am J Physiol Endocrinol Metab 2010; 299:E633-9. [PMID: 20647558 PMCID: PMC2957867 DOI: 10.1152/ajpendo.00190.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Our objective was to investigate whether the direct bilateral infusion of the monounsaturated fatty acid (MUFA) oleic acid (OA) within the mediobasal hypothalamus (MBH) is sufficient to reproduce the effect of administration of OA (30 nmol) in the third cerebral ventricle, which inhibits glucose production (GP) in rats. We used the pancreatic basal insulin clamp technique (plasma insulin ∼20 mU/ml) in combination with tracer dilution methodology to compare the effect of MBH OA on GP to that of a saturated fatty acid (SFA), palmitic acid (PA), and a polyunsaturated fatty acid (PUFA), linoleic acid (LA). The MBH infusion of 200 but not 40 pmol of OA was sufficient to markedly inhibit GP (by 61% from 12.6 ± 0.6 to 5.1 ± 1.6 mg·kg(-1)·min(-1)) such that exogenous glucose had to be infused at the rate of 6.0 ± 1.2 mg·kg(-1)·min(-1) to prevent hypoglycemia. MBH infusion of PA also caused a significant decrease in GP, but only at a total dose of 4 nmol (GP 5.8 ± 1.6 mg·kg(-1)·min(-1)). Finally, MBH LA at a total dose of 0.2 and 4 nmol failed to modify GP compared with rats receiving MBH vehicle. Increased availability of OA within the MBH is sufficient to markedly inhibit GP. LA does not share the effect of OA, whereas PA can reproduce the potent effect of OA on GP, but only at a higher dose. It remains to be determined whether SFAs need to be converted to MUFAs to exert this effect or whether they activate a separate signaling pathway to inhibit GP.
Collapse
Affiliation(s)
- R. A. Ross
- 1Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, New York;
| | - L. Rossetti
- 1Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, New York;
- 3Merck, Rahway, New Jersey
| | - T. K. T. Lam
- 2Toronto General Hospital, Toronto, Ontario, Canada; and
| | - G. J. Schwartz
- 1Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, New York;
| |
Collapse
|
344
|
Jordan SD, Könner AC, Brüning JC. Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis. Cell Mol Life Sci 2010; 67:3255-73. [PMID: 20549539 PMCID: PMC2933848 DOI: 10.1007/s00018-010-0414-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 12/15/2022]
Abstract
The central nervous system (CNS) is capable of gathering information on the body's nutritional state and it implements appropriate behavioral and metabolic responses to changes in fuel availability. This feedback signaling of peripheral tissues ensures the maintenance of energy homeostasis. The hypothalamus is a primary site of convergence and integration for these nutrient-related feedback signals, which include central and peripheral neuronal inputs as well as hormonal signals. Increasing evidence indicates that glucose and lipids are detected by specialized fuel-sensing neurons that are integrated in these hypothalamic neuronal circuits. The purpose of this review is to outline the current understanding of fuel-sensing mechanisms in the hypothalamus, to integrate the recent findings in this field, and to address the potential role of dysregulation in these pathways in the development of obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Sabine D. Jordan
- Department of Mouse Genetics and Metabolism, Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Zülpicher Straße 47, 50674 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - A. Christine Könner
- Department of Mouse Genetics and Metabolism, Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Zülpicher Straße 47, 50674 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- 2nd Department for Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Jens C. Brüning
- Department of Mouse Genetics and Metabolism, Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Zülpicher Straße 47, 50674 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- 2nd Department for Internal Medicine, University Hospital Cologne, Cologne, Germany
- Max Planck Institute for the Biology of Aging, Cologne, Germany
| |
Collapse
|
345
|
McTaggart JS, Clark RH, Ashcroft FM. The role of the KATP channel in glucose homeostasis in health and disease: more than meets the islet. J Physiol 2010; 588:3201-9. [PMID: 20519313 PMCID: PMC2976015 DOI: 10.1113/jphysiol.2010.191767] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 06/01/2010] [Indexed: 12/25/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels are critical for the maintenance of glucose homeostasis. They are essential for glucose-stimulated insulin secretion from pancreatic beta-cells, contribute to the mechanisms by which hypoglycaemia stimulates glucagon release from pancreatic alpha-cells, and are involved in glucose uptake into skeletal muscle, glucose production and release from the liver, and feeding behaviour. Not surprisingly, loss- or gain-of-function mutations in K(ATP) channel genes have profound effects, giving rise to congenital hyperinsulinaemia and neonatal diabetes respectively. This symposium review focuses on our current understanding of the role of the K(ATP) channel in glucose homeostasis in health and disease.
Collapse
Affiliation(s)
- James S McTaggart
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, and OXION Centre for Ion Channel Studies, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | | | | |
Collapse
|
346
|
Ropero AB, Soriano S, Tudurí E, Marroquí L, Téllez N, Gassner B, Juan-Picó P, Montanya E, Quesada I, Kuhn M, Nadal A. The atrial natriuretic peptide and guanylyl cyclase-A system modulates pancreatic beta-cell function. Endocrinology 2010; 151:3665-74. [PMID: 20555029 DOI: 10.1210/en.2010-0119] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Atrial natriuretic peptide (ANP) and its guanylyl cyclase-A (GC-A) receptor are being involved in metabolism, although their role in the endocrine pancreas is still greatly unknown. The aim of this work is to study a possible role for the ANP/GC-A system in modulating pancreatic beta-cell function. The results presented here show a direct effect of the GC-A receptor in regulating glucose-stimulated insulin secretion (GSIS) and beta-cell mass. GC-A activation by its natural ligand, ANP, rapidly blocked ATP-dependent potassium (K(ATP)) channel activity, increased glucose-elicited Ca(2+) signals, and enhanced GSIS in islets of Langerhans. The effect in GSIS was inhibited in islets from GC-A knockout (KO) mice. Pancreatic islets from GC-A KO mice responded to increasing glucose concentrations with enhanced insulin secretion compared with wild type (WT). Remarkably, islets from GC-A KO mice were smaller, presented lower beta-cell mass and decreased insulin content. However, glucose-induced Ca(2+) response was more vigorous in GC-A KO islets, and basal K(ATP) channel activity in GC-A KO beta-cells was greatly diminished compared with WT. When protein levels of the two K(ATP) channel constitutive subunits sulfonylurea receptor 1 and Inward rectifier potassium channel 6.2 were measured, both were diminished in GC-A KO islets. These alterations on beta-cell function were not associated with disruption of glucose tolerance or insulin sensitivity in vivo. Glucose and insulin tolerance tests were similar in WT and GC-A KO mice. Our data suggest that the ANP/GC-A system may have a modulating effect on beta-cell function.
Collapse
Affiliation(s)
- Ana B Ropero
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas andInstituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
347
|
Stoller DA, Fahrenbach JP, Chalupsky K, Tan BH, Aggarwal N, Metcalfe J, Hadhazy M, Shi NQ, Makielski JC, McNally EM. Cardiomyocyte sulfonylurea receptor 2-KATP channel mediates cardioprotection and ST segment elevation. Am J Physiol Heart Circ Physiol 2010; 299:H1100-8. [PMID: 20656890 DOI: 10.1152/ajpheart.00084.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sulfonylurea receptor-containing ATP-sensitive potassium (K(ATP)) channels have been implicated in cardioprotection, but the cell type and constitution of channels responsible for this protection have not been clear. Mice deleted for the first nucleotide binding region of sulfonylurea receptor 2 (SUR2) are referred to as SUR2 null since they lack full-length SUR2 and glibenclamide-responsive K(ATP) channels in cardiac, skeletal, and smooth muscle. As previously reported, SUR2 null mice develop electrocardiographic changes of ST segment elevation that were shown to correlate with coronary artery vasospasm. Here we restored expression of the cardiomyocyte SUR2-K(ATP) channel in SUR2 null mice by generating transgenic mice with ventricular cardiomyocyte-restricted expression of SUR2A. Introduction of the cardiomyocyte SUR2A transgene into the SUR2 null background restored functional cardiac K(ATP) channels. Hearts isolated from rescued mice, referred to as MLC2A, had significantly reduced infarct size (27 ± 3% of area at risk) compared with SUR2 null mice (36 ± 3% of area at risk). Compared with SUR2 null hearts, MLC2A hearts exhibited significantly improved cardiac function during the postischemia reperfusion period primarily because of preservation of low diastolic pressures. Additionally, restoration of cardiac SUR2-K(ATP) channels significantly reduced the degree and frequency of ST segment elevation episodes in MLC2A mice. Therefore, cardioprotective mechanisms both dependent and independent of SUR2-K(ATP) channels contribute to cardiac function.
Collapse
Affiliation(s)
- Douglas A Stoller
- Committee on Cellular and Molecular Physiology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
348
|
Schmoller A, Hass T, Strugovshchikova O, Melchert UH, Scholand-Engler HG, Peters A, Schweiger U, Hohagen F, Oltmanns KM. Evidence for a relationship between body mass and energy metabolism in the human brain. J Cereb Blood Flow Metab 2010; 30:1403-10. [PMID: 20389303 PMCID: PMC2949217 DOI: 10.1038/jcbfm.2010.48] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cerebral energy metabolism has been suggested to have an important function in body weight regulation. We therefore examined whether there is a relationship between body mass and adenosine triphosphate (ATP) metabolism in the human brain. On the basis of our earlier findings indicating a neuroprotective preferential energy supply of the brain, as compared with peripheral muscle on experimentally induced hypoglycemia, we examined whether this physiological response is preserved also in low-weight and obese participants. We included 45 healthy male subjects with a body mass index (BMI) ranging from 17 to 44 kg/m(2). Each participant underwent a hypoglycemic glucose-clamp intervention, and the ATP metabolism, that is, the content of high-energy phosphates phosphocreatine (PCr) and ATP, was measured repeatedly by (31)phosphor magnetic resonance spectroscopy ((31)P-MRS) in the cerebral cortex and skeletal muscle. Results show an inverse correlation between BMI and high-energy phosphate content in the brain (P<0.01), whereas there was no such relationship found between skeletal muscle and BMI. The hypoglycemic clamp intervention did not affect the ATP metabolism in both tissues. Our data show an inverse correlation between BMI and cerebral high-energy phosphate content in healthy humans, suggesting a close relationship between energetic supply of the brain and body weight regulation.
Collapse
Affiliation(s)
- André Schmoller
- Department of Psychiatry and Psychotherapy, University of Luebeck, Ratzeburger Allee 160, Luebeck, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
349
|
Sarruf DA, Thaler JP, Morton GJ, German J, Fischer JD, Ogimoto K, Schwartz MW. Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes 2010; 59:1817-24. [PMID: 20357365 PMCID: PMC2889784 DOI: 10.2337/db09-1878] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The hormone fibroblast growth factor 21 (FGF21) exerts diverse, beneficial effects on energy balance and insulin sensitivity when administered systemically to rodents with diet-induced obesity (DIO). The current studies investigate whether central FGF21 treatment recapitulates these effects. RESEARCH DESIGN AND METHODS After preliminary dose-finding studies, either saline vehicle or recombinant human FGF21 (0.4 microg/day) was infused continuously for 2 weeks into the lateral cerebral ventricle of male Wistar rats rendered obese by high-fat feeding. Study end points included measures of energy balance (body weight, body composition, food intake, energy expenditure, and circulating and hepatic lipids) and glucose metabolism (insulin tolerance test, euglycemic-hyperinsulinemic clamp, and hepatic expression of genes involved in glucose metabolism). RESULTS Compared with vehicle, continuous intracerebroventricular infusion of FGF21 increased both food intake and energy expenditure in rats with DIO, such that neither body weight nor body composition was altered. Despite unchanged body fat content, rats treated with intracerebroventricular FGF21 displayed a robust increase of insulin sensitivity due to increased insulin-induced suppression of both hepatic glucose production and gluconeogenic gene expression, with no change of glucose utilization. CONCLUSIONS FGF21 action in the brain increases hepatic insulin sensitivity and metabolic rate in rats with DIO. These findings identify the central nervous system as a potentially important target for the beneficial effects of FGF21 in the treatment of diabetes and obesity.
Collapse
Affiliation(s)
- David A. Sarruf
- From the Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington
| | - Joshua P. Thaler
- From the Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington
| | - Gregory J. Morton
- From the Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington
| | - Jonathan German
- From the Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington
| | - Jonathan D. Fischer
- From the Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington
| | - Kayoko Ogimoto
- From the Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington
| | - Michael W. Schwartz
- From the Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington
- Corresponding author: Michael W. Schwartz,
| |
Collapse
|
350
|
Ramnanan CJ, Edgerton DS, Rivera N, Irimia-Dominguez J, Farmer B, Neal DW, Lautz M, Donahue EP, Meyer CM, Roach PJ, Cherrington AD. Molecular characterization of insulin-mediated suppression of hepatic glucose production in vivo. Diabetes 2010; 59:1302-11. [PMID: 20185816 PMCID: PMC2874690 DOI: 10.2337/db09-1625] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Insulin-mediated suppression of hepatic glucose production (HGP) is associated with sensitive intracellular signaling and molecular inhibition of gluconeogenic (GNG) enzyme mRNA expression. We determined, for the first time, the time course and relevance (to metabolic flux) of these molecular events during physiological hyperinsulinemia in vivo in a large animal model. RESEARCH DESIGN AND METHODS 24 h fasted dogs were infused with somatostatin, while insulin (basal or 8 x basal) and glucagon (basal) were replaced intraportally. Euglycemia was maintained and glucose metabolism was assessed using tracer, (2)H(2)O, and arterio-venous difference techniques. Studies were terminated at different time points to evaluate insulin signaling and enzyme regulation in the liver. RESULTS Hyperinsulinemia reduced HGP due to a rapid transition from net glycogen breakdown to synthesis, which was associated with an increase in glycogen synthase and a decrease in glycogen phosphorylase activity. Thirty minutes of hyperinsulinemia resulted in an increase in phospho-FOXO1, a decrease in GNG enzyme mRNA expression, an increase in F2,6P(2), a decrease in fat oxidation, and a transient decrease in net GNG flux. Net GNG flux was restored to basal by 4 h, despite a substantial reduction in PEPCK protein, as gluconeogenically-derived carbon was redirected from lactate efflux to glycogen deposition. CONCLUSIONS In response to acute physiologic hyperinsulinemia, 1) HGP is suppressed primarily through modulation of glycogen metabolism; 2) a transient reduction in net GNG flux occurs and is explained by increased glycolysis resulting from increased F2,6P(2) and decreased fat oxidation; and 3) net GNG flux is not ultimately inhibited by the rise in insulin, despite eventual reduction in PEPCK protein, supporting the concept that PEPCK has poor control strength over the gluconeogenic pathway in vivo.
Collapse
Affiliation(s)
- Christopher J Ramnanan
- Department of Molecular Physiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|