301
|
Alhadeff AL, Conway SM, Ong ZY, Wald HS, Roitman MF, Grill HJ. Central leptin signaling transmits positive valence. Brain Res 2019; 1724:146441. [PMID: 31513793 DOI: 10.1016/j.brainres.2019.146441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 01/06/2023]
Abstract
Hunger resulting from food deprivation is associated with negative affect. This is supported by recent evidence showing that hunger-sensitive neurons drive feeding through a negative valence teaching signal. However, the complementary hypothesis that hormonal signals of energy surfeit counteract this negative valence, or even transmit positive valence, has received less attention. The adipose-derived hormone leptin signals in proportion to fat mass, is an indicator of energy surplus, and reduces food intake. Here, we showed that centrally-delivered leptin reduced food intake and conditioned a place preference in food-restricted as well as ad libitum fed rats. In contrast, leptin did not reduce food intake nor condition a place preference in obese rats, likely due to leptin resistance. Despite a well-known role for hindbrain leptin receptor signaling in energy balance control, hindbrain leptin delivery did not condition a place preference in food-restricted rats, suggesting that leptin acting in midbrain or forebrain sites mediates place preference conditioning. Supporting the hypothesis that leptin signaling induces a positive affective state, leptin also decreased the threshold for ventral tegmental area brain stimulation reward. Together, these data suggest that leptin signaling is intrinsically preferred, and support the view that signals of energy surfeit are associated with positive affect. Harnessing the positive valence of signals such as leptin may attenuate the negative affect associated with hunger, providing a compelling new approach for weight loss maintenance.
Collapse
Affiliation(s)
- Amber L Alhadeff
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States; Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States.
| | - Sineadh M Conway
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| | - Zhi Yi Ong
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| | - Hallie S Wald
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| | - Mitchell F Roitman
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| | - Harvey J Grill
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
302
|
Koh YM, Jang SW, Ahn TW. Anti-obesity effect of Yangkyuksanwha-tang in high-fat diet-induced obese mice. Altern Ther Health Med 2019; 19:246. [PMID: 31488172 PMCID: PMC6728965 DOI: 10.1186/s12906-019-2669-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/30/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Yangkyuksanwha-tang (YST) is an herbal medicine based on Sasang constitutional medicine (SCM) and is widely used in Korean traditional medicine. The aim of the study was to evaluate the effect of YST on obesity in high-fat diet (HFD)-induced obese mice. METHODS We induced obesity in C57bl/6 J mice using a HFD, and then orally administered 300 mg/kg YST for 6 weeks. We measured body weight, food efficiency, organ and fat weight, serum biochemical parameters, and obesity-related gene expression, and carried out histological analysis at the end of the experimental period. RESULTS YST significantly reduced the absolute body weight and food efficiency ratio. The serum, aminotransferase, glucose, total cholesterol, triglyceride, and low-density lipoprotein-cholesterol levels were significantly lower in the YST-treated group than in the control group, whereas the high-density lipoprotein-cholesterol level in the YST-treated group was significantly higher. The YST-treated group also showed a significant reduction in regional fatty tissues and the absolute weight of various organs. We also observed a significantly reduced expression of AP2/FABP4, C/EBP-β, leptin, and SREBP1c/ADD1 mRNA, and significantly increased expression of UCP-2 and adiponectin mRNA in adipose tissue in the YST-treated group. YST also decreased the lipid droplet size and lipid accumulation in the liver, as well as adipocyte size in epididymal adipose tissue. At the dose tested, YST was non-toxic to the liver and kidneys of the mice. CONCLUSION The results imply that YST has anti-obesity effects in obesity-induced mice. Although the number of experimental animals was limited and the drug effects concern mice, rather than humans, which have different constitutions, the study has valuable implications with respect to the general effects of YST.
Collapse
|
303
|
Monteiro L, Pereira JADS, Palhinha L, Moraes-Vieira PMM. Leptin in the regulation of the immunometabolism of adipose tissue-macrophages. J Leukoc Biol 2019; 106:703-716. [PMID: 31087711 DOI: 10.1002/jlb.mr1218-478r] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/19/2019] [Accepted: 04/26/2019] [Indexed: 01/03/2025] Open
Abstract
Obesity is a pandemic disease affecting around 15% of the global population. Obesity is a major risk factor for other conditions, such as type 2 diabetes and cardiovascular diseases. The adipose tissue is the main secretor of leptin, an adipokine responsible for the regulation of food intake and energy expenditure. Obese individuals become hyperleptinemic due to increased adipogenesis. Leptin acts through the leptin receptor and induces several immunometabolic changes in different cell types, including adipocytes and Mϕs. Adipose tissue resident Mϕs (ATMs) are the largest leukocyte population in the adipose tissue and these ATMs are in constant contact with the excessive leptin levels secreted in obese conditions. Leptin activates both the JAK2-STAT3 and the PI3K-AKT-mTOR pathways. The activation of these pathways leads to intracellular metabolic changes, with increased glucose uptake, upregulation of glycolytic enzymes, and disruption of mitochondrial function, as well as immunologic alterations, such as increased phagocytic activity and proinflammatory cytokines secretion. Here, we discuss the immunometabolic effects of leptin in Mϕs and how hyperleptinemia can contribute to the low-grade systemic inflammation in obesity.
Collapse
Affiliation(s)
- Lauar Monteiro
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Sao Paulo, Brazil
| | - Jéssica Aparecida da Silva Pereira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Sao Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Lohanna Palhinha
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Manoel M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Sao Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
304
|
Mills JG, Larkin TA, Deng C, Thomas SJ. Weight gain in Major Depressive Disorder: Linking appetite and disordered eating to leptin and ghrelin. Psychiatry Res 2019; 279:244-251. [PMID: 30878306 DOI: 10.1016/j.psychres.2019.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 01/12/2023]
Abstract
Major Depressive Disorder (MDD) involves changes in appetite and weight, with a subset of individuals at an increased risk of weight gain. Pathways to weight gain may include appetite disturbances, excess eating, and dysregulation of appetite hormones. However, little research has simultaneously examined relationships between hormones, eating behaviours and MDD symptoms. Plasma ghrelin and leptin, biometrics, eating behaviours and psychopathology were compared between depressed (n = 60) and control (n = 60) participants. Depressed participants were subcategorised into those with increased or decreased appetite/weight for comparison by subtype. The Dutch Eating Behaviours Questionnaire and Yale Food Addiction Scale measured eating behaviours. Disordered eating was higher in MDD than controls, in females than males, and in depressed individuals with increased, compared to decreased, appetite/weight. Leptin levels were higher in females only. Leptin levels correlated positively, and ghrelin negatively, with disordered eating. The results provide further evidence for high levels of disordered eating in MDD, particularly in females. The correlations suggest that excessive eating in MDD is significantly linked to appetite hormones, indicating that it involves physiological, rather than purely psychological, factors. Further, longitudinal, research is needed to better understand whether hormonal factors play a causal role in excessive eating in MDD.
Collapse
Affiliation(s)
- Jessica G Mills
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Australia.
| | - Theresa A Larkin
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| | - Chao Deng
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Australia; Antipsychotic Research Laboratory, University of Wollongong, Australia
| | - Susan J Thomas
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| |
Collapse
|
305
|
Glomerular Collagen Deposition and Lipocalin-2 Expression Are Early Signs of Renal Injury in Prediabetic Obese Rats. Int J Mol Sci 2019; 20:ijms20174266. [PMID: 31480394 PMCID: PMC6747173 DOI: 10.3390/ijms20174266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
Feeding rats with high-fat diet (HFD) with a single streptozotocin (STZ) injection induced obesity, slightly elevated fasting blood glucose and impaired glucose and insulin tolerance, and caused cardiac hypertrophy and mild diastolic dysfunction as published before by Koncsos et al. in 2016. Here we aimed to explore the renal consequences in the same groups of rats. Male Long-Evans rats were fed normal chow (CON; n = 9) or HFD containing 40% lard and were administered STZ at 20 mg/kg (i.p.) at week four (prediabetic rats, PRED, n = 9). At week 21 blood and urine samples were taken and kidney and liver samples were collected for histology, immunohistochemistry and for analysis of gene expression. HFD and STZ increased body weight and visceral adiposity and plasma leptin concentration. Despite hyperleptinemia, plasma C-reactive protein concentration decreased in PRED rats. Immunohistochemistry revealed elevated collagen IV protein expression in the glomeruli, and Lcn2 mRNA expression increased, while Il-1β mRNA expression decreased in both the renal cortex and medulla in PRED vs. CON rats. Kidney histology, urinary protein excretion, plasma creatinine, glomerular Feret diameter, desmin protein expression, and cortical and medullary mRNA expression of TGF-β1, Nrf2, and PPARγ were similar in CON and PRED rats. Reduced AMPKα phosphorylation of the autophagy regulator Akt was the first sign of liver damage, while plasma lipid and liver enzyme concentrations were similar. In conclusion, glomerular collagen deposition and increased lipocalin-2 expression were the early signs of kidney injury, while most biomarkers of inflammation, oxidative stress and fibrosis were negative in the kidneys of obese, prediabetic rats with mild heart and liver injury.
Collapse
|
306
|
Mazur-Bialy AI. Superiority of the Non-Glycosylated Form Over the Glycosylated Form of Irisin in the Attenuation of Adipocytic Meta-Inflammation: A Potential Factor in the Fight Against Insulin Resistance. Biomolecules 2019; 9:biom9090394. [PMID: 31438646 PMCID: PMC6770638 DOI: 10.3390/biom9090394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/30/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Irisin is an adipomyokine that promotes the browning of white adipose tissue and exhibits protective potential against the development of insulin resistance and type 2 diabetes. In our bodies, it occurs in its glycosylated form (G-IR): its activity is still poorly understood, because the majority of studies have used its non-glycosylated counterpart (nG-IR). Glycosylation can affect protein function: therefore, the present study attempted to compare the actions of both forms of irisin toward inflammatory activation of the main component of adipose tissue. The study was carried out in a coculture of 3T3 adipocytes and RAW 264.7 macrophages maintained in the presence of nG-IR or G-IR. The impact on vitality and the expression and release of key inflammatory mediators important for insulin resistance and diabetes development were assessed. The studies showed that both forms effectively inhibited the expression and release of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, macrophage chemotactic protein (MCP)-1, high-mobility group box (HMGB1), leptin, and adiponectin. However, in the case of TNF-α, IL-1β, MCP-1, and HMGB1, the inhibition exerted by nG-IR was more prominent than that by G-IR. In addition, only nG-IR significantly inhibited macrophage migration. Here, nG-IR seemed to be the stronger inhibitor of the development of obesity-related inflammation; however, G-IR also had anti-inflammatory potential.
Collapse
Affiliation(s)
- Agnieszka Irena Mazur-Bialy
- Department of Ergonomics and Exercise Physiology, Institute of Physiotherapy, Faculty of Health Science, Jagiellonian University Medical College, Grzegorzecka 20, 31-531 Krakow, Poland.
| |
Collapse
|
307
|
Wang HY, Capuano AW, Khan A, Pei Z, Lee KC, Bennett DA, Ahima RS, Arnold SE, Arvanitakis Z. Insulin and adipokine signaling and their cross-regulation in postmortem human brain. Neurobiol Aging 2019; 84:119-130. [PMID: 31539648 DOI: 10.1016/j.neurobiolaging.2019.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Aberrant insulin and adipokine signaling has been implicated in cognitive decline associated with both type 2 diabetes mellitus and neurodegenerative diseases. We established methods that reliably measure insulin, adiponectin and leptin signaling, and their crosstalk, in thawed postmortem mid-frontal cortical tissue from cognitively normal older subjects with a short postmortem interval. Insulin-evoked insulin receptor (IR) activation increases activated, tyrosine-phosphorylated IRβ on tyrosine residues 960, 1150, and 1151, insulin receptor substrate-1 recruitment to IRβ and phosphorylated RAC-α-serine/threonine-protein kinase. Adiponectin augments, but leptin inhibits, insulin signaling. Adiponectin activates adiponectin receptors to induce APPL1 binding to adiponectin receptor 1 and 2 and T-cadherin and downstream adenosine monophosphate-dependent protein kinase phosphorylation. Insulin inhibited adiponectin-induced signaling. In addition, leptin-induced leptin receptor (OB-R) signaling promotes Janus kinase 2 recruitment to OB-R and Janus kinase 2 and downstream signal transducer and activator of transcription 3 phosphorylation. Insulin enhanced leptin signaling. These data demonstrate insulin and adipokine signaling interactions in human brain. Future studies can use these methods to examine insulin, adiponectin, and leptin metabolic dysregulation in aging and disease states, such as type 2 diabetes and Alzheimer's disease-related dementias.
Collapse
Affiliation(s)
- Hoau-Yan Wang
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, NY, USA; Department of Biology, Neuroscience Program, Graduate School of The City University of New York, New York, NY, USA.
| | - Ana W Capuano
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Amber Khan
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, NY, USA; Department of Biology, Neuroscience Program, Graduate School of The City University of New York, New York, NY, USA
| | - Zhe Pei
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, NY, USA
| | - Kuo-Chieh Lee
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Rexford S Ahima
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven E Arnold
- Department of Neurology and the Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
308
|
Irisin as a Multifunctional Protein: Implications for Health and Certain Diseases. ACTA ACUST UNITED AC 2019; 55:medicina55080485. [PMID: 31443222 PMCID: PMC6722973 DOI: 10.3390/medicina55080485] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 01/10/2023]
Abstract
Sedentary life style is considered to be an independent risk factor for many disorders, including development of type 2 diabetes, obesity, immune dysfunction, asthma, and neurological or coronary heart disease. Irisin is released from myocytes during physical activity, and acts as a link between muscles and other tissues and organs. This myokine is produced as a result of proteolytic cleavage of FNDC5 protein present in the membrane of myocytes. Secretion of irisin is regulated by N-linked oligosaccharides attached to the protein molecule. The two N-glycan molecules, which constitute a significant part of the irisin glycoprotein, regulate the browning of adipocytes, which is the most important function of irisin. A receptor specific for irisin has still not been discovered. In some tissues irisin probably acts via integrins, which are widely expressed transmembrane receptors. Many studies have confirmed the multifunctional role of irisin and the beneficial effects of this molecule on body homeostasis. Irisin reduces systemic inflammation, maintains the balance between resorption and bone formation, and modulates metabolic processes and the functioning of the nervous system. It suppresses the expression and release of pro-inflammatory cytokines in obese individuals and attenuates inflammation in adipose tissue. The impact of irisin on cancer cell proliferation, migration, and invasion has also been demonstrated in numerous studies, which proves its role in carcinogenesis. Owing to these pleiotropic and beneficial properties, irisin may be a potential option to prevent and treat civilization-related diseases which are, nowadays, considered to be the major health problems in Western societies.
Collapse
|
309
|
Schröder T, Wiese AV, Ender F, Quell KM, Vollbrandt T, Duhn J, Sünderhauf A, Künstner A, Moreno-Fernandez ME, Derer S, Aherrahrou Z, Lewkowich I, Divanovic S, Sina C, Köhl J, Laumonnier Y. Short-term high-fat diet feeding protects from the development of experimental allergic asthma in mice. Clin Exp Allergy 2019; 49:1245-1257. [PMID: 31265181 DOI: 10.1111/cea.13454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND A close association between obesity and asthma has been described. The nature of this association remains elusive, especially with respect to allergic asthma. Controversial findings exist regarding the impact of short-term high-fat diet (HFD) feeding on the development of allergic asthma. OBJECTIVE To delineate the impact of short-term HFD feeding on the development of experimental allergic asthma. METHODS Female C57BL/6JRJ mice were fed with a short-term HFD or chow diet (CD) for 12 weeks. Allergic asthma was induced by intraperitoneal OVA/alum sensitization followed by repeated OVA airway challenges. We determined airway hyperresponsiveness (AHR) and pulmonary inflammation by histologic and flow cytometric analysis of immune cells. Furthermore, we assessed the impact of HFD on dendritic cell (DC)-mediated activation of T cells. RESULTS Female mice showed a mild increase in body weight accompanied by mild metabolic alterations. Upon OVA challenge, CD-fed mice developed strong AHR and airway inflammation, which were markedly reduced in HFD-fed mice. Mucus production was similar in both treatment groups. OVA-induced increases in DC and CD4+ T-cell recruitment to the lungs were significantly attenuated in HFD-fed mice. MHC-II expression and CD40 expression in pulmonary CD11b+ DCs were markedly lower in HFD-fed compared to CD-fed mice, which was associated in vivo with a decreased T helper (Th) 1/17 differentiation and Treg formation without impacting Th2 differentiation. CONCLUSIONS/CLINICAL RELEVANCE These findings suggest that short-term HFD feeding attenuates the development of AHR, airway inflammation, pulmonary DC recruitment and MHC-II/CD40 expression leading to diminished Th1/17 but unchanged Th2 differentiation. Thus, short-term HFD feeding and associated metabolic alterations may have protective effects in allergic asthma development.
Collapse
Affiliation(s)
- Torsten Schröder
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Anna V Wiese
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Fanny Ender
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Katharina M Quell
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Tillman Vollbrandt
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Cell Analysis Core Facility, University of Lübeck, Lübeck, Germany
| | - Jannis Duhn
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Annika Sünderhauf
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Axel Künstner
- The Lübeck Institute of Experimental Dermatology, Group of Medical Systems Biology, University of Lübeck, Lübeck, Germany.,Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Stefanie Derer
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), University Heart Centre Lübeck, Lübeck, Germany
| | - Ian Lewkowich
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christian Sina
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
310
|
Sjögren M, Soylu-Kucharz R, Dandunna U, Stan TL, Cavalera M, Sandelius Å, Zetterberg H, Björkqvist M. Leptin deficiency reverses high metabolic state and weight loss without affecting central pathology in the R6/2 mouse model of Huntington's disease. Neurobiol Dis 2019; 132:104560. [PMID: 31419548 DOI: 10.1016/j.nbd.2019.104560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/13/2019] [Accepted: 07/30/2019] [Indexed: 11/18/2022] Open
Abstract
Body weight has been shown to be a predictor of clinical progression in Huntington's disease (HD). Alongside widespread neuronal pathology, both HD patients and the R6/2 mouse model of HD exhibit weight loss and increased energy expenditure, providing a rationale for targeting whole-body energy metabolism in HD. Leptin-deficient mice display low energy expenditure and increased body weight. We therefore hypothesized that normalizing energy metabolism in R6/2 mice, utilizing leptin- deficiency, would lead to a slower disease progression in the R6/2 mouse. In this study, we show that R6/2 mice on a leptin-deficient genetic background display increased body weight and increased fat mass compared to R6/2 mice, as well as wild type littermates. The increased body weight was accompanied by low energy expenditure, illustrated by a reduction in respiratory exchange rate. Leptin-deficient R6/2 mice had large white adipocytes with white adipocyte gene expression characteristics, in contrast to white adipose tissue in R6/2 mice, where white adipose tissue showed signs of browning. Leptin-deficient R6/2 mice did not exhibit improved neuropathological measures. Our results indicate that lowering energy metabolism in HD, by increasing fat mass and reducing respiratory exchange rate, is not sufficient to affect neuropathology. Further studies targeting energy metabolism in HD are warranted.
Collapse
Affiliation(s)
- Marie Sjögren
- Wallenberg Neuroscience Center, Brain Disease Biomarker Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden.
| | - Rana Soylu-Kucharz
- Wallenberg Neuroscience Center, Brain Disease Biomarker Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Unali Dandunna
- Wallenberg Neuroscience Center, Brain Disease Biomarker Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Tiberiu Loredan Stan
- Wallenberg Neuroscience Center, Brain Disease Biomarker Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Michele Cavalera
- Department of Clinical Sciences, Cardiovascular Research, Translational Studies, Lund University, Malmö, Sweden
| | - Åsa Sandelius
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom
| | - Maria Björkqvist
- Wallenberg Neuroscience Center, Brain Disease Biomarker Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
311
|
Idrizaj E, Garella R, Squecco R, Baccari MC. Adipocytes-released Peptides Involved in the Control of Gastrointestinal Motility. Curr Protein Pept Sci 2019; 20:614-629. [PMID: 30663565 DOI: 10.2174/1389203720666190121115356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/18/2022]
Abstract
The present review focuses on adipocytes-released peptides known to be involved in the control of gastrointestinal motility, acting both centrally and peripherally. Thus, four peptides have been taken into account: leptin, adiponectin, nesfatin-1, and apelin. The discussion of the related physiological or pathophysiological roles, based on the most recent findings, is intended to underlie the close interactions among adipose tissue, central nervous system, and gastrointestinal tract. The better understanding of this complex network, as gastrointestinal motor responses represent peripheral signals involved in the regulation of food intake through the gut-brain axis, may also furnish a cue for the development of either novel therapeutic approaches in the treatment of obesity and eating disorders or potential diagnostic tools.
Collapse
Affiliation(s)
- Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Maria Caterina Baccari
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| |
Collapse
|
312
|
Markofski MM, Jennings K, Dolan C, Davies NA, LaVoy EC, Ryan EJ, Carrillo AE. Single-Arm 8-Week Ad Libitum Self-Prepared Paleo Diet Reduces Cardiometabolic Disease Risk Factors in Overweight Adults. Am J Lifestyle Med 2019; 15:690-700. [PMID: 34916890 DOI: 10.1177/1559827619866157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The paleo diet is popular among the general population due to promoted weight loss and disease prevention benefits. We examined the effectiveness of a self-administered paleo diet in improving cardiometabolic disease risk factors. Overweight, physically inactive but otherwise healthy adults (males = 4, females = 3, age 32.7 ± 4.9 years, body mass index [BMI] 29.4 ± 2.4 kg/m2) habitually eating a traditional Western diet (1853.4 ± 441.2 kcal; 34.0% carbohydrate; 41.4% fat; 19.2% protein) completed an ad libitum self-administered paleo diet for 8 weeks. Height, weight, blood pressure, and a fasting blood sample were collected pre- and post-paleo dietary intervention. Blood samples were analyzed for fasting cardiometabolic disease biomarkers-including brain-derived neurotropic factor (BDNF), fibroblast growth factor (FGF) 21, and leptin. After 8 weeks, body mass (-5.3 kg, P = .008), BMI (-1.7 kg/m2, P = .002), serum leptin (-56.2%, P = .012), serum FGF21 (-26.7%, P = .002), and serum BDNF (-25.8%, P = .045) significantly decreased. Systolic and diastolic blood pressure were unchanged following the paleo dietary intervention (P > .05). Average energy intake (-412.6 kcal, P = .016) significantly decreased with the paleo dietary intervention mostly due to a reduction in carbohydrate consumption (-69.2 g; P = .003). An 8-week self-administered paleo dietary intervention was effective in improving cardiometabolic disease risk factors in a healthy, physically inactive overweight adult population.
Collapse
Affiliation(s)
- Melissa M Markofski
- Laboratory of Integrative Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas (MMM, CD, ECL).,Office of Biostatistics, University of Texas Medical Branch, Galveston, Texas (KJ).,Department of Exercise Science, Chatham University, Pittsburgh, Pennsylvania (NAD, EJR, AEC).,FAME Laboratory, Department of Exercise Science, University of Thessaly, Karies, Trikala, Greece (AEC)
| | - Kristofer Jennings
- Laboratory of Integrative Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas (MMM, CD, ECL).,Office of Biostatistics, University of Texas Medical Branch, Galveston, Texas (KJ).,Department of Exercise Science, Chatham University, Pittsburgh, Pennsylvania (NAD, EJR, AEC).,FAME Laboratory, Department of Exercise Science, University of Thessaly, Karies, Trikala, Greece (AEC)
| | - Chad Dolan
- Laboratory of Integrative Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas (MMM, CD, ECL).,Office of Biostatistics, University of Texas Medical Branch, Galveston, Texas (KJ).,Department of Exercise Science, Chatham University, Pittsburgh, Pennsylvania (NAD, EJR, AEC).,FAME Laboratory, Department of Exercise Science, University of Thessaly, Karies, Trikala, Greece (AEC)
| | - Natalie A Davies
- Laboratory of Integrative Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas (MMM, CD, ECL).,Office of Biostatistics, University of Texas Medical Branch, Galveston, Texas (KJ).,Department of Exercise Science, Chatham University, Pittsburgh, Pennsylvania (NAD, EJR, AEC).,FAME Laboratory, Department of Exercise Science, University of Thessaly, Karies, Trikala, Greece (AEC)
| | - Emily C LaVoy
- Laboratory of Integrative Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas (MMM, CD, ECL).,Office of Biostatistics, University of Texas Medical Branch, Galveston, Texas (KJ).,Department of Exercise Science, Chatham University, Pittsburgh, Pennsylvania (NAD, EJR, AEC).,FAME Laboratory, Department of Exercise Science, University of Thessaly, Karies, Trikala, Greece (AEC)
| | - Edward J Ryan
- Laboratory of Integrative Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas (MMM, CD, ECL).,Office of Biostatistics, University of Texas Medical Branch, Galveston, Texas (KJ).,Department of Exercise Science, Chatham University, Pittsburgh, Pennsylvania (NAD, EJR, AEC).,FAME Laboratory, Department of Exercise Science, University of Thessaly, Karies, Trikala, Greece (AEC)
| | - Andres E Carrillo
- Laboratory of Integrative Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas (MMM, CD, ECL).,Office of Biostatistics, University of Texas Medical Branch, Galveston, Texas (KJ).,Department of Exercise Science, Chatham University, Pittsburgh, Pennsylvania (NAD, EJR, AEC).,FAME Laboratory, Department of Exercise Science, University of Thessaly, Karies, Trikala, Greece (AEC)
| |
Collapse
|
313
|
Sales VM, Gonçalves-Zillo T, Castoldi A, Burgos M, Branquinho J, Batista C, Oliveira V, Silva E, Castro CHM, Câmara N, Mori MA, Pesquero JB. Kinin B 1 Receptor Acts in Adipose Tissue to Control Fat Distribution in a Cell-Nonautonomous Manner. Diabetes 2019; 68:1614-1623. [PMID: 31167880 DOI: 10.2337/db18-1150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/28/2019] [Indexed: 11/13/2022]
Abstract
The kinin B1 receptor (B1R) plays a role in inflammatory and metabolic processes. B1R deletion (B1 -/-) protects mice from diet-induced obesity and improves insulin and leptin sensitivity. In contrast, genetic reconstitution of B1R exclusively in adipose tissue reverses the lean phenotype of B1 -/- mice. To study the cell-nonautonomous nature of these effects, we transplanted epididymal white adipose tissue (eWAT) from wild-type donors (B1 +/+) into B1 -/- mice (B1 +/+→B1 -/-) and compared them with autologous controls (B1 +/+→B1 +/+ or B1 -/-→B1 -/-). We then fed these mice a high-fat diet for 16 weeks and investigated their metabolic phenotypes. B1 +/+→B1 -/- mice became obese but not glucose intolerant or insulin resistant, unlike B1 -/-→B1 -/- mice. Moreover, the endogenous adipose tissue of B1 +/+→B1 -/- mice exhibited higher expression of adipocyte markers (e.g., Fabp4 and Adipoq) and changes in the immune cell pool. These mice also developed fatty liver. Wild-type eWAT transplanted into B1 -/- mice normalized circulating insulin, leptin, and epidermal growth factor levels. In conclusion, we demonstrated that B1R in adipose tissue controls the response to diet-induced obesity by promoting adipose tissue expansion and hepatic lipid accumulation in cell-nonautonomous manners.
Collapse
Affiliation(s)
- Vicencia M Sales
- Department of Biophysics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Thais Gonçalves-Zillo
- Department of Biophysics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Angela Castoldi
- Department of Immunology, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Marina Burgos
- Department of Immunology, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Jessica Branquinho
- Department of Biophysics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Carolina Batista
- Department of Biophysics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Valeria Oliveira
- Department of Biophysics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Elton Silva
- Department of Biophysics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Charlles H M Castro
- Department of Medicine, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Niels Câmara
- Department of Immunology, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Marcelo A Mori
- Department of Biophysics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - João Bosco Pesquero
- Department of Biophysics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
314
|
Cinti S. Anatomy and physiology of the nutritional system. Mol Aspects Med 2019; 68:101-107. [PMID: 30965049 DOI: 10.1016/j.mam.2019.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/03/2019] [Indexed: 12/31/2022]
Abstract
The organisms of mammals are composed of organs cooperating as systems that are organized to perform functions which allow the survival of the individual and maintenance of the species. Thus, to reach the main goals of these functions we need systems that ensure nutrient uptake and distribution, thermogenesis, oxygen uptake and distribution, the discharge of toxic internal by-products, the defense from internal and external pathogens, gamete fertilization, and the fine-tuning of the activity of all the tissues composing the organs. Most of these activities also require interactions with the internal and external environment. The latter function is served by the nervous system and the others by the cardiovascular, respiratory, excretory, immune, reproductive and endocrine systems. Nutrient intake and distribution and thermoregulation are realized by the collaborative work of the adipose and the digestive organs. In this review I will outline data on adipose tissue anatomy and function which have been collected during the past 40 years. They provide a convergent body of evidence toward a new concept regarding the collaborative work between the adipose organ and the organs of the gastrointestinal tract, which constitute a system ensuring nutrient search, intake and distribution to the organism. Furthermore, the same system also seems to enable nutrient distribution to the offspring to ensure not only short-term but also long-term homeostasis.
Collapse
Affiliation(s)
- Saverio Cinti
- University of Ancona (Politecnica delle Marche), Center of Obesity, Via Tronto 10a, 60020, Ancona, Italy; Policlinico Morgagni, Via Del Bosco 105, 95125 Catania, Italy.
| |
Collapse
|
315
|
Abstract
The discovery of leptin changed the view of adipose tissue from that of a passive vessel that stores fat to that of a dynamic endocrine organ that actively regulates behaviour and metabolism. Secreted by adipose tissue, leptin functions as an afferent signal in a negative feedback loop, acting primarily on neurons in the hypothalamus and regulating feeding and many other functions. The leptin endocrine system serves a critical evolutionary function by maintaining the relative constancy of adipose tissue mass, thereby protecting individuals from the risks associated with being too thin (starvation and infertility) or too obese (predation). In this Review, the biology of leptin is summarized, and a conceptual framework is established for studying the pathogenesis of obesity, which, analogously to diabetes, can result from either leptin hyposecretion or leptin resistance. Herein, these two states are distinguished with the terms 'type 1 obesity' and 'type 2 obesity': type 1 obesity describes a subset of obese individuals with low endogenous plasma leptin levels who respond to leptin therapy, whereas type 2 obesity describes most obese individuals, who are leptin resistant but might respond to leptin therapy in combination with other drugs, such as leptin sensitizers.
Collapse
Affiliation(s)
- Jeffrey M Friedman
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
316
|
Amer AAA, Zhu Y, Wei S, Zhang R, Wang Y, Duan J, Jiang X, Tang Y, Wang F. Relationship Between White Matter Integrity and Plasma Leptin Levels in Drug-Naïve and Medicated Patients With Major Depressive Disorder. Front Neurosci 2019; 13:707. [PMID: 31354416 PMCID: PMC6639733 DOI: 10.3389/fnins.2019.00707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/24/2019] [Indexed: 01/17/2023] Open
Abstract
Many previous studies have noticed obvious alterations in different white matter tracts among patients with major depressive disorder (MDD). Growing evidence also strongly suggest a role of leptin in the pathogenesis of MDD, but with conflicting results of leptin levels. However, no previous studies have examined the relationship between leptin and white matter integrity of patients with MDD. Therefore, we aimed in this study to investigate the relationship between white matter alterations and plasma leptin levels in both drug-naïve and medicated MDD patients. We measured plasma leptin levels and white matter integrity using diffusion tensor imaging (DTI) and voxel-based analysis (VBA) in 140 participants (40 drug-naïve MDD patients; 40 medicated MDD patients; 60 healthy controls) aged between 18 and 49 years old. A significant reduced fractional anisotropy (FA) value in the dorsomedial thalamus was found for both drug-naïve and medicated MDD patients compared to the healthy non-depressed participants (p < 0.01, corrected). In addition, leptin levels were significantly higher in the drug-naïve MDD patients and were negatively correlated with the detected white matter alteration. Our results suggest that the elevated plasma leptin levels in the drug-naïve MDD group might be associated with the changes of the white matter integrity in the dorsomedial thalamus region.
Collapse
Affiliation(s)
- Abdulrahman A. A. Amer
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Shengnan Wei
- Brain Function Research Section, First Affiliated Hospital, China Medical University, Shenyang, China
- Department of Radiology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Ran Zhang
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yang Wang
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jia Duan
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaowei Jiang
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, China
- Brain Function Research Section, First Affiliated Hospital, China Medical University, Shenyang, China
- Department of Radiology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yanqing Tang
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, China
- Brain Function Research Section, First Affiliated Hospital, China Medical University, Shenyang, China
- Department of Geriatric Medicine, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Fei Wang
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, China
- Brain Function Research Section, First Affiliated Hospital, China Medical University, Shenyang, China
- Department of Radiology, First Affiliated Hospital, China Medical University, Shenyang, China
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
317
|
Rossi HL, Raj NR, Marquez de Prado B, Kuburas A, Luu AKS, Barr GA, Recober A. Trigeminal Pain Responses in Obese ob/ob Mice Are Modality-Specific. Neuroscience 2019; 415:121-134. [PMID: 31295530 DOI: 10.1016/j.neuroscience.2019.06.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 12/19/2022]
Abstract
How obesity exacerbates migraine and other pain disorders remains unknown. Trigeminal nociceptive processing, crucial in migraine pathophysiology, is abnormal in mice with diet induced obesity. However, it is not known if this is also true in genetic models of obesity. We hypothesized that obese mice, regardless of the model, have trigeminal hyperalgesia. To test this, we first evaluated trigeminal thermal nociception in leptin deficient (ob/ob) and control mice using an operant thermal assay. Unexpectedly, we found significant hypoalgesia in ob/ob mice. Because thermal hypoalgesia also occurs in mice lacking the transient receptor potential vanilloid 1 channel (TRPV1), we tested capsaicin-evoked trigeminal nociception. Ob/ob and control mice had similar capsaicin-evoked nocifensive behaviors, but ob/ob mice were significantly less active after a facial injection of capsaicin than were diet-induced obese mice or lean controls. Conditioned place aversion in response to trigeminal stimulation with capsaicin was similar in both genotypes, indicating normal negative affect and pain avoidance. Supporting this, we found no difference in TRPV1 expression in the trigeminal ganglia of ob/ob and control mice. Finally, we assessed the possible contribution of hyperphagia, a hallmark of leptin deficiency, to the behavior observed in the operant assay. Ob/ob and lean control mice had similar reduction of intake when quinine or capsaicin was added to the sweetened milk, excluding a significant contribution of hyperphagia. In summary, ob/ob mice, unlike mice with diet-induced obesity, have trigeminal thermal hypoalgesia but normal responses to capsaicin, suggesting specificity in the mechanisms by which leptin acts in pain processing.
Collapse
Affiliation(s)
- Heather L Rossi
- Department of Neurology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Nichelle R Raj
- Department of Neurology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Blanca Marquez de Prado
- Department of Neurology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Adisa Kuburas
- Department of Neurology, University of Iowa, Iowa City, IA, USA; Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Anthony K S Luu
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Gordon A Barr
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Ana Recober
- Department of Neurology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
318
|
Deng L, Wang R, Li H, Zhang C, Zhao L, Zhang M. miRNA-Gene Regulatory Network in Gnotobiotic Mice Stimulated by Dysbiotic Gut Microbiota Transplanted From a Genetically Obese Child. Front Microbiol 2019; 10:1517. [PMID: 31333621 PMCID: PMC6624655 DOI: 10.3389/fmicb.2019.01517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota (GM) dysbiosis has been considered a pathogenic origin of many chronic diseases. In our previous trial, a shift in GM structure caused by a complex fiber-rich diet was associated with the health improvement of obese Prader-Willi syndrome (PWS) children. The pre- and post-intervention GMs (pre- and post-group, respectively) from one child were then transplanted into gnotobiotic mice, which resulted in significantly different physiological phenotypes, each of which was similar to the phenotype of the corresponding GM donor. This study was designed to investigate the miRNA-gene regulatory networks involved in causing these phenotypic differences. Using the post-group as a reference, we systematically identified and annotated the differentially expressed (DE) miRNAs and genes in the colon and liver of the pre-group in the second and fourth weeks after GM inoculation. Most of the significantly enriched GO terms and KEGG pathways were observed in the liver and were in the second week after GM transplantation. We screened 23 key genes along with their 73 miRNA regulators relevant to the host phenotype changes and constructed a network. The network contained 92 miRNA-gene regulation relationships, 51 of which were positive, and 41 of which were negative. Both the colon and liver had upregulated pro-inflammatory genes, and genes involved in fatty acid oxidation, lipolysis, and plasma cholesterol clearance were downregulated in only the liver. These changes were consistent with lipid and cholesterol accumulation in the host and with a high inflammation level. In addition, the colon showed an impacted glucagon-like peptide 1 (GLP-1) signaling pathway, while the liver displayed decreased insulin receptor signaling pathway activity. These molecular changes were mainly found in the second week, 2 weeks before changes in body fat occurred. This time lag indicated that GM dysbiosis might initially induce cholesterol and lipid metabolism-related miRNA and gene expression disorder and then lead to lipid accumulation and obesity development, which implicates a causative role of GM dysbiosis in obesity development rather than a result of obesity. This study provides fundamental molecular information that elucidates how dysbiotic GM increases host inflammation and disturbs host lipid and glucose metabolism.
Collapse
Affiliation(s)
- Liman Deng
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruirui Wang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Li
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers New Jersey Institute for Food, Nutrition, and Health, Rutgers University-New Brunswick, New Brunswick, NJ, United States
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
319
|
Jeung WH, Nam W, Kim HJ, Kim JY, Nam B, Jang SS, Lee JL, Sim JH, Park SD. Oral Administration of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 with Cinnamomi Ramulus Extract Reduces Diet-Induced Obesity and Modulates Gut Microbiota. Prev Nutr Food Sci 2019; 24:136-143. [PMID: 31328117 PMCID: PMC6615350 DOI: 10.3746/pnf.2019.24.2.136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/28/2019] [Indexed: 12/15/2022] Open
Abstract
Obesity is a major health issue worldwide, and is associated with many diseases including type 2 diabetes. In this study, we evaluated the anti-obesity effects of combinations of two lactic acid bacteria (LAB), Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032, and Cinnamomi Ramulus (CR) extract, and explored the mechanism through which they modulate gut microbiota using diet-induced obese mice. Male C57BL/6J mice were randomly divided into five groups that received a high-fat diet (HFD), HFD and LAB (HFD+LAB), HFD and CR extract (HFD+CR), HFD with LAB and CR extract (HFD+LAB+CR), or normal diet for 10 weeks. The mice in the HFD+LAB+CR group showed significant reductions in body weight gain, in particular epididymal fat and liver, blood leptin levels, and an increase in the levels of blood adiponectin. In addition, the LAB and CR extract altered the gut microbiota, mainly increasing the alpha diversity. These results demonstrate that a mixture of two LAB (Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032) and CR extracts alleviate HFD-induced obesity, and has potential of being used as a strategy for the treatment of obesity.
Collapse
Affiliation(s)
- Woon Hee Jeung
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| | - Woo Nam
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| | - Hyeon Ji Kim
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| | - Joo Yun Kim
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| | - Bora Nam
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| | - Sung Sik Jang
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| | - Jung-Lyoul Lee
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| | - Jae-Hun Sim
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| | - Soo-Dong Park
- R&BD Center, Korea Yakult Co., Ltd., Gyeonggi 17086, Korea
| |
Collapse
|
320
|
López-Fontana CM, Pennacchio G, Zyla LE, Toneatto J, Bruna FA, Ortiz N, Sassi PL, Santiano FE, García S, Sasso CV, Pietrobon EO, Jahn GA, Pistone Creydt V, Soaje M, Carón RW. Effects of hypothyroidism on the mesenteric and omental adipose tissue in rats. Mol Cell Endocrinol 2019; 490:88-99. [PMID: 31004687 DOI: 10.1016/j.mce.2019.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 12/27/2022]
Abstract
To characterize the influence of hypothyroidism on the endocrine activity of mesenteric and omental adipose tissue (MOAT) and the peripheral regulation of energy balance (EB) in rats, we analyzed food intake (FI); basal metabolic rate (BMR); locomotor activity; body weight (BW); serum hormone concentrations and the expression of their receptors in MOAT. We evaluated the morphology and differentiation of adipocytes. Hypothyroidism decreased FI, BMR and BW. The percentage of visceral white adipose tissue (WAT) depots and the morphology of adipocytes were similar to euthyroid rats. Serum leptin and adiponectin expression in MOAT were altered by hypothyroidism. The expression of Perilipin 1, HSL, UCP1 and PRDM16 was significantly lower in MOAT of hypothyroid animals. Hypothyroidism in rats leads to a compensated EB by inducing a white adipocyte dysfunction and a decrease in BW, BMR, FI and adipokine secretions without changing the percentage of WAT depots and the morphology of the MOAT.
Collapse
Affiliation(s)
- C M López-Fontana
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - G Pennacchio
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - L E Zyla
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - J Toneatto
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina.
| | - F A Bruna
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - N Ortiz
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - P L Sassi
- Instituto Argentino de Investigaciones de las Zonas Áridas (IADIZA), CONICET, CCT-Mendoza, Argentina.
| | - F E Santiano
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - S García
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - C V Sasso
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - E O Pietrobon
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - G A Jahn
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - V Pistone Creydt
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - M Soaje
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - R W Carón
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| |
Collapse
|
321
|
Roberts BL, Bennett BJ, Bennett CM, Carroll JM, Dalbøge LS, Hall C, Hassouneh W, Heppner KM, Kirigiti MA, Lindsley SR, Tennant KG, True CA, Whittle A, Wolf AC, Roberts CT, Tang-Christensen M, Sleeman MW, Cowley MA, Grove KL, Kievit P. Reelin is modulated by diet-induced obesity and has direct actions on arcuate proopiomelanocortin neurons. Mol Metab 2019; 26:18-29. [PMID: 31230943 PMCID: PMC6667498 DOI: 10.1016/j.molmet.2019.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/22/2019] [Accepted: 06/04/2019] [Indexed: 11/26/2022] Open
Abstract
Objective Reelin (RELN) is a large glycoprotein involved in synapse maturation and neuronal organization throughout development. Deficits in RELN signaling contribute to multiple psychological disorders, such as autism spectrum disorder, schizophrenia, and bipolar disorder. Nutritional stress alters RELN expression in brain regions associated with these disorders; however, the involvement of RELN in the neural circuits involved in energy metabolism is unknown. The RELN receptors apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor (VLDLR) are involved in lipid metabolism and expressed in the hypothalamus. Here we explored the involvement of RELN in hypothalamic signaling and the impact of diet-induced obesity (DIO) on this system. Methods Adult male mice were fed a chow diet or maintained on a high-fat diet (HFD) for 12–16 weeks. HFD-fed DIO mice exhibited decreased ApoER2 and VLDLR expression and increased RELN protein in the hypothalamus. Electrophysiology was used to determine the mechanism by which the central fragment of RELN (CF-RELN) acts on arcuate nucleus (ARH) satiety-promoting proopiomelanocortin (POMC) neurons and the impact of DIO on this circuitry. Results CF-RELN exhibited heterogeneous presynaptic actions on inhibitory inputs onto ARH-POMC-EGFP neurons and consistent postsynaptic actions. Additionally, central administration of CF-RELN caused a significant increase in ARH c-Fos expression and an acute decrease in food intake and body weight. Conclusions We conclude that RELN signaling is modulated by diet, that RELN is involved in synaptic signaling onto ARH-POMC neurons, and that altering central CF-RELN levels can impact food intake and body weight. Diet-induced obesity alters reelin protein levels and expression of ApoER2 and VLDLR. Reelin has direct, but divergent actions on GABAergic inputs onto POMC neurons. Central administration of reelin protein decreases food intake and body weight.
Collapse
Affiliation(s)
- Brandon L Roberts
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Baylin J Bennett
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Camdin M Bennett
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Julie M Carroll
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | | | - Colin Hall
- Obesity Research Center, Novo Nordisk, Seattle, WA, 98109, USA
| | - Wafa Hassouneh
- Obesity Research Center, Novo Nordisk, Seattle, WA, 98109, USA
| | | | - Melissa A Kirigiti
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Sarah R Lindsley
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Katherine G Tennant
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Cadence A True
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Andrew Whittle
- Obesity Research Center, Novo Nordisk, Seattle, WA, 98109, USA
| | - Anitra C Wolf
- Obesity Research Center, Novo Nordisk, Seattle, WA, 98109, USA
| | - Charles T Roberts
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | | | - Mark W Sleeman
- Department of Physiology, Monash University Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Michael A Cowley
- Department of Physiology, Monash University Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Kevin L Grove
- Obesity Research Center, Novo Nordisk, Seattle, WA, 98109, USA
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA.
| |
Collapse
|
322
|
|
323
|
Inagaki-Ohara K. Gastric Leptin and Tumorigenesis: Beyond Obesity. Int J Mol Sci 2019; 20:ijms20112622. [PMID: 31141984 PMCID: PMC6600422 DOI: 10.3390/ijms20112622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
Leptin, an adipocyte-derived hormone and its receptor (ObR) expressed in the hypothalamus are well known as an essential regulator of appetite and energy expenditure. Obesity induces abundant leptin production, however, reduced sensitivity to leptin leads to the development of metabolic disorders, so called leptin resistance. The stomach has been identified as an organ that simultaneously expresses leptin and ObR. Accumulating evidence has shown gastric leptin to perform diverse functions, such as those in nutrient absorption and carcinogenesis in the gastrointestinal system, independent of its well-known role in appetite regulation and obesity. Overexpression of leptin and phosphorylated ObR is implicated in gastric cancer in humans and in murine model, and diet-induced obesity causes precancerous lesions in the stomach in mice. While the underlying pathomechanisms remain unclear, leptin signaling can affect gastric mucosal milieu. In this review, we focus on the significant role of the gastric leptin signaling in neoplasia and tumorigenesis in stomach in the context of hereditary and diet-induced obesity.
Collapse
Affiliation(s)
- Kyoko Inagaki-Ohara
- Division of Host Defense, Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima 727-0023, Japan.
| |
Collapse
|
324
|
Lloret A, Monllor P, Esteve D, Cervera-Ferri A, Lloret MA. Obesity as a Risk Factor for Alzheimer's Disease: Implication of Leptin and Glutamate. Front Neurosci 2019; 13:508. [PMID: 31191220 PMCID: PMC6540965 DOI: 10.3389/fnins.2019.00508] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/02/2019] [Indexed: 12/22/2022] Open
Abstract
Obesity is known to induce leptin and insulin resistance. Leptin is a peptide hormone synthesized in adipose tissue that mainly regulates food intake. It has been shown that insulin stimulates the production of leptin when adipocytes are exposed to glucose to encourage satiety; while leptin, via a negative feedback, decreases the insulin release and enhances tissue sensitivity to it, leading to glucose uptake for energy utilization or storage. Therefore, resistance to insulin is closely related to leptin resistance. Obesity in middle age has also been related to Alzheimer's disease (AD). In recent years, the relation between impaired leptin signaling pathway and the onset of AD has been studied. In all this context the role of the blood brain barrier (BBB) is crucial. Slow excitotoxicity happens in AD due to an excess of the neurotransmitter glutamate. Since leptin has been shown to regulate N-methyl-D-aspartate (NMDA) receptors, we want to review the link between these pathological pathways, and how they are affected by other AD triggering factors and its role in the onset of AD.
Collapse
Affiliation(s)
- Ana Lloret
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Valencia, Spain
| | - Paloma Monllor
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Valencia, Spain
| | - Daniel Esteve
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Valencia, Spain
| | - Ana Cervera-Ferri
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Maria-Angeles Lloret
- Department of Clinic Neurophysiology, University Clinic Hospital of Valencia, Valencia, Spain
| |
Collapse
|
325
|
Nour HA, El Sawaf AL, Elewa SM, El Sayed Y. Strength and independence of associations between ghrelin, leptin, adiponectin and insulin in stimulating basic functions to energy metabolism. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2013.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Hoda A. Nour
- Physiology Department, Medical Research Institute, Alexandria University, Egypt
| | - Amel L. El Sawaf
- Physiology Department, Medical Research Institute, Alexandria University, Egypt
| | - Samia M. Elewa
- Physiology Department, Medical Research Institute, Alexandria University, Egypt
| | - Yosria El Sayed
- Physiology Department, Medical Research Institute, Alexandria University, Egypt
| |
Collapse
|
326
|
Abo Zeid AA, El Saka MH, Abdalfattah AA, Zineldeen DH. Potential factors contributing to poor iron status with obesity. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2013.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Abeer A. Abo Zeid
- Department of Physiology, Faculty of Medicine, Tanta University, Egypt
| | - Mervat H. El Saka
- Department of Physiology, Faculty of Medicine, Tanta University, Egypt
| | | | - Doaa H. Zineldeen
- Department of Biochemistry, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
327
|
Tuttle M, Dalman MR, Liu Q, Londraville RL. Leptin-a mediates transcription of genes that participate in central endocrine and phosphatidylinositol signaling pathways in 72-hour embryonic zebrafish ( Danio rerio). PeerJ 2019; 7:e6848. [PMID: 31110923 PMCID: PMC6501765 DOI: 10.7717/peerj.6848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/26/2019] [Indexed: 01/01/2023] Open
Abstract
We analyzed microarray expression data to highlight biological pathways that respond to embryonic zebrafish Leptin-a (lepa) signaling. Microarray expression measures for 26,046 genes were evaluated from lepa morpholino oligonucleotide "knockdown", recombinant Leptin-a "rescue", and uninjected control zebrafish at 72-hours post fertilization. In addition to KEGG pathway enrichment for phosphatidylinositol signaling and neuroactive ligand-receptor interactions, Gene Ontology (GO) data from lepa rescue zebrafish include JAK/STAT cascade, sensory perception, nervous system processes, and synaptic signaling. In the zebrafish lepa rescue treatment, we found changes in the expression of homologous genes that align with mammalian leptin signaling cascades including AMPK (prkaa2), ACC (acacb), Ca2+/calmodulin-dependent kinase (camkk2), PI3K (pik3r1), Ser/Thr protein kinase B (akt3), neuropeptides (agrp2, cart1), mitogen-activated protein kinase (MAPK), and insulin receptor substrate (LOC794738, LOC100537326). Notch signaling pathway and ribosome biogenesis genes respond to knockdown of Leptin-a. Differentially expressed transcription factors in lepa knockdown zebrafish regulate neurogenesis, neural differentiation, and cell fate commitment. This study presents a role for zebrafish Leptin-a in influencing expression of genes that mediate phosphatidylinositol and central endocrine signaling.
Collapse
Affiliation(s)
- Matthew Tuttle
- Biology, University of Akron, Akron, OH, United States of America
| | - Mark R Dalman
- Podiatric Medicine, Kent State University, Kent, OH, United States of America
| | - Qin Liu
- Biology, University of Akron, Akron, OH, United States of America
| | | |
Collapse
|
328
|
The role of hormonal, metabolic and inflammatory biomarkers on sleep and appetite in drug free patients with major depression: A systematic review. J Affect Disord 2019; 250:249-259. [PMID: 30870775 DOI: 10.1016/j.jad.2019.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/30/2019] [Accepted: 03/03/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is a complex and heterogeneous disorder in which clinical symptoms can widely differ among patients. Neurovegetative symptoms, i.e. decreased or increased appetite, changes in body weight and sleep disturbances, described as 'melancholic' or 'atypical' features of a depressive episode, are the most variable symptoms among patients with MDD. We hypothesized biomarkers differences underlying this neurovegetative variability in major depression. METHODS We systematically reviewed, according to the PRISMA guidelines, the role of specific metabolic, hormonal and inflammatory biomarkers in drug-free MDD patients, that could have neurobiological effects on appetite, weight regulation and circadian rhythms, influencing eating behaviour and sleep patterns. All studies regarding the co-occurrence of disturbed sleep and appetite were examined. RESULTS Besides the well-known leptin and ghrelin, other biomarkers such as BDNF, VEGF, NPY, orexin, and the recent discovered nesfatin-1 seem to be involved in neurovegetative changes in depressive disorders playing a role in the regulation of affective states, stress reactions and sleep patterns. Interestingly, based on the existing evidence, ghrelin, orexin and nesfatin-1 could be linked both to sleep and appetite regulation in depressed patients. LIMITATIONS Heterogeneous studies with low sample size. CONCLUSIONS Despite the wide heterogeneity of results, studies on biomarkers of appetite and sleep in MDD are an interesting field of research to explain the neurobiological substrates of depressive symptoms that deserve further investigation.
Collapse
|
329
|
Garcia-Galiano D, Borges BC, Allen SJ, Elias CF. PI3K signalling in leptin receptor cells: Role in growth and reproduction. J Neuroendocrinol 2019; 31:e12685. [PMID: 30618188 PMCID: PMC6533139 DOI: 10.1111/jne.12685] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/15/2022]
Abstract
Nutrition and growth are important signals for pubertal development, although how they are perceived and integrated in brain circuits has not been well defined. Growth hormones and metabolic cues both recruit phosphatidylinositol 3-kinase (PI3K) signalling in hypothalamic sites, although whether they converge into the same neuronal population(s) is also not known. In this review, we discuss recent findings from our laboratory showing the role of PI3K subunits in cells directly responsive to the adipocyte-derived hormone leptin in the coordination of growth, pubertal development and fertility. Mice with deletion of PI3K p110α and p110β catalytic subunits in leptin receptor cells (LRΔα+β ) have a lean phenotype associated with increased energy expenditure, locomotor activity and thermogenesis. The LRΔα+β mice also show deficient growth and delayed puberty. Deletion of a single subunit (ie, p110α) in LR cells (LRΔα ) causes a similar phenotype of increased energy expenditure, deficient growth and delayed pubertal development, indicating that these functions are preferably controlled by p110α. The LRΔα mice show enhanced leptin sensitivity in metabolic regulation but, remarkably, these mice are unresponsive to the effects of leptin on growth and puberty. PI3K is also recruited by insulin and a subpopulation of LR neurones is responsive to i.c.v. insulin administration. Deletion of insulin receptor in LR cells causes no changes in body weight or linear growth and induces only a mild delay in pubertal completion. Our findings demonstrate that PI3K in LR cells plays an essential role in growth and reproduction. We will also discuss the potential neural pathways underlying these effects.
Collapse
Affiliation(s)
- David Garcia-Galiano
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Beatriz C. Borges
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Susan J. Allen
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Carol F. Elias
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
330
|
Shiuchi T, Miyatake Y, Otsuka A, Chikahisa S, Sakaue H, Séi H. Role of orexin in exercise-induced leptin sensitivity in the mediobasal hypothalamus of mice. Biochem Biophys Res Commun 2019; 514:166-172. [PMID: 31029425 DOI: 10.1016/j.bbrc.2019.04.145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/19/2019] [Indexed: 01/12/2023]
Abstract
Orexin is known as an important neuropeptide in the regulation of energy metabolism. However, the role of orexin in exercise-induced leptin sensitivity in the hypothalamus has been unclear. In this study, we determined the effect of transient treadmill exercise on leptin sensitivity in the mediobasal hypothalamus (MBH) of mice and examined the role of orexin in post-exercise leptin sensitivity. Treadmill running for 45 min increased the orexin neuron activity in mice. Intraperitoneal injection of a submaximal dose of leptin after exercise stimulated the phosphorylation of signal transducer and activator of transcription 3 (STAT3) in MBH of mice post-exercise compared with that in non-exercised mice, although intracerebroventricular (icv) injection of leptin did not enhance STAT3 phosphorylation, even after exercise. Icv injection of an orexin receptor antagonist, SB334867 reduced STAT3 phosphorylation, which was enhanced by icv injection of orexin but not by direct injection of orexin into MBH. Exercise increased the phosphorylation of extracellular signal-regulated kinases (ERKs) in the MBH of mice, while ERK phosphorylation was reduced by SB334867. Leptin injection after exercise increased the leptin level in MBH, whereas icv injection of SB334867 suppressed the increase in the leptin level in MBH of mice. These results indicate that the activation of orexin neurons by exercise may contribute to the enhancement of leptin sensitivity in MBH. This effect may be mediated by increased transportation of circulating leptin into MBH, with the involvement of ERK phosphorylation.
Collapse
Affiliation(s)
- Tetsuya Shiuchi
- Department of Integrative Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.
| | - Yumiko Miyatake
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Airi Otsuka
- Department of Integrative Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Sachiko Chikahisa
- Department of Integrative Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Hiroyoshi Séi
- Department of Integrative Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| |
Collapse
|
331
|
Suarez AN, Noble EE, Kanoski SE. Regulation of Memory Function by Feeding-Relevant Biological Systems: Following the Breadcrumbs to the Hippocampus. Front Mol Neurosci 2019; 12:101. [PMID: 31057368 PMCID: PMC6482164 DOI: 10.3389/fnmol.2019.00101] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
The hippocampus (HPC) controls fundamental learning and memory processes, including memory for visuospatial navigation (spatial memory) and flexible memory for facts and autobiographical events (declarative memory). Emerging evidence reveals that hippocampal-dependent memory function is regulated by various peripheral biological systems that are traditionally known for their roles in appetite and body weight regulation. Here, we argue that these effects are consistent with a framework that it is evolutionarily advantageous to encode and recall critical features surrounding feeding behavior, including the spatial location of a food source, social factors, post-absorptive processing, and other episodic elements of a meal. We review evidence that gut-to-brain communication from the vagus nerve and from feeding-relevant endocrine systems, including ghrelin, insulin, leptin, and glucagon-like peptide-1 (GLP-1), promote hippocampal-dependent spatial and declarative memory via neurotrophic and neurogenic mechanisms. The collective literature reviewed herein supports a model in which various stages of feeding behavior and hippocampal-dependent memory function are closely linked.
Collapse
Affiliation(s)
| | | | - Scott E. Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
332
|
Hedström AK, Klareskog L, Alfredsson L. Interplay between obesity and smoking with regard to RA risk. RMD Open 2019; 5:e000856. [PMID: 31168404 PMCID: PMC6525604 DOI: 10.1136/rmdopen-2018-000856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022] Open
Abstract
Objectives Previous studies on rheumatoid arthritis (RA) and body mass index (BMI) have yielded diverging results. We aimed to clarify the influence of BMI on the risk of developing anticitrullinated peptide antibody (ACPA)-positive and ACPA-negative RA by taking into consideration gender, smoking habits and human leukocyte antigen (HLA-DRB1) shared epitope (SE) status. Methods The present report is based on a Swedish population-based, case–control study with incident cases of RA (3572 cases, 5772 matched controls). Using logistic regression models, overweight/obese subjects were compared with normal weight subjects regarding risk of developing RA, by calculating ORs with 95% CIs. Results We observed diverging results for women and men. Among women, the risk of both ACPA-positive and ACPA-negative RA increased with increasing BMI, whereas an inverse association was observed among men for ACPA-positive RA. The results were similar regardless if RA onset before or after the age of 55 years was considered. When the analyses were stratified by smoking habits, the influence of BMI on RA risk was mainly restricted to smokers. Among women, a significant interaction was observed between smoking and overweight/obesity with regard to both subsets of RA. No interaction was observed between HLA-DRB1 SE and overweight/obesity with regard to RA risk. Conclusions The interaction between smoking and obesity regarding risk for RA in women warrants efforts to reduce these risk factors in those at risk for RA. The sex differences concerning the influence of obesity on RA risk merit further studies to verify these results and understand underlying mechanisms.
Collapse
Affiliation(s)
- Anna Karin Hedström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars Klareskog
- Department of Rheumatology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
333
|
Zhang X, Gu HF, Frystyk J, Efendic S, Brismar K, Thorell A. Analyses of IGFBP2 DNA methylation and mRNA expression in visceral and subcutaneous adipose tissues of obese subjects. Growth Horm IGF Res 2019; 45:31-36. [PMID: 30921666 DOI: 10.1016/j.ghir.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022]
Abstract
Insulin-like growth factor binding-protein 2 (IGFBP-2) is secreted by differentiating white adipocytes. Clinical studies demonstrate that circulating IGFBP-2 levels associated inversely with body mass index (BMI) and insulin resistance. To explore possible epigenetic changes of the IGFBP2 gene in obesity, we analyzed DNA methylation and mRNA expression in adipocytes from different depots. Healthy lean controls (BMI = 24.5 ± 0.3 kg/m2, n = 19) and obese subjects (BMI > 35 kg/m2, n = 24) were recruited. All subjects were Swedish Caucasian. Visceral abdominal adipose tissue (VAT) and subcutaneous adipose tissue (SAT) fragments were homogenized. Genomic DNA and total RNAs were extracted. Four CpG sites in the IGFBP2 gene promoter region were analyzed with bisulfite pyrosequencing. IGFBP2 gene expression at mRNA levels was determined with TaqMan real time RT-PCR. Serum samples were used for measurement of circulating IGFBP-2 and leptin levels. IGFBP2 DNA methylation levels in VAT were increased in obese subjects compared with controls (P < .05). By contrast, IGFBP2 mRNA expression levels in VAT were lower in obesity subjects than in controls (P < .05). In SAT, IGFBP2 DNA methylation and RNA expression levels were lower than in VAT, irrespective of obesity. Obese subjects demonstrated increased serum leptin levels (P < .001) and reduced serum IGFBP-2 levels compared to controls (P < .05). In conclusion, the current study demonstrates that IGFBP2 DNA methylation levels are increased in VAT from obese subjects. This suggests that IGFBP-2 is epigenetically regulated in abdominal obesity.
Collapse
Affiliation(s)
- Xiuli Zhang
- Department of Nephrology, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Guangdong 518000, China
| | - Harvest F Gu
- Center for Pathophysiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Jan Frystyk
- Department of Endocrinology, Odense University Hospital & Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense DK-5000, Denmark; Department of Clinical Medicine Health, Aarhus University, Aarhus C DK-8000, Denmark.
| | - Suad Efendic
- Rolf Luft Center for Diabetes Research and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 17176, Sweden.
| | - Kerstin Brismar
- Rolf Luft Center for Diabetes Research and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 17176, Sweden; Department of Endocrinology, Diabetes and Metabolism, Karolinska University Hospital, Stockholm, Sweden.
| | - Anders Thorell
- Department of Clinical Science, Danderyds Hospital, Karolinska Institutet, Danderyd, Stockholm 18288, Sweden; Department of Surgery, Ersta Hospital, Karolinska Institutet, Stockholm 11691, Sweden.
| |
Collapse
|
334
|
|
335
|
Xu JQ, Xu XM, Bi ZQ, Shi LL, Cao J, Zhao ZJ. The less weight loss due to modest food restriction drove more fat accumulation in striped hamsters refed with high-fat diet. Horm Behav 2019; 110:19-28. [PMID: 30790562 DOI: 10.1016/j.yhbeh.2019.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 12/11/2022]
Abstract
Food restriction (FR) has been commonly used to decrease body fat, reducing the risk of overweight in humans and animals. However, the lost weight has been shown to be followed by overweight when food restriction ends. It remains uncertain whether the weight loss drives the overweight, or not. In the present study, striped hamsters were restricted by 15%, 30% and 40% of ad libitum food intake for 2 weeks, followed by high-fat refeeding for 6 weeks (FR15%-Re, FR30%-Re and FR40%-Re). The hamsters in FR15%, FR30% and FR40% groups decreased by 21.1%, 37.8% and 50.0% in fat mass (P < 0.01), and 16.8%, 42.8% and 53.4% in leptin levels (P < 0.01) compared with the hamsters fed ad libitum. The FR15%-Re, FR30%-Re and FR40%-Re groups showed 77.0%, 37.2% and 23.7% more body fat than ad libitum group (P < 0.01). The FR15%-Re group showed considerable decreases in gene expression of arcuate nucleus co-expressing proopiomelanocortin (POMC), cocaine - and amphetamineregulated transcript (CART) and the long isoform of leptin receptor (LepRb) in the hypothalamus and of several genes associated with fatty acid transport to mitochondria and β-oxidation in brown adipose tissue and liver. It suggests that less weight loss is likely to drive more fat accumulation when food restriction ends, in which the impaired function of LepRb, POMC and CART in the brain and fatty acid oxidation in brown adipose tissue and liver may be involved.
Collapse
Affiliation(s)
- Jia-Qi Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xiao-Ming Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhong-Qiang Bi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Lu-Lu Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
336
|
Roche J, Isacco L, Perret F, Dumoulin G, Gillet V, Mougin F. Beneficial effects of a lifestyle intervention program on C-reactive protein: impact of cardiorespiratory fitness in obese adolescents with sleep disturbances. Am J Physiol Regul Integr Comp Physiol 2019; 316:R376-R386. [PMID: 30789791 DOI: 10.1152/ajpregu.00309.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The objectives of this study were to assess the relationship between inflammation and obstructive sleep apnea (OSA) and determine whether the lifestyle program's effects on inflammatory markers are associated with changes in anthropometric parameters, cardiorespiratory fitness, sleep duration, and OSA severity in severely obese adolescents. Participants were aged 14.6 (SD 1.2) yr, with a body mass index (BMI) of 40.2 (SD 6.5) kg/m2. Sleep, anthropometric parameters, glucose metabolism, inflammatory profile, and cardiorespiratory fitness [V̇o2peak relative to body weight (V̇o2peakBW) and fat-free mass (V̇o2peakFFM)] were assessed at admission and at the end of a 9-mo lifestyle intervention program (LIP). Associations between C-reactive protein (CRP) concentrations and BMI, sex, oxygen desaturation index (ODI), sleep fragmentation, total sleep time (TST), and V̇o2peak were assessed via ANCOVA. Twenty-three subjects completed the study. OSA subjects ( n = 13) exhibited higher CRP concentrations and a trend for higher BMI than non-OSA subjects ( P = 0.09) at admission. After intervention, OSA was normalized in six subjects, and CRP significantly decreased in the OSA group and in the whole population. In both groups, leptin levels significantly decreased, whereas adiponectin concentrations increased. At admission, BMI adjusted for sex, arousal index, ODI, TST, and V̇o2peakBW was associated with CRP levels (adjusted r2 = 0.32, P < 0.05). The decrease in CRP concentrations postintervention was associated with enhanced V̇o2peakFFM adjusted for sex, weight loss, and changed sleep parameters (adjusted r2 = 0.75, P < 0.05). Despite higher amounts of CRP in OSA subjects, obesity severity outweighs the proinflammatory effects of OSA, short sleep duration, and low cardiorespiratory fitness. However, enhanced cardiorespiratory fitness is associated with the decrease of inflammation after controlling for the same parameters.
Collapse
Affiliation(s)
- Johanna Roche
- Research unit EA3920, Prognostic Markers and Regulatory Factors of Cardiovascular Diseases and Exercise Performance, Health, Innovation platform, University of Bourgogne Franche-Comté , Besançon , France.,Sports Science Faculty, University of Bourgogne Franche-Comté , Besançon , France.,Sleep Medicine Center, Ellipse, Franois, France
| | - Laurie Isacco
- Research unit EA3920, Prognostic Markers and Regulatory Factors of Cardiovascular Diseases and Exercise Performance, Health, Innovation platform, University of Bourgogne Franche-Comté , Besançon , France.,Sports Science Faculty, University of Bourgogne Franche-Comté , Besançon , France
| | - Frédéric Perret
- UGECAM Bourgogne Franche-Comté, Specialized residential institution, La Beline, Salins les Bains, France
| | - Gilles Dumoulin
- Research unit EA3920, Prognostic Markers and Regulatory Factors of Cardiovascular Diseases and Exercise Performance, Health, Innovation platform, University of Bourgogne Franche-Comté , Besançon , France.,University Hospital of Besançon, Department of Endocrine and Metabolic Biochemistry , Besançon , France
| | | | - Fabienne Mougin
- Research unit EA3920, Prognostic Markers and Regulatory Factors of Cardiovascular Diseases and Exercise Performance, Health, Innovation platform, University of Bourgogne Franche-Comté , Besançon , France.,Sports Science Faculty, University of Bourgogne Franche-Comté , Besançon , France
| |
Collapse
|
337
|
Gravisse N, Vibarel-Rebot N, Buisson C, Le Tiec C, Castanier C, Do MC, Gagey O, Audran M, Collomp K. Short-term DHEA administration in recreational athletes: impact on food intake, segmental body composition and adipokines. J Sports Med Phys Fitness 2019; 59:808-816. [DOI: 10.23736/s0022-4707.18.08845-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
338
|
Engin AB, Engin A, Gonul II. The effect of adipocyte-macrophage crosstalk in obesity-related breast cancer. J Mol Endocrinol 2019; 62:R201-R222. [PMID: 30620711 DOI: 10.1530/jme-18-0252] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022]
Abstract
Adipose tissue is the primary source of many pro-inflammatory cytokines in obesity. Macrophage numbers and pro-inflammatory gene expression are positively associated with adipocyte size. Free fatty acid and tumor necrosis factor-α involve in a vicious cycle between adipocytes and macrophages aggravating inflammatory changes. Thereby, M1 macrophages form a characteristic 'crown-like structure (CLS)' around necrotic adipocytes in obese adipose tissue. In obese women, CLSs of breast adipose tissue are responsible for both increase in local aromatase activity and aggressive behavior of breast cancer cells. Interlinked molecular mechanisms between adipocyte-macrophage-breast cancer cells in obesity involve seven consecutive processes: Excessive release of adipocyte- and macrophage-derived inflammatory cytokines, TSC1-TSC2 complex-mTOR crosstalk, insulin resistance, endoplasmic reticulum (ER) stress and excessive oxidative stress generation, uncoupled respiration and hypoxia, SIRT1 controversy, the increased levels of aromatase activity and estrogen production. Considering elevated risks of estrogen receptor (E2R)-positive postmenopausal breast cancer growth in obesity, adipocyte-macrophage crosstalk is important in the aforementioned issues. Increased mTORC1 signaling in obesity ensures the strong activation of oncogenic signaling in E2Rα-positive breast cancer cells. Since insulin and insulin-like growth factors have been identified as tumor promoters, hyperinsulinemia is an independent risk factor for poor prognosis in breast cancer despite peripheral insulin resistance. The unpredictable effects of adipocyte-derived leptin-estrogen-macrophage axis, and sirtuin 1 (SIRT1)-adipose-resident macrophage axis in obese postmenopausal patients with breast cancer are unresolved mechanistic gaps in the molecular links between the tumor growth and adipocytokines.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ipek Isik Gonul
- Department of Pathology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
339
|
Relationships between circulating 25(OH) vitamin D, leptin levels and visceral adipose tissue volume: results from a 1-year lifestyle intervention program in men with visceral obesity. Int J Obes (Lond) 2019. [DOI: 10.1038/s41366-019-0347-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
340
|
Krause MP, Milne KJ, Hawke TJ. Adiponectin-Consideration for its Role in Skeletal Muscle Health. Int J Mol Sci 2019; 20:ijms20071528. [PMID: 30934678 PMCID: PMC6480271 DOI: 10.3390/ijms20071528] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022] Open
Abstract
Adiponectin regulates metabolism through blood glucose control and fatty acid oxidation, partly mediated by downstream effects of adiponectin signaling in skeletal muscle. More recently, skeletal muscle has been identified as a source of adiponectin expression, fueling interest in the role of adiponectin as both a circulating adipokine and a locally expressed paracrine/autocrine factor. In addition to being metabolically responsive, skeletal muscle functional capacity, calcium handling, growth and maintenance, regenerative capacity, and susceptibility to chronic inflammation are all strongly influenced by adiponectin stimulation. Furthermore, physical exercise has clear links to adiponectin expression and circulating concentrations in healthy and diseased populations. Greater physical activity is generally related to higher adiponectin expression while lower adiponectin levels are found in inactive obese, pre-diabetic, and diabetic populations. Exercise training typically restores plasma adiponectin and is associated with improved insulin sensitivity. Thus, the role of adiponectin signaling in skeletal muscle has expanded beyond that of a metabolic regulator to include several aspects of skeletal muscle function and maintenance critical to muscle health, many of which are responsive to, and mediated by, physical exercise.
Collapse
Affiliation(s)
- Matthew P Krause
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada.
| | - Kevin J Milne
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada.
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, 1280 Main Street, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
341
|
Rocha VDS, Claudio ERG, da Silva VL, Cordeiro JP, Domingos LF, da Cunha MRH, Mauad H, do Nascimento TB, Lima-Leopoldo AP, Leopoldo AS. High-Fat Diet-Induced Obesity Model Does Not Promote Endothelial Dysfunction via Increasing Leptin/Akt/eNOS Signaling. Front Physiol 2019; 10:268. [PMID: 30949067 PMCID: PMC6435481 DOI: 10.3389/fphys.2019.00268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/28/2019] [Indexed: 12/23/2022] Open
Abstract
Experimental studies show that the unsaturated high-fat diet-induced obesity promotes vascular alterations characterized by improving the endothelial L-arginine/Nitric Oxide (NO) pathway. Leptin seems to be involved in this process, promoting vasodilation via increasing NO bioavailability. The aim of this study was to test the hypothesis that unsaturated high-fat diet-induced obesity does not generate endothelial dysfunction via increasing the vascular leptin/Akt/eNOS signaling. Thirty-day-old male Wistar rats were randomized into two groups: control (C) and obese (Ob). Group C was fed a standard diet, while group Ob was fed an unsaturated high-fat diet for 27 weeks. Adiposity, hormonal and biochemical parameters, and systolic blood pressure were observed. Concentration response curves were performed for leptin or acetylcholine in the presence or absence of Akt and NOS inhibitor. Our results showed that an unsaturated high-fat diet promoted a greater feed efficiency (FE), elevation of body weight and body fat (BF), and an adiposity index, characterizing a model of obesity. However, comorbidities frequently associated with experimental obesity were not visualized, such as glucose intolerance, dyslipidemia and hypertension. The evaluation of the endothelium-dependent relaxation with acetylcholine showed no differences between the C and Ob rats. After NOS inhibition, the response was completely abolished in the Ob group, but not in the C group. Furthermore, Akt inhibition completely blunted vascular relaxation in the C group, but not in the Ob group, which was more sensitive to leptin-induced vascular relaxation. L-NAME incubation abolished the relaxation in both groups at the same level. Although Akt inhibitor pre-incubation reduced the leptin response, group C was more sensitive to its effect. In conclusion, the high-unsaturated fat diet-induced obesity improved the vascular reactivity to leptin and does not generate endothelial dysfunction, possibly by the increase in the vascular sensitivity to leptin and increasing NO bioavailability. Moreover, our results suggest that the increase in NO production occurs through the increase in NOS activation by leptin and is partially mediated by the Akt pathway.
Collapse
Affiliation(s)
- Vanessa da Silva Rocha
- Physiology and Biochemistry Laboratory, Department of Sports, Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Vitor Loureiro da Silva
- Physiology and Biochemistry Laboratory, Department of Sports, Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória, Brazil
| | - Jóctan Pimentel Cordeiro
- Physiology and Biochemistry Laboratory, Department of Sports, Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória, Brazil
| | - Lucas Furtado Domingos
- Physiology and Biochemistry Laboratory, Department of Sports, Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória, Brazil
| | - Márcia Regina Holanda da Cunha
- Physiology and Biochemistry Laboratory, Department of Sports, Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória, Brazil
| | - Helder Mauad
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Ana Paula Lima-Leopoldo
- Physiology and Biochemistry Laboratory, Department of Sports, Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória, Brazil
| | - André Soares Leopoldo
- Physiology and Biochemistry Laboratory, Department of Sports, Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória, Brazil
| |
Collapse
|
342
|
Annweiler C, Duval GT, Cheng CY, Wong TY, Lamoureux EL, Milea D, Sabanayagam C. U-Shaped Relationship between Serum Leptin Concentration and Cognitive Performance in Older Asian Adults. Nutrients 2019; 11:nu11030660. [PMID: 30893833 PMCID: PMC6470536 DOI: 10.3390/nu11030660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 11/16/2022] Open
Abstract
The role of leptin (a hormone related to fat mass) in cognition remains equivocal. Our objective was to investigate the relationship between circulating leptin concentration and cognition in older adults, accounting for potential confounders. We categorized 1061 community-dwelling older participants ≥60 years (mean ± SD, 70.6 ± 6.4 years; 41.6% female) from the Singapore Kidney Eye Study according to quintiles of leptin concentration (≤2.64; 2.64–5.1; 5.2–8.6; 8.7–17.96; ≥18 ng/mL). Cognition was assessed using the total and domain scores of the Abbreviated Mental Test (AMT). Age, gender, body mass index, mean arterial pressure, smoking, alcohol, education, memory complaint, anxiodepressive disorders, circulating concentrations of 25-hydroxyvitamin D, glycosylated hemoglobin, low-density lipoprotein cholesterol, and estimated glomerular filtration rate were used as potential confounders. Participants within the lowest (Q1) and highest (Q5) leptin quintiles exhibited lower (i.e., worse) mean total AMT scores compared to those within the intermediate quintiles (Q2, Q3, and Q4). Compared to Q3 as the reference, Q1 and Q5 were associated with decreased total AMT score (respectively, β = −0.53 p = 0.018; β = −0.60 p = 0.036). Compared to Q3, Q5 was also associated with decreased subscores on anterograde (β = −0.19 p = 0.020) and retrograde episodic memories (β = −0.18 p = 0.039). We found a non-linear U-shaped relationship between circulating leptin and cognition, with both lower and higher concentrations of leptin being associated with more severe cognitive impairment in community-dwelling older Asians.
Collapse
Affiliation(s)
- Cedric Annweiler
- Department of Geriatric Medicine, Angers University Hospital, University Memory Clinic of Angers, UPRES EA 4638, University of Angers, 49100 Angers, France.
- Robarts Research Institute, Department of Medical Biophysics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 3K7, Canada.
| | - Guillaume T Duval
- Department of Geriatric Medicine, Angers University Hospital, University Memory Clinic of Angers, UPRES EA 4638, University of Angers, 49100 Angers, France.
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, 11 Third Hospital Avenue, #06-13, SNEC Bldg, Singapore 168751, Singapore.
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore.
| | - Tien-Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, 11 Third Hospital Avenue, #06-13, SNEC Bldg, Singapore 168751, Singapore.
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore.
| | - Ecosse L Lamoureux
- Singapore Eye Research Institute, Singapore National Eye Centre, 11 Third Hospital Avenue, #06-13, SNEC Bldg, Singapore 168751, Singapore.
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore.
| | - Dan Milea
- Singapore Eye Research Institute, Singapore National Eye Centre, 11 Third Hospital Avenue, #06-13, SNEC Bldg, Singapore 168751, Singapore.
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore.
- Department of Ophthalmology, Angers University Hospital, 49100 Angers, France.
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, 11 Third Hospital Avenue, #06-13, SNEC Bldg, Singapore 168751, Singapore.
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore.
| |
Collapse
|
343
|
Tremblay A, Dutheil F, Drapeau V, Metz L, Lesour B, Chapier R, Pereira B, Verney J, Baker JS, Vinet A, Walther G, Obert P, Courteix D, Thivel D. Long-term effects of high-intensity resistance and endurance exercise on plasma leptin and ghrelin in overweight individuals: the RESOLVE Study. Appl Physiol Nutr Metab 2019; 44:1172-1179. [PMID: 30875481 DOI: 10.1139/apnm-2019-0019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The objective of this study was to evaluate the effects of high-intensity resistance and endurance exercise on body composition and plasma leptin and ghrelin concentrations in overweight individuals. One hundred participants were randomly assigned to 3 exercise interventions: high-resistance-low-aerobic exercise (Re), low-resistance-high-aerobic exercise (rE), low-resistance-low-aerobic exercise (re). Interventions began with 3 weeks of residential supervision (phase 1) after which participants had to manage the physical activity programs individually (phase 2). Body composition and plasma variables were measured at baseline and after phase 1 as well as after 3, 6, and 12 months. Significant decreases in body weight and fat were observed after phase 1 (p < 0.001) and continued at a lower rate for up to 3 months and then remained stable for the rest of the protocol. Once a body weight plateau was reached, body fat loss after the Re and rE conditions exceeded the fat loss observed in the re condition by 1.5-2 kg (p < 0.05). Leptin was significantly decreased after day 21 and month 3 (p < 0.001) and remained stable for the rest of the study. Ghrelin was significantly increased after day 21 and month 3 (p < 0.001) and returned to a level comparable to baseline between month 6 and 12 when body weight and fat had reached a plateau. In conclusion, this study reinforces the idea that an increase in exercise intensity may accentuate body fat loss before the occurrence of a body weight plateau. Resistance to further fat loss was accompanied by a decrease in plasma leptin and an increase in plasma ghrelin.
Collapse
Affiliation(s)
- Angelo Tremblay
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G0A 4V0, Canada.,Department of Kinesiology, Université Laval, Québec, QC G0A 4V0, Canada
| | - Frédéric Dutheil
- CNRS, LaPSCo, Physiological and Psychosocial Stress, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Preventive and Occupational Medicine, WittyFit, Université Clermont Auvergne, 63000 Clermont-Ferrand, France.,Faculty of Health, School of Exercise Science, Australian Catholic University, Melbourne, VIC 3000, Australia
| | - Vicky Drapeau
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G0A 4V0, Canada.,Department of Physical Education, Université Laval, Québec, QC G1V 0A6, Canada
| | - Lore Metz
- Clermont Auvergne University, EA 3533, Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), 63000 Clermont-Ferrand, France.,CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Bruno Lesour
- CHU G. Montpied, F-63000 Clermont-Ferrand, France
| | | | - Bruno Pereira
- Clermont-Ferrand University hospital, Biostatistics unit (DRCI), 63000 Clermont-Ferrand, France
| | - Julien Verney
- Clermont Auvergne University, EA 3533, Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), 63000 Clermont-Ferrand, France.,CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Julien S Baker
- Institute of Clinical Exercise and Health Sciences, School of Science and Sport, University of the West of Scotland, Hamilton, Lanarkshire G72 0BN, Scotland, UK
| | - Agnes Vinet
- Avignon University LAPEC EA4278, F-84000 Avignon, France
| | | | - Philippe Obert
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G0A 4V0, Canada
| | - Daniel Courteix
- Clermont Auvergne University, EA 3533, Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), 63000 Clermont-Ferrand, France.,CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - David Thivel
- Clermont Auvergne University, EA 3533, Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), 63000 Clermont-Ferrand, France.,CRNH-Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
344
|
Dallner OS, Marinis JM, Lu YH, Birsoy K, Werner E, Fayzikhodjaeva G, Dill BD, Molina H, Moscati A, Kutalik Z, Marques-Vidal P, Kilpeläinen TO, Grarup N, Linneberg A, Zhang Y, Vaughan R, Loos RJF, Lazar MA, Friedman JM. Dysregulation of a long noncoding RNA reduces leptin leading to a leptin-responsive form of obesity. Nat Med 2019; 25:507-516. [PMID: 30842678 DOI: 10.1038/s41591-019-0370-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 01/18/2019] [Indexed: 12/31/2022]
Abstract
Quantitative changes in leptin concentration lead to alterations in food intake and body weight, but the regulatory mechanisms that control leptin gene expression are poorly understood. Here we report that fat-specific and quantitative leptin expression is controlled by redundant cis elements and trans factors interacting with the proximal promoter together with a long noncoding RNA (lncOb). Diet-induced obese mice lacking lncOb show increased fat mass with reduced plasma leptin levels and lose weight after leptin treatment, whereas control mice do not. Consistent with this finding, large-scale genetic studies of humans reveal a significant association of single-nucleotide polymorphisms (SNPs) in the region of human lncOb with lower plasma leptin levels and obesity. These results show that reduced leptin gene expression can lead to a hypoleptinemic, leptin-responsive form of obesity and provide a framework for elucidating the pathogenic mechanism in the subset of obese patients with low endogenous leptin levels.
Collapse
Affiliation(s)
- Olof S Dallner
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY, USA
| | - Jill M Marinis
- Division of Endocrinology, Diabetes, and Metabolism and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yi-Hsueh Lu
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY, USA
| | - Kivanc Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Emory Werner
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY, USA
| | | | - Brian D Dill
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Arden Moscati
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zoltán Kutalik
- Institute of Social and Preventive Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Allan Linneberg
- Centre for Clinical Research and Prevention, Frederiksberg-Bispebjerg Hospital, Copenhagen, Denmark.,Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yinxin Zhang
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY, USA
| | - Roger Vaughan
- Department of Biostatistics, The Rockefeller University, New York, NY, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Mindich Childhood and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY, USA. .,Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
345
|
Zabeau L, Wauman J, Dam J, Van Lint S, Burg E, De Geest J, Rogge E, Silva A, Jockers R, Tavernier J. A novel leptin receptor antagonist uncouples leptin's metabolic and immune functions. Cell Mol Life Sci 2019; 76:1201-1214. [PMID: 30659329 PMCID: PMC11105424 DOI: 10.1007/s00018-019-03004-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022]
Abstract
Leptin links body energy stores to high energy demanding processes like reproduction and immunity. Based on leptin's role in autoimmune diseases and cancer, several leptin and leptin receptor (LR) antagonists have been developed, but these intrinsically lead to unwanted weight gain. Here, we report on the uncoupling of leptin's metabolic and immune functions based on the cross talk with the epidermal growth factor receptor (EGFR). We show that both receptors spontaneously interact and, remarkably, that this complex can partially overrule the lack of LR activation by a leptin antagonistic mutein. Moreover, this leptin mutant induces EGFR phosphorylation comparable to wild-type leptin. Exploiting this non-canonical leptin signalling pathway, we identified a camelid single-domain antibody that selectively inhibits this LR-EGFR cross talk without interfering with homotypic LR signalling. Administration in vivo showed that this single-domain antibody did not interfere with leptin's metabolic functions, but could reverse the leptin-driven protection against starvation-induced thymic and splenic atrophy. These findings offer new opportunities for the design and clinical application of selective leptin and LR antagonists that avoid unwanted metabolic side effects.
Collapse
Affiliation(s)
- Lennart Zabeau
- Faculty of Medicine and Health Sciences, VIB-UGent Center for Medical Biotechnology, Flanders Institute for Biotechnology, Ghent University, A. Baertsoenkaai 3, 9000, Ghent, Belgium
| | - Joris Wauman
- Faculty of Medicine and Health Sciences, VIB-UGent Center for Medical Biotechnology, Flanders Institute for Biotechnology, Ghent University, A. Baertsoenkaai 3, 9000, Ghent, Belgium
| | - Julie Dam
- Inserm U1016, CNRS UMR 8104, Univ. Paris Descartes, Sorbonne Paris Cité, Institut Cochin, 22 rue Méchain, 75014, Paris, France
| | - Sandra Van Lint
- Faculty of Medicine and Health Sciences, VIB-UGent Center for Medical Biotechnology, Flanders Institute for Biotechnology, Ghent University, A. Baertsoenkaai 3, 9000, Ghent, Belgium
| | - Elianne Burg
- Faculty of Medicine and Health Sciences, VIB-UGent Center for Medical Biotechnology, Flanders Institute for Biotechnology, Ghent University, A. Baertsoenkaai 3, 9000, Ghent, Belgium
| | - Jennifer De Geest
- Faculty of Medicine and Health Sciences, VIB-UGent Center for Medical Biotechnology, Flanders Institute for Biotechnology, Ghent University, A. Baertsoenkaai 3, 9000, Ghent, Belgium
| | - Elke Rogge
- Faculty of Medicine and Health Sciences, VIB-UGent Center for Medical Biotechnology, Flanders Institute for Biotechnology, Ghent University, A. Baertsoenkaai 3, 9000, Ghent, Belgium
| | - Anisia Silva
- Inserm U1016, CNRS UMR 8104, Univ. Paris Descartes, Sorbonne Paris Cité, Institut Cochin, 22 rue Méchain, 75014, Paris, France
| | - Ralf Jockers
- Inserm U1016, CNRS UMR 8104, Univ. Paris Descartes, Sorbonne Paris Cité, Institut Cochin, 22 rue Méchain, 75014, Paris, France
| | - Jan Tavernier
- Faculty of Medicine and Health Sciences, VIB-UGent Center for Medical Biotechnology, Flanders Institute for Biotechnology, Ghent University, A. Baertsoenkaai 3, 9000, Ghent, Belgium.
| |
Collapse
|
346
|
Simcocks AC, Jenkin KA, O’Keefe L, Samuel CS, Mathai ML, McAinch AJ, Hryciw DH. Atypical cannabinoid ligands O-1602 and O-1918 administered chronically in diet-induced obesity. Endocr Connect 2019; 8:203-216. [PMID: 30707678 PMCID: PMC6391900 DOI: 10.1530/ec-18-0535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/01/2019] [Indexed: 01/01/2023]
Abstract
Atypical cannabinoid compounds O-1602 and O-1918 are ligands for the putative cannabinoid receptors G protein-coupled receptor 55 and G protein-coupled receptor 18. The role of O-1602 and O-1918 in attenuating obesity and obesity-related pathologies is unknown. Therefore, we aimed to determine the role that either compound had on body weight and body composition, renal and hepatic function in diet-induced obesity. Male Sprague-Dawley rats were fed a high-fat diet (40% digestible energy from lipids) or a standard chow diet for 10 weeks. In a separate cohort, male Sprague-Dawley rats were fed a high-fat diet for 9 weeks and then injected daily with 5 mg/kg O-1602, 1 mg/kg O-1918 or vehicle (0.9% saline/0.75% Tween 80) for a further 6 weeks. Our data demonstrated that high-fat feeding upregulates whole kidney G protein receptor 55 expression. In diet-induced obesity, we also demonstrated O-1602 reduces body weight, body fat and improves albuminuria. Despite this, treatment with O-1602 resulted in gross morphological changes in the liver and kidney. Treatment with O-1918 improved albuminuria, but did not alter body weight or fat composition. In addition, treatment with O-1918 also upregulated circulation of pro-inflammatory cytokines including IL-1α, IL-2, IL-17α, IL-18 and RANTES as well as plasma AST. Thus O-1602 and O-1918 appear not to be suitable treatments for obesity and related comorbidities, due to their effects on organ morphology and pro-inflammatory signaling in obesity.
Collapse
Affiliation(s)
- Anna C Simcocks
- Institute for Health and Sport, Victoria University, St Albans campus, Melbourne, Victoria, Australia
| | - Kayte A Jenkin
- Institute for Health and Sport, Victoria University, St Albans campus, Melbourne, Victoria, Australia
- School of Science and Health, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Lannie O’Keefe
- Institute for Health and Sport, Victoria University, St Albans campus, Melbourne, Victoria, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Michael L Mathai
- Institute for Health and Sport, Victoria University, St Albans campus, Melbourne, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria, Australia
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, St Albans campus, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Deanne H Hryciw
- Institute for Health and Sport, Victoria University, St Albans campus, Melbourne, Victoria, Australia
- School of Environment and Sciences, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
347
|
Milk fermented with Lactobacillus casei NCDC19 improves high fat and sucrose diet alters gene expression in obese mice. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2018.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
348
|
Thermogenesis-independent metabolic benefits conferred by isocaloric intermittent fasting in ob/ob mice. Sci Rep 2019; 9:2479. [PMID: 30792482 PMCID: PMC6385507 DOI: 10.1038/s41598-019-39380-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/23/2019] [Indexed: 01/13/2023] Open
Abstract
Intermittent fasting (IF) is an effective dietary intervention to counteract obesity-associated metabolic abnormalities. Previously, we and others have highlighted white adipose tissue (WAT) browning as the main underlying mechanism of IF-mediated metabolic benefits. However, whether IF retains its efficacy in different models, such as genetically obese/diabetic animals, is unknown. Here, leptin-deficient ob/ob mice were subjected to 16 weeks of isocaloric IF, and comprehensive metabolic phenotyping was conducted to assess the metabolic effects of IF. Unlike our previous study, isocaloric IF-subjected ob/ob animals failed to exhibit reduced body weight gain, lower fat mass, or decreased liver lipid accumulation. Moreover, isocaloric IF did not result in increased thermogenesis nor induce WAT browning in ob/ob mice. These findings indicate that isocaloric IF may not be an effective approach for regulating body weight in ob/ob animals, posing the possible limitations of IF to treat obesity. However, despite the lack of improvement in insulin sensitivity, isocaloric IF-subjected ob/ob animals displayed improved glucose tolerance as well as higher postprandial insulin level, with elevated incretin expression, suggesting that isocaloric IF is effective in improving nutrient-stimulated insulin secretion. Together, this study uncovers the insulinotropic effect of isocaloric IF, independent of adipose thermogenesis, which is potentially complementary for the treatment of type 2 diabetes.
Collapse
|
349
|
Increased adiposity, inflammation, metabolic disruption and dyslipidemia in adult male offspring of DOSS treated C57BL/6 dams. Sci Rep 2019; 9:1530. [PMID: 30728429 PMCID: PMC6365642 DOI: 10.1038/s41598-018-38383-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/16/2018] [Indexed: 12/11/2022] Open
Abstract
Evidence indicates that obesity can be promoted by chemical ‘obesogens’ that drive adiposity, hunger, inflammation and suppress metabolism. Dioctyl sodium sulfosuccinate (DOSS), a lipid emulsifier and candidate obesogen in vitro, is widely used in processed foods, cosmetics and as stool softener medicines commonly used during pregnancy. In vivo testing of DOSS was performed in a developmental origins of adult obesity model. Pregnant mice were orally administered vehicle control or DOSS at times and doses comparable to stool softener use during human pregnancy. All weaned offspring consumed only standard diet. Adult male but not female offspring of DOSS-treated dams showed significantly increased body mass, overall and visceral fat masses, and decreased bone area. They exhibited significant decreases in plasma adiponectin and increases in leptin, glucose intolerance and hyperinsulinemia. Inflammatory IL-6 was elevated, as was adipose Cox2 and Nox4 gene expressions, which may be associated with promoter DNA methylation changes. Multiple significant phospholipid/sterol lipid increases paralleled profiles from long-term high-fat diet induced obesity in males. Collectively, developmental DOSS exposure leads to increased adult adiposity, inflammation, metabolic disorder and dyslipidemia in offspring fed a standard diet, suggesting that pharmaceutical and other sources of DOSS taken during human pregnancy might contribute to long-term obesity-related health concerns in offspring.
Collapse
|
350
|
Vasconcelos AR, Dos Santos NB, Scavone C, Munhoz CD. Nrf2/ARE Pathway Modulation by Dietary Energy Regulation in Neurological Disorders. Front Pharmacol 2019; 10:33. [PMID: 30778297 PMCID: PMC6369171 DOI: 10.3389/fphar.2019.00033] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of an array of enzymes with important detoxifying and antioxidant functions. Current findings support the role of high levels of oxidative stress in the pathogenesis of neurological disorders. Given the central role played by Nrf2 in counteracting oxidative damage, a number of studies have targeted the modulation of this transcription factor in order to confer neuroprotection. Nrf2 activity is tightly regulated by oxidative stress and energy-based stimuli. Thus, many dietary interventions based on energy intake regulation, such as dietary energy restriction (DER) or high-fat diet (HFD), modulate Nrf2 with consequences for a variety of cellular processes that affect brain health. DER, by either restricting calorie intake or meal frequency, activates Nrf2 thereby triggering its protective effects, whilst HFD inhibit this pathway, thereby exacerbating oxidative stress. Consequently, DER protocols can be valuable strategies in the management of central nervous system (CNS) disorders. Herein, we review current knowledge of the role of Nrf2 signaling in neurological diseases, namely Alzheimer’s disease, Parkinson’s disease, multiple sclerosis and cerebral ischemia, as well as the potential of energy intake regulation in the management of Nrf2 signaling.
Collapse
Affiliation(s)
- Andrea Rodrigues Vasconcelos
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Nilton Barreto Dos Santos
- Laboratory of Neuroendocrinopharmacology and Immunomodulation, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Carolina Demarchi Munhoz
- Laboratory of Neuroendocrinopharmacology and Immunomodulation, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|