301
|
Quantifying the mitigation of temperature extremes by forests and wetlands in a temperate landscape. ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
302
|
Higher plant photosynthetic capability in autumn responding to low atmospheric vapor pressure deficit. Innovation (N Y) 2021; 2:100163. [PMID: 34901906 PMCID: PMC8640599 DOI: 10.1016/j.xinn.2021.100163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/02/2021] [Indexed: 11/29/2022] Open
Abstract
It has been long established that the terrestrial vegetation in spring has stronger photosynthetic capability than in autumn. However, this study challenges this consensus by comparing photosynthetic capability of terrestrial vegetation between the spring and autumn seasons based on measurements of 100 in situ eddy covariance towers over global extratropical ecosystems. At the majority of these sites, photosynthetic capability, indicated by light use efficiency (LUE) and apparent quantum efficiency, is significantly higher in autumn than in spring, due to lower atmosphere vapor pressure deficit (VPD) at the same air temperature. Seasonal VPD differences also substantially explain the interannual variability of the differences in photosynthetic capability between spring and autumn. We further reveal that VPD in autumn is significantly lower than in spring over 74.14% of extratropical areas, based on a global climate dataset. In contrast, LUE derived from a data-driven vegetation production dataset is significantly higher in autumn in over 61.02% of extratropical vegetated areas. Six Earth system models consistently projected continuous larger VPD values in spring compared with autumn, which implies that the impacts on vegetation growth will long exist and should be adequately considered when assessing the seasonal responses of terrestrial ecosystems to future climate conditions. Autumn VPD is lower than spring VPD at the same air temperature over majority of the extratropical vegetated land Photosynthetic capability is significantly higher in autumn than in spring due to lower VPD Earth System Models projected continuous larger VPD values in spring as against autumn
Collapse
|
303
|
Hsu PK, Takahashi Y, Merilo E, Costa A, Zhang L, Kernig K, Lee KH, Schroeder JI. Raf-like kinases and receptor-like (pseudo)kinase GHR1 are required for stomatal vapor pressure difference response. Proc Natl Acad Sci U S A 2021; 118:e2107280118. [PMID: 34799443 PMCID: PMC8617523 DOI: 10.1073/pnas.2107280118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/19/2022] Open
Abstract
Stomatal pores close rapidly in response to low-air-humidity-induced leaf-to-air vapor pressure difference (VPD) increases, thereby reducing excessive water loss. The hydroactive signal-transduction mechanisms mediating high VPD-induced stomatal closure remain largely unknown. The kinetics of stomatal high-VPD responses were investigated by using time-resolved gas-exchange analyses of higher-order mutants in guard-cell signal-transduction branches. We show that the slow-type anion channel SLAC1 plays a relatively more substantial role than the rapid-type anion channel ALMT12/QUAC1 in stomatal VPD signaling. VPD-induced stomatal closure is not affected in mpk12/mpk4GC double mutants that completely disrupt stomatal CO2 signaling, indicating that VPD signaling is independent of the early CO2 signal-transduction pathway. Calcium imaging shows that osmotic stress causes cytoplasmic Ca2+ transients in guard cells. Nevertheless, osca1-2/1.3/2.2/2.3/3.1 Ca2+-permeable channel quintuple, osca1.3/1.7-channel double, cngc5/6-channel double, cngc20-channel single, cngc19/20crispr-channel double, glr3.2/3.3-channel double, cpk-kinase quintuple, cbl1/4/5/8/9 quintuple, and cbl2/3rf double mutants showed wild-type-like stomatal VPD responses. A B3-family Raf-like mitogen-activated protein (MAP)-kinase kinase kinase, M3Kδ5/RAF6, activates the OST1/SnRK2.6 kinase in plant cells. Interestingly, B3 Raf-kinase m3kδ5 and m3kδ1/δ5/δ6/δ7 (raf3/6/5/4) quadruple mutants, but not a 14-gene raf-kinase mutant including osmotic stress-linked B4-family Raf-kinases, exhibited slowed high-VPD responses, suggesting that B3-family Raf-kinases play an important role in stomatal VPD signaling. Moreover, high VPD-induced stomatal closure was impaired in receptor-like pseudokinase GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1) mutant alleles. Notably, the classical transient "wrong-way" VPD response was absent in ghr1 mutant alleles. These findings reveal genes and signaling mechanisms in the elusive high VPD-induced stomatal closing response pathway.
Collapse
Affiliation(s)
- Po-Kai Hsu
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Yohei Takahashi
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Ebe Merilo
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Alex Costa
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
- Department of Biosciences, University of Milan, Milan 20133, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy
| | - Li Zhang
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Klara Kernig
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Katie H Lee
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Julian I Schroeder
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|
304
|
Community-Level Impacts of Climate-Smart Agriculture Interventions on Food Security and Dietary Diversity in Climate-Smart Villages in Myanmar. CLIMATE 2021. [DOI: 10.3390/cli9110166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diversification of production to strengthen resilience is a key tenet of climate-smart agriculture (CSA), which can help to address the complex vulnerabilities of agriculture-dependent rural communities. In this study, we investigated the relationship between the promotion of different CSA practices across four climate-smart villages (CSVs) in Myanmar. To determine the impact of the CSA practices on livelihoods and health, survey data were collected from agricultural households (n = 527) over three years. Within the time period studied, the results indicate that some the CSA practices and technologies adopted were significantly associated with changes in household dietary diversity scores (HDDS), but, in the short-term, these were not associated with improvements in the households’ food insecurity scores (HFIAS). Based on the survey responses, we examined how pathways of CSA practice adoption tailored to different contexts of Myanmar’s four agroecologies could contribute to the observed changes, including possible resulting trade-offs. We highlight that understanding the impacts of CSA adoption on household food security in CSVs will require longer-term monitoring, as most CSA options are medium- to long-cycle interventions. Our further analysis of knowledge, attitudes and practices (KAPs) amongst the households indicated a poor understanding of the household knowledge, attitudes and practices in relation to nutrition, food choices, food preparation, sanitation and hygiene. Our KAP findings indicate that current nutrition education interventions in the Myanmar CSVs are inadequate and will need further improvement for health and nutrition outcomes from the portfolio of CSA interventions.
Collapse
|
305
|
Zheng Z, Zhou F, Fonti P, Ren P, Li X, Miao G, Dong Z, Fang K. Intra-Annual Wood Formation of Cryptomeria fortunei and Cunninghamia lanceolata in Humid Subtropical China. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.733974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Monitoring cambial activity is important for a better understanding of the mechanisms governing xylem growth responses to climate change, providing a scientific basis for tree-ring-based climate reconstructions and projections about tree growth under future climate scenarios. It plays an even more important role in investigating evergreen tree growth in regions with less distinct seasonal cycles. Subtropical evergreen forests have been studied in recent years for their sensitivity to climate change, but it remains unclear how xylem growth is driven by subtropical climates. To further understand the climate-growth response strategies of subtropical conifers, we micro-cored Cryptomeria fortunei and Cunninghamia lanceolata weekly in 2016 and 2017 at the humid subtropical Gushan Mountain in southeastern China. Our weekly growth monitoring showed that the vegetation periods of these two species were both approximately 2–3 months longer than trees in temperate and boreal forests. The growth of C. fortunei in 2016 and 2017 and C. lanceolata in 2017 showed a bimodal pattern of xylogenesis, which was induced by summer drought. The results also indicated that the earlier end of the xylem formation was related to the yearly drought stress. These findings provide more specific information about tree growth and evidence of how climate influences wood production at the cellular level in subtropical regions.
Collapse
|
306
|
Marchand W, Girardin MP, Hartmann H, Lévesque M, Gauthier S, Bergeron Y. Contrasting life-history traits of black spruce and jack pine influence their physiological response to drought and growth recovery in northeastern boreal Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148514. [PMID: 34218146 DOI: 10.1016/j.scitotenv.2021.148514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
An increase in frequency, intensity and duration of drought events affects forested ecosystems. Trees react to these changes by adjusting stomatal conductance to maximize the trade-off between carbon gains and water losses. A better understanding of the consequences of these drought-induced physiological adjustments for tree growth could help inferring future productivity potentials of boreal forests. Here, we used samples from a forest inventory network in Canada where a decline in growth rates of black spruce (Picea mariana (Mill.) B.S.P.) and jack pine (Pinus banksiana Lamb.) occurred in 1988-1992, an exceptionally dry period, to verify if this growth decline resulted from physiological adjustments of trees to drought. We measured carbon and oxygen isotope ratios in growth rings of 95 spruces and 49 pines spanning 1985-1993. We used 13C discrimination (Δ13C) and 18O enrichment (Δ18O) as proxies for intrinsic water use efficiency and stomatal conductance, respectively. We studied how inter-annual variability in isotopic signals was linked to climate moisture index, vapor pressure deficit and annual snowfall amount. We found significantly lower Δ13C values over 1988-1990, and significantly higher Δ18O values in 1988-1989 and 1991 compared to the 1985-1993 averages. We also observed that a low climatic water balance and a high vapor pressure deficit were linked with low Δ13C and high Δ18O in the two study species, in parallel with low growth rates. The latter effect persisted into the year following drought for black spruce, but not for jack pine. These findings highlight that small differences in physiological parameters between species could translate into large differences in post-drought recovery. The stronger and longer lasting impact on black spruce compared to jack pine suggests a less efficient carbon use and a lower acclimation potential to future warmer and drier climate conditions.
Collapse
Affiliation(s)
- William Marchand
- Centre d'étude de la forêt, Université du Québec à Montréal, C.P. 8888, succ. Centre-ville, Montréal, QC H3C 3P8, Canada; Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 - Suchdol 165 00, Czech Republic; Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S, P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada.
| | - Martin P Girardin
- Centre d'étude de la forêt, Université du Québec à Montréal, C.P. 8888, succ. Centre-ville, Montréal, QC H3C 3P8, Canada; Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S, P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada
| | - Henrik Hartmann
- Max-Planck Institute for Biogeochemistry, Department of Biogeochemical Processes, Hans-Knöll Str. 10, 07745 Jena, Germany
| | - Mathieu Lévesque
- Forest Management/Silviculture Group, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Sylvie Gauthier
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S, P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada; Centre d'étude de la forêt, Université du Québec à Montréal, C.P. 8888, succ. Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Yves Bergeron
- Centre d'étude de la forêt, Université du Québec à Montréal, C.P. 8888, succ. Centre-ville, Montréal, QC H3C 3P8, Canada; Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue, 445 boul. de l'Université, Rouyn-Noranda, QC J9X 5E4, Canada
| |
Collapse
|
307
|
Vitali V, Klesse S, Weigt R, Treydte K, Frank D, Saurer M, Siegwolf RTW. High-frequency stable isotope signals in uneven-aged forests as proxy for physiological responses to climate in Central Europe. TREE PHYSIOLOGY 2021; 41:2046-2062. [PMID: 33960372 DOI: 10.1093/treephys/tpab062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Picea abies (L.) Karst. and Fagus sylvatica (L.) are important tree species in Europe, and the foreseen increase in temperature and vapour pressure deficit (VPD) could increase the vulnerability of these species. However, their physiological performance under climate change at temperate and productive sites is not yet fully understood, especially in uneven-aged stands. Therefore, we investigated tree-ring width and stable isotope chronologies (δ13C/δ18O) of these two species at 10 sites along a climate gradient in Central Europe. In these uneven-aged stands, we compared the year-to-year variability of dominant and suppressed trees for the last 80 years in relation to the sites' spatial distribution and climate. δ18O and δ13C were generally consistent across sites and species, showing high sensitivity to summer VPD, whereas climate correlations with radial growth varied much more and depended on mean local climate. We found no significant differences between dominant and suppressed trees in the response of stable isotope ratios to climate variability, especially within the annual high-frequency signals. In addition, we observed a strikingly high coherence of the high-frequency δ18O variations across long distances with significant correlations above 1500 km, whereas the spatial agreement of δ13C variations was weaker (~700 km). We applied a dual-isotope approach that is based on known theoretical understanding of isotope fractionations to translate the observed changes into physiological components, mainly photosynthetic assimilation rate and stomatal conductance. When separating the chronologies in two time windows and investigating the shifts in isotopes ratios, a significant enrichment of either or both isotope ratios over the last decades can be observed. These results, translated by the dual-isotope approach, indicate a general climate-driven decrease in stomatal conductance. This improved understanding of the physiological mechanisms controlling the short-term variation of the isotopic signature will help to define the performance of these tree species under future climate.
Collapse
Affiliation(s)
- Valentina Vitali
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland
| | - Stefan Klesse
- Swiss Forest Protection, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland
- Forest Resources and Management, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland
| | - Rosemarie Weigt
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland
- Ecosystem Fluxes Group, Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Kerstin Treydte
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland
| | - David Frank
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland
- Laboratory of Tree-Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ 85721, USA
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland
- Ecosystem Fluxes Group, Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Rolf T W Siegwolf
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland
- Ecosystem Fluxes Group, Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| |
Collapse
|
308
|
Research on Students' Mental Health Based on Data Mining Algorithms. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:1382559. [PMID: 34733450 PMCID: PMC8560244 DOI: 10.1155/2021/1382559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/14/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022]
Abstract
With the diversification and rapid development of society, people's living conditions, learning and friendship conditions, and employment conditions are facing increasing pressure, which greatly challenges people's psychological endurance. Therefore, strengthening the mental health education of students has become an urgent need of society and a hot issue of common concern. In order to solve the problems of high misjudgment rate and low work efficiency in the current mental health intelligence evaluation process, a mental health intelligence evaluation system based on a joint optimization algorithm is proposed. The joint optimization algorithm consists of an improved decision tree algorithm and an improved ANN algorithm. First, analyze the current research status of mental health intelligence evaluation, and construct the framework of mental health intelligence evaluation system; then collect mental health intelligence evaluation data based on data mining, use joint learning algorithm to analyze and classify mental health intelligence evaluation data, and obtain mental health intelligence evaluation results. Finally, through specific simulation experiments, the feasibility and superiority of the mental health intelligent evaluation system are analyzed. The results show that the system in the article overcomes the shortcomings of the existing mental health intelligence evaluation system, improves the accuracy of mental health intelligence evaluation, and improves the efficiency of mental health intelligence evaluation. It has good system stability and can meet the actual current situation, which are requirements for mental health intelligence evaluation.
Collapse
|
309
|
Xu H, Wang H, Prentice IC, Harrison SP, Wright IJ. Coordination of plant hydraulic and photosynthetic traits: confronting optimality theory with field measurements. THE NEW PHYTOLOGIST 2021; 232:1286-1296. [PMID: 34324717 PMCID: PMC9291854 DOI: 10.1111/nph.17656] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/26/2021] [Indexed: 05/13/2023]
Abstract
Close coupling between water loss and carbon dioxide uptake requires coordination of plant hydraulics and photosynthesis. However, there is still limited information on the quantitative relationships between hydraulic and photosynthetic traits. We propose a basis for these relationships based on optimality theory, and test its predictions by analysis of measurements on 107 species from 11 sites, distributed along a nearly 3000-m elevation gradient. Hydraulic and leaf economic traits were less plastic, and more closely associated with phylogeny, than photosynthetic traits. The two sets of traits were linked by the sapwood to leaf area ratio (Huber value, vH ). The observed coordination between vH and sapwood hydraulic conductivity (KS ) and photosynthetic capacity (Vcmax ) conformed to the proposed quantitative theory. Substantial hydraulic diversity was related to the trade-off between KS and vH . Leaf drought tolerance (inferred from turgor loss point, -Ψtlp ) increased with wood density, but the trade-off between hydraulic efficiency (KS ) and -Ψtlp was weak. Plant trait effects on vH were dominated by variation in KS , while effects of environment were dominated by variation in temperature. This research unifies hydraulics, photosynthesis and the leaf economics spectrum in a common theoretical framework, and suggests a route towards the integration of photosynthesis and hydraulics in land-surface models.
Collapse
Affiliation(s)
- Huiying Xu
- Ministry of Education Key Laboratory for Earth System ModelingDepartment of Earth System ScienceTsinghua UniversityBeijing100084China
- Joint Center for Global Change Studies (JCGCS)Beijing100875China
| | - Han Wang
- Ministry of Education Key Laboratory for Earth System ModelingDepartment of Earth System ScienceTsinghua UniversityBeijing100084China
- Joint Center for Global Change Studies (JCGCS)Beijing100875China
| | - I. Colin Prentice
- Ministry of Education Key Laboratory for Earth System ModelingDepartment of Earth System ScienceTsinghua UniversityBeijing100084China
- Department of Life SciencesGeorgina Mace Centre for the Living PlanetImperial College LondonSilwood Park Campus, Buckhurst RoadAscotSL5 7PYUK
- Department of Biological SciencesMacquarie UniversityNorth RydeNSW2109Australia
| | - Sandy P. Harrison
- Ministry of Education Key Laboratory for Earth System ModelingDepartment of Earth System ScienceTsinghua UniversityBeijing100084China
- School of Archaeology, Geography and Environmental Sciences (SAGES)University of ReadingReadingRG6 6AHUK
| | - Ian J. Wright
- Department of Biological SciencesMacquarie UniversityNorth RydeNSW2109Australia
| |
Collapse
|
310
|
Isohydricity of Two Different Citrus Species under Deficit Irrigation and Reclaimed Water Conditions. PLANTS 2021; 10:plants10102121. [PMID: 34685931 PMCID: PMC8538605 DOI: 10.3390/plants10102121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023]
Abstract
Citrus species are frequently subjected to water and saline stresses worldwide. We evaluated the effects of diurnal changes in the evaporative demands and soil water contents on the plant physiology of grapefruit and mandarin crops under saline reclaimed (RW) and transfer (TW) water conditions, combined with two irrigation strategies, fully irrigated (fI) and non-irrigated (nI). The physiological responses were different depending on the species. Grapefruit showed an isohydric pattern, which restricted the use of the leaf water potential (Ψl) as a plant water status indicator. Its water status was affected by salinity (RW) and water stress (nI), mainly as the combination of both stresses (RW-nI); however, mandarin turned out to be relatively more tolerant to salinity and more sensitive to water stress, mainly because of its low hydraulic conductance (K) levels, showing a critical drop in Ψl that led to severe losses of root–stem (Kroot–stem) and canopy (Kcanopy) hydraulic conductance in TW-nI. This behavior was not observed in RW-nI because a reduction in canopy volume as an adaptive characteristic was observed; thus, mandarin exhibited more anisohydric behavior compared to grapefruit, but isohydrodynamic since its hydrodynamic water potential gradient from roots to shoots (ΔΨplant) was relatively constant across variations in stomatal conductance (gs) and soil water potential. The gs was considered a good plant water status indicator for irrigation scheduling purposes in both species, and its responses to diurnal VPD rise and soil drought were strongly correlated with Kroot–stem. ABA did not show any effect on stomatal regulation, highlighting the fundamental role of plant hydraulics in driving stomatal closure.
Collapse
|
311
|
Dusenge ME, Wittemann M, Mujawamariya M, Ntawuhiganayo EB, Zibera E, Ntirugulirwa B, Way DA, Nsabimana D, Uddling J, Wallin G. Limited thermal acclimation of photosynthesis in tropical montane tree species. GLOBAL CHANGE BIOLOGY 2021; 27:4860-4878. [PMID: 34233063 DOI: 10.1111/gcb.15790] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The temperature sensitivity of physiological processes and growth of tropical trees remains a key uncertainty in predicting how tropical forests will adjust to future climates. In particular, our knowledge regarding warming responses of photosynthesis, and its underlying biochemical mechanisms, is very limited. We grew seedlings of two tropical montane rainforest tree species, the early-successional species Harungana montana and the late-successional species Syzygium guineense, at three different sites along an elevation gradient, differing by 6.8℃ in daytime ambient air temperature. Their physiological and growth performance was investigated at each site. The optimum temperature of net photosynthesis (ToptA ) did not significantly increase in warm-grown trees in either species. Similarly, the thermal optima (ToptV and ToptJ ) and activation energies (EaV and EaJ ) of maximum Rubisco carboxylation capacity (Vcmax ) and maximum electron transport rate (Jmax ) were largely unaffected by warming. However, Vcmax , Jmax and foliar dark respiration (Rd ) at 25℃ were significantly reduced by warming in both species, and this decline was partly associated with concomitant reduction in total leaf nitrogen content. The ratio of Jmax /Vcmax decreased with increasing leaf temperature for both species, but the ratio at 25℃ was constant across sites. Furthermore, in H. montana, stomatal conductance at 25℃ remained constant across the different temperature treatments, while in S. guineense it increased with warming. Total dry biomass increased with warming in H. montana but remained constant in S. guineense. The biomass allocated to roots, stem and leaves was not affected by warming in H. montana, whereas the biomass allocated to roots significantly increased in S. guineense. Overall, our findings show that in these two tropical montane rainforest tree species, the capacity to acclimate the thermal optimum of photosynthesis is limited while warming-induced reductions in respiration and photosynthetic capacity rates are tightly coupled and linked to responses of leaf nitrogen.
Collapse
Affiliation(s)
- Mirindi Eric Dusenge
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- School of Forestry, Biodiversity and Biological Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze, Rwanda
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Gothenburg Global Biodiversity Centre (GGBC), University of Gothenburg, Gothenburg, Sweden
| | - Maria Wittemann
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre (GGBC), University of Gothenburg, Gothenburg, Sweden
- Department of Biology, College of Science and Technology, University of Rwanda, Huye, Rwanda
| | - Myriam Mujawamariya
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, College of Science and Technology, University of Rwanda, Huye, Rwanda
| | - Elisée B Ntawuhiganayo
- Department of Biology, College of Science and Technology, University of Rwanda, Huye, Rwanda
- World Agroforestry (ICRAF), Huye, Rwanda
| | - Etienne Zibera
- School of Forestry, Biodiversity and Biological Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze, Rwanda
| | - Bonaventure Ntirugulirwa
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, College of Science and Technology, University of Rwanda, Huye, Rwanda
- Rwanda Agriculture and Animal Resources Development Board, Kigali, Rwanda
| | - Danielle A Way
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Donat Nsabimana
- School of Forestry, Biodiversity and Biological Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze, Rwanda
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre (GGBC), University of Gothenburg, Gothenburg, Sweden
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
312
|
Jalakas P, Takahashi Y, Waadt R, Schroeder JI, Merilo E. Molecular mechanisms of stomatal closure in response to rising vapour pressure deficit. THE NEW PHYTOLOGIST 2021; 232:468-475. [PMID: 34197630 PMCID: PMC8455429 DOI: 10.1111/nph.17592] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/28/2021] [Indexed: 05/26/2023]
Abstract
Vapour pressure deficit (VPD), the difference between the saturation and actual air vapour pressures, indicates the level of atmospheric drought and evaporative pressure on plants. VPD increases during climate change due to changes in air temperature and relative humidity. Rising VPD induces stomatal closure to counteract the VPD-mediated evaporative water loss from plants. There are important gaps in our understanding of the molecular VPD-sensing and signalling mechanisms in stomatal guard cells. Here, we discuss recent advances, research directions and open questions with respect to the three components that participate in VPD-induced stomatal closure in Arabidopsis, including: (1) abscisic acid (ABA)-dependent and (2) ABA-independent regulation of the protein kinase OPEN STOMATA 1 (OST1), and (3) the passive hydraulic stomatal response. In the ABA-dependent component, two models are proposed: ABA may be rapidly synthesised or its basal levels may be involved in the stomatal VPD response. Further studies on stomatal VPD signalling should clarify: (1) whether OST1 activation above basal activity is needed for VPD responses, (2) which components are involved in ABA-independent regulation of OST1, (3) the role of other potential OST1 targets in VPD signalling, and (4) to which extent OST1 contributes to stomatal VPD sensitivity in other plant species.
Collapse
Affiliation(s)
- Pirko Jalakas
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Yohei Takahashi
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Rainer Waadt
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Julian I. Schroeder
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Ebe Merilo
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
313
|
Zhang J, Guan K, Peng B, Pan M, Zhou W, Jiang C, Kimm H, Franz TE, Grant RF, Yang Y, Rudnick DR, Heeren DM, Suyker AE, Bauerle WL, Miner GL. Sustainable irrigation based on co-regulation of soil water supply and atmospheric evaporative demand. Nat Commun 2021; 12:5549. [PMID: 34545076 PMCID: PMC8452748 DOI: 10.1038/s41467-021-25254-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022] Open
Abstract
Irrigation is an important adaptation to reduce crop yield loss due to water stress from both soil water deficit (low soil moisture) and atmospheric aridity (high vapor pressure deficit, VPD). Traditionally, irrigation has primarily focused on soil water deficit. Observational evidence demonstrates that stomatal conductance is co-regulated by soil moisture and VPD from water supply and demand aspects. Here we use a validated hydraulically-driven ecosystem model to reproduce the co-regulation pattern. Specifically, we propose a plant-centric irrigation scheme considering water supply-demand dynamics (SDD), and compare it with soil-moisture-based irrigation scheme (management allowable depletion, MAD) for continuous maize cropping systems in Nebraska, United States. We find that, under current climate conditions, the plant-centric SDD irrigation scheme combining soil moisture and VPD, could significantly reduce irrigation water use (-24.0%) while maintaining crop yields, and increase economic profits (+11.2%) and irrigation water productivity (+25.2%) compared with MAD, thus SDD could significantly improve water sustainability.
Collapse
Affiliation(s)
- Jingwen Zhang
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana Champaign, Urbana, IL, USA.
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA.
| | - Kaiyu Guan
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana Champaign, Urbana, IL, USA.
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA.
- National Center for Supercomputing Applications, University of Illinois at Urbana Champaign, Urbana, IL, USA.
| | - Bin Peng
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana Champaign, Urbana, IL, USA.
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA.
- National Center for Supercomputing Applications, University of Illinois at Urbana Champaign, Urbana, IL, USA.
| | - Ming Pan
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA
- Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Wang Zhou
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana Champaign, Urbana, IL, USA
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Chongya Jiang
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana Champaign, Urbana, IL, USA
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Hyungsuk Kimm
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana Champaign, Urbana, IL, USA
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Trenton E Franz
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Robert F Grant
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Yi Yang
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana Champaign, Urbana, IL, USA
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Daran R Rudnick
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Derek M Heeren
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Andrew E Suyker
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - William L Bauerle
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| | - Grace L Miner
- Soil Management and Sugarbeet Research Unit, USDA-ARS, Fort Collins, CO, USA
| |
Collapse
|
314
|
Nawaz R, Khan MA, Hafiz IA, Khan MF, Khalid A. Climate variables effect on fruiting pattern of Kinnow mandarin (Citrus nobilis Lour × C. deliciosa Tenora) grown at different agro-climatic regions. Sci Rep 2021; 11:18177. [PMID: 34518610 PMCID: PMC8438049 DOI: 10.1038/s41598-021-97653-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
Kinnow orchards grown in different agro-ecological regions of Punjab, Pakistan, namely Sargodha, Toba Tek Singh (TTS) and Vehari districts, were selected to assess the effect of climate variables on fruit-bearing patterns. Experiment was laid out in RCBD while selecting identical features Kinnow plants and labeled twigs at analogous canopy positions in all three sites. Temperature was reported higher in TTS and Vehari areas, while relative humidity in Sargodha accounted for different levels of agrometeorological indices by computing more variations in warm districts. Climate variables influenced fruit-bearing habits and vegetative growth trend in all three flushes while recording heavy fruit-bearing plants during on-year and light fruit-bearing in off-year at Vehari. Similarly, three vegetative flushes were recorded unevenly in all three sites due to different fruit-bearing patterns induced by climate variables. Harvesting pattern of orchards began earlier in Sargodha, where maximum orchards were harvested before new flowering to add evenness to fruiting habits during on & off-years. In warm conditions, fruit ripening arrived in the peak of winter and mostly domestic market-driven harvesting resulted in late start of fruit picking with more erratic fruit-bearing habits. Both physiological and pathological fruit drops have been significantly affected by climate variables with a higher degree of physiological drop in warm regions and pathological effects in the humid conditions of Sargodha on heavy fruit-bearing plants. Fruit yield and grading quality were also affected in both seasons by showing more asymmetrical trend in yield and fruit grading in warm areas of TTS and Vehari due to an irregular fruiting pattern compared to Sargodha. From now on, the climate variables of the three sites directly influenced the fruiting patterns, vegetative flushes, fruit drops, yields and grades of Kinnow mandarin.
Collapse
Affiliation(s)
- Rab Nawaz
- Department of Horticulture, Pir Mehr Ali Shah- Arid Agriculture University, Rawalpindi, Pakistan.
| | - Muhammad Azam Khan
- Department of Horticulture, Pir Mehr Ali Shah- Arid Agriculture University, Rawalpindi, Pakistan
| | - Ishfaq Ahmad Hafiz
- Department of Horticulture, Pir Mehr Ali Shah- Arid Agriculture University, Rawalpindi, Pakistan
| | | | - Azeem Khalid
- Department of Environmental Sciences, Pir Mehr Ali Shah- Arid Agriculture University, Rawalpindi, Pakistan
| |
Collapse
|
315
|
Bryant C, Fuenzalida TI, Brothers N, Mencuccini M, Sack L, Binks O, Ball MC. Shifting access to pools of shoot water sustains gas exchange and increases stem hydraulic safety during seasonal atmospheric drought. PLANT, CELL & ENVIRONMENT 2021; 44:2898-2911. [PMID: 33974303 DOI: 10.1111/pce.14080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 05/25/2023]
Abstract
Understanding how plants acclimate to drought is crucial for predicting future vulnerability, yet seasonal acclimation of traits that improve drought tolerance in trees remains poorly resolved. We hypothesized that dry season acclimation of leaf and stem traits influencing shoot water storage and hydraulic capacitance would mitigate the drought-associated risks of reduced gas exchange and hydraulic failure in the mangrove Sonneratia alba. By late dry season, availability of stored water had shifted within leaves and between leaves and stems. While whole shoot capacitance remained stable, the symplastic fraction of leaf water increased 86%, leaf capacitance increased 104% and stem capacitance declined 80%. Despite declining plant water potentials, leaf and whole plant hydraulic conductance remained unchanged, and midday assimilation rates increased. Further, the available leaf water between the minimum water potential observed and that corresponding to 50% loss of stem conductance increased 111%. Shifting availability of pools of water, within and between organs, maintained leaf water available to buffer periods of increased photosynthesis and losses in stem hydraulic conductivity, mitigating risks of carbon depletion and hydraulic failure during atmospheric drought. Seasonal changes in access to tissue and organ water may have an important role in drought acclimation and avoidance.
Collapse
Affiliation(s)
- Callum Bryant
- Plant Science Division, Research School of Biology, Australian National University, Acton, Australia
| | - Tomas I Fuenzalida
- Plant Science Division, Research School of Biology, Australian National University, Acton, Australia
| | - Nigel Brothers
- Plant Science Division, Research School of Biology, Australian National University, Acton, Australia
| | - Maurizio Mencuccini
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- Ecological and Forestry Applications Research Centre, Barcelona, Spain
| | - Lawren Sack
- Department of Ecology and Evolution, University of California Los Angeles, Los Angeles, California, USA
| | - Oliver Binks
- Plant Science Division, Research School of Biology, Australian National University, Acton, Australia
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, Australian National University, Acton, Australia
| |
Collapse
|
316
|
De Kauwe MG, Medlyn BE, Tissue DT. To what extent can rising [CO 2 ] ameliorate plant drought stress? THE NEW PHYTOLOGIST 2021; 231:2118-2124. [PMID: 34101183 DOI: 10.1111/nph.17540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Plant responses to elevated atmospheric carbon dioxide (eCO2 ) have been hypothesized as a key mechanism that may ameliorate the impact of future drought. Yet, despite decades of experiments, the question of whether eCO2 reduces plant water use, yielding 'water savings' that can be used to maintain plant function during periods of water stress, remains unresolved. In this Viewpoint, we identify the experimental challenges and limitations to our understanding of plant responses to drought under eCO2 . In particular, we argue that future studies need to move beyond exploring whether eCO2 played 'a role' or 'no role' in responses to drought, but instead more carefully consider the timescales and conditions that would induce an influence. We also argue that considering emergent differences in soil water content may be an insufficient means of assessing the impact of eCO2 . We identify eCO2 impact during severe drought (e.g. to the point of mortality), interactions with future changes in vapour pressure deficit and uncertainty about changes in leaf area as key gaps in our current understanding. New insights into CO2 × drought interactions are essential to better constrain model theory that governs future climate model projections of land-atmosphere interactions during periods of water stress.
Collapse
Affiliation(s)
- Martin G De Kauwe
- ARC Centre of Excellence for Climate Extremes, Sydney, NSW, 2052, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
317
|
Lesk C, Coffel E, Winter J, Ray D, Zscheischler J, Seneviratne SI, Horton R. Stronger temperature-moisture couplings exacerbate the impact of climate warming on global crop yields. NATURE FOOD 2021; 2:683-691. [PMID: 37117467 DOI: 10.1038/s43016-021-00341-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/08/2021] [Indexed: 04/30/2023]
Abstract
Rising air temperatures are a leading risk to global crop production. Recent research has emphasized the critical role of moisture availability in regulating crop responses to heat and the importance of temperature-moisture couplings in driving concurrent heat and drought. Here, we demonstrate that the heat sensitivity of key global crops depends on the local strength of couplings between temperature and moisture in the climate system. Over 1970-2013, maize and soy yields dropped more during hotter growing seasons in places where decreased precipitation and evapotranspiration more strongly accompanied higher temperatures, suggestive of compound heat-drought impacts on crops. On the basis of this historical pattern and a suite of climate model projections, we show that changes in temperature-moisture couplings in response to warming could enhance the heat sensitivity of these crops as temperatures rise, worsening the impact of warming by -5% (-17 to 11% across climate models) on global average. However, these changes will benefit crops where couplings weaken, including much of Asia, and projected impacts are highly uncertain in some regions. Our results demonstrate that climate change will impact crops not only through warming but also through changing drivers of compound heat-moisture stresses, which may alter the sensitivity of crop yields to heat as warming proceeds. Robust adaptation of cropping systems will need to consider this underappreciated risk to food production from climate change.
Collapse
Affiliation(s)
- Corey Lesk
- Lamont-Doherty Earth Observatory, Palisades, NY, USA.
- Department of Earth and Environmental Science, Columbia University, New York, NY, USA.
| | - Ethan Coffel
- Department of Geography and the Environment, Syracuse University, Syracuse, NY, USA
| | - Jonathan Winter
- Department of Geography, Dartmouth College, Hanover, NH, USA
| | - Deepak Ray
- Institute on the Environment, University of Minnesota, St. Paul, MN, USA
| | - Jakob Zscheischler
- Climate and Environmental Physics, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
- Department of Computational Hydrosystems, Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Sonia I Seneviratne
- Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland
| | - Radley Horton
- Lamont-Doherty Earth Observatory, Palisades, NY, USA
| |
Collapse
|
318
|
Chitra‐Tarak R, Xu C, Aguilar S, Anderson‐Teixeira KJ, Chambers J, Detto M, Faybishenko B, Fisher RA, Knox RG, Koven CD, Kueppers LM, Kunert N, Kupers SJ, McDowell NG, Newman BD, Paton SR, Pérez R, Ruiz L, Sack L, Warren JM, Wolfe BT, Wright C, Wright SJ, Zailaa J, McMahon SM. Hydraulically-vulnerable trees survive on deep-water access during droughts in a tropical forest. THE NEW PHYTOLOGIST 2021; 231:1798-1813. [PMID: 33993520 PMCID: PMC8457149 DOI: 10.1111/nph.17464] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/29/2021] [Indexed: 05/24/2023]
Abstract
Deep-water access is arguably the most effective, but under-studied, mechanism that plants employ to survive during drought. Vulnerability to embolism and hydraulic safety margins can predict mortality risk at given levels of dehydration, but deep-water access may delay plant dehydration. Here, we tested the role of deep-water access in enabling survival within a diverse tropical forest community in Panama using a novel data-model approach. We inversely estimated the effective rooting depth (ERD, as the average depth of water extraction), for 29 canopy species by linking diameter growth dynamics (1990-2015) to vapor pressure deficit, water potentials in the whole-soil column, and leaf hydraulic vulnerability curves. We validated ERD estimates against existing isotopic data of potential water-access depths. Across species, deeper ERD was associated with higher maximum stem hydraulic conductivity, greater vulnerability to xylem embolism, narrower safety margins, and lower mortality rates during extreme droughts over 35 years (1981-2015) among evergreen species. Species exposure to water stress declined with deeper ERD indicating that trees compensate for water stress-related mortality risk through deep-water access. The role of deep-water access in mitigating mortality of hydraulically-vulnerable trees has important implications for our predictive understanding of forest dynamics under current and future climates.
Collapse
|
319
|
Zweifel R, Sterck F, Braun S, Buchmann N, Eugster W, Gessler A, Häni M, Peters RL, Walthert L, Wilhelm M, Ziemińska K, Etzold S. Why trees grow at night. THE NEW PHYTOLOGIST 2021; 231:2174-2185. [PMID: 34118158 PMCID: PMC8457160 DOI: 10.1111/nph.17552] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/07/2021] [Indexed: 05/22/2023]
Abstract
The timing of diel stem growth of mature forest trees is still largely unknown, as empirical data with high temporal resolution have not been available so far. Consequently, the effects of day-night conditions on tree growth remained uncertain. Here we present the first comprehensive field study of hourly-resolved radial stem growth of seven temperate tree species, based on 57 million underlying data points over a period of up to 8 yr. We show that trees grow mainly at night, with a peak after midnight, when the vapour pressure deficit (VPD) is among the lowest. A high VPD strictly limits radial stem growth and allows little growth during daylight hours, except in the early morning. Surprisingly, trees also grow in moderately dry soil when the VPD is low. Species-specific differences in diel growth dynamics show that species able to grow earlier during the night are associated with the highest number of hours with growth per year and the largest annual growth increment. We conclude that species with the ability to overcome daily water deficits faster have greater growth potential. Furthermore, we conclude that growth is more sensitive than carbon uptake to dry air, as growth stops before stomata are known to close.
Collapse
Affiliation(s)
- Roman Zweifel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf8903Switzerland
| | - Frank Sterck
- Forest Ecology and Management GroupWageningen UniversityWageningen6708 PBthe Netherlands
| | - Sabine Braun
- Institute for Applied Plant BiologyWitterswil4108Switzerland
| | - Nina Buchmann
- Department of Environmental Systems ScienceInstitute of Agricultural SciencesETH ZurichZurich8092Switzerland
| | - Werner Eugster
- Department of Environmental Systems ScienceInstitute of Agricultural SciencesETH ZurichZurich8092Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf8903Switzerland
| | - Matthias Häni
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf8903Switzerland
| | - Richard L. Peters
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf8903Switzerland
- Laboratory of Plant EcologyGhent UniversityGhent9000Belgium
| | - Lorenz Walthert
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf8903Switzerland
| | - Micah Wilhelm
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf8903Switzerland
| | - Kasia Ziemińska
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf8903Switzerland
- Department of Plant Ecology and EvolutionUppsala UniversityUppsalaSE‐751 05Sweden
| | - Sophia Etzold
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf8903Switzerland
| |
Collapse
|
320
|
Adams MA, Buckley TN, Binkley D, Neumann M, Turnbull TL. CO 2, nitrogen deposition and a discontinuous climate response drive water use efficiency in global forests. Nat Commun 2021; 12:5194. [PMID: 34465788 PMCID: PMC8408268 DOI: 10.1038/s41467-021-25365-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Reduced stomatal conductance is a common plant response to rising atmospheric CO2 and increases water use efficiency (W). At the leaf-scale, W depends on water and nitrogen availability in addition to atmospheric CO2. In hydroclimate models W is a key driver of rainfall, droughts, and streamflow extremes. We used global climate data to derive Aridity Indices (AI) for forests over the period 1965-2015 and synthesised those with data for nitrogen deposition and W derived from stable isotopes in tree rings. AI and atmospheric CO2 account for most of the variance in W of trees across the globe, while cumulative nitrogen deposition has a significant effect only in regions without strong legacies of atmospheric pollution. The relation of aridity and W displays a clear discontinuity. W and AI are strongly related below a threshold value of AI ≈ 1 but are not related where AI > 1. Tree ring data emphasise that effective demarcation of water-limited from non-water-limited behaviour of stomata is critical to improving hydrological models that operate at regional to global scales.
Collapse
Affiliation(s)
- Mark A. Adams
- grid.1027.40000 0004 0409 2862Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC Australia ,grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, Sydney, NSW Australia
| | - Thomas N. Buckley
- grid.27860.3b0000 0004 1936 9684Department of Plant Sciences, College of Agricultural and Environmental Sciences, University of California, Davis, CA USA
| | - Dan Binkley
- grid.261120.60000 0004 1936 8040School of Forestry, Northern Arizona University, Flagstaff, AZ USA
| | - Mathias Neumann
- grid.5173.00000 0001 2298 5320Institute of Silviculture, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Tarryn L. Turnbull
- grid.1027.40000 0004 0409 2862Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC Australia ,grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, Sydney, NSW Australia
| |
Collapse
|
321
|
He B, Chen C, Lin S, Yuan W, Chen HW, Chen D, Zhang Y, Guo L, Zhao X, Liu X, Piao S, Zhong Z, Wang R, Tang R. Worldwide impacts of atmospheric vapor pressure deficit on the interannual variability of terrestrial carbon sinks. Natl Sci Rev 2021; 9:nwab150. [PMID: 35386922 PMCID: PMC8982191 DOI: 10.1093/nsr/nwab150] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/14/2022] Open
Abstract
Interannual variability of the terrestrial ecosystem carbon sink is substantially regulated by various environmental variables and highly dominates the interannual variation of atmospheric carbon dioxide (CO2) concentrations. Thus, it is necessary to determine dominating factors affecting the interannual variability of the carbon sink to improve our capability of predicting future terrestrial carbon sinks. Using global datasets derived from machine-learning methods and process-based ecosystem models, this study reveals that the interannual variability of the atmospheric vapor pressure deficit (VPD) was significantly negatively correlated with net ecosystem production (NEP) and substantially impacted the interannual variability of the atmospheric CO2 growth rate (CGR). Further analyses found widespread constraints of VPD interannual variability on terrestrial gross primary production (GPP), causing VPD to impact NEP and CGR. Partial correlation analysis confirms the persistent and widespread impacts of VPD on terrestrial carbon sinks compared to other environmental variables. Current Earth system models underestimate the interannual variability in VPD and its impacts on GPP and NEP. Our results highlight the importance of VPD for terrestrial carbon sinks in assessing ecosystems’ responses to future climate conditions.
Collapse
Affiliation(s)
- Bin He
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Chen Chen
- Department of Application Research, Twenty First Century Aerospace Technology Co., Ltd., Beijing 100723, China
| | - Shangrong Lin
- School of Atmospheric Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai 519082, China
| | - Wenping Yuan
- School of Atmospheric Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai 519082, China
| | - Hans W Chen
- Department of Physical Geography and Ecosystem Science, Lund University, Lund S-223 64, Sweden
| | - Deliang Chen
- Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg S-40530, Sweden
| | - Yafeng Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Lanlan Guo
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
- Academy of Disaster Reduction and Emergency Management, School of Geography, Beijing Normal University, Beijing 100875, China
| | - Xiang Zhao
- State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Xuebang Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Shilong Piao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ziqian Zhong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Rui Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Rui Tang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
322
|
Jiao L, Kosugi Y, Sempuku Y, Chang T. Canopy conductance and gas exchange of a Japanese cypress forest after rainfall‐induced wetness. Ecol Res 2021. [DOI: 10.1111/1440-1703.12257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Linjie Jiao
- Laboratory of Forest Hydrology, Division of Environmental Science and Technology, Graduate School of Agriculture Kyoto University Kyoto Japan
| | - Yoshiko Kosugi
- Laboratory of Forest Hydrology, Division of Environmental Science and Technology, Graduate School of Agriculture Kyoto University Kyoto Japan
| | - Yuichi Sempuku
- Laboratory of Forest Hydrology, Division of Environmental Science and Technology, Graduate School of Agriculture Kyoto University Kyoto Japan
- East Nippon Expressway Company Ltd. Kanto Branch, Management Office Chiba Chiba Japan
| | - Ting‐wei Chang
- Laboratory of Forest Hydrology, Division of Environmental Science and Technology, Graduate School of Agriculture Kyoto University Kyoto Japan
| |
Collapse
|
323
|
Ranawana SRWMCJK, Siddique KHM, Palta JA, Stefanova K, Bramley H. Stomata coordinate with plant hydraulics to regulate transpiration response to vapour pressure deficit in wheat. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:839-850. [PMID: 33934747 DOI: 10.1071/fp20392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Genotypic variation in transpiration (Tr) response to vapour pressure deficit (VPD) has been studied in many crop species. There is debate over whether shoots or roots drive these responses. We investigated how stomata coordinate with plant hydraulics to mediate Tr response to VPD and influence leaf water status in wheat (Triticum aestivum L.). We measured Tr and stomatal conductance (gs) responses to VPD in well-watered, water-stressed and de-rooted shoots of eight wheat genotypes. Tr response to VPD was related to stomatal sensitivity to VPD and proportional to gs at low VPD, except in the water-stressed treatment, which induced strong stomatal closure at all VPD levels. Moreover, gs response to VPD was driven by adaxial stomata. A simple linear Tr response to VPD was associated with unresponsive gs to VPD. In contrast, segmented linear Tr to VPD response was mostly a function of gs with the breakpoint depending on the capacity to meet transpirational demand and set by the shoots. However, the magnitude of Tr response to VPD was influenced by roots, soil water content and stomatal sensitivity to VPD. These findings, along with a theoretical model suggest that stomata coordinate with plant hydraulics to regulate Tr response to VPD in wheat.
Collapse
Affiliation(s)
- S R W M C J K Ranawana
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; and Department of Export Agriculture, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka; and Corresponding author.
| | - K H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - J A Palta
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; and CSIRO Agriculture, Private Bag No. 5, Wembley, WA 6913, Australia
| | - K Stefanova
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - H Bramley
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; and Plant Breeding Institute, School of Life and Environmental Sciences, The University of Sydney, Narrabri, NSW 2390, Australia
| |
Collapse
|
324
|
Lee BR, Ibáñez I. Improved phenological escape can help temperate tree seedlings maintain demographic performance under climate change conditions. GLOBAL CHANGE BIOLOGY 2021; 27:3883-3897. [PMID: 33977598 DOI: 10.1111/gcb.15678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Phenological escape, a strategy that deciduous understory plants use to access direct light in spring by leafing out before the canopy closes, plays an important role in shaping the recruitment of temperate tree seedlings. Previous studies have investigated how climate change will alter these dynamics for herbaceous species, but there is a knowledge gap related to how woody species such as tree seedlings will be affected. Here, we modeled temperate tree seedling leaf-out phenology and canopy close phenology in response to environmental drivers and used climate change projections to forecast changes to the duration of spring phenological escape. We then used these predictions to estimate changes in annual carbon assimilation while accounting for reduced carbon assimilation rates associated with hotter and drier summers. Lastly, we applied these estimates to previously published models of seedling growth and survival to investigate the net effect on seedling demographic performance. Our models predict that temperate tree seedlings will experience improved phenological escape and, therefore, increased spring carbon assimilation under climate change conditions. However, increased summer respiration costs will offset the gains in spring under extreme climate change leading to a net loss in annual carbon assimilation and demographic performance. Furthermore, we found that annual carbon assimilation predictions depend strongly on the species of nearby canopy tree that seedlings were planted near, with all seedlings projected to assimilate less carbon (and therefore experience worse demographic performance) when planted near Quercus rubra canopy trees as opposed to Acer saccharum canopy trees. We conclude that changes to spring phenological escape will have important effects on how tree seedling recruitment is affected by climate change, with the magnitude of these effects dependent upon climate change severity and biological interactions with neighboring adults. Thus, future studies of temperate forest recruitment should account for phenological escape dynamics in their models.
Collapse
Affiliation(s)
- Benjamin R Lee
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Inés Ibáñez
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
325
|
Flo V, Martínez-Vilalta J, Mencuccini M, Granda V, Anderegg WRL, Poyatos R. Climate and functional traits jointly mediate tree water-use strategies. THE NEW PHYTOLOGIST 2021; 231:617-630. [PMID: 33893652 DOI: 10.1111/nph.17404] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Tree water use is central to plant function and ecosystem fluxes. However, it is still unknown how organ-level water-relations traits are coordinated to determine whole-tree water-use strategies in response to drought, and whether this coordination depends on climate. Here we used a global sap flow database (SAPFLUXNET) to study the response of water use, in terms of whole-tree canopy conductance (G), to vapour pressure deficit (VPD) and to soil water content (SWC) for 142 tree species. We investigated the individual and coordinated effect of six water-relations traits (vulnerability to embolism, Huber value, hydraulic conductivity, turgor-loss point, rooting depth and leaf size) on water-use parameters, also accounting for the effect of tree height and climate (mean annual precipitation, MAP). Reference G and its sensitivity to VPD were tightly coordinated with water-relations traits rather than with MAP. Species with efficient xylem transport had higher canopy conductance but also higher sensitivity to VPD. Moreover, we found that angiosperms had higher reference G and higher sensitivity to VPD than did gymnosperms. Our results highlight the need to consider trait integration and reveal the complications and challenges of defining a single, whole-plant resource use spectrum ranging from 'acquisitive' to 'conservative'.
Collapse
Affiliation(s)
- Victor Flo
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, 08193, Spain
- Univ Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Catalonia, 08193, Spain
| | - Jordi Martínez-Vilalta
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, 08193, Spain
- Univ Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Catalonia, 08193, Spain
| | - Maurizio Mencuccini
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, 08193, Spain
- ICREA, Barcelona, 08010, Spain
| | - Victor Granda
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, 08193, Spain
| | - William R L Anderegg
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Rafael Poyatos
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, 08193, Spain
- Univ Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Catalonia, 08193, Spain
| |
Collapse
|
326
|
Sadok W, Lopez JR, Smith KP. Transpiration increases under high-temperature stress: Potential mechanisms, trade-offs and prospects for crop resilience in a warming world. PLANT, CELL & ENVIRONMENT 2021; 44:2102-2116. [PMID: 33278035 DOI: 10.1111/pce.13970] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 05/24/2023]
Abstract
The frequency and intensity of high-temperature stress events are expected to increase as climate change intensifies. Concomitantly, an increase in evaporative demand, driven in part by global warming, is also taking place worldwide. Despite this, studies examining high-temperature stress impacts on plant productivity seldom consider this interaction to identify traits enhancing yield resilience towards climate change. Further, new evidence documents substantial increases in plant transpiration rate in response to high-temperature stress even under arid environments, which raise a trade-off between the need for latent cooling dictated by excessive temperatures and the need for water conservation dictated by increasing evaporative demand. However, the mechanisms behind those responses, and the potential to design the next generation of crops successfully navigating this trade-off, remain poorly investigated. Here, we review potential mechanisms underlying reported increases in transpiration rate under high-temperature stress, within the broader context of their impact on water conservation needed for crop drought tolerance. We outline three main contributors to this phenomenon, namely stomatal, cuticular and water viscosity-based mechanisms, and we outline research directions aiming at designing new varieties optimized for specific temperature and evaporative demand regimes to enhance crop productivity under a warmer and dryer climate.
Collapse
Affiliation(s)
- Walid Sadok
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, USA
| | - Jose R Lopez
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, USA
| | - Kevin P Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
327
|
Ferguson JN, Tidy AC, Murchie EH, Wilson ZA. The potential of resilient carbon dynamics for stabilizing crop reproductive development and productivity during heat stress. PLANT, CELL & ENVIRONMENT 2021; 44:2066-2089. [PMID: 33538010 DOI: 10.1111/pce.14015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 05/20/2023]
Abstract
Impaired carbon metabolism and reproductive development constrain crop productivity during heat stress. Reproductive development is energy intensive, and its requirement for respiratory substrates rises as associated metabolism increases with temperature. Understanding how these processes are integrated and the extent to which they contribute to the maintenance of yield during and following periods of elevated temperatures is important for developing climate-resilient crops. Recent studies are beginning to demonstrate links between processes underlying carbon dynamics and reproduction during heat stress, consequently a summation of research that has been reported thus far and an evaluation of purported associations are needed to guide and stimulate future research. To this end, we review recent studies relating to source-sink dynamics, non-foliar photosynthesis and net carbon gain as pivotal in understanding how to improve reproductive development and crop productivity during heat stress. Rapid and precise phenotyping during narrow phenological windows will be important for understanding mechanisms underlying these processes, thus we discuss the development of relevant high-throughput phenotyping approaches that will allow for more informed decision-making regarding future crop improvement.
Collapse
Affiliation(s)
- John N Ferguson
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
- Future Food Beacon of Excellence, School of Biosciences, University of Nottingham, Leicestershire, UK
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Alison C Tidy
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
| | - Erik H Murchie
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
| | - Zoe A Wilson
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
| |
Collapse
|
328
|
Dusenge ME, Ward EJ, Warren JM, Stinziano JR, Wullschleger SD, Hanson PJ, Way DA. Warming induces divergent stomatal dynamics in co-occurring boreal trees. GLOBAL CHANGE BIOLOGY 2021; 27:3079-3094. [PMID: 33784426 DOI: 10.1111/gcb.15620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Climate warming will alter photosynthesis and respiration not only via direct temperature effects on leaf biochemistry but also by increasing atmospheric dryness, thereby reducing stomatal conductance and suppressing photosynthesis. Our knowledge on how climate warming affects these processes is mainly derived from seedlings grown under highly controlled conditions. However, little is known regarding temperature responses of trees growing under field settings. We exposed mature tamarack and black spruce trees growing in a peatland ecosystem to whole-ecosystem warming of up to +9°C above ambient air temperatures in an ongoing long-term experiment (SPRUCE: Spruce and Peatland Responses Under Changing Environments). Here, we report the responses of leaf gas exchange after the first two years of warming. We show that the two species exhibit divergent stomatal responses to warming and vapor pressure deficit. Warming of up to 9°C increased leaf N in both spruce and tamarack. However, higher leaf N in the warmer plots translate into higher photosynthesis in tamarack but not in spruce, with photosynthesis being more constrained by stomatal limitations in spruce than in tamarack under warm conditions. Surprisingly, dark respiration did not acclimate to warming in spruce, and thermal acclimation of respiration was only seen in tamarack once changes in leaf N were considered. Our results highlight how warming can lead to differing stomatal responses to warming in co-occurring species, with consequent effects on both vegetation carbon and water dynamics.
Collapse
Affiliation(s)
- Mirindi E Dusenge
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Eric J Ward
- US Geological Survey, Lafayette, LA, USA
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jeffrey M Warren
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Joseph R Stinziano
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Stan D Wullschleger
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Paul J Hanson
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Danielle A Way
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Nicholas School of the Environment, Duke University, Durham, NC, USA
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
| |
Collapse
|
329
|
Breshears DD, Fontaine JB, Ruthrof KX, Field JP, Feng X, Burger JR, Law DJ, Kala J, Hardy GESJ. Underappreciated plant vulnerabilities to heat waves. THE NEW PHYTOLOGIST 2021; 231:32-39. [PMID: 33728638 DOI: 10.1111/nph.17348] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
With climate change, heat waves are becoming increasingly frequent, intense and broader in spatial extent. However, while the lethal effects of heat waves on humans are well documented, the impacts on flora are less well understood, perhaps except for crops. We summarize recent findings related to heat wave impacts including: sublethal and lethal effects at leaf and plant scales, secondary ecosystem effects, and more complex impacts such as increased heat wave frequency across all seasons, and interactions with other disturbances. We propose generalizable practical trials to quantify the critical bounding conditions of vulnerability to heat waves. Collectively, plant vulnerabilities to heat waves appear to be underappreciated and understudied, particularly with respect to understanding heat wave driven plant die-off and ecosystem tipping points.
Collapse
Affiliation(s)
- David D Breshears
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, 85721, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Joseph B Fontaine
- Environmental and Conservation Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Katinka X Ruthrof
- Environmental and Conservation Sciences, Murdoch University, Murdoch, WA, 6150, Australia
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, 6151, Australia
| | - Jason P Field
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, 85721, USA
| | - Xiao Feng
- Department of Geography, Florida State University, Tallahassee, FL, 32306, USA
| | - Joseph R Burger
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- Arizona Institutes for Resilience, University of Arizona, Tucson, AZ, 85721, USA
| | - Darin J Law
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, 85721, USA
| | - Jatin Kala
- Environmental and Conservation Sciences, Murdoch University, Murdoch, WA, 6150, Australia
- Centre for Climate-Impacted Terrestrial Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Giles E St J Hardy
- Environmental and Conservation Sciences, Murdoch University, Murdoch, WA, 6150, Australia
- Centre for Climate-Impacted Terrestrial Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
330
|
Scafaro AP, Fan Y, Posch BC, Garcia A, Coast O, Atkin OK. Responses of leaf respiration to heatwaves. PLANT, CELL & ENVIRONMENT 2021; 44:2090-2101. [PMID: 33534189 DOI: 10.1111/pce.14018] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Mitochondrial respiration (R) is central to plant physiology and responds dynamically to daily short-term temperature changes. In the longer-term, changes in energy demand and membrane fluidity can decrease leaf R at a common temperature and increase the temperature at which leaf R peaks (Tmax ). However, leaf R functionality is more susceptible to short-term heatwaves. Catalysis increases with rising leaf temperature, driving faster metabolism and leaf R demand, despite declines in photosynthesis restricting assimilate supply and growth. Proteins denature as temperatures increase further, adding to maintenance costs. Excessive heat also inactivates respiratory enzymes, with a concomitant limitation on the capacity of the R system. These competing push-and-pull factors are responsible for the diminishing acceleration in leaf R rate as temperature rises. Under extreme heat, membranes become overly fluid, and enzymes such as the cytochrome c oxidase are impaired. Such changes can lead to over-reduction of the energy system culminating in reactive oxygen species production. This ultimately leads to the total breakdown of leaf R, setting the limit of leaf survival. Understanding the heat stress responses of leaf R is imperative, given the continued rise in frequency and intensity of heatwaves and the importance of R for plant fitness and survival.
Collapse
Affiliation(s)
- Andrew P Scafaro
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yuzhen Fan
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Bradley C Posch
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Andres Garcia
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Onoriode Coast
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- Natural Resources Institute, Agriculture, Health and Environment Department, University of Greenwich, Kent, UK
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
331
|
Xu T, Guan K, Peng B, Wei S, Zhao L. Machine Learning-Based Modeling of Spatio-Temporally Varying Responses of Rainfed Corn Yield to Climate, Soil, and Management in the U.S. Corn Belt. Front Artif Intell 2021; 4:647999. [PMID: 34124647 PMCID: PMC8192978 DOI: 10.3389/frai.2021.647999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/18/2021] [Indexed: 11/24/2022] Open
Abstract
Better understanding the variabilities in crop yield and production is critical to assessing the vulnerability and resilience of food production systems. Both environmental (climatic and edaphic) conditions and management factors affect the variabilities of crop yield. In this study, we conducted a comprehensive data-driven analysis in the U.S. Corn Belt to understand and model how rainfed corn yield is affected by climate variability and extremes, soil properties (soil available water capacity, soil organic matter), and management practices (planting date and fertilizer applications). Exploratory data analyses revealed that corn yield responds non-linearly to temperature, while the negative vapor pressure deficit (VPD) effect on corn yield is monotonic and more prominent. Higher mean yield and inter-annual yield variability are found associated with high soil available water capacity, while lower inter-annual yield variability is associated with high soil organic matter (SOM). We also identified region-dependent relationships between planting date and yield and a strong correlation between planting date and the April weather condition (temperature and rainfall). Next, we built machine learning models using the random forest and LASSO algorithms, respectively, to predict corn yield with all climatic, soil properties, and management factors. The random forest model achieved a high prediction accuracy for annual yield at county level as early as in July (R2 = 0.781) and outperformed LASSO. The gained insights from this study lead to improved understanding of how corn yield responds to climate variability and projected change in the U.S. Corn Belt and globally.
Collapse
Affiliation(s)
- Tianfang Xu
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, United States
| | - Kaiyu Guan
- College of Agriculture, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,National Center of Supercomputing Applications, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Bin Peng
- College of Agriculture, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,National Center of Supercomputing Applications, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Shiqi Wei
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, United States
| | - Lei Zhao
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
332
|
Denham SO, Oishi AC, Miniat CF, Wood JD, Yi K, Benson MC, Novick KA. Eastern US deciduous tree species respond dissimilarly to declining soil moisture but similarly to rising evaporative demand. TREE PHYSIOLOGY 2021; 41:944-959. [PMID: 33185239 DOI: 10.1093/treephys/tpaa153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/24/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Hydraulic stress in plants occurs under conditions of low water availability (soil moisture; θ) and/or high atmospheric demand for water (vapor pressure deficit; D). Different species are adapted to respond to hydraulic stress by functioning along a continuum where, on one hand, they close stomata to maintain a constant leaf water potential (ΨL) (isohydric species), and on the other hand, they allow ΨL to decline (anisohydric species). Differences in water-use along this continuum are most notable during hydrologic stress, often characterized by low θ and high D; however, θ and D are often, but not necessarily, coupled at time scales of weeks or longer, and uncertainty remains about the sensitivity of different water-use strategies to these variables. We quantified the effects of both θ and D on canopy conductance (Gc) among widely distributed canopy-dominant species along the isohydric-anisohydric spectrum growing along a hydroclimatological gradient. Tree-level Gc was estimated using hourly sap flow observations from three sites in the eastern United States: a mesic forest in western North Carolina and two xeric forests in southern Indiana and Missouri. Each site experienced at least 1 year of substantial drought conditions. Our results suggest that sensitivity of Gc to θ varies across sites and species, with Gc sensitivity being greater in dry than in wet sites, and greater for isohydric compared with anisohydric species. However, once θ limitations are accounted for, sensitivity of Gc to D remains relatively constant across sites and species. While D limitations to Gc were similar across sites and species, ranging from 16 to 34% reductions, θ limitations to Gc ranged from 0 to 40%. The similarity in species sensitivity to D is encouraging from a modeling perspective, though it implies that substantial reduction to Gc will be experienced by all species in a future characterized by higher D.
Collapse
Affiliation(s)
- Sander O Denham
- O'Neill School of Public and Environmental Affairs, Indiana University-Bloomington, 702 N. Walnut Grove Ave, Bloomington, IN 47405, USA
- USDA Forest Service, Southern Research Station, Coweeta Hydrologic Laboratory, 3160 Coweeta Lab Rd, Otto, NC 28763, USA
| | - A Christopher Oishi
- USDA Forest Service, Southern Research Station, Coweeta Hydrologic Laboratory, 3160 Coweeta Lab Rd, Otto, NC 28763, USA
| | - Chelcy F Miniat
- USDA Forest Service, Southern Research Station, Coweeta Hydrologic Laboratory, 3160 Coweeta Lab Rd, Otto, NC 28763, USA
| | - Jeffrey D Wood
- School of Natural Resources, University of Missouri, 1111 Rollins St., Columbia, MO 65211, USA
| | - Koong Yi
- O'Neill School of Public and Environmental Affairs, Indiana University-Bloomington, 702 N. Walnut Grove Ave, Bloomington, IN 47405, USA
- Department of Environmental Sciences, University of Virginia, 291 McCormick Rd, Charlottesville, VA 29904, USA
| | - Michael C Benson
- O'Neill School of Public and Environmental Affairs, Indiana University-Bloomington, 702 N. Walnut Grove Ave, Bloomington, IN 47405, USA
| | - Kimberly A Novick
- O'Neill School of Public and Environmental Affairs, Indiana University-Bloomington, 702 N. Walnut Grove Ave, Bloomington, IN 47405, USA
| |
Collapse
|
333
|
Nadal-Sala D, Medlyn BE, Ruehr NK, Barton CVM, Ellsworth DS, Gracia C, Tissue DT, Tjoelker MG, Sabaté S. Increasing aridity will not offset CO 2 fertilization in fast-growing eucalypts with access to deep soil water. GLOBAL CHANGE BIOLOGY 2021; 27:2970-2990. [PMID: 33694242 DOI: 10.1111/gcb.15590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Rising atmospheric [CO2 ] (Ca ) generally enhances tree growth if nutrients are not limiting. However, reduced water availability and elevated evaporative demand may offset such fertilization. Trees with access to deep soil water may be able to mitigate such stresses and respond more positively to Ca . Here, we sought to evaluate how increased vapor pressure deficit and reduced precipitation are likely to modify the impact of elevated Ca (eCa ) on tree productivity in an Australian Eucalyptus saligna Sm. plantation with access to deep soil water. We parameterized a forest growth simulation model (GOTILWA+) using data from two field experiments on E. saligna: a 2-year whole-tree chamber experiment with factorial Ca (ambient =380, elevated =620 μmol mol-1 ) and watering treatments, and a 10-year stand-scale irrigation experiment. Model evaluation showed that GOTILWA+ can capture the responses of canopy C uptake to (1) rising vapor pressure deficit (D) under both Ca treatments; (2) alterations in tree water uptake from shallow and deep soil layers during soil dry-down; and (3) the impact of irrigation on tree growth. Simulations suggest that increasing Ca up to 700 μmol mol-1 alone would result in a 33% increase in annual gross primary production (GPP) and a 62% increase in biomass over 10 years. However, a combined 48% increase in D and a 20% reduction in precipitation would halve these values. Our simulations identify high D conditions as a key limiting factor for GPP. They also suggest that rising Ca will compensate for increasing aridity limitations in E. saligna trees with access to deep soil water under non-nutrient limiting conditions, thereby reducing the negative impacts of global warming upon this eucalypt species. Simulation models not accounting for water sources available to deep-rooting trees are likely to overestimate aridity impacts on forest productivity and C stocks.
Collapse
Affiliation(s)
- Daniel Nadal-Sala
- Ecology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona (UB), Barcelona, Spain
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany
| | - Craig V M Barton
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Carles Gracia
- Ecology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona (UB), Barcelona, Spain
- CREAF (Center for Ecological Research and Forestry Applications, Cerdanyola del Vallès, Spain
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Santi Sabaté
- Ecology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona (UB), Barcelona, Spain
- CREAF (Center for Ecological Research and Forestry Applications, Cerdanyola del Vallès, Spain
| |
Collapse
|
334
|
Zandalinas SI, Fritschi FB, Mittler R. Global Warming, Climate Change, and Environmental Pollution: Recipe for a Multifactorial Stress Combination Disaster. TRENDS IN PLANT SCIENCE 2021; 26:588-599. [PMID: 33745784 DOI: 10.1016/j.tplants.2021.02.011] [Citation(s) in RCA: 226] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 05/19/2023]
Abstract
Global warming, climate change, and environmental pollution present plants with unique combinations of different abiotic and biotic stresses. Although much is known about how plants acclimate to each of these individual stresses, little is known about how they respond to a combination of many of these stress factors occurring together, namely a multifactorial stress combination. Recent studies revealed that increasing the number of different co-occurring multifactorial stress factors causes a severe decline in plant growth and survival, as well as in the microbiome biodiversity that plants depend upon. This effect should serve as a dire warning to our society and prompt us to decisively act to reduce pollutants, fight global warming, and augment the tolerance of crops to multifactorial stress combinations.
Collapse
Affiliation(s)
- Sara I Zandalinas
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65201, USA
| | - Felix B Fritschi
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65201, USA
| | - Ron Mittler
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65201, USA; Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65201, USA.
| |
Collapse
|
335
|
Nadal-Sala D, Grote R, Birami B, Lintunen A, Mammarella I, Preisler Y, Rotenberg E, Salmon Y, Tatarinov F, Yakir D, Ruehr NK. Assessing model performance via the most limiting environmental driver in two differently stressed pine stands. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02312. [PMID: 33630380 DOI: 10.1002/eap.2312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/06/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Climate change will impact forest productivity worldwide. Forecasting the magnitude of such impact, with multiple environmental stressors changing simultaneously, is only possible with the help of process-based models. In order to assess their performance, such models require careful evaluation against measurements. However, direct comparison of model outputs against observational data is often not reliable, as models may provide the right answers due to the wrong reasons. This would severely hinder forecasting abilities under unprecedented climate conditions. Here, we present a methodology for model assessment, which supplements the traditional output-to-observation model validation. It evaluates model performance through its ability to reproduce observed seasonal changes of the most limiting environmental driver (MLED) for a given process, here daily gross primary productivity (GPP). We analyzed seasonal changes of the MLED for GPP in two contrasting pine forests, the Mediterranean Pinus halepensis Mill. Yatir (Israel) and the boreal Pinus sylvestris L. Hyytiälä (Finland) from three years of eddy-covariance flux data. Then, we simulated the same period with a state-of-the-art process-based simulation model (LandscapeDNDC). Finally, we assessed if the model was able to reproduce both GPP observations and MLED seasonality. We found that the model reproduced the seasonality of GPP in both stands, but it was slightly overestimated without site-specific fine-tuning. Interestingly, although LandscapeDNDC properly captured the main MLED in Hyytiälä (temperature) and in Yatir (soil water availability), it failed to reproduce high-temperature and high-vapor pressure limitations of GPP in Yatir during spring and summer. We deduced that the most likely reason for this divergence is an incomplete description of stomatal behavior. In summary, this study validates the MLED approach as a model evaluation tool, and opens up new possibilities for model improvement.
Collapse
Affiliation(s)
- Daniel Nadal-Sala
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Rüdiger Grote
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Benjamin Birami
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Anna Lintunen
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, P.O. Box 27, Helsinki,, 00014, Finland
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 68, Gustaf Hällströmin katu 2b, Helsinki,, 00014, Finland
| | - Ivan Mammarella
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, P.O. Box 27, Helsinki,, 00014, Finland
| | - Yakir Preisler
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138, USA
| | - Eyal Rotenberg
- Deptartment of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yann Salmon
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, P.O. Box 27, Helsinki,, 00014, Finland
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 68, Gustaf Hällströmin katu 2b, Helsinki,, 00014, Finland
| | - Fedor Tatarinov
- Deptartment of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dan Yakir
- Deptartment of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| |
Collapse
|
336
|
Still CJ, Rastogi B, Page GFM, Griffith DM, Sibley A, Schulze M, Hawkins L, Pau S, Detto M, Helliker BR. Imaging canopy temperature: shedding (thermal) light on ecosystem processes. THE NEW PHYTOLOGIST 2021; 230:1746-1753. [PMID: 33666251 DOI: 10.1111/nph.17321] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Canopy temperature Tcan is a key driver of plant function that emerges as a result of interacting biotic and abiotic processes and properties. However, understanding controls on Tcan and forecasting canopy responses to weather extremes and climate change are difficult due to sparse measurements of Tcan at appropriate spatial and temporal scales. Burgeoning observations of Tcan from thermal cameras enable evaluation of energy budget theory and better understanding of how environmental controls, leaf traits and canopy structure influence temperature patterns. The canopy scale is relevant for connecting to remote sensing and testing biosphere model predictions. We anticipate that future breakthroughs in understanding of ecosystem responses to climate change will result from multiscale observations of Tcan across a range of ecosystems.
Collapse
Affiliation(s)
- Christopher J Still
- Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Bharat Rastogi
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, 80309, USA
- Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, 80305, USA
| | - Gerald F M Page
- Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Dan M Griffith
- Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Adam Sibley
- Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Mark Schulze
- H.J. Andrews Experimental Forest, Oregon State University, Blue River, OR, 97413, USA
| | - Linnia Hawkins
- Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Stephanie Pau
- Department of Geography, Florida State University, Tallahassee, FL, 32304, USA
| | - Matteo Detto
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08540, USA
- Smithsonian Tropical Research Institute, Balboa, Panama
| | - Brent R Helliker
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, PA, 19104, USA
| |
Collapse
|
337
|
Lee BR, Ibáñez I. Spring phenological escape is critical for the survival of temperate tree seedlings. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Benjamin R. Lee
- School for Environment and Sustainability University of Michigan Ann Arbor MI USA
| | - Inés Ibáñez
- School for Environment and Sustainability University of Michigan Ann Arbor MI USA
| |
Collapse
|
338
|
Lauriks F, Salomón RL, Steppe K. Temporal variability in tree responses to elevated atmospheric CO 2. PLANT, CELL & ENVIRONMENT 2021; 44:1292-1310. [PMID: 33368341 DOI: 10.1111/pce.13986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
At leaf level, elevated atmospheric CO2 concentration (eCO2 ) results in stimulation of carbon net assimilation and reduction of stomatal conductance. However, a comprehensive understanding of the impact of eCO2 at larger temporal (seasonal and annual) and spatial (from leaf to whole-tree) scales is still lacking. Here, we review overall trends, magnitude and drivers of dynamic tree responses to eCO2 , including carbon and water relations at the leaf and the whole-tree level. Spring and early season leaf responses are most susceptible to eCO2 and are followed by a down-regulation towards the onset of autumn. At the whole-tree level, CO2 fertilization causes consistent biomass increments in young seedlings only, whereas mature trees show a variable response. Elevated CO2 -induced reductions in leaf stomatal conductance do not systematically translate into limitation of whole-tree transpiration due to the unpredictable response of canopy area. Reduction in the end-of-season carbon sink demand and water-limiting strategies are considered the main drivers of seasonal tree responses to eCO2 . These large temporal and spatial variabilities in tree responses to eCO2 highlight the risk of predicting tree behavior to eCO2 based on single leaf-level point measurements as they only reveal snapshots of the dynamic responses to eCO2 .
Collapse
Affiliation(s)
- Fran Lauriks
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Roberto Luis Salomón
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Department of Natural Resources and Systems, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
339
|
Fan Y, Tjiputra J, Muri H, Lombardozzi D, Park CE, Wu S, Keith D. Solar geoengineering can alleviate climate change pressures on crop yields. NATURE FOOD 2021; 2:373-381. [PMID: 37117731 DOI: 10.1038/s43016-021-00278-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/16/2021] [Indexed: 04/30/2023]
Abstract
Solar geoengineering (SG) and CO2 emissions reduction can each alleviate anthropogenic climate change, but their impacts on food security are not yet fully understood. Using an advanced crop model within an Earth system model, we analysed the yield responses of six major crops to three SG technologies (SGs) and emissions reduction when they provide roughly the same reduction in radiative forcing and assume the same land use. We found sharply distinct yield responses to changes in radiation, moisture and CO2, but comparable significant cooling benefits for crop yields by all four methods. Overall, global yields increase ~10% under the three SGs and decrease 5% under emissions reduction, the latter primarily due to reduced CO2 fertilization, relative to business as usual by the late twenty-first century. Relative humidity dominates the hydrological effect on yields of rainfed crops, with little contribution from precipitation. The net insolation effect is negligible across all SGs, contrary to previous findings.
Collapse
Affiliation(s)
- Yuanchao Fan
- NORCE Norwegian Research Centre and Bjerknes Centre for Climate Research, Bergen, Norway.
- Center for the Environment, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA.
| | - Jerry Tjiputra
- NORCE Norwegian Research Centre and Bjerknes Centre for Climate Research, Bergen, Norway
| | - Helene Muri
- Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Danica Lombardozzi
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Chang-Eui Park
- Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul, Republic of Korea
| | - Shengjun Wu
- Three Gorges Research Center for Ecology and Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - David Keith
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- John F. Kennedy School of Government, Harvard University, Cambridge, MA, USA
| |
Collapse
|
340
|
López J, Way DA, Sadok W. Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. GLOBAL CHANGE BIOLOGY 2021; 27:1704-1720. [PMID: 33683792 PMCID: PMC8251766 DOI: 10.1111/gcb.15548] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 05/25/2023]
Abstract
Earth is currently undergoing a global increase in atmospheric vapor pressure deficit (VPD), a trend which is expected to continue as climate warms. This phenomenon has been associated with productivity decreases in ecosystems and yield penalties in crops, with these losses attributed to photosynthetic limitations arising from decreased stomatal conductance. Such VPD increases, however, have occurred over decades, which raises the possibility that stomatal acclimation to VPD plays an important role in determining plant productivity under high VPD. Furthermore, evidence points to more far-ranging and complex effects of elevated VPD on plant physiology, extending to the anatomical, biochemical, and developmental levels, which could vary substantially across species. Because these complex effects are typically not considered in modeling frameworks, we conducted a quantitative literature review documenting temperature-independent VPD effects on 112 species and 59 traits and physiological variables, in order to develop an integrated and mechanistic physiological framework. We found that VPD increase reduced yield and primary productivity, an effect that was partially mediated by stomatal acclimation, and also linked with changes in leaf anatomy, nutrient, and hormonal status. The productivity decrease was also associated with negative effects on reproductive development, and changes in architecture and growth rates that could decrease the evaporative surface or minimize embolism risk. Cross-species quantitative relationships were found between levels of VPD increase and trait responses, and we found differences across plant groups, indicating that future VPD impacts will depend on community assembly and crop functional diversity. Our analysis confirms predictions arising from the hydraulic corollary to Darcy's law, outlines a systemic physiological framework of plant responses to rising VPD, and provides recommendations for future research to better understand and mitigate VPD-mediated climate change effects on ecosystems and agro-systems.
Collapse
Affiliation(s)
- José López
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSaint PaulMNUSA
| | - Danielle A. Way
- Department of BiologyUniversity of Western OntarioLondonONCanada
- Division of Plant SciencesResearch School of BiologyAustralian National UniversityCanberraACTAustralia
- Nicholas School of the EnvironmentDuke UniversityDurhamNCUSA
- Environmental and Climate Sciences DepartmentBrookhaven National LaboratoryUptonNYUSA
| | - Walid Sadok
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSaint PaulMNUSA
| |
Collapse
|
341
|
Cohen I, Zandalinas SI, Fritschi FB, Sengupta S, Fichman Y, Azad RK, Mittler R. The impact of water deficit and heat stress combination on the molecular response, physiology, and seed production of soybean. PHYSIOLOGIA PLANTARUM 2021; 172:41-52. [PMID: 33179765 DOI: 10.1111/ppl.13269] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 05/27/2023]
Abstract
A combination of drought and heat stress, occurring at the vegetative or reproductive growth phase of many different crops can have a devastating impact on yield. In soybean (Glycine max), a considerable effort has been made to develop genotypes with enhanced yield production under conditions of drought or heat stress. However, how these genotypes perform in terms of growth, physiological responses, and most importantly seed production, under conditions of drought and heat combination is mostly unknown. Here, we studied the impact of water deficit and heat stress combination on the physiology, seed production, and yield per plant of two soybean genotypes, Magellan and Plant Introduction (PI) 548313, that differ in their reproductive responses to heat stress. Our findings reveal that although PI 548313 produced more seeds than Magellan under conditions of heat stress, under conditions of water deficit, and heat stress combination its seed production decreased. Because the number of flowers and pollen germination of PI 548313 remained high under heat or water deficit and heat combination, the reduced seed production exhibited by PI 548313 under the stress combination could be a result of processes that occur at the stigma, ovaries and/or other parts of the flower following pollen germination.
Collapse
Affiliation(s)
- Itay Cohen
- Division of Plant Sciences, College of Agriculture Food and Natural Resources, and Interdisciplinary Plant Group. Christopher S. Bond Life Sciences Center University of Missouri, Columbia, Missouri, USA
| | - Sara I Zandalinas
- Division of Plant Sciences, College of Agriculture Food and Natural Resources, and Interdisciplinary Plant Group. Christopher S. Bond Life Sciences Center University of Missouri, Columbia, Missouri, USA
| | - Felix B Fritschi
- Division of Plant Sciences, College of Agriculture Food and Natural Resources, and Interdisciplinary Plant Group. Christopher S. Bond Life Sciences Center University of Missouri, Columbia, Missouri, USA
| | - Soham Sengupta
- Departments of Biological Sciences, College of Science, University of North Texas, Denton, Texas, USA
| | - Yosef Fichman
- Division of Plant Sciences, College of Agriculture Food and Natural Resources, and Interdisciplinary Plant Group. Christopher S. Bond Life Sciences Center University of Missouri, Columbia, Missouri, USA
| | - Rajeev K Azad
- Departments of Biological Sciences, College of Science, University of North Texas, Denton, Texas, USA
- Departments of Mathematics, University of North Texas, Denton, Texas, USA
| | - Ron Mittler
- Division of Plant Sciences, College of Agriculture Food and Natural Resources, and Interdisciplinary Plant Group. Christopher S. Bond Life Sciences Center University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
342
|
Warren JM, Jensen AM, Ward EJ, Guha A, Childs J, Wullschleger SD, Hanson PJ. Divergent species-specific impacts of whole ecosystem warming and elevated CO 2 on vegetation water relations in an ombrotrophic peatland. GLOBAL CHANGE BIOLOGY 2021; 27:1820-1835. [PMID: 33528056 DOI: 10.1111/gcb.15543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Boreal peatland forests have relatively low species diversity and thus impacts of climate change on one or more dominant species could shift ecosystem function. Despite abundant soil water availability, shallowly rooted vascular plants within peatlands may not be able to meet foliar demand for water under drought or heat events that increase vapor pressure deficits while reducing near surface water availability, although concurrent increases in atmospheric CO2 could buffer resultant hydraulic stress. We assessed plant water relations of co-occurring shrub (primarily Rhododendron groenlandicum and Chamaedaphne calyculata) and tree (Picea mariana and Larix laricina) species prior to, and in response to whole ecosystem warming (0 to +9°C) and elevated CO2 using 12.8-m diameter open-top enclosures installed within an ombrotrophic bog. Water relations (water potential [Ψ], turgor loss point, foliar and root hydraulic conductivity) were assessed prior to treatment initiation, then Ψ and peak sap flow (trees only) assessed after 1 or 2 years of treatments. Under the higher temperature treatments, L. laricina Ψ exceeded its turgor loss point, increased its peak sap flow, and was not able to recover Ψ overnight. In contrast, P. mariana operated below its turgor loss point and maintained constant Ψ and sap flow across warming treatments. Similarly, C. calyculata Ψ stress increased with temperature while R. groenlandicum Ψ remained at pretreatment levels. The more anisohydric behavior of L. laricina and C. calyculata may provide greater net C uptake with warming, while the more conservative P. mariana and R. groenlandicum maintained greater hydraulic safety. These latter species also responded to elevated CO2 by reduced Ψ stress, which may also help limit hydraulic failure during periods of extreme drought or heat in the future. Along with Sphagnum moss, the species-specific responses of peatland vascular communities to drier or hotter conditions will shape boreal peatland composition and function in the future.
Collapse
Affiliation(s)
- Jeffrey M Warren
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Anna M Jensen
- Department of Forestry and Wood Technology, Linnaeus University, Växjö, Sweden
| | - Eric J Ward
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA, USA
| | - Anirban Guha
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Joanne Childs
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Stan D Wullschleger
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Paul J Hanson
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
343
|
Moore CE, Meacham-Hensold K, Lemonnier P, Slattery RA, Benjamin C, Bernacchi CJ, Lawson T, Cavanagh AP. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2822-2844. [PMID: 33619527 PMCID: PMC8023210 DOI: 10.1093/jxb/erab090] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/19/2021] [Indexed: 05/03/2023]
Abstract
As global land surface temperature continues to rise and heatwave events increase in frequency, duration, and/or intensity, our key food and fuel cropping systems will likely face increased heat-related stress. A large volume of literature exists on exploring measured and modelled impacts of rising temperature on crop photosynthesis, from enzymatic responses within the leaf up to larger ecosystem-scale responses that reflect seasonal and interannual crop responses to heat. This review discusses (i) how crop photosynthesis changes with temperature at the enzymatic scale within the leaf; (ii) how stomata and plant transport systems are affected by temperature; (iii) what features make a plant susceptible or tolerant to elevated temperature and heat stress; and (iv) how these temperature and heat effects compound at the ecosystem scale to affect crop yields. Throughout the review, we identify current advancements and future research trajectories that are needed to make our cropping systems more resilient to rising temperature and heat stress, which are both projected to occur due to current global fossil fuel emissions.
Collapse
Affiliation(s)
- Caitlin E Moore
- School of Agriculture and Environment, The University of Western Australia, Crawley, Australia
- Institute for Sustainability, Energy & Environment, University of Illinois at Urbana-Champaign, Urbana, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Katherine Meacham-Hensold
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | | | - Rebecca A Slattery
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Claire Benjamin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Carl J Bernacchi
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture–Agricultural Research Service, Urbana, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Amanda P Cavanagh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
- School of Life Sciences, University of Essex, Colchester, UK
| |
Collapse
|
344
|
Baca Cabrera JC, Hirl RT, Schäufele R, Macdonald A, Schnyder H. Stomatal conductance limited the CO 2 response of grassland in the last century. BMC Biol 2021; 19:50. [PMID: 33757496 PMCID: PMC7989024 DOI: 10.1186/s12915-021-00988-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The anthropogenic increase of atmospheric CO2 concentration (ca) is impacting carbon (C), water, and nitrogen (N) cycles in grassland and other terrestrial biomes. Plant canopy stomatal conductance is a key player in these coupled cycles: it is a physiological control of vegetation water use efficiency (the ratio of C gain by photosynthesis to water loss by transpiration), and it responds to photosynthetic activity, which is influenced by vegetation N status. It is unknown if the ca-increase and climate change over the last century have already affected canopy stomatal conductance and its links with C and N processes in grassland. RESULTS Here, we assessed two independent proxies of (growing season-integrating canopy-scale) stomatal conductance changes over the last century: trends of δ18O in cellulose (δ18Ocellulose) in archived herbage from a wide range of grassland communities on the Park Grass Experiment at Rothamsted (U.K.) and changes of the ratio of yields to the CO2 concentration gradient between the atmosphere and the leaf internal gas space (ca - ci). The two proxies correlated closely (R2 = 0.70), in agreement with the hypothesis. In addition, the sensitivity of δ18Ocellulose changes to estimated stomatal conductance changes agreed broadly with published sensitivities across a range of contemporary field and controlled environment studies, further supporting the utility of δ18Ocellulose changes for historical reconstruction of stomatal conductance changes at Park Grass. Trends of δ18Ocellulose differed strongly between plots and indicated much greater reductions of stomatal conductance in grass-rich than dicot-rich communities. Reductions of stomatal conductance were connected with reductions of yield trends, nitrogen acquisition, and nitrogen nutrition index. Although all plots were nitrogen-limited or phosphorus- and nitrogen-co-limited to different degrees, long-term reductions of stomatal conductance were largely independent of fertilizer regimes and soil pH, except for nitrogen fertilizer supply which promoted the abundance of grasses. CONCLUSIONS Our data indicate that some types of temperate grassland may have attained saturation of C sink activity more than one century ago. Increasing N fertilizer supply may not be an effective climate change mitigation strategy in many grasslands, as it promotes the expansion of grasses at the disadvantage of the more CO2 responsive forbs and N-fixing legumes.
Collapse
Affiliation(s)
- Juan C Baca Cabrera
- Technical University of Munich, Lehrstuhl für Grünlandlehre, Alte Akademie 12, 85354, Freising-Weihenstephan, Germany
| | - Regina T Hirl
- Technical University of Munich, Lehrstuhl für Grünlandlehre, Alte Akademie 12, 85354, Freising-Weihenstephan, Germany
| | - Rudi Schäufele
- Technical University of Munich, Lehrstuhl für Grünlandlehre, Alte Akademie 12, 85354, Freising-Weihenstephan, Germany
| | - Andy Macdonald
- Rothamsted Research, Sustainable Agriculture Sciences Department, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Hans Schnyder
- Technical University of Munich, Lehrstuhl für Grünlandlehre, Alte Akademie 12, 85354, Freising-Weihenstephan, Germany.
| |
Collapse
|
345
|
Sullivan CN, Koski MH. The effects of climate change on floral anthocyanin polymorphisms. Proc Biol Sci 2021; 288:20202693. [PMID: 33653138 DOI: 10.1098/rspb.2020.2693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pigmentation affords resistance to abiotic stressors, and thus can respond adaptively or plastically to drought and extreme temperatures associated with global change. Plants frequently display variability in flower coloration that is underlain by anthocyanin pigmentation. While anthocyanin polymorphisms impact plant-animal interactions, they also impact reproductive performance under abiotic stress. We used descriptions of flower colour from over 1900 herbarium records representing 12 North American species spanning 124 years to test whether anthocyanin-based flower colour has responded to global change. Based on demonstrated abiotic associations with performance of anthocyanin colour morphs, we predicted pigmentation would increase in species experiencing increased aridity, but decline in those experiencing larger increases in temperature. We found that the frequency of reports of pigmented morphs increased temporally in some taxa but displayed subtle declines in others. Pigmentation was negatively associated with temperature and positively associated with vapour pressure deficit (a metric of aridity) across taxa. Species experiencing larger temperature increases over time displayed reductions in pigmentation, while those experiencing increases in aridity displayed increases in pigmentation. Change in anthocyanin-based floral colour was thus linked with climatic change. Altered flower coloration has the strong potential to impact plant-animal interactions and overall plant reproductive performance.
Collapse
Affiliation(s)
- Cierra N Sullivan
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Matthew H Koski
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
346
|
Hamann E, Denney D, Day S, Lombardi E, Jameel MI, MacTavish R, Anderson JT. Review: Plant eco-evolutionary responses to climate change: Emerging directions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110737. [PMID: 33568289 DOI: 10.1016/j.plantsci.2020.110737] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 05/14/2023]
Abstract
Contemporary climate change is exposing plant populations to novel combinations of temperatures, drought stress, [CO2] and other abiotic and biotic conditions. These changes are rapidly disrupting the evolutionary dynamics of plants. Despite the multifactorial nature of climate change, most studies typically manipulate only one climatic factor. In this opinion piece, we explore how climate change factors interact with each other and with biotic pressures to alter evolutionary processes. We evaluate the ramifications of climate change across life history stages,and examine how mating system variation influences population persistence under rapid environmental change. Furthermore, we discuss how spatial and temporal mismatches between plants and their mutualists and antagonists could affect adaptive responses to climate change. For example, plant-virus interactions vary from highly pathogenic to mildly facilitative, and are partly mediated by temperature, moisture availability and [CO2]. Will host plants exposed to novel, stressful abiotic conditions be more susceptible to viral pathogens? Finally, we propose novel experimental approaches that could illuminate how plants will cope with unprecedented global change, such as resurrection studies combined with experimental evolution, genomics or epigenetics.
Collapse
Affiliation(s)
- Elena Hamann
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Derek Denney
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Samantha Day
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Elizabeth Lombardi
- Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - M Inam Jameel
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Rachel MacTavish
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
347
|
Machado Filho JA, Rodrigues WP, Baroni DF, Pireda S, Campbell G, de Souza GAR, Verdin Filho AC, Arantes SD, de Oliveira Arantes L, da Cunha M, Gambetta GA, Rakocevic M, Ramalho JC, Campostrini E. Linking root and stem hydraulic traits to leaf physiological parameters in Coffea canephora clones with contrasting drought tolerance. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153355. [PMID: 33581558 DOI: 10.1016/j.jplph.2020.153355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Knowing the key hydraulic traits of different genotypes at early seedling stages can potentially provide crucial information and save time for breeding programs. In the current study we investigated: (1) how root, stem and whole plant conductivities are linked to xylem traits, and (2) how the integrated hydraulic system impacts leaf water potential, gas exchange, chlorophyll a fluorescence and the growth of three coffee cultivars (clones of Coffea canephora Pierre ex Froehner cv. Conilon) with known differences in drought tolerance. The Conilon clones CL 14, CL 5 V and CL 109A, classified as tolerant, moderately tolerant, and sensitive to drought respectively, were grown under non-limiting soil-water supply but high atmospheric demand (i.e., high VPDair). CL 14 and CL 5 V displayed higher root and stem hydraulic conductance and conductivity, and higher whole plant conductivity than CL 109A, and these differences were associated with higher root growth traits. In addition, CL 109A exhibited a non-significant trend towards wider vessels. Collectively, these responses likely contributed to reduce leaf water potential in CL 109A, and in turn, reduced leaf gas exchange, especially during elevated VPDair. Even when grown under well-watered conditions, the elevated VPDair observed during this study resulted in key differences in the hydraulic traits between the cultivars corresponding to differences in plant water status, gas exchange, and photochemical activity. Together these results suggest that coffee hydraulic traits, even when grown under non-water stress conditions, can be considered in breeding programs targeting more productive and efficient genotypes under drought and high atmospheric demand.
Collapse
Affiliation(s)
- José Altino Machado Filho
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, 29052-010, Vitória, ES, Brazil
| | - Weverton Pereira Rodrigues
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Avenida Brejo do Pinto, S/N, 65975-000, Estreito, Maranhão, Brazil.
| | - Danilo Força Baroni
- Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego, 2000, CEP: 28013620, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Saulo Pireda
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Glaziele Campbell
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Guilherme Augusto Rodrigues de Souza
- Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego, 2000, CEP: 28013620, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | | - Sara Dousseau Arantes
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, 29052-010, Vitória, ES, Brazil
| | - Lúcio de Oliveira Arantes
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, 29052-010, Vitória, ES, Brazil
| | - Maura da Cunha
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Gregory A Gambetta
- EGFV (UMR 1287), Bordeaux-Sciences Agro, INRAE, Université de Bordeaux, ISVV, 210 chemin de Leysotte, 33882 Villenave d'Ornon, France
| | - Miroslava Rakocevic
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Avenida Brejo do Pinto, S/N, 65975-000, Estreito, Maranhão, Brazil
| | - José Cochicho Ramalho
- Lab. Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Centro de Estudos Florestais (CEF), Departamento de Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Av. República, 2784-505, Oeiras, Portugal; GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Eliemar Campostrini
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Avenida Brejo do Pinto, S/N, 65975-000, Estreito, Maranhão, Brazil.
| |
Collapse
|
348
|
Bartlett MK, Sinclair G. Temperature and evaporative demand drive variation in stomatal and hydraulic traits across grape cultivars. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1995-2009. [PMID: 33300576 DOI: 10.1093/jxb/eraa577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Selection for crop cultivars has largely focused on reproductive traits, while the impacts of global change on crop productivity are expected to depend strongly on the vegetative physiology traits that drive plant resource use and stress tolerance. We evaluated relationships between physiology traits and growing season climate across wine grape cultivars to characterize trait variation across European growing regions. We compiled values from the literature for seven water use and drought tolerance traits and growing season climate. Cultivars with a lower maximum stomatal conductance were associated with regions with a higher mean temperature and mean and maximum vapor pressure deficit (r2=0.39-0.65, P<0.05, n=14-29). Cultivars with greater stem embolism resistance and more anisohydric stomatal behavior (i.e. a more negative water potential threshold for 50% stomatal closure) were associated with cooler regions (r2=0.48-0.72, P<0.03, n=10-29). Overall, cultivars grown in warmer, drier regions exhibited traits that would reduce transpiration and conserve soil water longer into the growing season, but potentially increase stomatal and temperature limitations on photosynthesis under future, hotter conditions.
Collapse
Affiliation(s)
- Megan K Bartlett
- Department of Viticulture & Enology, University of California, Davis, CA, USA
| | - Gabriela Sinclair
- Department of Viticulture & Enology, University of California, Davis, CA, USA
| |
Collapse
|
349
|
Mathias JM, Thomas RB. Global tree intrinsic water use efficiency is enhanced by increased atmospheric CO 2 and modulated by climate and plant functional types. Proc Natl Acad Sci U S A 2021; 118:e2014286118. [PMID: 33558233 PMCID: PMC7896309 DOI: 10.1073/pnas.2014286118] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We conducted a meta-analysis of carbon and oxygen isotopes from tree ring chronologies representing 34 species across 10 biomes to better understand the environmental drivers and physiological mechanisms leading to historical changes in tree intrinsic water use efficiency (iWUE), or the ratio of net photosynthesis (Anet) to stomatal conductance (gs), over the last century. We show a ∼40% increase in tree iWUE globally since 1901, coinciding with a ∼34% increase in atmospheric CO2 (Ca), although mean iWUE, and the rates of increase, varied across biomes and leaf and wood functional types. While Ca was a dominant environmental driver of iWUE, the effects of increasing Ca were modulated either positively or negatively by climate, including vapor pressure deficit (VPD), temperature, and precipitation, and by leaf and wood functional types. A dual carbon-oxygen isotope approach revealed that increases in Anet dominated the observed increased iWUE in ∼83% of examined cases, supporting recent reports of global increases in Anet, whereas reductions in gs occurred in the remaining ∼17%. This meta-analysis provides a strong process-based framework for predicting changes in tree carbon gain and water loss across biomes and across wood and leaf functional types, and the interactions between Ca and other environmental factors have important implications for the coupled carbon-hydrologic cycles under future climate. Our results furthermore challenge the idea of widespread reductions in gs as the major driver of increasing tree iWUE and will better inform Earth system models regarding the role of trees in the global carbon and water cycles.
Collapse
Affiliation(s)
- Justin M Mathias
- Department of Biology, West Virginia University, Morgantown, WV 26506
| | - Richard B Thomas
- Department of Biology, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
350
|
Kacjan Maršić N, Štolfa P, Vodnik D, Košmelj K, Mikulič-Petkovšek M, Kump B, Vidrih R, Kokalj D, Piskernik S, Ferjančič B, Dragutinović M, Veberič R, Hudina M, Šircelj H. Physiological and Biochemical Responses of Ungrafted and Grafted Bell Pepper Plants ( Capsicum annuum L. var. grossum (L.) Sendtn.) Grown under Moderate Salt Stress. PLANTS 2021; 10:plants10020314. [PMID: 33562107 PMCID: PMC7915883 DOI: 10.3390/plants10020314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 11/25/2022]
Abstract
The response of grafted bell pepper plants (Capsicum annuum L. var. grossum (L.) Sendtn.) to salt stress was investigated by analyzing the photosynthetic traits and mineral content of the plants and the metabolic composition of the fruit. The bell pepper variety “Vedrana” was grafted onto the salt-tolerant rootstock “Rocal F1” and grown at two salinities (20 mM and 40 mM NaCl) and control (0 mM NaCl) during the spring–summer period. On a physiological level, similar stomatal restriction of photosynthesis in grafted and ungrafted plants indicated that grafting did not alleviate water balance disturbances under increased salt exposure. Measurements of midday water potential did not show improved water status of grafted plants. The similar metabolic changes in grafted and ungrafted plants were also reflected in similarly reduced fruit yields. Thus, this grafting did not reduce the risk of ionic and osmotic imbalance in pepper plants grown under moderate salt treatment. Changes in the biochemical profiles of the pepper fruit were seen for both added-salt treatments. The fruit phenolic compounds were affected by rootstock mediation, although only for the July harvest, where total phenolics content increased with 40 mM NaCl treatment. Fruit ascorbic acid content increased with the duration of salt stress, without the mediation of the rootstock. The high salt dependence of this quality trait in pepper fruit appears to lead to more limited rootstock mediation effects.
Collapse
|